xboolean.miz
begin
definition
::
XBOOLEAN:def1
func
FALSE ->
object equals
0 ;
coherence ;
::
XBOOLEAN:def2
func
TRUE ->
object equals 1;
coherence ;
end
definition
let p be
object;
::
XBOOLEAN:def3
attr p is
boolean means
:
Def3: p
=
FALSE or p
=
TRUE ;
end
registration
cluster
FALSE ->
boolean;
coherence ;
cluster
TRUE ->
boolean;
coherence ;
cluster
boolean for
object;
existence by
Def3;
cluster
boolean ->
natural for
object;
coherence ;
end
reserve p,q,r,s for
boolean
object;
definition
let p;
::
XBOOLEAN:def4
func
'not' p ->
boolean
object equals (1
- p);
coherence
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis by
Def3;
end;
involutiveness ;
let q;
::
XBOOLEAN:def5
func p
'&' q ->
object equals (p
* q);
correctness ;
commutativity ;
idempotence
proof
let p;
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
end
registration
let p, q;
cluster (p
'&' q) ->
boolean;
coherence
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
end
definition
let p, q;
::
XBOOLEAN:def6
func p
'or' q ->
object equals (
'not' ((
'not' p)
'&' (
'not' q)));
coherence ;
commutativity ;
idempotence ;
end
definition
let p, q;
::
XBOOLEAN:def7
func p
=> q ->
object equals ((
'not' p)
'or' q);
coherence ;
end
registration
let p, q;
cluster (p
'or' q) ->
boolean;
coherence ;
cluster (p
=> q) ->
boolean;
coherence ;
end
definition
let p, q;
::
XBOOLEAN:def8
func p
<=> q ->
object equals ((p
=> q)
'&' (q
=> p));
coherence ;
commutativity ;
end
registration
let p, q;
cluster (p
<=> q) ->
boolean;
coherence ;
end
definition
let p, q;
::
XBOOLEAN:def9
func p
'nand' q ->
object equals (
'not' (p
'&' q));
coherence ;
commutativity ;
::
XBOOLEAN:def10
func p
'nor' q ->
object equals (
'not' (p
'or' q));
coherence ;
commutativity ;
::
XBOOLEAN:def11
func p
'xor' q ->
object equals (
'not' (p
<=> q));
coherence ;
commutativity ;
::
XBOOLEAN:def12
func p
'\' q ->
object equals (p
'&' (
'not' q));
coherence ;
end
registration
let p, q;
cluster (p
'nand' q) ->
boolean;
coherence ;
cluster (p
'nor' q) ->
boolean;
coherence ;
cluster (p
'xor' q) ->
boolean;
coherence ;
cluster (p
'\' q) ->
boolean;
coherence ;
end
begin
theorem ::
XBOOLEAN:1
(p
'&' p)
= p;
theorem ::
XBOOLEAN:2
(p
'&' (p
'&' q))
= (p
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:3
(p
'or' p)
= p;
theorem ::
XBOOLEAN:4
(p
'or' (p
'or' q))
= (p
'or' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:5
(p
'or' (p
'&' q))
= p
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:6
(p
'&' (p
'or' q))
= p
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:7
(p
'&' (p
'or' q))
= (p
'or' (p
'&' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:8
(p
'&' (q
'or' r))
= ((p
'&' q)
'or' (p
'&' r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:9
(p
'or' (q
'&' r))
= ((p
'or' q)
'&' (p
'or' r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:10
(((p
'&' q)
'or' (q
'&' r))
'or' (r
'&' p))
= (((p
'or' q)
'&' (q
'or' r))
'&' (r
'or' p))
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis by
A1;
end;
theorem ::
XBOOLEAN:11
(p
'&' ((
'not' p)
'or' q))
= (p
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:12
(p
'or' ((
'not' p)
'&' q))
= (p
'or' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:13
(p
=> (p
=> q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:14
(p
'&' (p
=> q))
= (p
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:15
(p
=> (p
'&' q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:16
(p
'&' (
'not' (p
=> q)))
= (p
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:17
((
'not' p)
'or' (p
=> q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:18
((
'not' p)
'&' (p
=> q))
= ((
'not' p)
'or' ((
'not' p)
'&' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:19
((p
<=> q)
<=> r)
= (p
<=> (q
<=> r))
proof
q
=
FALSE or q
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:20
(p
'&' (p
<=> q))
= (p
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:21
((
'not' p)
'&' (p
<=> q))
= ((
'not' p)
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:22
(p
'&' (q
<=> r))
= ((p
'&' ((
'not' q)
'or' r))
'&' ((
'not' r)
'or' q));
theorem ::
XBOOLEAN:23
(p
'or' (q
<=> r))
= (((p
'or' (
'not' q))
'or' r)
'&' ((p
'or' (
'not' r))
'or' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:24
((
'not' p)
'&' (p
