symsp_1.miz
begin
reserve F for
Field;
definition
let F;
struct (
RelStr,
ModuleStr over F)
SymStr over F
(# the
carrier ->
set,
the
addF ->
BinOp of the carrier,
the
ZeroF ->
Element of the carrier,
the
lmult ->
Function of
[:the
carrier of F, the carrier:], the carrier,
the
InternalRel ->
Relation of the carrier #)
attr strict
strict;
end
registration
let F;
cluster non
empty for
SymStr over F;
existence
proof
set X = the non
empty
set, a = the
BinOp of X, Z = the
Element of X, l = the
Function of
[:the
carrier of F, X:], X, r = the
Relation of X;
take
SymStr (# X, a, Z, l, r #);
thus the
carrier of
SymStr (# X, a, Z, l, r #) is non
empty;
end;
end
notation
let F;
let S be
SymStr over F;
let a,b be
Element of S;
synonym a
_|_ b for a
<= b;
end
set X =
{
0 };
reconsider o =
0 as
Element of
{
0 } by
TARSKI:def 1;
deffunc
F(
Element of
{
0 },
Element of
{
0 }) = o;
consider md be
BinOp of
{
0 } such that
Lm1: for x,y be
Element of
{
0 } holds (md
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
Lm2:
now
defpred
P[
object] means ex a,b be
Element of X st $1
=
[a, b] & b
= o;
set CV =
[:X, X:];
let F;
consider mo be
set such that
A1: for x be
object holds x
in mo iff x
in CV &
P[x] from
XBOOLE_0:sch 1;
mo
c= CV by
A1;
then
reconsider mo as
Relation of X;
take mo;
thus for x be
set holds x
in mo iff x
in CV & ex a,b be
Element of X st x
=
[a, b] & b
= o by
A1;
end;
registration
let F;
let X be non
empty
set, md be
BinOp of X, o be
Element of X, mF be
Function of
[:the
carrier of F, X:], X, mo be
Relation of X;
cluster
SymStr (# X, md, o, mF, mo #) -> non
empty;
coherence ;
end
Lm3: for mF be
Function of
[:the
carrier of F, X:], X, mo be
Relation of X holds
SymStr (# X, md, o, mF, mo #) is
Abelian
add-associative
right_zeroed
right_complementable
proof
let mF be
Function of
[:the
carrier of F, X:], X;
let mo be
Relation of X;
set H =
SymStr (# X, md, o, mF, mo #);
thus H is
Abelian
proof
let x,y be
Element of H;
reconsider x, y as
Element of X;
(md
. (x,y))
= o by
Lm1;
hence thesis by
Lm1;
end;
thus H is
add-associative
proof
let x,y,z be
Element of H;
reconsider x, y, z as
Element of X;
(md
. (x,(md
. (y,z))))
= o by
Lm1;
hence thesis by
Lm1;
end;
thus H is
right_zeroed
proof
let x be
Element of H;
reconsider x as
Element of X;
(md
. (x,(
0. H)))
= o by
Lm1;
hence thesis by
TARSKI:def 1;
end;
let x be
Element of H;
take (
- x);
thus thesis by
Lm1;
end;
registration
let F;
cluster
Abelian
add-associative
right_zeroed
right_complementable for non
empty
SymStr over F;
existence
proof
set mo = the
Relation of X;
set mF = the
Function of
[:the
carrier of F, X:], X;
SymStr (# X, md, o, mF, mo #) is
Abelian
add-associative
right_zeroed
right_complementable by
Lm3;
hence thesis;
end;
end
Lm4:
now
let F;
let mF be
Function of
[:the
carrier of F, X:], X such that
A1: for a be
Element of F holds for x be
Element of X holds (mF
. (a,x))
= o;
let mo be
Relation of X;
let MPS be
Abelian
add-associative
right_zeroed
right_complementable non
empty
SymStr over F such that
A2: MPS
=
SymStr (# X, md, o, mF, mo #);
for x,y be
Element of F holds for v,w be
Element of MPS holds (x
* (v
+ w))
= ((x
* v)
+ (x
* w)) & ((x
+ y)
* v)
= ((x
* v)
+ (y
* v)) & ((x
* y)
* v)
= (x
* (y
* v)) & ((
1_ F)
* v)
= v
proof
let x,y be
Element of F;
let v,w be
Element of MPS;
A3: ((x
* y)
* v)
= (x
* (y
* v))
proof
set z = (x
* y);
A4: (z
* v)
= (mF
. (z,v)) by
A2,
VECTSP_1:def 12;
reconsider v as
Element of MPS;
reconsider v as
Element of MPS;
A5: ((x
* y)
* v)
= o by
A1,
A2,
A4;
reconsider v as
Element of MPS;
A6: (mF
. (y,v))
= o by
A1,
A2;
reconsider v as
Element of MPS;
(y
* v)
= o by
A2,
A6,
VECTSP_1:def 12;
then (x
* (y
* v))
= (mF
. (x,o)) by
A2,
VECTSP_1:def 12;
hence thesis by
A1,
A5;
end;
A7: (x
* (v
+ w))
= ((x
* v)
+ (x
* w))
proof
reconsider v, w as
Element of X by
A2;
A8: (md
. (v,w))
= o by
Lm1;
reconsider v, w as
Element of MPS;
(x
* (v
+ w))
= (mF
. (x,o)) by
A2,
A8,
VECTSP_1:def 12;
then
A9: (x
* (v
+ w))
= o by
A1;
(mF
. (x,v))
= o by
A1;
then
A10: (x
* v)
= o by
A2,
VECTSP_1:def 12;
(mF
. (x,w))
= o by
A1;
then
A11: (x
* w)
= o by
A2,
VECTSP_1:def 12;
o
= (
0. MPS) by
A2;
hence thesis by
A9,
A10,
A11,
RLVECT_1: 4;
end;
A12: ((x
+ y)
* v)
= ((x
* v)
+ (y
* v))
proof
set z = (x
+ y);
A13: (z
* v)
= (mF
. (z,v)) by
A2,
VECTSP_1:def 12;
reconsider v as
Element of MPS;
reconsider v as
Element of MPS;
A14: ((x
+ y)
* v)
= o by
A1,
A2,
A13;
reconsider v as
Element of MPS;
A15: (mF
. (x,v))
= o by
A1,
A2;
reconsider v as
Element of MPS;
A16: (x
* v)
= o by
A2,
A15,
VECTSP_1:def 12;
reconsider v as
Element of MPS;
A17: (mF
. (y,v))
= o by
A1,
A2;
A18: o
= (
0. MPS) by
A2;
reconsider v as
Element of MPS;
(y
* v)
= o by
A2,
A17,
VECTSP_1:def 12;
hence thesis by
A14,
A16,
A18,
RLVECT_1: 4;
end;
((
1_ F)
* v)
= v
proof
set one1 = (
1_ F);
A19: (one1
* v)
= (mF
. (one1,v)) by
A2,
VECTSP_1:def 12;
reconsider v as
Element of MPS;
(mF
. (one1,v))
= o by
A1,
A2;
hence thesis by
A2,
A19,
TARSKI:def 1;
end;
hence thesis by
A7,
A12,
A3;
end;
hence MPS is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital by
VECTSP_1:def 14,
VECTSP_1:def 15,
VECTSP_1:def 16,
VECTSP_1:def 17;
end;
Lm5:
now
set CV =
[:X, X:];
let F;
let mF be
Function of
[:the
carrier of F, X:], X;
let mo be
Relation of X such that
A1: for x be
set holds x
in mo iff x
in CV & ex a,b be
Element of X st x
=
[a, b] & b
= o;
let MPS be
Abelian
add-associative
right_zeroed
right_complementable non
empty
SymStr over F such that
A2: MPS
=
SymStr (# X, md, o, mF, mo #);
thus for a be
Element of MPS holds (a
<> (
0. MPS) implies ex p be
Element of MPS st not p
_|_ a) by
A2,
TARSKI:def 1;
A3: for a,b be
Element of MPS holds a
_|_ b iff
[a, b]
in CV & ex c,d be
Element of X st
[a, b]
=
[c, d] & d
= o
proof
let a,b be
Element of MPS;
a
_|_ b iff
[a, b]
in mo by
A2,
