xcmplx_0.miz
begin
definition
::
XCMPLX_0:def1
func
<i> ->
Number equals ((
0 ,1)
--> (
0 ,1));
coherence ;
let c be
Number;
::
XCMPLX_0:def2
attr c is
complex means
:
Def2: c
in
COMPLEX ;
end
0
in
NAT ;
then
0
in
REAL by
NUMBERS: 19;
then
Lm1: (
In (
0 ,
REAL ))
=
0 by
SUBSET_1:def 8;
1
in
NAT ;
then
Lm2: 1
in
REAL by
NUMBERS: 19;
registration
cluster
<i> ->
complex;
coherence
proof
set X = { x where x be
Element of (
Funcs (
{
0 , 1},
REAL )) : (x
. 1)
=
0 };
A1:
now
assume
<i>
in X;
then ex x be
Element of (
Funcs (
{
0 , 1},
REAL )) st
<i>
= x & (x
. 1)
=
0 ;
hence contradiction by
FUNCT_4: 63;
end;
A2:
{(
In (
0 ,
REAL )), 1}
c=
REAL by
ZFMISC_1: 32,
Lm2;
(
rng ((
0 ,1)
--> (
0 ,1)))
c=
{(
In (
0 ,
REAL )), 1} by
FUNCT_4: 62,
Lm1;
then (
rng ((
0 ,1)
--> (
0 ,1)))
c=
REAL by
A2,
XBOOLE_1: 1;
then
<i> is
Relation of
{
0 , 1},
REAL by
RELSET_1: 6;
then
<i>
in (
Funcs (
{
0 , 1},
REAL )) by
FUNCT_2: 8;
then
<i>
in ((
Funcs (
{
0 , 1},
REAL ))
\ X) by
A1,
XBOOLE_0:def 5;
hence
<i>
in
COMPLEX by
NUMBERS:def 2,
XBOOLE_0:def 3;
end;
end
registration
cluster
complex for
Number;
existence
proof
take
<i> ;
thus thesis;
end;
cluster
complex for
number;
existence
proof
take
<i> ;
thus thesis;
end;
end
definition
mode
Complex is
complex
Number;
end
registration
sethood of
Complex
proof
take
COMPLEX ;
thus thesis by
Def2;
end;
end
::$Canceled
definition
let x,y be
Complex;
x
in
COMPLEX by
Def2;
then
consider x1,x2 be
Element of
REAL such that
A1: x
=
[*x1, x2*] by
ARYTM_0: 9;
y
in
COMPLEX by
Def2;
then
consider y1,y2 be
Element of
REAL such that
A2: y
=
[*y1, y2*] by
ARYTM_0: 9;
::
XCMPLX_0:def3
func x
+ y ->
number means
:
Def3: ex x1,x2,y1,y2 be
Element of
REAL st x
=
[*x1, x2*] & y
=
[*y1, y2*] & it
=
[*(
+ (x1,y1)), (
+ (x2,y2))*];
existence
proof
take IT =
[*(
+ (x1,y1)), (
+ (x2,y2))*];
thus thesis by
A1,
A2;
end;
uniqueness
proof
let c1,c2 be
number;
given x1,x2,y1,y2 be
Element of
REAL such that
A3: x
=
[*x1, x2*] and
A4: y
=
[*y1, y2*] and
A5: c1
=
[*(
+ (x1,y1)), (
+ (x2,y2))*];
given x19,x29,y19,y29 be
Element of
REAL such that
A6: x
=
[*x19, x29*] and
A7: y
=
[*y19, y29*] and
A8: c2
=
[*(
+ (x19,y19)), (
+ (x29,y29))*];
A9: x1
= x19 & x2
= x29 by
A3,
A6,
ARYTM_0: 10;
y1
= y19 by
A4,
A7,
ARYTM_0: 10;
hence thesis by
A4,
A5,
A7,
A8,
A9,
ARYTM_0: 10;
end;
commutativity ;
::
XCMPLX_0:def4
func x
* y ->
number means
:
Def4: ex x1,x2,y1,y2 be
Element of
REAL st x
=
[*x1, x2*] & y
=
[*y1, y2*] & it
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*];
existence
proof
take IT =
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*];
thus thesis by
A1,
A2;
end;
uniqueness
proof
let c1,c2 be
number;
given x1,x2,y1,y2 be
Element of
REAL such that
A10: x
=
[*x1, x2*] and
A11: y
=
[*y1, y2*] and
A12: c1
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*];
given x19,x29,y19,y29 be
Element of
REAL such that
A13: x
=
[*x19, x29*] and
A14: y
=
[*y19, y29*] and
A15: c2
=
[*(
+ ((
* (x19,y19)),(
opp (
* (x29,y29))))), (
+ ((
* (x19,y29)),(
* (x29,y19))))*];
A16: x1
= x19 & x2
= x29 by
A10,
A13,
ARYTM_0: 10;
y1
= y19 & y2
= y29 by
A11,
A14,
ARYTM_0: 10;
hence thesis by
A12,
A15,
A16;
end;
commutativity ;
end
Lm4: for x,y,z be
Element of
REAL st (
+ (x,y))
=
0 & (
+ (x,z))
=
0 holds y
= z
proof
let x,y,z be
Element of
REAL such that
A1: (
+ (x,y))
=
0 and
A2: (
+ (x,z))
=
0 ;
per cases ;
suppose x
in
REAL+ & y
in
REAL+ & z
in
REAL+ ;
