aff_4.miz



    begin

    reserve AS for AffinSpace;

    reserve a,b,c,d,a9,b9,c9,d9,p,q,r,x,y for Element of AS;

    reserve A,C,K,M,N,P,Q,X,Y,Z for Subset of AS;

    

     Lm1: for x be set st x in X holds x is Element of AS;

    theorem :: AFF_4:1

    

     Th1: ( LIN (p,a,a9) or LIN (p,a9,a)) & p <> a implies ex b9 st LIN (p,b,b9) & (a,b) // (a9,b9)

    proof

      assume that

       A1: LIN (p,a,a9) or LIN (p,a9,a) and

       A2: p <> a;

       LIN (p,a,a9) by A1, AFF_1: 6;

      then (p,a) // (p,a9) by AFF_1:def 1;

      then (a,p) // (p,a9) by AFF_1: 4;

      then

      consider b9 such that

       A3: (b,p) // (p,b9) and

       A4: (b,a) // (a9,b9) by A2, DIRAF: 40;

      (p,b) // (p,b9) by A3, AFF_1: 4;

      then

       A5: LIN (p,b,b9) by AFF_1:def 1;

      (a,b) // (a9,b9) by A4, AFF_1: 4;

      hence thesis by A5;

    end;

    theorem :: AFF_4:2

    

     Th2: ((a,b) // A or (b,a) // A) & a in A implies b in A

    proof

      assume that

       A1: (a,b) // A or (b,a) // A and

       A2: a in A;

      (a,b) // A & A is being_line by A1, AFF_1: 26, AFF_1: 34;

      hence thesis by A2, AFF_1: 23;

    end;

    theorem :: AFF_4:3

    

     Th3: ((a,b) // A or (b,a) // A) & A // K implies (a,b) // K & (b,a) // K

    proof

      assume that

       A1: (a,b) // A or (b,a) // A and

       A2: A // K;

      (a,b) // A by A1, AFF_1: 34;

      hence (a,b) // K by A2, AFF_1: 43;

      hence thesis by AFF_1: 34;

    end;

    theorem :: AFF_4:4

    

     Th4: ((a,b) // A or (b,a) // A) & ((a,b) // (c,d) or (c,d) // (a,b)) & a <> b implies (c,d) // A & (d,c) // A

    proof

      assume that

       A1: ((a,b) // A or (b,a) // A) & ((a,b) // (c,d) or (c,d) // (a,b)) and

       A2: a <> b;

      (a,b) // A & (a,b) // (c,d) by A1, AFF_1: 4, AFF_1: 34;

      hence (c,d) // A by A2, AFF_1: 32;

      hence thesis by AFF_1: 34;

    end;

    theorem :: AFF_4:5

    ((a,b) // M or (b,a) // M) & ((a,b) // N or (b,a) // N) & a <> b implies M // N

    proof

      assume that

       A1: ((a,b) // M or (b,a) // M) & ((a,b) // N or (b,a) // N) and

       A2: a <> b;

      (a,b) // M & (a,b) // N by A1, AFF_1: 34;

      hence thesis by A2, AFF_1: 53;

    end;

    theorem :: AFF_4:6

    ((a,b) // M or (b,a) // M) & ((c,d) // M or (d,c) // M) implies (a,b) // (c,d)

    proof

      assume ((a,b) // M or (b,a) // M) & ((c,d) // M or (d,c) // M);

      then

       A1: (a,b) // M & (c,d) // M by AFF_1: 34;

      then M is being_line by AFF_1: 26;

      hence thesis by A1, AFF_1: 31;

    end;

    theorem :: AFF_4:7

    

     Th7: (A // C or C // A) & a <> b & ((a,b) // (c,d) or (c,d) // (a,b)) & a in A & b in A & c in C implies d in C

    proof

      assume that

       A1: A // C or C // A and

       A2: a <> b & ((a,b) // (c,d) or (c,d) // (a,b)) and

       A3: a in A & b in A and

       A4: c in C;

      A is being_line by A1, AFF_1: 36;

      then (a,b) // A by A3, AFF_1: 52;

      then (c,d) // A by A2, Th4;

      then (c,d) // C by A1, Th3;

      hence thesis by A4, Th2;

    end;

    

     Lm2: A // K & a in A & a9 in A & d in K implies ex d9 st d9 in K & (a,d) // (a9,d9)

    proof

      assume that

       A1: A // K and

       A2: a in A & a9 in A and

       A3: d in K;

      

       A4: A is being_line by A1, AFF_1: 36;

      now

        assume

         A5: a <> a9;

        consider d9 such that

         A6: (a,a9) // (d,d9) and

         A7: (a,d) // (a9,d9) by DIRAF: 40;

        (d,d9) // (a,a9) by A6, AFF_1: 4;

        then (d,d9) // A by A2, A4, A5, AFF_1: 27;

        then (d,d9) // K by A1, Th3;

        then d9 in K by A3, Th2;

        hence thesis by A7;

      end;

      hence thesis by A3, AFF_1: 2;

    end;

    theorem :: AFF_4:8

    

     Th8: q in M & q in N & a in M & b in N & b9 in N & q <> a & q <> b & M <> N & ((a,b) // (a9,b9) or (b,a) // (b9,a9)) & M is being_line & N is being_line & q = a9 implies q = b9

    proof

      assume that

       A1: q in M and

       A2: q in N and

       A3: a in M and

       A4: b in N and

       A5: b9 in N and

       A6: q <> a and

       A7: q <> b & M <> N and

       A8: (a,b) // (a9,b9) or (b,a) // (b9,a9) and

       A9: M is being_line and

       A10: N is being_line and

       A11: q = a9;

      

       A12: not LIN (q,a,b)

      proof

        assume not thesis;

        then

        consider A such that

         A13: A is being_line & q in A and

         A14: a in A and

         A15: b in A by AFF_1: 21;

        M = A by A1, A3, A6, A9, A13, A14, AFF_1: 18;

        hence contradiction by A2, A4, A7, A10, A13, A15, AFF_1: 18;

      end;

       LIN (q,b,b9) & (a,b) // (a9,b9) by A2, A4, A5, A8, A10, AFF_1: 4, AFF_1: 21;

      hence thesis by A11, A12, AFF_1: 55;

    end;

    theorem :: AFF_4:9

    

     Th9: q in M & q in N & a in M & a9 in M & b in N & b9 in N & q <> a & q <> b & M <> N & ((a,b) // (a9,b9) or (b,a) // (b9,a9)) & M is being_line & N is being_line & a = a9 implies b = b9

    proof

      assume that

       A1: q in M and

       A2: q in N and

       A3: a in M and

       A4: a9 in M and

       A5: b in N and

       A6: b9 in N and

       A7: q <> a and

       A8: q <> b & M <> N and

       A9: (a,b) // (a9,b9) or (b,a) // (b9,a9) and

       A10: M is being_line and

       A11: N is being_line and

       A12: a = a9;

      

       A13: (a,b) // (a9,b) & (a,b) // (a9,b9) by A9, A12, AFF_1: 2, AFF_1: 4;

      

       A14: not LIN (q,a,b)

      proof

        assume not thesis;

        then

        consider A such that

         A15: A is being_line & q in A and

         A16: a in A and

         A17: b in A by AFF_1: 21;

        M = A by A1, A3, A7, A10, A15, A16, AFF_1: 18;

        hence contradiction by A2, A5, A8, A11, A15, A17, AFF_1: 18;

      end;

      

       A18: LIN (q,b,b) by AFF_1: 7;

       LIN (q,a,a9) & LIN (q,b,b9) by A1, A2, A3, A4, A5, A6, A10, A11, AFF_1: 21;

      hence thesis by A14, A18, A13, AFF_1: 56;

    end;

    theorem :: AFF_4:10

    

     Th10: (M // N or N // M) & a in M & b in N & b9 in N & M <> N & ((a,b) // (a9,b9) or (b,a) // (b9,a9)) & a = a9 implies b = b9

    proof

      assume that

       A1: M // N or N // M and

       A2: a in M and

       A3: b in N & b9 in N and

       A4: M <> N and

       A5: ((a,b) // (a9,b9) or (b,a) // (b9,a9)) & a = a9;

      (a,b) // (a,b9) by A5, AFF_1: 4;

      then LIN (a,b,b9) by AFF_1:def 1;

      then

       A6: LIN (b,b9,a) by AFF_1: 6;

      assume

       A7: b <> b9;

      N is being_line by A1, AFF_1: 36;

      then a in N by A3, A6, A7, AFF_1: 25;

      hence contradiction by A1, A2, A4, AFF_1: 45;

    end;

    theorem :: AFF_4:11

    

     Th11: ex A st a in A & b in A & A is being_line

    proof

       LIN (a,b,b) by AFF_1: 7;

      then ex A st A is being_line & a in A & b in A & b in A by AFF_1: 21;

      hence thesis;

    end;

    theorem :: AFF_4:12

    

     Th12: A is being_line implies ex q st not q in A

    proof

      assume

       A1: A is being_line;

      then

      consider a, b such that

       A2: a in A & b in A and

       A3: a <> b by AFF_1: 19;

      consider q such that

       A4: not LIN (a,b,q) by A3, AFF_1: 13;

       not q in A by A1, A2, A4, AFF_1: 21;

      hence thesis;

    end;

    definition

      let AS, K, P;

      :: AFF_4:def1

      func Plane (K,P) -> Subset of AS equals { a : ex b st (a,b) // K & b in P };

      coherence

      proof

        set X = { a : ex b st (a,b) // K & b in P };

        now

          let x be object;

          assume x in X;

          then ex a st a = x & ex b st (a,b) // K & b in P;

          hence x in the carrier of AS;

        end;

        hence thesis by TARSKI:def 3;

      end;

    end

    definition

      let AS, X;

      :: AFF_4:def2

      attr X is being_plane means ex K, P st K is being_line & P is being_line & not K // P & X = ( Plane (K,P));

    end

    

     Lm3: for q holds (q in ( Plane (K,P)) iff ex b st (q,b) // K & b in P)

    proof

      let q;

      now

        assume q in ( Plane (K,P));

        then ex a st a = q & ex b st (a,b) // K & b in P;

        hence ex b st (q,b) // K & b in P;

      end;

      hence thesis;

    end;

    theorem :: AFF_4:13

     not K is being_line implies ( Plane (K,P)) = {}

    proof

      assume

       A1: not K is being_line;

      set x = the Element of ( Plane (K,P));

      assume ( Plane (K,P)) <> {} ;

      then x in ( Plane (K,P));

      then ex a st x = a & ex b st (a,b) // K & b in P;

      hence contradiction by A1, AFF_1: 26;

    end;

    theorem :: AFF_4:14

    

     Th14: K is being_line implies P c= ( Plane (K,P))

    proof

      assume

       A1: K is being_line;

      let x be object;

      assume

       A2: x in P;

      then

      reconsider a = x as Element of AS;

      (a,a) // K by A1, AFF_1: 33;

      hence x in ( Plane (K,P)) by A2;

    end;

    theorem :: AFF_4:15

    K // P implies ( Plane (K,P)) = P

    proof

      set X = ( Plane (K,P));

      assume

       A1: K // P;

      then

       A2: P is being_line by AFF_1: 36;

      now

        let x be object;

        assume x in X;

        then

        consider a such that

         A3: x = a and

         A4: ex b st (a,b) // K & b in P;

        consider b such that

         A5: (a,b) // K and

         A6: b in P by A4;

        (a,b) // P by A1, A5, AFF_1: 43;

        then (b,a) // P by AFF_1: 34;

        hence x in P by A2, A3, A6, AFF_1: 23;

      end;

      then

       A7: X c= P;

      K is being_line by A1, AFF_1: 36;

      then P c= X by Th14;

      hence thesis by A7, XBOOLE_0:def 10;

    end;

    theorem :: AFF_4:16

    

     Th16: K // M implies ( Plane (K,P)) = ( Plane (M,P))

    proof

      assume

       A1: K // M;

      now

        let x be object;

         A2:

        now

          assume x in ( Plane (M,P));

          then

          consider a such that

           A3: x = a and

           A4: ex b st (a,b) // M & b in P;

          consider b such that

           A5: (a,b) // M and

           A6: b in P by A4;

          (a,b) // K by A1, A5, AFF_1: 43;

          hence x in ( Plane (K,P)) by A3, A6;

        end;

        now

          assume x in ( Plane (K,P));

          then

          consider a such that

           A7: x = a and

           A8: ex b st (a,b) // K & b in P;

          consider b such that

           A9: (a,b) // K and

           A10: b in P by A8;

