xcmplx_1.miz
    
    begin
    
    reserve a,b,c,d,e for
    Complex;
    
    theorem :: 
    
    XCMPLX_1:1
    
    (a
    + (b 
    + c)) 
    = ((a 
    + b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:2
    
    (a
    + c) 
    = (b 
    + c) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:3
    
    a
    = (a 
    + b) implies b 
    =  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:4
    
    
    
    
    
    Th4: (a 
    * (b 
    * c)) 
    = ((a 
    * b) 
    * c); 
    
    theorem :: 
    
    XCMPLX_1:5
    
    c
    <>  
    0 & (a 
    * c) 
    = (b 
    * c) implies a 
    = b 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      assume (a
    * c) 
    = (b 
    * c); 
    
      then (a
    * (c 
    * (c 
    " ))) 
    = ((b 
    * c) 
    * (c 
    " )) by 
    Th4;
    
      then (a
    * 1) 
    = ((b 
    * c) 
    * (c 
    " )) by 
    A1,
    XCMPLX_0:def 7;
    
      then a
    = (b 
    * (c 
    * (c 
    " ))); 
    
      then a
    = (b 
    * 1) by 
    A1,
    XCMPLX_0:def 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:6
    
    (a
    * b) 
    =  
    0 implies a 
    =  
    0 or b 
    =  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:7
    
    
    
    
    
    Th7: b 
    <>  
    0 & (a 
    * b) 
    = b implies a 
    = 1 
    
    proof
    
      assume that
    
      
    
    A1: b 
    <>  
    0 and 
    
      
    
    A2: (a 
    * b) 
    = b; 
    
      ((a
    * b) 
    * (b 
    " )) 
    = 1 by 
    A1,
    A2,
    XCMPLX_0:def 7;
    
      then (a
    * 1) 
    = 1 by 
    A2,
    Th4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:8
    
    (a
    * (b 
    + c)) 
    = ((a 
    * b) 
    + (a 
    * c)); 
    
    theorem :: 
    
    XCMPLX_1:9
    
    (((a
    + b) 
    + c) 
    * d) 
    = (((a 
    * d) 
    + (b 
    * d)) 
    + (c 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:10
    
    ((a
    + b) 
    * (c 
    + d)) 
    = ((((a 
    * c) 
    + (a 
    * d)) 
    + (b 
    * c)) 
    + (b 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:11
    
    (2
    * a) 
    = (a 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:12
    
    (3
    * a) 
    = ((a 
    + a) 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:13
    
    (4
    * a) 
    = (((a 
    + a) 
    + a) 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:14
    
    (a
    - a) 
    =  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:15
    
    (a
    - b) 
    =  
    0 implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:16
    
    (b
    - a) 
    = b implies a 
    =  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:17
    
    a
    = (a 
    - (b 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:18
    
    (a
    - (a 
    - b)) 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:19
    
    (a
    - c) 
    = (b 
    - c) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:20
    
    (c
    - a) 
    = (c 
    - b) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:21
    
    ((a
    - b) 
    - c) 
    = ((a 
    - c) 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:22
    
    (a
    - c) 
    = ((a 
    - b) 
    - (c 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:23
    
    ((c
    - a) 
    - (c 
    - b)) 
    = (b 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:24
    
    (a
    - b) 
    = (c 
    - d) implies (a 
    - c) 
    = (b 
    - d); 
    
    
    
    
    
    Lm1: ((a 
    " ) 
    * (b 
    " )) 
    = ((a 
    * b) 
    " ) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: a 
    =  
    0 or b 
    =  
    0 ; 
    
        then (a
    " ) 
    =  
    0 or (b 
    " ) 
    =  
    0 ; 
    
        hence thesis by
    A1;
    
      end;
    
        suppose that
    
        
    
    A2: a 
    <>  
    0 and 
    
        
    
    A3: b 
    <>  
    0 ; 
    
        
    
        thus ((a
    " ) 
    * (b 
    " )) 
    = (((a 
    " ) 
    * (b 
    " )) 
    * 1) 
    
        .= (((a
    " ) 
    * (b 
    " )) 
    * ((a 
    * b) 
    * ((a 
    * b) 
    " ))) by 
    A2,
    A3,
    XCMPLX_0:def 7
    
        .= ((((a
    " ) 
    * a) 
    * ((b 
    " ) 
    * b)) 
    * ((a 
    * b) 
    " )) 
    
        .= ((1
    * ((b 
    " ) 
    * b)) 
    * ((a 
    * b) 
    " )) by 
    A2,
    XCMPLX_0:def 7
    
        .= (1
    * ((a 
    * b) 
    " )) by 
    A3,
    XCMPLX_0:def 7
    
        .= ((a
    * b) 
    " ); 
    
      end;
    
    end;
    
    
    
    
    
    Lm2: (a 
    / (b 
    / c)) 
    = ((a 
    * c) 
    / b) 
    
    proof
    
      
    
      thus (a
    / (b 
    / c)) 
    = (a 
    / (b 
    * (c 
    " ))) by 
    XCMPLX_0:def 9
    
      .= (a
    * ((b 
    * (c 
    " )) 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    * ((b 
    " ) 
    * ((c 
    " ) 
    " ))) by 
    Lm1
    
      .= ((a
    * c) 
    * (b 
    " )) 
    
      .= ((a
    * c) 
    / b) by 
    XCMPLX_0:def 9;
    
    end;
    
    
    
    
    
    Lm3: b 
    <>  
    0 implies ((a 
    / b) 
    * b) 
    = a 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus ((a
    / b) 
    * b) 
    = ((a 
    * (b 
    " )) 
    * b) by 
    XCMPLX_0:def 9
    
      .= (a
    * ((b 
    " ) 
    * b)) 
    
      .= (a
    * 1) by 
    A1,
    XCMPLX_0:def 7
    
      .= a;
    
    end;
    
    
    
    
    
    Lm4: (1 
    / a) 
    = (a 
    " ) 
    
    proof
    
      
    
      thus (1
    / a) 
    = (1 
    * (a 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    " ); 
    
    end;
    
    
    
    
    
    Lm5: a 
    <>  
    0 implies (a 
    / a) 
    = 1 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      thus (a
    / a) 
    = (a 
    * (a 
    " )) by 
    XCMPLX_0:def 9
    
      .= 1 by
    A1,
    XCMPLX_0:def 7;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:25
    
    a
    = (a 
    + (b 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:26
    
    a
    = ((a 
    + b) 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:27
    
    a
    = ((a 
    - b) 
    + b); 
    
    theorem :: 
    
    XCMPLX_1:28
    
    (a
    + c) 
    = ((a 
    + b) 
    + (c 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:29
    
    ((a
    + b) 
    - c) 
    = ((a 
    - c) 
    + b); 
    
    theorem :: 
    
    XCMPLX_1:30
    
    ((a
    - b) 
    + c) 
    = ((c 
    - b) 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:31
    
    (a
    + c) 
    = ((a 
    + b) 
    - (b 
    - c)); 
    
    theorem :: 
    
    XCMPLX_1:32
    
    (a
    - c) 
    = ((a 
    + b) 
    - (c 
    + b)); 
    
    theorem :: 
    
    XCMPLX_1:33
    
    (a
    + b) 
    = (c 
    + d) implies (a 
    - c) 
    = (d 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:34
    
    (a
    - c) 
    = (d 
    - b) implies (a 
    + b) 
    = (c 
    + d); 
    
    theorem :: 
    
    XCMPLX_1:35
    
    (a
    + b) 
    = (c 
    - d) implies (a 
    + d) 
    = (c 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:36
    
    (a
    - (b 
    + c)) 
    = ((a 
    - b) 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:37
    
    (a
    - (b 
    - c)) 
    = ((a 
    - b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:38
    
    (a
    - (b 
    - c)) 
    = (a 
    + (c 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:39
    
    (a
    - c) 
    = ((a 
    - b) 
    + (b 
    - c)); 
    
    theorem :: 
    
    XCMPLX_1:40
    
    (a
    * (b 
    - c)) 
    = ((a 
    * b) 
    - (a 
    * c)); 
    
    theorem :: 
    
    XCMPLX_1:41
    
    ((a
    - b) 
    * (c 
    - d)) 
    = ((b 
    - a) 
    * (d 
    - c)); 
    
    theorem :: 
    
    XCMPLX_1:42
    
    (((a
    - b) 
    - c) 
    * d) 
    = (((a 
    * d) 
    - (b 
    * d)) 
    - (c 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:43
    
    (((a
    + b) 
    - c) 
    * d) 
    = (((a 
    * d) 
    + (b 
    * d)) 
    - (c 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:44
    
    (((a
    - b) 
    + c) 
    * d) 
    = (((a 
    * d) 
    - (b 
    * d)) 
    + (c 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:45
    
    ((a
    + b) 
    * (c 
    - d)) 
    = ((((a 
    * c) 
    - (a 
    * d)) 
    + (b 
    * c)) 
    - (b 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:46
    
    ((a
    - b) 
    * (c 
    + d)) 
    = ((((a 
    * c) 
    + (a 
    * d)) 
    - (b 
    * c)) 
    - (b 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:47
    
    ((a
    - b) 
    * (e 
    - d)) 
    = ((((a 
    * e) 
    - (a 
    * d)) 
    - (b 
    * e)) 
    + (b 
    * d)); 
    
    theorem :: 
    
