afvect01.miz
begin
reserve AFV for
WeakAffVect;
reserve a,a9,b,b9,c,d,p,p9,q,q9,r,r9 for
Element of AFV;
registration
let A be non
empty
set, C be
Relation of
[:A, A:];
cluster
AffinStruct (# A, C #) -> non
empty;
coherence ;
end
Lm1: (a,b)
'||' (b,c) & a
<> c implies (a,b)
// (b,c)
proof
assume that
A1: (a,b)
'||' (b,c) and
A2: a
<> c;
not (a,b)
// (c,b) by
A2,
AFVECT0: 4,
AFVECT0: 7;
hence thesis by
A1,
DIRAF:def 4;
end;
Lm2: (a,b)
// (b,a) iff ex p, q st (a,b)
'||' (p,q) & (a,p)
'||' (p,b) & (a,q)
'||' (q,b)
proof
A1:
now
given p, q such that
A2: (a,b)
'||' (p,q) and
A3: (a,p)
'||' (p,b) and
A4: (a,q)
'||' (q,b);
now
A5:
now
assume
A6:
MDist (p,q);
(a,b)
// (p,q) or (a,b)
// (q,p) by
A2,
DIRAF:def 4;
then
MDist (a,b) by
A6,
AFVECT0: 3,
AFVECT0: 15;
hence (a,b)
// (b,a) by
AFVECT0:def 2;
end;
assume
A7: a
<> b;
then (a,q)
// (q,b) by
A4,
Lm1;
then
A8:
Mid (a,q,b) by
AFVECT0:def 3;
A9:
now
assume p
= q;
then (a,b)
// (p,p) by
A2,
DIRAF:def 4;
hence contradiction by
A7,
AFVECT0:def 1;
end;
(a,p)
// (p,b) by
A3,
A7,
Lm1;
then
Mid (a,p,b) by
AFVECT0:def 3;
hence (a,b)
// (b,a) by
A8,
A9,
A5,
AFVECT0: 20;
end;
hence (a,b)
// (b,a) by
AFVECT0: 2;
end;
now
assume
A10: (a,b)
// (b,a);
A11:
now
assume a
<> b;
then
A12:
MDist (a,b) by
A10,
AFVECT0:def 2;
consider p such that
A13:
Mid (a,p,b) by
AFVECT0: 19;
A14: (a,p)
// (p,b) by
A13,
AFVECT0:def 3;
consider q such that
A15: (a,b)
// (p,q) by
AFVECT0:def 1;
take p, q;
Mid (a,q,b) by
A13,
A15,
A12,
AFVECT0: 15,
AFVECT0: 23;
then (a,q)
// (q,b) by
AFVECT0:def 3;
hence (a,b)
'||' (p,q) & (a,p)
'||' (p,b) & (a,q)
'||' (q,b) by
A15,
A14,
DIRAF:def 4;
end;
now
assume
A16: a
= b;
take p = a, q = a;
(a,b)
// (p,q) by
A16,
AFVECT0: 2;
hence (a,b)
'||' (p,q) & (a,p)
'||' (p,b) & (a,q)
'||' (q,b) by
A16,
DIRAF:def 4;
end;
hence ex p, q st (a,b)
'||' (p,q) & (a,p)
'||' (p,b) & (a,q)
'||' (q,b) by
A11;
end;
hence thesis by
A1;
end;
Lm3: (a,b)
'||' (c,d) implies (b,a)
'||' (c,d)
proof
assume (a,b)
'||' (c,d);
then (a,b)
// (c,d) or (a,b)
// (d,c) by
DIRAF:def 4;
then (b,a)
// (d,c) or (b,a)
// (c,d) by
AFVECT0: 7;
hence thesis by
DIRAF:def 4;
end;
Lm4: (a,b)
'||' (b,a)
proof
(a,b)
// (a,b) by
AFVECT0: 1;
hence thesis by
DIRAF:def 4;
end;
Lm5: (a,b)
'||' (p,p) implies a
= b
proof
assume (a,b)
'||' (p,p);
then (a,b)
// (p,p) by
DIRAF:def 4;
hence thesis by
