translac.miz
begin
reserve AS for
AffinSpace,
a,b,c,d,p,q,r,s,x for
Element of AS;
definition
let AS;
::
TRANSLAC:def1
attr AS is
Fanoian means for a, b, c, d st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds
LIN (a,b,c);
end
Lm1:
LIN (a,b,c) & a
<> b & a
<> c & b
<> c & not
LIN (a,b,p) implies ex x st
LIN (p,a,x) & p
<> x & a
<> x
proof
assume that
A1:
LIN (a,b,c) and
A2: a
<> b and
A3: a
<> c and
A4: b
<> c and
A5: not
LIN (a,b,p);
(a,b)
// (a,c) by
A1,
AFF_1:def 1;
then (b,a)
// (a,c) by
AFF_1: 4;
then
consider x such that
A6: (p,a)
// (a,x) and
A7: (p,b)
// (c,x) by
A2,
DIRAF: 40;
A8:
now
assume p
= x;
then (p,b)
// (p,c) by
A7,
AFF_1: 4;
then
LIN (p,b,c) by
AFF_1:def 1;
then
A9:
LIN (b,c,p) by
AFF_1: 6;
LIN (b,c,a) &
LIN (b,c,b) by
A1,
AFF_1: 6,
AFF_1: 7;
hence contradiction by
A4,
A5,
A9,
AFF_1: 8;
end;
A10:
now
assume a
= x;
then
A11: (p,b)
// (a,c) by
A7,
AFF_1: 4;
(a,b)
// (a,c) by
A1,
AFF_1:def 1;
then (a,b)
// (p,b) by
A3,
A11,
AFF_1: 5;
then (b,a)
// (b,p) by
AFF_1: 4;
then
LIN (b,a,p) by
AFF_1:def 1;
hence contradiction by
A5,
AFF_1: 6;
end;
(a,p)
// (a,x) by
A6,
AFF_1: 4;
then
LIN (a,p,x) by
AFF_1:def 1;
then
LIN (p,a,x) by
AFF_1: 6;
hence thesis by
A8,
A10;
end;
Lm2:
LIN (a,b,c) & a
<> b & a
<> c & b
<> c & not
LIN (a,b,p) &
LIN (a,b,q) implies ex x st
LIN (p,q,x) & p
<> x & q
<> x
proof
assume that
A1:
LIN (a,b,c) and
A2: a
<> b and
A3: a
<> c and
A4: b
<> c and
A5: not
LIN (a,b,p) and
A6:
LIN (a,b,q);
A7:
now
assume that
A8: q
= c and q
<> a and q
<> b;
A9:
now
assume
A10:
LIN (q,a,p);
LIN (c,a,b) &
LIN (c,a,a) by
A1,
AFF_1: 6,
AFF_1: 7;
hence contradiction by
A3,
A5,
A8,
A10,
AFF_1: 8;
end;
LIN (q,a,b) by
A6,
AFF_1: 6;
hence thesis by
A2,
A3,
A4,
A8,
A9,
Lm1;
end;
A11:
now
assume that
A12: q
<> a and
A13: q
<> b and q
<> c;
A14:
now
assume
LIN (q,a,p);
then
LIN (a,q,p) by
AFF_1: 6;
then
A15: (a,q)
// (a,p) by
AFF_1:def 1;
LIN (a,q,b) by
A6,
AFF_1: 6;
then (a,q)
// (a,b) by
AFF_1:def 1;
then (a,b)
// (a,p) by
A12,
A15,
AFF_1: 5;
hence contradiction by
A5,
AFF_1:def 1;
end;
LIN (q,a,b) by
A6,
AFF_1: 6;
hence thesis by
A2,
A12,
A13,
A14,
Lm1;
end;
now
assume that
A16: q
= b and q
<> a and q
<> c;
LIN (q,a,c) & not
LIN (q,a,p) by
A1,
A5,
A16,
AFF_1: 6;
hence thesis by
A2,
A3,
A4,
A16,
Lm1;
end;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A7,
A11,
Lm1;
end;
Lm3:
LIN (a,b,c) & a
<> b & a
<> c & b
<> c & not
LIN (a,b,p) & (p,q)
// (a,b) implies ex x st
LIN (p,q,x) & p
<> x & q
<> x
proof
assume that
A1:
LIN (a,b,c) and
A2: a
<> b and
A3: a
<> c and
A4: b
<> c and
A5: not
LIN (a,b,p) and
A6: (p,q)
// (a,b);
A7: b
<> q
proof
assume b
= q;
then (b,p)
// (b,a) by
A6,
AFF_1: 4;
then
LIN (b,p,a) by
AFF_1:def 1;
hence contradiction by
A5,
AFF_1: 6;
end;
A8: a
<> q
proof
assume a
= q;
then (a,p)
// (a,b) by
A6,
AFF_1: 4;
then
LIN (a,p,b) by
AFF_1:def 1;
hence contradiction by
A5,
AFF_1: 6;
end;
A9: not
LIN (a,b,q)
proof
assume
A10:
LIN (a,b,q);
then (a,b)
// (a,q) by
AFF_1:def 1;
then (p,q)
// (a,q) by
A2,
A6,
AFF_1: 5;
then (q,p)
// (q,a) by
AFF_1: 4;
then
LIN (q,p,a) by
AFF_1:def 1;
then
A11:
LIN (q,a,p) by
AFF_1: 6;
A12:
LIN (q,a,a) by
AFF_1: 7;
LIN (q,a,b) by
A10,
AFF_1: 6;
hence contradiction by
A5,
A8,
A11,
A12,
AFF_1: 8;
end;
consider r such that
A13: (b,c)
// (q,r) and
A14: (b,q)
// (c,r) by
DIRAF: 40;
LIN (b,a,c) by
A1,
AFF_1: 6;
then (b,a)
// (b,c) by
AFF_1:def 1;
then (b,a)
// (q,r) by
A4,
A13,
AFF_1: 5;
then (a,b)
// (q,r) by
AFF_1: 4;
then (p,q)
// (q,r) by
A2,
A6,
AFF_1: 5;
then (q,p)
// (q,r) by
AFF_1: 4;
then
LIN (q,p,r) by
AFF_1:def 1;
then
A15:
LIN (p,q,r) by
AFF_1: 6;
A16: not
LIN (a,c,p)
proof
assume
A17:
LIN (a,c,p);
LIN (a,c,b) &
LIN (a,c,a) by
A1,
AFF_1: 6,
AFF_1: 7;
hence contradiction by
A3,
A5,
A17,
AFF_1: 8;
end;
A18:
now
consider s such that
A19: (b,a)
// (q,s) and
A20: (b,q)
// (a,s) by
DIRAF: 40;
A21: q
<> s
proof
assume q
= s;
then (q,b)
// (q,a) by
A20,
AFF_1: 4;
then
LIN (q,b,a) by
AFF_1:def 1;
hence contradiction by
A9,
AFF_1: 6;
end;
assume
A22: p
= r;
A23:
now
assume p
= s;
then (a,p)
// (c,p) by
A7,
A14,
A22,
A20,
AFF_1: 5;
then (p,a)
// (p,c) by
AFF_1: 4;
then
LIN (p,a,c) by
AFF_1:def 1;
hence contradiction by
A16,
AFF_1: 6;
end;
(a,b)
// (q,s) by
A19,
AFF_1: 4;
then (p,q)
// (q,s) by
A2,
A6,
AFF_1: 5;
then (q,p)
// (q,s) by
AFF_1: 4;
then
LIN (q,p,s) by
AFF_1:def 1;
then
LIN (p,q,s) by
AFF_1: 6;
hence thesis by
A23,
A21;
end;
q
<> r
proof
assume q
= r;
then (q,b)
// (q,c) by
A14,
AFF_1: 4;
then
LIN (q,b,c) by