then (ex x9,y9 be
Element of
REAL+ st x
= x9 & y
= y9 &
0
= (x9
+ y9)) & ex x9,y9 be
Element of
REAL+ st x
= x9 & z
= y9 &
0
= (x9
+ y9) by
A1,
A2,
ARYTM_0:def 1;
hence thesis by
ARYTM_2: 11;
end;
suppose that
A3: x
in
REAL+ and
A4: y
in
REAL+ and
A5: z
in
[:
{
0 },
REAL+ :];
A6: ex x9,y9 be
Element of
REAL+ st x
= x9 & y
= y9 &
0
= (x9
+ y9) by
A1,
A3,
A4,
ARYTM_0:def 1;
consider x99,y99 be
Element of
REAL+ such that
A7: x
= x99 and
A8: z
=
[
0 , y99] &
0
= (x99
- y99) by
A2,
A3,
A5,
ARYTM_0:def 1;
A9: x99
=
0 by
A6,
A7,
ARYTM_2: 5;
[
{} ,
{} ]
in
{
[
{} ,
{} ]} by
TARSKI:def 1;
then
A10: not
[
{} ,
{} ]
in
REAL by
NUMBERS:def 1,
XBOOLE_0:def 5;
z
in
REAL ;
hence thesis by
A8,
A9,
A10,
ARYTM_1: 19;
end;
suppose that
A11: x
in
REAL+ and
A12: z
in
REAL+ and
A13: y
in
[:
{
0 },
REAL+ :];
A14: ex x9,z9 be
Element of
REAL+ st x
= x9 & z
= z9 &
0
= (x9
+ z9) by
A2,
A11,
A12,
ARYTM_0:def 1;
consider x99,y9 be
Element of
REAL+ such that
A15: x
= x99 and
A16: y
=
[
0 , y9] &
0
= (x99
- y9) by
A1,
A11,
A13,
ARYTM_0:def 1;
A17: x99
=
0 by
A14,
A15,
ARYTM_2: 5;
[
0 ,
0 ]
in
{
[
0 ,
0 ]} by
TARSKI:def 1;
then
A18: not
[
0 ,
0 ]
in
REAL by
NUMBERS:def 1,
XBOOLE_0:def 5;
y
in
REAL ;
hence thesis by
A16,
A17,
A18,
ARYTM_1: 19;
end;
suppose that
A19: x
in
REAL+ and
A20: y
in
[:
{
0 },
REAL+ :] and
A21: z
in
[:
{
0 },
REAL+ :];
consider x9,y9 be
Element of
REAL+ such that
A22: x
= x9 and
A23: y
=
[
0 , y9] and
A24:
0
= (x9
- y9) by
A1,
A19,
A20,
ARYTM_0:def 1;
consider x99,z9 be
Element of
REAL+ such that
A25: x
= x99 and
A26: z
=
[
0 , z9] and
A27:
0
= (x99
- z9) by
A2,
A19,
A21,
ARYTM_0:def 1;
y9
= x9 by
A24,
ARYTM_0: 6
.= z9 by
A22,
A25,
A27,
ARYTM_0: 6;
hence thesis by
A23,
A26;
end;
suppose that
A28: z
in
REAL+ and
A29: y
in
REAL+ and
A30: x
in
[:
{
0 },
REAL+ :];
consider x9,y9 be
Element of
REAL+ such that
A31: x
=
[
0 , x9] and
A32: y
= y9 and
A33:
0
= (y9
- x9) by
A1,
A29,
A30,
ARYTM_0:def 1;
consider x99,z9 be
Element of
REAL+ such that
A34: x
=
[
0 , x99] and
A35: z
= z9 and
A36:
0
= (z9
- x99) by
A2,
A28,
A30,
ARYTM_0:def 1;
x9
= x99 by
A31,
A34,
XTUPLE_0: 1;
then z9
= x9 by
A36,
ARYTM_0: 6
.= y9 by
A33,
ARYTM_0: 6;
hence thesis by
A32,
A35;
end;
suppose not (x
in
REAL+ & y
in
REAL+ ) & not (x
in
REAL+ & y
in
[:
{
0 },
REAL+ :]) & not (y
in
REAL+ & x
in
[:
{
0 },
REAL+ :]);
then ex x9,y9 be
Element of
REAL+ st x
=
[
0 , x9] & y
=
[
0 , y9] &
0
=
[
0 , (x9
+ y9)] by
A1,
ARYTM_0:def 1;
hence thesis;
end;
suppose not (x
in
REAL+ & z
in
REAL+ ) & not (x
in
REAL+ & z
in
[:
{
0 },
REAL+ :]) & not (z
in
REAL+ & x
in
[:
{
0 },
REAL+ :]);
then ex x9,z9 be
Element of
REAL+ st x
=
[
0 , x9] & z
=
[
0 , z9] &
0
=
[
0 , (x9
+ z9)] by
A2,
ARYTM_0:def 1;
hence thesis;
end;
end;
registration
let z,z9 be
Complex;
cluster (z
+ z9) ->
complex;
coherence
proof
ex x1,x2,y1,y2 be
Element of
REAL st z
=
[*x1, x2*] & z9
=
[*y1, y2*] & (z
+ z9)
=
[*(
+ (x1,y1)), (
+ (x2,y2))*] by
Def3;
hence (z
+ z9)
in
COMPLEX ;
end;
cluster (z
* z9) ->
complex;
coherence
proof
ex x1,x2,y1,y2 be
Element of
REAL st z
=
[*x1, x2*] & z9
=
[*y1, y2*] & (z
* z9)
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
Def4;
hence (z
* z9)
in
COMPLEX ;
end;
end
definition
let z be
Complex;
z
in
COMPLEX by
Def2;
then
consider x,y be
Element of
REAL such that
A1: z
=
[*x, y*] by
ARYTM_0: 9;
::
XCMPLX_0:def5
func
- z ->
Complex means
:
Def5: (z
+ it )
=
0 ;
existence
proof
reconsider z9 =