AFVECT0:def 1;
end;
Lm6: for a, b, c, d, p, q holds (a,b)
'||' (p,q) & (c,d)
'||' (p,q) implies (a,b)
'||' (c,d)
proof
let a, b, c, d, p, q;
assume (a,b)
'||' (p,q) & (c,d)
'||' (p,q);
then (a,b)
// (p,q) & (c,d)
// (p,q) or (a,b)
// (p,q) & (c,d)
// (q,p) or (a,b)
// (q,p) & (c,d)
// (p,q) or (a,b)
// (q,p) & (c,d)
// (q,p) by
DIRAF:def 4;
then (a,b)
// (c,d) or (a,b)
// (p,q) & (d,c)
// (p,q) or (a,b)
// (q,p) & (d,c)
// (q,p) by
AFVECT0: 7,
AFVECT0:def 1;
then (a,b)
// (c,d) or (a,b)
// (d,c) by
AFVECT0:def 1;
hence thesis by
DIRAF:def 4;
end;
Lm7: ex b st (a,b)
'||' (b,c)
proof
consider b such that
A1: (a,b)
// (b,c) by
AFVECT0:def 1;
take b;
thus thesis by
A1,
DIRAF:def 4;
end;
Lm8: for a, a9, b, b9, p st a
<> a9 & b
<> b9 & (p,a)
'||' (p,a9) & (p,b)
'||' (p,b9) holds (a,b)
'||' (a9,b9)
proof
let a, a9, b, b9, p;
assume that
A1: a
<> a9 and
A2: b
<> b9 and
A3: (p,a)
'||' (p,a9) and
A4: (p,b)
'||' (p,b9);
(b,p)
// (p,b9) by
A2,
A4,
Lm1,
Lm3;
then
A5:
Mid (b,p,b9) by
AFVECT0:def 3;
(a,p)
// (p,a9) by
A1,
A3,
Lm1,
Lm3;
then
Mid (a,p,a9) by
AFVECT0:def 3;
then (a,b)
// (b9,a9) by
A5,
AFVECT0: 25;
hence thesis by
DIRAF:def 4;
end;
Lm9: a
= b or ex c st a
<> c & (a,b)
'||' (b,c) or ex p, p9 st p
<> p9 & (a,b)
'||' (p,p9) & (a,p)
'||' (p,b) & (a,p9)
'||' (p9,b)
proof
consider c such that
A1: (a,b)
// (b,c) by
AFVECT0:def 1;
A2:
now
assume a
= c;
then
consider p, p9 such that
A3: (a,b)
'||' (p,p9) and
A4: (a,p)
'||' (p,b) & (a,p9)
'||' (p9,b) by
A1,
Lm2;
p
= p9 implies a
= b by
A3,
Lm5;
hence a
= b or ex p, p9 st p
<> p9 & (a,b)
'||' (p,p9) & (a,p)
'||' (p,b) & (a,p9)
'||' (p9,b) by
A3,
A4;
end;
now
assume
A5: a
<> c;
(a,b)
'||' (b,c) by
A1,
DIRAF:def 4;
hence ex c st a
<> c & (a,b)
'||' (b,c) by
A5;
end;
hence thesis by
A2;
end;
Lm10: for a, b, b9, p, p9, c st (a,b)
'||' (b,c) & (b,b9)
'||' (p,p9) & (b,p)
'||' (p,b9) & (b,p9)
'||' (p9,b9) holds (a,b9)
'||' (b9,c)
proof
let a, b, b9, p, p9, c;
assume that
A1: (a,b)
'||' (b,c) and
A2: (b,b9)
'||' (p,p9) & (b,p)
'||' (p,b9) & (b,p9)
'||' (p9,b9);
A3: (b,b9)
// (b9,b) by
A2,
Lm2;
A4:
now
assume
A5: (a,b)
// (b,c);
then
A6:
Mid (a,b,c) by
AFVECT0:def 3;
A7:
now
assume
MDist (b,b9);
then
Mid (a,b9,c) by
A6,
AFVECT0: 23;
then (a,b9)
// (b9,c) by
AFVECT0:def 3;
hence thesis by
DIRAF:def 4;
end;
b
= b9 implies thesis by
A5,
DIRAF:def 4;