AFF_1:def 1;
then
A24:
LIN (b,c,q) by
AFF_1: 6;
LIN (b,c,a) &
LIN (b,c,b) by
A1,
AFF_1: 6,
AFF_1: 7;
hence contradiction by
A4,
A9,
A24,
AFF_1: 8;
end;
hence thesis by
A15,
A18;
end;
theorem ::
TRANSLAC:1
Th1: (ex a, b, c st
LIN (a,b,c) & a
<> b & a
<> c & b
<> c) implies for p, q holds ex r st
LIN (p,q,r) & p
<> r & q
<> r
proof
given a, b, c such that
A1:
LIN (a,b,c) and
A2: a
<> b and
A3: a
<> c and
A4: b
<> c;
let p, q;
A5:
now
assume that
A6:
LIN (a,b,p) and
A7:
LIN (a,b,q);
A8:
LIN (a,b,b) by
AFF_1: 7;
A9:
LIN (a,b,a) by
AFF_1: 7;
now
assume
A10: p
= c or q
= c;
now
assume p
<> a or q
<> b;
A11:
now
assume that
A12: p
= c and
A13: p
<> a;
q
= b implies thesis by
A1,
A2,
A9,
A8,
A12,
A13,
AFF_1: 8;
hence thesis by
A1,
A2,
A4,
A7,
A8,
A12,
AFF_1: 8;
end;
now
assume that
A14: q
= c and q
<> b;
p
= b implies thesis by
A1,
A2,
A3,
A9,
A8,
A14,
AFF_1: 8;
hence thesis by
A1,
A2,
A4,
A6,
A8,
A14,
AFF_1: 8;
end;
hence thesis by
A3,
A4,
A10,
A11;
end;
hence thesis by
A1,
A3,
A4;
end;
hence thesis by
A1,
A2,
A6,
A7,
AFF_1: 8;
end;
A15:
now
assume that
A16: not
LIN (a,b,p) and not
LIN (a,b,q);
now
consider p9 be
Element of AS such that
A17: (a,b)
// (p,p9) and
A18: p
<> p9 by
DIRAF: 40;
assume
A19: not (p,q)
// (a,b);
A20: not
LIN (p,p9,q)
proof
assume
LIN (p,p9,q);
then (p,p9)
// (p,q) by
AFF_1:def 1;
hence contradiction by
A19,
A17,
A18,
AFF_1: 5;
end;
(p,p9)
// (a,b) by
A17,
AFF_1: 4;
then ex p99 be
Element of AS st
LIN (p,p9,p99) & p
<> p99 & p9
<> p99 by
A1,
A2,
A3,
A4,
A16,
Lm3;
then
consider r such that
A21:
LIN (q,p,r) and
A22: q
<> r & p
<> r by
A18,
A20,
Lm1;
LIN (p,q,r) by
A21,
AFF_1: 6;
hence thesis by
A22;
end;
hence thesis by
A1,
A2,
A3,
A4,
A16,
Lm3;
end;
now
assume ( not
LIN (a,b,q)) &
LIN (a,b,p);
then
consider x such that
A23:
LIN (q,p,x) and
A24: q
<> x & p
<> x by
A1,
A2,
A3,
A4,
Lm2;
LIN (p,q,x) by
A23,
AFF_1: 6;
hence thesis by
A24;
end;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A15,
Lm2;
end;
reserve AFP for
AffinPlane,
a,a9,b,b9,c,c9,d,p,p9,q,q9,r,x,x9,y,y9,z for
Element of AFP,
A,C,P for
Subset of AFP,
f,g,h,f1,f2 for
Permutation of the
carrier of AFP;
theorem ::
TRANSLAC:2
Th2: AFP is
Fanoian & (a,b)
// (c,d) & (a,c)
// (b,d) & not
LIN (a,b,c) implies ex p st
LIN (b,c,p) &
LIN (a,d,p)
proof
assume (for a, b, c, d st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds
LIN (a,b,c)) & (a,b)
// (c,d) & (a,c)
// (b,d) & not
LIN (a,b,c);
then not (a,d)
// (b,c);
then ex p st
LIN (a,d,p) &
LIN (b,c,p) by
AFF_1: 60;
hence thesis;
end;
Lm4: not
LIN (a,b,x) & (a,b)
// (x,y) & x
<> y implies not
LIN (x,y,a) & not
LIN (b,a,y) & not
LIN (y,x,b)
proof
assume that
A1: not
LIN (a,b,x) and
A2: (a,b)
// (x,y) and
A3: x
<> y;
thus not
LIN (x,y,a)
proof
A4:
LIN (x,y,x) by
AFF_1: 7;
assume
A5:
LIN (x,y,a);
(x,y)
// (a,b) by
A2,
AFF_1: 4;
then
LIN (x,y,b) by
A3,
A5,
AFF_1: 9;
hence contradiction by
A1,
A3,
A5,
A4,
AFF_1: 8;
end;
thus not
LIN (b,a,y)
proof
assume
A6:
LIN (b,a,y);
(b,a)
// (y,x) & b
<> a by
A1,
A2,
AFF_1: 4,
AFF_1: 7;
then
LIN (b,a,x) by
A6,
AFF_1: 9;
hence contradiction by
A1,
AFF_1: 6;
end;
thus not
LIN (y,x,b)
proof
A7:
LIN (y,x,x) by
AFF_1: 7;
assume
A8:
LIN (y,x,b);
(y,x)
// (b,a) by
A2,
AFF_1: 4;
then
LIN (y,x,a) by
A3,
A8,
AFF_1: 9;
hence contradiction by
A1,
A3,
A8,
A7,
AFF_1: 8;
end;
end;
Lm5: not
LIN (a,b,x) & (a,b)
// (x,y) & (a,x)
// (b,y) implies not
LIN (x,y,a) & not
LIN (b,a,y) & not
LIN (y,x,b)
proof
assume that
A1: not
LIN (a,b,x) and
A2: (a,b)
// (x,y) and
A3: (a,x)
// (b,y);
x
<> y
proof
assume x
= y;
then (x,a)
// (x,b) by
A3,
AFF_1: 4;
then
LIN (x,a,b) by
AFF_1:def 1;
hence contradiction by
A1,
AFF_1: 6;
end;
hence thesis by
A1,
A2,
Lm4;
end;
theorem ::
TRANSLAC:3
Th3: f is
translation & not
LIN (a,(f
. a),x) & (a,(f
. a))
// (x,y) & (a,x)
// ((f
. a),y) implies y
= (f
. x)
proof
assume
A1: f is
translation;
then
A2: f is
dilatation by
TRANSGEO:def 11;
then
A3: (a,x)
// ((f
. a),(f
. x)) by
TRANSGEO: 68;
assume
A4: ( not
LIN (a,(f
. a),x)) & (a,(f
. a))
// (x,y) & (a,x)
// ((f
. a),y);
(a,(f
. a))
// (x,(f
. x)) by
A1,
A2,
TRANSGEO: 82;
hence thesis by
A4,
A3,
TRANSGEO: 80;
end;
theorem ::
TRANSLAC:4
Th4: AFP is
translational iff for a, a9, b, c, b9, c9 st not
LIN (a,a9,b) & not
LIN (a,a9,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) holds (b,c)
// (b9,c9)
proof
thus AFP is
translational implies for a, a9, b, c, b9, c9 st not
LIN (a,a9,b) & not
LIN (a,a9,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) holds (b,c)