[*(
opp x), (
opp y)*] as
Complex by
Def2;
take z9;
A2:
0
= (
+ (x,(
opp x))) &
0
= (
+ (y,(
opp y))) by
ARYTM_0:def 3;
0
in
NAT ;
then
reconsider zz =
0 as
Element of
REAL by
NUMBERS: 19;
0
=
[*zz, zz*] by
ARYTM_0:def 5;
hence thesis by
A1,
Def3,
A2;
end;
uniqueness
proof
let c1,c2 be
Complex such that
A2: (z
+ c1)
=
0 and
A3: (z
+ c2)
=
0 ;
consider x1,x2,y1,y2 be
Element of
REAL such that
A4: z
=
[*x1, x2*] and
A5: c1
=
[*y1, y2*] and
A6:
0
=
[*(
+ (x1,y1)), (
+ (x2,y2))*] by
A2,
Def3;
consider x19,x29,y19,y29 be
Element of
REAL such that
A7: z
=
[*x19, x29*] and
A8: c2
=
[*y19, y29*] and
A9:
0
=
[*(
+ (x19,y19)), (
+ (x29,y29))*] by
A3,
Def3;
A10: x1
= x19 by
A4,
A7,
ARYTM_0: 10;
A11: x2
= x29 by
A4,
A7,
ARYTM_0: 10;
0
in
NAT ;
then
reconsider zz =
0 as
Element of
REAL by
NUMBERS: 19;
Lm3:
0
=
[*zz, zz*] by
ARYTM_0:def 5;
A12: (
+ (x1,y1))
=
0 by
A6,
Lm3,
ARYTM_0: 10;
(
+ (x1,y19))
=
0 by
A9,
A10,
Lm3,
ARYTM_0: 10;
then
A13: y1
= y19 by
A12,
Lm4;
A14: (
+ (x2,y2))
=
0 by
A6,
Lm3,
ARYTM_0: 10;
(
+ (x2,y29))
=
0 by
A9,
A11,
Lm3,
ARYTM_0: 10;
hence thesis by
A5,
A8,
A13,
A14,
Lm4;
end;
involutiveness ;
::
XCMPLX_0:def6
func z
" ->
Complex means
:
Def6: (z
* it )
= 1 if z
<>
0
otherwise it
=
0 ;
existence
proof
thus z
<>
0 implies ex z9 be
Complex st (z
* z9)
= 1
proof
set y1 = (
* (x,(
inv (
+ ((
* (x,x)),(
* (y,y))))))), y2 = (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
* (y,y)))))));
set z9 =
[*y1, y2*];
reconsider z9 as
Complex by
Def2;
assume
A15: z
<>
0 ;
take z9;
A16: (
opp (
* (y,y2)))
= (
opp (
* (y,(
opp (
* (y,(
inv (
+ ((
* (x,x)),(
* (y,y))))))))))) by
ARYTM_0: 15
.= (
opp (
opp (
* (y,(
* (y,(
inv (
+ ((
* (x,x)),(
* (y,y))))))))))) by
ARYTM_0: 15
.= (
* ((
* (y,y)),(
inv (
+ ((
* (x,x)),(
* (y,y))))))) by
ARYTM_0: 13;
A17: (
* (x,y1))
= (
* ((
* (x,x)),(
inv (
+ ((
* (x,x)),(
* (y,y))))))) by
ARYTM_0: 13;
A18:
now
assume (
+ ((
* (x,x)),(
* (y,y))))
=
0 ;
then x
=
0 & y
=
0 by
ARYTM_0: 17;
hence contradiction by
A1,
A15,
ARYTM_0:def 5;
end;
(
* (x,y2))
= (
* ((
opp y),y1)) by
ARYTM_0: 13
.= (
opp (
* (y,y1))) by
ARYTM_0: 15;
then (
+ ((
* (x,y2)),(
* (y,y1))))
=
0 by
ARYTM_0:def 3;
then
[*(
+ ((
* (x,y1)),(
opp (
* (y,y2))))), (
+ ((
* (x,y2)),(
* (y,y1))))*]
= (
+ ((
* (x,y1)),(
opp (
* (y,y2))))) by
ARYTM_0:def 5
.= (
* ((
+ ((
* (x,x)),(
* (y,y)))),(
inv (
+ ((
* (x,x)),(
* (y,y))))))) by
A16,
A17,
ARYTM_0: 14
.= 1 by
A18,
ARYTM_0:def 4;
hence thesis by
A1,
Def4;
end;
assume z
=
0 ;
hence thesis;
end;
uniqueness
proof
let c1,c2 be
Complex;
0
in
NAT ;
then
reconsider zz =
0 , j = 1 as
Element of
REAL by
Lm2,
NUMBERS: 19;
thus z
<>
0 & (z
* c1)
= 1 & (z
* c2)
= 1 implies c1
= c2
proof
assume that
A19: z
<>
0 and
A20: (z
* c1)
= 1 and
A21: (z
* c2)
= 1;
A22: for z9 be
Complex st (z
* z9)
= 1 holds z9
=
[*(
* (x,(
inv (
+ ((
* (x,x)),(
* (y,y))))))), (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
* (y,y)))))))*]
proof
let z9 be
Complex such that
A23: (z
* z9)
= 1;
consider x1,x2,x9,y9 be
Element of
REAL such that
A24: z
=
[*x1, x2*] and
A25: z9
=
[*x9, y9*] and
A26: 1
=
[*(
+ ((
* (x1,x9)),(
opp (
* (x2,y9))))), (
+ ((
* (x1,y9)),(
* (x2,x9))))*] by
A23,
Def4;
A27: x
= x1 & y
= x2 by
A1,
A24,
ARYTM_0: 10;
per cases by
A1,
A19,
ARYTM_0:def 5;
suppose that
A28: x
=
0 and
A29: y
<>
0 ;
(
+ (y,(
opp y)))
=
0 by
ARYTM_0:def 3;
then
A30: (
opp y)
<>
0 by
A29,
ARYTM_0: 11;
(
* (x,y9))
=
0 & (