          (a,b) // M by A1, A9, AFF_1: 43;

          hence x in ( Plane (M,P)) by A7, A10;

        end;

        hence x in ( Plane (K,P)) iff x in ( Plane (M,P)) by A2;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: AFF_4:17

    p in M & a in M & b in M & p in N & a9 in N & b9 in N & not p in P & not p in Q & M <> N & a in P & a9 in P & b in Q & b9 in Q & M is being_line & N is being_line & P is being_line & Q is being_line implies (P // Q or ex q st q in P & q in Q)

    proof

      assume that

       A1: p in M and

       A2: a in M and

       A3: b in M and

       A4: p in N and

       A5: a9 in N and

       A6: b9 in N and

       A7: not p in P and

       A8: not p in Q and

       A9: M <> N and

       A10: a in P and

       A11: a9 in P and

       A12: b in Q and

       A13: b9 in Q and

       A14: M is being_line and

       A15: N is being_line and

       A16: P is being_line and

       A17: Q is being_line;

      

       A18: a <> a9 by A1, A2, A4, A5, A7, A9, A10, A14, A15, AFF_1: 18;

       LIN (p,a,b) by A1, A2, A3, A14, AFF_1: 21;

      then

      consider c such that

       A19: LIN (p,a9,c) and

       A20: (a,a9) // (b,c) by A7, A10, Th1;

      set D = ( Line (b,c));

      

       A21: b in D by AFF_1: 15;

      

       A22: c in D by AFF_1: 15;

      

       A23: b <> b9 by A1, A3, A4, A6, A8, A9, A12, A14, A15, AFF_1: 18;

      

       A24: c in N by A4, A5, A7, A11, A15, A19, AFF_1: 25;

      then

       A25: b <> c by A1, A3, A4, A8, A9, A12, A14, A15, AFF_1: 18;

      then

       A26: D is being_line by AFF_1:def 3;

      now

        assume D <> Q;

        then

         A27: c <> b9 by A12, A13, A17, A23, A26, A21, A22, AFF_1: 18;

         LIN (b9,c,a9) by A5, A6, A15, A24, AFF_1: 21;

        then

        consider q such that

         A28: LIN (b9,b,q) and

         A29: (c,b) // (a9,q) by A27, Th1;

        (a9,a) // (c,b) by A20, AFF_1: 4;

        then (a9,a) // (a9,q) by A25, A29, AFF_1: 5;

        then LIN (a9,a,q) by AFF_1:def 1;

        then

         A30: q in P by A10, A11, A16, A18, AFF_1: 25;

        q in Q by A12, A13, A17, A23, A28, AFF_1: 25;

        hence ex q st q in P & q in Q by A30;

      end;

      hence thesis by A10, A11, A12, A16, A17, A18, A20, A25, A22, AFF_1: 38;

    end;

    theorem :: AFF_4:18

    

     Th18: a in M & b in M & a9 in N & b9 in N & a in P & a9 in P & b in Q & b9 in Q & M <> N & M // N & P is being_line & Q is being_line implies (P // Q or ex q st q in P & q in Q)

    proof

      assume that

       A1: a in M and

       A2: b in M and

       A3: a9 in N and

       A4: b9 in N and

       A5: a in P and

       A6: a9 in P and

       A7: b in Q and

       A8: b9 in Q and

       A9: M <> N and

       A10: M // N and

       A11: P is being_line and

       A12: Q is being_line;

      

       A13: a <> a9 by A1, A3, A9, A10, AFF_1: 45;

      

       A14: N is being_line by A10, AFF_1: 36;

      

       A15: b <> b9 by A2, A4, A9, A10, AFF_1: 45;

      

       A16: M is being_line by A10, AFF_1: 36;

      now

        assume

         A17: a <> b;

        consider c such that

         A18: (a,b) // (a9,c) and

         A19: (a,a9) // (b,c) by DIRAF: 40;

        set D = ( Line (b,c));

        

         A20: b in D by AFF_1: 15;

        

         A21: c in D by AFF_1: 15;

        (a,b) // N by A1, A2, A10, A16, AFF_1: 43, AFF_1: 52;

        then (a9,c) // N by A17, A18, AFF_1: 32;

        then

         A22: c in N by A3, A14, AFF_1: 23;

        then

         A23: b <> c by A2, A9, A10, AFF_1: 45;

        then

         A24: D is being_line by AFF_1:def 3;

        now

          assume D <> Q;

          then

           A25: c <> b9 by A7, A8, A12, A15, A24, A20, A21, AFF_1: 18;

           LIN (b9,c,a9) by A3, A4, A14, A22, AFF_1: 21;

          then

          consider q such that

           A26: LIN (b9,b,q) and

           A27: (c,b) // (a9,q) by A25, Th1;

          (a9,a) // (c,b) by A19, AFF_1: 4;

          then (a9,a) // (a9,q) by A23, A27, AFF_1: 5;

          then LIN (a9,a,q) by AFF_1:def 1;

          then

           A28: q in P by A5, A6, A11, A13, AFF_1: 25;

          q in Q by A7, A8, A12, A15, A26, AFF_1: 25;

          hence ex q st q in P & q in Q by A28;

        end;

        hence thesis by A5, A6, A7, A11, A12, A13, A19, A23, A21, AFF_1: 38;

      end;

      hence thesis by A5, A7;

    end;

    

     Lm4: a in Q & a in ( Plane (K,P)) & K // Q implies Q c= ( Plane (K,P))

    proof

      assume that

       A1: a in Q and

       A2: a in ( Plane (K,P)) and

       A3: K // Q;

      

       A4: ( Plane (K,P)) = ( Plane (Q,P)) by A3, Th16;

      let x be object such that

       A5: x in Q;

      reconsider c = x as Element of AS by A5;

      

       A6: Q is being_line by A3, AFF_1: 36;

      consider b such that

       A7: (a,b) // K and

       A8: b in P by A2, Lm3;

      (a,b) // Q by A3, A7, AFF_1: 43;

      then b in Q by A1, A6, AFF_1: 23;

      then (c,b) // Q by A5, A6, AFF_1: 23;

      hence x in ( Plane (K,P)) by A8, A4;

    end;

    

     Lm5: K is being_line & P is being_line & Q is being_line & a in ( Plane (K,P)) & b in ( Plane (K,P)) & a <> b & a in Q & b in Q implies Q c= ( Plane (K,P))

    proof

      assume that

       A1: K is being_line and

       A2: P is being_line and

       A3: Q is being_line and

       A4: a in ( Plane (K,P)) and

       A5: b in ( Plane (K,P)) and

       A6: a <> b and

       A7: a in Q and

       A8: b in Q;

      let x be object;

      assume

       A9: x in Q;

      then

      reconsider c = x as Element of AS;

      consider a9 such that

       A10: (a,a9) // K and

       A11: a9 in P by A4, Lm3;

      consider Y such that

       A12: b in Y and

       A13: K // Y by A1, AFF_1: 49;

      consider X such that

       A14: a in X and

       A15: K // X by A1, AFF_1: 49;

      consider b9 such that

       A16: (b,b9) // K and

       A17: b9 in P by A5, Lm3;

      (b,b9) // Y by A16, A13, AFF_1: 43;

      then

       A18: b9 in Y by A12, Th2;

      (a,a9) // X by A10, A15, AFF_1: 43;

      then

       A19: a9 in X by A14, Th2;

      

       A20: X // Y by A15, A13, AFF_1: 44;

       A21:

      now

         A22:

        now

          given q such that

           A23: q in P and

           A24: q in Q and

           A25: not P // Q;

          

           A26: P <> Q by A2, A25, AFF_1: 41;

           A27:

          now

            assume

             A28: q <> b;

            then

             A29: b <> b9 by A2, A3, A8, A17, A23, A24, A26, AFF_1: 18;

             A30:

            now

              

               A31: (q,b9) // P by A2, A17, A23, AFF_1: 23;

               LIN (q,b,c) by A3, A8, A9, A24, AFF_1: 21;

              then

              consider c9 such that

               A32: LIN (q,b9,c9) and

               A33: (b,b9) // (c,c9) by A28, Th1;

              assume

               A34: q <> b9;

              (q,b9) // (q,c9) by A32, AFF_1:def 1;

              then (q,c9) // P by A34, A31, AFF_1: 32;

              then

               A35: c9 in P by A23, Th2;

              (c,c9) // K by A16, A29, A33, AFF_1: 32;

              hence x in ( Plane (K,P)) by A35;

            end;

            now

              assume

               A36: q = b9;

              (b,q) // Q by A3, A8, A24, AFF_1: 23;

              then Q c= ( Plane (K,P)) by A4, A7, A16, A28, A36, Lm4, AFF_1: 53;

              hence x in ( Plane (K,P)) by A9;

            end;

            hence x in ( Plane (K,P)) by A30;

          end;

          now

            assume

             A37: q <> a;

            then

             A38: a <> a9 by A2, A3, A7, A11, A23, A24, A26, AFF_1: 18;

             A39:

            now

              

               A40: (q,a9) // P by A2, A11, A23, AFF_1: 23;

               LIN (q,a,c) by A3, A7, A9, A24, AFF_1: 21;

              then

              consider c9 such that

               A41: LIN (q,a9,c9) and

               A42: (a,a9) // (c,c9) by A37, Th1;

              assume

               A43: q <> a9;

              (q,a9) // (q,c9) by A41, AFF_1:def 1;

              then (q,c9) // P by A43, A40, AFF_1: 32;

              then

               A44: c9 in P by A23, Th2;

              (c,c9) // K by A10, A38, A42, AFF_1: 32;

              hence x in ( Plane (K,P)) by A44;

            end;

            now

              assume

               A45: q = a9;

              (a,q) // Q by A3, A7, A24, AFF_1: 23;

              then Q c= ( Plane (K,P)) by A4, A7, A10, A37, A45, Lm4, AFF_1: 53;

              hence x in ( Plane (K,P)) by A9;

            end;

            hence x in ( Plane (K,P)) by A39;

          end;

          hence x in ( Plane (K,P)) by A6, A27;

        end;

         A46:

        now

          assume

           A47: P // Q;

           A48:

          now

            assume P <> Q;

            then

             A49: b <> b9 by A8, A17, A47, AFF_1: 45;

            now

              assume

               A50: c <> b;

              consider c9 such that

               A51: (b,c) // (b9,c9) and

               A52: (b,b9) // (c,c9) by DIRAF: 40;

              (b,c) // Q by A3, A8, A9, AFF_1: 23;

              then (b9,c9) // Q by A50, A51, AFF_1: 32;

              then (b9,c9) // P by A47, AFF_1: 43;

              then

               A53: c9 in P by A17, Th2;

              (c,c9) // K by A16, A49, A52, AFF_1: 32;

              hence x in ( Plane (K,P)) by A53;

            end;

            hence x in ( Plane (K,P)) by A5;

          end;

          now

            assume

             A54: P = Q;

            (c,c) // K by A1, AFF_1: 33;

            hence x in ( Plane (K,P)) by A9, A54;

          end;

          hence x in ( Plane (K,P)) by A48;

        end;

        assume X <> Y;

        then P // Q or ex q st q in P & q in Q by A2, A3, A7, A8, A11, A17, A14, A12, A20, A19, A18, Th18;

        hence x in ( Plane (K,P)) by A46, A22;

      end;

      

       A55: X is being_line by A10, A15, AFF_1: 26, AFF_1: 43;

      now

        assume X = Y;

        then Q = X by A3, A6, A7, A8, A14, A12, A55, AFF_1: 18;

        then Q c= ( Plane (K,P)) by A4, A7, A15, Lm4;

        hence x in ( Plane (K,P)) by A9;

      end;

      hence x in ( Plane (K,P)) by A21;

    end;

    theorem :: AFF_4:19

    

     Th19: X is being_plane & a in X & b in X & a <> b implies ( Line (a,b)) c= X

    proof

      assume that

       A1: X is being_plane and

       A2: a in X & b in X and

       A3: a <> b;

      set Q = ( Line (a,b));

      

       A4: a in Q & b in Q by AFF_1: 15;

      Q is being_line & ex K, P st K is being_line & P is being_line & not K // P & X = ( Plane (K,P)) by A1, A3, AFF_1:def 3;

      hence thesis by A2, A3, A4, Lm5;

    end;

    

     Lm6: K is being_line & Q c= ( Plane (K,P)) implies ( Plane (K,Q)) c= ( Plane (K,P))

    proof

      assume that

       A1: K is being_line and

       A2: Q c= ( Plane (K,P));

      let x be object;

      assume x in ( Plane (K,Q));

      then

      consider a such that

       A3: x = a and

       A4: ex b st (a,b) // K & b in Q;

      consider b such that

       A5: (a,b) // K and

       A6: b in Q by A4;

      consider c such that

       A7: (b,c) // K and

       A8: c in P by A2, A6, Lm3;

      consider M such that

       A9: b in M and

       A10: K // M by A1, AFF_1: 49;

      (a,b) // M by A5, A10, AFF_1: 43;

      then

       A11: a in M by A9, Th2;