hence thesis by
A3,
A7,
AFVECT0:def 2;
end;
now
assume (a,b)
// (c,b);
then a
= c by
AFVECT0: 4,
AFVECT0: 7;
then (a,b9)
// (c,b9) by
AFVECT0: 1;
hence thesis by
DIRAF:def 4;
end;
hence thesis by
A1,
A4,
DIRAF:def 4;
end;
Lm11: for a, b, b9, c st a
<> c & b
<> b9 & (a,b)
'||' (b,c) & (a,b9)
'||' (b9,c) holds ex p, p9 st p
<> p9 & (b,b9)
'||' (p,p9) & (b,p)
'||' (p,b9) & (b,p9)
'||' (p9,b9)
proof
let a, b, b9, c;
assume that
A1: a
<> c and
A2: b
<> b9 and
A3: (a,b)
'||' (b,c) and
A4: (a,b9)
'||' (b9,c);
(a,b9)
// (b9,c) by
A1,
A4,
Lm1;
then
A5:
Mid (a,b9,c) by
AFVECT0:def 3;
(a,b)
// (b,c) by
A1,
A3,
Lm1;
then
Mid (a,b,c) by
AFVECT0:def 3;
then
MDist (b,b9) by
A2,
A5,
AFVECT0: 20;
then (b,b9)
// (b9,b) by
AFVECT0:def 2;
then
consider p, p9 such that
A6: (b,b9)
'||' (p,p9) and
A7: (b,p)
'||' (p,b9) & (b,p9)
'||' (p9,b9) by
Lm2;
p
<> p9 implies thesis by
A6,
A7;
hence thesis by
A2,
A6,
Lm5;
end;
Lm12: for a, b, c, p, p9, q, q9 st (a,b)
'||' (p,p9) & (a,c)
'||' (q,q9) & (a,p)
'||' (p,b) & (a,q)
'||' (q,c) & (a,p9)
'||' (p9,b) & (a,q9)
'||' (q9,c) holds ex r, r9 st (b,c)
'||' (r,r9) & (b,r)
'||' (r,c) & (b,r9)
'||' (r9,c)
proof
let a, b, c, p, p9, q, q9;
assume (a,b)
'||' (p,p9) & (a,c)
'||' (q,q9) & (a,p)
'||' (p,b) & (a,q)
'||' (q,c) & (a,p9)
'||' (p9,b) & (a,q9)
'||' (q9,c);
then (a,b)
// (b,a) & (a,c)
// (c,a) by
Lm2;
then (b,c)
// (c,b) by
AFVECT0: 12;
hence thesis by
Lm2;
end;
set AFV0 = the
WeakAffVect;
set X = the
carrier of AFV0;
set XX =
[:X, X:];
defpred
P[
object,
object] means ex a,b,c,d be
Element of X st $1
=
[a, b] & $2
=
[c, d] & (a,b)
'||' (c,d);
consider P be
Relation of XX, XX such that
Lm13: for x,y be
object holds
[x, y]
in P iff x
in XX & y
in XX &
P[x, y] from
RELSET_1:sch 1;
Lm14: for a,b,c,d be
Element of X holds
[
[a, b],
[c, d]]
in P iff (a,b)
'||' (c,d)
proof
let a,b,c,d be
Element of X;
A1:
[
[a, b],
[c, d]]
in P implies (a,b)
'||' (c,d)
proof
assume
[
[a, b],
[c, d]]
in P;
then
consider a9,b9,c9,d9 be
Element of X such that
A2:
[a, b]
=
[a9, b9] and
A3:
[c, d]
=
[c9, d9] and
A4: (a9,b9)
'||' (c9,d9) by
Lm13;
A5: c
= c9 by
A3,
XTUPLE_0: 1;
a
= a9 & b
= b9 by
A2,
XTUPLE_0: 1;
hence thesis by
A3,
A4,
A5,
XTUPLE_0: 1;
end;
[a, b]
in XX &
[c, d]
in XX by
ZFMISC_1:def 2;
hence thesis by
A1,
Lm13;
end;
set WAS =
AffinStruct (# the
carrier of AFV0, P #);
Lm15: for a,b,c,d be