* (x,x9))
=
0 by
A28,
ARYTM_0: 12;
then
A31: 1
=
[*(
opp (
* (y,y9))), (
+ (zz,(
* (y,x9))))*] by
A26,
A27,
ARYTM_0: 11
.=
[*(
opp (
* (y,y9))), (
* (y,x9))*] by
ARYTM_0: 11;
A32: 1
=
[*j, zz*] by
ARYTM_0:def 5;
(
* ((
opp y),y9))
= (
opp (
* (y,y9))) by
ARYTM_0: 15
.= 1 by
A31,
A32,
ARYTM_0: 10;
then
A33: y9
= (
inv (
opp y)) by
A30,
ARYTM_0:def 4;
A34: (
* (x,x))
=
0 by
A28,
ARYTM_0: 12;
(
* ((
opp y),(
opp (
inv y))))
= (
opp (
* (y,(
opp (
inv y))))) by
ARYTM_0: 15
.= (
opp (
opp (
* (y,(
inv y))))) by
ARYTM_0: 15
.= 1 by
A29,
ARYTM_0:def 4;
then
A35: (
inv (
opp y))
= (
opp (
inv y)) by
A30,
ARYTM_0:def 4;
(
* (y,x9))
=
0 by
A31,
A32,
ARYTM_0: 10;
hence z9
=
[*zz, (
inv (
opp y))*] by
A25,
A29,
A33,
ARYTM_0: 21
.=
[*zz, (
opp (
* (j,(
inv y))))*] by
A35,
ARYTM_0: 19
.=
[*zz, (
opp (
* ((
* (y,(
inv y))),(
inv y))))*] by
A29,
ARYTM_0:def 4
.=
[*zz, (
opp (
* (y,(
* ((
inv y),(
inv y))))))*] by
ARYTM_0: 13
.=
[*zz, (
* ((
opp y),(
* ((
inv y),(
inv y)))))*] by
ARYTM_0: 15
.=
[*zz, (
* ((
opp y),(
inv (
* (y,y)))))*] by
ARYTM_0: 22
.=
[*zz, (
* ((
opp y),(
inv (
+ (zz,(
* (y,y)))))))*] by
ARYTM_0: 11
.=
[*(
* (x,(
inv (
+ ((
* (x,x)),(
* (y,y))))))), (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
* (y,y)))))))*] by
A28,
A34,
ARYTM_0: 12;
end;
suppose that
A36: (
opp y)
=
0 and
A37: x
<>
0 ;
(
+ (y,(
opp y)))
=
0 by
ARYTM_0:def 3;
then
A38: y
=
0 by
A36,
ARYTM_0: 11;
then
A39: (
* (y,x9))
=
0 by
ARYTM_0: 12;
(
opp (
* (y,y9)))
= (
* ((
opp y),y9)) by
ARYTM_0: 15
.=
0 by
A36,
ARYTM_0: 12;
then
A40: 1
=
[*(
* (x,x9)), (
+ ((
* (x,y9)),zz))*] by
A26,
A27,
A39,
ARYTM_0: 11
.=
[*(
* (x,x9)), (
* (x,y9))*] by
ARYTM_0: 11;
A41: 1
=
[*j, zz*] by
ARYTM_0:def 5;
then (
* (x,x9))
= 1 by
A40,
ARYTM_0: 10;
then
A42: x9
= (
inv x) by
A37,
ARYTM_0:def 4;
(
* (x,y9))
=
0 by
A40,
A41,
ARYTM_0: 10;
then
A43: y9
=
0 by
A37,
ARYTM_0: 21;
A44: (
* (y,y))
=
0 by
A38,
ARYTM_0: 12;
x9
= (
* (j,(
inv x))) by
A42,
ARYTM_0: 19
.= (
* ((
* (x,(
inv x))),(
inv x))) by
A37,
ARYTM_0:def 4
.= (
* (x,(
* ((
inv x),(
inv x))))) by
ARYTM_0: 13
.= (
* (x,(
inv (
* (x,x))))) by
ARYTM_0: 22
.= (
* (x,(
inv (
+ ((
* (x,x)),zz))))) by
ARYTM_0: 11;
hence thesis by
A25,
A36,
A43,
A44,
ARYTM_0: 12;
end;
suppose that
A45: (
opp y)
<>
0 and
A46: x
<>
0 ;
A47:
now
assume (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))
=
0 ;
then (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
* ((
opp y),j))))
=
0 by
ARYTM_0: 19;
then (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
* ((
opp y),(
* ((
opp y),(
inv (
opp y))))))))
=
0 by
A45,
ARYTM_0:def 4;
then (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
* ((
* ((
opp y),(
opp y))),(
inv (
opp y))))))
=
0 by
ARYTM_0: 13;
then
A48: (
* ((
inv (
opp y)),(
+ ((
* (x,x)),(
* ((
opp y),(
opp y)))))))
=
0 by
ARYTM_0: 14;
(
+ ((
* (x,x)),(
* ((
opp y),(
opp y)))))
<>
0 by
A46,
ARYTM_0: 17;
then
A49: (
inv (
opp y))
=
0 by
A48,
ARYTM_0: 21;
(
* ((
opp y),(
inv (
opp y))))
= 1 by
A45,
ARYTM_0:def 4;
hence contradiction by
A49,
ARYTM_0: 12;
end;
A50: 1
=
[*j, zz*] by
ARYTM_0:def 5;
then (
+ ((
* (x1,y9)),(
* (x2,x9))))
=
0 by
A26,
ARYTM_0: 10;
then (
* (x,y9))
= (
opp (
* (y,x9))) by
A27,
ARYTM_0:def 3;
then (
* (x,y9))
= (
* ((
opp y),x9)) by
ARYTM_0: 15;
then
A51: x9
= (
* ((
* (x,y9)),(
inv (
opp y)))) by
A45,
ARYTM_0: 20
.= (
* (x,(
* (y9,(
inv (
opp y)))))) by
ARYTM_0: 13;
then (
+ ((
* (x,(
* (x,(
* (y9,(