      (b,c) // M by A7, A10, AFF_1: 43;

      then c in M by A9, Th2;

      then (a,c) // K by A10, A11, AFF_1: 40;

      hence x in ( Plane (K,P)) by A3, A8;

    end;

    theorem :: AFF_4:20

    

     Th20: K is being_line & P is being_line & Q is being_line & not K // Q & Q c= ( Plane (K,P)) implies ( Plane (K,Q)) = ( Plane (K,P))

    proof

      assume that

       A1: K is being_line and

       A2: P is being_line and

       A3: Q is being_line and

       A4: not K // Q and

       A5: Q c= ( Plane (K,P));

      

       A6: ( Plane (K,Q)) c= ( Plane (K,P)) by A1, A5, Lm6;

      consider a, b such that

       A7: a in Q and

       A8: b in Q and

       A9: a <> b by A3, AFF_1: 19;

      consider b9 such that

       A10: (b,b9) // K and

       A11: b9 in P by A5, A8, Lm3;

      (b9,b) // K by A10, AFF_1: 34;

      then

       A12: b9 in ( Plane (K,Q)) by A8;

      consider a9 such that

       A13: (a,a9) // K and

       A14: a9 in P by A5, A7, Lm3;

      

       A15: a9 <> b9

      proof

        consider A such that

         A16: a9 in A and

         A17: K // A by A1, AFF_1: 49;

        (a9,a) // A by A13, A17, Th3;

        then

         A18: a in A by A16, Th2;

        assume a9 = b9;

        then (a9,b) // A by A10, A17, Th3;

        then

         A19: b in A by A16, Th2;

        A is being_line by A17, AFF_1: 36;

        hence contradiction by A3, A4, A7, A8, A9, A17, A19, A18, AFF_1: 18;

      end;

      (a9,a) // K by A13, AFF_1: 34;

      then a9 in ( Plane (K,Q)) by A7;

      then ( Plane (K,P)) c= ( Plane (K,Q)) by A1, A2, A3, A14, A11, A15, A12, Lm5, Lm6;

      hence thesis by A6, XBOOLE_0:def 10;

    end;

    theorem :: AFF_4:21

    

     Th21: K is being_line & P is being_line & Q is being_line & Q c= ( Plane (K,P)) implies P // Q or ex q st q in P & q in Q

    proof

      assume that

       A1: K is being_line and

       A2: P is being_line and

       A3: Q is being_line and

       A4: Q c= ( Plane (K,P));

      consider a, b such that

       A5: a in Q and

       A6: b in Q and

       A7: a <> b by A3, AFF_1: 19;

      consider a9 such that

       A8: (a,a9) // K and

       A9: a9 in P by A4, A5, Lm3;

      consider A such that

       A10: a9 in A and

       A11: K // A by A1, AFF_1: 49;

      

       A12: (a9,a) // A by A8, A11, Th3;

      then

       A13: a in A by A10, Th2;

      consider b9 such that

       A14: (b,b9) // K and

       A15: b9 in P by A4, A6, Lm3;

      consider M such that

       A16: b9 in M and

       A17: K // M by A1, AFF_1: 49;

      

       A18: (b9,b) // M by A14, A17, Th3;

      then

       A19: b in M by A16, Th2;

      

       A20: A is being_line by A11, AFF_1: 36;

       A21:

      now

        assume A = M;

        then

         A22: b in A by A16, A18, Th2;

        a in A by A10, A12, Th2;

        then a9 in Q by A3, A5, A6, A7, A10, A20, A22, AFF_1: 18;

        hence ex q st q in P & q in Q by A9;

      end;

      A // M by A11, A17, AFF_1: 44;

      hence thesis by A2, A3, A5, A6, A9, A15, A10, A16, A13, A19, A21, Th18;

    end;

    theorem :: AFF_4:22

    

     Th22: X is being_plane & M is being_line & N is being_line & M c= X & N c= X implies M // N or ex q st q in M & q in N

    proof

      assume that

       A1: X is being_plane and

       A2: M is being_line and

       A3: N is being_line and

       A4: M c= X & N c= X;

      consider K, P such that

       A5: K is being_line and

       A6: P is being_line and not K // P and

       A7: X = ( Plane (K,P)) by A1;

       A8:

      now

        assume not K // N;

        then M c= ( Plane (K,N)) by A3, A4, A5, A6, A7, Th20;

        then N // M or ex q st q in N & q in M by A2, A3, A5, Th21;

        hence thesis;

      end;

      now

        assume not K // M;

        then N c= ( Plane (K,M)) by A2, A4, A5, A6, A7, Th20;

        hence thesis by A2, A3, A5, Th21;

      end;

      hence thesis by A8, AFF_1: 44;

    end;

    theorem :: AFF_4:23

    

     Th23: X is being_plane & a in X & M c= X & a in N & (M // N or N // M) implies N c= X

    proof

      assume that

       A1: X is being_plane and

       A2: a in X and

       A3: M c= X and

       A4: a in N and

       A5: M // N or N // M;

      

       A6: M is being_line by A5, AFF_1: 36;

      consider K, P such that

       A7: K is being_line and

       A8: P is being_line and not K // P and

       A9: X = ( Plane (K,P)) by A1;

      

       A10: N is being_line by A5, AFF_1: 36;

       A11:

      now

        assume

         A12: not K // M;

        then

         A13: X = ( Plane (K,M)) by A3, A6, A7, A8, A9, Th20;

        

         A14: a in ( Plane (K,M)) by A2, A3, A6, A7, A8, A9, A12, Th20;

        now

          consider a9 such that

           A15: (a,a9) // K and

           A16: a9 in M by A14, Lm3;

          consider b9 such that

           A17: a9 <> b9 and

           A18: b9 in M by A6, AFF_1: 20;

          consider b such that

           A19: (a9,a) // (b9,b) and

           A20: (a9,b9) // (a,b) by DIRAF: 40;

          assume

           A21: M <> N;

          then a <> a9 by A4, A5, A16, AFF_1: 45;

          then (b,b9) // K by A15, A19, Th4;

          then

           A22: b in ( Plane (K,M)) by A18;

          

           A23: a <> b

          proof

            assume a = b;

            then (a,a9) // (a,b9) by A19, AFF_1: 4;

            then LIN (a,a9,b9) by AFF_1:def 1;

            then LIN (a9,b9,a) by AFF_1: 6;

            then a in M by A6, A16, A17, A18, AFF_1: 25;

            hence contradiction by A4, A5, A21, AFF_1: 45;

          end;

          (a,b) // M by A6, A16, A17, A18, A20, AFF_1: 32, AFF_1: 52;

          then (a,b) // N by A5, Th3;

          then b in N by A4, Th2;

          hence thesis by A2, A4, A6, A10, A7, A13, A23, A22, Lm5;

        end;

        hence thesis by A3;

      end;

      now

        assume K // M;

        then K // N by A5, AFF_1: 44;

        hence thesis by A2, A4, A9, Lm4;

      end;

      hence thesis by A11;

    end;

    theorem :: AFF_4:24

    

     Th24: X is being_plane & Y is being_plane & a in X & b in X & a in Y & b in Y & X <> Y & a <> b implies (X /\ Y) is being_line

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: a in X & b in X and

       A4: a in Y & b in Y and

       A5: X <> Y and

       A6: a <> b;

      set Z = (X /\ Y);

      set Q = ( Line (a,b));

      

       A7: Q c= X by A1, A3, A6, Th19;

      

       A8: Q c= Y by A2, A4, A6, Th19;

      

       A9: Q is being_line by A6, AFF_1:def 3;

      

       A10: Z c= Q

      proof

        assume not Z c= Q;

        then

        consider x be object such that

         A11: x in Z and

         A12: not x in Q;

        reconsider a9 = x as Element of AS by A11;

        

         A13: x in Y by A11, XBOOLE_0:def 4;

        

         A14: x in X by A11, XBOOLE_0:def 4;

        for y be object holds y in X iff y in Y

        proof

          let y be object;

           A15:

          now

            assume

             A16: y in Y;

            now

              reconsider b9 = y as Element of AS by A16;

              set M = ( Line (a9,b9));

              

               A17: a9 in M by AFF_1: 15;

              

               A18: b9 in M by AFF_1: 15;

              assume

               A19: y <> x;

              then

               A20: M is being_line by AFF_1:def 3;

              

               A21: M c= Y by A2, A13, A16, A19, Th19;

               A22:

              now

                assume not M // Q;

                then

                consider q such that

                 A23: q in M and

                 A24: q in Q by A2, A9, A8, A20, A21, Th22;

                M = ( Line (a9,q)) by A12, A20, A17, A23, A24, AFF_1: 57;

                then M c= X by A1, A7, A12, A14, A24, Th19;

                hence y in X by A18;

              end;

              now

                assume M // Q;

                then M c= X by A1, A7, A14, A17, Th23;

                hence y in X by A18;

              end;

              hence y in X by A22;

            end;

            hence y in X by A11, XBOOLE_0:def 4;

          end;

          now

            assume

             A25: y in X;

            now

              reconsider b9 = y as Element of AS by A25;

              set M = ( Line (a9,b9));

              

               A26: a9 in M by AFF_1: 15;

              

               A27: b9 in M by AFF_1: 15;

              assume

               A28: y <> x;

              then

               A29: M is being_line by AFF_1:def 3;

              

               A30: M c= X by A1, A14, A25, A28, Th19;

               A31:

              now

                assume not M // Q;

                then

                consider q such that

                 A32: q in M and

                 A33: q in Q by A1, A9, A7, A29, A30, Th22;

                M = ( Line (a9,q)) by A12, A29, A26, A32, A33, AFF_1: 57;

                then M c= Y by A2, A8, A12, A13, A33, Th19;

                hence y in Y by A27;

              end;

              now

                assume M // Q;

                then M c= Y by A2, A8, A13, A26, Th23;

                hence y in Y by A27;

              end;

              hence y in Y by A31;

            end;

            hence y in Y by A11, XBOOLE_0:def 4;

          end;

          hence thesis by A15;

        end;

        hence contradiction by A5, TARSKI: 2;

      end;

      Q c= Z by A7, A8, XBOOLE_1: 19;

      hence thesis by A9, A10, XBOOLE_0:def 10;

    end;

    theorem :: AFF_4:25

    

     Th25: X is being_plane & Y is being_plane & a in X & b in X & c in X & a in Y & b in Y & c in Y & not LIN (a,b,c) implies X = Y

    proof

      assume that

       A1: X is being_plane & Y is being_plane and

       A2: a in X & b in X and

       A3: c in X and

       A4: a in Y & b in Y and

       A5: c in Y and

       A6: not LIN (a,b,c);

      assume

       A7: not thesis;

      a <> b by A6, AFF_1: 7;

      then

       A8: (X /\ Y) is being_line by A1, A2, A4, A7, Th24;

      

       A9: c in (X /\ Y) by A3, A5, XBOOLE_0:def 4;

      a in (X /\ Y) & b in (X /\ Y) by A2, A4, XBOOLE_0:def 4;

      hence contradiction by A6, A8, A9, AFF_1: 21;

    end;

    

     Lm7: M is being_line & a in M & b in M & a <> b & not c in M implies not LIN (a,b,c)

    proof

      assume

       A1: M is being_line & a in M & b in M & a <> b & not c in M;

      assume not thesis;

      then ex N st N is being_line & a in N & b in N & c in N by AFF_1: 21;

      hence contradiction by A1, AFF_1: 18;

    end;

    theorem :: AFF_4:26

    

     Th26: X is being_plane & Y is being_plane & M is being_line & N is being_line & M c= X & N c= X & M c= Y & N c= Y & M <> N implies X = Y

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: M is being_line and

       A4: N is being_line and

       A5: M c= X & N c= X and

       A6: M c= Y & N c= Y and

       A7: M <> N;

      consider a, b such that

       A8: a in M and

       A9: b in M and

       A10: a <> b by A3, AFF_1: 19;

       A11:

      now

        given q such that

         A12: q in M and

         A13: q in N;

        consider p such that

         A14: q <> p and

         A15: p in N by A4, AFF_1: 20;

        

         A16: not p in M by A3, A4, A7, A12, A13, A14, A15, AFF_1: 18;

         A17:

        now

          assume b <> q;

          then not LIN (b,q,p) by A3, A9, A12, A16, Lm7;

          hence thesis by A1, A2, A5, A6, A9, A12, A15, Th25;

        end;

        now

          assume a <> q;

          then not LIN (a,q,p) by A3, A8, A12, A16, Lm7;

          hence thesis by A1, A2, A5, A6, A8, A12, A15, Th25;

        end;

        hence thesis by A10, A17;

      end;

      consider c, d such that

       A18: c in N and d in N and c <> d by A4, AFF_1: 19;

      now

        assume M // N;

        then not c in M by A7, A18, AFF_1: 45;

        then not LIN (a,b,c) by A3, A8, A9, A10, Lm7;

        hence thesis by A1, A2, A5, A6, A8, A9, A18, Th25;

      end;

      hence thesis by A1, A3, A4, A5, A11, Th22;

    end;

    definition

      let AS, a, K;