ORDERS_2:def 5;
hence thesis by
A1;
end;
A4: for a,b be
Element of MPS holds a
_|_ b iff b
= o
proof
let a,b be
Element of MPS;
A5: b
= o implies a
_|_ b
proof
consider c,d be
Element of MPS such that
A6: c
= a & d
= b;
assume
A7: b
= o;
[a, b]
=
[c, d] by
A6;
hence thesis by
A2,
A3,
A7;
end;
a
_|_ b implies b
= o
proof
assume a
_|_ b;
then ex c,d be
Element of X st
[a, b]
=
[c, d] & d
= o by
A3;
hence thesis by
XTUPLE_0: 1;
end;
hence thesis by
A5;
end;
thus for a,b be
Element of MPS holds for l be
Element of F holds (a
_|_ b implies (l
* a)
_|_ b)
proof
let a,b be
Element of MPS;
let l be
Element of F;
assume a
_|_ b;
then b
= o by
A4;
hence thesis by
A4;
end;
thus for a,b,c be
Element of MPS holds (b
_|_ a & c
_|_ a implies (b
+ c)
_|_ a)
proof
let a,b,c be
Element of MPS;
assume that
A8: b
_|_ a and c
_|_ a;
a
= o by
A4,
A8;
hence thesis by
A4;
end;
thus for a,b,x be
Element of MPS holds ( not b
_|_ a implies ex k be
Element of F st (x
- (k
* b))
_|_ a)
proof
let a,b,x be
Element of MPS;
assume
A9: not b
_|_ a;
assume not thesis;
a
<> o by
A4,
A9;
hence contradiction by
A2,
TARSKI:def 1;
end;
let a,b,c be
Element of MPS;
assume that a
_|_ (b
+ c) and b
_|_ (c
+ a);
assume not c
_|_ (a
+ b);
then (a
+ b)
<> o by
A4;
hence contradiction by
A2,
TARSKI:def 1;
end;
definition
let F;
let IT be
Abelian
add-associative
right_zeroed
right_complementable non
empty
SymStr over F;
::
SYMSP_1:def1
attr IT is
SymSp-like means
:
Def1: for a,b,c,x be
Element of IT holds for l be
Element of F holds (a
<> (
0. IT) implies ex y be
Element of IT st not y
_|_ a) & (a
_|_ b implies (l
* a)
_|_ b) & (b
_|_ a & c
_|_ a implies (b
+ c)
_|_ a) & ( not b
_|_ a implies ex k be
Element of F st (x
- (k
* b))
_|_ a) & (a
_|_ (b
+ c) & b
_|_ (c
+ a) implies c
_|_ (a
+ b));
end
registration
let F;
cluster
SymSp-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
strict for
Abelian
add-associative
right_zeroed
right_complementable non
empty
SymStr over F;
existence
proof
deffunc
F(
Element of F,
Element of X) = o;
consider mF be
Function of
[:the
carrier of F, X:], X such that
A1: for a be
Element of F holds for x be
Element of X holds (mF
. (a,x))
=
F(a,x) from
BINOP_1:sch 4;
consider mo be
Relation of X such that
A2: for x be
set holds x
in mo iff x
in
[:X, X:] & ex a,b be
Element of X st x
=
[a, b] & b
= o by
Lm2;
reconsider MPS =
SymStr (# X, md, o, mF, mo #) as
Abelian
add-associative
right_zeroed
right_complementable non
empty
SymStr over F by
Lm3;
take MPS;
thus for a,b,c,x be
Element of MPS holds for l be
Element of F holds (a
<> (
0. MPS) implies ex y be
Element of MPS st not y
_|_ a) & (a
_|_ b implies (l
* a)
_|_ b) & (b
_|_ a & c
_|_ a implies (b
+ c)
_|_ a) & ( not b
_|_ a implies ex k be
Element of F st (x
- (k
* b))
_|_ a) & (a
_|_ (b
+ c) & b
_|_ (c
+ a) implies c
_|_ (a
+ b)) by
A2,
Lm5;
thus MPS is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital by
A1,
Lm4;
thus thesis;
end;
end
definition
let F;
mode
SymSp of F is
SymSp-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
SymStr over F;
end
reserve S for
SymSp of F;
reserve a,b,c,d,a9,b9,p,q,r,s,x,y,z for
Element of S;
reserve k,l for
Element of F;
theorem ::
SYMSP_1:1
Th1: (
0. S)
_|_ a
proof
set 0V = (
0. S), 0F = (
0. F);
A1:
now
assume not a
_|_ a;
then
consider m be
Element of F such that
A2: (0V
- (m
* a))
_|_ a by
Def1;
(0F
* (0V
- (m
* a)))
_|_ a by
A2,
Def1;
hence thesis by
VECTSP_1: 14;
end;
now
assume a
_|_ a;
then (0F
* a)
_|_ a by
Def1;
hence thesis by
VECTSP_1: 14;
end;
hence thesis by
A1;
end;
theorem ::
SYMSP_1:2
Th2: a
_|_ b implies b
_|_ a
proof
set 0V = (
0. S);
assume a
_|_ b;
then
A1: a
_|_ (0V
+ b) by
RLVECT_1: 4;
0V
_|_ (b
+ a) by
Th1;
then b
_|_ (a
+ 0V) by
A1,
Def1;
hence thesis by
RLVECT_1: 4;
end;
theorem ::
SYMSP_1:3
Th3: not a
_|_ b & (c
+ a)
_|_ b implies not c
_|_ b
proof
assume that
A1: not a
_|_ b and
A2: (c
+ a)
_|_ b;
assume not thesis;
then ((
- (
1_ F))
* c)
_|_ b by
Def1;
then (
- c)
_|_ b by
VECTSP_1: 14;
then ((
- c)
+ (c
+ a))
_|_ b by
A2,
Def1;
then ((c
+ (
- c))
+ a)
_|_ b by
RLVECT_1:def 3;
then ((
0. S)
+ a)
_|_ b by
RLVECT_1: 5;
hence contradiction by
A1,
RLVECT_1: 4;
end;
theorem ::
SYMSP_1:4
Th4: not b
_|_ a & c
_|_ a implies not (b
+ c)
_|_ a
proof
assume that
A1: not b
_|_ a and
A2: c
_|_ a;
((
- (
1_ F))
* c)
_|_ a by
A2,
Def1;
then
A3: (
- c)
_|_ a by
VECTSP_1: 14;
assume not thesis;
then ((b
+ c)
+ (
- c))
_|_ a by
A3,
Def1;
then (b
+ (c
+ (
- c)))
_|_ a by
RLVECT_1:def 3;
then (b
+ (
0. S))
_|_ a by
RLVECT_1: 5;
hence contradiction by
A1,
RLVECT_1: 4;
end;
theorem ::
SYMSP_1:5
Th5: not b
_|_ a & not l
= (
0. F) implies not (l
* b)
_|_ a & not b
_|_ (l
* a)
proof
set 1F = (
1. F);
assume that
A1: not b
_|_ a and
A2: not l
= (
0. F);
A3:
now
consider k such that
A4: (k
* l)
= 1F by
A2,
VECTSP_1:def 9;
assume b
_|_ (l
* a);
then (l
* a)
_|_ b by
Th2;
then (k
* (l
* a))
_|_ b by
Def1;
then (1F
* a)
_|_ b by
A4,
VECTSP_1:def 16;
then a
_|_ b by
VECTSP_1:def 17;
hence contradiction by
A1,
Th2;
end;
now
consider k such that
A5: (k
* l)
= 1F by
A2,
VECTSP_1:def 9;
assume (l
* b)
_|_ a;
then (k
* (l
* b))
_|_ a by
Def1;
then (1F
* b)
_|_ a by
A5,
VECTSP_1:def 16;
hence contradiction by
A1,
VECTSP_1:def 17;
end;
hence thesis by
A3;
end;
theorem ::
SYMSP_1:6
Th6: a
_|_ b implies (
- a)
_|_ b
proof
assume a
_|_ b;
then ((
- (
1_ F))
* a)
_|_ b by
Def1;
hence thesis by
VECTSP_1: 14;
end;
theorem ::
SYMSP_1:7
Th7: not a
_|_ c implies not (a
+ b)
_|_ c or not ((((
1_ F)
+ (
1_ F))
* a)
+ b)
_|_ c
proof
set 1F = (
1_ F);
assume
A1: not a
_|_ c;
assume
A2: not thesis;
then (((1F
* a)
+ ((
1_ F)
* a))
+ b)
_|_ c by
VECTSP_1:def 15;
then ((a
+ (1F
* a))
+ b)
_|_ c by
VECTSP_1:def 17;
then ((a
+ a)
+ b)
_|_ c by
VECTSP_1:def 17;
then (a
+ (a
+ b))
_|_ c by
RLVECT_1:def 3;
hence contradiction by
A1,