    XCMPLX_1:48
    
    ((a
    / b) 
    / c) 
    = ((a 
    / c) 
    / b) 
    
    proof
    
      
    
      thus ((a
    / b) 
    / c) 
    = ((a 
    * (b 
    " )) 
    / c) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (b 
    " )) 
    * (c 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (c 
    " )) 
    * (b 
    " )) 
    
      .= ((a
    / c) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((a
    / c) 
    / b) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:49
    
    
    
    
    
    Th49: (a 
    /  
    0 ) 
    =  
    0  
    
    proof
    
      
    
      thus (a
    /  
    0 ) 
    = (a 
    * ( 
    0  
    " )) by 
    XCMPLX_0:def 9
    
      .=
    0 ; 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:50
    
    a
    <>  
    0 & b 
    <>  
    0 implies (a 
    / b) 
    <>  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:51
    
    b
    <>  
    0 implies a 
    = (a 
    / (b 
    / b)) 
    
    proof
    
      
    
      
    
    A1: a 
    = (a 
    / 1); 
    
      assume b
    <>  
    0 ; 
    
      hence thesis by
    A1,
    Lm5;
    
    end;
    
    
    
    
    
    Lm6: ((a 
    / b) 
    * (c 
    / d)) 
    = ((a 
    * c) 
    / (b 
    * d)) 
    
    proof
    
      
    
      thus ((a
    / b) 
    * (c 
    / d)) 
    = ((a 
    * (b 
    " )) 
    * (c 
    / d)) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (b 
    " )) 
    * (c 
    * (d 
    " ))) by 
    XCMPLX_0:def 9
    
      .= ((a
    * c) 
    * ((b 
    " ) 
    * (d 
    " ))) 
    
      .= ((a
    * c) 
    * ((b 
    * d) 
    " )) by 
    Lm1
    
      .= ((a
    * c) 
    / (b 
    * d)) by 
    XCMPLX_0:def 9;
    
    end;
    
    
    
    
    
    Lm7: ((a 
    / b) 
    " ) 
    = (b 
    / a) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: a 
    =  
    0 ; 
    
        
    
        hence ((a
    / b) 
    " ) 
    = (b 
    * ( 
    0  
    " )) 
    
        .= (b
    / a) by 
    A1,
    XCMPLX_0:def 9;
    
      end;
    
        suppose
    
        
    
    A2: b 
    =  
    0 ; 
    
        
    
        hence ((a
    / b) 
    " ) 
    = ((a 
    * ( 
    0  
    " )) 
    " ) by 
    XCMPLX_0:def 9
    
        .= (b
    / a) by 
    A2;
    
      end;
    
        suppose
    
        
    
    A3: a 
    <>  
    0 & b 
    <>  
    0 ; 
    
        ((a
    / b) 
    * (b 
    / a)) 
    = ((a 
    * b) 
    / (a 
    * b)) by 
    Lm6;
    
        then ((a
    / b) 
    * (b 
    / a)) 
    = 1 by 
    A3,
    Lm5;
    
        hence thesis by
    A3,
    XCMPLX_0:def 7;
    
      end;
    
    end;
    
    
    
    
    
    Lm8: (a 
    * (b 
    / c)) 
    = ((a 
    * b) 
    / c) 
    
    proof
    
      
    
      thus (a
    * (b 
    / c)) 
    = ((a 
    / 1) 
    * (b 
    / c)) 
    
      .= ((a
    * b) 
    / (1 
    * c)) by 
    Lm6
    
      .= ((a
    * b) 
    / c); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:52
    
    a
    <>  
    0 implies (a 
    / (a 
    / b)) 
    = b 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      thus (a
    / (a 
    / b)) 
    = (a 
    * ((a 
    / b) 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    * (b 
    / a)) by 
    Lm7
    
      .= ((a
    * b) 
    / a) by 
    Lm8
    
      .= ((a
    / a) 
    * b) by 
    Lm8
    
      .= (1
    * b) by 
    A1,
    Lm5
    
      .= b;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:53
    
    c
    <>  
    0 & (a 
    / c) 
    = (b 
    / c) implies a 
    = b 
    
    proof
    
      assume that
    
      
    
    A1: c 
    <>  
    0 and 
    
      
    
    A2: (a 
    / c) 
    = (b 
    / c); 
    
      a
    = ((b 
    / c) 
    * c) by 
    A1,
    A2,
    Lm3;
    
      hence thesis by
    A1,
    Lm3;
    
    end;
    
    
    
    
    
    Lm9: b 
    <>  
    0 implies a 
    = ((a 
    * b) 
    / b) 
    
    proof
    
      
    
      
    
    A1: a 
    = (a 
    * 1); 
    
      assume b
    <>  
    0 ; 
    
      then a
    = (a 
    * (b 
    / b)) by 
    A1,
    Lm5;
    
      then a
    = (a 
    * (b 
    * (b 
    " ))) by 
    XCMPLX_0:def 9;
    
      then a
    = ((a 
    * b) 
    * (b 
    " )); 
    
      hence thesis by
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:54
    
    (a
    / b) 
    <>  
    0 implies b 
    = (a 
    / (a 
    / b)) 
    
    proof
    
      assume
    
      
    
    A1: (a 
    / b) 
    <>  
    0 ; 
    
      then b
    <>  
    0 by 
    Th49;
    
      then ((a
    / b) 
    * b) 
    = a by 
    Lm3;
    
      hence thesis by
    A1,
    Lm9;
    
    end;
    
    
    
    
    
    Lm10: c 
    <>  
    0 implies (a 
    / b) 
    = ((a 
    * c) 
    / (b 
    * c)) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      thus (a
    / b) 
    = ((a 
    * (b 
    " )) 
    * 1) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (b 
    " )) 
    * (c 
    * (c 
    " ))) by 
    A1,
    XCMPLX_0:def 7
    
      .= ((a
    * c) 
    * ((b 
    " ) 
    * (c 
    " ))) 
    
      .= ((a
    * c) 
    * ((b 
    * c) 
    " )) by 
    Lm1
    
      .= ((a
    * c) 
    / (b 
    * c)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:55
    
    c
    <>  
    0 implies (a 
    / b) 
    = ((a 
    / c) 
    / (b 
    / c)) 
    
    proof
    
      assume c
    <>  
    0 ; 
    
      
    
      hence (a
    / b) 
    = ((a 
    * (c 
    " )) 
    / (b 
    * (c 
    " ))) by 
    Lm10
    
      .= ((a
    / c) 
    / (b 
    * (c 
    " ))) by 
    XCMPLX_0:def 9
    
      .= ((a
    / c) 
    / (b 
    / c)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:56
    
    (1
    / (1 
    / a)) 
    = a 
    
    proof
    
      
    
      thus (1
    / (1 
    / a)) 
    = ((1 
    * a) 
    / 1) by 
    Lm2
    
      .= a;
    
    end;
    
    
    
    
    
    Lm11: ((a 
    * (b 
    " )) 
    " ) 
    = ((a 
    " ) 
    * b) 
    
    proof
    
      
    
      thus ((a
    * (b 
    " )) 
    " ) 
    = ((a 
    " ) 
    * ((b 
    " ) 
    " )) by 
    Lm1
    
      .= ((a
    " ) 
    * b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:57
    
    (1
    / (a 
    / b)) 
    = (b 
    / a) 
    
    proof
    
      
    
      thus (1
    / (a 
    / b)) 
    = (1 
    / (a 
    * (b 
    " ))) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (b 
    " )) 
    " ) by 
    Lm4
    
      .= (b
    * (a 
    " )) by 
    Lm11
    
      .= (b
    / a) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:58
    
    
    
    
    
    Th58: (a 
    / b) 
    = 1 implies a 
    = b 
    
    proof
    
      assume
    
      
    
    A1: (a 
    / b) 
    = 1; 
    
      then b
    <>  
    0 by 
    Th49;
    
      then a
    = (1 
    * b) by 
    A1,
    Lm3;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm12: (a 
    " ) 
    = (b 
    " ) implies a 
    = b 
    
    proof
    
      assume (a
    " ) 
    = (b 
    " ); 
    
      then a
    = ((b 
    " ) 
    " ); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:59
    
    
    
    
    
    Th59: (1 
    / a) 
    = (1 
    / b) implies a 
    = b 
    
    proof
    
      assume (1
    / a) 
    = (1 
    / b); 
    
      then (a
    " ) 
    = (1 
    / b) by 
    Lm4;
    
      then (a
    " ) 
    = (b 
    " ) by 
    Lm4;
    
      hence thesis by
    Lm12;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:60
    
    a
    <>  
    0 implies (a 
    / a) 
    = 1 by 
    Lm5;
    
    theorem :: 
    
    XCMPLX_1:61
    
    b
    <>  
    0 & (b 
    / a) 
    = b implies a 
    = 1 
    
    proof
    
      assume that
    
      
    
    A1: b 
    <>  
    0 and 
    
      
    
    A2: (b 
    / a) 
    = b; 
    
      a
    <>  
    0 by 
    A1,
    A2,
    Th49;
    
      then b
    = (b 
    * a) by 
    A2,
    Lm3;
    
      hence thesis by
    A1,
    Th7;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:62
    
    
    
    
    