inv (
opp y)))))))),(
opp (
* (y,y9)))))
= 1 by
A26,
A27,
A50,
ARYTM_0: 10;
then (
+ ((
* ((
* (x,x)),(
* (y9,(
inv (
opp y)))))),(
opp (
* (y,y9)))))
= 1 by
ARYTM_0: 13;
then (
+ ((
* ((
* (x,x)),(
* (y9,(
inv (
opp y)))))),(
* ((
opp y),y9))))
= 1 by
ARYTM_0: 15;
then (
+ ((
* (y9,(
* ((
* (x,x)),(
inv (
opp y)))))),(
* ((
opp y),y9))))
= 1 by
ARYTM_0: 13;
then (
* (y9,(
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))))
= 1 by
ARYTM_0: 14;
then
A52: y9
= (
inv (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))) by
A47,
ARYTM_0:def 4;
then
A53: x9
= (
* (x,(
inv (
* ((
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y))),(
opp y)))))) by
A51,
ARYTM_0: 22
.= (
* (x,(
inv (
+ ((
* ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y))),(
* ((
opp y),(
opp y)))))))) by
ARYTM_0: 14
.= (
* (x,(
inv (
+ ((
* ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y))),(
opp (
* (y,(
opp y))))))))) by
ARYTM_0: 15
.= (
* (x,(
inv (
+ ((
* ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y))),(
opp (
opp (
* (y,y))))))))) by
ARYTM_0: 15
.= (
* (x,(
inv (
+ ((
* ((
* (x,x)),(
* ((
inv (
opp y)),(
opp y))))),(
* (y,y))))))) by
ARYTM_0: 13
.= (
* (x,(
inv (
+ ((
* ((
* (x,x)),j)),(
* (y,y))))))) by
A45,
ARYTM_0:def 4
.= (
* (x,(
inv (
+ ((
* (x,x)),(
* (y,y))))))) by
ARYTM_0: 19;
y9
= (
* (j,(
inv (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))))) by
A52,
ARYTM_0: 19
.= (
* ((
* ((
opp y),(
inv (
opp y)))),(
inv (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))))) by
A45,
ARYTM_0:def 4
.= (
* ((
opp y),(
* ((
inv (
opp y)),(
inv (
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))))))) by
ARYTM_0: 13
.= (
* ((
opp y),(
inv (
* ((
opp y),(
+ ((
* ((
* (x,x)),(
inv (
opp y)))),(
opp y)))))))) by
ARYTM_0: 22
.= (
* ((
opp y),(
inv (
+ ((
* ((
opp y),(
* ((
* (x,x)),(
inv (
opp y)))))),(
* ((
opp y),(
opp y)))))))) by
ARYTM_0: 14
.= (
* ((
opp y),(
inv (
+ ((
* ((
* (x,x)),(
* ((
opp y),(
inv (
opp y)))))),(
* ((
opp y),(
opp y)))))))) by
ARYTM_0: 13
.= (
* ((
opp y),(
inv (
+ ((
* ((
* (x,x)),j)),(
* ((
opp y),(
opp y)))))))) by
A45,
ARYTM_0:def 4
.= (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
* ((
opp y),(
opp y)))))))) by
ARYTM_0: 19
.= (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
opp (
* (y,(
opp y))))))))) by
ARYTM_0: 15
.= (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
opp (
opp (
* (y,y))))))))) by
ARYTM_0: 15
.= (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
* (y,y)))))));
hence thesis by
A25,
A53;
end;
end;
hence c1
=
[*(
* (x,(
inv (
+ ((
* (x,x)),(
* (y,y))))))), (
* ((
opp y),(
inv (
+ ((
* (x,x)),(
* (y,y)))))))*] by
A20
.= c2 by
A21,
A22;
end;
thus thesis;
end;
consistency ;
involutiveness
proof
let z,z9 be
Complex;
0
in
NAT ;
then
reconsider zz =
0 as
Element of
REAL by
NUMBERS: 19;
assume that
A54: z9
<>
0 implies (z9
* z)
= 1 and
A55: z9
=
0 implies z
=
0 ;
thus z
<>
0 implies (z
* z9)
= 1 by
A54,
A55;
assume
A56: z
=
0 ;
assume z9
<>
0 ;
then
consider x1,x2,y1,y2 be
Element of
REAL such that
A57: z
=
[*x1, x2*] and z9
=
[*y1, y2*] and
A58: 1
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
A54,
Def4;
A59: z
=
[*zz, zz*] by
A56,
ARYTM_0:def 5;
then
A60: x1
=
0 by
A57,
ARYTM_0: 10;
A61: x2
=
0 by
A57,
A59,
ARYTM_0: 10;
A62: (
* (x1,y1))
=
0 by
A60,
ARYTM_0: 12;
(
* (x2,y2))
=
0 by
A61,
ARYTM_0: 12;
then
A63: (
+ ((
* (x1,y1)),(
opp (
