arytm_0.miz



    begin

    

     Lm1: for x be Element of REAL+ holds [ 0 , x] in [: { 0 }, REAL+ :]

    proof

       0 in { 0 } by TARSKI:def 1;

      hence thesis by ZFMISC_1: 87;

    end;

    theorem :: ARYTM_0:1

    

     Th1: REAL+ c= REAL

    proof

       REAL+ c= ( REAL+ \/ [: { {} }, REAL+ :]) by XBOOLE_1: 7;

      hence thesis by ARYTM_2: 3, ZFMISC_1: 34;

    end;

    theorem :: ARYTM_0:2

    

     Th2: for x be Element of REAL+ st x <> {} holds [ {} , x] in REAL

    proof

      let x be Element of REAL+ such that

       A1: x <> {} ;

       A2:

      now

        assume [ {} , x] in { [ {} , {} ]};

        then [ {} , x] = [ {} , {} ] by TARSKI:def 1;

        hence contradiction by A1, XTUPLE_0: 1;

      end;

       {} in { {} } by TARSKI:def 1;

      then [ {} , x] in [: { {} }, REAL+ :] by ZFMISC_1: 87;

      then [ {} , x] in ( REAL+ \/ [: { {} }, REAL+ :]) by XBOOLE_0:def 3;

      hence thesis by A2, XBOOLE_0:def 5;

    end;

    theorem :: ARYTM_0:3

    

     Th3: for y be set st [ {} , y] in REAL holds y <> {}

    proof

      let y be set such that

       A1: [ {} , y] in REAL and

       A2: y = {} ;

       [ {} , y] in { [ {} , {} ]} by A2, TARSKI:def 1;

      hence contradiction by A1, XBOOLE_0:def 5;

    end;

    theorem :: ARYTM_0:4

    

     Th4: for x,y be Element of REAL+ holds (x - y) in REAL

    proof

      let x,y be Element of REAL+ ;

      per cases ;

        suppose y <=' x;

        then (x - y) = (x -' y) by ARYTM_1:def 2;

        then (x - y) in REAL+ ;

        hence thesis by Th1;

      end;

        suppose

         A1: not y <=' x;

        then (x - y) = [ {} , (y -' x)] by ARYTM_1:def 2;

        hence thesis by A1, Th2, ARYTM_1: 9;

      end;

    end;

    theorem :: ARYTM_0:5

    

     Th5: REAL+ misses [: { {} }, REAL+ :]

    proof

      assume REAL+ meets [: { {} }, REAL+ :];

      then

      consider x be object such that

       A1: x in REAL+ and

       A2: x in [: { {} }, REAL+ :] by XBOOLE_0: 3;

      consider x1,x2 be object such that

       A3: x1 in { {} } and x2 in REAL+ and

       A4: x = [x1, x2] by A2, ZFMISC_1: 84;

      x1 = {} by A3, TARSKI:def 1;

      hence contradiction by A1, A4, ARYTM_2: 3;

    end;

    begin

    registration

      let x,y be object;

      cluster [x, y] -> non zero;

      coherence ;

    end

    theorem :: ARYTM_0:6

    

     Th6: for x,y be Element of REAL+ st (x - y) = {} holds x = y

    proof

      let x,y be Element of REAL+ ;

      assume

       A1: (x - y) = {} ;

       0 <> [ {} , (y -' x)];

      then y <=' x & (x -' y) = {} by A1, ARYTM_1:def 2;

      hence thesis by ARYTM_1: 10;

    end;

    

     Lm2: not ex a,b be set st 1 = [a, b]

    proof

      let a,b be set;

      assume

       A1: 1 = [a, b];

       {a} in { {a, b}, {a}} by TARSKI:def 2;

      hence contradiction by A1, ORDINAL3: 15, TARSKI:def 1;

    end;

    theorem :: ARYTM_0:7

    

     Th7: for x,y,z be Element of REAL+ st x <> {} & (x *' y) = (x *' z) holds y = z

    proof

      let x,y,z be Element of REAL+ ;

      assume that

       A1: x <> {} and

       A2: (x *' y) = (x *' z);

      per cases ;

        suppose

         A3: z <=' y;

        

        then (x *' (y -' z)) = ((x *' y) - (x *' z)) by ARYTM_1: 26

        .= {} by A2, ARYTM_1: 18;

        

        then {} = (y -' z) by A1, ARYTM_1: 2

        .= (y - z) by A3, ARYTM_1:def 2;

        hence thesis by Th6;

      end;

        suppose

         A4: y <=' z;

        

        then (x *' (z -' y)) = ((x *' z) - (x *' y)) by ARYTM_1: 26

        .= {} by A2, ARYTM_1: 18;

        

        then {} = (z -' y) by A1, ARYTM_1: 2

        .= (z - y) by A4, ARYTM_1:def 2;

        hence thesis by Th6;

      end;

    end;

    begin

    

     Lm3: 0 in REAL by NUMBERS: 19;

    definition

      let x,y be Element of REAL ;

      :: ARYTM_0:def1

      func + (x,y) -> Element of REAL means

      : Def1: ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & it = (x9 + y9) if x in REAL+ & y in REAL+ ,

ex x9,y9 be Element of REAL+ st x = x9 & y = [ 0 , y9] & it = (x9 - y9) if x in REAL+ & y in [: { 0 }, REAL+ :],

ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = y9 & it = (y9 - x9) if y in REAL+ & x in [: { 0 }, REAL+ :]

      otherwise ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = [ 0 , y9] & it = [ 0 , (x9 + y9)];

      existence

      proof

        hereby

          assume x in REAL+ & y in REAL+ ;

          then

          reconsider x9 = x, y9 = y as Element of REAL+ ;

          reconsider IT = (x9 + y9) as Element of REAL by Th1;

          take IT, x9, y9;

          thus x = x9 & y = y9 & IT = (x9 + y9);

        end;

        

         A1: y in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

        hereby

          assume x in REAL+ ;

          then

          reconsider x9 = x as Element of REAL+ ;

          assume y in [: { 0 }, REAL+ :];

          then

          consider z,y9 be object such that

           A2: z in { 0 } and

           A3: y9 in REAL+ and

           A4: y = [z, y9] by ZFMISC_1: 84;

          reconsider y9 as Element of REAL+ by A3;

          reconsider IT = (x9 - y9) as Element of REAL by Th4;

          take IT, x9, y9;

          thus x = x9 & y = [ 0 , y9] & IT = (x9 - y9) by A2, A4, TARSKI:def 1;

        end;

        hereby

          assume y in REAL+ ;

          then

          reconsider y9 = y as Element of REAL+ ;

          assume x in [: { 0 }, REAL+ :];

          then

          consider z,x9 be object such that

           A5: z in { 0 } and

           A6: x9 in REAL+ and

           A7: x = [z, x9] by ZFMISC_1: 84;

          reconsider x9 as Element of REAL+ by A6;

          reconsider IT = (y9 - x9) as Element of REAL by Th4;

          take IT, x9, y9;

          thus x = [ 0 , x9] & y = y9 & IT = (y9 - x9) by A5, A7, TARSKI:def 1;

        end;

        assume that

         A8: not (x in REAL+ & y in REAL+ ) and

         A9: not (x in REAL+ & y in [: { 0 }, REAL+ :]) and

         A10: not (y in REAL+ & x in [: { 0 }, REAL+ :]);

        

         A11: x in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

        then x in REAL+ or x in [: { 0 }, REAL+ :] by XBOOLE_0:def 3;

        then

        consider z1,x9 be object such that

         A12: z1 in { 0 } and

         A13: x9 in REAL+ and

         A14: x = [z1, x9] by A1, A8, A9, XBOOLE_0:def 3, ZFMISC_1: 84;

        y in REAL+ or y in [: { 0 }, REAL+ :] by A1, XBOOLE_0:def 3;

        then

        consider z2,y9 be object such that

         A15: z2 in { 0 } and

         A16: y9 in REAL+ and

         A17: y = [z2, y9] by A11, A8, A10, XBOOLE_0:def 3, ZFMISC_1: 84;

        reconsider x9 as Element of REAL+ by A13;

        reconsider y9 as Element of REAL+ by A16;

        x = [ 0 , x9] by A12, A14, TARSKI:def 1;

        then (x9 + y9) <> 0 by Th3, ARYTM_2: 5;

        then

        reconsider IT = [ 0 , (y9 + x9)] as Element of REAL by Th2;

        take IT, x9, y9;

        thus thesis by A12, A14, A15, A17, TARSKI:def 1;

      end;

      uniqueness

      proof

        let IT1,IT2 be Element of REAL ;

        thus x in REAL+ & y in REAL+ & (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & IT1 = (x9 + y9)) & (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & IT2 = (x9 + y9)) implies IT1 = IT2;

        thus x in REAL+ & y in [: { 0 }, REAL+ :] & (ex x9,y9 be Element of REAL+ st x = x9 & y = [ 0 , y9] & IT1 = (x9 - y9)) & (ex x99,y99 be Element of REAL+ st x = x99 & y = [ 0 , y99] & IT2 = (x99 - y99)) implies IT1 = IT2 by XTUPLE_0: 1;

        thus y in REAL+ & x in [: { 0 }, REAL+ :] & (ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = y9 & IT1 = (y9 - x9)) & (ex x99,y99 be Element of REAL+ st x = [ 0 , x99] & y = y99 & IT2 = (y99 - x99)) implies IT1 = IT2 by XTUPLE_0: 1;

        assume that not (x in REAL+ & y in REAL+ ) and not (x in REAL+ & y in [: { 0 }, REAL+ :]) and not (y in REAL+ & x in [: { 0 }, REAL+ :]);

        given x9,y9 be Element of REAL+ such that

         A18: x = [ 0 , x9] and

         A19: y = [ 0 , y9] & IT1 = [ 0 , (x9 + y9)];

        given x99,y99 be Element of REAL+ such that

         A20: x = [ 0 , x99] and

         A21: y = [ 0 , y99] & IT2 = [ 0 , (x99 + y99)];

        x9 = x99 by A18, A20, XTUPLE_0: 1;

        hence thesis by A19, A21, XTUPLE_0: 1;

      end;

      consistency by Th5, XBOOLE_0: 3;

      commutativity ;

      :: ARYTM_0:def2

      func * (x,y) -> Element of REAL means

      : Def2: ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & it = (x9 *' y9) if x in REAL+ & y in REAL+ ,

ex x9,y9 be Element of REAL+ st x = x9 & y = [ 0 , y9] & it = [ 0 , (x9 *' y9)] if x in REAL+ & y in [: { 0 }, REAL+ :] & x <> 0 ,

ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = y9 & it = [ 0 , (y9 *' x9)] if y in REAL+ & x in [: { 0 }, REAL+ :] & y <> 0 ,

ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = [ 0 , y9] & it = (y9 *' x9) if x in [: { 0 }, REAL+ :] & y in [: { 0 }, REAL+ :]

      otherwise it = 0 ;

      existence

      proof

        hereby

          assume x in REAL+ & y in REAL+ ;

          then

          reconsider x9 = x, y9 = y as Element of REAL+ ;

          reconsider IT = (x9 *' y9) as Element of REAL by Th1;

          take IT, x9, y9;

          thus x = x9 & y = y9 & IT = (x9 *' y9);

        end;

        hereby

          assume x in REAL+ ;

          then

          reconsider x9 = x as Element of REAL+ ;

          assume y in [: { 0 }, REAL+ :];

          then

          consider z,y9 be object such that

           A22: z in { 0 } and

           A23: y9 in REAL+ and

           A24: y = [z, y9] by ZFMISC_1: 84;

          reconsider y9 as Element of REAL+ by A23;

          y = [ 0 , y9] by A22, A24, TARSKI:def 1;

          then

           A25: y9 <> 0 by Th3;

          assume x <> 0 ;

          then

          reconsider IT = [ 0 , (x9 *' y9)] as Element of REAL by A25, Th2, ARYTM_1: 2;

          take IT, x9, y9;

          thus x = x9 & y = [ 0 , y9] & IT = [ 0 , (x9 *' y9)] by A22, A24, TARSKI:def 1;

        end;

        hereby

          assume y in REAL+ ;

          then

          reconsider y9 = y as Element of REAL+ ;

          assume x in [: { 0 }, REAL+ :];

          then

          consider z,x9 be object such that

           A26: z in { 0 } and

           A27: x9 in REAL+ and

           A28: x = [z, x9] by ZFMISC_1: 84;

          reconsider x9 as Element of REAL+ by A27;

          x = [ 0 , x9] by A26, A28, TARSKI:def 1;

          then

           A29: x9 <> 0 by Th3;