    Th62: ((a 
    / c) 
    + (b 
    / c)) 
    = ((a 
    + b) 
    / c) 
    
    proof
    
      
    
      thus ((a
    / c) 
    + (b 
    / c)) 
    = ((a 
    * (c 
    " )) 
    + (b 
    / c)) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (c 
    " )) 
    + (b 
    * (c 
    " ))) by 
    XCMPLX_0:def 9
    
      .= ((a
    + b) 
    * (c 
    " )) 
    
      .= ((a
    + b) 
    / c) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:63
    
    (((a
    + b) 
    + e) 
    / d) 
    = (((a 
    / d) 
    + (b 
    / d)) 
    + (e 
    / d)) 
    
    proof
    
      
    
      thus (((a
    + b) 
    + e) 
    / d) 
    = (((a 
    + b) 
    / d) 
    + (e 
    / d)) by 
    Th62
    
      .= (((a
    / d) 
    + (b 
    / d)) 
    + (e 
    / d)) by 
    Th62;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:64
    
    ((a
    + a) 
    / 2) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:65
    
    ((a
    / 2) 
    + (a 
    / 2)) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:66
    
    a
    = ((a 
    + b) 
    / 2) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:67
    
    (((a
    + a) 
    + a) 
    / 3) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:68
    
    (((a
    / 3) 
    + (a 
    / 3)) 
    + (a 
    / 3)) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:69
    
    ((((a
    + a) 
    + a) 
    + a) 
    / 4) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:70
    
    ((((a
    / 4) 
    + (a 
    / 4)) 
    + (a 
    / 4)) 
    + (a 
    / 4)) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:71
    
    ((a
    / 4) 
    + (a 
    / 4)) 
    = (a 
    / 2); 
    
    theorem :: 
    
    XCMPLX_1:72
    
    ((a
    + a) 
    / 4) 
    = (a 
    / 2); 
    
    theorem :: 
    
    XCMPLX_1:73
    
    (a
    * b) 
    = 1 implies a 
    = (1 
    / b) 
    
    proof
    
      assume
    
      
    
    A1: (a 
    * b) 
    = 1; 
    
      then b
    <>  
    0 ; 
    
      then (a
    * 1) 
    = (1 
    * (b 
    " )) by 
    A1,
    XCMPLX_0:def 7;
    
      hence thesis by
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:74
    
    (a
    * (b 
    / c)) 
    = ((a 
    * b) 
    / c) by 
    Lm8;
    
    theorem :: 
    
    XCMPLX_1:75
    
    ((a
    / b) 
    * e) 
    = ((e 
    / b) 
    * a) 
    
    proof
    
      
    
      thus ((a
    / b) 
    * e) 
    = ((a 
    * e) 
    / b) by 
    Lm8
    
      .= ((e
    / b) 
    * a) by 
    Lm8;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:76
    
    ((a
    / b) 
    * (c 
    / d)) 
    = ((a 
    * c) 
    / (b 
    * d)) by 
    Lm6;
    
    theorem :: 
    
    XCMPLX_1:77
    
    (a
    / (b 
    / c)) 
    = ((a 
    * c) 
    / b) by 
    Lm2;
    
    
    
    
    
    Lm13: ((a 
    / b) 
    / (c 
    / d)) 
    = ((a 
    * d) 
    / (b 
    * c)) 
    
    proof
    
      
    
      thus ((a
    / b) 
    / (c 
    / d)) 
    = ((a 
    / b) 
    * ((c 
    / d) 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((a
    / b) 
    * (d 
    / c)) by 
    Lm7
    
      .= ((a
    * d) 
    / (b 
    * c)) by 
    Lm6;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:78
    
    
    
    
    
    Th78: (a 
    / (b 
    * c)) 
    = ((a 
    / b) 
    / c) 
    
    proof
    
      
    
      thus (a
    / (b 
    * c)) 
    = ((a 
    * 1) 
    / (b 
    * c)) 
    
      .= ((a
    / b) 
    / (c 
    / 1)) by 
    Lm13
    
      .= ((a
    / b) 
    / c); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:79
    
    (a
    / (b 
    / c)) 
    = (a 
    * (c 
    / b)) 
    
    proof
    
      
    
      thus (a
    / (b 
    / c)) 
    = ((a 
    * c) 
    / b) by 
    Lm2
    
      .= ((a
    * c) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    * (c 
    * (b 
    " ))) 
    
      .= (a
    * (c 
    / b)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:80
    
    (a
    / (b 
    / c)) 
    = ((c 
    / b) 
    * a) 
    
    proof
    
      (a
    / (b 
    / c)) 
    = ((a 
    * c) 
    / b) by 
    Lm2
    
      .= ((a
    * c) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    * (c 
    * (b 
    " ))) 
    
      .= (a
    * (c 
    / b)) by 
    XCMPLX_0:def 9;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:81
    
    
    
    
    
    Th81: (a 
    / (b 
    / e)) 
    = (e 
    * (a 
    / b)) 
    
    proof
    
      
    
      thus (a
    / (b 
    / e)) 
    = ((a 
    * e) 
    / b) by 
    Lm2
    
      .= ((e
    * a) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= (e
    * (a 
    * (b 
    " ))) 
    
      .= (e
    * (a 
    / b)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:82
    
    (a
    / (b 
    / c)) 
    = ((a 
    / b) 
    * c) 
    
    proof
    
      (a
    / (b 
    / c)) 
    = ((a 
    * c) 
    / b) by 
    Lm2
    
      .= ((c
    * a) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= (c
    * (a 
    * (b 
    " ))) 
    
      .= (c
    * (a 
    / b)) by 
    XCMPLX_0:def 9;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm14: (a 
    * (1 
    / b)) 
    = (a 
    / b) 
    
    proof
    
      
    
      thus (a
    / b) 
    = (a 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    * (1 
    / b)) by 
    Lm4;
    
    end;
    
    
    
    
    
    Lm15: ((1 
    / c) 
    * (a 
    / b)) 
    = (a 
    / (b 
    * c)) 
    
    proof
    
      ((a
    / b) 
    / c) 
    = ((c 
    " ) 
    * (a 
    / b)) by 
    XCMPLX_0:def 9
    
      .= ((1
    / c) 
    * (a 
    / b)) by 
    Lm4;
    
      hence thesis by
    Th78;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:83
    
    ((a
    * b) 
    / (c 
    * d)) 
    = (((a 
    / c) 
    * b) 
    / d) 
    
    proof
    
      
    
      thus ((a
    * b) 
    / (c 
    * d)) 
    = ((1 
    / c) 
    * ((a 
    * b) 
    / d)) by 
    Lm15
    
      .= (((1
    / c) 
    * (a 
    * b)) 
    / d) by 
    Lm8
    
      .= ((((1
    / c) 
    * a) 
    * b) 
    / d) 
    
      .= (((a
    / c) 
    * b) 
    / d) by 
    Lm14;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:84
    
    ((a
    / b) 
    / (c 
    / d)) 
    = ((a 
    * d) 
    / (b 
    * c)) by 
    Lm13;
    
    theorem :: 
    
    XCMPLX_1:85
    
    ((a
    / c) 
    * (b 
    / d)) 
    = ((a 
    / d) 
    * (b 
    / c)) 
    
    proof
    
      
    
      thus ((a
    / c) 
    * (b 
    / d)) 
    = ((a 
    * b) 
    / (d 
    * c)) by 
    Lm6
    
      .= ((a
    / d) 
    * (b 
    / c)) by 
    Lm6;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:86
    
    (a
    / ((b 
    * c) 
    * (d 
    / e))) 
    = ((e 
    / c) 
    * (a 
    / (b 
    * d))) 
    
    proof
    
      
    
      thus (a
    / ((b 
    * c) 
    * (d 
    / e))) 
    = (a 
    / ((b 
    * c) 
    * (d 
    * (e 
    " )))) by 
    XCMPLX_0:def 9
    
      .= (a
    / (c 
    * ((b 
    * d) 
    * (e 
    " )))) 
    
      .= (a
    / (c 
    * ((b 
    * d) 
    / e))) by 
    XCMPLX_0:def 9
    
      .= (a
    / ((b 
    * d) 
    / (e 
    / c))) by 
    Th81
    
      .= ((e
    / c) 
    * (a 
    / (b 
    * d))) by 
    Th81;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:87
    
    b
    <>  
    0 implies ((a 
    / b) 
    * b) 
    = a by 
    Lm3;
    
    theorem :: 
    
    XCMPLX_1:88
    
    b
    <>  
    0 implies a 
    = (a 
    * (b 
    / b)) 
    
    proof
    
      
    
      
    
    A1: a 
    = (a 
    * 1); 
    
      assume b
    <>  
    0 ; 
    
      hence thesis by
    A1,
    Lm5;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:89
    
    b
    <>  
    0 implies a 
    = ((a 
    * b) 
    / b) by 
    Lm9;
    
    theorem :: 
    
    XCMPLX_1:90
    
    b
    <>  
    0 implies (a 
    * c) 
    = ((a 
    * b) 
    * (c 
    / b)) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus (a
    * c) 
    = ((a 
    * 1) 
    * c) 
    
      .= ((a
    * (b 
    * (b 
    " ))) 
    * c) by 
    A1,
    XCMPLX_0:def 7
    
      .= ((a
    * b) 
    * ((b 
    " ) 
    * c)) 
    