// (b9,c9)
proof
assume
A1: AFP is
translational;
let a, a9, b, c, b9, c9;
assume that
A2: not
LIN (a,a9,b) and
A3: not
LIN (a,a9,c) and
A4: (a,a9)
// (b,b9) and
A5: (a,a9)
// (c,c9) and
A6: (a,b)
// (a9,b9) and
A7: (a,c)
// (a9,c9);
set A = (
Line (a,a9)), P = (
Line (b,b9)), C = (
Line (c,c9));
A8: a
in A & a9
in A by
AFF_1: 15;
A9: c
<> c9
proof
assume c
= c9;
then (c,a)
// (c,a9) by
A7,
AFF_1: 4;
then
LIN (c,a,a9) by
AFF_1:def 1;
hence contradiction by
A3,
AFF_1: 6;
end;
then
A10: C is
being_line by
AFF_1:def 3;
A11: b
<> b9
proof
assume b
= b9;
then (b,a)
// (b,a9) by
A6,
AFF_1: 4;
then
LIN (b,a,a9) by
AFF_1:def 1;
hence contradiction by
A2,
AFF_1: 6;
end;
then
A12: P is
being_line by
AFF_1:def 3;
A13: a
<> a9 by
A2,
AFF_1: 7;
then
A14: A is
being_line by
AFF_1:def 3;
A15: c
in C by
AFF_1: 15;
then
A16: A
<> C by
A3,
A8,
A14,
AFF_1: 21;
A17: A
// P by
A4,
A13,
A11,
AFF_1: 37;
A18: b9
in P & c9
in C by
AFF_1: 15;
A19: A
// C by
A5,
A13,
A9,
AFF_1: 37;
A20: b
in P by
AFF_1: 15;
then A
<> P by
A2,
A8,
A14,
AFF_1: 21;
hence thesis by
A1,
A6,
A7,
A8,
A20,
A15,
A18,
A14,
A12,
A10,
A17,
A19,
A16,
AFF_2:def 11;
end;
assume
A21: for a, a9, b, c, b9, c9 st not
LIN (a,a9,b) & not
LIN (a,a9,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) holds (b,c)
// (b9,c9);
now
let A, P, C, a, b, c, a9, b9, c9;
assume that
A22: A
// P and
A23: A
// C and
A24: a
in A and
A25: a9
in A and
A26: b
in P and
A27: b9
in P and
A28: c
in C and
A29: c9
in C and
A30: A is
being_line and
A31: P is
being_line and
A32: C is
being_line and
A33: A
<> P and
A34: A
<> C and
A35: (a,b)
// (a9,b9) and
A36: (a,c)
// (a9,c9);
A37: (a,a9)
// (b,b9) & (a,a9)
// (c,c9) by
A22,
A23,
A24,
A25,
A26,
A27,
A28,
A29,
AFF_1: 39;
A38:
now
assume
A39: a
<> a9;
A40: not
LIN (a,a9,c)
proof
assume
LIN (a,a9,c);
then c
in A by
A24,
A25,
A30,
A39,
AFF_1: 25;
hence contradiction by
A23,
A28,
A34,
AFF_1: 45;
end;
not
LIN (a,a9,b)
proof
assume
LIN (a,a9,b);
then b
in A by
A24,
A25,
A30,
A39,
AFF_1: 25;
hence contradiction by
A22,
A26,
A33,
AFF_1: 45;
end;
hence (b,c)
// (b9,c9) by
A21,
A35,
A36,
A37,
A40;
end;
now
assume
A41: a
= a9;
then
LIN (a,c,c9) by
A36,
AFF_1:def 1;
then
LIN (c,c9,a) by
AFF_1: 6;
then
A42: c
= c9 or a
in C by
A28,
A29,
A32,
AFF_1: 25;
LIN (a,b,b9) by
A35,
A41,
AFF_1:def 1;
then
LIN (b,b9,a) by
AFF_1: 6;
then b
= b9 or a
in P by
A26,
A27,
A31,
AFF_1: 25;
hence (b,c)
// (b9,c9) by
A22,
A23,
A24,
A33,
A34,
A42,
AFF_1: 2,
AFF_1: 45;
end;
hence (b,c)
// (b9,c9) by
A38;
end;
hence thesis by
AFF_2:def 11;
end;
theorem ::
TRANSLAC:5
Th5: ex f st f is
translation & (f
. a)
= a
proof
take (
id the
carrier of AFP);
thus thesis by
TRANSGEO: 81;
end;
Lm6: a
<> b implies ex y st ( not
LIN (a,b,x) & (a,b)
// (x,y) & (a,x)
// (b,y) or (
LIN (a,b,x) & ex p, q st not
LIN (a,b,p) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// (x,y) & (p,x)
// (q,y)))
proof
assume
A1: a
<> b;
A2:
now
assume
A3:
LIN (a,b,x);
consider p such that
A4: not
LIN (a,b,p) by
A1,
AFF_1: 13;
consider q such that
A5: (a,b)
// (p,q) & (a,p)
// (b,q) by
DIRAF: 40;
ex y st (p,q)
// (x,y) & (p,x)
// (q,y) by
DIRAF: 40;
hence thesis by
A3,
A4,
A5;
end;
now
A6: ex y st (a,b)
// (x,y) & (a,x)
// (b,y) by
DIRAF: 40;
assume not
LIN (a,b,x);
hence thesis by
A6;
end;
hence thesis by
A2;
end;
Lm7: a
<> b implies ex x st not
LIN (a,b,x) & (a,b)
// (x,y) & (a,x)
// (b,y) or
LIN (a,b,x) & ex p, q st not
LIN (a,b,p) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// (x,y) & (p,x)
// (q,y)
proof
assume
A1: a
<> b;
A2:
now
assume
A3:
LIN (a,b,y);
consider p such that
A4: not
LIN (a,b,p) by
A1,
AFF_1: 13;
consider q such that
A5: (a,b)
// (p,q) and
A6: (a,p)
// (b,q) by
DIRAF: 40;
A7:
now
assume p
= q;
then (p,a)
// (p,b) by
A6,
AFF_1: 4;
then
LIN (p,a,b) by
AFF_1:def 1;
hence contradiction by
A4,
AFF_1: 6;
end;
consider x such that
A8: (q,p)
// (y,x) and
A9: (q,y)
// (p,x) by
DIRAF: 40;
A10: (p,x)
// (q,y) by
A9,
AFF_1: 4;
A11: (p,q)
// (x,y) by
A8,
AFF_1: 4;
then (a,b)
// (x,y) or p
= q by
A5,
AFF_1: 5;
then (a,b)
// (y,x) by
A7,
AFF_1: 4;
then
LIN (a,b,x) by
A1,
A3,
AFF_1: 9;
hence thesis by
A4,
A5,
A6,
A11,
A10;
end;
now
consider x such that
A12: (b,a)
// (y,x) & (b,y)
// (a,x) by
DIRAF: 40;
A13: (a,b)
// (x,y) & (a,x)
// (b,y) by
A12,
AFF_1: 4;
assume not
LIN (a,b,y);
then not
LIN (b,a,y) by
AFF_1: 6;
then not
LIN (a,b,x) by
A12,
Lm5;
hence thesis by
A13;
end;
hence thesis by
A2;
end;
Lm8: AFP is
translational & a
<> b &
LIN (a,b,x) & (a,b)
// (p,q) & (a,b)