          assume y <> 0 ;

          then

          reconsider IT = [ 0 , (y9 *' x9)] as Element of REAL by A29, Th2, ARYTM_1: 2;

          take IT, x9, y9;

          thus x = [ 0 , x9] & y = y9 & IT = [ 0 , (y9 *' x9)] by A26, A28, TARSKI:def 1;

        end;

        hereby

          assume x in [: { 0 }, REAL+ :];

          then

          consider z1,x9 be object such that

           A30: z1 in { 0 } and

           A31: x9 in REAL+ and

           A32: x = [z1, x9] by ZFMISC_1: 84;

          reconsider x9 as Element of REAL+ by A31;

          assume y in [: { 0 }, REAL+ :];

          then

          consider z2,y9 be object such that

           A33: z2 in { 0 } and

           A34: y9 in REAL+ and

           A35: y = [z2, y9] by ZFMISC_1: 84;

          reconsider y9 as Element of REAL+ by A34;

          reconsider IT = (y9 *' x9) as Element of REAL by Th1;

          take IT, x9, y9;

          thus x = [ 0 , x9] & y = [ 0 , y9] & IT = (y9 *' x9) by A30, A32, A33, A35, TARSKI:def 1;

        end;

        thus thesis by Lm3;

      end;

      uniqueness

      proof

        let IT1,IT2 be Element of REAL ;

        thus x in REAL+ & y in REAL+ & (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & IT1 = (x9 *' y9)) & (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & IT2 = (x9 *' y9)) implies IT1 = IT2;

        thus x in REAL+ & y in [: { 0 }, REAL+ :] & x <> 0 & (ex x9,y9 be Element of REAL+ st x = x9 & y = [ 0 , y9] & IT1 = [ 0 , (x9 *' y9)]) & (ex x99,y99 be Element of REAL+ st x = x99 & y = [ 0 , y99] & IT2 = [ 0 , (x99 *' y99)]) implies IT1 = IT2 by XTUPLE_0: 1;

        thus y in REAL+ & x in [: { 0 }, REAL+ :] & y <> 0 & (ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = y9 & IT1 = [ 0 , (y9 *' x9)]) & (ex x99,y99 be Element of REAL+ st x = [ 0 , x99] & y = y99 & IT2 = [ 0 , (y99 *' x99)]) implies IT1 = IT2 by XTUPLE_0: 1;

        hereby

          assume that x in [: { 0 }, REAL+ :] and y in [: { 0 }, REAL+ :];

          given x9,y9 be Element of REAL+ such that

           A36: x = [ 0 , x9] and

           A37: y = [ 0 , y9] & IT1 = (y9 *' x9);

          given x99,y99 be Element of REAL+ such that

           A38: x = [ 0 , x99] and

           A39: y = [ 0 , y99] & IT2 = (y99 *' x99);

          x9 = x99 by A36, A38, XTUPLE_0: 1;

          hence IT1 = IT2 by A37, A39, XTUPLE_0: 1;

        end;

        thus thesis;

      end;

      consistency by Th5, XBOOLE_0: 3;

      commutativity ;

    end

    reserve x,y for Element of REAL ;

    definition

      let x be Element of REAL ;

      :: ARYTM_0:def3

      func opp x -> Element of REAL means

      : Def3: ( + (x,it )) = 0 ;

      existence

      proof

        reconsider z9 = 0 as Element of REAL+ by ARYTM_2: 20;

        

         A1: x in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

        per cases by A1, XBOOLE_0:def 3;

          suppose

           A2: x = 0 ;

          then

          reconsider x9 = x as Element of REAL+ by ARYTM_2: 20;

          take x;

          (x9 + x9) = 0 by A2, ARYTM_2:def 8;

          hence thesis by Def1, Lm3;

        end;

          suppose that

           A3: x in REAL+ and

           A4: x <> 0 ;

          

           A5: [ 0 , x] <> [ 0 , 0 ] by A4, XTUPLE_0: 1;

           0 in { 0 } by TARSKI:def 1;

          then

           A6: [ 0 , x] in [: { 0 }, REAL+ :] by A3, ZFMISC_1: 87;

          then [ 0 , x] in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 3;

          then

          reconsider y = [ 0 , x] as Element of REAL by A5, ZFMISC_1: 56;

          reconsider x9 = x as Element of REAL+ by A3;

          

           A7: x9 <=' x9;

          take y;

          (z9 + x9) = x9 by ARYTM_2:def 8;

          then z9 = (x9 -' x9) by A7, ARYTM_1:def 1;

          then 0 = (x9 - x9) by A7, ARYTM_1:def 2;

          hence thesis by A6, Def1, Lm3;

        end;

          suppose

           A8: x in [: { 0 }, REAL+ :];

          then

          consider a,b be object such that

           A9: a in { 0 } and

           A10: b in REAL+ and

           A11: x = [a, b] by ZFMISC_1: 84;

          reconsider y = b as Element of REAL by A10, Th1;

          take y;

          now

            per cases ;

              case x in REAL+ & y in REAL+ ;

              hence ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & 0 = (x9 + y9) by A8, Th5, XBOOLE_0: 3;

            end;

              case x in REAL+ & y in [: { 0 }, REAL+ :];

              hence ex x9,y9 be Element of REAL+ st x = x9 & y = [ 0 , y9] & 0 = (x9 - y9) by A10, Th5, XBOOLE_0: 3;

            end;

              case y in REAL+ & x in [: { 0 }, REAL+ :];

              reconsider x9 = b, y9 = y as Element of REAL+ by A10;

              take x9, y9;

              thus x = [ 0 , x9] by A9, A11, TARSKI:def 1;

              thus y = y9;

              thus 0 = (y9 - x9) by ARYTM_1: 18;

            end;

              case not (x in REAL+ & y in REAL+ ) & not (x in REAL+ & y in [: { 0 }, REAL+ :]) & not (y in REAL+ & x in [: { 0 }, REAL+ :]);

              hence ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = [ 0 , y9] & 0 = [ 0 , (y9 + x9)] by A8, A10;

            end;

          end;

          hence thesis by Def1, Lm3;

        end;

      end;

      uniqueness

      proof

        let y,z be Element of REAL such that

         A12: ( + (x,y)) = 0 and

         A13: ( + (x,z)) = 0 ;

        per cases ;

          suppose x in REAL+ & y in REAL+ & z in REAL+ ;

          then (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & 0 = (x9 + y9)) & ex x9,y9 be Element of REAL+ st x = x9 & z = y9 & 0 = (x9 + y9) by A12, A13, Def1;

          hence thesis by ARYTM_2: 11;

        end;

          suppose that

           A14: x in REAL+ and

           A15: y in REAL+ and

           A16: z in [: { 0 }, REAL+ :];

          consider x99,y99 be Element of REAL+ such that

           A17: x = x99 and

           A18: z = [ 0 , y99] & 0 = (x99 - y99) by A13, A14, A16, Def1;

          ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & 0 = (x9 + y9) by A12, A14, A15, Def1;

          then

           A19: x99 = 0 by A17, ARYTM_2: 5;

           [ 0 , 0 ] in { [ 0 , 0 ]} by TARSKI:def 1;

          then

           A20: not [ 0 , 0 ] in REAL by XBOOLE_0:def 5;

          z in REAL ;

          hence thesis by A18, A19, A20, ARYTM_1: 19;

        end;

          suppose that

           A21: x in REAL+ and

           A22: z in REAL+ and

           A23: y in [: { 0 }, REAL+ :];

          consider x99,y9 be Element of REAL+ such that

           A24: x = x99 and

           A25: y = [ 0 , y9] & 0 = (x99 - y9) by A12, A21, A23, Def1;

          ex x9,z9 be Element of REAL+ st x = x9 & z = z9 & 0 = (x9 + z9) by A13, A21, A22, Def1;

          then

           A26: x99 = 0 by A24, ARYTM_2: 5;

           [ 0 , 0 ] in { [ 0 , 0 ]} by TARSKI:def 1;

          then

           A27: not [ 0 , 0 ] in REAL by XBOOLE_0:def 5;

          y in REAL ;

          hence thesis by A25, A26, A27, ARYTM_1: 19;

        end;

          suppose that

           A28: x in REAL+ and

           A29: y in [: { 0 }, REAL+ :] and

           A30: z in [: { 0 }, REAL+ :];

          consider x99,z9 be Element of REAL+ such that

           A31: x = x99 and

           A32: z = [ 0 , z9] and

           A33: 0 = (x99 - z9) by A13, A28, A30, Def1;

          consider x9,y9 be Element of REAL+ such that

           A34: x = x9 and

           A35: y = [ 0 , y9] and

           A36: 0 = (x9 - y9) by A12, A28, A29, Def1;

          y9 = x9 by A36, Th6

          .= z9 by A34, A31, A33, Th6;

          hence thesis by A35, A32;

        end;

          suppose that

           A37: z in REAL+ and

           A38: y in REAL+ and

           A39: x in [: { 0 }, REAL+ :];

          consider x99,z9 be Element of REAL+ such that

           A40: x = [ 0 , x99] and

           A41: z = z9 and

           A42: 0 = (z9 - x99) by A13, A37, A39, Def1;

          consider x9,y9 be Element of REAL+ such that

           A43: x = [ 0 , x9] and

           A44: y = y9 and

           A45: 0 = (y9 - x9) by A12, A38, A39, Def1;

          x9 = x99 by A43, A40, XTUPLE_0: 1;

          

          then z9 = x9 by A42, Th6

          .= y9 by A45, Th6;

          hence thesis by A44, A41;

        end;

          suppose not (x in REAL+ & y in REAL+ ) & not (x in REAL+ & y in [: { 0 }, REAL+ :]) & not (y in REAL+ & x in [: { 0 }, REAL+ :]);

          then ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = [ 0 , y9] & 0 = [ 0 , (x9 + y9)] by A12, Def1;

          hence thesis;

        end;

          suppose not (x in REAL+ & z in REAL+ ) & not (x in REAL+ & z in [: { 0 }, REAL+ :]) & not (z in REAL+ & x in [: { 0 }, REAL+ :]);

          then ex x9,z9 be Element of REAL+ st x = [ 0 , x9] & z = [ 0 , z9] & 0 = [ 0 , (x9 + z9)] by A13, Def1;

          hence thesis;

        end;

      end;

      involutiveness ;

      :: ARYTM_0:def4

      func inv x -> Element of REAL means

      : Def4: ( * (x,it )) = 1 if x <> 0

      otherwise it = 0 ;

      existence

      proof

        thus x <> 0 implies ex y st ( * (x,y)) = 1

        proof

          

           A46: x in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

          assume

           A47: x <> 0 ;

          per cases by A46, XBOOLE_0:def 3;

            suppose x in REAL+ ;

            then

            reconsider x9 = x as Element of REAL+ ;

            reconsider jj = 1 as Element of REAL by NUMBERS: 19;

            consider y9 be Element of REAL+ such that

             A48: (x9 *' y9) = jj by A47, ARYTM_2: 14;

            reconsider y = y9 as Element of REAL by Th1;

            take y;

            thus thesis by A48, Def2;

          end;

            suppose

             A49: x in [: { 0 }, REAL+ :];

             not x in { [ 0 , 0 ]} by XBOOLE_0:def 5;

            then

             A50: x <> [ 0 , 0 ] by TARSKI:def 1;

            consider x1,x2 be object such that x1 in { 0 } and

             A51: x2 in REAL+ and

             A52: x = [x1, x2] by A49, ZFMISC_1: 84;

            reconsider x2 as Element of REAL+ by A51;

            x1 in { 0 } by A49, A52, ZFMISC_1: 87;

            then x2 <> 0 by A52, A50, TARSKI:def 1;

            then

            consider y2 be Element of REAL+ such that

             A53: (x2 *' y2) = 1 by ARYTM_2: 14;

             A54:

            now

              assume [ 0 , y2] in { [ 0 , 0 ]};

              then [ 0 , y2] = [ 0 , 0 ] by TARSKI:def 1;

              then y2 = 0 by XTUPLE_0: 1;

              hence contradiction by A53, ARYTM_2: 4;

            end;

            

             A55: [ 0 , y2] in [: { 0 }, REAL+ :] by Lm1;

            then [ 0 , y2] in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 3;

            then

            reconsider y = [ 0 , y2] as Element of REAL by A54, XBOOLE_0:def 5;

            take y;

            consider x9,y9 be Element of REAL+ such that

             A56: x = [ 0 , x9] and

             A57: y = [ 0 , y9] and

             A58: ( * (x,y)) = (y9 *' x9) by A49, A55, Def2;

            y9 = y2 by A57, XTUPLE_0: 1;

            hence thesis by A52, A53, A56, A58, XTUPLE_0: 1;

          end;

        end;

        thus thesis;

      end;

      uniqueness

      proof

        let y,z be Element of REAL ;

        thus x <> 0 & ( * (x,y)) = 1 & ( * (x,z)) = 1 implies y = z

        proof

          assume that

           A59: x <> 0 and

           A60: ( * (x,y)) = 1 and

           A61: ( * (x,z)) = 1;