A2,
Th4;
end;
theorem ::
SYMSP_1:8
Th8: not a9
_|_ a & a9
_|_ b & not b9
_|_ b & b9
_|_ a implies not (a9
+ b9)
_|_ a & not (a9
+ b9)
_|_ b
proof
set 0V = (
0. S);
assume that
A1: not a9
_|_ a and
A2: a9
_|_ b and
A3: not b9
_|_ b and
A4: b9
_|_ a;
assume not thesis;
then (a9
+ b9)
_|_ a & ((
- (
1_ F))
* b9)
_|_ a or (a9
+ b9)
_|_ b & ((
- (
1_ F))
* a9)
_|_ b by
A2,
A4,
Def1;
then (a9
+ b9)
_|_ a & (
- b9)
_|_ a or (a9
+ b9)
_|_ b & (
- a9)
_|_ b by
VECTSP_1: 14;
then ((a9
+ b9)
+ (
- b9))
_|_ a or ((
- a9)
+ (a9
+ b9))
_|_ b by
Def1;
then (a9
+ (b9
+ (
- b9)))
_|_ a or (((
- a9)
+ a9)
+ b9)
_|_ b by
RLVECT_1:def 3;
then (a9
+ 0V)
_|_ a or (0V
+ b9)
_|_ b by
RLVECT_1: 5;
hence contradiction by
A1,
A3,
RLVECT_1: 4;
end;
theorem ::
SYMSP_1:9
Th9: a
<> (
0. S) & b
<> (
0. S) implies ex p st not p
_|_ a & not p
_|_ b
proof
assume that
A1: a
<> (
0. S) and
A2: b
<> (
0. S);
consider a9 such that
A3: not a9
_|_ a by
A1,
Def1;
now
consider b9 such that
A4: not b9
_|_ b by
A2,
Def1;
assume
A5: a9
_|_ b;
now
assume b9
_|_ a;
then ( not (a9
+ b9)
_|_ a) & not (a9
+ b9)
_|_ b by
A3,
A5,
A4,
Th8;
hence thesis;
end;
hence thesis by
A4;
end;
hence thesis by
A3;
end;
theorem ::
SYMSP_1:10
Th10: ((
1_ F)
+ (
1_ F))
<> (
0. F) & a
<> (
0. S) & b
<> (
0. S) & c
<> (
0. S) implies ex p st not p
_|_ a & not p
_|_ b & not p
_|_ c
proof
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: a
<> (
0. S) and
A3: b
<> (
0. S) and
A4: c
<> (
0. S);
consider r such that
A5: not r
_|_ a and
A6: not r
_|_ b by
A2,
A3,
Th9;
consider s such that
A7: not s
_|_ a and
A8: not s
_|_ c by
A2,
A4,
Th9;
now
assume that
A9: r
_|_ c and
A10: s
_|_ b;
A11:
now
(((
1_ F)
+ (
1_ F))
* r)
_|_ c by
A9,
Def1;
then
A12: not ((((
1_ F)
+ (
1_ F))
* r)
+ s)
_|_ c by
A8,
Th4;
not (((
1_ F)
+ (
1_ F))
* r)
_|_ b by
A1,
A6,
Th5;
then
A13: not ((((
1_ F)
+ (
1_ F))
* r)
+ s)
_|_ b by
A10,
Th4;
assume not ((((
1_ F)
+ (
1_ F))
* r)
+ s)
_|_ a;
hence thesis by
A13,
A12;
end;
now
assume
A14: not (r
+ s)
_|_ a;
( not (r
+ s)
_|_ b) & not (r
+ s)
_|_ c by
A6,
A8,
A9,
A10,
Th4;
hence thesis by
A14;
end;
hence thesis by
A5,
A11,
Th7;
end;
hence thesis by
A5,
A6,
A7,
A8;
end;
theorem ::
SYMSP_1:11
Th11: (a
- b)
_|_ d & (a
- c)
_|_ d implies (b
- c)
_|_ d
proof
assume that
A1: (a
- b)
_|_ d and
A2: (a
- c)
_|_ d;
(
- (a
- b))
_|_ d by
A1,
Th6;
then ((
- a)
+ b)
_|_ d by
VECTSP_1: 17;
then ((b
+ (
- a))
+ (a
- c))
_|_ d by
A2,
Def1;
then (b
+ ((
- a)
+ (a
- c)))
_|_ d by
RLVECT_1:def 3;
then (b
+ (((
- a)
+ a)
+ (
- c)))
_|_ d by
RLVECT_1:def 3;
then (b
+ ((
0. S)
+ (
- c)))
_|_ d by
RLVECT_1: 5;
hence thesis by
RLVECT_1: 4;
end;
theorem ::
SYMSP_1:12
Th12: not b
_|_ a & (x
- (k
* b))
_|_ a & (x
- (l
* b))
_|_ a implies k
= l
proof
assume that
A1: not b
_|_ a and
A2: (x
- (k
* b))
_|_ a & (x
- (l
* b))
_|_ a;
set 1F = (
1_ F);
((k
* b)
- (l
* b))
_|_ a by
A2,
Th11;
then ((k
* b)
+ ((
- 1F)
* (l
* b)))
_|_ a by
VECTSP_1: 14;
then ((k
* b)
+ (((
- 1F)
* l)
* b))
_|_ a by
VECTSP_1:def 16;
then ((k
* b)
+ ((
- (l
* 1F))
* b))
_|_ a by
VECTSP_1: 9;
then ((k
* b)
+ ((
- l)
* b))
_|_ a;
then ((k
+ (
- l))
* b)
_|_ a by
VECTSP_1:def 15;
then (((k
+ (
- l))
" )
* ((k
+ (
- l))
* b))
_|_ a by
Def1;
then
A3: ((((k
+ (
- l))
" )
* (k
+ (
- l)))
* b)
_|_ a by
VECTSP_1:def 16;
assume not thesis;
then (k
- l)
<> (
0. F) by
RLVECT_1: 21;
then (1F
* b)
_|_ a by
A3,
VECTSP_1:def 10;
hence contradiction by
A1,
VECTSP_1:def 17;
end;
theorem ::
SYMSP_1:13
Th13: ((
1_ F)
+ (
1_ F))
<> (
0. F) implies a
_|_ a
proof
set 1F = (
1_ F);
assume
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F);
now
assume a
<> (
0. S);
then
consider c such that
A2: not c
_|_ a by
Def1;
consider k such that
A3: (a
- (k
* c))
_|_ a by
A2,
Def1;
a
_|_ (a
+ (
- (k
* c))) by
A3,
Th2;
then (
- (k
* c))
_|_ (a
+ a) by
Def1;
then (
- (k
* c))
_|_ (a
+ (1F
* a)) by
VECTSP_1:def 17;
then (
- (k
* c))
_|_ ((1F
* a)
+ (1F
* a)) by
VECTSP_1:def 17;
then ((
- 1F)
* (k
* c))
_|_ ((1F
* a)
+ (1F
* a)) by
VECTSP_1: 14;
then ((
- 1F)
* (k
* c))
_|_ ((1F
+ 1F)
* a) by
VECTSP_1:def 15;
then (((
- 1F)
* k)
* c)
_|_ ((1F
+ 1F)
* a) by
VECTSP_1:def 16;
then ((
- (k
* 1F))
* c)
_|_ ((1F
+ 1F)
* a) by
VECTSP_1: 9;
then ((
- k)
* c)
_|_ (((
1_ F)
+ 1F)
* a);
then (((
1_ F)
+ (
1_ F))
* a)
_|_ ((
- k)
* c) by
Th2;
then ((((
1_ F)
+ (
1_ F))
" )
* (((
1_ F)
+ (
1_ F))
* a))
_|_ ((
- k)
* c) by
Def1;
then a
_|_ ((
- k)
* c) by
A1,
VECTSP_1: 20;
then
A4: ((
- k)
* c)
_|_ a by
Th2;
(a
+ ((
- k)
* c))
_|_ a by
A3,
VECTSP_1: 21;
hence thesis by
A4,
Th4;
end;
hence thesis by
Th1;
end;
definition
let F;
let S, a, b, x;
assume
A1: not b
_|_ a;
::
SYMSP_1:def2
func
ProJ (a,b,x) ->
Element of F means
:
Def2: for l be
Element of F st (x
- (l
* b))
_|_ a holds it
= l;
existence
proof
consider k be
Element of F such that
A2: (x
- (k
* b))
_|_ a by
A1,
Def1;
take k;
let l be
Element of F;
assume (x
- (l
* b))
_|_ a;
hence thesis by
A1,
A2,
Th12;
end;
uniqueness
proof
let l1,l2 be
Element of F such that
A3: for l be
Element of F st (x
- (l
* b))
_|_ a holds l1
= l and
A4: for l be
Element of F st (x
- (l
* b))
_|_ a holds l2
= l;
consider k be
Element of F such that
A5: (x
- (k
* b))
_|_ a by
A1,
Def1;
l1
= k by
A3,
A5;
hence thesis by
A4,
A5;
end;
end
theorem ::
SYMSP_1:14
Th14: not b
_|_ a implies (x
- ((
ProJ (a,b,x))
* b))
_|_ a
proof
assume
A1: not b
_|_ a;
then ex l be
Element of F st (x
- (l
* b))
_|_ a by
Def1;
hence thesis by
A1,
Def2;
end;
theorem ::
SYMSP_1:15
Th15: not b
_|_ a implies (
ProJ (a,b,(l
* x)))
= (l
* (
ProJ (a,b,x)))
proof
set L = (x
- ((
ProJ (a,b,x))
* b));
A1: (l
* L)
= ((l
* x)
- (l
* ((
ProJ (a,b,x))
* b))) by
VECTSP_1: 23
.= ((l
* x)
- ((l
* (
ProJ (a,b,x)))
* b)) by
VECTSP_1:def 16;
assume
A2: not b
_|_ a;
then
A3: ((l
* x)
- ((
ProJ (a,b,(l
* x)))
* b))
_|_ a by
Th14;
L
_|_ a by
A2,
Th14;