// (p9,q9) & (a,p)
// (b,q) & (a,p9)
// (b,q9) & (p,q)
// (x,y) & (p9,q9)
// (x,y9) & (p,x)
// (q,y) & (p9,x)
// (q9,y9) & not
LIN (a,b,p) & not
LIN (a,b,p9) & not
LIN (p,q,p9) implies y
= y9
proof
assume that
A1: AFP is
translational and
A2: a
<> b and
A3:
LIN (a,b,x) and
A4: (a,b)
// (p,q) and
A5: (a,b)
// (p9,q9) and
A6: (a,p)
// (b,q) and
A7: (a,p9)
// (b,q9) and
A8: (p,q)
// (x,y) and
A9: (p9,q9)
// (x,y9) and
A10: (p,x)
// (q,y) and
A11: (p9,x)
// (q9,y9) and
A12: not
LIN (a,b,p) and
A13: not
LIN (a,b,p9) and
A14: not
LIN (p,q,p9);
A15: p
<> q
proof
assume p
= q;
then (p,a)
// (p,b) by
A6,
AFF_1: 4;
then
LIN (p,a,b) by
AFF_1:def 1;
hence contradiction by
A12,
AFF_1: 6;
end;
A16: not
LIN (p,q,x)
proof
assume
A17:
LIN (p,q,x);
then (p,q)
// (p,x) by
AFF_1:def 1;
then
A18: (p,x)
// (a,b) by
A4,
A15,
AFF_1: 5;
(a,b)
// (a,x) by
A3,
AFF_1:def 1;
then (p,x)
// (a,x) by
A2,
A18,
AFF_1: 5;
then (x,p)
// (x,a) by
AFF_1: 4;
then
A19:
LIN (x,p,a) by
AFF_1:def 1;
A20:
LIN (x,p,x) &
LIN (a,x,b) by
A3,
AFF_1: 6,
AFF_1: 7;
A21:
LIN (x,p,p) by
AFF_1: 7;
x
<> a by
A4,
A6,
A12,
A17,
Lm5;
then
LIN (x,p,b) by
A19,
A20,
AFF_1: 11;
hence contradiction by
A3,
A12,
A19,
A21,
AFF_1: 8;
end;
A22: (p,q)
// (p9,q9) by
A2,
A4,
A5,
AFF_1: 5;
then
A23: (p9,q9)
// (x,y) by
A8,
A15,
AFF_1: 5;
A24: p9
<> q9
proof
assume p9
= q9;
then (p9,a)
// (p9,b) by
A7,
AFF_1: 4;
then
LIN (p9,a,b) by
AFF_1:def 1;
hence contradiction by
A13,
AFF_1: 6;
end;
A25: not
LIN (p9,q9,x)
proof
assume
A26:
LIN (p9,q9,x);
then (p9,q9)
// (p9,x) by
AFF_1:def 1;
then
A27: (p9,x)
// (a,b) by
A5,
A24,
AFF_1: 5;
(a,b)
// (a,x) by
A3,
AFF_1:def 1;
then (p9,x)
// (a,x) by
A2,
A27,
AFF_1: 5;
then (x,p9)
// (x,a) by
AFF_1: 4;
then
A28:
LIN (x,p9,a) by
AFF_1:def 1;
A29:
LIN (x,p9,x) &
LIN (a,x,b) by
A3,
AFF_1: 6,
AFF_1: 7;
A30:
LIN (x,p9,p9) by
AFF_1: 7;
x
<> a by
A5,
A7,
A13,
A26,
Lm5;
then
LIN (x,p9,b) by
A28,
A29,
AFF_1: 11;
hence contradiction by
A3,
A13,
A28,
A30,
AFF_1: 8;
end;
(p,p9)
// (q,q9) by
A1,
A4,
A5,
A6,
A7,
A12,
A13,
Th4;
then (p9,x)
// (q9,y) by
A1,
A8,
A10,
A14,
A22,
A16,
Th4;
hence thesis by
A9,
A11,
A25,
A23,
TRANSGEO: 80;
end;
theorem ::
TRANSLAC:6
Th6: (for p, q, r st p
<> q &
LIN (p,q,r) holds r
= p or r
= q) & (a,b)
// (p,q) & (a,p)
// (b,q) & not
LIN (a,b,p) implies (a,q)
// (b,p)
proof
assume that
A1: for p, q, r st p
<> q &
LIN (p,q,r) holds r
= p or r
= q and
A2: (a,b)
// (p,q) and
A3: (a,p)
// (b,q) and
A4: not
LIN (a,b,p);
consider z such that
A5: (q,p)
// (a,z) and
A6: (q,a)
// (p,z) by
DIRAF: 40;
A7: p
<> q
proof
assume p
= q;
then (p,a)
// (p,b) by
A3,
AFF_1: 4;
then
LIN (p,a,b) by
AFF_1:def 1;
hence contradiction by
A4,
AFF_1: 6;
end;
A8: not
LIN (a,p,q)
proof
A9:
LIN (p,q,p) by
AFF_1: 7;
assume
LIN (a,p,q);
then
A10:
LIN (p,q,a) by
AFF_1: 6;
(p,q)
// (a,b) by
A2,
AFF_1: 4;
then
LIN (p,q,b) by
A7,
A10,
AFF_1: 9;
hence contradiction by
A4,
A7,
A10,
A9,
AFF_1: 8;
end;
A11:
now
assume a
= z;
then (a,p)
// (a,q) by
A6,
AFF_1: 4;
hence contradiction by
A8,
AFF_1:def 1;
end;
(p,q)
// (a,z) by
A5,
AFF_1: 4;
then (a,b)
// (a,z) by
A2,
A7,
AFF_1: 5;
then
A12:
LIN (a,b,z) by
AFF_1:def 1;
a
<> b by
A4,
AFF_1: 7;
then a
= z or b
= z by
A1,
A12;
hence thesis by
A6,
A11,
AFF_1: 4;
end;
Lm9: AFP is
translational & a
<> b &
LIN (a,b,x) & (a,b)
// (p,q) & (a,b)
// (p9,q9) & (a,p)
// (b,q) & (a,p9)
// (b,q9) & (p,q)
// (x,y) & (p9,q9)
// (x,y9) & (p,x)
// (q,y) & (p9,x)
// (q9,y9) & not
LIN (a,b,p) & not
LIN (a,b,p9) implies y
= y9
proof
assume that
A1: AFP is
translational and
A2: a
<> b and
A3:
LIN (a,b,x) and
A4: (a,b)
// (p,q) and
A5: (a,b)
// (p9,q9) and
A6: (a,p)
// (b,q) and
A7: (a,p9)
// (b,q9) and
A8: (p,q)
// (x,y) and
A9: (p9,q9)
// (x,y9) and
A10: (p,x)
// (q,y) and
A11: (p9,x)
// (q9,y9) and
A12: not
LIN (a,b,p) and
A13: not
LIN (a,b,p9);
A14: p
<> q
proof
assume p
= q;
then (p,a)
// (p,b) by
A6,
AFF_1: 4;
then
LIN (p,a,b) by
AFF_1:def 1;
hence contradiction by
A12,
AFF_1: 6;
end;
then (a,b)
// (x,y) by
A4,
A8,
AFF_1: 5;
then
A15:
LIN (a,b,y) by
A2,
A3,
AFF_1: 9;
A16: not
LIN (p,q,x)
proof
assume
LIN (p,q,x);
then (p,q)
// (p,x) by
AFF_1:def 1;
then (a,b)
// (p,x) by
A4,
A14,
AFF_1: 5;
then (a,b)
// (x,p) by
AFF_1: 4;
hence contradiction by
A2,
A3,
A12,
AFF_1: 9;
end;
A17:
now
assume x
= y;
then (x,p)
// (x,q) by
A10,
AFF_1: 4;
then
LIN (x,p,q) by
AFF_1:def 1;
hence contradiction by
A16,
AFF_1: 6;
end;
A18: p9
<> q9
proof
assume p9
= q9;
then (p9,a)
// (p9,b) by
A7,
AFF_1: 4;
then
LIN (p9,a,b) by
AFF_1:def 1;