          

           A62: for x,y be Element of REAL st ( * (x,y)) = 1 holds x <> 0

          proof

            let x,y be Element of REAL such that

             A63: ( * (x,y)) = 1 and

             A64: x = 0 ;

            

             A65: not x in [: { 0 }, REAL+ :] by A64, Th5, ARYTM_2: 20, XBOOLE_0: 3;

            

             A66: y in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

            per cases by A66, XBOOLE_0:def 3;

              suppose y in REAL+ ;

              then ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & 1 = (x9 *' y9) by A63, A64, Def2, ARYTM_2: 20;

              hence contradiction by A64, ARYTM_2: 4;

            end;

              suppose y in [: { 0 }, REAL+ :];

              then not y in REAL+ by Th5, XBOOLE_0: 3;

              hence contradiction by A63, A64, A65, Def2;

            end;

          end;

          then

           A67: y <> 0 by A60;

          

           A68: z <> 0 by A61, A62;

          per cases ;

            suppose x in REAL+ & y in REAL+ & z in REAL+ ;

            then (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & 1 = (x9 *' y9)) & ex x9,y9 be Element of REAL+ st x = x9 & z = y9 & 1 = (x9 *' y9) by A60, A61, Def2;

            hence thesis by A59, Th7;

          end;

            suppose that

             A69: x in [: { 0 }, REAL+ :] and

             A70: y in [: { 0 }, REAL+ :] and

             A71: z in [: { 0 }, REAL+ :];

            consider x9,y9 be Element of REAL+ such that

             A72: x = [ 0 , x9] and

             A73: y = [ 0 , y9] & 1 = (y9 *' x9) by A60, A69, A70, Def2;

            consider x99,z9 be Element of REAL+ such that

             A74: x = [ 0 , x99] and

             A75: z = [ 0 , z9] & 1 = (z9 *' x99) by A61, A69, A71, Def2;

            x9 = x99 by A72, A74, XTUPLE_0: 1;

            hence thesis by A72, A73, A75, Th3, Th7;

          end;

            suppose x in REAL+ & y in [: { 0 }, REAL+ :];

            then ex x9,y9 be Element of REAL+ st x = x9 & y = [ 0 , y9] & 1 = [ 0 , (x9 *' y9)] by A59, A60, Def2;

            hence thesis by Lm2;

          end;

            suppose x in [: { 0 }, REAL+ :] & y in REAL+ ;

            then ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & y = y9 & 1 = [ 0 , (y9 *' x9)] by A60, A67, Def2;

            hence thesis by Lm2;

          end;

            suppose x in [: { 0 }, REAL+ :] & z in REAL+ ;

            then ex x9,z9 be Element of REAL+ st x = [ 0 , x9] & z = z9 & 1 = [ 0 , (z9 *' x9)] by A61, A68, Def2;

            hence thesis by Lm2;

          end;

            suppose x in REAL+ & z in [: { 0 }, REAL+ :];

            then ex x9,z9 be Element of REAL+ st x = x9 & z = [ 0 , z9] & 1 = [ 0 , (x9 *' z9)] by A59, A61, Def2;

            hence thesis by Lm2;

          end;

            suppose not (x in REAL+ & y in REAL+ ) & not (x in REAL+ & y in [: { 0 }, REAL+ :] & x <> 0 ) & not (y in REAL+ & x in [: { 0 }, REAL+ :] & y <> 0 ) & not (x in [: { 0 }, REAL+ :] & y in [: { 0 }, REAL+ :]);

            hence thesis by A60, Def2;

          end;

            suppose not (x in REAL+ & z in REAL+ ) & not (x in REAL+ & z in [: { 0 }, REAL+ :] & x <> 0 ) & not (z in REAL+ & x in [: { 0 }, REAL+ :] & z <> 0 ) & not (x in [: { 0 }, REAL+ :] & z in [: { 0 }, REAL+ :]);

            hence thesis by A61, Def2;

          end;

        end;

        thus thesis;

      end;

      consistency ;

      involutiveness

      proof

        let x,y be Element of REAL ;

        assume that

         A76: y <> 0 implies ( * (y,x)) = 1 and

         A77: y = 0 implies x = 0 ;

        thus x <> 0 implies ( * (x,y)) = 1 by A76, A77;

        assume

         A78: x = 0 ;

        

         A79: y in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

        assume

         A80: y <> 0 ;

        per cases by A79, XBOOLE_0:def 3;

          suppose y in REAL+ ;

          then ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & 1 = (x9 *' y9) by A76, A78, A80, Def2, ARYTM_2: 20;

          hence contradiction by A78, ARYTM_2: 4;

        end;

          suppose

           A81: y in [: { 0 }, REAL+ :];

          

           A82: not x in [: { 0 }, REAL+ :] by A78, Th5, ARYTM_2: 20, XBOOLE_0: 3;

           not y in REAL+ by A81, Th5, XBOOLE_0: 3;

          hence contradiction by A76, A78, A80, A82, Def2;

        end;

      end;

    end

    begin

    

     Lm4: for x,y,z be set st [x, y] = {z} holds z = {x} & x = y

    proof

      let x,y,z be set;

      assume

       A1: [x, y] = {z};

      then {x} in {z} by TARSKI:def 2;

      hence

       A2: z = {x} by TARSKI:def 1;

       {x, y} in {z} by A1, TARSKI:def 2;

      then {x, y} = z by TARSKI:def 1;

      hence thesis by A2, ZFMISC_1: 5;

    end;

    reserve i,j,k for Element of NAT ;

    reserve a,b for Element of REAL ;

    theorem :: ARYTM_0:8

    

     Th8: not (( 0 ,1) --> (a,b)) in REAL

    proof

      set IR = { A where A be Subset of RAT+ : for r be Element of RAT+ st r in A holds (for s be Element of RAT+ st s <=' r holds s in A) & ex s be Element of RAT+ st s in A & r < s };

      set f = (( 0 ,1) --> (a,b));

       A1:

      now

        f = { [ 0 , a], [1, b]} by FUNCT_4: 67;

        then

         A2: [1, b] in f by TARSKI:def 2;

        assume f in [: { {} }, REAL+ :];

        then

        consider x,y be object such that

         A3: x in { {} } and y in REAL+ and

         A4: f = [x, y] by ZFMISC_1: 84;

        x = 0 by A3, TARSKI:def 1;

        per cases by A4, A2, TARSKI:def 2;

          suppose { {1, b}, {1}} = { 0 };

          then 0 in { {1, b}, {1}} by TARSKI:def 1;

          hence contradiction by TARSKI:def 2;

        end;

          suppose { {1, b}, {1}} = { 0 , y};

          then 0 in { {1, b}, {1}} by TARSKI:def 2;

          hence contradiction by TARSKI:def 2;

        end;

      end;

      

       A5: f = { [ 0 , a], [1, b]} by FUNCT_4: 67;

      now

        assume f in { [i, j] : (i,j) are_coprime & j <> {} };

        then

        consider i, j such that

         A6: f = [i, j] and (i,j) are_coprime and j <> {} ;

        

         A7: {i} in f & {i, j} in f by A6, TARSKI:def 2;

         A8:

        now

          assume i = j;

          then {i} = {i, j} by ENUMSET1: 29;

          then

           A9: [i, j] = { {i}} by ENUMSET1: 29;

          then [1, b] in { {i}} by A5, A6, TARSKI:def 2;

          then

           A10: [1, b] = {i} by TARSKI:def 1;

           [ 0 , a] in { {i}} by A5, A6, A9, TARSKI:def 2;

          then [ 0 , a] = {i} by TARSKI:def 1;

          hence contradiction by A10, XTUPLE_0: 1;

        end;

        per cases by A5, A7, TARSKI:def 2;

          suppose {i, j} = [ 0 , a] & {i} = [ 0 , a];

          hence contradiction by A8, ZFMISC_1: 5;

        end;

          suppose that

           A11: {i, j} = [ 0 , a] and

           A12: {i} = [1, b];

          i in {i, j} by TARSKI:def 2;

          then i = { 0 , a} or i = { 0 } by A11, TARSKI:def 2;

          then

           A13: 0 in i by TARSKI:def 1, TARSKI:def 2;

          i = {1} by A12, Lm4;

          hence contradiction by A13, TARSKI:def 1;

        end;

          suppose that

           A14: {i, j} = [1, b] and

           A15: {i} = [ 0 , a];

          i in {i, j} by TARSKI:def 2;

          then i = {1, b} or i = {1} by A14, TARSKI:def 2;

          then

           A16: 1 in i by TARSKI:def 1, TARSKI:def 2;

          i = { 0 } by A15, Lm4;

          hence contradiction by A16, TARSKI:def 1;

        end;

          suppose {i, j} = [1, b] & {i} = [1, b];

          hence contradiction by A8, ZFMISC_1: 5;

        end;

      end;

      then

       A17: not f in ({ [i, j] : (i,j) are_coprime & j <> {} } \ the set of all [k, 1]);

       not ex x,y be set st { [ 0 , x], [1, y]} in IR

      proof

        given x,y be set such that

         A18: { [ 0 , x], [1, y]} in IR;

        consider A be Subset of RAT+ such that

         A19: { [ 0 , x], [1, y]} = A and

         A20: for r be Element of RAT+ st r in A holds (for s be Element of RAT+ st s <=' r holds s in A) & ex s be Element of RAT+ st s in A & r < s by A18;

         [ 0 , x] in A & for r,s be Element of RAT+ st r in A & s <=' r holds s in A by A19, A20, TARSKI:def 2;

        then

        consider r1,r2,r3 be Element of RAT+ such that

         A21: r1 in A and

         A22: r2 in A and

         A23: r3 in A & r1 <> r2 & r2 <> r3 & r3 <> r1 by ARYTM_3: 75;

        

         A24: r2 = [ 0 , x] or r2 = [1, y] by A19, A22, TARSKI:def 2;

        r1 = [ 0 , x] or r1 = [1, y] by A19, A21, TARSKI:def 2;

        hence contradiction by A19, A23, A24, TARSKI:def 2;

      end;

      then

       A25: not f in DEDEKIND_CUTS by A5, ARYTM_2:def 1;

      now

        assume f in omega ;

        then {} in f by ORDINAL3: 8;

        hence contradiction by A5, TARSKI:def 2;

      end;

      then not f in RAT+ by A17, XBOOLE_0:def 3;

      then not f in REAL+ by A25, ARYTM_2:def 2, XBOOLE_0:def 3;

      hence thesis by A1, XBOOLE_0:def 3;

    end;

    definition

      let x,y be Element of REAL ;

      :: ARYTM_0:def5

      func [*x,y*] -> Element of COMPLEX equals

      : Def5: x if y = 0

      otherwise (( 0 ,1) --> (x,y));

      consistency ;

      coherence

      proof

        set z = (( 0 ,1) --> (x,y));

        thus y = 0 implies x is Element of COMPLEX by XBOOLE_0:def 3;

        assume

         A1: y <> 0 ;

         A2:

        now

          assume z in { r where r be Element of ( Funcs ( { 0 , 1}, REAL )) : (r . 1) = 0 };

          then ex r be Element of ( Funcs ( { 0 , 1}, REAL )) st z = r & (r . 1) = 0 ;

          hence contradiction by A1, FUNCT_4: 63;

        end;

        z in ( Funcs ( { 0 , 1}, REAL )) by FUNCT_2: 8;

        then z in (( Funcs ( { 0 , 1}, REAL )) \ { r where r be Element of ( Funcs ( { 0 , 1}, REAL )) : (r . 1) = 0 }) by A2, XBOOLE_0:def 5;

        hence thesis by XBOOLE_0:def 3;

      end;

    end

    theorem :: ARYTM_0:9

    for c be Element of COMPLEX holds ex r,s be Element of REAL st c = [*r, s*]

    proof

      let c be Element of COMPLEX ;

      per cases ;

        suppose c in REAL ;

        then

        reconsider r = c, z = 0 as Element of REAL by Lm3;

        take r, z;

        thus thesis by Def5;

      end;

        suppose not c in REAL ;

        then

         A1: c in (( Funcs ( { 0 , 1}, REAL )) \ { x where x be Element of ( Funcs ( { 0 , 1}, REAL )) : (x . 1) = 0 }) by XBOOLE_0:def 3;

        then

        consider f be Function such that

         A2: c = f and

         A3: ( dom f) = { 0 , 1} and

         A4: ( rng f) c= REAL by FUNCT_2:def 2;