      .= ((a
    * b) 
    * (c 
    / b)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:91
    
    c
    <>  
    0 implies (a 
    / b) 
    = ((a 
    * c) 
    / (b 
    * c)) by 
    Lm10;
    
    theorem :: 
    
    XCMPLX_1:92
    
    c
    <>  
    0 implies (a 
    / b) 
    = ((a 
    / (b 
    * c)) 
    * c) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      (c
    * (a 
    / (b 
    * c))) 
    = (c 
    * ((a 
    * 1) 
    / (b 
    * c))) 
    
      .= (c
    * ((1 
    / c) 
    * (a 
    / b))) by 
    Lm6
    
      .= (((1
    / c) 
    * c) 
    * (a 
    / b)) 
    
      .= (1
    * (a 
    / b)) by 
    A1,
    Lm3
    
      .= (a
    / b); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:93
    
    b
    <>  
    0 implies (a 
    * c) 
    = ((a 
    * b) 
    / (b 
    / c)) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus (a
    * c) 
    = ((a 
    * 1) 
    * c) 
    
      .= ((a
    * (b 
    * (b 
    " ))) 
    * c) by 
    A1,
    XCMPLX_0:def 7
    
      .= ((a
    * b) 
    * ((b 
    " ) 
    * c)) 
    
      .= ((a
    * b) 
    * ((b 
    * (c 
    " )) 
    " )) by 
    Lm11
    
      .= ((a
    * b) 
    / (b 
    * (c 
    " ))) by 
    XCMPLX_0:def 9
    
      .= ((a
    * b) 
    / (b 
    / c)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:94
    
    
    
    
    
    Th94: c 
    <>  
    0 & d 
    <>  
    0 & (a 
    * c) 
    = (b 
    * d) implies (a 
    / d) 
    = (b 
    / c) 
    
    proof
    
      assume that
    
      
    
    A1: c 
    <>  
    0 and 
    
      
    
    A2: d 
    <>  
    0 ; 
    
      assume (a
    * c) 
    = (b 
    * d); 
    
      then a
    = ((b 
    * d) 
    / c) by 
    A1,
    Lm9;
    
      then a
    = (d 
    * (b 
    / c)) by 
    Lm8;
    
      hence thesis by
    A2,
    Lm9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:95
    
    
    
    
    
    Th95: c 
    <>  
    0 & d 
    <>  
    0 & (a 
    / d) 
    = (b 
    / c) implies (a 
    * c) 
    = (b 
    * d) 
    
    proof
    
      assume that
    
      
    
    A1: c 
    <>  
    0 and 
    
      
    
    A2: d 
    <>  
    0 and 
    
      
    
    A3: (a 
    / d) 
    = (b 
    / c); 
    
      (c
    * (a 
    / d)) 
    = b by 
    A1,
    A3,
    Lm3;
    
      then ((a
    * c) 
    / d) 
    = b by 
    Lm8;
    
      hence thesis by
    A2,
    Lm3;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:96
    
    c
    <>  
    0 & d 
    <>  
    0 & (a 
    * c) 
    = (b 
    / d) implies (a 
    * d) 
    = (b 
    / c) 
    
    proof
    
      assume that
    
      
    
    A1: c 
    <>  
    0 and 
    
      
    
    A2: d 
    <>  
    0 ; 
    
      assume (a
    * c) 
    = (b 
    / d); 
    
      then ((a
    * c) 
    * d) 
    = b by 
    A2,
    Lm3;
    
      then ((a
    * d) 
    * c) 
    = b; 
    
      hence thesis by
    A1,
    Lm9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:97
    
    c
    <>  
    0 implies (a 
    / b) 
    = (c 
    * ((a 
    / c) 
    / b)) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      thus (a
    / b) 
    = (a 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((c
    * (a 
    / c)) 
    * (b 
    " )) by 
    A1,
    Lm3
    
      .= (c
    * ((a 
    / c) 
    * (b 
    " ))) 
    
      .= (c
    * ((a 
    / c) 
    / b)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:98
    
    c
    <>  
    0 implies (a 
    / b) 
    = ((a 
    / c) 
    * (c 
    / b)) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      thus (a
    / b) 
    = (a 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= (((a
    / c) 
    * c) 
    * (b 
    " )) by 
    A1,
    Lm3
    
      .= ((a
    / c) 
    * (c 
    * (b 
    " ))) 
    
      .= ((a
    / c) 
    * (c 
    / b)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:99
    
    (a
    * (1 
    / b)) 
    = (a 
    / b) by 
    Lm14;
    
    
    
    
    
    Lm16: (1 
    / (a 
    " )) 
    = a 
    
    proof
    
      (1
    / (a 
    " )) 
    = ((a 
    " ) 
    " ) by 
    Lm4
    
      .= a;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:100
    
    (a
    / (1 
    / b)) 
    = (a 
    * b) 
    
    proof
    
      
    
      thus (a
    / (1 
    / b)) 
    = (a 
    / (b 
    " )) by 
    Lm4
    
      .= (a
    * (1 
    / (b 
    " ))) by 
    Lm14
    
      .= (a
    * b) by 
    Lm16;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:101
    
    ((a
    / b) 
    * c) 
    = (((1 
    / b) 
    * c) 
    * a) 
    
    proof
    
      ((a
    / b) 
    * c) 
    = (((1 
    / b) 
    * a) 
    * c) by 
    Lm14;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:102
    
    ((1
    / a) 
    * (1 
    / b)) 
    = (1 
    / (a 
    * b)) 
    
    proof
    
      
    
      thus ((1
    / a) 
    * (1 
    / b)) 
    = ((a 
    " ) 
    * (1 
    / b)) by 
    Lm4
    
      .= ((a
    " ) 
    * (b 
    " )) by 
    Lm4
    
      .= ((a
    * b) 
    " ) by 
    Lm1
    
      .= (1
    / (a 
    * b)) by 
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:103
    
    ((1
    / c) 
    * (a 
    / b)) 
    = (a 
    / (b 
    * c)) by 
    Lm15;
    
    theorem :: 
    
    XCMPLX_1:104
    
    ((a
    / b) 
    / c) 
    = ((1 
    / b) 
    * (a 
    / c)) 
    
    proof
    
      ((a
    / b) 
    / c) 
    = ((a 
    * (b 
    " )) 
    / c) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (b 
    " )) 
    * (c 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((a
    * (c 
    " )) 
    * (b 
    " )) 
    
      .= ((a
    / c) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((a
    / c) 
    / b) by 
    XCMPLX_0:def 9;
    
      
    
      hence ((a
    / b) 
    / c) 
    = ((b 
    " ) 
    * (a 
    / c)) by 
    XCMPLX_0:def 9
    
      .= ((1
    / b) 
    * (a 
    / c)) by 
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:105
    
    ((a
    / b) 
    / c) 
    = ((1 
    / c) 
    * (a 
    / b)) 
    
    proof
    
      
    
      thus ((a
    / b) 
    / c) 
    = ((c 
    " ) 
    * (a 
    / b)) by 
    XCMPLX_0:def 9
    
      .= ((1
    / c) 
    * (a 
    / b)) by 
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:106
    
    
    
    
    
    Th106: a 
    <>  
    0 implies (a 
    * (1 
    / a)) 
    = 1 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      thus (a
    * (1 
    / a)) 
    = (a 
    * (a 
    " )) by 
    Lm4
    
      .= 1 by
    A1,
    XCMPLX_0:def 7;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:107
    
    b
    <>  
    0 implies a 
    = ((a 
    * b) 
    * (1 
    / b)) 
    
    proof
    
      
    
      
    
    A1: a 
    = (a 
    * 1); 
    
      assume b
    <>  
    0 ; 
    
      then a
    = (a 
    * (b 
    / b)) by 
    A1,
    Lm5;
    
      
    
      then a
    = (a 
    * (b 
    * (b 
    " ))) by 
    XCMPLX_0:def 9
    
      .= (a
    * (b 
    * (1 
    / b))) by 
    Lm4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:108
    
    b
    <>  
    0 implies a 
    = (a 
    * ((1 
    / b) 
    * b)) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus a
    = (a 
    * 1) 
    
      .= (a
    * ((1 
    / b) 
    * b)) by 
    A1,
    Lm3;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:109
    
    b
    <>  
    0 implies a 
    = ((a 
    * (1 
    / b)) 
    * b) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      a
    = (a 
    * 1) 
    
      .= (a
    * ((1 
    / b) 
    * b)) by 
    A1,
    Lm3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:110
    
    b
    <>  
    0 implies a 
    = (a 
    / (b 
    * (1 
    / b))) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus a
    = (a 
    / 1) 
    
      .= (a
    / (b 
    * (1 
    / b))) by 
    A1,
    Th106;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:111
    
    a
    <>  
    0 & b 
    <>  
    0 implies (1 
    / (a 
    * b)) 
    <>  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:112
    
    a
    <>  
    0 & b 
    <>  
    0 implies ((a 
    / b) 
    * (b 
    / a)) 
    = 1 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 & b 
    <>  
    0 ; 
    
      (b
    / a) 
    = ((a 
    / b) 
    " ) by 
    Lm7;
    
      hence thesis by
    A1,
    XCMPLX_0:def 7;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:113
    
    
    
    
    