hence contradiction by
A13,
AFF_1: 6;
end;
A19: not
LIN (q,p,b)
proof
A20:
LIN (q,p,p) by
AFF_1: 7;
assume
A21:
LIN (q,p,b);
(q,p)
// (b,a) by
A4,
AFF_1: 4;
then
LIN (q,p,a) by
A14,
A21,
AFF_1: 9;
hence contradiction by
A12,
A14,
A21,
A20,
AFF_1: 8;
end;
now
assume
A22:
LIN (p,q,p9);
(p,q)
// (p9,q9) by
A2,
A4,
A5,
AFF_1: 5;
then
A23:
LIN (p,q,q9) by
A14,
A22,
AFF_1: 9;
A24:
now
assume
A25: for x st
LIN (a,p,x) holds x
= a or x
= p;
then
A26: for p, q, r st p
<> q &
LIN (p,q,r) holds r
= p or r
= q by
Th1;
A27:
now
assume
A28: q
= p9;
A29:
now
(a,q)
// (b,p) by
A4,
A6,
A12,
A26,
Th6;
then
A30: (q,a)
// (p,b) by
AFF_1: 4;
A31: (q,p)
// (a,b) by
A4,
AFF_1: 4;
assume
A32: a
= x;
then
A33: (q,a)
// (p,y9) & not
LIN (q,p,a) by
A11,
A14,
A18,
A16,
A23,
A25,
A28,
Th1,
AFF_1: 6;
b
= y & (q,p)
// (a,y9) by
A2,
A9,
A14,
A18,
A17,
A15,
A23,
A25,
A28,
A32,
Th1;
hence thesis by
A31,
A30,
A33,
TRANSGEO: 80;
end;
now
A34: (q,p)
// (b,a) & (q,b)
// (p,a) by
A4,
A6,
AFF_1: 4;
assume
A35: b
= x;
then
A36: (q,b)
// (p,y9) by
A11,
A14,
A18,
A23,
A25,
A28,
Th1;
a
= y & (q,p)
// (b,y9) by
A2,
A9,
A14,
A18,
A17,
A15,
A23,
A25,
A28,
A35,
Th1;
hence thesis by
A19,
A34,
A36,
TRANSGEO: 80;
end;
hence thesis by
A2,
A3,
A25,
A29,
Th1;
end;
now
assume
A37: p
= p9;
then q
= q9 by
A14,
A18,
A23,
A25,
Th1;
hence thesis by
A8,
A9,
A10,
A11,
A16,
A37,
TRANSGEO: 80;
end;
hence thesis by
A14,
A22,
A25,
A27,
Th1;
end;
now
given p99 be
Element of AFP such that
A38:
LIN (a,p,p99) and
A39: p99
<> a and
A40: p99
<> p;
A41: not
LIN (p,q,p99)
proof
assume
LIN (p,q,p99);
then
A42:
LIN (p,p99,q) by
AFF_1: 6;
LIN (p,p99,p) &
LIN (p,p99,a) by
A38,
AFF_1: 6,
AFF_1: 7;
then
LIN (p,q,a) by
A40,
A42,
AFF_1: 8;
hence contradiction by
A4,
A6,
A12,
Lm5;
end;
A43: not
LIN (p9,q9,p99)
proof
(p,q)
// (p9,q9) by
A2,
A4,
A5,
AFF_1: 5;
then
A44:
LIN (p,q,q9) by
A14,
A22,
AFF_1: 9;
assume
LIN (p9,q9,p99);
hence contradiction by
A18,
A22,
A41,
A44,
AFF_1: 11;
end;
consider q99 be
Element of AFP such that
A45: (a,b)
// (p99,q99) & (a,p99)
// (b,q99) by
DIRAF: 40;
consider y99 be
Element of AFP such that
A46: (p99,q99)
// (x,y99) & (p99,x)
// (q99,y99) by
DIRAF: 40;
A47: not
LIN (a,b,p99)
proof
assume
LIN (a,b,p99);
then
A48:
LIN (a,p99,b) by
AFF_1: 6;
LIN (a,p99,a) &
LIN (a,p99,p) by
A38,
AFF_1: 6,
AFF_1: 7;
hence contradiction by
A12,
A39,
A48,
AFF_1: 8;
end;
then y
= y99 by
A1,
A2,
A3,
A4,
A6,
A8,
A10,
A12,
A45,
A46,
A41,
Lm8;
hence thesis by
A1,
A2,
A3,
A5,
A7,
A9,
A11,
A13,
A45,
A46,
A43,
A47,
Lm8;
end;
hence thesis by
A24;
end;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
Lm8;
end;
Lm10: a
<> b &
LIN (a,b,x) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// (x,y) & not
LIN (a,b,p) implies p
<> q &
LIN (a,b,y)
proof
assume that
A1: a
<> b &
LIN (a,b,x) and
A2: (a,b)
// (p,q) and
A3: (a,p)
// (b,q) and
A4: (p,q)
// (x,y) and
A5: not
LIN (a,b,p);
thus p
<> q
proof
assume p
= q;
then (p,a)
// (p,b) by
A3,
AFF_1: 4;
then
LIN (p,a,b) by
AFF_1:def 1;
hence contradiction by
A5,
AFF_1: 6;
end;
then (a,b)
// (x,y) by
A2,
A4,
AFF_1: 5;
hence thesis by
A1,
AFF_1: 9;
end;
Lm11: AFP is
translational & a
<> b &
LIN (a,b,x) & (a,b)
// (p,q) & (a,b)
// (p9,q9) & (a,p)
// (b,q) & (a,p9)
// (b,q9) & (p,q)
// (x,y) & (p,x)
// (q,y) & (p9,q9)
// (x9,y) & (p9,x9)
// (q9,y) & not
LIN (a,b,p) & not
LIN (a,b,p9) implies x
= x9
proof
assume that
A1: AFP is
translational and
A2: a
<> b and
A3:
LIN (a,b,x) and
A4: (a,b)
// (p,q) and
A5: (a,b)
// (p9,q9) and
A6: (a,p)
// (b,q) and
A7: (a,p9)
// (b,q9) and
A8: (p,q)
// (x,y) and
A9: (p,x)
// (q,y) and
A10: (p9,q9)
// (x9,y) & (p9,x9)
// (q9,y) and
A11: not
LIN (a,b,p) and
A12: not
LIN (a,b,p9);
A13: (b,a)
// (q,p) & (b,a)
// (q9,p9) by
A4,
A5,
AFF_1: 4;
A14: (b,q)
// (a,p) & (b,q9)
// (a,p9) by
A6,
A7,
AFF_1: 4;
A15: (q9,p9)
// (y,x9) & (q9,y)
// (p9,x9) by
A10,
AFF_1: 4;
LIN (a,b,y) by
A2,
A3,
A4,
A6,
A8,
A11,
Lm10;
then
A16:
LIN (b,a,y) by
AFF_1: 6;
A17: (q,p)
// (y,x) & (q,y)
// (p,x) by
A8,
A9,
AFF_1: 4;
( not
LIN (b,a,q)) & not
LIN (b,a,q9) by
A4,
A5,
A6,
A7,
A11,
A12,
Lm5;
hence thesis by
A1,
A2,
A16,
A13,
A14,
A17,
A15,
Lm9;
end;
Lm12: AFP is
translational & a
<> b implies ex f st f is
translation & (f
. a)
= b
proof
defpred
X[
Element of AFP,
Element of AFP] means ( not
LIN (a,b,$1) & (a,b)
// ($1,$2) & (a,$1)
// (b,$2)) or (
LIN (a,b,$1) & (ex p, q st not
LIN (a,b,p) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// ($1,$2) & (p,$1)
// (q,$2)));
assume that
A1: AFP is
translational and