        1 in { 0 , 1} by TARSKI:def 2;

        then

         A5: (f . 1) in ( rng f) by A3, FUNCT_1: 3;

         0 in { 0 , 1} by TARSKI:def 2;

        then (f . 0 ) in ( rng f) by A3, FUNCT_1: 3;

        then

        reconsider r = (f . 0 ), s = (f . 1) as Element of REAL by A4, A5;

        take r, s;

        

         A6: c = (( 0 ,1) --> (r,s)) by A2, A3, FUNCT_4: 66;

        now

          assume s = 0 ;

          then ((( 0 ,1) --> (r,s)) . 1) = 0 by FUNCT_4: 63;

          then c in { x where x be Element of ( Funcs ( { 0 , 1}, REAL )) : (x . 1) = 0 } by A1, A6;

          hence contradiction by A1, XBOOLE_0:def 5;

        end;

        hence thesis by A6, Def5;

      end;

    end;

    theorem :: ARYTM_0:10

    for x1,x2,y1,y2 be Element of REAL st [*x1, x2*] = [*y1, y2*] holds x1 = y1 & x2 = y2

    proof

      let x1,x2,y1,y2 be Element of REAL such that

       A1: [*x1, x2*] = [*y1, y2*];

      per cases ;

        suppose

         A2: x2 = 0 ;

        then

         A3: [*x1, x2*] = x1 by Def5;

         A4:

        now

          assume y2 <> 0 ;

          then x1 = (( 0 ,1) --> (y1,y2)) by A1, A3, Def5;

          hence contradiction by Th8;

        end;

        hence x1 = y1 by A1, A3, Def5;

        thus thesis by A2, A4;

      end;

        suppose x2 <> 0 ;

        then

         A5: [*y1, y2*] = (( 0 ,1) --> (x1,x2)) by A1, Def5;

        now

          assume y2 = 0 ;

          then [*y1, y2*] = y1 by Def5;

          hence contradiction by A5, Th8;

        end;

        then [*y1, y2*] = (( 0 ,1) --> (y1,y2)) by Def5;

        hence thesis by A5, FUNCT_4: 68;

      end;

    end;

    set RR = ( [: { 0 }, REAL+ :] \ { [ 0 , 0 ]});

    theorem :: ARYTM_0:11

    

     Th11: for x,o be Element of REAL st o = 0 holds ( + (x,o)) = x

    proof

      reconsider y9 = 0 as Element of REAL+ by ARYTM_2: 20;

      let x,o be Element of REAL such that

       A1: o = 0 ;

      per cases ;

        suppose x in REAL+ ;

        then

        reconsider x9 = x as Element of REAL+ ;

        x9 = (x9 + y9) by ARYTM_2:def 8;

        hence thesis by A1, Def1;

      end;

        suppose

         A2: not x in REAL+ ;

        x in ( REAL+ \/ [: { {} }, REAL+ :]) by XBOOLE_0:def 5;

        then

         A3: x in [: { {} }, REAL+ :] by A2, XBOOLE_0:def 3;

        then

        consider x1,x2 be object such that

         A4: x1 in { {} } and

         A5: x2 in REAL+ and

         A6: x = [x1, x2] by ZFMISC_1: 84;

        reconsider x9 = x2 as Element of REAL+ by A5;

        

         A7: x1 = 0 by A4, TARSKI:def 1;

        then x = (y9 - x9) by A6, Th3, ARYTM_1: 19;

        hence thesis by A1, A3, A6, A7, Def1;

      end;

    end;

    theorem :: ARYTM_0:12

    

     Th12: for x,o be Element of REAL st o = 0 holds ( * (x,o)) = 0

    proof

      let x,o be Element of REAL such that

       A1: o = 0 ;

      per cases ;

        suppose x in REAL+ ;

        then

        reconsider x9 = x, y9 = 0 as Element of REAL+ by ARYTM_2: 20;

         0 = (x9 *' y9) by ARYTM_2: 4;

        hence thesis by A1, Def2;

      end;

        suppose

         A2: not x in REAL+ ;

         not o in [: { {} }, REAL+ :] by A1, Th5, ARYTM_2: 20, XBOOLE_0: 3;

        hence thesis by A1, A2, Def2;

      end;

    end;

    theorem :: ARYTM_0:13

    

     Th13: for x,y,z be Element of REAL holds ( * (x,( * (y,z)))) = ( * (( * (x,y)),z))

    proof

      let x,y,z be Element of REAL ;

      reconsider o = 0 as Element of REAL by Lm3;

      per cases ;

        suppose that

         A1: x in REAL+ and

         A2: y in REAL+ and

         A3: z in REAL+ ;

        

         A4: ex x99,y99 be Element of REAL+ st x = x99 & y = y99 & ( * (x,y)) = (x99 *' y99) by A1, A2, Def2;

        then

         A5: ex xy99,z99 be Element of REAL+ st ( * (x,y)) = xy99 & z = z99 & ( * (( * (x,y)),z)) = (xy99 *' z99) by A3, Def2;

        

         A6: ex y9,z9 be Element of REAL+ st y = y9 & z = z9 & ( * (y,z)) = (y9 *' z9) by A2, A3, Def2;

        then ex x9,yz9 be Element of REAL+ st x = x9 & ( * (y,z)) = yz9 & ( * (x,( * (y,z)))) = (x9 *' yz9) by A1, Def2;

        hence thesis by A6, A4, A5, ARYTM_2: 12;

      end;

        suppose that

         A7: x in REAL+ & x <> 0 and

         A8: y in RR and

         A9: z in REAL+ & z <> 0 ;

        consider y9,z9 be Element of REAL+ such that

         A10: y = [ 0 , y9] and

         A11: z = z9 and

         A12: ( * (y,z)) = [ 0 , (z9 *' y9)] by A8, A9, Def2;

        ( * (y,z)) in [: { 0 }, REAL+ :] by A12, Lm1;

        then

        consider x9,yz9 be Element of REAL+ such that

         A13: x = x9 and

         A14: ( * (y,z)) = [ 0 , yz9] & ( * (x,( * (y,z)))) = [ 0 , (x9 *' yz9)] by A7, Def2;

        consider x99,y99 be Element of REAL+ such that

         A15: x = x99 and

         A16: y = [ 0 , y99] and

         A17: ( * (x,y)) = [ 0 , (x99 *' y99)] by A7, A8, Def2;

        

         A18: y9 = y99 by A10, A16, XTUPLE_0: 1;

        ( * (x,y)) in [: { 0 }, REAL+ :] by A17, Lm1;

        then

        consider xy99,z99 be Element of REAL+ such that

         A19: ( * (x,y)) = [ 0 , xy99] and

         A20: z = z99 and

         A21: ( * (( * (x,y)),z)) = [ 0 , (z99 *' xy99)] by A9, Def2;

        

        thus ( * (x,( * (y,z)))) = [ 0 , (x9 *' (y9 *' z9))] by A12, A14, XTUPLE_0: 1

        .= [ 0 , ((x99 *' y99) *' z99)] by A11, A13, A15, A20, A18, ARYTM_2: 12

        .= ( * (( * (x,y)),z)) by A17, A19, A21, XTUPLE_0: 1;

      end;

        suppose that

         A22: x in RR and

         A23: y in REAL+ & y <> 0 and

         A24: z in REAL+ & z <> 0 ;

        consider y9,z9 be Element of REAL+ such that

         A25: y = y9 & z = z9 and

         A26: ( * (y,z)) = (y9 *' z9) by A23, A24, Def2;

        (y9 *' z9) <> 0 by A23, A24, A25, ARYTM_1: 2;

        then

        consider x9,yz9 be Element of REAL+ such that

         A27: x = [ 0 , x9] and

         A28: ( * (y,z)) = yz9 & ( * (x,( * (y,z)))) = [ 0 , (yz9 *' x9)] by A22, A26, Def2;

        consider x99,y99 be Element of REAL+ such that

         A29: x = [ 0 , x99] and

         A30: y = y99 and

         A31: ( * (x,y)) = [ 0 , (y99 *' x99)] by A22, A23, Def2;

        ( * (x,y)) in [: { 0 }, REAL+ :] by A31, Lm1;

        then

        consider xy99,z99 be Element of REAL+ such that

         A32: ( * (x,y)) = [ 0 , xy99] and

         A33: z = z99 and

         A34: ( * (( * (x,y)),z)) = [ 0 , (z99 *' xy99)] by A24, Def2;

        x9 = x99 by A27, A29, XTUPLE_0: 1;

        

        hence ( * (x,( * (y,z)))) = [ 0 , ((x99 *' y99) *' z99)] by A25, A26, A28, A30, A33, ARYTM_2: 12

        .= ( * (( * (x,y)),z)) by A31, A32, A34, XTUPLE_0: 1;

      end;

        suppose that

         A35: x in RR and

         A36: y in RR and

         A37: z in REAL+ & z <> 0 ;

        consider x99,y99 be Element of REAL+ such that

         A38: x = [ 0 , x99] and

         A39: y = [ 0 , y99] and

         A40: ( * (x,y)) = (y99 *' x99) by A35, A36, Def2;

        consider y9,z9 be Element of REAL+ such that

         A41: y = [ 0 , y9] and

         A42: z = z9 and

         A43: ( * (y,z)) = [ 0 , (z9 *' y9)] by A36, A37, Def2;

        

         A44: y9 = y99 by A41, A39, XTUPLE_0: 1;

        ( * (y,z)) in [: { 0 }, REAL+ :] by A43, Lm1;

        then

        consider x9,yz9 be Element of REAL+ such that

         A45: x = [ 0 , x9] and

         A46: ( * (y,z)) = [ 0 , yz9] & ( * (x,( * (y,z)))) = (yz9 *' x9) by A35, Def2;

        

         A47: x9 = x99 by A45, A38, XTUPLE_0: 1;

        

         A48: ex xy99,z99 be Element of REAL+ st ( * (x,y)) = xy99 & z = z99 & ( * (( * (x,y)),z)) = (xy99 *' z99) by A37, A40, Def2;

        

        thus ( * (x,( * (y,z)))) = (x9 *' (y9 *' z9)) by A43, A46, XTUPLE_0: 1

        .= ( * (( * (x,y)),z)) by A42, A40, A48, A47, A44, ARYTM_2: 12;

      end;

        suppose that

         A49: x in REAL+ & x <> 0 and

         A50: y in REAL+ & y <> 0 and

         A51: z in RR;

        

         A52: ex x99,y99 be Element of REAL+ st x = x99 & y = y99 & ( * (x,y)) = (x99 *' y99) by A49, A50, Def2;

        then ( * (x,y)) <> 0 by A49, A50, ARYTM_1: 2;

        then

        consider xy99,z99 be Element of REAL+ such that

         A53: ( * (x,y)) = xy99 and

         A54: z = [ 0 , z99] and

         A55: ( * (( * (x,y)),z)) = [ 0 , (xy99 *' z99)] by A51, A52, Def2;

        consider y9,z9 be Element of REAL+ such that

         A56: y = y9 and

         A57: z = [ 0 , z9] and

         A58: ( * (y,z)) = [ 0 , (y9 *' z9)] by A50, A51, Def2;

        

         A59: z9 = z99 by A57, A54, XTUPLE_0: 1;

        ( * (y,z)) in [: { 0 }, REAL+ :] by A58, Lm1;

        then

        consider x9,yz9 be Element of REAL+ such that

         A60: x = x9 and

         A61: ( * (y,z)) = [ 0 , yz9] & ( * (x,( * (y,z)))) = [ 0 , (x9 *' yz9)] by A49, Def2;

        

        thus ( * (x,( * (y,z)))) = [ 0 , (x9 *' (y9 *' z9))] by A58, A61, XTUPLE_0: 1

        .= ( * (( * (x,y)),z)) by A56, A60, A52, A53, A55, A59, ARYTM_2: 12;

      end;

        suppose that

         A62: x in REAL+ & x <> 0 and

         A63: y in RR and

         A64: z in RR;

        consider y9,z9 be Element of REAL+ such that

         A65: y = [ 0 , y9] and

         A66: z = [ 0 , z9] and

         A67: ( * (y,z)) = (z9 *' y9) by A63, A64, Def2;

        