* (x2,y2)))))
=
0 by
A62,
ARYTM_0:def 3;
A64: (
* (x1,y2))
=
0 by
A60,
ARYTM_0: 12;
(
* (x2,y1))
=
0 by
A61,
ARYTM_0: 12;
then (
+ ((
* (x1,y2)),(
* (x2,y1))))
=
0 by
A64,
ARYTM_0: 11;
hence contradiction by
A58,
A63,
ARYTM_0:def 5;
end;
end
definition
let x,y be
Complex;
::
XCMPLX_0:def7
func x
- y ->
number equals (x
+ (
- y));
coherence ;
::
XCMPLX_0:def8
func x
/ y ->
number equals (x
* (y
" ));
coherence ;
end
registration
let x,y be
Complex;
cluster (x
- y) ->
complex;
coherence ;
cluster (x
/ y) ->
complex;
coherence ;
end
Lm5: for x,y,z be
Complex holds (x
* (y
* z))
= ((x
* y)
* z)
proof
let x,y,z be
Complex;
consider x1,x2,y1,y2 be
Element of
REAL such that
A1: x
=
[*x1, x2*] and
A2: y
=
[*y1, y2*] and
A3: (x
* y)
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
Def4;
consider y3,y4,z1,z2 be
Element of
REAL such that
A4: y
=
[*y3, y4*] and
A5: z
=
[*z1, z2*] and
A6: (y
* z)
=
[*(
+ ((
* (y3,z1)),(
opp (
* (y4,z2))))), (
+ ((
* (y3,z2)),(
* (y4,z1))))*] by
Def4;
A7: y1
= y3 by
A2,
A4,
ARYTM_0: 10;
A8: y2
= y4 by
A2,
A4,
ARYTM_0: 10;
consider x3,x4,yz1,yz2 be
Element of
REAL such that
A9: x
=
[*x3, x4*] and
A10: (y
* z)
=
[*yz1, yz2*] and
A11: (x
* (y
* z))
=
[*(
+ ((
* (x3,yz1)),(
opp (
* (x4,yz2))))), (
+ ((
* (x3,yz2)),(
* (x4,yz1))))*] by
Def4;
A12: x1
= x3 by
A1,
A9,
ARYTM_0: 10;
A13: x2
= x4 by
A1,
A9,
ARYTM_0: 10;
consider xy1,xy2,z3,z4 be
Element of
REAL such that
A14: (x
* y)
=
[*xy1, xy2*] and
A15: z
=
[*z3, z4*] and
A16: ((x
* y)
* z)
=
[*(
+ ((
* (xy1,z3)),(
opp (
* (xy2,z4))))), (
+ ((
* (xy1,z4)),(
* (xy2,z3))))*] by
Def4;
A17: z1
= z3 by
A5,
A15,
ARYTM_0: 10;
A18: z2
= z4 by
A5,
A15,
ARYTM_0: 10;
A19: xy1
= (
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))) by
A3,
A14,
ARYTM_0: 10;
A20: xy2
= (
+ ((
* (x1,y2)),(
* (x2,y1)))) by
A3,
A14,
ARYTM_0: 10;
A21: yz1
= (
+ ((
* (y3,z1)),(
opp (
* (y4,z2))))) by
A6,
A10,
ARYTM_0: 10;
A22: yz2
= (
+ ((
* (y3,z2)),(
* (y4,z1)))) by
A6,
A10,
ARYTM_0: 10;
(
+ ((
* ((
opp x4),(
* (y3,z2)))),(
* ((
opp x4),(
* (y4,z1))))))
= (
+ ((
* ((
opp x4),(
* (y4,z1)))),(
* ((
* ((
opp x2),y1)),z4)))) by
A7,
A13,
A18,
ARYTM_0: 13
.= (
+ ((
* ((
* ((
opp x2),y2)),z3)),(
* ((
* ((
opp x2),y1)),z4)))) by
A8,
A13,
A17,
ARYTM_0: 13;
then
A23: (
+ ((
* (x3,(
* ((
opp y4),z2)))),(
+ ((
* ((
opp x4),(
* (y3,z2)))),(
* ((
opp x4),(
* (y4,z1))))))))
= (
+ ((
* ((
* (x1,(
opp y2))),z4)),(
+ ((
* ((
* ((
opp x2),y2)),z3)),(
* ((
* ((
opp x2),y1)),z4)))))) by
A8,
A12,
A18,
ARYTM_0: 13
.= (
+ ((
* ((
opp (
* (x1,y2))),z4)),(
+ ((
* ((
* ((
opp x2),y2)),z3)),(
* ((
* ((
opp x2),y1)),z4)))))) by
ARYTM_0: 15
.= (
+ ((
* ((
* ((
opp x1),y2)),z4)),(
+ ((
* ((
* ((
opp x2),y2)),z3)),(
* ((
* ((
opp x2),y1)),z4)))))) by
ARYTM_0: 15
.= (
+ ((
* ((
* ((
opp x2),y2)),z3)),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
* ((
* ((
opp x2),y1)),z4)))))) by
ARYTM_0: 23;
A24: (
+ ((
* (x3,yz1)),(
opp (
* (x4,yz2)))))
= (
+ ((
* (x3,yz1)),(
* ((
opp x4),yz2)))) by
ARYTM_0: 15
.= (
+ ((
* (x3,(
+ ((
* (y3,z1)),(
* ((
opp y4),z2)))))),(
* ((
opp x4),yz2)))) by
A21,
ARYTM_0: 15
.= (
+ ((
+ ((
* (x3,(
* (y3,z1)))),(
* (x3,(
* ((
opp y4),z2)))))),(
* ((
opp x4),(
+ ((
* (y3,z2)),(
* (y4,z1)))))))) by
A22,
ARYTM_0: 14
.= (
+ ((
+ ((
* (x3,(
* (y3,z1)))),(
* (x3,(
* ((
opp y4),z2)))))),(
+ ((
* ((
opp x4),(
* (y3,z2)))),(
* ((
opp x4),(
* (y4,z1)))))))) by
ARYTM_0: 14
.= (
+ ((
* (x3,(
* (y3,z1)))),(
+ ((