      :: AFF_4:def3

      func a * K -> Subset of AS means

      : Def3: a in it & K // it ;

      existence by A1, AFF_1: 49;

      uniqueness by AFF_1: 50;

    end

    theorem :: AFF_4:27

    

     Th27: A is being_line implies (a * A) is being_line

    proof

      set M = (a * A);

      assume A is being_line;

      then A // M by Def3;

      hence thesis by AFF_1: 36;

    end;

    theorem :: AFF_4:28

    

     Th28: X is being_plane & M is being_line & a in X & M c= X implies (a * M) c= X

    proof

      assume that

       A1: X is being_plane and

       A2: M is being_line and

       A3: a in X & M c= X;

      set N = (a * M);

      a in N & M // N by A2, Def3;

      hence thesis by A1, A3, Th23;

    end;

    theorem :: AFF_4:29

    

     Th29: X is being_plane & a in X & b in X & c in X & (a,b) // (c,d) & a <> b implies d in X

    proof

      assume that

       A1: X is being_plane & a in X & b in X & c in X and

       A2: (a,b) // (c,d) and

       A3: a <> b;

      set M = ( Line (a,b)), N = (c * M);

      

       A4: M is being_line by A3, AFF_1:def 3;

      then

       A5: N c= X by A1, A3, Th19, Th28;

      

       A6: a in M & b in M by AFF_1: 15;

      c in N & M // N by A4, Def3;

      then d in N by A2, A3, A6, Th7;

      hence thesis by A5;

    end;

    theorem :: AFF_4:30

    A is being_line implies (a in A iff (a * A) = A)

    proof

      assume

       A1: A is being_line;

      now

        assume

         A2: a in A;

        A // A by A1, AFF_1: 41;

        hence (a * A) = A by A1, A2, Def3;

      end;

      hence thesis by A1, Def3;

    end;

    theorem :: AFF_4:31

    

     Th31: A is being_line implies (a * A) = (a * (q * A))

    proof

      assume

       A1: A is being_line;

      then A // (q * A) & A // (a * A) by Def3;

      then

       A2: (a * A) // (q * A) by AFF_1: 44;

      

       A3: (q * A) is being_line by A1, Th27;

      then

       A4: a in (a * (q * A)) by Def3;

      (q * A) // (a * (q * A)) by A3, Def3;

      then

       A5: (a * A) // (a * (q * A)) by A2, AFF_1: 44;

      a in (a * A) by A1, Def3;

      hence thesis by A4, A5, AFF_1: 45;

    end;

    

     Lm8: A is being_line & a in A implies (a * A) = A

    proof

      assume that

       A1: A is being_line and

       A2: a in A;

      A // A by A1, AFF_1: 41;

      hence thesis by A1, A2, Def3;

    end;

    theorem :: AFF_4:32

    

     Th32: K // M implies (a * K) = (a * M)

    proof

      assume

       A1: K // M;

      then

       A2: K is being_line by AFF_1: 36;

      then K // (a * K) by Def3;

      then

       A3: (a * K) // M by A1, AFF_1: 44;

      

       A4: M is being_line by A1, AFF_1: 36;

      then

       A5: a in (a * M) by Def3;

      M // (a * M) by A4, Def3;

      then

       A6: (a * K) // (a * M) by A3, AFF_1: 44;

      a in (a * K) by A2, Def3;

      hence thesis by A5, A6, AFF_1: 45;

    end;

    definition

      let AS, X, Y;

      :: AFF_4:def4

      pred X '||' Y means for a, A st a in Y & A is being_line & A c= X holds (a * A) c= Y;

    end

    theorem :: AFF_4:33

    

     Th33: X c= Y & (X is being_line & Y is being_line or X is being_plane & Y is being_plane) implies X = Y

    proof

      assume that

       A1: X c= Y and

       A2: X is being_line & Y is being_line or X is being_plane & Y is being_plane;

       A3:

      now

        assume that

         A4: X is being_plane and

         A5: Y is being_plane;

        consider K, P such that

         A6: K is being_line and

         A7: P is being_line and

         A8: not K // P and

         A9: X = ( Plane (K,P)) by A4;

        consider a, b such that

         A10: a in P and b in P and a <> b by A7, AFF_1: 19;

        set M = (a * K);

        

         A11: K // M by A6, Def3;

        

         A12: P c= X by A6, A9, Th14;

        then

         A13: P c= Y by A1;

        

         A14: M is being_line by A6, Th27;

        a in M & P c= ( Plane (K,P)) by A6, Def3, Th14;

        then

         A15: M c= X by A9, A10, A11, Lm4;

        then M c= Y by A1;

        hence thesis by A4, A5, A7, A8, A11, A14, A12, A13, A15, Th26;

      end;

      now

        assume that

         A16: X is being_line and

         A17: Y is being_line;

        consider a, b such that

         A18: a <> b and

         A19: X = ( Line (a,b)) by A16, AFF_1:def 3;

        a in X & b in X by A19, AFF_1: 15;

        hence thesis by A1, A17, A18, A19, AFF_1: 57;

      end;

      hence thesis by A2, A3;

    end;

    theorem :: AFF_4:34

    

     Th34: X is being_plane implies ex a, b, c st a in X & b in X & c in X & not LIN (a,b,c)

    proof

      assume X is being_plane;

      then

      consider K, P such that

       A1: K is being_line and

       A2: P is being_line and

       A3: not K // P and

       A4: X = ( Plane (K,P));

      consider a, b such that

       A5: a in P and

       A6: b in P and

       A7: a <> b by A2, AFF_1: 19;

      set Q = (a * K);

      consider c such that

       A8: a <> c and

       A9: c in Q by A1, Th27, AFF_1: 20;

      take a, b, c;

      

       A10: P c= ( Plane (K,P)) by A1, Th14;

      hence a in X & b in X by A4, A5, A6;

      

       A11: K // Q & a in Q by A1, Def3;

      then Q c= ( Plane (K,P)) by A5, A10, Lm4;

      hence c in X by A4, A9;

      

       A12: Q is being_line by A1, Th27;

      thus not LIN (a,b,c)

      proof

        assume LIN (a,b,c);

        then c in P by A2, A5, A6, A7, AFF_1: 25;

        hence contradiction by A2, A3, A5, A11, A12, A8, A9, AFF_1: 18;

      end;

    end;

    

     Lm9: X is being_plane implies ex b, c st b in X & c in X & not LIN (a,b,c)

    proof

      assume X is being_plane;

      then

      consider p, q, r such that

       A1: p in X & q in X and

       A2: r in X and

       A3: not LIN (p,q,r) by Th34;

      now

        assume

         A4: LIN (a,r,p) & LIN (a,r,q);

        take b = p, c = q;

        thus b in X & c in X by A1;

         LIN (a,r,r) by AFF_1: 7;

        then a = r by A3, A4, AFF_1: 8;

        hence not LIN (a,b,c) by A3, AFF_1: 6;

      end;

      hence thesis by A1, A2;

    end;

    theorem :: AFF_4:35

    M is being_line & X is being_plane implies ex q st q in X & not q in M

    proof

      assume that

       A1: M is being_line and

       A2: X is being_plane;

      consider a, b, c such that

       A3: a in X & b in X and

       A4: c in X and

       A5: not LIN (a,b,c) by A2, Th34;

      assume

       A6: not ex q st q in X & not q in M;

      then

       A7: c in M by A4;

      a in M & b in M by A6, A3;

      hence contradiction by A1, A5, A7, AFF_1: 21;

    end;

    theorem :: AFF_4:36

    

     Th36: for a, A st A is being_line holds ex X st a in X & A c= X & X is being_plane

    proof

      let a, A;

      assume

       A1: A is being_line;

      then

      consider p, q such that

       A2: p in A and q in A and p <> q by AFF_1: 19;

       A3:

      now

        consider b such that

         A4: not b in A by A1, Th12;

        consider P such that

         A5: a in P & b in P and

         A6: P is being_line by Th11;

        set X = ( Plane (P,A));

        

         A7: A c= X by A6, Th14;

        assume

         A8: a in A;

        then not P // A by A4, A5, AFF_1: 45;

        then X is being_plane by A1, A6;

        hence thesis by A8, A7;

      end;

      now

        consider P such that

         A9: a in P and

         A10: p in P and

         A11: P is being_line by Th11;

        set X = ( Plane (P,A));

        A c= X by A11, Th14;

        then

         A12: P c= X by A2, A10, A11, Lm4, AFF_1: 41;

        assume not a in A;

        then not P // A by A2, A9, A10, AFF_1: 45;

        then X is being_plane by A1, A11;

        hence thesis by A9, A11, A12, Th14;

      end;

      hence thesis by A3;

    end;

    theorem :: AFF_4:37

    

     Th37: ex X st a in X & b in X & c in X & X is being_plane

    proof

      consider A such that

       A1: a in A & b in A and

       A2: A is being_line by Th11;

      ex X st c in X & A c= X & X is being_plane by A2, Th36;

      hence thesis by A1;

    end;

    theorem :: AFF_4:38

    

     Th38: q in M & q in N & M is being_line & N is being_line implies ex X st M c= X & N c= X & X is being_plane

    proof

      assume that

       A1: q in M and

       A2: q in N and

       A3: M is being_line and

       A4: N is being_line;

      consider a such that

       A5: a <> q and

       A6: a in N by A4, AFF_1: 20;

      

       A7: ex X st a in X & M c= X & X is being_plane by A3, Th36;

      N = ( Line (q,a)) by A2, A4, A5, A6, AFF_1: 24;

      hence thesis by A1, A5, A7, Th19;

    end;

    theorem :: AFF_4:39

    

     Th39: M // N implies ex X st M c= X & N c= X & X is being_plane

    proof

      assume

       A1: M // N;

      then N is being_line by AFF_1: 36;

      then

      consider a, b such that

       A2: a in N and b in N and a <> b by AFF_1: 19;

      

       A3: M is being_line by A1, AFF_1: 36;

      then

       A4: ex X st a in X & M c= X & X is being_plane by Th36;

      N = (a * M) by A1, A3, A2, Def3;

      hence thesis by A3, A4, Th28;

    end;

    theorem :: AFF_4:40

    M is being_line & N is being_line implies (M // N iff M '||' N)

    proof

      assume that

       A1: M is being_line and

       A2: N is being_line;

       A3:

      now

        assume

         A4: M // N;

        now

          let a, A;

          assume that

           A5: a in N and

           A6: A is being_line & A c= M;

          N = (a * M) by A1, A4, A5, Def3;

          hence (a * A) c= N by A1, A6, Th33;

        end;

        hence M '||' N;

      end;

      now

        consider a, b such that

         A7: a in N and b in N and a <> b by A2, AFF_1: 19;

        

         A8: (a * M) is being_line by A1, Th27;

        assume M '||' N;

        then (a * M) c= N by A1, A7;

        then (a * M) = N by A2, A8, Th33;

        hence M // N by A1, Def3;

      end;

      hence thesis by A3;

    end;

    theorem :: AFF_4:41

    

     Th41: M is being_line & X is being_plane implies (M '||' X iff ex N st N c= X & (M // N or N // M))

    proof

      assume that

       A1: M is being_line and

       A2: X is being_plane;

       A3:

      now

        given N such that

         A4: N c= X and

         A5: M // N or N // M;

        now

          let a, A;

          assume that

           A6: a in X and

           A7: A is being_line and

           A8: A c= M;

          A = M by A1, A7, A8, Th33;

          then M // (a * A) by A7, Def3;

          then

           A9: N // (a * A) by A5, AFF_1: 44;

          a in (a * A) by A7, Def3;

          hence (a * A) c= X by A2, A4, A6, A9, Th23;

        end;

        hence M '||' X;

      end;

      now

        consider a, b, c such that

         A10: a in X and b in X and c in X and not LIN (a,b,c) by A2, Th34;

        assume

         A11: M '||' X;

        take N = (a * M);

        thus N c= X by A1, A11, A10;

        thus M // N or N // M by A1, Def3;

      end;

      hence thesis by A3;

    end;

    theorem :: AFF_4:42

    M is being_line & X is being_plane & M c= X implies M '||' X

    proof

      assume that

       A1: M is being_line and

       A2: X is being_plane & M c= X;

      M // M by A1, AFF_1: 41;

      hence thesis by A1, A2, Th41;

    end;

    theorem :: AFF_4:43

    A is being_line & X is being_plane & a in A & a in X & A '||' X implies A c= X

    proof

      assume that

       A1: A is being_line and

       A2: X is being_plane and

       A3: a in A and

       A4: a in X and

       A5: A '||' X;

      consider N such that

       A6: N c= X and

       A7: A // N or N // A by A1, A2, A5, Th41;