<=> q))
= (((
'not' p)
'&' (
'not' q))
'&' ((
'not' p)
'or' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:25
((
'not' p)
'&' (q
<=> r))
= (((
'not' p)
'&' ((
'not' q)
'or' r))
'&' ((
'not' r)
'or' q));
theorem ::
XBOOLEAN:26
(p
=> (p
<=> q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:27
(p
=> (p
<=> q))
= (p
=> (p
=> q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:28
(p
'or' (p
<=> q))
= (q
=> p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:29
((
'not' p)
'or' (p
<=> q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:30
(p
=> (q
<=> r))
= ((((
'not' p)
'or' (
'not' q))
'or' r)
'&' (((
'not' p)
'or' q)
'or' (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:31
(p
'nor' p)
= (
'not' p);
theorem ::
XBOOLEAN:32
(p
'nor' (p
'&' q))
= (
'not' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:33
(p
'nor' (p
'or' q))
= ((
'not' p)
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:34
(p
'nor' (p
'nor' q))
= ((
'not' p)
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:35
(p
'nor' (p
'&' q))
= (
'not' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:36
(p
'nor' (p
'or' q))
= (p
'nor' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:37
((
'not' p)
'&' (p
'nor' q))
= (p
'nor' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:38
(p
'or' (q
'nor' r))
= ((p
'or' (
'not' q))
'&' (p
'or' (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:39
(p
'nor' (q
'nor' r))
= (((
'not' p)
'&' q)
'or' ((
'not' p)
'&' r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:40
(p
'nor' (q
'&' r))
= ((
'not' (p
'or' q))
'or' (
'not' (p
'or' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:41
(p
'&' (q
'nor' r))
= ((p
'&' (
'not' q))
'&' (
'not' r))
proof
thus (p
'&' (q
'nor' r))
= (p
'&' ((
'not' q)
'&' (
'not' r)))
.= ((p
'&' (
'not' q))
'&' (
'not' r));
end;
theorem ::
XBOOLEAN:42
(p
=> (p
'nor' q))
= (
'not' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:43
(p
=> (q
'nor' r))
= ((p
=> (
'not' q))
'&' (p
=> (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:44
(p
'or' (p
'nor' q))
= (q
=> p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:45
(p
'or' (q
'nor' r))
= ((q
=> p)
'&' (r
=> p))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:46
(p
=> (q
'nor' r))
= (((
'not' p)
'or' (
'not' q))
'&' ((
'not' p)
'or' (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:47
(p
'nor' (p
<=> q))
= ((
'not' p)
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:48
((
'not' p)
'&' (p
<=> q))
= (p
'nor' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:49
(p
'nor' (q
<=> r))
= (
'not' (((p
'or' (
'not' q))
'or' r)
'&' ((p
'or' (
'not' r))
'or' q)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:50
(p
<=> q)
= ((p
'&' q)
'or' (p
'nor' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:51
(p
'nand' p)
= (
'not' p);
theorem ::
XBOOLEAN:52
(p
'&' (p
'nand' q))
= (p
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:53
(p
'nand' (p
'&' q))
= (
'not' (p
'&' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:54
(p
'nand' (q
'nand' r))
= (((
'not' p)
'or' q)
'&' ((
'not' p)
'or' r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:55
(p
'nand' (q
'or' r))
= ((
'not' (p
'&' q))
'&' (
'not' (p
'&' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:56
(p
=> (p
'nand' q))
= (p
'nand' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:57
(p
'nand' (p
'nand' q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:58
(p
'nand' (q
'nand' r))
= ((p
=> q)
'&' (p
=> r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:59
(p
'nand' (p
=> q))
= (
'not' (p
'&' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:60
(p
'nand' (q
=> r))
= ((p
=> q)
'&' (p
=> (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:61
((
'not' p)
'or' (p
'nand' q))
= (p
'nand' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:62
(p
'nand' (q
=> r))
= (((
'not' p)
'or' q)
'&' ((
'not' p)
'or' (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:63
((
'not' p)
'&' (p
'nand' q))
= ((
'not' p)
'or' ((
'not' p)
'&' (
'not' q)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:64
(p
'&' (q
'nand' r))
= ((p
'&' (
'not' q))
'or' (p
'&' (
'not' r)))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:65
(p
'nand' (p
<=> q))
= (
'not' (p
'&' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:66