         A68: ex x9,yz9 be Element of REAL+ st x = x9 & ( * (y,z)) = yz9 & ( * (x,( * (y,z)))) = (x9 *' yz9) by A62, A67, Def2;

        consider x99,y99 be Element of REAL+ such that

         A69: x = x99 and

         A70: y = [ 0 , y99] and

         A71: ( * (x,y)) = [ 0 , (x99 *' y99)] by A62, A63, Def2;

        

         A72: y9 = y99 by A65, A70, XTUPLE_0: 1;

        ( * (x,y)) in [: { 0 }, REAL+ :] by A71, Lm1;

        then

        consider xy99,z99 be Element of REAL+ such that

         A73: ( * (x,y)) = [ 0 , xy99] and

         A74: z = [ 0 , z99] and

         A75: ( * (( * (x,y)),z)) = (z99 *' xy99) by A64, Def2;

        z9 = z99 by A66, A74, XTUPLE_0: 1;

        

        hence ( * (x,( * (y,z)))) = ((x99 *' y99) *' z99) by A67, A68, A69, A72, ARYTM_2: 12

        .= ( * (( * (x,y)),z)) by A71, A73, A75, XTUPLE_0: 1;

      end;

        suppose that

         A76: y in REAL+ & y <> 0 and

         A77: x in RR and

         A78: z in RR;

        consider x99,y99 be Element of REAL+ such that

         A79: x = [ 0 , x99] and

         A80: y = y99 and

         A81: ( * (x,y)) = [ 0 , (y99 *' x99)] by A76, A77, Def2;

        consider y9,z9 be Element of REAL+ such that

         A82: y = y9 and

         A83: z = [ 0 , z9] and

         A84: ( * (y,z)) = [ 0 , (y9 *' z9)] by A76, A78, Def2;

         [ 0 , (y9 *' z9)] in [: { 0 }, REAL+ :] by Lm1;

        then

        consider x9,yz9 be Element of REAL+ such that

         A85: x = [ 0 , x9] and

         A86: ( * (y,z)) = [ 0 , yz9] & ( * (x,( * (y,z)))) = (yz9 *' x9) by A77, A84, Def2;

        

         A87: x9 = x99 by A85, A79, XTUPLE_0: 1;

        ( * (x,y)) in [: { 0 }, REAL+ :] by A81, Lm1;

        then

        consider xy99,z99 be Element of REAL+ such that

         A88: ( * (x,y)) = [ 0 , xy99] and

         A89: z = [ 0 , z99] and

         A90: ( * (( * (x,y)),z)) = (z99 *' xy99) by A78, Def2;

        

         A91: z9 = z99 by A83, A89, XTUPLE_0: 1;

        

        thus ( * (x,( * (y,z)))) = (x9 *' (y9 *' z9)) by A84, A86, XTUPLE_0: 1

        .= ((x99 *' y99) *' z99) by A82, A80, A87, A91, ARYTM_2: 12

        .= ( * (( * (x,y)),z)) by A81, A88, A90, XTUPLE_0: 1;

      end;

        suppose that

         A92: x in RR and

         A93: y in RR and

         A94: z in RR;

        consider y9,z9 be Element of REAL+ such that

         A95: y = [ 0 , y9] and

         A96: z = [ 0 , z9] and

         A97: ( * (y,z)) = (z9 *' y9) by A93, A94, Def2;

         not y in { [ 0 , 0 ]} by XBOOLE_0:def 5;

        then

         A98: y9 <> 0 by A95, TARSKI:def 1;

         not z in { [ 0 , 0 ]} by XBOOLE_0:def 5;

        then z9 <> 0 by A96, TARSKI:def 1;

        then ( * (z,y)) <> 0 by A97, A98, ARYTM_1: 2;

        then

        consider x9,yz9 be Element of REAL+ such that

         A99: x = [ 0 , x9] and

         A100: ( * (y,z)) = yz9 & ( * (x,( * (y,z)))) = [ 0 , (yz9 *' x9)] by A92, A97, Def2;

        consider x99,y99 be Element of REAL+ such that

         A101: x = [ 0 , x99] and

         A102: y = [ 0 , y99] and

         A103: ( * (x,y)) = (y99 *' x99) by A92, A93, Def2;

        

         A104: x9 = x99 by A99, A101, XTUPLE_0: 1;

        

         A105: y9 = y99 by A95, A102, XTUPLE_0: 1;

         not y in { [ 0 , 0 ]} by XBOOLE_0:def 5;

        then

         A106: y9 <> 0 by A95, TARSKI:def 1;

         not x in { [ 0 , 0 ]} by XBOOLE_0:def 5;

        then x9 <> 0 by A99, TARSKI:def 1;

        then ( * (x,y)) <> 0 by A103, A104, A105, A106, ARYTM_1: 2;

        then

        consider xy99,z99 be Element of REAL+ such that

         A107: ( * (x,y)) = xy99 and

         A108: z = [ 0 , z99] and

         A109: ( * (( * (x,y)),z)) = [ 0 , (xy99 *' z99)] by A94, A103, Def2;

        z9 = z99 by A96, A108, XTUPLE_0: 1;

        hence thesis by A97, A100, A103, A104, A105, A107, A109, ARYTM_2: 12;

      end;

        suppose

         A110: x = 0 ;

        

        hence ( * (x,( * (y,z)))) = 0 by Th12

        .= ( * (o,z)) by Th12

        .= ( * (( * (x,y)),z)) by A110, Th12;

      end;

        suppose

         A111: y = 0 ;

        

        hence ( * (x,( * (y,z)))) = ( * (x,o)) by Th12

        .= 0 by Th12

        .= ( * (o,z)) by Th12

        .= ( * (( * (x,y)),z)) by A111, Th12;

      end;

        suppose

         A112: z = 0 ;

        

        hence ( * (x,( * (y,z)))) = ( * (x,o)) by Th12

        .= 0 by Th12

        .= ( * (( * (x,y)),z)) by A112, Th12;

      end;

        suppose

         A113: not (x in REAL+ & y in REAL+ & z in REAL+ ) & not (x in REAL+ & y in RR & z in REAL+ ) & not (y in REAL+ & x in RR & z in REAL+ ) & not (x in RR & y in RR & z in REAL+ ) & not (x in REAL+ & y in REAL+ & z in RR) & not (x in REAL+ & y in RR & z in RR) & not (y in REAL+ & x in RR & z in RR) & not (x in RR & y in RR & z in RR);

         REAL = (( REAL+ \ { [ {} , {} ]}) \/ ( [: { {} }, REAL+ :] \ { [ {} , {} ]})) by XBOOLE_1: 42

        .= ( REAL+ \/ RR) by ARYTM_2: 3, ZFMISC_1: 57;

        hence thesis by A113, XBOOLE_0:def 3;

      end;

    end;

    theorem :: ARYTM_0:14

    

     Th14: for x,y,z be Element of REAL holds ( * (x,( + (y,z)))) = ( + (( * (x,y)),( * (x,z))))

    proof

      let x,y,z be Element of REAL ;

      reconsider o = 0 as Element of REAL by Lm3;

      per cases ;

        suppose

         A1: x = 0 ;

        

        hence ( * (x,( + (y,z)))) = 0 by Th12

        .= ( + (o,o)) by Th11

        .= ( + (( * (x,y)),o)) by A1, Th12

        .= ( + (( * (x,y)),( * (x,z)))) by A1, Th12;

      end;

        suppose that

         A2: x in REAL+ and

         A3: y in REAL+ & z in REAL+ ;

        

         A4: (ex x9,y9 be Element of REAL+ st x = x9 & y = y9 & ( * (x,y)) = (x9 *' y9)) & ex x99,z9 be Element of REAL+ st x = x99 & z = z9 & ( * (x,z)) = (x99 *' z9) by A2, A3, Def2;

        then

         A5: ex xy9,xz9 be Element of REAL+ st ( * (x,y)) = xy9 & ( * (x,z)) = xz9 & ( + (( * (x,y)),( * (x,z)))) = (xy9 + xz9) by Def1;

        

         A6: ex y99,z99 be Element of REAL+ st y = y99 & z = z99 & ( + (y,z)) = (y99 + z99) by A3, Def1;

        then ex x999,yz9 be Element of REAL+ st x = x999 & ( + (y,z)) = yz9 & ( * (x,( + (y,z)))) = (x999 *' yz9) by A2, Def2;

        hence thesis by A4, A5, A6, ARYTM_2: 13;

      end;

        suppose that

         A7: x in REAL+ & x <> 0 and

         A8: y in REAL+ and

         A9: z in RR;

        consider y99,z99 be Element of REAL+ such that

         A10: y = y99 and

         A11: z = [ 0 , z99] and

         A12: ( + (y,z)) = (y99 - z99) by A8, A9, Def1;

        consider x9,y9 be Element of REAL+ such that

         A13: x = x9 & y = y9 and

         A14: ( * (x,y)) = (x9 *' y9) by A7, A8, Def2;

        consider x99,z9 be Element of REAL+ such that

         A15: x = x99 and

         A16: z = [ 0 , z9] and

         A17: ( * (x,z)) = [ 0 , (x99 *' z9)] by A7, A9, Def2;

        ( * (x,z)) in [: { 0 }, REAL+ :] by A17, Lm1;

        then

         A18: ex xy9,xz9 be Element of REAL+ st ( * (x,y)) = xy9 & ( * (x,z)) = [ 0 , xz9] & ( + (( * (x,y)),( * (x,z)))) = (xy9 - xz9) by A14, Def1;

        

         A19: z9 = z99 by A16, A11, XTUPLE_0: 1;

        now

          per cases ;

            suppose

             A20: z99 <=' y99;

            then

             A21: ( + (y,z)) = (y99 -' z99) by A12, ARYTM_1:def 2;

            then ex x999,yz9 be Element of REAL+ st x = x999 & ( + (y,z)) = yz9 & ( * (x,( + (y,z)))) = (x999 *' yz9) by A7, Def2;

            

            hence ( * (x,( + (y,z)))) = ((x9 *' y9) - (x99 *' z9)) by A13, A15, A10, A19, A20, A21, ARYTM_1: 26

            .= ( + (( * (x,y)),( * (x,z)))) by A14, A17, A18, XTUPLE_0: 1;

          end;

            suppose

             A22: not z99 <=' y99;

            then

             A23: ( + (y,z)) = [ 0 , (z99 -' y99)] by A12, ARYTM_1:def 2;

            then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider x999,yz9 be Element of REAL+ such that

             A24: x = x999 and

             A25: ( + (y,z)) = [ 0 , yz9] & ( * (x,( + (y,z)))) = [ 0 , (x999 *' yz9)] by A7, Def2;

            

            thus ( * (x,( + (y,z)))) = [ 0 , (x999 *' (z99 -' y99))] by A23, A25, XTUPLE_0: 1

            .= ((x9 *' y9) - (x99 *' z9)) by A7, A13, A15, A10, A19, A22, A24, ARYTM_1: 27

            .= ( + (( * (x,y)),( * (x,z)))) by A14, A17, A18, XTUPLE_0: 1;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A26: x in REAL+ & x <> 0 and

         A27: z in REAL+ and

         A28: y in RR;

        consider z99,y99 be Element of REAL+ such that

         A29: z = z99 and

         A30: y = [ 0 , y99] and

         A31: ( + (z,y)) = (z99 - y99) by A27, A28, Def1;

        consider x9,z9 be Element of REAL+ such that

         A32: x = x9 & z = z9 and

         A33: ( * (x,z)) = (x9 *' z9) by A26, A27, Def2;

        consider x99,y9 be Element of REAL+ such that

         A34: x = x99 and

         A35: y = [ 0 , y9] and

         A36: ( * (x,y)) = [ 0 , (x99 *' y9)] by A26, A28, Def2;

        ( * (x,y)) in [: { 0 }, REAL+ :] by A36, Lm1;

        then

         A37: ex xz9,xy9 be Element of REAL+ st ( * (x,z)) = xz9 & ( * (x,y)) = [ 0 , xy9] & ( + (( * (x,z)),( * (x,y)))) = (xz9 - xy9) by A33, Def1;

        

         A38: y9 = y99 by A35, A30, XTUPLE_0: 1;

        now

          per cases ;

            suppose

             A39: y99 <=' z99;

            then

             A40: ( + (z,y)) = (z99 -' y99) by A31, ARYTM_1:def 2;

            then ex x999,zy9 be Element of REAL+ st x = x999 & ( + (z,y)) = zy9 & ( * (x,( + (z,y)))) = (x999 *' zy9) by A26, Def2;

            

            hence ( * (x,( + (z,y)))) = ((x9 *' z9) - (x99 *' y9)) by A32, A34, A29, A38, A39, A40, ARYTM_1: 26