      

       A8: N is being_line by A7, AFF_1: 36;

      A = (a * A) by A1, A3, Lm8

      .= (a * N) by A7, Th32;

      hence thesis by A2, A4, A6, A8, Th28;

    end;

    definition

      let AS, K, M, N;

      :: AFF_4:def5

      pred K,M,N is_coplanar means ex X st K c= X & M c= X & N c= X & X is being_plane;

    end

    theorem :: AFF_4:44

    (K,M,N) is_coplanar implies (K,N,M) is_coplanar & (M,K,N) is_coplanar & (M,N,K) is_coplanar & (N,K,M) is_coplanar & (N,M,K) is_coplanar ;

    theorem :: AFF_4:45

    M is being_line & N is being_line & (M,N,K) is_coplanar & (M,N,A) is_coplanar & M <> N implies (M,K,A) is_coplanar

    proof

      assume that

       A1: M is being_line & N is being_line and

       A2: (M,N,K) is_coplanar and

       A3: (M,N,A) is_coplanar and

       A4: M <> N;

      consider X such that

       A5: M c= X and

       A6: N c= X and

       A7: K c= X and

       A8: X is being_plane by A2;

      ex Y st M c= Y & N c= Y & A c= Y & Y is being_plane by A3;

      then A c= X by A1, A4, A5, A6, A8, Th26;

      hence thesis by A5, A7, A8;

    end;

    theorem :: AFF_4:46

    

     Th46: K is being_line & M is being_line & X is being_plane & K c= X & M c= X & K <> M implies ((K,M,A) is_coplanar iff A c= X) by Th26;

    theorem :: AFF_4:47

    

     Th47: q in K & q in M & K is being_line & M is being_line implies (K,M,M) is_coplanar & (M,K,M) is_coplanar & (M,M,K) is_coplanar

    proof

      assume q in K & q in M & K is being_line & M is being_line;

      then ex X st K c= X & M c= X & X is being_plane by Th38;

      hence thesis;

    end;

    theorem :: AFF_4:48

    

     Th48: not AS is AffinPlane & X is being_plane implies ex q st not q in X

    proof

      assume that

       A1: not AS is AffinPlane and

       A2: X is being_plane;

      assume

       A3: not ex q st not q in X;

      for a, b, c, d st not (a,b) // (c,d) holds ex q st (a,b) // (a,q) & (c,d) // (c,q)

      proof

        let a, b, c, d;

        set M = ( Line (a,b)), N = ( Line (c,d));

        

         A4: a in M & b in M by AFF_1: 15;

        

         A5: c in N & d in N by AFF_1: 15;

        assume

         A6: not (a,b) // (c,d);

        then

         A7: a <> b by AFF_1: 3;

        then

         A8: M is being_line by AFF_1:def 3;

        

         A9: c <> d by A6, AFF_1: 3;

        then

         A10: N is being_line by AFF_1:def 3;

        c in X & d in X by A3;

        then

         A11: N c= X by A2, A9, Th19;

        a in X & b in X by A3;

        then M c= X by A2, A7, Th19;

        then

        consider q such that

         A12: q in M and

         A13: q in N by A2, A6, A11, A8, A10, A4, A5, Th22, AFF_1: 39;

         LIN (c,d,q) by A10, A5, A13, AFF_1: 21;

        then

         A14: (c,d) // (c,q) by AFF_1:def 1;

         LIN (a,b,q) by A8, A4, A12, AFF_1: 21;

        then (a,b) // (a,q) by AFF_1:def 1;

        hence thesis by A14;

      end;

      hence contradiction by A1, DIRAF:def 7;

    end;

    

     Lm10: q in A & q in P & q in C & not (A,P,C) is_coplanar & q <> a & q <> b & q <> c & a in A & a9 in A & b in P & b9 in P & c in C & c9 in C & A is being_line & P is being_line & C is being_line & A <> P & A <> C & (a,b) // (a9,b9) & (a,c) // (a9,c9) implies (b,c) // (b9,c9)

    proof

      assume that

       A1: q in A and

       A2: q in P and

       A3: q in C and

       A4: not (A,P,C) is_coplanar and

       A5: q <> a and

       A6: q <> b and

       A7: q <> c and

       A8: a in A and

       A9: a9 in A and

       A10: b in P and

       A11: b9 in P and

       A12: c in C and

       A13: c9 in C and

       A14: A is being_line and

       A15: P is being_line and

       A16: C is being_line and

       A17: A <> P and

       A18: A <> C and

       A19: (a,b) // (a9,b9) and

       A20: (a,c) // (a9,c9);

      

       A21: c <> a by A1, A3, A5, A8, A12, A14, A16, A18, AFF_1: 18;

      

       A22: P <> C by A1, A2, A4, A14, A15, Th47;

      then

       A23: b <> c by A2, A3, A6, A10, A12, A15, A16, AFF_1: 18;

      consider X such that

       A24: P c= X & C c= X and

       A25: X is being_plane by A2, A3, A15, A16, Th38;

      consider Y such that

       A26: A c= Y and

       A27: C c= Y and

       A28: Y is being_plane by A1, A3, A14, A16, Th38;

      

       A29: a <> b by A1, A2, A5, A8, A10, A14, A15, A17, AFF_1: 18;

       A30:

      now

        assume

         A31: q <> a9;

        then

         A32: q <> c9 by A1, A3, A5, A7, A8, A9, A12, A14, A16, A18, A20, Th8;

         A33:

        now

          set BC = ( Line (b,c)), BC9 = ( Line (b9,c9)), AB = ( Line (a,b)), AB9 = ( Line (a9,b9)), AC = ( Line (a,c)), AC9 = ( Line (a9,c9));

          assume

           A34: a <> a9;

          assume

           A35: not (b,c) // (b9,c9);

          

           A36: b9 in BC9 & c9 in BC9 by AFF_1: 15;

          

           A37: BC c= X by A10, A12, A24, A25, A23, Th19;

          

           A38: c in BC by AFF_1: 15;

          

           A39: BC is being_line & b in BC by A23, AFF_1: 15, AFF_1:def 3;

          

           A40: c9 <> b9 by A2, A3, A11, A13, A15, A16, A22, A32, AFF_1: 18;

          then

           A41: BC9 is being_line by AFF_1:def 3;

          BC9 c= X by A11, A13, A24, A25, A40, Th19;

          then

          consider p such that

           A42: p in BC and

           A43: p in BC9 by A25, A35, A41, A39, A38, A36, A37, Th22, AFF_1: 39;

          

           A44: a9 in AC9 by AFF_1: 15;

           LIN (c9,b9,p) by A41, A36, A43, AFF_1: 21;

          then

          consider y such that

           A45: LIN (c9,a9,y) and

           A46: (b9,a9) // (p,y) by A40, Th1;

          

           A47: c in AC by AFF_1: 15;

           LIN (c,b,p) by A39, A38, A42, AFF_1: 21;

          then

          consider x such that

           A48: LIN (c,a,x) and

           A49: (b,a) // (p,x) by A23, Th1;

          

           A50: a in AB by AFF_1: 15;

          

           A51: AC is being_line & a in AC by A21, AFF_1: 15, AFF_1:def 3;

          then

           A52: x in AC by A21, A47, A48, AFF_1: 25;

          set K = (p * AB);

          

           A53: b in AB by AFF_1: 15;

          

           A54: AB is being_line by A29, AFF_1:def 3;

          then

           A55: AB // K by Def3;

          

           A56: p in K by A54, Def3;

          (p,x) // (a,b) by A49, AFF_1: 4;

          then (p,x) // AB by A29, AFF_1:def 4;

          then (p,x) // K by A55, Th3;

          then

           A57: x in K by A56, Th2;

          

           A58: a9 <> b9 by A1, A2, A9, A11, A14, A15, A17, A31, AFF_1: 18;

          (p,y) // (a9,b9) by A46, AFF_1: 4;

          then

           A59: (p,y) // AB9 by A58, AFF_1:def 4;

          AB // AB9 by A19, A29, A58, AFF_1: 37;

          then AB9 // K by A55, AFF_1: 44;

          then (p,y) // K by A59, Th3;

          then

           A60: y in K by A56, Th2;

          

           A61: AC c= Y by A8, A12, A26, A27, A28, A21, Th19;

          

           A62: c9 in AC9 by AFF_1: 15;

          

           A63: a9 <> c9 by A1, A3, A9, A13, A14, A16, A18, A31, AFF_1: 18;

          then AC9 is being_line by AFF_1:def 3;

          then

           A64: y in AC9 by A63, A44, A62, A45, AFF_1: 25;

          

           A65: AC9 c= Y by A9, A13, A26, A27, A28, A63, Th19;

           A66:

          now

            assume

             A67: x <> y;

            then K = ( Line (x,y)) by A54, A57, A60, Th27, AFF_1: 57;

            then K c= Y by A28, A61, A65, A52, A64, A67, Th19;

            then

             A68: AB c= Y by A8, A26, A28, A50, A55, Th23;

            P = ( Line (q,b)) by A2, A6, A10, A15, AFF_1: 57;

            then P c= Y by A1, A6, A26, A28, A53, A68, Th19;

            hence contradiction by A4, A26, A27, A28;

          end;

          

           A69: AC // AC9 by A20, A21, A63, AFF_1: 37;

          now

            assume x = y;

            then a9 in AC by A44, A69, A52, A64, AFF_1: 45;

            then c in A by A8, A9, A14, A34, A51, A47, AFF_1: 18;

            hence contradiction by A1, A3, A7, A12, A14, A16, A18, AFF_1: 18;

          end;

          hence contradiction by A66;

        end;

        now

          assume a = a9;

          then b = b9 & c = c9 by A1, A2, A3, A5, A6, A7, A8, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Th9;

          hence thesis by AFF_1: 2;

        end;

        hence thesis by A33;

      end;

      now

        assume q = a9;

        then q = b9 & q = c9 by A1, A2, A3, A5, A6, A7, A8, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Th8;

        hence thesis by AFF_1: 3;

      end;

      hence thesis by A30;

    end;

    theorem :: AFF_4:49

    

     Th49: not AS is AffinPlane & q in A & q in P & q in C & q <> a & q <> b & q <> c & a in A & a9 in A & b in P & b9 in P & c in C & c9 in C & A is being_line & P is being_line & C is being_line & A <> P & A <> C & (a,b) // (a9,b9) & (a,c) // (a9,c9) implies (b,c) // (b9,c9)

    proof

      assume that

       A1: not AS is AffinPlane and

       A2: q in A and

       A3: q in P and

       A4: q in C and

       A5: q <> a and

       A6: q <> b and

       A7: q <> c and

       A8: a in A & a9 in A and

       A9: b in P & b9 in P and

       A10: c in C & c9 in C and

       A11: A is being_line and

       A12: P is being_line and

       A13: C is being_line and

       A14: A <> P and

       A15: A <> C and

       A16: (a,b) // (a9,b9) and

       A17: (a,c) // (a9,c9);

      now

        assume (A,P,C) is_coplanar ;

        then

        consider X such that

         A18: A c= X and

         A19: P c= X and

         A20: C c= X and

         A21: X is being_plane;

        consider d such that

         A22: not d in X by A1, A21, Th48;

         LIN (q,a,a9) by A2, A8, A11, AFF_1: 21;

        then

        consider d9 such that

         A23: LIN (q,d,d9) and

         A24: (a,d) // (a9,d9) by A5, Th1;

        set K = ( Line (q,d));

        

         A25: d in K by AFF_1: 15;

        then

         A26: not K c= X by A22;

        

         A27: q <> d by A2, A18, A22;

        then

         A28: q in K & K is being_line by AFF_1: 15, AFF_1:def 3;

        then

         A29: d9 in K by A25, A27, A23, AFF_1: 25;

        now

          assume

           A30: P <> C;

          

           A31: not (K,P,C) is_coplanar

          proof

            assume (K,P,C) is_coplanar ;

            then (P,C,K) is_coplanar ;

            hence contradiction by A12, A13, A19, A20, A21, A26, A30, Th46;

          end;

          

           A32: K <> A by A18, A22, A25;

           not (A,K,P) is_coplanar

          proof

            assume (A,K,P) is_coplanar ;

            then (A,P,K) is_coplanar ;

            hence contradiction by A11, A12, A14, A18, A19, A21, A26, Th46;

          end;

          then

           A33: (d,b) // (d9,b9) by A2, A3, A5, A6, A8, A9, A11, A12, A14, A16, A25, A27, A28, A24, A29, A32, Lm10;

          