A2: a
<> b;
A3: ex y st
X[x, y] by
A2,
Lm6;
A4: for x, y, x9 holds
X[x, y] &
X[x9, y] implies x
= x9
proof
let x, y, x9;
assume that
A5: not
LIN (a,b,x) & (a,b)
// (x,y) & (a,x)
// (b,y) or (
LIN (a,b,x) & ex p, q st not
LIN (a,b,p) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// (x,y) & (p,x)
// (q,y)) and
A6: not
LIN (a,b,x9) & (a,b)
// (x9,y) & (a,x9)
// (b,y) or (
LIN (a,b,x9) & ex p, q st not
LIN (a,b,p) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// (x9,y) & (p,x9)
// (q,y));
A7:
now
assume
A8:
LIN (a,b,y);
A9: not ( not
LIN (a,b,x9) & (a,b)
// (x9,y) & (a,x9)
// (b,y))
proof
assume that
A10: not
LIN (a,b,x9) and
A11: (a,b)
// (x9,y) and (a,x9)
// (b,y);
(a,b)
// (y,x9) by
A11,
AFF_1: 4;
hence contradiction by
A2,
A8,
A10,
AFF_1: 9;
end;
not ( not
LIN (a,b,x) & (a,b)
// (x,y) & (a,x)
// (b,y))
proof
assume that
A12: not
LIN (a,b,x) and
A13: (a,b)
// (x,y) and (a,x)
// (b,y);
(a,b)
// (y,x) by
A13,
AFF_1: 4;
hence contradiction by
A2,
A8,
A12,
AFF_1: 9;
end;
hence thesis by
A1,
A2,
A5,
A6,
A9,
Lm11;
end;
now
assume
A14: not
LIN (a,b,y);
then
A15: (b,y)
// (a,x9) by
A2,
A6,
Lm10,
AFF_1: 4;
A16: (b,y)
// (a,x) & (b,a)
// (y,x9) by
A2,
A5,
A6,
A14,
Lm10,
AFF_1: 4;
( not
LIN (b,a,y)) & (b,a)
// (y,x) by
A2,
A5,
A14,
Lm5,
Lm10,
AFF_1: 4;
hence thesis by
A16,
A15,
TRANSGEO: 80;
end;
hence thesis by
A7;
end;
A17: ex x st
X[x, y] by
A2,
Lm7;
A18:
X[x, y] &
X[x, y9] implies y
= y9 by
A1,
A2,
Lm9,
TRANSGEO: 80;
ex f st for x, y holds (f
. x)
= y iff
X[x, y] from
TRANSGEO:sch 1(
A3,
A17,
A4,
A18);
then
consider f such that
A19: for x, y holds (f
. x)
= y iff not
LIN (a,b,x) & (a,b)
// (x,y) & (a,x)
// (b,y) or
LIN (a,b,x) & ex p, q st not
LIN (a,b,p) & (a,b)
// (p,q) & (a,p)
// (b,q) & (p,q)
// (x,y) & (p,x)
// (q,y);
A20: (a,b)
// (x,(f
. x))
proof
set y = (f
. x);
now
assume
A21:
LIN (a,b,x);
then
consider p, q such that
A22: not
LIN (a,b,p) and
A23: (a,b)
// (p,q) and
A24: (a,p)
// (b,q) and
A25: (p,q)
// (x,y) and (p,x)
// (q,y) by
A19;
p
<> q by
A2,
A21,
A22,
A23,
A24,
A25,
Lm10;
hence thesis by
A23,
A25,
AFF_1: 5;
end;
hence thesis by
A19;
end;
for x, y holds (x,y)
// ((f
. x),(f
. y))
proof
let x, y;
A26:
now
A27: ex x9 st (y,(f
. y))
// (x,x9) & (y,x)
// ((f
. y),x9) by
DIRAF: 40;
assume that
A28:
LIN (a,b,x) and
A29: not
LIN (a,b,y);
(a,b)
// (y,(f
. y)) & (a,y)
// (b,(f
. y)) by
A19,
A29;
then (y,x)
// ((f
. y),(f
. x)) by
A19,
A28,
A29,
A27;
hence thesis by
AFF_1: 4;
end;
A30:
now
A31: ex y9 st (x,(f
. x))
// (y,y9) & (x,y)
// ((f
. x),y9) by
DIRAF: 40;
assume that
A32: not
LIN (a,b,x) and
A33:
LIN (a,b,y);
(a,b)
// (x,(f
. x)) & (a,x)
// (b,(f
. x)) by
A19,
A32;
hence thesis by
A19,
A32,
A33,
A31;
end;
A34:
now
assume
A35:
LIN (a,b,x) &
LIN (a,b,y);
then
LIN (a,b,(f
. x)) &
LIN (a,b,(f
. y)) by
A2,
A20,
AFF_1: 9;
then
A36: (a,b)
// ((f
. x),(f
. y)) by
AFF_1: 10;
(a,b)
// (x,y) by
A35,
AFF_1: 10;
hence thesis by
A2,
A36,
AFF_1: 5;
end;
now
assume
A37: ( not
LIN (a,b,x)) & not
LIN (a,b,y);
then
A38: (a,b)
// (x,(f
. x)) & (a,b)
// (y,(f
. y)) by
A19;
(a,x)
// (b,(f
. x)) & (a,y)
// (b,(f
. y)) by
A19,
A37;
hence thesis by
A1,
A37,
A38,
Th4;
end;
hence thesis by
A34,
A26,
A30;
end;
then
A39: f is
dilatation by
TRANSGEO: 68;
A40: (f
. a)
= b
proof
A41:
LIN (a,b,a) by
AFF_1: 7;
consider p such that
A42: not
LIN (a,b,p) by
A2,
AFF_1: 13;
consider q such that
A43: (a,b)
// (p,q) & (a,p)
// (b,q) by
DIRAF: 40;
(p,a)
// (q,b) & (p,q)
// (a,b) by
A43,
AFF_1: 4;
hence thesis by
A19,
A42,
A43,
A41;
end;
(x,(f
. x))
// (y,(f
. y))
proof
(a,b)
// (x,(f
. x)) & (a,b)
// (y,(f
. y)) by
A20;
hence thesis by
A2,
AFF_1: 5;
end;
then f is
translation by
A39,
TRANSGEO: 82;
hence thesis by
A40;
end;
theorem ::
TRANSLAC:7
Th7: AFP is
translational implies ex f st f is
translation & (f
. a)
= b
proof
assume
A1: AFP is
translational;
a
= b implies thesis by
Th5;
hence thesis by
A1,
Lm12;
end;
theorem ::
TRANSLAC:8
(for a, b holds ex f st f is
translation & (f
. a)
= b) implies AFP is
translational
proof
assume
A1: for a, b holds ex f st f is
translation & (f
. a)
= b;
now
let a, a9, b, c, b9, c9;
consider f such that
A2: f is
translation and
A3: (f
. a)
= a9 by
A1;
A4: f is
dilatation by
A2,
TRANSGEO:def 11;
assume ( not
LIN (a,a9,b)) & not
LIN (a,a9,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9);
then b9
= (f
. b) & c9
= (f
. c) by
A2,
A3,
Th3;
hence (b,c)
// (b9,c9) by
A4,
TRANSGEO: 68;
end;
hence thesis by
Th4;
end;
theorem ::
TRANSLAC:9
Th9: f is
translation & g is