then ((l
* x)
- ((l
* (
ProJ (a,b,x)))
* b))
_|_ a by
A1,
Def1;
hence thesis by
A2,
A3,
Th12;
end;
theorem ::
SYMSP_1:16
Th16: not b
_|_ a implies (
ProJ (a,b,(x
+ y)))
= ((
ProJ (a,b,x))
+ (
ProJ (a,b,y)))
proof
set 1F = (
1_ F);
set L = ((x
- ((
ProJ (a,b,x))
* b))
+ (y
- ((
ProJ (a,b,y))
* b)));
A1: L
= ((((
- ((
ProJ (a,b,x))
* b))
+ x)
+ y)
+ (
- ((
ProJ (a,b,y))
* b))) by
RLVECT_1:def 3
.= (((x
+ y)
+ (
- ((
ProJ (a,b,x))
* b)))
+ (
- ((
ProJ (a,b,y))
* b))) by
RLVECT_1:def 3
.= ((x
+ y)
+ ((
- ((
ProJ (a,b,x))
* b))
+ (
- ((
ProJ (a,b,y))
* b)))) by
RLVECT_1:def 3
.= ((x
+ y)
+ ((1F
* (
- ((
ProJ (a,b,x))
* b)))
+ (
- ((
ProJ (a,b,y))
* b)))) by
VECTSP_1:def 17
.= ((x
+ y)
+ ((1F
* (
- ((
ProJ (a,b,x))
* b)))
+ (1F
* (
- ((
ProJ (a,b,y))
* b))))) by
VECTSP_1:def 17
.= ((x
+ y)
+ ((1F
* ((
- (
ProJ (a,b,x)))
* b))
+ (1F
* (
- ((
ProJ (a,b,y))
* b))))) by
VECTSP_1: 21
.= ((x
+ y)
+ ((1F
* ((
- (
ProJ (a,b,x)))
* b))
+ (1F
* ((
- (
ProJ (a,b,y)))
* b)))) by
VECTSP_1: 21
.= ((x
+ y)
+ (((1F
* (
- (
ProJ (a,b,x))))
* b)
+ (1F
* ((
- (
ProJ (a,b,y)))
* b)))) by
VECTSP_1:def 16
.= ((x
+ y)
+ ((((
- (
ProJ (a,b,x)))
* 1F)
* b)
+ ((1F
* (
- (
ProJ (a,b,y))))
* b))) by
VECTSP_1:def 16
.= ((x
+ y)
+ (((
- (
ProJ (a,b,x)))
* b)
+ (((
- (
ProJ (a,b,y)))
* 1F)
* b)))
.= ((x
+ y)
+ (((
- (
ProJ (a,b,x)))
* b)
+ ((
- (
ProJ (a,b,y)))
* b)))
.= ((x
+ y)
+ (((
- (
ProJ (a,b,x)))
+ (
- (
ProJ (a,b,y))))
* b)) by
VECTSP_1:def 15
.= ((x
+ y)
+ ((
- ((
ProJ (a,b,x))
+ (
ProJ (a,b,y))))
* b)) by
RLVECT_1: 31
.= ((x
+ y)
- (((
ProJ (a,b,x))
+ (
ProJ (a,b,y)))
* b)) by
VECTSP_1: 21;
assume
A2: not b
_|_ a;
then (x
- ((
ProJ (a,b,x))
* b))
_|_ a & (y
- ((
ProJ (a,b,y))
* b))
_|_ a by
Th14;
then
A3: L
_|_ a by
Def1;
((x
+ y)
- ((
ProJ (a,b,(x
+ y)))
* b))
_|_ a by
A2,
Th14;
hence thesis by
A2,
A3,
A1,
Th12;
end;
theorem ::
SYMSP_1:17
not b
_|_ a & l
<> (
0. F) implies (
ProJ (a,(l
* b),x))
= ((l
" )
* (
ProJ (a,b,x)))
proof
assume that
A1: not b
_|_ a and
A2: l
<> (
0. F);
set L = (x
- ((
ProJ (a,(l
* b),x))
* (l
* b)));
not (l
* b)
_|_ a by
A1,
A2,
Th5;
then
A3: L
_|_ a by
Th14;
A4: L
= (x
- (((
ProJ (a,(l
* b),x))
* l)
* b)) by
VECTSP_1:def 16;
(x
- ((
ProJ (a,b,x))
* b))
_|_ a by
A1,
Th14;
then ((
ProJ (a,b,x))
* (l
" ))
= (((
ProJ (a,(l
* b),x))
* l)
* (l
" )) by
A1,
A3,
A4,
Th12;
then ((
ProJ (a,b,x))
* (l
" ))
= ((
ProJ (a,(l
* b),x))
* (l
* (l
" ))) by
GROUP_1:def 3;
then ((l
" )
* (
ProJ (a,b,x)))
= ((
ProJ (a,(l
* b),x))
* (
1_ F)) by
A2,
VECTSP_1:def 10;
hence thesis;
end;
theorem ::
SYMSP_1:18
Th18: not b
_|_ a & l
<> (
0. F) implies (
ProJ ((l
* a),b,x))
= (
ProJ (a,b,x))
proof
assume that
A1: not b
_|_ a and
A2: l
<> (
0. F);
not b
_|_ (l
* a) by
A1,
A2,
Th5;
then (x
- ((
ProJ ((l
* a),b,x))
* b))
_|_ (l
* a) by
Th14;
then (l
* a)
_|_ (x
- ((
ProJ ((l
* a),b,x))
* b)) by
Th2;
then ((l
" )
* (l
* a))
_|_ (x
- ((
ProJ ((l
* a),b,x))
* b)) by
Def1;
then (((l
" )
* l)
* a)
_|_ (x
- ((
ProJ ((l
* a),b,x))
* b)) by
VECTSP_1:def 16;
then ((
1_ F)
* a)
_|_ (x
- ((
ProJ ((l
* a),b,x))
* b)) by
A2,
VECTSP_1:def 10;
then a
_|_ (x
- ((
ProJ ((l
* a),b,x))
* b)) by
VECTSP_1:def 17;
then
A3: (x
- ((
ProJ ((l
* a),b,x))
* b))
_|_ a by
Th2;
(x
- ((
ProJ (a,b,x))
* b))
_|_ a by
A1,
Th14;
hence thesis by
A1,
A3,
Th12;
end;
theorem ::
SYMSP_1:19
Th19: not b
_|_ a & p
_|_ a implies (
ProJ (a,(b
+ p),c))
= (
ProJ (a,b,c)) & (
ProJ (a,b,(c
+ p)))
= (
ProJ (a,b,c))
proof
set 0V = (
0. S);
assume that
A1: not b
_|_ a and
A2: p
_|_ a;
not (b
+ p)
_|_ a by
A1,
A2,
Th4;
then (c
- ((
ProJ (a,(b
+ p),c))
* (b
+ p)))
_|_ a by
Th14;
then (c
- (((
ProJ (a,(b
+ p),c))
* b)
+ ((
ProJ (a,(b
+ p),c))
* p)))
_|_ a by
VECTSP_1:def 14;
then
A3: ((c
- ((
ProJ (a,(b
+ p),c))
* b))
- ((
ProJ (a,(b
+ p),c))
* p))
_|_ a by
VECTSP_1: 17;
((c
+ p)
- ((
ProJ (a,b,(c
+ p)))
* b))
_|_ a & (
- p)
_|_ a by
A1,
A2,
Th6,
Th14;
then ((
- p)
+ ((p
+ c)
- ((
ProJ (a,b,(c
+ p)))
* b)))
_|_ a by
Def1;
then ((
- p)
+ (p
+ (c
+ (
- ((
ProJ (a,b,(c
+ p)))
* b)))))
_|_ a by
RLVECT_1:def 3;
then (((
- p)
+ p)
+ (c
+ (
- ((
ProJ (a,b,(c
+ p)))
* b))))
_|_ a by
RLVECT_1:def 3;
then (0V
+ (c
+ (
- ((
ProJ (a,b,(c
+ p)))
* b))))
_|_ a by
RLVECT_1: 5;
then
A4: (c
- ((
ProJ (a,b,(c
+ p)))
* b))
_|_ a by
RLVECT_1: 4;
((
ProJ (a,(b
+ p),c))
* p)
_|_ a by
A2,
Def1;
then (((c
+ (
- ((
ProJ (a,(b
+ p),c))
* b)))
- ((
ProJ (a,(b
+ p),c))
* p))
+ ((
ProJ (a,(b
+ p),c))
* p))
_|_ a by
A3,
Def1;
then ((c
+ (
- ((
ProJ (a,(b
+ p),c))
* b)))
+ ((
- ((
ProJ (a,(b
+ p),c))
* p))
+ ((
ProJ (a,(b
+ p),c))
* p)))
_|_ a by
RLVECT_1:def 3;
then ((c
+ (
- ((
ProJ (a,(b
+ p),c))
* b)))
+ 0V)
_|_ a by
RLVECT_1: 5;
then
A5: (c
- ((
ProJ (a,(b
+ p),c))
* b))
_|_ a by
RLVECT_1: 4;
(c
- ((
ProJ (a,b,c))
* b))
_|_ a by
A1,
Th14;
hence thesis by
A1,
A5,
A4,
Th12;
end;
theorem ::
SYMSP_1:20
Th20: not b
_|_ a & p
_|_ b & p
_|_ c implies (
ProJ ((a
+ p),b,c))
= (
ProJ (a,b,c))
proof
assume that
A1: not b
_|_ a and
A2: p
_|_ b and
A3: p
_|_ c;
b
_|_ p by
A2,
Th2;
then ((
ProJ (a,b,c))
* b)
_|_ p by
Def1;
then
A4: (
- ((
ProJ (a,b,c))
* b))
_|_ p by
Th6;
c
_|_ p by
A3,
Th2;
then (c
+ (
- ((
ProJ (a,b,c))
* b)))
_|_ p by
A4,
Def1;
then
A5: p
_|_ (c
- ((
ProJ (a,b,c))
* b)) by
Th2;
(c
- ((
ProJ (a,b,c))
* b))
_|_ a by
A1,
Th14;
then a
_|_ (c
- ((
ProJ (a,b,c))
* b)) by
Th2;
then (a
+ p)
_|_ (c
- ((
ProJ (a,b,c))
* b)) by
A5,
Def1;
then
A6: (c
- ((
ProJ (a,b,c))
* b))
_|_ (a
+ p) by
Th2;
not a
_|_ b by
A1,
Th2;
then not (a
+ p)
_|_ b by
A2,
Th4;
then
A7: not b
_|_ (a
+ p) by
Th2;
then (c
- ((
ProJ ((a
+ p),b,c))
* b))
_|_ (a
+ p) by
Th14;
hence thesis by
A7,
A6,
Th12;
end;
theorem ::
SYMSP_1:21
Th21: not b
_|_ a & (c
- b)
_|_ a implies (
ProJ (a,b,c))
= (
1_ F)
proof
assume that
A1: not b
_|_ a and
A2: (c
- b)
_|_ a;
(c
- ((
1_ F)
* b))
_|_ a & (c
- ((
ProJ (a,b,c))
* b))
_|_ a by
A1,
A2,
Th14,