(p
'nand' (q
<=> r))
= (
'not' ((p
'&' ((
'not' q)
'or' r))
'&' ((
'not' r)
'or' q)));
theorem ::
XBOOLEAN:67
(p
'nand' (q
'nor' r))
= (((
'not' p)
'or' q)
'or' r)
proof
thus (p
'nand' (q
'nor' r))
= ((
'not' p)
'or' (q
'or' r))
.= (((
'not' p)
'or' q)
'or' r);
end;
theorem ::
XBOOLEAN:68
((p
'\' q)
'\' q)
= (p
'\' q)
proof
q
=
FALSE or q
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:69
(p
'&' (p
'\' q))
= (p
'\' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:70
(p
'nor' (p
<=> q))
= (q
'\' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:71
(p
'nor' (p
'nor' q))
= (q
'\' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:72
(p
'xor' (p
'xor' q))
= q
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:73
((p
'xor' q)
'xor' r)
= (p
'xor' (q
'xor' r))
proof
q
=
FALSE or q
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:74
(
'not' (p
'xor' q))
= ((
'not' p)
'xor' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:75
(p
'&' (q
'xor' r))
= ((p
'&' q)
'xor' (p
'&' r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:76
(p
'&' (p
'xor' q))
= (p
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:77
(p
'xor' (p
'&' q))
= (p
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:78
((
'not' p)
'&' (p
'xor' q))
= ((
'not' p)
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:79
(p
'or' (p
'xor' q))
= (p
'or' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:80
(p
'or' ((
'not' p)
'xor' q))
= (p
'or' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:81
(p
'xor' ((
'not' p)
'&' q))
= (p
'or' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:82
(p
'xor' (p
'or' q))
= ((
'not' p)
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:83
(p
'xor' (q
'&' r))
= ((p
'or' (q
'&' r))
'&' ((
'not' p)
'or' (
'not' (q
'&' r))))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:84
((
'not' p)
'xor' (p
=> q))
= (p
'&' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:85
(p
=> (p
'xor' q))
= ((
'not' p)
'or' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:86
(p
'xor' (p
=> q))
= ((
'not' p)
'or' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:87
((
'not' p)
'xor' (q
=> p))
= ((p
'&' (p
'or' (
'not' q)))
'or' ((
'not' p)
'&' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:88
(p
'xor' (p
<=> q))
= (
'not' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:89
((
'not' p)
'xor' (p
<=> q))
= q
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:90
(p
'nor' (p
'xor' q))
= ((
'not' p)
'&' (
'not' q))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:91
(p
'nor' (p
'xor' q))
= (p
'nor' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:92
(p
'xor' (p
'nor' q))
= (q
=> p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:93
(p
'nand' (p
'xor' q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:94
(p
'xor' (p
'nand' q))
= (p
=> q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:95
(p
'xor' (p
=> q))
= (p
'nand' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:96
(p
'nand' (q
'xor' r))
= ((p
'&' q)
<=> (p
'&' r))
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:97
(p
'xor' (p
'&' q))
= (p
'\' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:98
(p
'&' (p
'xor' q))
= (p
'\' q)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:99
((
'not' p)
'&' (p
'xor' q))
= (q
'\' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:100
(p
'xor' (p
'or' q))
= (q
'\' p)
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
begin
theorem ::
XBOOLEAN:101
(p
'&' q)
=
TRUE implies p
=
TRUE & q
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:102
(
'not' (p
'&' (
'not' p)))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:103
(p
=> p)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:104
(p
=> (q
=> p))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:105
(p
=> ((p
=> q)
=> q))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis by
A1;
end;
theorem ::
XBOOLEAN:106
((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
A2: p
=
FALSE or p
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1,
A2;
end;
theorem ::
XBOOLEAN:107
((p
=> q)
=> ((r
=> p)
=> (r
=> q)))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
A2: p
=
FALSE or p
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1,
A2;
end;
theorem ::