           A34: K <> P & K <> C by A19, A20, A22, A25;

           not (A,K,C) is_coplanar

          proof

            assume (A,K,C) is_coplanar ;

            then (A,C,K) is_coplanar ;

            hence contradiction by A11, A13, A15, A18, A20, A21, A26, Th46;

          end;

          then (d,c) // (d9,c9) by A2, A4, A5, A7, A8, A10, A11, A13, A15, A17, A25, A27, A28, A24, A29, A32, Lm10;

          hence thesis by A3, A4, A6, A7, A9, A10, A12, A13, A25, A27, A28, A29, A34, A31, A33, Lm10;

        end;

        hence thesis by A9, A10, A12, AFF_1: 51;

      end;

      hence thesis by A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Lm10;

    end;

    theorem :: AFF_4:50

     not AS is AffinPlane implies AS is Desarguesian

    proof

      assume not AS is AffinPlane;

      then for A, P, C, q, a, b, c, a9, b9, c9 holds q in A & q in P & q in C & q <> a & q <> b & q <> c & a in A & a9 in A & b in P & b9 in P & c in C & c9 in C & A is being_line & P is being_line & C is being_line & A <> P & A <> C & (a,b) // (a9,b9) & (a,c) // (a9,c9) implies (b,c) // (b9,c9) by Th49;

      hence thesis by AFF_2:def 4;

    end;

    

     Lm11: A // P & A // C & not (A,P,C) is_coplanar & a in A & a9 in A & b in P & b9 in P & c in C & c9 in C & A is being_line & A <> P & A <> C & (a,b) // (a9,b9) & (a,c) // (a9,c9) implies (b,c) // (b9,c9)

    proof

      assume that

       A1: A // P and

       A2: A // C and

       A3: not (A,P,C) is_coplanar and

       A4: a in A and

       A5: a9 in A and

       A6: b in P and

       A7: b9 in P and

       A8: c in C and

       A9: c9 in C and

       A10: A is being_line and

       A11: A <> P and

       A12: A <> C and

       A13: (a,b) // (a9,b9) and

       A14: (a,c) // (a9,c9);

      

       A15: c <> a by A2, A4, A8, A12, AFF_1: 45;

      

       A16: P // C by A1, A2, AFF_1: 44;

      then

      consider X such that

       A17: P c= X & C c= X and

       A18: X is being_plane by Th39;

      consider Y such that

       A19: A c= Y and

       A20: C c= Y and

       A21: Y is being_plane by A2, Th39;

      

       A22: P <> C by A3, A19, A20, A21;

      then

       A23: b <> c by A6, A8, A16, AFF_1: 45;

      

       A24: a <> b by A1, A4, A6, A11, AFF_1: 45;

       A25:

      now

        set BC = ( Line (b,c)), BC9 = ( Line (b9,c9)), AB = ( Line (a,b)), AB9 = ( Line (a9,b9)), AC = ( Line (a,c)), AC9 = ( Line (a9,c9));

        assume

         A26: a <> a9;

        assume

         A27: not (b,c) // (b9,c9);

        

         A28: b9 in BC9 & c9 in BC9 by AFF_1: 15;

        

         A29: BC c= X by A6, A8, A17, A18, A23, Th19;

        

         A30: c in BC by AFF_1: 15;

        

         A31: BC is being_line & b in BC by A23, AFF_1: 15, AFF_1:def 3;

        

         A32: c9 <> b9 by A7, A9, A16, A22, AFF_1: 45;

        then

         A33: BC9 is being_line by AFF_1:def 3;

        BC9 c= X by A7, A9, A17, A18, A32, Th19;

        then

        consider p such that

         A34: p in BC and

         A35: p in BC9 by A18, A27, A33, A31, A30, A28, A29, Th22, AFF_1: 39;

        

         A36: a9 in AC9 by AFF_1: 15;

         LIN (c9,b9,p) by A33, A28, A35, AFF_1: 21;

        then

        consider y such that

         A37: LIN (c9,a9,y) and

         A38: (b9,a9) // (p,y) by A32, Th1;

        

         A39: c in AC by AFF_1: 15;

         LIN (c,b,p) by A31, A30, A34, AFF_1: 21;

        then

        consider x such that

         A40: LIN (c,a,x) and

         A41: (b,a) // (p,x) by A23, Th1;

        

         A42: a in AB by AFF_1: 15;

        

         A43: AC is being_line & a in AC by A15, AFF_1: 15, AFF_1:def 3;

        then

         A44: x in AC by A15, A39, A40, AFF_1: 25;

        set K = (p * AB);

        

         A45: b in AB by AFF_1: 15;

        

         A46: AB is being_line by A24, AFF_1:def 3;

        then

         A47: AB // K by Def3;

        

         A48: p in K by A46, Def3;

        (p,x) // (a,b) by A41, AFF_1: 4;

        then (p,x) // AB by A24, AFF_1:def 4;

        then (p,x) // K by A47, Th3;

        then

         A49: x in K by A48, Th2;

        

         A50: a9 <> b9 by A1, A5, A7, A11, AFF_1: 45;

        (p,y) // (a9,b9) by A38, AFF_1: 4;

        then

         A51: (p,y) // AB9 by A50, AFF_1:def 4;

        AB // AB9 by A13, A24, A50, AFF_1: 37;

        then AB9 // K by A47, AFF_1: 44;

        then (p,y) // K by A51, Th3;

        then

         A52: y in K by A48, Th2;

        

         A53: AC c= Y by A4, A8, A19, A20, A21, A15, Th19;

        

         A54: c9 in AC9 by AFF_1: 15;

        

         A55: a9 <> c9 by A2, A5, A9, A12, AFF_1: 45;

        then AC9 is being_line by AFF_1:def 3;

        then

         A56: y in AC9 by A55, A36, A54, A37, AFF_1: 25;

        

         A57: AC9 c= Y by A5, A9, A19, A20, A21, A55, Th19;

         A58:

        now

          assume

           A59: x <> y;

          then K = ( Line (x,y)) by A46, A49, A52, Th27, AFF_1: 57;

          then K c= Y by A21, A53, A57, A44, A56, A59, Th19;

          then

           A60: AB c= Y by A4, A19, A21, A42, A47, Th23;

          P = (b * A) by A1, A6, A10, Def3;

          then P c= Y by A10, A19, A21, A45, A60, Th28;

          hence contradiction by A3, A19, A20, A21;

        end;

        

         A61: AC // AC9 by A14, A15, A55, AFF_1: 37;

        now

          assume x = y;

          then a9 in AC by A36, A61, A44, A56, AFF_1: 45;

          then c in A by A4, A5, A10, A26, A43, A39, AFF_1: 18;

          hence contradiction by A2, A8, A12, AFF_1: 45;

        end;

        hence contradiction by A58;

      end;

      now

        assume a = a9;

        then b = b9 & c = c9 by A1, A2, A4, A6, A7, A8, A9, A11, A12, A13, A14, Th10;

        hence thesis by AFF_1: 2;

      end;

      hence thesis by A25;

    end;

    theorem :: AFF_4:51

    

     Th51: not AS is AffinPlane & A // P & A // C & a in A & a9 in A & b in P & b9 in P & c in C & c9 in C & A is being_line & P is being_line & C is being_line & A <> P & A <> C & (a,b) // (a9,b9) & (a,c) // (a9,c9) implies (b,c) // (b9,c9)

    proof

      assume that

       A1: not AS is AffinPlane and

       A2: A // P and

       A3: A // C and

       A4: a in A & a9 in A and

       A5: b in P & b9 in P and

       A6: c in C & c9 in C and

       A7: A is being_line and

       A8: P is being_line and

       A9: C is being_line and

       A10: A <> P and

       A11: A <> C and

       A12: (a,b) // (a9,b9) and

       A13: (a,c) // (a9,c9);

      now

        assume (A,P,C) is_coplanar ;

        then

        consider X such that

         A14: A c= X and

         A15: P c= X and

         A16: C c= X and

         A17: X is being_plane;

        consider d such that

         A18: not d in X by A1, A17, Th48;

        set K = (d * A);

        

         A19: d in K by A7, Def3;

        then

         A20: not K c= X by A18;

        

         A21: A // K by A7, Def3;

        ex d9 st d9 in K & (a,d) // (a9,d9)

        proof

           A22:

          now

            assume

             A23: a <> a9;

            consider d9 such that

             A24: (a,a9) // (d,d9) and

             A25: (a,d) // (a9,d9) by DIRAF: 40;

            (d,d9) // (a,a9) by A24, AFF_1: 4;

            then (d,d9) // A by A4, A7, A23, AFF_1: 27;

            then (d,d9) // K by A21, Th3;

            then d9 in K by A19, Th2;

            hence thesis by A25;

          end;

          now

            assume

             A26: a = a9;

            take d9 = d;

            thus d9 in K by A7, Def3;

            thus (a,d) // (a9,d9) by A26, AFF_1: 2;

          end;

          hence thesis by A22;

        end;

        then

        consider d9 such that

         A27: d9 in K and

         A28: (a,d) // (a9,d9);

        

         A29: K // P & K // C by A2, A3, A21, AFF_1: 44;

        now

          assume

           A30: P <> C;

          

           A31: not (K,P,C) is_coplanar

          proof

            assume (K,P,C) is_coplanar ;

            then (P,C,K) is_coplanar ;

            hence contradiction by A8, A9, A15, A16, A17, A20, A30, Th46;

          end;

          

           A32: K <> A by A14, A18, A19;

           not (A,K,P) is_coplanar

          proof

            assume (A,K,P) is_coplanar ;

            then (A,P,K) is_coplanar ;

            hence contradiction by A7, A8, A10, A14, A15, A17, A20, Th46;

          end;

          then

           A33: (d,b) // (d9,b9) by A2, A4, A5, A7, A10, A12, A19, A21, A27, A28, A32, Lm11;

          

           A34: K <> P & K <> C by A15, A16, A18, A19;

           not (A,K,C) is_coplanar

          proof

            assume (A,K,C) is_coplanar ;

            then (A,C,K) is_coplanar ;

            hence contradiction by A7, A9, A11, A14, A16, A17, A20, Th46;

          end;

          then (d,c) // (d9,c9) by A3, A4, A6, A7, A11, A13, A19, A21, A27, A28, A32, Lm11;

          hence thesis by A5, A6, A7, A19, A29, A27, A34, A31, A33, Lm11, Th27;

        end;

        hence thesis by A5, A6, A8, AFF_1: 51;

      end;

      hence thesis by A2, A3, A4, A5, A6, A7, A10, A11, A12, A13, Lm11;

    end;

    theorem :: AFF_4:52

     not AS is AffinPlane implies AS is translational

    proof

      assume not AS is AffinPlane;

      then for A, P, C, a, b, c, a9, b9, c9 holds A // P & A // C & a in A & a9 in A & b in P & b9 in P & c in C & c9 in C & A is being_line & P is being_line & C is being_line & A <> P & A <> C & (a,b) // (a9,b9) & (a,c) // (a9,c9) implies (b,c) // (b9,c9) by Th51;

      hence thesis by AFF_2:def 11;

    end;

    theorem :: AFF_4:53

    

     Th53: AS is AffinPlane & not LIN (a,b,c) implies ex c9 st (a,c) // (a9,c9) & (b,c) // (b9,c9)

    proof

      assume that

       A1: AS is AffinPlane and

       A2: not LIN (a,b,c);

      consider C such that

       A3: b in C & c in C and

       A4: C is being_line by Th11;

      consider N such that

       A5: b9 in N and

       A6: C // N by A4, AFF_1: 49;

      

       A7: N is being_line by A6, AFF_1: 36;

      consider P such that

       A8: a in P and

       A9: c in P and

       A10: P is being_line by Th11;

      consider M such that

       A11: a9 in M and

       A12: P // M by A10, AFF_1: 49;

      

       A13: not M // N

      proof

        assume M // N;

        then N // P by A12, AFF_1: 44;

        then C // P by A6, AFF_1: 44;

        then b in P by A3, A9, AFF_1: 45;

        hence contradiction by A2, A8, A9, A10, AFF_1: 21;

      end;

      M is being_line by A12, AFF_1: 36;

      then

      consider c9 such that

       A14: c9 in M and

       A15: c9 in N by A1, A7, A13, AFF_1: 58;

      

       A16: (b,c) // (b9,c9) by A3, A5, A6, A15, AFF_1: 39;

      (a,c) // (a9,c9) by A8, A9, A11, A12, A14, AFF_1: 39;

      hence thesis by A16;

    end;

    

     Lm12: not LIN (a,b,c) & (a,b) // (a9,b9) & a in X & b in X & c in X & X is being_plane & a9 in X implies ex c9 st (a,c) // (a9,c9) & (b,c) // (b9,c9)

    proof

      assume that

       A1: not LIN (a,b,c) and

       A2: (a,b) // (a9,b9) and

       A3: a in X and

       A4: b in X and

       A5: c in X and

       A6: X is being_plane and

       A7: a9 in X;

      set C = ( Line (b,c)), P = ( Line (a,c)), P9 = (a9 * P), C9 = (b9 * C);