translation & not
LIN (a,(f
. a),(g
. a)) implies (f
* g)
= (g
* f)
proof
assume that
A1: f is
translation and
A2: g is
translation;
A3: g is
dilatation by
A2,
TRANSGEO:def 11;
then
A4: (a,(f
. a))
// ((g
. a),(g
. (f
. a))) by
TRANSGEO: 68;
assume
A5: not
LIN (a,(f
. a),(g
. a));
(a,(g
. a))
// ((f
. a),(g
. (f
. a))) by
A2,
A3,
TRANSGEO: 82;
then (f
. (g
. a))
= (g
. (f
. a)) by
A1,
A5,
A4,
Th3;
then ((f
* g)
. a)
= (g
. (f
. a)) by
FUNCT_2: 15;
then
A6: ((f
* g)
. a)
= ((g
* f)
. a) by
FUNCT_2: 15;
(f
* g) is
translation & (g
* f) is
translation by
A1,
A2,
TRANSGEO: 86;
hence thesis by
A6,
TRANSGEO: 84;
end;
theorem ::
TRANSLAC:10
Th10: AFP is
translational & f is
translation & g is
translation implies (f
* g)
= (g
* f)
proof
assume that
A1: AFP is
translational and
A2: f is
translation and
A3: g is
translation;
A4: g is
dilatation by
A3,
TRANSGEO:def 11;
now
set a = the
Element of AFP;
assume that
A5: f
<> (
id the
carrier of AFP) and
A6: g
<> (
id the
carrier of AFP);
A7: a
<> (f
. a) by
A2,
A5,
TRANSGEO:def 11;
A8: a
<> (g
. a) by
A3,
A6,
TRANSGEO:def 11;
now
consider b such that
A9: not
LIN (a,(f
. a),b) by
A7,
AFF_1: 13;
consider h such that
A10: h is
translation and
A11: (h
. a)
= b by
A1,
Th7;
A12: (h
* g) is
translation by
A3,
A10,
TRANSGEO: 86;
assume
A13:
LIN (a,(f
. a),(g
. a));
not
LIN (a,(f
. a),(h
. (g
. a)))
proof
A14: not
LIN (a,(g
. a),b)
proof
assume
A15:
LIN (a,(g
. a),b);
LIN (a,(g
. a),(f
. a)) &
LIN (a,(g
. a),a) by
A13,
AFF_1: 6,
AFF_1: 7;
hence contradiction by
A8,
A9,
A15,
AFF_1: 8;
end;
then ((g
* h)
. a)
= ((h
* g)
. a) by
A3,
A10,
A11,
Th9;
then ((g
* h)
. a)
= (h
. (g
. a)) by
FUNCT_2: 15;
then
A16: (g
. b)
= (h
. (g
. a)) by
A11,
FUNCT_2: 15;
assume
A17:
LIN (a,(f
. a),(h
. (g
. a)));
(a,(g
. a))
// (b,(g
. b)) & (a,b)
// ((g
. a),(g
. b)) by
A3,
A4,
TRANSGEO: 68,
TRANSGEO: 82;
then
LIN (a,(f
. a),a) & not
LIN ((g
. a),a,(h
. (g
. a))) by
A14,
A16,
Lm5,
AFF_1: 7;
hence contradiction by
A7,
A13,
A17,
AFF_1: 8;
end;
then
A18: not
LIN (a,(f
. a),((h
* g)
. a)) by
FUNCT_2: 15;
(h
* (f
* g))
= ((h
* f)
* g) by
RELAT_1: 36
.= ((f
* h)
* g) by
A2,
A9,
A10,
A11,
Th9
.= (f
* (h
* g)) by
RELAT_1: 36
.= ((h
* g)
* f) by
A2,
A12,
A18,
Th9
.= (h
* (g
* f)) by
RELAT_1: 36;
hence thesis by
TRANSGEO: 5;
end;
hence thesis by
A2,
A3,
Th9;
end;
hence thesis by
TRANSGEO: 4;
end;
theorem ::
TRANSLAC:11
Th11: f is
translation & g is
translation & (p,(f
. p))
// (p,(g
. p)) implies (p,(f
. p))
// (p,((f
* g)
. p))
proof
assume that
A1: f is
translation and
A2: g is
translation and
A3: (p,(f
. p))
// (p,(g
. p));
A4: f is
dilatation by
A1,
TRANSGEO:def 11;
A5:
now
assume g
<> (
id the
carrier of AFP);
then
A6: (g
. p)
<> p by
A2,
TRANSGEO:def 11;
(p,(g
. p))
// ((f
. p),(f
. (g
. p))) by
A4,
TRANSGEO: 68;
then (p,(f
. p))
// ((f
. p),(f
. (g
. p))) by
A3,
A6,
AFF_1: 5;
then ((f
. p),p)
// ((f
. p),(f
. (g
. p))) by
AFF_1: 4;
then
LIN ((f
. p),p,(f
. (g
. p))) by
AFF_1:def 1;
then
LIN (p,(f
. p),(f
. (g
. p))) by
AFF_1: 6;
then (p,(f
. p))
// (p,(f
. (g
. p))) by
AFF_1:def 1;
hence thesis by
FUNCT_2: 15;
end;
now
assume g
= (
id the
carrier of AFP);
then (f
* g)
= f by
FUNCT_2: 17;
hence thesis by
AFF_1: 2;
end;
hence thesis by
A5;
end;
theorem ::
TRANSLAC:12
AFP is
Fanoian & AFP is
translational & f is
translation implies ex g st g is
translation & (g
* g)
= f
proof
assume that
A1: AFP is
Fanoian and
A2: AFP is
translational and
A3: f is
translation;
A4:
now
set a = the
Element of AFP;
set b = (f
. a);
assume f
<> (
id the
carrier of AFP);
then a
<> b by
A3,
TRANSGEO:def 11;
then
consider c such that
A5: not
LIN (a,b,c) by
AFF_1: 13;
consider d such that
A6: (c,b)
// (a,d) and
A7: (c,a)
// (b,d) by
DIRAF: 40;
not
LIN (c,b,a) by
A5,
AFF_1: 6;
then
consider p such that
A8:
LIN (b,a,p) and
A9:
LIN (c,d,p) by
A1,
A6,
A7,
Th2;
consider f1 be
Permutation of the
carrier of AFP such that
A10: f1 is
translation and
A11: (f1
. p)
= a by
A2,
Th7;
consider f2 be
Permutation of the
carrier of AFP such that
A12: f2 is
translation and
A13: (f2
. p)
= b by
A2,
Th7;
A14: (f1
* f2) is
translation by
A10,
A12,
TRANSGEO: 86;
A15:
LIN (p,c,d) by
A9,
AFF_1: 6;
then
A16: (p,c)
// (p,d) by
AFF_1:def 1;
A17:
now
assume (p,c)
// (p,a);
then
LIN (p,c,a) by
AFF_1:def 1;
then
A18:
LIN (p,a,c) by
AFF_1: 6;
LIN (p,a,a) &
LIN (p,a,b) by
A8,
AFF_1: 6,
AFF_1: 7;
then p
= a by
A5,
A18,
AFF_1: 8;
then (a,c)
// (c,b) or a
= d by
A6,
A16,
AFF_1: 5;
then (c,a)
// (c,b) or a
= d by
AFF_1: 4;