    Th113: b 
    <>  
    0 implies ((a 
    / b) 
    + c) 
    = ((a 
    + (b 
    * c)) 
    / b) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      ((a
    / b) 
    + c) 
    = ((a 
    / b) 
    + (1 
    * c)) 
    
      .= ((a
    / b) 
    + ((b 
    * (b 
    " )) 
    * c)) by 
    A1,
    XCMPLX_0:def 7
    
      .= ((a
    / b) 
    + ((b 
    * c) 
    * (b 
    " ))) 
    
      .= ((a
    / b) 
    + ((c 
    * b) 
    / b)) by 
    XCMPLX_0:def 9
    
      .= ((a
    + (c 
    * b)) 
    / b) by 
    Th62;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:114
    
    
    
    
    
    Th114: c 
    <>  
    0 implies (a 
    + b) 
    = (c 
    * ((a 
    / c) 
    + (b 
    / c))) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      hence (a
    + b) 
    = ((c 
    * (a 
    / c)) 
    + b) by 
    Lm3
    
      .= ((c
    * (a 
    / c)) 
    + (c 
    * (b 
    / c))) by 
    A1,
    Lm3
    
      .= (c
    * ((a 
    / c) 
    + (b 
    / c))); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:115
    
    
    
    
    
    Th115: c 
    <>  
    0 implies (a 
    + b) 
    = (((a 
    * c) 
    + (b 
    * c)) 
    / c) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      hence (a
    + b) 
    = (((a 
    * c) 
    / c) 
    + b) by 
    Lm9
    
      .= (((a
    * c) 
    / c) 
    + ((b 
    * c) 
    / c)) by 
    A1,
    Lm9
    
      .= (((a
    * c) 
    + (b 
    * c)) 
    / c) by 
    Th62;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:116
    
    
    
    
    
    Th116: b 
    <>  
    0 & d 
    <>  
    0 implies ((a 
    / b) 
    + (c 
    / d)) 
    = (((a 
    * d) 
    + (c 
    * b)) 
    / (b 
    * d)) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      assume d
    <>  
    0 ; 
    
      
    
      hence ((a
    / b) 
    + (c 
    / d)) 
    = (((a 
    * d) 
    / (b 
    * d)) 
    + (c 
    / d)) by 
    Lm10
    
      .= (((a
    * d) 
    / (b 
    * d)) 
    + ((c 
    * b) 
    / (b 
    * d))) by 
    A1,
    Lm10
    
      .= (((a
    * d) 
    + (c 
    * b)) 
    / (b 
    * d)) by 
    Th62;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:117
    
    
    
    
    
    Th117: a 
    <>  
    0 implies (a 
    + b) 
    = (a 
    * (1 
    + (b 
    / a))) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      hence (a
    + b) 
    = (a 
    * ((a 
    / a) 
    + (b 
    / a))) by 
    Th114
    
      .= (a
    * (1 
    + (b 
    / a))) by 
    A1,
    Lm5;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:118
    
    ((a
    / (2 
    * b)) 
    + (a 
    / (2 
    * b))) 
    = (a 
    / b) 
    
    proof
    
      
    
      thus ((a
    / (2 
    * b)) 
    + (a 
    / (2 
    * b))) 
    = ((a 
    + a) 
    / (2 
    * b)) by 
    Th62
    
      .= ((2
    * a) 
    / (2 
    * b)) 
    
      .= (a
    / b) by 
    Lm10;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:119
    
    (((a
    / (3 
    * b)) 
    + (a 
    / (3 
    * b))) 
    + (a 
    / (3 
    * b))) 
    = (a 
    / b) 
    
    proof
    
      
    
      thus (((a
    / (3 
    * b)) 
    + (a 
    / (3 
    * b))) 
    + (a 
    / (3 
    * b))) 
    = (((a 
    + a) 
    / (3 
    * b)) 
    + (a 
    / (3 
    * b))) by 
    Th62
    
      .= (((a
    + a) 
    + a) 
    / (3 
    * b)) by 
    Th62
    
      .= ((3
    * a) 
    / (3 
    * b)) 
    
      .= (a
    / b) by 
    Lm10;
    
    end;
    
    
    
    
    
    Lm17: ( 
    - (a 
    / b)) 
    = (( 
    - a) 
    / b) 
    
    proof
    
      
    
      thus (
    - (a 
    / b)) 
    = ( 
    - (a 
    * (b 
    " ))) by 
    XCMPLX_0:def 9
    
      .= ((
    - a) 
    * (b 
    " )) 
    
      .= ((
    - a) 
    / b) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:120
    
    
    
    
    
    Th120: ((a 
    / c) 
    - (b 
    / c)) 
    = ((a 
    - b) 
    / c) 
    
    proof
    
      
    
      thus ((a
    / c) 
    - (b 
    / c)) 
    = ((a 
    / c) 
    + ( 
    - (b 
    / c))) 
    
      .= ((a
    / c) 
    + (( 
    - b) 
    / c)) by 
    Lm17
    
      .= ((a
    + ( 
    - b)) 
    / c) by 
    Th62
    
      .= ((a
    - b) 
    / c); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:121
    
    (a
    - (a 
    / 2)) 
    = (a 
    / 2); 
    
    theorem :: 
    
    XCMPLX_1:122
    
    (((a
    - b) 
    - c) 
    / d) 
    = (((a 
    / d) 
    - (b 
    / d)) 
    - (c 
    / d)) 
    
    proof
    
      
    
      thus (((a
    - b) 
    - c) 
    / d) 
    = (((a 
    - b) 
    / d) 
    - (c 
    / d)) by 
    Th120
    
      .= (((a
    / d) 
    - (b 
    / d)) 
    - (c 
    / d)) by 
    Th120;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:123
    
    b
    <>  
    0 & d 
    <>  
    0 & b 
    <> d & (a 
    / b) 
    = (e 
    / d) implies (a 
    / b) 
    = ((a 
    - e) 
    / (b 
    - d)) 
    
    proof
    
      assume that
    
      
    
    A1: b 
    <>  
    0 and 
    
      
    
    A2: d 
    <>  
    0 and 
    
      
    
    A3: b 
    <> d and 
    
      
    
    A4: (a 
    / b) 
    = (e 
    / d); 
    
      (a
    * d) 
    = (e 
    * b) by 
    A1,
    A2,
    A4,
    Th95;
    
      then
    
      
    
    A5: (a 
    * (b 
    - d)) 
    = ((a 
    - e) 
    * b); 
    
      (b
    - d) 
    <>  
    0 by 
    A3;
    
      hence thesis by
    A1,
    A5,
    Th94;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:124
    
    (((a
    + b) 
    - e) 
    / d) 
    = (((a 
    / d) 
    + (b 
    / d)) 
    - (e 
    / d)) 
    
    proof
    
      
    
      thus (((a
    + b) 
    - e) 
    / d) 
    = (((a 
    + b) 
    / d) 
    - (e 
    / d)) by 
    Th120
    
      .= (((a
    / d) 
    + (b 
    / d)) 
    - (e 
    / d)) by 
    Th62;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:125
    
    (((a
    - b) 
    + e) 
    / d) 
    = (((a 
    / d) 
    - (b 
    / d)) 
    + (e 
    / d)) 
    
    proof
    
      
    
      thus (((a
    - b) 
    + e) 
    / d) 
    = (((a 
    - b) 
    / d) 
    + (e 
    / d)) by 
    Th62
    
      .= (((a
    / d) 
    - (b 
    / d)) 
    + (e 
    / d)) by 
    Th120;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:126
    
    
    
    
    
    Th126: b 
    <>  
    0 implies ((a 
    / b) 
    - e) 
    = ((a 
    - (e 
    * b)) 
    / b) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus ((a
    / b) 
    - e) 
    = ((a 
    / b) 
    + ( 
    - e)) 
    
      .= ((a
    + (( 
    - e) 
    * b)) 
    / b) by 
    A1,
    Th113
    
      .= ((a
    - (e 
    * b)) 
    / b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:127
    
    b
    <>  
    0 implies (c 
    - (a 
    / b)) 
    = (((c 
    * b) 
    - a) 
    / b) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      
    
      thus (c
    - (a 
    / b)) 
    = ( 
    - ((a 
    / b) 
    - c)) 
    
      .= (
    - ((a 
    - (c 
    * b)) 
    / b)) by 
    A1,
    Th126
    
      .= ((
    - (a 
    - (c 
    * b))) 
    / b) by 
    Lm17
    
      .= (((c
    * b) 
    - a) 
    / b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:128
    
    c
    <>  
    0 implies (a 
    - b) 
    = (c 
    * ((a 
    / c) 
    - (b 
    / c))) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      hence (a
    - b) 
    = ((c 
    * (a 
    / c)) 
    - b) by 
    Lm3
    
      .= ((c
    * (a 
    / c)) 
    - (c 
    * (b 
    / c))) by 
    A1,
    Lm3
    
      .= (c
    * ((a 
    / c) 
    - (b 
    / c))); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:129
    
    c
    <>  
    0 implies (a 
    - b) 
    = (((a 
    * c) 
    - (b 
    * c)) 
    / c) 
    
    proof
    
      assume
    
      
    
    A1: c 
    <>  
    0 ; 
    
      
    
      thus (a
    - b) 
    = (a 
    + ( 
    - b)) 
    