            .= ( + (( * (x,z)),( * (x,y)))) by A33, A36, A37, XTUPLE_0: 1;

          end;

            suppose

             A41: not y99 <=' z99;

            then

             A42: ( + (z,y)) = [ 0 , (y99 -' z99)] by A31, ARYTM_1:def 2;

            then ( + (z,y)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider x999,zy9 be Element of REAL+ such that

             A43: x = x999 and

             A44: ( + (z,y)) = [ 0 , zy9] & ( * (x,( + (z,y)))) = [ 0 , (x999 *' zy9)] by A26, Def2;

            

            thus ( * (x,( + (z,y)))) = [ 0 , (x999 *' (y99 -' z99))] by A42, A44, XTUPLE_0: 1

            .= ((x9 *' z9) - (x99 *' y9)) by A26, A32, A34, A29, A38, A41, A43, ARYTM_1: 27

            .= ( + (( * (x,z)),( * (x,y)))) by A33, A36, A37, XTUPLE_0: 1;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A45: x in REAL+ & x <> 0 and

         A46: y in RR and

         A47: z in RR;

        ( not (y in REAL+ & z in [: { 0 }, REAL+ :])) & not (y in [: { 0 }, REAL+ :] & z in REAL+ ) by A46, A47, Th5, XBOOLE_0: 3;

        then

        consider y99,z99 be Element of REAL+ such that

         A48: y = [ 0 , y99] and

         A49: z = [ 0 , z99] and

         A50: ( + (y,z)) = [ 0 , (y99 + z99)] by A46, Def1;

        ( + (y,z)) in [: { 0 }, REAL+ :] by A50, Lm1;

        then

        consider x999,yz9 be Element of REAL+ such that

         A51: x = x999 and

         A52: ( + (y,z)) = [ 0 , yz9] & ( * (x,( + (y,z)))) = [ 0 , (x999 *' yz9)] by A45, Def2;

        consider x9,y9 be Element of REAL+ such that

         A53: x = x9 and

         A54: y = [ 0 , y9] and

         A55: ( * (x,y)) = [ 0 , (x9 *' y9)] by A45, A46, Def2;

        

         A56: y9 = y99 by A54, A48, XTUPLE_0: 1;

        consider x99,z9 be Element of REAL+ such that

         A57: x = x99 and

         A58: z = [ 0 , z9] and

         A59: ( * (x,z)) = [ 0 , (x99 *' z9)] by A45, A47, Def2;

        ( * (x,z)) in [: { 0 }, REAL+ :] by A59, Lm1;

        then

         A60: not (( * (x,y)) in [: { 0 }, REAL+ :] & ( * (x,z)) in REAL+ ) by Th5, XBOOLE_0: 3;

        ( * (x,y)) in [: { 0 }, REAL+ :] by A55, Lm1;

        then not (( * (x,y)) in REAL+ & ( * (x,z)) in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

        then

        consider xy9,xz9 be Element of REAL+ such that

         A61: ( * (x,y)) = [ 0 , xy9] and

         A62: ( * (x,z)) = [ 0 , xz9] & ( + (( * (x,y)),( * (x,z)))) = [ 0 , (xy9 + xz9)] by A55, A60, Def1, Lm1;

        

         A63: xy9 = (x9 *' y9) by A55, A61, XTUPLE_0: 1;

        

         A64: z9 = z99 by A58, A49, XTUPLE_0: 1;

        

        thus ( * (x,( + (y,z)))) = [ 0 , (x999 *' (y99 + z99))] by A50, A52, XTUPLE_0: 1

        .= [ 0 , ((x9 *' y9) + (x9 *' z9))] by A53, A51, A56, A64, ARYTM_2: 13

        .= ( + (( * (x,y)),( * (x,z)))) by A53, A57, A59, A62, A63, XTUPLE_0: 1;

      end;

        suppose that

         A65: x in RR and

         A66: y in REAL+ and

         A67: z in REAL+ ;

        consider y99,z99 be Element of REAL+ such that

         A68: y = y99 and

         A69: z = z99 and

         A70: ( + (y,z)) = (y99 + z99) by A66, A67, Def1;

        now

          per cases ;

            suppose that

             A71: y <> 0 and

             A72: z <> 0 ;

            consider x99,z9 be Element of REAL+ such that

             A73: x = [ 0 , x99] and

             A74: z = z9 and

             A75: ( * (x,z)) = [ 0 , (z9 *' x99)] by A65, A67, A72, Def2;

            (y99 + z99) <> 0 by A69, A72, ARYTM_2: 5;

            then

            consider x999,yz9 be Element of REAL+ such that

             A76: x = [ 0 , x999] and

             A77: ( + (y,z)) = yz9 & ( * (x,( + (y,z)))) = [ 0 , (yz9 *' x999)] by A65, A70, Def2;

            consider x9,y9 be Element of REAL+ such that

             A78: x = [ 0 , x9] and

             A79: y = y9 and

             A80: ( * (x,y)) = [ 0 , (y9 *' x9)] by A65, A66, A71, Def2;

            

             A81: x99 = x999 by A73, A76, XTUPLE_0: 1;

            ( * (x,z)) in [: { 0 }, REAL+ :] by A75, Lm1;

            then

             A82: not (( * (x,y)) in [: { 0 }, REAL+ :] & ( * (x,z)) in REAL+ ) by Th5, XBOOLE_0: 3;

            ( * (x,y)) in [: { 0 }, REAL+ :] by A80, Lm1;

            then not (( * (x,y)) in REAL+ & ( * (x,z)) in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider xy9,xz9 be Element of REAL+ such that

             A83: ( * (x,y)) = [ 0 , xy9] and

             A84: ( * (x,z)) = [ 0 , xz9] & ( + (( * (x,y)),( * (x,z)))) = [ 0 , (xy9 + xz9)] by A80, A82, Def1, Lm1;

            

             A85: xy9 = (x9 *' y9) by A80, A83, XTUPLE_0: 1;

            x9 = x99 by A78, A73, XTUPLE_0: 1;

            

            hence ( * (x,( + (y,z)))) = [ 0 , ((x9 *' y9) + (x99 *' z9))] by A68, A69, A70, A79, A74, A77, A81, ARYTM_2: 13

            .= ( + (( * (x,y)),( * (x,z)))) by A75, A84, A85, XTUPLE_0: 1;

          end;

            suppose

             A86: x = 0 ;

            

            hence ( * (x,( + (y,z)))) = 0 by Th12

            .= ( + (o,o)) by Th11

            .= ( + (( * (x,y)),o)) by A86, Th12

            .= ( + (( * (x,y)),( * (x,z)))) by A86, Th12;

          end;

            suppose

             A87: z = 0 ;

            

            hence ( * (x,( + (y,z)))) = ( * (x,y)) by Th11

            .= ( + (( * (x,y)),( * (x,z)))) by A87, Th11, Th12;

          end;

            suppose

             A88: y = 0 ;

            

            hence ( * (x,( + (y,z)))) = ( * (x,z)) by Th11

            .= ( + (( * (x,y)),( * (x,z)))) by A88, Th11, Th12;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A89: x in RR and

         A90: y in REAL+ and

         A91: z in RR;

        consider x99,z9 be Element of REAL+ such that

         A92: x = [ 0 , x99] and

         A93: z = [ 0 , z9] and

         A94: ( * (x,z)) = (z9 *' x99) by A89, A91, Def2;

        now

          per cases ;

            suppose y <> 0 ;

            then

            consider x9,y9 be Element of REAL+ such that

             A95: x = [ 0 , x9] and

             A96: y = y9 and

             A97: ( * (x,y)) = [ 0 , (y9 *' x9)] by A89, A90, Def2;

            ( * (x,y)) in [: { 0 }, REAL+ :] by A97, Lm1;

            then

            consider xy9,xz9 be Element of REAL+ such that

             A98: ( * (x,y)) = [ 0 , xy9] and

             A99: ( * (x,z)) = xz9 & ( + (( * (x,y)),( * (x,z)))) = (xz9 - xy9) by A94, Def1;

            consider y99,z99 be Element of REAL+ such that

             A100: y = y99 and

             A101: z = [ 0 , z99] and

             A102: ( + (y,z)) = (y99 - z99) by A91, A96, Def1;

            

             A103: z9 = z99 by A93, A101, XTUPLE_0: 1;

            now

              per cases ;

                suppose

                 A104: z99 <=' y99;

                then

                 A105: ( + (y,z)) = (y99 -' z99) by A102, ARYTM_1:def 2;

                now

                  per cases ;

                    suppose

                     A106: ( + (y,z)) <> 0 ;

                    then

                    consider x999,yz9 be Element of REAL+ such that

                     A107: x = [ 0 , x999] and

                     A108: ( + (y,z)) = yz9 & ( * (x,( + (y,z)))) = [ 0 , (yz9 *' x999)] by A89, A105, Def2;

                     not x in { [ 0 , 0 ]} by XBOOLE_0:def 5;

                    then

                     A109: x999 <> 0 by A107, TARSKI:def 1;

                    

                     A110: z9 = z99 by A93, A101, XTUPLE_0: 1;

                    

                     A111: x9 = x99 by A92, A95, XTUPLE_0: 1;

                    x99 = x999 by A92, A107, XTUPLE_0: 1;

                    

                    hence ( * (x,( + (y,z)))) = ((x9 *' z9) - (x9 *' y9)) by A96, A100, A104, A105, A106, A108, A111, A110, A109, ARYTM_1: 28

                    .= ( + (( * (x,y)),( * (x,z)))) by A94, A97, A98, A99, A111, XTUPLE_0: 1;

                  end;

                    suppose

                     A112: ( + (y,z)) = 0 ;

                    then

                     A113: y99 = z99 by A104, A105, ARYTM_1: 10;

                    

                     A114: xy9 = (x9 *' y9) & x9 = x99 by A92, A95, A97, A98, XTUPLE_0: 1;

                    

                    thus ( * (x,( + (y,z)))) = 0 by A112, Th12

                    .= ( + (( * (x,y)),( * (x,z)))) by A94, A96, A100, A99, A103, A113, A114, ARYTM_1: 18;

                  end;

                end;

                hence thesis;

              end;

                suppose

                 A115: not z99 <=' y99;

                then

                 A116: ( + (y,z)) = [ 0 , (z99 -' y99)] by A102, ARYTM_1:def 2;

                then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

                then

                consider x999,yz9 be Element of REAL+ such that

                 A117: x = [ 0 , x999] and

                 A118: ( + (y,z)) = [ 0 , yz9] & ( * (x,( + (y,z)))) = (yz9 *' x999) by A89, Def2;

                

                 A119: x99 = x999 by A92, A117, XTUPLE_0: 1;

                

                 A120: x9 = x99 by A92, A95, XTUPLE_0: 1;

                

                thus ( * (x,( + (y,z)))) = (x999 *' (z99 -' y99)) by A116, A118, XTUPLE_0: 1

                .= ((x99 *' z9) - (x9 *' y9)) by A96, A100, A103, A115, A120, A119, ARYTM_1: 26

                .= ( + (( * (x,y)),( * (x,z)))) by A94, A97, A98, A99, XTUPLE_0: 1;

              end;

            end;

            hence thesis;

          end;

            suppose

             A121: y = 0 ;

            

            hence ( * (x,( + (y,z)))) = ( * (x,z)) by Th11

            .= ( + (( * (x,y)),( * (x,z)))) by A121, Th11, Th12;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A122: x in RR and

         A123: z in REAL+ and

         A124: y in RR;

        consider x99,y9 be Element of REAL+ such that

         A125: x = [ 0 , x99] and

         A126: y = [ 0 , y9] and

         A127: ( * (x,y)) = (y9 *' x99) by A122, A124, Def2;

        now

          per cases ;

            suppose z <> 0 ;

            then

            consider x9,z9 be Element of REAL+ such that

             A128: x = [ 0 , x9] and

             A129: z = z9 and

             A130: ( * (x,z)) = [ 0 , (z9 *' x9)] by A122, A123, Def2;

            ( * (x,z)) in [: { 0 }, REAL+ :] by A130, Lm1;

            then

            consider xz9,xy9 be Element of REAL+ such that

             A131: ( * (x,z)) = [ 0 , xz9] and

             A132: ( * (x,y)) = xy9 & ( + (( * (x,z)),( * (x,y)))) = (xy9 - xz9) by A127, Def1;

            consider z99,y99 be Element of REAL+ such that

             A133: z = z99 and

             A134: y = [ 0 , y99] and

             A135: ( + (z,y)) = (z99 - y99) by A124, A129, Def1;

            