VECTSP_1:def 17;
hence thesis by
A1,
Th12;
end;
theorem ::
SYMSP_1:22
Th22: not b
_|_ a implies (
ProJ (a,b,b))
= (
1_ F)
proof
A1: (b
- b)
= (
0. S) by
RLVECT_1: 5;
assume not b
_|_ a;
hence thesis by
A1,
Th1,
Th21;
end;
theorem ::
SYMSP_1:23
Th23: not b
_|_ a implies (x
_|_ a iff (
ProJ (a,b,x))
= (
0. F))
proof
set 0F = (
0. F), 0V = (
0. S);
A1:
now
assume that
A2: not b
_|_ a and
A3: x
_|_ a;
(x
+ 0V)
_|_ a by
A3,
RLVECT_1: 4;
then (x
+ (
- 0V))
_|_ a by
RLVECT_1: 12;
then
A4: (x
- (0F
* b))
_|_ a by
VECTSP_1: 14;
(x
- ((
ProJ (a,b,x))
* b))
_|_ a by
A2,
Th14;
hence (
ProJ (a,b,x))
= (
0. F) by
A2,
A4,
Th12;
end;
now
assume ( not b
_|_ a) & (
ProJ (a,b,x))
= (
0. F);
then (x
- (0F
* b))
_|_ a by
Th14;
then (x
- 0V)
_|_ a by
VECTSP_1: 14;
then (x
+ 0V)
_|_ a by
RLVECT_1: 12;
hence x
_|_ a by
RLVECT_1: 4;
end;
hence thesis by
A1;
end;
theorem ::
SYMSP_1:24
Th24: not b
_|_ a & not q
_|_ a implies ((
ProJ (a,b,p))
* ((
ProJ (a,b,q))
" ))
= (
ProJ (a,q,p))
proof
assume that
A1: not b
_|_ a and
A2: not q
_|_ a;
(((
ProJ (a,q,p))
* q)
- ((
ProJ (a,b,((
ProJ (a,q,p))
* q)))
* b))
_|_ a & (p
- ((
ProJ (a,q,p))
* q))
_|_ a by
A1,
A2,
Th14;
then ((p
+ (
- ((
ProJ (a,q,p))
* q)))
+ (((
ProJ (a,q,p))
* q)
- ((
ProJ (a,b,((
ProJ (a,q,p))
* q)))
* b)))
_|_ a by
Def1;
then (((p
+ (
- ((
ProJ (a,q,p))
* q)))
+ ((
ProJ (a,q,p))
* q))
+ (
- ((
ProJ (a,b,((
ProJ (a,q,p))
* q)))
* b)))
_|_ a by
RLVECT_1:def 3;
then ((p
+ ((
- ((
ProJ (a,q,p))
* q))
+ ((
ProJ (a,q,p))
* q)))
+ (
- ((
ProJ (a,b,((
ProJ (a,q,p))
* q)))
* b)))
_|_ a by
RLVECT_1:def 3;
then ((p
+ (
0. S))
+ (
- ((
ProJ (a,b,((
ProJ (a,q,p))
* q)))
* b)))
_|_ a by
RLVECT_1: 5;
then (p
+ (
- ((
ProJ (a,b,((
ProJ (a,q,p))
* q)))
* b)))
_|_ a by
RLVECT_1: 4;
then
A3: (p
- (((
ProJ (a,q,p))
* (
ProJ (a,b,q)))
* b))
_|_ a by
A1,
Th15;
(p
- ((
ProJ (a,b,p))
* b))
_|_ a by
A1,
Th14;
then ((
ProJ (a,q,p))
* (
ProJ (a,b,q)))
= (
ProJ (a,b,p)) by
A1,
A3,
Th12;
then
A4: ((
ProJ (a,q,p))
* ((
ProJ (a,b,q))
* ((
ProJ (a,b,q))
" )))
= ((
ProJ (a,b,p))
* ((
ProJ (a,b,q))
" )) by
GROUP_1:def 3;
(
ProJ (a,b,q))
<> (
0. F) by
A1,
A2,
Th23;
then ((
ProJ (a,q,p))
* (
1_ F))
= ((
ProJ (a,b,p))
* ((
ProJ (a,b,q))
" )) by
A4,
VECTSP_1:def 10;
hence thesis;
end;
theorem ::
SYMSP_1:25
Th25: not b
_|_ a & not c
_|_ a implies (
ProJ (a,b,c))
= ((
ProJ (a,c,b))
" )
proof
set 1F = (
1_ F), 0F = (
0. F);
assume that
A1: not b
_|_ a and
A2: not c
_|_ a;
A3: (
ProJ (a,c,b))
<> 0F by
A1,
A2,
Th23;
((
ProJ (a,b,b))
* ((
ProJ (a,b,c))
" ))
= (
ProJ (a,c,b)) by
A1,
A2,
Th24;
then (((
ProJ (a,b,c))
" )
* 1F)
= (
ProJ (a,c,b)) by
A1,
Th22;
then
A4: ((
ProJ (a,b,c))
" )
= (
ProJ (a,c,b));
(
ProJ (a,b,c))
<> 0F by
A1,
A2,
Th23;
then 1F
= ((
ProJ (a,c,b))
* (
ProJ (a,b,c))) by
A4,
VECTSP_1:def 10;
then ((
ProJ (a,c,b))
" )
= (((
ProJ (a,c,b))
" )
* ((
ProJ (a,c,b))
* (
ProJ (a,b,c))))
.= ((((
ProJ (a,c,b))
" )
* (
ProJ (a,c,b)))
* (
ProJ (a,b,c))) by
GROUP_1:def 3
.= ((
ProJ (a,b,c))
* 1F) by
A3,
VECTSP_1:def 10;
hence thesis;
end;
theorem ::
SYMSP_1:26
Th26: not b
_|_ a & b
_|_ (c
+ a) implies (
ProJ (a,b,c))
= (
ProJ (c,b,a))
proof
assume that
A1: not b
_|_ a and
A2: b
_|_ (c
+ a);
((
ProJ (a,b,c))
* b)
_|_ (c
+ a) by
A2,
Def1;
then
A3: (
- ((
ProJ (a,b,c))
* b))
_|_ (c
+ a) by
Th6;
(c
- ((
ProJ (a,b,c))
* b))
_|_ a by
A1,
Th14;
then a
_|_ ((
- ((
ProJ (a,b,c))
* b))
+ c) by
Th2;
then c
_|_ (a
+ (
- ((
ProJ (a,b,c))
* b))) by
A3,
Def1;
then
A4: (a
- ((
ProJ (a,b,c))
* b))
_|_ c by
Th2;
( not a
_|_ b) & (c
+ a)
_|_ b by
A1,
A2,
Th2;
then not c
_|_ b by
Th3;
then
A5: not b
_|_ c by
Th2;
then (a
- ((
ProJ (c,b,a))
* b))
_|_ c by
Th14;
hence thesis by
A5,
A4,
Th12;
end;
theorem ::
SYMSP_1:27
Th27: not a
_|_ b & not c
_|_ b implies (
ProJ (c,b,a))
= ((
- ((
ProJ (b,a,c))
" ))
* (
ProJ (a,b,c)))
proof
set 1F = (
1_ F);
assume that
A1: not a
_|_ b and
A2: not c
_|_ b;
A3: (
ProJ (b,a,c))
<> (
0. F) by
A1,
A2,
Th23;
then
A4: (
- ((
ProJ (b,a,c))
" ))
<> (
0. F) by
VECTSP_1: 25;
((
- 1F)
* (((
ProJ (b,a,c))
" )
* (
ProJ (b,a,c))))
= ((
- 1F)
* 1F) by
A3,
VECTSP_1:def 10;
then (((
- 1F)
* ((
ProJ (b,a,c))
" ))
* (
ProJ (b,a,c)))
= ((
- 1F)
* 1F) by
GROUP_1:def 3;
then (((
- 1F)
* ((
ProJ (b,a,c))
" ))
* (
ProJ (b,a,c)))
= (
- 1F);
then ((
- (((
ProJ (b,a,c))
" )
* 1F))
* (
ProJ (b,a,c)))
= (
- 1F) by
VECTSP_1: 9;
then ((
- ((
ProJ (b,a,c))
" ))
* (
ProJ (b,a,c)))
= (
- 1F);
then (
ProJ (b,a,((
- ((
ProJ (b,a,c))
" ))
* c)))
= (
- 1F) by
A1,
Th15;
then (((
- ((
ProJ (b,a,c))
" ))
* c)
- ((
- 1F)
* a))
_|_ b by
A1,
Th14;
then (((
- ((
ProJ (b,a,c))
" ))
* c)
- (
- a))
_|_ b by
VECTSP_1: 14;
then (((
- ((
ProJ (b,a,c))
" ))
* c)
+ a)
_|_ b by
RLVECT_1: 17;
then
A5: b
_|_ (((
- ((
ProJ (b,a,c))
" ))
* c)
+ a) by
Th2;
not b
_|_ a by
A1,
Th2;
then (
ProJ (a,b,((
- ((
ProJ (b,a,c))
" ))
* c)))
= (
ProJ (((
- ((
ProJ (b,a,c))
" ))
* c),b,a)) by
A5,
Th26;
then (
ProJ (a,b,((
- ((
ProJ (b,a,c))
" ))
* c)))
= (
ProJ (c,b,a)) by
A2,
A4,
Th2,
Th18;
hence thesis by
A1,
Th2,
Th15;
end;
theorem ::
SYMSP_1:28
Th28: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not a
_|_ p & not a
_|_ q & not b
_|_ q implies ((
ProJ (a,p,q))
* (
ProJ (b,q,p)))
= ((
ProJ (p,a,b))
* (
ProJ (q,b,a)))
proof
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: not a
_|_ p and
A3: not a
_|_ q and
A4: not b
_|_ q;
A5:
now
assume that
A6: p
_|_ q and
A7: a
_|_ b;
not q
_|_ b by
A4,
Th2;
then
A8: (
ProJ (b,q,p))
= (
ProJ (b,q,(p
+ a))) by
A7,
Th19;
A9: not (p
+ a)
_|_ q by
A3,
A6,
Th4;
then
A10: (
ProJ (b,q,(p
+ a)))
= ((
- ((
ProJ (q,(p
+ a),b))
" ))
* (
ProJ ((p
+ a),q,b))) by
A4,
Th27;
A11: a
_|_ a by
A1,
Th13;
A12: not p
_|_ a by
A2,
Th2;
then
A13: (
ProJ (a,p,q))
= (
ProJ (a,(p
+ a),q)) by
A11,
Th19;
not (p
+ a)
_|_ a by
A12,
A11,
Th4;
then
A14: not a
_|_ (p
+ a) by
Th2;
A15: not q
_|_ (p
+ a) by
A9,
Th2;
then (
ProJ (a,(p