then
LIN (c,a,b) or a
= d by
AFF_1:def 1;
then (a,c)
// (a,b) by
A5,
A7,
AFF_1: 4,
AFF_1: 6;
then
LIN (a,c,b) by
AFF_1:def 1;
hence contradiction by
A5,
AFF_1: 6;
end;
consider f3 be
Permutation of the
carrier of AFP such that
A19: f3 is
translation and
A20: (f3
. p)
= c by
A2,
Th7;
(f3
" ) is
translation by
A19,
TRANSGEO: 85;
then
A21: (f1
* (f3
" )) is
translation by
A10,
TRANSGEO: 86;
LIN (p,a,b) by
A8,
AFF_1: 6;
then (p,(f1
. p))
// (p,(f2
. p)) by
A11,
A13,
AFF_1:def 1;
then
A22: (p,a)
// (p,((f1
* f2)
. p)) by
A10,
A11,
A12,
Th11;
consider f4 be
Permutation of the
carrier of AFP such that
A23: f4 is
translation and
A24: (f4
. p)
= d by
A2,
Th7;
(f4
. ((f2
" )
. b))
= (f4
. p) by
A13,
TRANSGEO: 2;
then
A25: ((f4
* (f2
" ))
. b)
= d by
A24,
FUNCT_2: 15;
consider h such that
A26: h is
translation and
A27: (h
. c)
= a by
A2,
Th7;
not
LIN (c,a,b) by
A5,
AFF_1: 6;
then
A28: (h
. b)
= d by
A6,
A7,
A26,
A27,
Th3;
(f1
. ((f3
" )
. c))
= (f1
. p) by
A20,
TRANSGEO: 2;
then ((f1
* (f3
" ))
. c)
= a by
A11,
FUNCT_2: 15;
then
A29: (f1
* (f3
" ))
= h by
A26,
A27,
A21,
TRANSGEO: 84;
A30: (f2
" ) is
translation by
A12,
TRANSGEO: 85;
then (f4
* (f2
" )) is
translation by
A23,
TRANSGEO: 86;
then (f1
* (f3
" ))
= (f4
* (f2
" )) by
A26,
A28,
A29,
A25,
TRANSGEO: 84;
then (f1
* ((f3
" )
* f3))
= ((f4
* (f2
" ))
* f3) by
RELAT_1: 36;
then (f1
* (
id the
carrier of AFP))
= ((f4
* (f2
" ))
* f3) by
FUNCT_2: 61;
then f1
= ((f4
* (f2
" ))
* f3) by
FUNCT_2: 17
.= (f4
* ((f2
" )
* f3)) by
RELAT_1: 36
.= (f4
* (f3
* (f2
" ))) by
A2,
A19,
A30,
Th10
.= ((f4
* f3)
* (f2
" )) by
RELAT_1: 36;
then
A31: (f1
* f2)
= ((f4
* f3)
* ((f2
" )
* f2)) by
RELAT_1: 36
.= ((f4
* f3)
* (
id the
carrier of AFP)) by
FUNCT_2: 61
.= (f4
* f3) by
FUNCT_2: 17;
(p,(f3
. p))
// (p,(f4
. p)) by
A20,
A24,
A15,
AFF_1:def 1;
then (p,c)
// (p,((f3
* f4)
. p)) by
A19,
A20,
A23,
Th11;
then (p,c)
// (p,((f1
* f2)
. p)) by
A2,
A19,
A23,
A31,
Th10;
then p
= ((f1
* f2)
. p) by
A22,
A17,
AFF_1: 5;
then ((f1
" )
* (f1
* f2))
= ((f1
" )
* (
id the
carrier of AFP)) by
A14,
TRANSGEO:def 11;
then (((f1
" )
* f1)
* f2)
= ((f1
" )
* (
id the
carrier of AFP)) by
RELAT_1: 36;
then ((
id the
carrier of AFP)
* f2)
= ((f1
" )
* (
id the
carrier of AFP)) by
FUNCT_2: 61;
then f2
= ((f1
" )
* (
id the
carrier of AFP)) by
FUNCT_2: 17;
then
A32: ((f2
* f2)
. a)
= ((f2
* (f1
" ))
. a) by
FUNCT_2: 17
.= (f2
. ((f1
" )
. a)) by
FUNCT_2: 15
.= b by
A11,
A13,
TRANSGEO: 2;
(f2
* f2) is
translation by
A12,
TRANSGEO: 86;
hence thesis by
A3,
A12,
A32,
TRANSGEO: 84;
end;
now
set g = (
id the
carrier of AFP);
A33: g is
translation & (g
* g)
= (
id the
carrier of AFP) by
FUNCT_2: 17,
TRANSGEO: 81;
assume f
= (
id the
carrier of AFP);
hence thesis by
A33;
end;
hence thesis by
A4;
end;
theorem ::
TRANSLAC:13
Th13: AFP is
Fanoian & f is
translation & (f
* f)
= (
id the
carrier of AFP) implies f
= (
id the
carrier of AFP)
proof
set a = the
Element of AFP;
assume that
A1: AFP is
Fanoian and
A2: f is
translation and
A3: (f
* f)
= (
id the
carrier of AFP);
assume f
<> (
id the
carrier of AFP);
then a
<> (f
. a) by
A2,
TRANSGEO:def 11;
then
consider b such that
A4: not
LIN (a,(f
. a),b) by
AFF_1: 13;
A5: f is
dilatation by
A2,
TRANSGEO:def 11;
then
A6: (a,b)
// ((f
. a),(f
. b)) by
TRANSGEO: 68;
((f
. b),a)
// ((f
. (f
. b)),(f
. a)) by
A5,
TRANSGEO: 68;
then ((f
. b),a)
// (((f
* f)
. b),(f
. a)) by
FUNCT_2: 15;
then ((f
. b),a)
// (b,(f
. a)) by
A3;
then
A7: (a,(f
. b))
// ((f
. a),b) by
AFF_1: 4;
(a,(f
. a))
// (b,(f
. b)) by
A2,
A5,
TRANSGEO: 82;
hence contradiction by
A1,
A4,
A6,
A7;
end;
theorem ::
TRANSLAC:14
AFP is
translational & AFP is
Fanoian & f1 is
translation & f2 is
translation & g
= (f1
* f1) & g
= (f2
* f2) implies f1
= f2
proof
assume that
A1: AFP is
translational and
A2: AFP is
Fanoian and
A3: f1 is
translation and
A4: f2 is
translation and
A5: g
= (f1
* f1) & g
= (f2
* f2);
set h = ((f2
" )
* f1);
A6: (f2
" ) is
translation by
A4,
TRANSGEO: 85;
(h
* h)
= ((f2
" )
* (f1
* ((f2
" )
* f1))) by
RELAT_1: 36
.= ((f2
" )
* ((f1
* (f2
" ))
* f1)) by
RELAT_1: 36
.= ((f2
" )
* (((f2
" )
* f1)
* f1)) by
A1,
A3,
A6,
Th10
.= ((f2
" )
* ((f2
" )
* (f1
* f1))) by
RELAT_1: 36
.= (((f2
" )
* (f2
" ))
* (f1
* f1)) by
RELAT_1: 36
.= ((g
" )
* g) by
A5,
FUNCT_1: 44
.= (
id the
carrier of AFP) by
FUNCT_2: 61;
then ((f2
" )
* f1)
= (
id the
carrier of AFP) by
A2,
A3,
A6,
Th13,
TRANSGEO: 86;
then ((f2
" )
* f1)
= ((f2
" )
* f2) by
FUNCT_2: 61;
hence thesis by
TRANSGEO: 5;
end;