* ((
* ((
opp x2),y2)),z3)),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
* ((
* ((
opp x2),y1)),z4)))))))) by
A23,
ARYTM_0: 23
.= (
+ ((
+ ((
* (x3,(
* (y3,z1)))),(
* ((
* ((
opp x2),y2)),z3)))),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
* ((
* ((
opp x2),y1)),z4)))))) by
ARYTM_0: 23
.= (
+ ((
+ ((
* ((
* (x1,y1)),z3)),(
* ((
* ((
opp x2),y2)),z3)))),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
* ((
* ((
opp x2),y1)),z4)))))) by
A7,
A12,
A17,
ARYTM_0: 13
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
* ((
* ((
opp x2),y1)),z4)))))) by
ARYTM_0: 14
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
* ((
opp (
* (x2,y1))),z4)))))) by
ARYTM_0: 15
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
+ ((
* ((
* ((
opp x1),y2)),z4)),(
opp (
* ((
* (x2,y1)),z4))))))) by
ARYTM_0: 15
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
+ ((
* ((
opp (
* (x1,y2))),z4)),(
opp (
* ((
* (x2,y1)),z4))))))) by
ARYTM_0: 15
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
+ ((
opp (
* ((
* (x1,y2)),z4))),(
opp (
* ((
* (x2,y1)),z4))))))) by
ARYTM_0: 15
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
opp (
+ ((
* ((
* (x1,y2)),z4)),(
* ((
* (x2,y1)),z4))))))) by
ARYTM_0: 25
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
opp (
* ((
+ ((
* (x1,y2)),(
* (x2,y1)))),z4))))) by
ARYTM_0: 14
.= (
+ ((
* ((
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))),z3)),(
* ((
opp xy2),z4)))) by
A20,
ARYTM_0: 15
.= (
+ ((
* (xy1,z3)),(
* ((
opp xy2),z4)))) by
A19,
ARYTM_0: 15
.= (
+ ((
* (xy1,z3)),(
opp (
* (xy2,z4))))) by
ARYTM_0: 15;
A25: (
+ ((
* ((
opp (
* (x2,y2))),z4)),(
* ((
* (x2,y1)),z3))))
= (
+ ((
opp (
* ((
* (x2,y2)),z4))),(
* ((
* (x2,y1)),z3)))) by
ARYTM_0: 15
.= (
+ ((
* (x4,(
* (y3,z1)))),(
opp (
* ((
* (x2,y2)),z4))))) by
A7,
A13,
A17,
ARYTM_0: 13
.= (
+ ((
* (x4,(
* (y3,z1)))),(
opp (
* (x4,(
* (y4,z2))))))) by
A8,
A13,
A18,
ARYTM_0: 13
.= (
+ ((
* (x4,(
* (y3,z1)))),(
* (x4,(
opp (
* (y4,z2))))))) by
ARYTM_0: 15;
A26: (
+ ((
* ((
opp (
* (x2,y2))),z4)),(
* (xy2,z3))))
= (
+ ((
* ((
opp (
* (x2,y2))),z4)),(
+ ((
* ((
* (x1,y2)),z3)),(
* ((
* (x2,y1)),z3)))))) by
A20,
ARYTM_0: 14
.= (
+ ((
* ((
* (x1,y2)),z3)),(
+ ((
* ((
opp (
* (x2,y2))),z4)),(
* ((
* (x2,y1)),z3)))))) by
ARYTM_0: 23
.= (
+ ((
* (x3,(
* (y4,z1)))),(
+ ((
* (x4,(
* (y3,z1)))),(
* (x4,(
opp (
* (y4,z2))))))))) by
A8,
A12,
A17,
A25,
ARYTM_0: 13
.= (
+ ((
* (x3,(
* (y4,z1)))),(
* (x4,yz1)))) by
A21,
ARYTM_0: 14;
(
+ ((
* (xy1,z4)),(
* (xy2,z3))))
= (
+ ((
+ ((
* ((
* (x1,y1)),z4)),(
* ((
opp (
* (x2,y2))),z4)))),(
* (xy2,z3)))) by
A19,
ARYTM_0: 14
.= (
+ ((
* ((
* (x1,y1)),z4)),(
+ ((
* ((
opp (
* (x2,y2))),z4)),(
* (xy2,z3)))))) by
ARYTM_0: 23
.= (
+ ((
* (x3,(
* (y3,z2)))),(
+ ((
* (x3,(
* (y4,z1)))),(
* (x4,yz1)))))) by
A7,
A12,
A18,
A26,
ARYTM_0: 13
.= (
+ ((
+ ((
* (x3,(
* (y3,z2)))),(
* (x3,(
* (y4,z1)))))),(
* (x4,yz1)))) by
ARYTM_0: 23
.= (
+ ((
* (x3,yz2)),(
* (x4,yz1)))) by
A22,
ARYTM_0: 14;
hence thesis by
A11,
A16,
A24;
end;
registration
cluster
natural ->
complex for
object;
coherence by
NUMBERS: 20;
end
Lm: 1 is
Complex;
registration
cluster
zero for
Complex;
existence
proof
take
0 ;
thus thesis;
end;
cluster non
zero for
Complex;
existence by
Lm;
cluster non
zero for
Complex;
existence by
Lm;
end
Lm6:
REAL
c=
COMPLEX by
NUMBERS:def 2,
XBOOLE_1: 7;
registration
let x be non
zero
Complex;
cluster (