      .= (((a
    * c) 
    + (( 
    - b) 
    * c)) 
    / c) by 
    A1,
    Th115
    
      .= (((a
    * c) 
    - (b 
    * c)) 
    / c); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:130
    
    b
    <>  
    0 & d 
    <>  
    0 implies ((a 
    / b) 
    - (c 
    / d)) 
    = (((a 
    * d) 
    - (c 
    * b)) 
    / (b 
    * d)) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      assume
    
      
    
    A2: d 
    <>  
    0 ; 
    
      
    
      thus ((a
    / b) 
    - (c 
    / d)) 
    = ((a 
    / b) 
    + ( 
    - (c 
    / d))) 
    
      .= ((a
    / b) 
    + (( 
    - c) 
    / d)) by 
    Lm17
    
      .= (((a
    * d) 
    + (( 
    - c) 
    * b)) 
    / (b 
    * d)) by 
    A1,
    A2,
    Th116
    
      .= (((a
    * d) 
    - (c 
    * b)) 
    / (b 
    * d)); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:131
    
    a
    <>  
    0 implies (a 
    - b) 
    = (a 
    * (1 
    - (b 
    / a))) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      thus (a
    - b) 
    = (a 
    + ( 
    - b)) 
    
      .= (a
    * (1 
    + (( 
    - b) 
    / a))) by 
    A1,
    Th117
    
      .= (a
    * (1 
    + ( 
    - (b 
    / a)))) by 
    Lm17
    
      .= (a
    * (1 
    - (b 
    / a))); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:132
    
    a
    <>  
    0 implies c 
    = ((((a 
    * c) 
    + b) 
    - b) 
    / a) by 
    Lm9;
    
    theorem :: 
    
    XCMPLX_1:133
    
    (
    - a) 
    = ( 
    - b) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:134
    
    (
    - a) 
    =  
    0 implies a 
    =  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:135
    
    (a
    + ( 
    - b)) 
    =  
    0 implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:136
    
    a
    = ((a 
    + b) 
    + ( 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:137
    
    a
    = (a 
    + (b 
    + ( 
    - b))); 
    
    theorem :: 
    
    XCMPLX_1:138
    
    a
    = ((( 
    - b) 
    + a) 
    + b); 
    
    theorem :: 
    
    XCMPLX_1:139
    
    (
    - (a 
    + b)) 
    = (( 
    - a) 
    + ( 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:140
    
    (
    - (( 
    - a) 
    + b)) 
    = (a 
    + ( 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:141
    
    (a
    + b) 
    = ( 
    - (( 
    - a) 
    + ( 
    - b))); 
    
    theorem :: 
    
    XCMPLX_1:142
    
    (
    - (a 
    - b)) 
    = (b 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:143
    
    ((
    - a) 
    - b) 
    = (( 
    - b) 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:144
    
    a
    = (( 
    - b) 
    - (( 
    - a) 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:145
    
    (((
    - a) 
    - b) 
    - c) 
    = ((( 
    - a) 
    - c) 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:146
    
    (((
    - a) 
    - b) 
    - c) 
    = ((( 
    - b) 
    - c) 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:147
    
    (((
    - a) 
    - b) 
    - c) 
    = ((( 
    - c) 
    - b) 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:148
    
    ((c
    - a) 
    - (c 
    - b)) 
    = ( 
    - (a 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:149
    
    (
    0  
    - a) 
    = ( 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:150
    
    (a
    + b) 
    = (a 
    - ( 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:151
    
    a
    = (a 
    - (b 
    + ( 
    - b))); 
    
    theorem :: 
    
    XCMPLX_1:152
    
    (a
    - c) 
    = (b 
    + ( 
    - c)) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:153
    
    (c
    - a) 
    = (c 
    + ( 
    - b)) implies a 
    = b; 
    
    theorem :: 
    
    XCMPLX_1:154
    
    ((a
    + b) 
    - c) 
    = ((( 
    - c) 
    + a) 
    + b); 
    
    theorem :: 
    
    XCMPLX_1:155
    
    ((a
    - b) 
    + c) 
    = ((( 
    - b) 
    + c) 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:156
    
    (a
    - (( 
    - b) 
    - c)) 
    = ((a 
    + b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:157
    
    ((a
    - b) 
    - c) 
    = ((( 
    - b) 
    - c) 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:158
    
    ((a
    - b) 
    - c) 
    = ((( 
    - c) 
    + a) 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:159
    
    ((a
    - b) 
    - c) 
    = ((( 
    - c) 
    - b) 
    + a); 
    
    theorem :: 
    
    XCMPLX_1:160
    
    (
    - (a 
    + b)) 
    = (( 
    - b) 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:161
    
    (
    - (a 
    - b)) 
    = (( 
    - a) 
    + b); 
    
    theorem :: 
    
    XCMPLX_1:162
    
    (
    - (( 
    - a) 
    + b)) 
    = (a 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:163
    
    (a
    + b) 
    = ( 
    - (( 
    - a) 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:164
    
    (((
    - a) 
    + b) 
    - c) 
    = ((( 
    - c) 
    + b) 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:165
    
    (((
    - a) 
    + b) 
    - c) 
    = ((( 
    - c) 
    - a) 
    + b); 
    
    theorem :: 
    
    XCMPLX_1:166
    
    (
    - ((a 
    + b) 
    + c)) 
    = ((( 
    - a) 
    - b) 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:167
    
    (
    - ((a 
    + b) 
    - c)) 
    = ((( 
    - a) 
    - b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:168
    
    (
    - ((a 
    - b) 
    + c)) 
    = ((( 
    - a) 
    + b) 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:169
    
    (
    - ((a 
    - b) 
    - c)) 
    = ((( 
    - a) 
    + b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:170
    
    (
    - ((( 
    - a) 
    + b) 
    + c)) 
    = ((a 
    - b) 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:171
    
    (
    - ((( 
    - a) 
    + b) 
    - c)) 
    = ((a 
    - b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:172
    
    (
    - ((( 
    - a) 
    - b) 
    + c)) 
    = ((a 
    + b) 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:173
    
    (
    - ((( 
    - a) 
    - b) 
    - c)) 
    = ((a 
    + b) 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:174
    
    ((
    - a) 
    * b) 
    = ( 
    - (a 
    * b)); 
    
    theorem :: 
    
    XCMPLX_1:175
    
    ((
    - a) 
    * b) 
    = (a 
    * ( 
    - b)); 
    
    theorem :: 
    
    XCMPLX_1:176
    
    ((
    - a) 
    * ( 
    - b)) 
    = (a 
    * b); 
    
    theorem :: 
    
    XCMPLX_1:177
    
    (
    - (a 
    * ( 
    - b))) 
    = (a 
    * b); 
    
    theorem :: 
    
    XCMPLX_1:178
    
    (
    - (( 
    - a) 
    * b)) 
    = (a 
    * b); 
    
    theorem :: 
    
    XCMPLX_1:179
    
    ((
    - 1) 
    * a) 
    = ( 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:180
    
    ((
    - a) 
    * ( 
    - 1)) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:181
    
    
    
    
    
    Th181: b 
    <>  
    0 & (a 
    * b) 
    = ( 
    - b) implies a 
    = ( 
    - 1) 
    
    proof
    
      assume that
    
      
    
    A1: b 
    <>  
    0 and 
    
      
    
    A2: (a 
    * b) 
    = ( 
    - b); 
    
      (a
    * (b 
    * (b 
    " ))) 
    = (( 
    - b) 
    * (b 
    " )) by 
    A2,
    Th4;
    
      then (a
    * 1) 
    = (( 
    - b) 
    * (b 
    " )) by 
    A1,
    XCMPLX_0:def 7;
    
      
    
      hence a
    = ( 
    - (b 
    * (b 
    " ))) 
    
      .= (
    - 1) by 
    A1,
    XCMPLX_0:def 7;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:182
    
    
    
    
    
    Th182: (a 
    * a) 
    = 1 implies a 
    = 1 or a 
    = ( 
    - 1) 
    
    proof
    
      assume (a
    * a) 
    = 1; 
    
      then ((a
    - 1) 
    * (a 
    + 1)) 
    =  
    0 ; 
    
      then (a
    - 1) 
    =  
    0 or (a 
    + 1) 
    =  
    0 ; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:183
    
    ((
    - a) 
    + (2 
    * a)) 
    = a; 
    
    theorem :: 
    
    XCMPLX_1:184
    
    ((a
    - b) 
    * c) 
    = ((b 
    - a) 
    * ( 
    - c)); 
    
    theorem :: 
    
    XCMPLX_1:185
    
    ((a
    - b) 
    * c) 
    = ( 
    - ((b 
    - a) 
    * c)); 
    
    theorem :: 
    
    XCMPLX_1:186
    
    (a
    - (2 
    * a)) 
    = ( 
    - a); 
    
    theorem :: 
    
    XCMPLX_1:187
    
    (
    - (a 
    / b)) 
    = (( 
    - a) 
    / b) by 
    Lm17;
    
    theorem :: 
    
    XCMPLX_1:188
    
    
    
    
    
    Th188: (a 
    / ( 
    - b)) 
    = ( 
    - (a 
    / b)) 
    
    proof
    
      (a
    / ( 
    - b)) 
    = ((a 
    * ( 
    - 1)) 
    / (( 
    - b) 
    * ( 
    - 1))) by 
    Lm10;
    
      
    
      then (a
    / ( 
    - b)) 
    = (( 
    - a) 
    / (( 
    - ( 
    - b)) 
    * 1)) 
    