Element of AFV0, a9,b9,c9,d9 be
Element of WAS st a
= a9 & b
= b9 & c
= c9 & d
= d9 holds (a,b)
'||' (c,d) iff (a9,b9)
// (c9,d9)
proof
let a,b,c,d be
Element of AFV0, a9,b9,c9,d9 be
Element of WAS such that
A1: a
= a9 & b
= b9 & c
= c9 & d
= d9;
A2:
now
assume (a9,b9)
// (c9,d9);
then
[
[a9, b9],
[c9, d9]]
in P by
ANALOAF:def 2;
hence (a,b)
'||' (c,d) by
A1,
Lm14;
end;
now
assume (a,b)
'||' (c,d);
then
[
[a, b],
[c, d]]
in the
CONGR of WAS by
Lm14;
hence (a9,b9)
// (c9,d9) by
A1,
ANALOAF:def 2;
end;
hence thesis by
A2;
end;
Lm16:
now
thus ex a9,b9 be
Element of WAS st a9
<> b9 by
STRUCT_0:def 10;
thus for a9,b9 be
Element of WAS holds (a9,b9)
// (b9,a9)
proof
let a9,b9 be
Element of WAS;
reconsider a = a9, b = b9 as
Element of AFV0;
(a,b)
'||' (b,a) by
Lm4;
hence thesis by
Lm15;
end;
thus for a9,b9 be
Element of WAS st (a9,b9)
// (a9,a9) holds a9
= b9
proof
let a9,b9 be
Element of WAS such that
A1: (a9,b9)
// (a9,a9);
reconsider a = a9, b = b9 as
Element of AFV0;
(a,b)
'||' (a,a) by
A1,
Lm15;
hence thesis by
Lm5;
end;
thus for a,b,c,d,p,q be
Element of WAS st (a,b)
// (p,q) & (c,d)
// (p,q) holds (a,b)
// (c,d)
proof
let a,b,c,d,p,q be
Element of WAS such that
A2: (a,b)
// (p,q) & (c,d)
// (p,q);
reconsider a1 = a, b1 = b, c1 = c, d1 = d, p1 = p, q1 = q as
Element of AFV0;
(a1,b1)
'||' (p1,q1) & (c1,d1)
'||' (p1,q1) by
A2,
Lm15;
then (a1,b1)
'||' (c1,d1) by
Lm6;
hence thesis by
Lm15;
end;
thus for a,c be
Element of WAS holds ex b be
Element of WAS st (a,b)
// (b,c)
proof
let a,c be
Element of WAS;
reconsider a1 = a, c1 = c as
Element of AFV0;
consider b1 be
Element of AFV0 such that
A3: (a1,b1)
'||' (b1,c1) by
Lm7;
reconsider b = b1 as
Element of WAS;
(a,b)
// (b,c) by
A3,
Lm15;
hence thesis;
end;
thus for a,a9,b,b9,p be
Element of WAS st a
<> a9 & b
<> b9 & (p,a)
// (p,a9) & (p,b)
// (p,b9) holds (a,b)
// (a9,b9)
proof
let a,a9,b,b9,p be
Element of WAS such that
A4: a
<> a9 & b
<> b9 and
A5: (p,a)
// (p,a9) & (p,b)
// (p,b9);
reconsider a1 = a, a19 = a9, b1 = b, b19 = b9, p1 = p as
Element of AFV0;
(p1,a1)
'||' (p1,a19) & (p1,b1)
'||' (p1,b19) by
A5,
Lm15;
then (a1,b1)
'||' (a19,b19) by
A4,
Lm8;
hence thesis by
Lm15;
end;
thus for a,b be
Element of WAS holds a
= b or ex c be
Element of WAS st a
<> c & (a,b)
// (b,c) or ex p,p9 be
Element of WAS st p
<> p9 & (a,b)
// (p,p9) & (a,p)