+ a),q))
= ((
- ((
ProJ ((p
+ a),q,a))
" ))
* (
ProJ (q,(p
+ a),a))) by
A14,
Th27;
then ((
ProJ (a,p,q))
* (
ProJ (b,q,p)))
= ((((
ProJ (q,(p
+ a),a))
* (
- ((
ProJ ((p
+ a),q,a))
" )))
* (
- ((
ProJ (q,(p
+ a),b))
" )))
* (
ProJ ((p
+ a),q,b))) by
A13,
A8,
A10,
GROUP_1:def 3
.= (((
ProJ (q,(p
+ a),a))
* ((
- ((
ProJ ((p
+ a),q,a))
" ))
* (
- ((
ProJ (q,(p
+ a),b))
" ))))
* (
ProJ ((p
+ a),q,b))) by
GROUP_1:def 3
.= (((
ProJ (q,(p
+ a),a))
* (((
ProJ (q,(p
+ a),b))
" )
* ((
ProJ ((p
+ a),q,a))
" )))
* (
ProJ ((p
+ a),q,b))) by
VECTSP_1: 10
.= ((((
ProJ (q,(p
+ a),a))
* ((
ProJ (q,(p
+ a),b))
" ))
* ((
ProJ ((p
+ a),q,a))
" ))
* (
ProJ ((p
+ a),q,b))) by
GROUP_1:def 3
.= (((
ProJ (q,b,a))
* ((
ProJ ((p
+ a),q,a))
" ))
* (
ProJ ((p
+ a),q,b))) by
A4,
A9,
Th24
.= ((
ProJ (q,b,a))
* ((
ProJ ((p
+ a),q,b))
* ((
ProJ ((p
+ a),q,a))
" ))) by
GROUP_1:def 3
.= ((
ProJ (q,b,a))
* (
ProJ ((p
+ a),a,b))) by
A14,
A15,
Th24
.= ((
ProJ (q,b,a))
* (
ProJ (p,a,b))) by
A2,
A7,
A11,
Th20;
hence thesis;
end;
A16:
now
assume
A17: not a
_|_ b;
A18: not q
_|_ b by
A4,
Th2;
then
A19: (
ProJ (q,b,a))
= ((
- ((
ProJ (b,a,q))
" ))
* (
ProJ (a,b,q))) by
A17,
Th27;
A20: not p
_|_ a by
A2,
Th2;
A21: not b
_|_ a by
A17,
Th2;
then (
ProJ (p,a,b))
= ((
- ((
ProJ (a,b,p))
" ))
* (
ProJ (b,a,p))) by
A20,
Th27;
then ((
ProJ (p,a,b))
* (
ProJ (q,b,a)))
= ((((
ProJ (b,a,p))
* (
- ((
ProJ (a,b,p))
" )))
* (
- ((
ProJ (b,a,q))
" )))
* (
ProJ (a,b,q))) by
A19,
GROUP_1:def 3
.= (((
ProJ (b,a,p))
* ((
- ((
ProJ (a,b,p))
" ))
* (
- ((
ProJ (b,a,q))
" ))))
* (
ProJ (a,b,q))) by
GROUP_1:def 3
.= (((
ProJ (b,a,p))
* (((
ProJ (b,a,q))
" )
* ((
ProJ (a,b,p))
" )))
* (
ProJ (a,b,q))) by
VECTSP_1: 10
.= ((((
ProJ (b,a,p))
* ((
ProJ (b,a,q))
" ))
* ((
ProJ (a,b,p))
" ))
* (
ProJ (a,b,q))) by
GROUP_1:def 3
.= (((
ProJ (b,q,p))
* ((
ProJ (a,b,p))
" ))
* (
ProJ (a,b,q))) by
A17,
A18,
Th24
.= ((
ProJ (b,q,p))
* ((
ProJ (a,b,q))
* ((
ProJ (a,b,p))
" ))) by
GROUP_1:def 3
.= ((
ProJ (b,q,p))
* (
ProJ (a,p,q))) by
A21,
A20,
Th24;
hence thesis;
end;
now
assume
A22: not p
_|_ q;
then
A23: (
ProJ (b,q,p))
= ((
- ((
ProJ (q,p,b))
" ))
* (
ProJ (p,q,b))) by
A4,
Th27;
A24: not q
_|_ p by
A22,
Th2;
then (
ProJ (a,p,q))
= ((
- ((
ProJ (p,q,a))
" ))
* (
ProJ (q,p,a))) by
A2,
Th27;
then ((
ProJ (a,p,q))
* (
ProJ (b,q,p)))
= ((((
ProJ (q,p,a))
* (
- ((
ProJ (p,q,a))
" )))
* (
- ((
ProJ (q,p,b))
" )))
* (
ProJ (p,q,b))) by
A23,
GROUP_1:def 3
.= (((
ProJ (q,p,a))
* ((
- ((
ProJ (p,q,a))
" ))
* (
- ((
ProJ (q,p,b))
" ))))
* (
ProJ (p,q,b))) by
GROUP_1:def 3
.= (((
ProJ (q,p,a))
* (((
ProJ (q,p,b))
" )
* ((
ProJ (p,q,a))
" )))
* (
ProJ (p,q,b))) by
VECTSP_1: 10
.= ((((
ProJ (q,p,a))
* ((
ProJ (q,p,b))
" ))
* ((
ProJ (p,q,a))
" ))
* (
ProJ (p,q,b))) by
GROUP_1:def 3
.= (((
ProJ (q,b,a))
* ((
ProJ (p,q,a))
" ))
* (
ProJ (p,q,b))) by
A4,
A22,
Th24
.= ((
ProJ (q,b,a))
* ((
ProJ (p,q,b))
* ((
ProJ (p,q,a))
" ))) by
GROUP_1:def 3
.= ((
ProJ (q,b,a))
* (
ProJ (p,a,b))) by
A2,
A24,
Th24;
hence thesis;
end;
hence thesis by
A16,
A5;
end;
theorem ::
SYMSP_1:29
Th29: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not p
_|_ a & not p
_|_ x & not q
_|_ a & not q
_|_ x implies ((
ProJ (a,q,p))
* (
ProJ (p,a,x)))
= ((
ProJ (x,q,p))
* (
ProJ (q,a,x)))
proof
set 0F = (
0. F), 1F = (
1_ F);
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: not p
_|_ a and
A3: not p
_|_ x and
A4: not q
_|_ a and
A5: not q
_|_ x;
A6: ( not a
_|_ q) & not x
_|_ q by
A4,
A5,
Th2;
((
ProJ (p,a,x))
* (
ProJ (q,x,a)))
= ((
ProJ (a,p,q))
* (
ProJ (x,q,p))) by
A1,
A2,
A3,
A5,
Th28;
then ((
ProJ (p,a,x))
* (
ProJ (q,x,a)))
= (((
ProJ (a,q,p))
" )
* (
ProJ (x,q,p))) by
A2,
A4,
Th25;
then
A7: ((
ProJ (a,q,p))
* ((
ProJ (p,a,x))
* (
ProJ (q,x,a))))
= (((
ProJ (a,q,p))
* ((
ProJ (a,q,p))
" ))
* (
ProJ (x,q,p))) by
GROUP_1:def 3;
(
ProJ (a,q,p))
<> 0F by
A2,
A4,
Th23;
then ((
ProJ (a,q,p))
* ((
ProJ (p,a,x))
* (
ProJ (q,x,a))))
= ((
ProJ (x,q,p))
* 1F) by
A7,
VECTSP_1:def 10;
then ((
ProJ (a,q,p))
* ((
ProJ (p,a,x))
* (
ProJ (q,x,a))))
= (
ProJ (x,q,p));
then (((
ProJ (a,q,p))
* (
ProJ (p,a,x)))
* (
ProJ (q,x,a)))
= (
ProJ (x,q,p)) by
GROUP_1:def 3;
then (((
ProJ (a,q,p))
* (
ProJ (p,a,x)))
* ((
ProJ (q,a,x))
" ))
= (
ProJ (x,q,p)) by
A6,
Th25;
then
A8: (((
ProJ (a,q,p))
* (
ProJ (p,a,x)))
* (((
ProJ (q,a,x))
" )
* (
ProJ (q,a,x))))
= ((
ProJ (x,q,p))
* (
ProJ (q,a,x))) by
GROUP_1:def 3;
(
ProJ (q,a,x))
<> 0F by
A6,
Th23;
then (((
ProJ (a,q,p))
* (
ProJ (p,a,x)))
* 1F)
= ((
ProJ (x,q,p))
* (
ProJ (q,a,x))) by
A8,
VECTSP_1:def 10;
hence thesis;
end;
theorem ::
SYMSP_1:30
Th30: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not p
_|_ a & not p
_|_ x & not q
_|_ a & not q
_|_ x & not b
_|_ a implies (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y)))
proof
set 0F = (
0. F), 1F = (
1_ F);
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not p
_|_ a and
A2: not p
_|_ x and
A3: not q
_|_ a and
A4: not q
_|_ x and
A5: not b
_|_ a;
A6:
now
A7: (
ProJ (a,b,q))
<> 0F by
A3,
A5,
Th23;
assume
A8: not y
_|_ x;
((
ProJ (a,q,p))
* (
ProJ (p,a,x)))
= ((
ProJ (x,q,p))
* (
ProJ (q,a,x))) by
A1,
A2,
A3,
A4,
Th29;
then (((
ProJ (a,b,p))
* ((
ProJ (a,b,q))
" ))
* (
ProJ (p,a,x)))
= ((
ProJ (x,q,p))
* (
ProJ (q,a,x))) by
A3,
A5,
Th24;
then ((((
ProJ (a,b,q))
" )
* (
ProJ (a,b,p)))
* (
ProJ (p,a,x)))
= (((
ProJ (x,y,p))
* ((
ProJ (x,y,q))
" ))
* (
ProJ (q,a,x))) by
A4,
A8,
Th24;
then ((
ProJ (a,b,q))
* (((
ProJ (a,b,q))
" )
* ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))))
= ((
ProJ (a,b,q))
* (((
ProJ (x,y,p))
* ((
ProJ (x,y,q))
" ))
* (
ProJ (q,a,x)))) by
GROUP_1:def 3;
then (((
ProJ (a,b,q))
* ((
ProJ (a,b,q))
" ))
* ((
ProJ (a,b,p))
* (
ProJ (p,a,x))))
= ((
ProJ (a,b,q))
* (((
ProJ (x,y,p))
* ((
ProJ (x,y,q))
" ))
* (
ProJ (q,a,x)))) by
GROUP_1:def 3;
then (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* 1F)