             A136: y9 = y99 by A126, A134, XTUPLE_0: 1;

            now

              per cases ;

                suppose

                 A137: y99 <=' z99;

                then

                 A138: ( + (z,y)) = (z99 -' y99) by A135, ARYTM_1:def 2;

                now

                  per cases ;

                    suppose

                     A139: ( + (z,y)) <> 0 ;

                    then

                    consider x999,zy9 be Element of REAL+ such that

                     A140: x = [ 0 , x999] and

                     A141: ( + (z,y)) = zy9 & ( * (x,( + (z,y)))) = [ 0 , (zy9 *' x999)] by A122, A138, Def2;

                     not x in { [ 0 , 0 ]} by XBOOLE_0:def 5;

                    then

                     A142: x999 <> 0 by A140, TARSKI:def 1;

                    

                     A143: y9 = y99 by A126, A134, XTUPLE_0: 1;

                    

                     A144: x9 = x99 by A125, A128, XTUPLE_0: 1;

                    x99 = x999 by A125, A140, XTUPLE_0: 1;

                    

                    hence ( * (x,( + (z,y)))) = ((x9 *' y9) - (x9 *' z9)) by A129, A133, A137, A138, A139, A141, A144, A143, A142, ARYTM_1: 28

                    .= ( + (( * (x,z)),( * (x,y)))) by A127, A130, A131, A132, A144, XTUPLE_0: 1;

                  end;

                    suppose

                     A145: ( + (z,y)) = 0 ;

                    then

                     A146: z99 = y99 by A137, A138, ARYTM_1: 10;

                    

                     A147: xz9 = (x9 *' z9) & x9 = x99 by A125, A128, A130, A131, XTUPLE_0: 1;

                    

                    thus ( * (x,( + (z,y)))) = 0 by A145, Th12

                    .= ( + (( * (x,z)),( * (x,y)))) by A127, A129, A133, A132, A136, A146, A147, ARYTM_1: 18;

                  end;

                end;

                hence thesis;

              end;

                suppose

                 A148: not y99 <=' z99;

                then

                 A149: ( + (z,y)) = [ 0 , (y99 -' z99)] by A135, ARYTM_1:def 2;

                then ( + (z,y)) in [: { 0 }, REAL+ :] by Lm1;

                then

                consider x999,zy9 be Element of REAL+ such that

                 A150: x = [ 0 , x999] and

                 A151: ( + (z,y)) = [ 0 , zy9] & ( * (x,( + (z,y)))) = (zy9 *' x999) by A122, Def2;

                

                 A152: x99 = x999 by A125, A150, XTUPLE_0: 1;

                

                 A153: x9 = x99 by A125, A128, XTUPLE_0: 1;

                

                thus ( * (x,( + (y,z)))) = (x999 *' (y99 -' z99)) by A149, A151, XTUPLE_0: 1

                .= ((x99 *' y9) - (x9 *' z9)) by A129, A133, A136, A148, A153, A152, ARYTM_1: 26

                .= ( + (( * (x,y)),( * (x,z)))) by A127, A130, A131, A132, XTUPLE_0: 1;

              end;

            end;

            hence thesis;

          end;

            suppose

             A154: z = 0 ;

            

            hence ( * (x,( + (y,z)))) = ( * (x,y)) by Th11

            .= ( + (( * (x,y)),( * (x,z)))) by A154, Th11, Th12;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A155: x in RR and

         A156: y in RR and

         A157: z in RR;

        ( not (y in REAL+ & z in [: { 0 }, REAL+ :])) & not (y in [: { 0 }, REAL+ :] & z in REAL+ ) by A156, A157, Th5, XBOOLE_0: 3;

        then

        consider y99,z99 be Element of REAL+ such that

         A158: y = [ 0 , y99] and

         A159: z = [ 0 , z99] and

         A160: ( + (y,z)) = [ 0 , (y99 + z99)] by A156, Def1;

        consider x99,z9 be Element of REAL+ such that

         A161: x = [ 0 , x99] and

         A162: z = [ 0 , z9] and

         A163: ( * (x,z)) = (z9 *' x99) by A155, A157, Def2;

        

         A164: z9 = z99 by A162, A159, XTUPLE_0: 1;

        consider x9,y9 be Element of REAL+ such that

         A165: x = [ 0 , x9] and

         A166: y = [ 0 , y9] and

         A167: ( * (x,y)) = (y9 *' x9) by A155, A156, Def2;

        

         A168: y9 = y99 by A166, A158, XTUPLE_0: 1;

        ( + (y,z)) in [: { 0 }, REAL+ :] by A160, Lm1;

        then

        consider x999,yz9 be Element of REAL+ such that

         A169: x = [ 0 , x999] and

         A170: ( + (y,z)) = [ 0 , yz9] & ( * (x,( + (y,z)))) = (yz9 *' x999) by A155, Def2;

        

         A171: x9 = x999 by A165, A169, XTUPLE_0: 1;

        

         A172: (ex xy9,xz9 be Element of REAL+ st ( * (x,y)) = xy9 & ( * (x,z)) = xz9 & ( + (( * (x,y)),( * (x,z)))) = (xy9 + xz9)) & x9 = x99 by A165, A167, A161, A163, Def1, XTUPLE_0: 1;

        

        thus ( * (x,( + (y,z)))) = (x999 *' (y99 + z99)) by A160, A170, XTUPLE_0: 1

        .= ( + (( * (x,y)),( * (x,z)))) by A167, A163, A172, A171, A168, A164, ARYTM_2: 13;

      end;

        suppose

         A173: not (x in REAL+ & y in REAL+ & z in REAL+ ) & not (x in REAL+ & y in REAL+ & z in RR) & not (x in REAL+ & y in RR & z in REAL+ ) & not (x in REAL+ & y in RR & z in RR) & not (x in RR & y in REAL+ & z in REAL+ ) & not (x in RR & y in REAL+ & z in RR) & not (x in RR & y in RR & z in REAL+ ) & not (x in RR & y in RR & z in RR);

         REAL = (( REAL+ \ { [ 0 , 0 ]}) \/ ( [: { 0 }, REAL+ :] \ { [ 0 , 0 ]})) by XBOOLE_1: 42

        .= ( REAL+ \/ RR) by ARYTM_2: 3, ZFMISC_1: 57;

        hence thesis by A173, XBOOLE_0:def 3;

      end;

    end;

    theorem :: ARYTM_0:15

    for x,y be Element of REAL holds ( * (( opp x),y)) = ( opp ( * (x,y)))

    proof

      let x,y be Element of REAL ;

      ( + (( * (( opp x),y)),( * (x,y)))) = ( * (( + (( opp x),x)),y)) by Th14

      .= 0 by Th12, Def3;

      hence thesis by Def3;

    end;

    theorem :: ARYTM_0:16

    

     Th16: for x be Element of REAL holds ( * (x,x)) in REAL+

    proof

      let x be Element of REAL ;

      

       A1: x in ( REAL+ \/ [: { {} }, REAL+ :]) by XBOOLE_0:def 5;

      per cases by A1, XBOOLE_0:def 3;

        suppose x in REAL+ ;

        then ex x9,y9 be Element of REAL+ st x = x9 & x = y9 & ( * (x,x)) = (x9 *' y9) by Def2;

        hence thesis;

      end;

        suppose x in [: { 0 }, REAL+ :];

        then ex x9,y9 be Element of REAL+ st x = [ 0 , x9] & x = [ 0 , y9] & ( * (x,x)) = (y9 *' x9) by Def2;

        hence thesis;

      end;

    end;

    theorem :: ARYTM_0:17

    for x, y st ( + (( * (x,x)),( * (y,y)))) = 0 holds x = 0

    proof

      let x, y such that

       A1: ( + (( * (x,x)),( * (y,y)))) = 0 ;

      ( * (x,x)) in REAL+ & ( * (y,y)) in REAL+ by Th16;

      then

      consider x9,y9 be Element of REAL+ such that

       A2: ( * (x,x)) = x9 and ( * (y,y)) = y9 and

       A3: 0 = (x9 + y9) by A1, Def1;

      

       A4: x9 = 0 by A3, ARYTM_2: 5;

      

       A5: x in ( REAL+ \/ [: { {} }, REAL+ :]) by XBOOLE_0:def 5;

      per cases by A5, XBOOLE_0:def 3;

        suppose x in REAL+ ;

        then ex x9,y9 be Element of REAL+ st x = x9 & x = y9 & 0 = (x9 *' y9) by A2, A4, Def2;

        hence thesis by ARYTM_1: 2;

      end;

        suppose x in [: { 0 }, REAL+ :];

        then

        consider x9,y9 be Element of REAL+ such that

         A6: x = [ 0 , x9] and

         A7: x = [ 0 , y9] and

         A8: 0 = (y9 *' x9) by A2, A4, Def2;

        x9 = y9 by A6, A7, XTUPLE_0: 1;

        then x9 = 0 by A8, ARYTM_1: 2;

        then x in { [ 0 , 0 ]} by A6, TARSKI:def 1;

        hence thesis by XBOOLE_0:def 5;

      end;

    end;

    theorem :: ARYTM_0:18

    

     Th18: for x,y,z be Element of REAL st x <> 0 & ( * (x,y)) = 1 & ( * (x,z)) = 1 holds y = z

    proof

      let x,y,z be Element of REAL ;

      assume that

       A1: x <> 0 and

       A2: ( * (x,y)) = 1 and

       A3: ( * (x,z)) = 1;

      

      thus y = ( inv x) by A1, A2, Def4

      .= z by A1, A3, Def4;

    end;

    theorem :: ARYTM_0:19

    

     Th19: for x, y st y = 1 holds ( * (x,y)) = x

    proof

      let x, y such that

       A1: y = 1;

      per cases ;

        suppose x = 0 ;

        hence thesis by Th12;

      end;

        suppose

         A2: x <> 0 ;

         A3:

        now

          assume

           A4: ( inv x) = 0 ;

          

          thus 1 = ( * (x,( inv x))) by A2, Def4

          .= 0 by A4, Th12;

        end;

        

         A5: ex x9,y9 be Element of REAL+ st y = x9 & y = y9 & ( * (y,y)) = (x9 *' y9) by A1, Def2, ARYTM_2: 20;

        

         A6: ( * (x,( inv x))) = 1 by A2, Def4;

        ( * (( * (x,y)),( inv x))) = ( * (( * (x,( inv x))),y)) by Th13

        .= ( * (y,y)) by A1, A2, Def4

        .= 1 by A1, A5, ARYTM_2: 15;

        hence thesis by A3, A6, Th18;

      end;

    end;

    theorem :: ARYTM_0:20

    for x, y st y <> 0 holds ( * (( * (x,y)),( inv y))) = x

    proof

      reconsider jj = 1 as Element of REAL by NUMBERS: 19;

      let x, y such that

       A1: y <> 0 ;

      

      thus ( * (( * (x,y)),( inv y))) = ( * (x,( * (y,( inv y))))) by Th13

      .= ( * (x,jj)) by A1, Def4

      .= x by Th19;

    end;

    theorem :: ARYTM_0:21

    

     Th21: for x, y st ( * (x,y)) = 0 holds x = 0 or y = 0

    proof

      reconsider jj = 1 as Element of REAL by NUMBERS: 19;

      let x, y such that

       A1: ( * (x,y)) = 0 and

       A2: x <> 0 ;

      

       A3: ( * (x,( inv x))) = 1 by A2, Def4;

      

      thus y = ( * (jj,y)) by Th19

      .= ( * (( * (x,y)),( inv x))) by A3, Th13

      .= 0 by A1, Th12;

    end;

    theorem :: ARYTM_0:22

    for x, y holds ( inv ( * (x,y))) = ( * (( inv x),( inv y)))

    proof

      reconsider jj = 1 as Element of REAL by NUMBERS: 19;

      let x, y;

      per cases ;

        suppose

         A1: x = 0 or y = 0 ;

        then

         A2: ( inv x) = 0 or ( inv y) = 0 by Def4;

        ( * (x,y)) = 0 by A1, Th12;

        

        hence ( inv ( * (x,y))) = 0 by Def4

        .= ( * (( inv x),( inv y))) by A2, Th12;

      end;

        suppose that

         A3: x <> 0 and

         A4: y <> 0 ;

        

         A5: ( * (x,y)) <> 0 by A3, A4, Th21;

        

         A6: ( * (x,( inv x))) = 1 by A3, Def4;

        

         A7: ( * (y,( inv y))) = 1 by A4, Def4;

        ( * (( * (x,y)),( * (( inv x),( inv y))))) = ( * (( * (( * (x,y)),( inv x))),( inv y))) by Th13