// (p,b) & (a,p9)
// (p9,b)
proof
let a,b be
Element of WAS such that
A6: not a
= b;
reconsider a1 = a, b1 = b as
Element of AFV0;
A7:
now
given p1,p19 be
Element of AFV0 such that
A8: p1
<> p19 and
A9: (a1,b1)
'||' (p1,p19) & (a1,p1)
'||' (p1,b1) and
A10: (a1,p19)
'||' (p19,b1);
reconsider p = p1, p9 = p19 as
Element of WAS;
A11: (a,p9)
// (p9,b) by
A10,
Lm15;
(a,b)
// (p,p9) & (a,p)
// (p,b) by
A9,
Lm15;
hence ex p,p9 be
Element of WAS st p
<> p9 & (a,b)
// (p,p9) & (a,p)
// (p,b) & (a,p9)
// (p9,b) by
A8,
A11;
end;
now
given c1 be
Element of AFV0 such that
A12: a1
<> c1 and
A13: (a1,b1)
'||' (b1,c1);
reconsider c = c1 as
Element of WAS;
(a,b)
// (b,c) by
A13,
Lm15;
hence ex c be
Element of WAS st a
<> c & (a,b)
// (b,c) by
A12;
end;
hence thesis by
A6,
A7,
Lm9;
end;
thus for a,b,b9,p,p9,c be
Element of WAS st (a,b)
// (b,c) & (b,b9)
// (p,p9) & (b,p)
// (p,b9) & (b,p9)
// (p9,b9) holds (a,b9)
// (b9,c)
proof
let a,b,b9,p,p9,c be
Element of WAS such that
A14: (a,b)
// (b,c) & (b,b9)
// (p,p9) and
A15: (b,p)
// (p,b9) & (b,p9)
// (p9,b9);
reconsider a1 = a, b1 = b, b19 = b9, p1 = p, p19 = p9, c1 = c as
Element of AFV0;
A16: (b1,p1)
'||' (p1,b19) & (b1,p19)
'||' (p19,b19) by
A15,
Lm15;
(a1,b1)
'||' (b1,c1) & (b1,b19)
'||' (p1,p19) by
A14,
Lm15;
then (a1,b19)
'||' (b19,c1) by
A16,
Lm10;
hence thesis by
Lm15;
end;
thus for a,b,b9,c be
Element of WAS st a
<> c & b
<> b9 & (a,b)
// (b,c) & (a,b9)
// (b9,c) holds ex p,p9 be
Element of WAS st p
<> p9 & (b,b9)
// (p,p9) & (b,p)
// (p,b9) & (b,p9)
// (p9,b9)
proof
let a,b,b9,c be
Element of WAS such that
A17: a
<> c & b
<> b9 and
A18: (a,b)
// (b,c) & (a,b9)
// (b9,c);
reconsider a1 = a, b1 = b, b19 = b9, c1 = c as
Element of AFV0;
(a1,b1)
'||' (b1,c1) & (a1,b19)
'||' (b19,c1) by
A18,
Lm15;
then
consider p1,p19 be
Element of AFV0 such that
A19: p1
<> p19 and
A20: (b1,b19)
'||' (p1,p19) & (b1,p1)
'||' (p1,b19) and
A21: (b1,p19)
'||' (p19,b19) by
A17,
Lm11;
reconsider p = p1, p9 = p19 as
Element of WAS;
A22: (b,p9)
// (p9,b9) by
A21,
Lm15;
(b,b9)
// (p,p9) & (b,p)
// (p,b9) by
A20,
Lm15;
hence thesis by
A19,
A22;
end;
thus for a,b,c,p,p9,q,q9 be
Element of WAS st (a,b)
// (p,p9) & (a,c)
// (q,q9) & (a,p)
// (p,b) & (a,q)
// (q,c) & (a,p9)
// (p9,b) & (a,q9)
// (q9,c) holds ex r,r9 be
Element of WAS st (b,c)
// (r,r9) & (b,r)
// (r,c) & (b,r9)