= ((
ProJ (a,b,q))
* (((
ProJ (x,y,p))
* ((
ProJ (x,y,q))
" ))
* (
ProJ (q,a,x)))) by
A7,
VECTSP_1:def 10;
then ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
= ((
ProJ (a,b,q))
* (((
ProJ (x,y,p))
* ((
ProJ (x,y,q))
" ))
* (
ProJ (q,a,x))));
then ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
= ((
ProJ (a,b,q))
* ((((
ProJ (x,y,q))
" )
* ((
ProJ (x,p,y))
" ))
* (
ProJ (q,a,x)))) by
A2,
A8,
Th25;
then ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
= (((
ProJ (a,b,q))
* (((
ProJ (x,y,q))
" )
* ((
ProJ (x,p,y))
" )))
* (
ProJ (q,a,x))) by
GROUP_1:def 3;
then ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
= ((
ProJ (q,a,x))
* (((
ProJ (a,b,q))
* ((
ProJ (x,y,q))
" ))
* ((
ProJ (x,p,y))
" ))) by
GROUP_1:def 3;
then (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= ((((
ProJ (q,a,x))
* ((
ProJ (a,b,q))
* ((
ProJ (x,y,q))
" )))
* ((
ProJ (x,p,y))
" ))
* (
ProJ (x,p,y))) by
GROUP_1:def 3;
then
A9: (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= (((
ProJ (q,a,x))
* ((
ProJ (a,b,q))
* ((
ProJ (x,y,q))
" )))
* (((
ProJ (x,p,y))
" )
* (
ProJ (x,p,y)))) by
GROUP_1:def 3;
(
ProJ (x,p,y))
<> 0F by
A2,
A8,
Th23;
then (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= (((
ProJ (q,a,x))
* ((
ProJ (a,b,q))
* ((
ProJ (x,y,q))
" )))
* 1F) by
A9,
VECTSP_1:def 10;
then (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= ((
ProJ (q,a,x))
* ((
ProJ (a,b,q))
* ((
ProJ (x,y,q))
" )));
then (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= ((
ProJ (q,a,x))
* ((
ProJ (a,b,q))
* (
ProJ (x,q,y)))) by
A4,
A8,
Th25;
hence thesis by
GROUP_1:def 3;
end;
now
assume
A10: y
_|_ x;
then (
ProJ (x,p,y))
= 0F by
A2,
Th23;
then
A11: (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= 0F;
(
ProJ (x,q,y))
= 0F by
A4,
A10,
Th23;
hence thesis by
A11;
end;
hence thesis by
A6;
end;
theorem ::
SYMSP_1:31
Th31: not a
_|_ p & not x
_|_ p & not y
_|_ p implies ((
ProJ (p,a,x))
* (
ProJ (x,p,y)))
= ((
- (
ProJ (p,a,y)))
* (
ProJ (y,p,x)))
proof
set 0F = (
0. F), 1F = (
1_ F);
assume that
A1: not a
_|_ p and
A2: not x
_|_ p and
A3: not y
_|_ p;
A4: not p
_|_ y by
A3,
Th2;
A5: not p
_|_ x by
A2,
Th2;
A6:
now
A7: (
ProJ (p,a,x))
<> 0F by
A1,
A2,
Th23;
assume
A8: not y
_|_ x;
then
A9: not x
_|_ y by
Th2;
((
ProJ (p,a,y))
* ((
ProJ (p,a,x))
" ))
= (
ProJ (p,x,y)) by
A1,
A2,
Th24;
then (((
ProJ (p,a,y))
* ((
ProJ (p,a,x))
" ))
* (
ProJ (p,a,x)))
= (((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (y,x,p)))
* (
ProJ (p,a,x))) by
A5,
A8,
Th27;
then ((
ProJ (p,a,y))
* (((
ProJ (p,a,x))
" )
* (
ProJ (p,a,x))))
= (((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (y,x,p)))
* (
ProJ (p,a,x))) by
GROUP_1:def 3;
then ((
ProJ (p,a,y))
* 1F)
= (((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (y,x,p)))
* (
ProJ (p,a,x))) by
A7,
VECTSP_1:def 10;
then (
ProJ (p,a,y))
= (((
ProJ (y,x,p))
* (
- ((
ProJ (x,y,p))
" )))
* (
ProJ (p,a,x)));
then (
ProJ (p,a,y))
= ((
ProJ (y,x,p))
* ((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (p,a,x)))) by
GROUP_1:def 3;
then ((
ProJ (y,p,x))
* (
ProJ (p,a,y)))
= ((
ProJ (y,p,x))
* (((
ProJ (y,p,x))
" )
* ((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (p,a,x))))) by
A4,
A9,
Th25;
then
A10: ((
ProJ (y,p,x))
* (
ProJ (p,a,y)))
= (((
ProJ (y,p,x))
* ((
ProJ (y,p,x))
" ))
* ((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (p,a,x)))) by
GROUP_1:def 3;
(
ProJ (y,p,x))
<> 0F by
A4,
A9,
Th23;
then ((
ProJ (y,p,x))
* (
ProJ (p,a,y)))
= (((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (p,a,x)))
* 1F) by
A10,
VECTSP_1:def 10;
then ((
ProJ (p,a,y))
* (
ProJ (y,p,x)))
= ((
- ((
ProJ (x,y,p))
" ))
* (
ProJ (p,a,x)));
then (
- ((
ProJ (p,a,y))
* (
ProJ (y,p,x))))
= (
- (
- (((
ProJ (x,y,p))
" )
* (
ProJ (p,a,x))))) by
VECTSP_1: 9;
then (
- ((
ProJ (p,a,y))
* (
ProJ (y,p,x))))
= (((
ProJ (x,y,p))
" )
* (
ProJ (p,a,x))) by
RLVECT_1: 17;
then ((
- (
ProJ (p,a,y)))
* (
ProJ (y,p,x)))
= (((
ProJ (x,y,p))
" )
* (
ProJ (p,a,x))) by
VECTSP_1: 9;
hence thesis by
A5,
A8,
Th25;
end;
now
assume
A11: y
_|_ x;
then (
ProJ (x,p,y))
= 0F by
A5,
Th23;
then
A12: ((
ProJ (p,a,x))
* (
ProJ (x,p,y)))
= 0F;
x
_|_ y by
A11,
Th2;
then (
ProJ (y,p,x))
= 0F by
A4,
Th23;
hence thesis by
A12;
end;
hence thesis by
A6;
end;
definition
let F, S, x, y, a, b;
assume
A1: ( not b
_|_ a) & ((
1_ F)
+ (
1_ F))
<> (
0. F);
::
SYMSP_1:def3
func
PProJ (a,b,x,y) ->
Element of F means
:
Def3: for q st not q
_|_ a & not q
_|_ x holds it
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y))) if ex p st not p
_|_ a & not p
_|_ x
otherwise it
= (
0. F);
existence
proof
thus (ex p st not p
_|_ a & not p
_|_ x) implies ex IT be
Element of F st for q st not q
_|_ a & not q
_|_ x holds IT
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y)))
proof
given p such that
A2: ( not p
_|_ a) & not p
_|_ x;
take (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)));
let q;
assume ( not q
_|_ a) & not q
_|_ x;
hence thesis by
A1,
A2,
Th30;
end;
thus thesis;
end;
uniqueness
proof
let IT1,IT2 be
Element of F;
thus (ex p st not p
_|_ a & not p
_|_ x) & (for q st not q
_|_ a & not q
_|_ x holds IT1
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y)))) & (for q st not q
_|_ a & not q
_|_ x holds IT2
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y)))) implies IT1
= IT2
proof
given p such that
A3: ( not p
_|_ a) & not p
_|_ x;
consider r such that
A4: ( not r
_|_ a) & not r
_|_ x by
A3;
assume that
A5: for q st not q
_|_ a & not q
_|_ x holds IT1
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y))) and
A6: for q st not q
_|_ a & not q
_|_ x holds IT2
= (((
ProJ (a,b,q))
* (
ProJ (q,a,x)))
* (
ProJ (x,q,y)));
IT1
= (((
ProJ (a,b,r))
* (
ProJ (r,a,x)))
* (
ProJ (x,r,y))) by
A5,
A4;
hence thesis by
A6,
A4;
end;
thus thesis;
end;
consistency ;
end