      

       A8: b <> c by A1, AFF_1: 7;

      then

       A9: C is being_line by AFF_1:def 3;

      then

       A10: C // C9 by Def3;

      a <> b by A1, AFF_1: 7;

      then b9 in X by A2, A3, A4, A6, A7, Th29;

      then

       A11: C9 c= X by A4, A5, A6, A8, A9, Th19, Th28;

      

       A12: c in P by AFF_1: 15;

      

       A13: C9 is being_line by A9, Th27;

      

       A14: a in P by AFF_1: 15;

      

       A15: c <> a by A1, AFF_1: 7;

      then

       A16: P is being_line by AFF_1:def 3;

      then

       A17: P9 is being_line by Th27;

      

       A18: b in C & c in C by AFF_1: 15;

      

       A19: P // P9 by A16, Def3;

      

       A20: not C9 // P9

      proof

        assume C9 // P9;

        then C9 // P by A19, AFF_1: 44;

        then C // P by A10, AFF_1: 44;

        then b in P by A12, A18, AFF_1: 45;

        hence contradiction by A1, A14, A12, A16, AFF_1: 21;

      end;

      P9 c= X by A3, A5, A6, A7, A15, A16, Th19, Th28;

      then

      consider c9 such that

       A21: c9 in C9 and

       A22: c9 in P9 by A6, A17, A13, A20, A11, Th22;

      b9 in C9 by A9, Def3;

      then

       A23: (b,c) // (b9,c9) by A18, A10, A21, AFF_1: 39;

      a9 in P9 by A16, Def3;

      then (a,c) // (a9,c9) by A14, A12, A19, A22, AFF_1: 39;

      hence thesis by A23;

    end;

    theorem :: AFF_4:54

    

     Th54: not LIN (a,b,c) & a9 <> b9 & (a,b) // (a9,b9) implies ex c9 st (a,c) // (a9,c9) & (b,c) // (b9,c9)

    proof

      assume that

       A1: not LIN (a,b,c) and

       A2: a9 <> b9 and

       A3: (a,b) // (a9,b9);

      now

        consider X such that

         A4: a in X and

         A5: b in X and

         A6: c in X and

         A7: X is being_plane by Th37;

        assume

         A8: not AS is AffinPlane;

        now

          set A = ( Line (a,a9)), P = ( Line (b,b9));

          set AB = ( Line (a,b)), AB9 = ( Line (a9,b9));

          

           A9: a in AB by AFF_1: 15;

          assume

           A10: not a9 in X;

          then

           A11: A is being_line by A4, AFF_1:def 3;

          

           A12: a <> b by A1, AFF_1: 7;

          then

           A13: AB c= X by A4, A5, A7, Th19;

          

           A14: AB // AB9 by A2, A3, A12, AFF_1: 37;

          then

          consider Y such that

           A15: AB c= Y and

           A16: AB9 c= Y and

           A17: Y is being_plane by Th39;

          

           A18: b in AB by AFF_1: 15;

          

           A19: a9 in AB9 by AFF_1: 15;

          then

           A20: A c= Y by A4, A10, A9, A15, A16, A17, Th19;

          

           A21: b9 in AB9 by AFF_1: 15;

          

           A22: not b9 in X

          proof

            assume b9 in X;

            then AB9 c= X by A7, A21, A14, A13, Th23;

            hence contradiction by A10, A19;

          end;

          then

           A23: P is being_line by A5, AFF_1:def 3;

          

           A24: b9 in P by AFF_1: 15;

          

           A25: a in A by AFF_1: 15;

          

           A26: a <> c by A1, AFF_1: 7;

          

           A27: b in P by AFF_1: 15;

          

           A28: a9 in A by AFF_1: 15;

          

           A29: AB is being_line by A12, AFF_1:def 3;

          

           A30: A <> P

          proof

            assume A = P;

            then A = AB by A12, A9, A18, A29, A11, A25, A27, AFF_1: 18;

            hence contradiction by A10, A13, A28;

          end;

           A31:

          now

            set C = (c * A);

            assume

             A32: A // P;

            

             A33: c in C by A11, Def3;

            

             A34: A <> C

            proof

              assume A = C;

              then A = ( Line (a,c)) by A26, A11, A25, A33, AFF_1: 57;

              then A c= X by A4, A6, A7, A26, Th19;

              hence contradiction by A10, A28;

            end;

            

             A35: A // C by A11, Def3;

            then

            consider c9 such that

             A36: c9 in C and

             A37: (a,c) // (a9,c9) by A25, A28, A33, Lm2;

            C is being_line by A11, Th27;

            then (b,c) // (b9,c9) by A3, A8, A11, A23, A25, A28, A27, A24, A30, A32, A33, A35, A36, A37, A34, Th51;

            hence thesis by A37;

          end;

          

           A38: a9 in Y by A19, A16;

           A39:

          now

            given q such that

             A40: q in A and

             A41: q in P;

            

             A42: q <> a

            proof

              assume q = a;

              then AB = P by A12, A9, A18, A29, A23, A27, A41, AFF_1: 18;

              hence contradiction by A13, A22, A24;

            end;

            

             A43: q <> b

            proof

              assume q = b;

              then AB = A by A12, A9, A18, A29, A11, A25, A40, AFF_1: 18;

              hence contradiction by A10, A13, A28;

            end;

            set C = ( Line (q,c));

            

             A44: c in C by AFF_1: 15;

            

             A45: A <> C

            proof

              assume A = C;

              then A = ( Line (a,c)) by A26, A11, A25, A44, AFF_1: 57;

              then A c= X by A4, A6, A7, A26, Th19;

              hence contradiction by A10, A28;

            end;

             LIN (q,a,a9) by A11, A25, A28, A40, AFF_1: 21;

            then

            consider c9 such that

             A46: LIN (q,c,c9) and

             A47: (a,c) // (a9,c9) by A42, Th1;

            

             A48: q <> c by A1, A4, A5, A6, A7, A10, A9, A18, A15, A17, A38, A20, A40, Th25;

            then

             A49: q in C & C is being_line by AFF_1: 15, AFF_1:def 3;

            then c9 in C by A48, A44, A46, AFF_1: 25;

            then (b,c) // (b9,c9) by A3, A8, A11, A23, A25, A28, A27, A24, A30, A40, A41, A42, A43, A48, A44, A49, A47, A45, Th49;

            hence thesis by A47;

          end;

          P c= Y by A5, A18, A21, A22, A15, A16, A17, Th19;

          hence thesis by A17, A11, A23, A20, A31, A39, Th22;

        end;

        hence thesis by A1, A3, A4, A5, A6, A7, Lm12;

      end;

      hence thesis by A1, Th53;

    end;

    theorem :: AFF_4:55

    

     Th55: X is being_plane & Y is being_plane implies (X '||' Y iff ex A, P, M, N st not A // P & A c= X & P c= X & M c= Y & N c= Y & (A // M or M // A) & (P // N or N // P))

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane;

       A3:

      now

        given A, P, M, N such that

         A4: not A // P and

         A5: A c= X and

         A6: P c= X and

         A7: M c= Y and

         A8: N c= Y and

         A9: A // M or M // A and

         A10: P // N or N // P;

        

         A11: M is being_line by A9, AFF_1: 36;

        

         A12: not M // N

        proof

          assume M // N;

          then P // M by A10, AFF_1: 44;

          hence contradiction by A4, A9, AFF_1: 44;

        end;

        N is being_line by A10, AFF_1: 36;

        then

        consider q such that

         A13: q in M and

         A14: q in N by A2, A7, A8, A11, A12, Th22;

        

         A15: A is being_line by A9, AFF_1: 36;

        

         A16: P is being_line by A10, AFF_1: 36;

        then

        consider p such that

         A17: p in A and

         A18: p in P by A1, A4, A5, A6, A15, Th22;

        now

          let a, Z;

          assume that

           A19: a in Y and

           A20: Z is being_line and

           A21: Z c= X;

          

           A22: a in (a * Z) by A20, Def3;

          

           A23: Z // (a * Z) by A20, Def3;

           A24:

          now

            assume Z // P;

            then Z // N by A10, AFF_1: 44;

            then (a * Z) // N by A23, AFF_1: 44;

            hence (a * Z) c= Y by A2, A8, A19, A22, Th23;

          end;

           A25:

          now

            assume that

             A26: not Z // A and

             A27: not Z // P;

            consider b such that

             A28: p <> b and

             A29: b in A by A15, AFF_1: 20;

            set Z1 = (b * Z);

            

             A30: Z1 is being_line by A20, Th27;

            

             A31: not Z1 // P

            proof

              assume

               A32: Z1 // P;

              Z // (b * Z) by A20, Def3;

              hence contradiction by A27, A32, AFF_1: 44;

            end;

            

             A33: Z // Z1 by A20, Def3;

            Z1 c= X by A1, A5, A20, A21, A29, Th28;

            then

            consider c such that

             A34: c in Z1 and

             A35: c in P by A1, A6, A16, A30, A31, Th22;

            

             A36: b in Z1 by A20, Def3;

            then

             A37: p <> c by A15, A17, A26, A28, A29, A30, A33, A34, AFF_1: 18;

            

             A38: A <> P by A4, A15, AFF_1: 41;

            

             A39: not LIN (p,b,c)

            proof

              assume LIN (p,b,c);

              then c in A by A15, A17, A28, A29, AFF_1: 25;

              hence contradiction by A15, A16, A17, A18, A35, A37, A38, AFF_1: 18;

            end;

            then

             A40: b <> c by AFF_1: 7;

            consider b9 such that

             A41: q <> b9 and

             A42: b9 in M by A11, AFF_1: 20;

            (p,b) // (q,b9) by A9, A17, A13, A29, A42, AFF_1: 39;

            then

            consider c9 such that

             A43: (p,c) // (q,c9) and

             A44: (b,c) // (b9,c9) by A41, A39, Th54;

            set Z2 = ( Line (b9,c9));

            

             A45: b9 in Z2 & c9 in Z2 by AFF_1: 15;

            

             A46: b9 <> c9

            proof

              assume

               A47: b9 = c9;

              (q,b9) // M by A11, A13, A42, AFF_1: 52;

              then (p,c) // M by A41, A43, A47, Th4;

              then (p,c) // A by A9, Th3;

              then c in A by A17, Th2;

              hence contradiction by A15, A16, A17, A18, A35, A37, A38, AFF_1: 18;

            end;

            then Z2 is being_line by AFF_1:def 3;

            then Z1 // Z2 by A30, A36, A34, A44, A40, A46, A45, AFF_1: 38;

            then Z // Z2 by A33, AFF_1: 44;

            then

             A48: (a * Z) // Z2 by A23, AFF_1: 44;

            c9 in N by A10, A18, A14, A35, A37, A43, Th7;

            then Z2 c= Y by A2, A7, A8, A42, A46, Th19;

            hence (a * Z) c= Y by A2, A19, A22, A48, Th23;

          end;

          now

            assume Z // A;

            then Z // M by A9, AFF_1: 44;

            then (a * Z) // M by A23, AFF_1: 44;

            hence (a * Z) c= Y by A2, A7, A19, A22, Th23;

          end;

          hence (a * Z) c= Y by A24, A25;

        end;

        hence X '||' Y;

      end;

      now

        consider a9, b9, c9 such that

         A49: a9 in Y and b9 in Y and c9 in Y and not LIN (a9,b9,c9) by A2, Th34;

        assume

         A50: X '||' Y;

        consider a, b, c such that

         A51: a in X and

         A52: b in X and

         A53: c in X and

         A54: not LIN (a,b,c) by A1, Th34;

        set A = ( Line (a,b)), P = ( Line (a,c));

        

         A55: b in A & c in P by AFF_1: 15;

        

         A56: a <> c by A54, AFF_1: 7;

        then

         A57: P c= X by A1, A51, A53, Th19;

        take A, P, M = (a9 * A), N = (a9 * P);

        

         A58: a in A by AFF_1: 15;

        

         A59: a <> b by A54, AFF_1: 7;

        then

         A60: A is being_line by AFF_1:def 3;

        

         A61: a in P by AFF_1: 15;

        

         A62: not A // P

        proof

          assume A // P;

          then A = P by A58, A61, AFF_1: 45;

          hence contradiction by A54, A58, A55, A60, AFF_1: 21;

        end;

        

         A63: P is being_line by A56, AFF_1:def 3;

        A c= X by A1, A51, A52, A59, Th19;

        hence not A // P & A c= X & P c= X & M c= Y & N c= Y & (A // M or M // A) & (P // N or N // P) by A50, A60, A63, A49, A62, A57, Def3;

      end;

      hence thesis by A3;

    end;

    theorem :: AFF_4:56

    A // M & M '||' X implies A '||' X

    proof

      assume that

       A1: A // M and

       A2: M '||' X;