// (r9,c)
proof
let a,b,c,p,p9,q,q9 be
Element of WAS such that
A23: (a,b)
// (p,p9) & (a,c)
// (q,q9) and
A24: (a,p)
// (p,b) & (a,q)
// (q,c) and
A25: (a,p9)
// (p9,b) & (a,q9)
// (q9,c);
reconsider a1 = a, b1 = b, c1 = c, p1 = p, p19 = p9, q1 = q, q19 = q9 as
Element of AFV0;
A26: (a1,p1)
'||' (p1,b1) & (a1,q1)
'||' (q1,c1) by
A24,
Lm15;
A27: (a1,p19)
'||' (p19,b1) & (a1,q19)
'||' (q19,c1) by
A25,
Lm15;
(a1,b1)
'||' (p1,p19) & (a1,c1)
'||' (q1,q19) by
A23,
Lm15;
then
consider r1,r19 be
Element of AFV0 such that
A28: (b1,c1)
'||' (r1,r19) & (b1,r1)
'||' (r1,c1) and
A29: (b1,r19)
'||' (r19,c1) by
A26,
A27,
Lm12;
reconsider r = r1, r9 = r19 as
Element of WAS;
A30: (b,r9)
// (r9,c) by
A29,
Lm15;
(b,c)
// (r,r9) & (b,r)
// (r,c) by
A28,
Lm15;
hence thesis by
A30;
end;
end;
definition
let IT be non
empty
AffinStruct;
::
AFVECT01:def1
attr IT is
WeakAffSegm-like means
:
Def1: (for a,b be
Element of IT holds (a,b)
// (b,a)) & (for a,b be
Element of IT st (a,b)
// (a,a) holds a
= b) & (for a,b,c,d,p,q be
Element of IT st (a,b)
// (p,q) & (c,d)
// (p,q) holds (a,b)
// (c,d)) & (for a,c be
Element of IT holds ex b be
Element of IT st (a,b)
// (b,c)) & (for a,a9,b,b9,p be
Element of IT st a
<> a9 & b
<> b9 & (p,a)
// (p,a9) & (p,b)
// (p,b9) holds (a,b)
// (a9,b9)) & (for a,b be
Element of IT holds a
= b or ex c be
Element of IT st (a
<> c & (a,b)
// (b,c)) or ex p,p9 be
Element of IT st (p
<> p9 & (a,b)
// (p,p9) & (a,p)
// (p,b) & (a,p9)
// (p9,b))) & (for a,b,b9,p,p9,c be
Element of IT st (a,b)
// (b,c) & (b,b9)
// (p,p9) & (b,p)
// (p,b9) & (b,p9)
// (p9,b9) holds (a,b9)
// (b9,c)) & (for a,b,b9,c be
Element of IT st a
<> c & b
<> b9 & (a,b)
// (b,c) & (a,b9)
// (b9,c) holds ex p,p9 be
Element of IT st p
<> p9 & (b,b9)
// (p,p9) & (b,p)
// (p,b9) & (b,p9)
// (p9,b9)) & for a,b,c,p,p9,q,q9 be
Element of IT st (a,b)
// (p,p9) & (a,c)
// (q,q9) & (a,p)
// (p,b) & (a,q)
// (q,c) & (a,p9)
// (p9,b) & (a,q9)
// (q9,c) holds ex r,r9 be
Element of IT st (b,c)
// (r,r9) & (b,r)
// (r,c) & (b,r9)
// (r9,c);
end
registration
cluster
strict
WeakAffSegm-like for non
trivial
AffinStruct;
existence
proof
WAS is
WeakAffSegm-like non
trivial by
Lm16;
hence thesis;
end;
end
definition
mode
WeakAffSegm is
WeakAffSegm-like non
trivial
AffinStruct;
end
reserve AFV for
WeakAffSegm;
reserve a,b,b9,b99,c,d,p,p9 for