XBOOLEAN:108
((p
=> (p
=> q))
=> (p
=> q))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis by
A1;
end;
theorem ::
XBOOLEAN:109
((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r)))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
A2: p
=
FALSE or p
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1,
A2;
end;
theorem ::
XBOOLEAN:110
((p
=> (q
=> r))
=> (q
=> (p
=> r)))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
A2: p
=
FALSE or p
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1,
A2;
end;
theorem ::
XBOOLEAN:111
(((p
=> q)
=> r)
=> (q
=> r))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1;
end;
theorem ::
XBOOLEAN:112
((
TRUE
=> p)
=> p)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:113
(p
=> q)
=
TRUE implies ((q
=> r)
=> (p
=> r))
=
TRUE
proof
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:114
(p
=> (p
=> q))
=
TRUE implies (p
=> q)
=
TRUE
proof
q
=
FALSE or q
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:115
(p
=> (q
=> r))
=
TRUE implies ((p
=> q)
=> (p
=> r))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:116
(p
=> q)
=
TRUE & (q
=> p)
=
TRUE implies p
= q
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:117
(p
=> q)
=
TRUE & (q
=> r)
=
TRUE implies (p
=> r)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:118
(((
'not' p)
=> p)
=> p)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:119
(
'not' p)
=
TRUE implies (p
=> q)
=
TRUE ;
theorem ::
XBOOLEAN:120
(p
=> q)
=
TRUE & (p
=> (
'not' q))
=
TRUE implies (
'not' p)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:121
((p
=> q)
=> ((
'not' (q
'&' r))
=> (
'not' (p
'&' r))))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
A2: p
=
FALSE or p
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1,
A2;
end;
theorem ::
XBOOLEAN:122
(p
'or' (p
=> q))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:123
(p
=> (p
'or' q))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:124
((
'not' q)
'or' ((q
=> p)
=> p))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis by
A1;
end;
theorem ::
XBOOLEAN:125
(p
<=> p)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:126
((((p
<=> q)
<=> r)
<=> p)
<=> (q
<=> r))
=
TRUE
proof
A1: q
=
FALSE or q
=
TRUE by
Def3;
A2: p
=
FALSE or p
=
TRUE by
Def3;
r
=
FALSE or r
=
TRUE by
Def3;
hence thesis by
A1,
A2;
end;
theorem ::
XBOOLEAN:127
(p
<=> q)
=
TRUE & (q
<=> r)
=
TRUE implies (p
<=> r)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:128
(p
<=> q)
=
TRUE & (r
<=> s)
=
TRUE implies ((p
<=> r)
<=> (q
<=> s))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:129
(
'not' (p
<=> (
'not' p)))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:130
(p
<=> q)
=
TRUE & (r
<=> s)
=
TRUE implies ((p
'&' r)
<=> (q
'&' s))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:131
(p
<=> q)
=
TRUE & (r
<=> s)
=
TRUE implies ((p
'or' r)
<=> (q
'or' s))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:132
(p
<=> q)
=
TRUE iff (p
=> q)
=
TRUE & (q
=> p)
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:133
(p
<=> q)
=
TRUE & (r
<=> s)
=
TRUE implies ((p
=> r)
<=> (q
=> s))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:134
(
'not' (p
'nor' (
'not' p)))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:135
(p
'nand' (
'not' p))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:136
(p
'or' (p
'nand' q))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:137
(p
'nand' (p
'nor' q))
=
TRUE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:138
(p
'&' (
'not' p))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:139
(p
'&' p)
=
FALSE implies p
=
FALSE ;
theorem ::
XBOOLEAN:140
(p
'&' q)
=
FALSE implies p
=
FALSE or q
=
FALSE ;
theorem ::
XBOOLEAN:141
(
'not' (p
=> p))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:142
(p
<=> (
'not' p))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:143
(
'not' (p
<=> p))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:144
(p
'&' (p
'nor' q))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:145
(p
'nor' (p
=> q))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:146
(p
'nor' (p
'nand' q))
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;
theorem ::
XBOOLEAN:147
(p
'xor' p)
=
FALSE
proof
p
=
FALSE or p
=
TRUE by
Def3;
hence thesis;
end;