      

       A3: M is being_line by A1, AFF_1: 36;

      

       A4: A is being_line by A1, AFF_1: 36;

      now

        consider q, p such that

         A5: q in A and p in A and q <> p by A4, AFF_1: 19;

        let a, C;

        assume that

         A6: a in X and

         A7: C is being_line & C c= A;

        

         A8: (a * A) = (a * (q * M)) by A1, A3, A5, Def3

        .= (a * M) by A3, Th31;

        C = A by A4, A7, Th33;

        hence (a * C) c= X by A2, A3, A6, A8;

      end;

      hence thesis;

    end;

    theorem :: AFF_4:57

    

     Th57: X is being_plane implies X '||' X by Th28;

    theorem :: AFF_4:58

    

     Th58: X is being_plane & Y is being_plane & X '||' Y implies Y '||' X

    proof

      assume that

       A1: X is being_plane & Y is being_plane and

       A2: X '||' Y;

      consider A, P, M, N such that

       A3: not A // P and

       A4: A c= X & P c= X & M c= Y & N c= Y and

       A5: A // M or M // A and

       A6: P // N or N // P by A1, A2, Th55;

       not M // N

      proof

        assume M // N;

        then A // N by A5, AFF_1: 44;

        hence contradiction by A3, A6, AFF_1: 44;

      end;

      hence thesis by A1, A4, A5, A6, Th55;

    end;

    theorem :: AFF_4:59

    

     Th59: X is being_plane implies X <> {}

    proof

      assume X is being_plane;

      then ex a, b, c st a in X & b in X & c in X & not LIN (a,b,c) by Th34;

      hence thesis;

    end;

    theorem :: AFF_4:60

    

     Th60: X '||' Y & Y '||' Z & Y <> {} implies X '||' Z

    proof

      assume that

       A1: X '||' Y and

       A2: Y '||' Z and

       A3: Y <> {} ;

      set x = the Element of Y;

      reconsider p = x as Element of AS by A3, Lm1;

      now

        let a, A;

        assume that

         A4: a in Z and

         A5: A is being_line and

         A6: A c= X;

        (p * A) c= Y & (p * A) is being_line by A1, A3, A5, A6, Th27;

        then (a * (p * A)) c= Z by A2, A4;

        hence (a * A) c= Z by A5, Th31;

      end;

      hence thesis;

    end;

    theorem :: AFF_4:61

    

     Th61: X is being_plane & Y is being_plane & Z is being_plane & (X '||' Y & Y '||' Z or X '||' Y & Z '||' Y or Y '||' X & Y '||' Z or Y '||' X & Z '||' Y) implies X '||' Z

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: Z is being_plane & (X '||' Y & Y '||' Z or X '||' Y & Z '||' Y or Y '||' X & Y '||' Z or Y '||' X & Z '||' Y);

      X '||' Y & Y '||' Z by A1, A2, A3, Th58;

      hence thesis by A2, Th59, Th60;

    end;

    

     Lm13: X is being_plane & Y is being_plane & X '||' Y & X <> Y implies not ex a st a in X & a in Y

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: X '||' Y and

       A4: X <> Y;

      assume not thesis;

      then

      consider a such that

       A5: a in X and

       A6: a in Y;

      consider b, c such that

       A7: b in X and

       A8: c in X and

       A9: not LIN (a,b,c) by A1, Lm9;

      set M = ( Line (a,b)), N = ( Line (a,c));

      

       A10: a <> c by A9, AFF_1: 7;

      then

       A11: N c= X by A1, A5, A8, Th19;

      

       A12: a <> b by A9, AFF_1: 7;

      then

       A13: M is being_line by AFF_1:def 3;

      

       A14: M <> N

      proof

        assume M = N;

        then

         A15: c in M by AFF_1: 15;

        a in M & b in M by AFF_1: 15;

        hence contradiction by A9, A13, A15, AFF_1: 21;

      end;

      

       A16: N is being_line by A10, AFF_1:def 3;

      then a in N & (a * N) c= Y by A3, A6, A11, AFF_1: 15;

      then

       A17: N c= Y by A16, Lm8;

      

       A18: M c= X by A1, A5, A7, A12, Th19;

      then a in M & (a * M) c= Y by A3, A6, A13, AFF_1: 15;

      then M c= Y by A13, Lm8;

      hence contradiction by A1, A2, A4, A13, A16, A18, A11, A17, A14, Th26;

    end;

    theorem :: AFF_4:62

    X is being_plane & Y is being_plane & a in X & a in Y & X '||' Y implies X = Y by Lm13;

    theorem :: AFF_4:63

    

     Th63: X is being_plane & Y is being_plane & Z is being_plane & X '||' Y & X <> Y & a in (X /\ Z) & b in (X /\ Z) & c in (Y /\ Z) & d in (Y /\ Z) implies (a,b) // (c,d)

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: Z is being_plane and

       A4: X '||' Y and

       A5: X <> Y and

       A6: a in (X /\ Z) and

       A7: b in (X /\ Z) and

       A8: c in (Y /\ Z) and

       A9: d in (Y /\ Z);

      

       A10: c in Z by A8, XBOOLE_0:def 4;

      

       A11: a in X & a in Z by A6, XBOOLE_0:def 4;

      then

       A12: Z <> Y by A1, A2, A4, A5, Lm13;

      

       A13: c in Y by A8, XBOOLE_0:def 4;

      then

       A14: Z <> X by A1, A2, A4, A5, A10, Lm13;

      set A = (X /\ Z), C = (Y /\ Z);

      

       A15: b in X & b in Z by A7, XBOOLE_0:def 4;

      

       A16: d in Y & d in Z by A9, XBOOLE_0:def 4;

      now

        

         A17: C c= Y & C c= Z by XBOOLE_1: 17;

        set K = (c * A);

        assume that

         A18: a <> b and

         A19: c <> d;

        

         A20: A is being_line by A1, A3, A11, A15, A14, A18, Th24;

        then

         A21: A // K by Def3;

        A c= X by XBOOLE_1: 17;

        then

         A22: K c= Y by A4, A13, A20;

        

         A23: K c= Z by A3, A10, A20, Th28, XBOOLE_1: 17;

        C is being_line & K is being_line by A1, A2, A3, A11, A15, A13, A10, A16, A12, A14, A18, A19, Th24, Th27;

        then K = C by A2, A3, A12, A17, A23, A22, Th26;

        hence thesis by A6, A7, A8, A9, A21, AFF_1: 39;

      end;

      hence thesis by AFF_1: 3;

    end;

    theorem :: AFF_4:64

    X is being_plane & Y is being_plane & Z is being_plane & X '||' Y & a in (X /\ Z) & b in (X /\ Z) & c in (Y /\ Z) & d in (Y /\ Z) & X <> Y & a <> b & c <> d implies (X /\ Z) // (Y /\ Z)

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: Z is being_plane and

       A4: X '||' Y and

       A5: a in (X /\ Z) and

       A6: b in (X /\ Z) and

       A7: c in (Y /\ Z) and

       A8: d in (Y /\ Z) and

       A9: X <> Y and

       A10: a <> b and

       A11: c <> d;

      

       A12: d in Y & d in Z by A8, XBOOLE_0:def 4;

      set A = (X /\ Z), C = (Y /\ Z);

      

       A13: c in Y & c in Z by A7, XBOOLE_0:def 4;

      

       A14: a in X & a in Z by A5, XBOOLE_0:def 4;

      then Z <> Y by A1, A2, A4, A9, Lm13;

      then

       A15: C is being_line by A2, A3, A11, A13, A12, Th24;

      

       A16: b in X & b in Z by A6, XBOOLE_0:def 4;

      Z <> X by A1, A2, A4, A9, A13, Lm13;

      then

       A17: A is being_line by A1, A3, A10, A14, A16, Th24;

      (a,b) // (c,d) by A1, A2, A3, A4, A5, A6, A7, A8, A9, Th63;

      hence thesis by A5, A6, A7, A8, A10, A11, A17, A15, AFF_1: 38;

    end;

    theorem :: AFF_4:65

    

     Th65: for a, X st X is being_plane holds ex Y st a in Y & X '||' Y & Y is being_plane

    proof

      let a, X;

      assume

       A1: X is being_plane;

      then

      consider p, q, r such that

       A2: p in X and

       A3: q in X and

       A4: r in X and

       A5: not LIN (p,q,r) by Th34;

      set M = ( Line (p,q)), N = ( Line (p,r));

      

       A6: p <> r by A5, AFF_1: 7;

      then

       A7: N c= X by A1, A2, A4, Th19;

      set M9 = (a * M), N9 = (a * N);

      

       A8: p <> q by A5, AFF_1: 7;

      then

       A9: M is being_line by AFF_1:def 3;

      then

       A10: M9 is being_line by Th27;

      

       A11: p in N & r in N by AFF_1: 15;

      

       A12: p in M by AFF_1: 15;

      

       A13: q in M by AFF_1: 15;

      

       A14: not M // N

      proof

        assume M // N;

        then r in M by A12, A11, AFF_1: 45;

        hence contradiction by A5, A12, A13, A9, AFF_1: 21;

      end;

      

       A15: N is being_line by A6, AFF_1:def 3;

      then

       A16: N // N9 by Def3;

      

       A17: M // M9 by A9, Def3;

      

       A18: a in M9 by A9, Def3;

      N9 is being_line & a in N9 by A15, Def3, Th27;

      then

      consider Y such that

       A19: M9 c= Y and

       A20: N9 c= Y and

       A21: Y is being_plane by A10, A18, Th38;

      M c= X by A1, A2, A3, A8, Th19;

      then X '||' Y by A1, A17, A16, A19, A20, A21, A7, A14, Th55;

      hence thesis by A18, A19, A21;

    end;

    definition

      let AS, a, X;

      :: AFF_4:def6

      func a + X -> Subset of AS means

      : Def6: a in it & X '||' it & it is being_plane;

      existence by A1, Th65;

      uniqueness

      proof

        let Y1,Y2 be Subset of AS such that

         A2: a in Y1 and

         A3: X '||' Y1 and

         A4: Y1 is being_plane and

         A5: a in Y2 and

         A6: X '||' Y2 and

         A7: Y2 is being_plane;

        Y1 '||' Y2 by A1, A3, A4, A6, A7, Th61;

        hence thesis by A2, A4, A5, A7, Lm13;

      end;

    end

    theorem :: AFF_4:66

    X is being_plane implies (a in X iff (a + X) = X)

    proof

      assume

       A1: X is being_plane;

      now

        assume

         A2: a in X;

        X '||' X by A1, Th57;

        hence (a + X) = X by A1, A2, Def6;

      end;

      hence thesis by A1, Def6;

    end;

    theorem :: AFF_4:67

    X is being_plane implies (a + X) = (a + (q + X))

    proof

      assume

       A1: X is being_plane;

      then

       A2: a in (a + X) by Def6;

      

       A3: (a + X) is being_plane by A1, Def6;

      

       A4: (q + X) is being_plane by A1, Def6;

      then

       A5: (q + X) '||' (a + (q + X)) by Def6;

      

       A6: a in (a + (q + X)) by A4, Def6;

      

       A7: (a + (q + X)) is being_plane by A4, Def6;

      X '||' (q + X) & X '||' (a + X) by A1, Def6;

      then (a + X) '||' (q + X) by A1, A4, A3, Th61;

      then (a + X) '||' (a + (q + X)) by A4, A5, A3, A7, Th61;

      hence thesis by A2, A6, A3, A7, Lm13;

    end;

    theorem :: AFF_4:68

    A is being_line & X is being_plane & A '||' X implies (a * A) c= (a + X)

    proof

      assume that

       A1: A is being_line and

       A2: X is being_plane and

       A3: A '||' X;

      

       A4: X '||' (a + X) & a in (a + X) by A2, Def6;

      consider N such that

       A5: N c= X and

       A6: A // N or N // A by A1, A2, A3, Th41;

      (a * A) = (a * N) & N is being_line by A6, Th32, AFF_1: 36;

      hence thesis by A5, A4;

    end;

    theorem :: AFF_4:69

    X is being_plane & Y is being_plane & X '||' Y implies (a + X) = (a + Y)

    proof

      assume that

       A1: X is being_plane and

       A2: Y is being_plane and

       A3: X '||' Y;

      

       A4: (a + X) is being_plane by A1, Def6;

      

       A5: a in (a + X) & a in (a + Y) by A1, A2, Def6;

      

       A6: (a + Y) is being_plane by A2, Def6;

      X '||' (a + X) by A1, Def6;

      then

       A7: (a + X) '||' Y by A1, A2, A3, A4, Th61;

      Y '||' (a + Y) by A2, Def6;

      then (a + X) '||' (a + Y) by A2, A4, A6, A7, Th61;

      hence thesis by A5, A4, A6, Lm13;

    end;