      .= (
    - (a 
    / b)) by 
    Lm17;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:189
    
    (
    - (a 
    / ( 
    - b))) 
    = (a 
    / b) 
    
    proof
    
      
    
      thus (
    - (a 
    / ( 
    - b))) 
    = ( 
    - ( 
    - (a 
    / b))) by 
    Th188
    
      .= (a
    / b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:190
    
    
    
    
    
    Th190: ( 
    - (( 
    - a) 
    / b)) 
    = (a 
    / b) 
    
    proof
    
      
    
      thus (
    - (( 
    - a) 
    / b)) 
    = ( 
    - ( 
    - (a 
    / b))) by 
    Lm17
    
      .= (a
    / b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:191
    
    ((
    - a) 
    / ( 
    - b)) 
    = (a 
    / b) 
    
    proof
    
      (
    - (( 
    - a) 
    / b)) 
    = (a 
    / b) by 
    Th190;
    
      hence thesis by
    Th188;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:192
    
    ((
    - a) 
    / b) 
    = (a 
    / ( 
    - b)) 
    
    proof
    
      
    
      thus ((
    - a) 
    / b) 
    = ( 
    - (a 
    / b)) by 
    Lm17
    
      .= (a
    / ( 
    - b)) by 
    Th188;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:193
    
    (
    - a) 
    = (a 
    / ( 
    - 1)); 
    
    theorem :: 
    
    XCMPLX_1:194
    
    a
    = (( 
    - a) 
    / ( 
    - 1)); 
    
    theorem :: 
    
    XCMPLX_1:195
    
    (a
    / b) 
    = ( 
    - 1) implies a 
    = ( 
    - b) & b 
    = ( 
    - a) 
    
    proof
    
      assume
    
      
    
    A1: (a 
    / b) 
    = ( 
    - 1); 
    
      then b
    <>  
    0 by 
    Th49;
    
      then a
    = (( 
    - 1) 
    * b) by 
    A1,
    Lm3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:196
    
    b
    <>  
    0 & (b 
    / a) 
    = ( 
    - b) implies a 
    = ( 
    - 1) 
    
    proof
    
      assume that
    
      
    
    A1: b 
    <>  
    0 and 
    
      
    
    A2: (b 
    / a) 
    = ( 
    - b); 
    
      a
    <>  
    0 by 
    A1,
    A2,
    Th49;
    
      then b
    = (( 
    - b) 
    * a) by 
    A2,
    Lm3;
    
      then b
    = ( 
    - (b 
    * a)); 
    
      hence thesis by
    A1,
    A2,
    Th181;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:197
    
    a
    <>  
    0 implies (( 
    - a) 
    / a) 
    = ( 
    - 1) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      thus ((
    - a) 
    / a) 
    = ( 
    - (a 
    / a)) by 
    Lm17
    
      .= (
    - 1) by 
    A1,
    Lm5;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:198
    
    a
    <>  
    0 implies (a 
    / ( 
    - a)) 
    = ( 
    - 1) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      
    
      thus (a
    / ( 
    - a)) 
    = ( 
    - (a 
    / a)) by 
    Th188
    
      .= (
    - 1) by 
    A1,
    Lm5;
    
    end;
    
    
    
    
    
    Lm18: a 
    <>  
    0 & a 
    = (a 
    " ) implies a 
    = 1 or a 
    = ( 
    - 1) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      assume a
    = (a 
    " ); 
    
      then (a
    * a) 
    = 1 by 
    A1,
    XCMPLX_0:def 7;
    
      hence thesis by
    Th182;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:199
    
    a
    <>  
    0 & a 
    = (1 
    / a) implies a 
    = 1 or a 
    = ( 
    - 1) 
    
    proof
    
      assume a
    <>  
    0 ; 
    
      then a
    = (a 
    " ) implies a 
    = 1 or a 
    = ( 
    - 1) by 
    Lm18;
    
      hence thesis by
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:200
    
    b
    <>  
    0 & d 
    <>  
    0 & b 
    <> ( 
    - d) & (a 
    / b) 
    = (e 
    / d) implies (a 
    / b) 
    = ((a 
    + e) 
    / (b 
    + d)) 
    
    proof
    
      assume that
    
      
    
    A1: b 
    <>  
    0 and 
    
      
    
    A2: d 
    <>  
    0 and 
    
      
    
    A3: b 
    <> ( 
    - d) and 
    
      
    
    A4: (a 
    / b) 
    = (e 
    / d); 
    
      (a
    * d) 
    = (e 
    * b) by 
    A1,
    A2,
    A4,
    Th95;
    
      then
    
      
    
    A5: (a 
    * (b 
    + d)) 
    = ((a 
    + e) 
    * b); 
    
      (b
    + d) 
    <>  
    0 by 
    A3;
    
      hence thesis by
    A1,
    A5,
    Th94;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:201
    
    (a
    " ) 
    = (b 
    " ) implies a 
    = b by 
    Lm12;
    
    theorem :: 
    
    XCMPLX_1:202
    
    (
    0  
    " ) 
    =  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:203
    
    b
    <>  
    0 implies a 
    = ((a 
    * b) 
    * (b 
    " )) 
    
    proof
    
      
    
      
    
    A1: (a 
    * (b 
    * (b 
    " ))) 
    = ((a 
    * b) 
    * (b 
    " )); 
    
      assume b
    <>  
    0 ; 
    
      then (a
    * 1) 
    = ((a 
    * b) 
    * (b 
    " )) by 
    A1,
    XCMPLX_0:def 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:204
    
    ((a
    " ) 
    * (b 
    " )) 
    = ((a 
    * b) 
    " ) by 
    Lm1;
    
    theorem :: 
    
    XCMPLX_1:205
    
    ((a
    * (b 
    " )) 
    " ) 
    = ((a 
    " ) 
    * b) by 
    Lm11;
    
    theorem :: 
    
    XCMPLX_1:206
    
    (((a
    " ) 
    * (b 
    " )) 
    " ) 
    = (a 
    * b) 
    
    proof
    
      
    
      thus (((a
    " ) 
    * (b 
    " )) 
    " ) 
    = (((a 
    " ) 
    " ) 
    * ((b 
    " ) 
    " )) by 
    Lm1
    
      .= (a
    * b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:207
    
    a
    <>  
    0 & b 
    <>  
    0 implies (a 
    * (b 
    " )) 
    <>  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:208
    
    a
    <>  
    0 & b 
    <>  
    0 implies ((a 
    " ) 
    * (b 
    " )) 
    <>  
    0 ; 
    
    theorem :: 
    
    XCMPLX_1:209
    
    (a
    * (b 
    " )) 
    = 1 implies a 
    = b 
    
    proof
    
      assume (a
    * (b 
    " )) 
    = 1; 
    
      then (a
    / b) 
    = 1 by 
    XCMPLX_0:def 9;
    
      hence thesis by
    Th58;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:210
    
    (a
    * b) 
    = 1 implies a 
    = (b 
    " ) 
    
    proof
    
      assume
    
      
    
    A1: (a 
    * b) 
    = 1; 
    
      then b
    <>  
    0 ; 
    
      hence thesis by
    A1,
    XCMPLX_0:def 7;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:211
    
    
    
    
    
    Th211: a 
    <>  
    0 & b 
    <>  
    0 implies ((a 
    " ) 
    + (b 
    " )) 
    = ((a 
    + b) 
    * ((a 
    * b) 
    " )) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: b 
    <>  
    0 ; 
    
      (b
    " ) 
    = ((b 
    " ) 
    * 1); 
    
      then (b
    " ) 
    = ((b 
    " ) 
    * ((a 
    " ) 
    * a)) by 
    A1,
    XCMPLX_0:def 7;
    
      then (b
    " ) 
    = (((a 
    " ) 
    * (b 
    " )) 
    * a); 
    
      then
    
      
    
    A3: (b 
    " ) 
    = (((a 
    * b) 
    " ) 
    * a) by 
    Lm1;
    
      (a
    " ) 
    = ((a 
    " ) 
    * 1); 
    
      then (a
    " ) 
    = ((a 
    " ) 
    * ((b 
    " ) 
    * b)) by 
    A2,
    XCMPLX_0:def 7;
    
      then (a
    " ) 
    = (((a 
    " ) 
    * (b 
    " )) 
    * b); 
    
      then (a
    " ) 
    = (((a 
    * b) 
    " ) 
    * b) by 
    Lm1;
    
      hence thesis by
    A3;
    
    end;
    
    
    
    
    
    Lm19: (( 
    - a) 
    " ) 
    = ( 
    - (a 
    " )) 
    
    proof
    
      
    
      thus ((
    - a) 
    " ) 
    = (1 
    / ( 
    - a)) by 
    Lm4
    
      .= (
    - (1 
    / a)) by 
    Th188
    
      .= (
    - (a 
    " )) by 
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:212
    
    a
    <>  
    0 & b 
    <>  
    0 implies ((a 
    " ) 
    - (b 
    " )) 
    = ((b 
    - a) 
    * ((a 
    * b) 
    " )) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 & b 
    <>  
    0 ; 
    
      
    
      thus ((a
    " ) 
    - (b 
    " )) 
    = ((a 
    " ) 
    + ( 
    - (b 
    " ))) 
    