Element of AFV;
theorem ::
AFVECT01:1
Th1: (a,b)
// (a,b)
proof
(a,b)
// (b,a) by
Def1;
hence thesis by
Def1;
end;
theorem ::
AFVECT01:2
Th2: (a,b)
// (c,d) implies (c,d)
// (a,b)
proof
assume
A1: (a,b)
// (c,d);
(c,d)
// (c,d) by
Th1;
hence thesis by
A1,
Def1;
end;
theorem ::
AFVECT01:3
Th3: (a,b)
// (c,d) implies (a,b)
// (d,c)
proof
assume
A1: (a,b)
// (c,d);
(d,c)
// (c,d) by
Def1;
hence thesis by
A1,
Def1;
end;
theorem ::
AFVECT01:4
Th4: (a,b)
// (c,d) implies (b,a)
// (c,d)
proof
assume (a,b)
// (c,d);
then (c,d)
// (a,b) by
Th2;
then (c,d)
// (b,a) by
Th3;
hence thesis by
Th2;
end;
theorem ::
AFVECT01:5
Th5: for a, b holds (a,a)
// (b,b)
proof
let a, b;
now
consider c such that
A1: (a,c)
// (c,b) by
Def1;
assume
A2: a
<> b;
(c,a)
// (c,b) by
A1,
Th4;
hence thesis by
A2,
Def1;
end;
hence thesis by
Def1;
end;
theorem ::
AFVECT01:6
Th6: (a,b)
// (c,c) implies a
= b
proof
assume
A1: (a,b)
// (c,c);
(a,a)
// (c,c) by
Th5;
then (a,b)
// (a,a) by
A1,
Def1;
hence thesis by
Def1;
end;
theorem ::
AFVECT01:7
Th7: (a,b)
// (p,p9) & (a,b)
// (b,c) & (a,p)
// (p,b) & (a,p9)
// (p9,b) implies a
= c
proof
assume that
A1: (a,b)
// (p,p9) and
A2: (a,b)
// (b,c) and
A3: (a,p)
// (p,b) and
A4: (a,p9)
// (p9,b);
(p,b)
// (a,p) by
A3,
Th2;
then (p,b)
// (p,a) by
Th3;
then
A5: (b,p)
// (p,a) by
Th4;
(p9,b)
// (a,p9) by
A4,
Th2;
then (p9,b)
// (p9,a) by
Th3;
then
A6: (b,p9)
// (p9,a) by
Th4;
(b,a)
// (p,p9) by
A1,
Th4;
then (a,a)
// (a,c) by
A2,
A5,
A6,
Def1;
then (a,c)
// (a,a) by
Th2;
hence thesis by
Def1;
end;
theorem ::
AFVECT01:8
(a,b9)
// (a,b99) & (a,b)
// (a,b99) implies b
= b9 or b
= b99 or b9
= b99
proof
assume
A1: (a,b9)
// (a,b99) & (a,b)
// (a,b99);
now
assume b9
<> b99 & b
<> b99;
then (b9,b)
// (b99,b99) by
A1,
Def1;
hence thesis by
Th6;
end;
hence thesis;
end;
definition
let AFV;
let a, b;
::
AFVECT01:def2
pred
MDist a,b means ex p, p9 st p
<> p9 & (a,b)
// (p,p9) & (a,p)
// (p,b) & (a,p9)
// (p9,b);
end
definition
let AFV;
let a, b, c;
::
AFVECT01:def3
pred
Mid a,b,c means a
= b & b
= c & a
= c or a
= c &
MDist (a,b) or a
<> c & (a,b)
// (b,c);
end
theorem ::
AFVECT01:9
a
<> b & not
MDist (a,b) implies ex c st a
<> c & (a,b)
// (b,c) by
Def1;
theorem ::
AFVECT01:10
MDist (a,b) & (a,b)
// (b,c) implies a
= c by
Th7;
theorem ::
AFVECT01:11
MDist (a,b) implies a
<> b by
Th2,
Th6;