- x) -> non
zero;
coherence
proof
assume
A1: (
- x)
=
0 ;
(x
+ (
- x))
=
0 by
Def5;
then
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] and
A3: (
- x)
=
[*y1, y2*] and
A4: (
In (
0 ,
REAL ))
=
[*(
+ (x1,y1)), (
+ (x2,y2))*] by
Def3,
Lm1;
A5: (
+ (x2,y2))
=
0 by
A4,
ARYTM_0: 24;
then
A6: (
+ (x1,y1))
=
0 by
A4,
ARYTM_0:def 5,
Lm1;
y2
= (
In (
0 ,
REAL )) by
A1,
A3,
ARYTM_0: 24,
Lm1;
then
A7: y1
=
0 by
A1,
A3,
ARYTM_0:def 5,
Lm1;
x2
=
0 by
A1,
A3,
A5,
ARYTM_0: 11,
ARYTM_0: 24;
then x
= x1 by
A2,
ARYTM_0:def 5
.=
0 by
A6,
A7,
ARYTM_0: 11;
hence contradiction;
end;
cluster (x
" ) -> non
zero;
coherence
proof
assume
A8: (x
" )
=
0 ;
then
A9: (x
" )
= (
In (
0 ,
REAL )) by
Lm1;
(x
* (x
" ))
= 1 by
Def6;
then
consider x1,x2,y1,y2 be
Element of
REAL such that x
=
[*x1, x2*] and
A10: (x
" )
=
[*y1, y2*] and
A11: 1
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
Def4;
y2
= (
In (
0 ,
REAL )) by
A8,
A10,
ARYTM_0: 24,
Lm1;
then
A12: y1
=
0 by
A8,
A10,
ARYTM_0:def 5,
Lm1;
(
+ ((
* (x1,y2)),(
* (x2,y1))))
=
0 by
A11,
ARYTM_0: 24,
Lm2;
then 1
= (
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))) by
A11,
ARYTM_0:def 5
.= (
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))) by
ARYTM_0: 15
.= (
* ((
opp x2),y2)) by
A12,
ARYTM_0: 11,
ARYTM_0: 12;
hence contradiction by
A10,
ARYTM_0: 12,
ARYTM_0: 24,
A9;
end;
let y be non
zero
Complex;
cluster (x
* y) -> non
zero;
coherence
proof
set j = 1;
0
in
NAT ;
then
reconsider zz =
0 as
Element of
REAL by
NUMBERS: 19;
consider u1,u2,v1,v2 be
Element of
REAL such that
A13: j
=
[*u1, u2*] and
A14: y
=
[*v1, v2*] & (j
* y)
=
[*(
+ ((
* (u1,v1)),(
opp (
* (u2,v2))))), (
+ ((
* (u1,v2)),(
* (u2,v1))))*] by
Def4;
A15: u2
=
0 by
A13,
ARYTM_0: 24,
Lm2;
then
A16: (
+ ((
* (u1,v2)),(
* (u2,v1))))
= (
* (u1,v2)) by
ARYTM_0: 11,
ARYTM_0: 12;
A17: u1
= 1 by
A13,
A15,
ARYTM_0:def 5;
(
+ (zz,(
opp zz)))
=
0 by
ARYTM_0:def 3;
then
A18: (
opp zz)
=
0 by
ARYTM_0: 11;
A19: (
+ ((
* (u1,v1)),(
opp (
* (u2,v2)))))
= (
+ (v1,(
opp (
* (u2,v2))))) by
A17,
ARYTM_0: 19
.= (
+ (v1,(
* ((
opp u2),v2)))) by
ARYTM_0: 15
.= (
+ (v1,(
* (zz,v2)))) by
A13,
A18,
ARYTM_0: 24,
Lm2
.= v1 by
ARYTM_0: 11,
ARYTM_0: 12;
set z =
0 ;
consider u1,u2,v1,v2 be
Element of
REAL such that (x
" )
=
[*u1, u2*] and
A20: z
=
[*v1, v2*] and
A21: ((x
" )
* z)
=
[*(
+ ((
* (u1,v1)),(
opp (
* (u2,v2))))), (
+ ((
* (u1,v2)),(
* (u2,v1))))*] by
Def4;
v2
= zz by
A20,
ARYTM_0: 24;
then
A22: v1
=
0 by
A20,
ARYTM_0:def 5;
then
A23: (
+ ((
* (u1,v1)),(
opp (
* (u2,v2)))))
= (
opp (
* (u2,v2))) by
ARYTM_0: 11,
ARYTM_0: 12
.=
0 by
A18,
A20,
ARYTM_0: 12,
ARYTM_0: 24;
A24: (
+ ((
* (u1,v2)),(
* (u2,v1))))
= (
+ (zz,(
* (u2,v1)))) by
A20,
ARYTM_0: 12,
ARYTM_0: 24
.= (
* (u2,v1)) by
ARYTM_0: 11
.=
0 by
A22,
ARYTM_0: 12;
assume
A25: (x
* y)
=
0 ;
A26: (((x
" )
* x)
* y)
= ((x
" )
* (x
* y)) by
Lm5
.=
0 by
A21,
A23,
A24,
A25,
ARYTM_0:def 5;
(((x
" )
* x)
* y)
= (j
* y) by
Def6
.= y by
A14,
A16,
A17,
A19,
ARYTM_0: 19;
hence contradiction by
A26;
end;
end
registration
let x,y be non
zero
Complex;
cluster (x
/ y) -> non
zero;
coherence ;
end
registration
cluster ->
complex for
Element of
REAL ;
coherence
proof
let n be
Element of
REAL ;
n
in
REAL ;
hence thesis by
Lm6;
end;
end
registration
cluster ->
complex for
Element of
COMPLEX ;
coherence ;
end
registration
let i be
Complex;
reduce (
In (i,
COMPLEX )) to i;
reducibility by
Def2,
SUBSET_1:def 8;
end