theorem ::
SYMSP_1:32
Th32: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not b
_|_ a & x
= (
0. S) implies (
PProJ (a,b,x,y))
= (
0. F)
proof
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not b
_|_ a and
A2: x
= (
0. S);
for p holds p
_|_ a or p
_|_ x by
A2,
Th1,
Th2;
hence thesis by
A1,
Def3;
end;
theorem ::
SYMSP_1:33
Th33: ((
1_ F)
+ (
1_ F))
<> (
0. F) & not b
_|_ a implies ((
PProJ (a,b,x,y))
= (
0. F) iff y
_|_ x)
proof
set 0F = (
0. F);
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: not b
_|_ a;
A3: a
<> (
0. S) by
A2,
Th1,
Th2;
A4: (
PProJ (a,b,x,y))
= (
0. F) implies y
_|_ x
proof
assume
A5: (
PProJ (a,b,x,y))
= (
0. F);
A6:
now
given p such that
A7: not p
_|_ a and
A8: not p
_|_ x;
A9:
now
assume
A10: (
ProJ (p,a,x))
= (
0. F);
not a
_|_ p by
A7,
Th2;
then x
_|_ p by
A10,
Th23;
hence contradiction by
A8,
Th2;
end;
(((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= 0F by
A1,
A2,
A5,
A7,
A8,
Def3;
then ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
= 0F or (
ProJ (x,p,y))
= 0F by
VECTSP_1: 12;
then (
ProJ (a,b,p))
= (
0. F) or (
ProJ (p,a,x))
= (
0. F) or (
ProJ (x,p,y))
= (
0. F) by
VECTSP_1: 12;
hence thesis by
A2,
A7,
A8,
A9,
Th23;
end;
now
assume for p holds p
_|_ a or p
_|_ x;
then x
= (
0. S) by
A3,
Th9;
hence thesis by
Th1,
Th2;
end;
hence thesis by
A6;
end;
y
_|_ x implies (
PProJ (a,b,x,y))
= (
0. F)
proof
assume
A11: y
_|_ x;
A12:
now
assume x
<> (
0. S);
then
consider p such that
A13: not p
_|_ a and
A14: not p
_|_ x by
A3,
Th9;
(
ProJ (x,p,y))
= 0F by
A11,
A14,
Th23;
then (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y)))
= (
0. F);
hence thesis by
A1,
A2,
A13,
A14,
Def3;
end;
now
assume x
= (
0. S);
then for p holds p
_|_ a or p
_|_ x by
Th1,
Th2;
hence thesis by
A1,
A2,
Def3;
end;
hence thesis by
A12;
end;
hence thesis by
A4;
end;
theorem ::
SYMSP_1:34
((
1_ F)
+ (
1_ F))
<> (
0. F) & not b
_|_ a implies (
PProJ (a,b,x,y))
= (
- (
PProJ (a,b,y,x)))
proof
set 0F = (
0. F), 1F = (
1_ F);
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: not b
_|_ a;
A3:
now
assume not x
_|_ y;
then
A4: x
<> (
0. S) & y
<> (
0. S) by
Th1,
Th2;
a
<> (
0. S) by
A2,
Th1,
Th2;
then
consider r such that
A5: not r
_|_ a and
A6: not r
_|_ x and
A7: not r
_|_ y by
A1,
A4,
Th10;
A8: not y
_|_ r by
A7,
Th2;
(
PProJ (a,b,y,x))
= (((
ProJ (a,b,r))
* (
ProJ (r,a,y)))
* (
ProJ (y,r,x))) by
A1,
A2,
A5,
A7,
Def3;
then
A9: (
PProJ (a,b,y,x))
= ((
ProJ (a,b,r))
* ((
ProJ (r,a,y))
* (
ProJ (y,r,x)))) by
GROUP_1:def 3;
( not a
_|_ r) & not x
_|_ r by
A5,
A6,
Th2;
then (
PProJ (a,b,y,x))
= ((
ProJ (a,b,r))
* ((
- (
ProJ (r,a,x)))
* (
ProJ (x,r,y)))) by
A8,
A9,
Th31;
then (
PProJ (a,b,y,x))
= (((
- (
ProJ (r,a,x)))
* (
ProJ (a,b,r)))
* (
ProJ (x,r,y))) by
GROUP_1:def 3;
then (
PProJ (a,b,y,x))
= ((
- ((
ProJ (r,a,x))
* (
ProJ (a,b,r))))
* (
ProJ (x,r,y))) by
VECTSP_1: 9;
then ((
- 1F)
* (
PProJ (a,b,y,x)))
= ((
- 1F)
* (
- (((
ProJ (a,b,r))
* (
ProJ (r,a,x)))
* (
ProJ (x,r,y))))) by
VECTSP_1: 9;
then (
- ((
PProJ (a,b,y,x))
* 1F))
= ((
- 1F)
* (
- (((
ProJ (a,b,r))
* (
ProJ (r,a,x)))
* (
ProJ (x,r,y))))) by
VECTSP_1: 9;
then (
- (
PProJ (a,b,y,x)))
= ((
- 1F)
* (
- (((
ProJ (a,b,r))
* (
ProJ (r,a,x)))
* (
ProJ (x,r,y)))));
then
A10: (
- (
PProJ (a,b,y,x)))
= ((((
ProJ (a,b,r))
* (
ProJ (r,a,x)))
* (
ProJ (x,r,y)))
* 1F) by
VECTSP_1: 10;
(
PProJ (a,b,x,y))
= (((
ProJ (a,b,r))
* (
ProJ (r,a,x)))
* (
ProJ (x,r,y))) by
A1,
A2,
A5,
A6,
Def3;
hence thesis by
A10;
end;
now
assume
A11: x
_|_ y;
then ((
- 1F)
* (
PProJ (a,b,y,x)))
= ((
- 1F)
* 0F) by
A1,
A2,
Th33;
then (
- ((
PProJ (a,b,y,x))
* 1F))
= ((
- 1F)
* 0F) by
VECTSP_1: 9;
then
A12: (
- (
PProJ (a,b,y,x)))
= ((
- 1F)
* 0F);
y
_|_ x by
A11,
Th2;
then (
PProJ (a,b,x,y))
= 0F by
A1,
A2,
Th33;
hence thesis by
A12;
end;
hence thesis by
A3;
end;
theorem ::
SYMSP_1:35
((
1_ F)
+ (
1_ F))
<> (
0. F) & not b
_|_ a implies (
PProJ (a,b,x,(l
* y)))
= (l
* (
PProJ (a,b,x,y)))
proof
set 0F = (
0. F);
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: not b
_|_ a;
A3:
now
assume not x
_|_ y;
then
A4: x
<> (
0. S) by
Th1;
a
<> (
0. S) by
A2,
Th1,
Th2;
then
consider p such that
A5: not p
_|_ a and
A6: not p
_|_ x by
A4,
Th9;
(
PProJ (a,b,x,(l
* y)))
= (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,(l
* y)))) by
A1,
A2,
A5,
A6,
Def3;
then
A7: (
PProJ (a,b,x,(l
* y)))
= ((l
* (
ProJ (x,p,y)))
* ((
ProJ (a,b,p))
* (
ProJ (p,a,x)))) by
A6,
Th15;
(
PProJ (a,b,x,y))
= (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y))) by
A1,
A2,
A5,
A6,
Def3;
hence thesis by
A7,
GROUP_1:def 3;
end;
now
assume
A8: x
_|_ y;
then y
_|_ x by
Th2;
then (l
* y)
_|_ x by
Def1;
then
A9: (
PProJ (a,b,x,(l
* y)))
= 0F by
A1,
A2,
Th33;
y
_|_ x by
A8,
Th2;
then (l
* (
PProJ (a,b,x,y)))
= (l
* 0F) by
A1,
A2,
Th33;
hence thesis by
A9;
end;
hence thesis by
A3;
end;
theorem ::
SYMSP_1:36
((
1_ F)
+ (
1_ F))
<> (
0. F) & not b
_|_ a implies (
PProJ (a,b,x,(y
+ z)))
= ((
PProJ (a,b,x,y))
+ (
PProJ (a,b,x,z)))
proof
assume that
A1: ((
1_ F)
+ (
1_ F))
<> (
0. F) and
A2: not b
_|_ a;
A3:
now
assume
A4: x
<> (
0. S);
a
<> (
0. S) by
A2,
Th1,
Th2;
then
consider p such that
A5: ( not p
_|_ a) & not p
_|_ x by
A4,
Th9;
A6: (
PProJ (a,b,x,(y
+ z)))
= (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,(y
+ z)))) & (
PProJ (a,b,x,y))
= (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,y))) by
A1,
A2,
A5,
Def3;
(
PProJ (a,b,x,z))
= (((
ProJ (a,b,p))
* (
ProJ (p,a,x)))
* (
ProJ (x,p,z))) & (
ProJ (x,p,(y
+ z)))
= ((
ProJ (x,p,y))
+ (
ProJ (x,p,z))) by
A1,
A2,
A5,
Def3,
Th16;
hence thesis by
A6,
VECTSP_1:def 7;
end;
set 0F = (
0. F);
now
assume
A7: x
= (
0. S);
then
A8: (
PProJ (a,b,x,z))
= 0F by
A1,
A2,
Th32;
(
PProJ (a,b,x,(y
+ z)))
= 0F & (
PProJ (a,b,x,y))
= 0F by
A1,
A2,
A7,
Th32;
hence thesis by
A8,
RLVECT_1: 4;
end;
hence thesis by
A3;
end;