      .= ((a
    " ) 
    + (( 
    - b) 
    " )) by 
    Lm19
    
      .= ((a
    + ( 
    - b)) 
    * ((a 
    * ( 
    - b)) 
    " )) by 
    A1,
    Th211
    
      .= ((a
    + ( 
    - b)) 
    * (( 
    - (a 
    * b)) 
    " )) 
    
      .= ((a
    + ( 
    - b)) 
    * ( 
    - ((a 
    * b) 
    " ))) by 
    Lm19
    
      .= ((b
    - a) 
    * ((a 
    * b) 
    " )); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:213
    
    ((a
    / b) 
    " ) 
    = (b 
    / a) by 
    Lm7;
    
    theorem :: 
    
    XCMPLX_1:214
    
    ((a
    " ) 
    / (b 
    " )) 
    = (b 
    / a) 
    
    proof
    
      
    
      thus ((a
    " ) 
    / (b 
    " )) 
    = ((a 
    " ) 
    * ((b 
    " ) 
    " )) by 
    XCMPLX_0:def 9
    
      .= (b
    / a) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:215
    
    (1
    / a) 
    = (a 
    " ) by 
    Lm4;
    
    theorem :: 
    
    XCMPLX_1:216
    
    (1
    / (a 
    " )) 
    = a by 
    Lm16;
    
    theorem :: 
    
    XCMPLX_1:217
    
    ((1
    / a) 
    " ) 
    = a 
    
    proof
    
      (1
    / a) 
    = (a 
    " ) implies ((1 
    / a) 
    " ) 
    = a; 
    
      hence thesis by
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:218
    
    (1
    / a) 
    = (b 
    " ) implies a 
    = b 
    
    proof
    
      (1
    / a) 
    = (1 
    / b) implies a 
    = b by 
    Th59;
    
      hence thesis by
    Lm4;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:219
    
    (a
    / (b 
    " )) 
    = (a 
    * b) 
    
    proof
    
      
    
      thus (a
    / (b 
    " )) 
    = (a 
    * ((b 
    " ) 
    " )) by 
    XCMPLX_0:def 9
    
      .= (a
    * b); 
    
    end;
    
    theorem :: 
    
    XCMPLX_1:220
    
    ((a
    " ) 
    * (c 
    / b)) 
    = (c 
    / (a 
    * b)) 
    
    proof
    
      
    
      thus ((a
    " ) 
    * (c 
    / b)) 
    = ((a 
    " ) 
    * (c 
    * (b 
    " ))) by 
    XCMPLX_0:def 9
    
      .= (c
    * ((a 
    " ) 
    * (b 
    " ))) 
    
      .= (c
    * ((a 
    * b) 
    " )) by 
    Lm1
    
      .= (c
    / (a 
    * b)) by 
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:221
    
    ((a
    " ) 
    / b) 
    = ((a 
    * b) 
    " ) 
    
    proof
    
      
    
      thus ((a
    " ) 
    / b) 
    = ((a 
    " ) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((a
    * b) 
    " ) by 
    Lm1;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:222
    
    ((
    - a) 
    " ) 
    = ( 
    - (a 
    " )) by 
    Lm19;
    
    theorem :: 
    
    XCMPLX_1:223
    
    a
    <>  
    0 & a 
    = (a 
    " ) implies a 
    = 1 or a 
    = ( 
    - 1) by 
    Lm18;
    
    begin
    
    theorem :: 
    
    XCMPLX_1:224
    
    (((a
    + b) 
    + c) 
    - b) 
    = (a 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:225
    
    (((a
    - b) 
    + c) 
    + b) 
    = (a 
    + c); 
    
    theorem :: 
    
    XCMPLX_1:226
    
    (((a
    + b) 
    - c) 
    - b) 
    = (a 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:227
    
    (((a
    - b) 
    - c) 
    + b) 
    = (a 
    - c); 
    
    theorem :: 
    
    XCMPLX_1:228
    
    ((a
    - a) 
    - b) 
    = ( 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:229
    
    (((
    - a) 
    + a) 
    - b) 
    = ( 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:230
    
    ((a
    - b) 
    - a) 
    = ( 
    - b); 
    
    theorem :: 
    
    XCMPLX_1:231
    
    (((
    - a) 
    - b) 
    + a) 
    = ( 
    - b); 
    
    begin
    
    theorem :: 
    
    XCMPLX_1:232
    
    for a, b st b
    <>  
    0 holds ex e st a 
    = (b 
    / e) 
    
    proof
    
      let a, b;
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      per cases ;
    
        suppose
    
        
    
    A2: a 
    =  
    0 ; 
    
        take
    0 ; 
    
        (b
    /  
    0 ) 
    = (b 
    * ( 
    0  
    " )) by 
    XCMPLX_0:def 9;
    
        hence thesis by
    A2;
    
      end;
    
        suppose
    
        
    
    A3: a 
    <>  
    0 ; 
    
        take e = (b
    / a); 
    
        
    
        thus a
    = (a 
    * 1) 
    
        .= (a
    * (e 
    * (e 
    " ))) by 
    A1,
    A3,
    XCMPLX_0:def 7
    
        .= ((a
    * e) 
    * (e 
    " )) 
    
        .= ((a
    * ((a 
    " ) 
    * b)) 
    * (e 
    " )) by 
    XCMPLX_0:def 9
    
        .= (((a
    * (a 
    " )) 
    * b) 
    * (e 
    " )) 
    
        .= ((1
    * b) 
    * (e 
    " )) by 
    A3,
    XCMPLX_0:def 7
    
        .= (b
    / e) by 
    XCMPLX_0:def 9;
    
      end;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:233
    
    (a
    / ((b 
    * c) 
    * (d 
    / e))) 
    = ((e 
    / c) 
    * (a 
    / (b 
    * d))) 
    
    proof
    
      
    
      thus (a
    / ((b 
    * c) 
    * (d 
    / e))) 
    = (a 
    / ((b 
    * c) 
    * (d 
    * (e 
    " )))) by 
    XCMPLX_0:def 9
    
      .= (a
    / (c 
    * ((b 
    * d) 
    * (e 
    " )))) 
    
      .= (a
    / (c 
    * ((b 
    * d) 
    / e))) by 
    XCMPLX_0:def 9
    
      .= (a
    / ((b 
    * d) 
    / (e 
    / c))) by 
    Th81
    
      .= ((e
    / c) 
    * (a 
    / (b 
    * d))) by 
    Th81;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:234
    
    ((((d
    - c) 
    / b) 
    * a) 
    + c) 
    = (((1 
    - (a 
    / b)) 
    * c) 
    + ((a 
    / b) 
    * d)) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: b 
    =  
    0 ; 
    
        
    
        
    
    A2: (a 
    / b) 
    = (a 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
        .= (a
    *  
    0 ) by 
    A1;
    
        
    
        thus ((((d
    - c) 
    / b) 
    * a) 
    + c) 
    = ((((d 
    - c) 
    * (b 
    " )) 
    * a) 
    + c) by 
    XCMPLX_0:def 9
    
        .= ((((d
    - c) 
    *  
    0 ) 
    * a) 
    + c) by 
    A1
    
        .= (((1
    - (a 
    / b)) 
    * c) 
    + ((a 
    / b) 
    * d)) by 
    A2;
    
      end;
    
        suppose
    
        
    
    A3: b 
    <>  
    0 ; 
    
        ((((d
    - c) 
    / b) 
    * a) 
    + c) 
    = ((((d 
    - c) 
    / b) 
    * a) 
    + (c 
    * 1)) 
    
        .= ((((d
    - c) 
    / b) 
    * a) 
    + (c 
    * (b 
    / b))) by 
    A3,
    Lm5
    
        .= ((((d
    - c) 
    / b) 
    * a) 
    + ((c 
    * b) 
    / b)) by 
    Lm8
    
        .= ((((d
    - c) 
    * a) 
    / b) 
    + ((c 
    * b) 
    / b)) by 
    Lm8
    
        .= ((((d
    - c) 
    * a) 
    + (c 
    * b)) 
    / b) by 
    Th62
    
        .= ((((b
    - a) 
    * c) 
    + (a 
    * d)) 
    / b) 
    
        .= ((((b
    - a) 
    * c) 
    / b) 
    + ((a 
    * d) 
    / b)) by 
    Th62
    
        .= ((((b
    - a) 
    * c) 
    / b) 
    + ((a 
    / b) 
    * d)) by 
    Lm8
    
        .= ((((b
    - a) 
    / b) 
    * c) 
    + ((a 
    / b) 
    * d)) by 
    Lm8
    
        .= ((((b
    / b) 
    - (a 
    / b)) 
    * c) 
    + ((a 
    / b) 
    * d)) by 
    Th120
    
        .= (((1
    - (a 
    / b)) 
    * c) 
    + ((a 
    / b) 
    * d)) by 
    A3,
    Lm5;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    XCMPLX_1:235
    
    a
    <>  
    0 implies ((a 
    * b) 
    + c) 
    = (a 
    * (b 
    + (c 
    / a))) 
    
    proof
    
      assume a
    <>  
    0 ; 
    
      
    
      hence ((a
    * b) 
    + c) 
    = ((a 
    * b) 
    + (a 
    * (c 
    / a))) by 
    Lm3
    
      .= (a
    * (b 
    + (c 
    / a))); 
    
    end;