        .= ( * (( * (jj,y)),( inv y))) by A6, Th13

        .= 1 by A7, Th19;

        hence thesis by A5, Def4;

      end;

    end;

    theorem :: ARYTM_0:23

    

     Th23: for x,y,z be Element of REAL holds ( + (x,( + (y,z)))) = ( + (( + (x,y)),z))

    proof

      let x,y,z be Element of REAL ;

      

       A1: x in ( REAL+ \/ [: { 0 }, REAL+ :]) & y in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

      

       A2: z in ( REAL+ \/ [: { 0 }, REAL+ :]) by XBOOLE_0:def 5;

      per cases by A1, A2, XBOOLE_0:def 3;

        suppose that

         A3: x in REAL+ and

         A4: y in REAL+ and

         A5: z in REAL+ ;

        

         A6: ex x99,y99 be Element of REAL+ st x = x99 & y = y99 & ( + (x,y)) = (x99 + y99) by A3, A4, Def1;

        then

         A7: ex xy99,z99 be Element of REAL+ st ( + (x,y)) = xy99 & z = z99 & ( + (( + (x,y)),z)) = (xy99 + z99) by A5, Def1;

        

         A8: ex y9,z9 be Element of REAL+ st y = y9 & z = z9 & ( + (y,z)) = (y9 + z9) by A4, A5, Def1;

        then ex x9,yz9 be Element of REAL+ st x = x9 & ( + (y,z)) = yz9 & ( + (x,( + (y,z)))) = (x9 + yz9) by A3, Def1;

        hence thesis by A8, A6, A7, ARYTM_2: 6;

      end;

        suppose that

         A9: x in REAL+ and

         A10: y in REAL+ and

         A11: z in [: { 0 }, REAL+ :];

        

         A12: ex x99,y99 be Element of REAL+ st x = x99 & y = y99 & ( + (x,y)) = (x99 + y99) by A9, A10, Def1;

        then

        consider xy99,z99 be Element of REAL+ such that

         A13: ( + (x,y)) = xy99 and

         A14: z = [ 0 , z99] and

         A15: ( + (( + (x,y)),z)) = (xy99 - z99) by A11, Def1;

        consider y9,z9 be Element of REAL+ such that

         A16: y = y9 and

         A17: z = [ 0 , z9] and

         A18: ( + (y,z)) = (y9 - z9) by A10, A11, Def1;

        

         A19: z9 = z99 by A17, A14, XTUPLE_0: 1;

        now

          per cases ;

            suppose

             A20: z9 <=' y9;

            then

             A21: ( + (y,z)) = (y9 -' z9) by A18, ARYTM_1:def 2;

            then ex x9,yz9 be Element of REAL+ st x = x9 & ( + (y,z)) = yz9 & ( + (x,( + (y,z)))) = (x9 + yz9) by A9, Def1;

            hence thesis by A16, A12, A13, A15, A19, A20, A21, ARYTM_1: 20;

          end;

            suppose

             A22: not z9 <=' y9;

            then

             A23: ( + (y,z)) = [ 0 , (z9 -' y9)] by A18, ARYTM_1:def 2;

            then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider x9,yz9 be Element of REAL+ such that

             A24: x = x9 and

             A25: ( + (y,z)) = [ 0 , yz9] & ( + (x,( + (y,z)))) = (x9 - yz9) by A9, Def1;

            

            thus ( + (x,( + (y,z)))) = (x9 - (z9 -' y9)) by A23, A25, XTUPLE_0: 1

            .= ( + (( + (x,y)),z)) by A16, A12, A13, A15, A19, A22, A24, ARYTM_1: 21;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A26: x in REAL+ and

         A27: y in [: { 0 }, REAL+ :] and

         A28: z in REAL+ ;

        consider x99,y99 be Element of REAL+ such that

         A29: x = x99 and

         A30: y = [ 0 , y99] and

         A31: ( + (x,y)) = (x99 - y99) by A26, A27, Def1;

        consider z9,y9 be Element of REAL+ such that

         A32: z = z9 and

         A33: y = [ 0 , y9] and

         A34: ( + (y,z)) = (z9 - y9) by A27, A28, Def1;

        

         A35: y9 = y99 by A33, A30, XTUPLE_0: 1;

        now

          per cases ;

            suppose that

             A36: y9 <=' x99 and

             A37: y9 <=' z9;

            

             A38: ( + (y,z)) = (z9 -' y9) by A34, A37, ARYTM_1:def 2;

            then

            consider x9,yz9 be Element of REAL+ such that

             A39: x = x9 and

             A40: ( + (y,z)) = yz9 & ( + (x,( + (y,z)))) = (x9 + yz9) by A26, Def1;

            

             A41: ( + (x,y)) = (x9 -' y9) by A29, A31, A35, A36, A39, ARYTM_1:def 2;

            then ex z99,xy99 be Element of REAL+ st z = z99 & ( + (x,y)) = xy99 & ( + (z,( + (x,y)))) = (z99 + xy99) by A28, Def1;

            hence thesis by A32, A29, A36, A37, A38, A39, A40, A41, ARYTM_1: 12;

          end;

            suppose that

             A42: y9 <=' x99 and

             A43: not y9 <=' z9;

            

             A44: ( + (x,y)) = (x99 -' y9) by A31, A35, A42, ARYTM_1:def 2;

            then

             A45: ex z99,xy99 be Element of REAL+ st z = z99 & ( + (x,y)) = xy99 & ( + (z,( + (x,y)))) = (z99 + xy99) by A28, Def1;

            

             A46: ( + (y,z)) = [ 0 , (y9 -' z9)] by A34, A43, ARYTM_1:def 2;

            then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider x9,yz9 be Element of REAL+ such that

             A47: x = x9 and

             A48: ( + (y,z)) = [ 0 , yz9] & ( + (x,( + (y,z)))) = (x9 - yz9) by A26, Def1;

            

            thus ( + (x,( + (y,z)))) = (x9 - (y9 -' z9)) by A46, A48, XTUPLE_0: 1

            .= ( + (( + (x,y)),z)) by A32, A29, A42, A43, A47, A44, A45, ARYTM_1: 22;

          end;

            suppose that

             A49: not y9 <=' x99 and

             A50: y9 <=' z9;

            

             A51: ( + (y,x)) = [ 0 , (y9 -' x99)] by A31, A35, A49, ARYTM_1:def 2;

            then ( + (y,x)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider z99,yx99 be Element of REAL+ such that

             A52: z = z99 and

             A53: ( + (y,x)) = [ 0 , yx99] & ( + (z,( + (y,x)))) = (z99 - yx99) by A28, Def1;

            

             A54: ( + (z,y)) = (z9 -' y9) by A34, A50, ARYTM_1:def 2;

            then ex x9,zy99 be Element of REAL+ st x = x9 & ( + (z,y)) = zy99 & ( + (x,( + (z,y)))) = (x9 + zy99) by A26, Def1;

            

            hence ( + (x,( + (y,z)))) = (z99 - (y9 -' x99)) by A32, A29, A49, A50, A52, A54, ARYTM_1: 22

            .= ( + (( + (x,y)),z)) by A51, A53, XTUPLE_0: 1;

          end;

            suppose that

             A55: not y9 <=' x99 and

             A56: not y9 <=' z9;

            

             A57: ( + (y,z)) = [ 0 , (y9 -' z9)] by A34, A56, ARYTM_1:def 2;

            then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider x9,yz9 be Element of REAL+ such that

             A58: x = x9 and

             A59: ( + (y,z)) = [ 0 , yz9] & ( + (x,( + (y,z)))) = (x9 - yz9) by A26, Def1;

            

             A60: ( + (y,x)) = [ 0 , (y9 -' x99)] by A31, A35, A55, ARYTM_1:def 2;

            then ( + (y,x)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider z99,yx99 be Element of REAL+ such that

             A61: z = z99 and

             A62: ( + (y,x)) = [ 0 , yx99] & ( + (z,( + (y,x)))) = (z99 - yx99) by A28, Def1;

            

            thus ( + (x,( + (y,z)))) = (x9 - (y9 -' z9)) by A57, A59, XTUPLE_0: 1

            .= (z99 - (y9 -' x99)) by A32, A29, A55, A56, A61, A58, ARYTM_1: 23

            .= ( + (( + (x,y)),z)) by A60, A62, XTUPLE_0: 1;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A63: x in REAL+ and

         A64: y in [: { 0 }, REAL+ :] and

         A65: z in [: { 0 }, REAL+ :];

        ( not (z in REAL+ & y in [: { 0 }, REAL+ :])) & not (y in REAL+ & z in [: { 0 }, REAL+ :]) by A64, A65, Th5, XBOOLE_0: 3;

        then

        consider y9,z9 be Element of REAL+ such that

         A66: y = [ 0 , y9] and

         A67: z = [ 0 , z9] and

         A68: ( + (y,z)) = [ 0 , (y9 + z9)] by A64, Def1;

        ( + (y,z)) in [: { 0 }, REAL+ :] by A68, Lm1;

        then

        consider x9,yz9 be Element of REAL+ such that

         A69: x = x9 and

         A70: ( + (y,z)) = [ 0 , yz9] and

         A71: ( + (x,( + (y,z)))) = (x9 - yz9) by A63, Def1;

        consider x99,y99 be Element of REAL+ such that

         A72: x = x99 and

         A73: y = [ 0 , y99] and

         A74: ( + (x,y)) = (x99 - y99) by A63, A64, Def1;

        

         A75: y9 = y99 by A66, A73, XTUPLE_0: 1;

        now

          per cases ;

            suppose

             A76: y99 <=' x99;

            then

             A77: ( + (x,y)) = (x99 -' y99) by A74, ARYTM_1:def 2;

            then

            consider xy99,z99 be Element of REAL+ such that

             A78: ( + (x,y)) = xy99 and

             A79: z = [ 0 , z99] and

             A80: ( + (( + (x,y)),z)) = (xy99 - z99) by A65, Def1;

            

             A81: z9 = z99 by A67, A79, XTUPLE_0: 1;

            

            thus ( + (x,( + (y,z)))) = (x9 - (y9 + z9)) by A68, A70, A71, XTUPLE_0: 1

            .= ( + (( + (x,y)),z)) by A72, A69, A75, A76, A77, A78, A80, A81, ARYTM_1: 24;

          end;

            suppose

             A82: not y99 <=' x99;

            

             A83: not (z in REAL+ & ( + (x,y)) in [: { 0 }, REAL+ :]) by A65, Th5, XBOOLE_0: 3;

            

             A84: ( + (x,y)) = [ 0 , (y99 -' x99)] by A74, A82, ARYTM_1:def 2;

            then ( + (x,y)) in [: { 0 }, REAL+ :] by Lm1;

            then not (( + (x,y)) in REAL+ & z in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider xy99,z99 be Element of REAL+ such that

             A85: ( + (x,y)) = [ 0 , xy99] and

             A86: z = [ 0 , z99] and

             A87: ( + (( + (x,y)),z)) = [ 0 , (xy99 + z99)] by A84, A83, Def1, Lm1;

            

             A88: z9 = z99 by A67, A86, XTUPLE_0: 1;

            

             A89: yz9 = (z9 + y9) by A68, A70, XTUPLE_0: 1;

            then y99 <=' yz9 by A75, ARYTM_2: 19;

            then not yz9 <=' x9 by A72, A69, A82, ARYTM_1: 3;

            

            hence ( + (x,( + (y,z)))) = [ 0 , ((z9 + y9) -' x9)] by A71, A89, ARYTM_1:def 2

            .= [ 0 , (z99 + (y99 -' x99))] by A72, A69, A75, A82, A88, ARYTM_1: 13

            .= ( + (( + (x,y)),z)) by A84, A85, A87, XTUPLE_0: 1;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A90: z in REAL+ and

         A91: y in REAL+ and

         A92: x in [: { 0 }, REAL+ :];

        

         A93: ex z99,y99 be Element of REAL+ st z = z99 & y = y99 & ( + (z,y)) = (z99 + y99) by A90, A91, Def1;

        then

        consider zy99,x99 be Element of REAL+ such that

         A94: ( + (z,y)) = zy99 and

         A95: x = [ 0 , x99] and

         A96: ( + (( + (z,y)),x)) = (zy99 - x99) by A92, Def1;

        consider y9,x9 be Element of REAL+ such that

         A97: y = y9 and

         A98: x = [ 0 , x9] and

         A99: ( + (y,x)) = (y9 - x9) by A91, A92, Def1;

        

         A100: x9 = x99 by A98, A95, XTUPLE_0: 1;

        now

          per cases ;

            suppose

             A101: x9 <=' y9;

            then

             A102: ( + (y,x)) = (y9 -' x9) by A99, ARYTM_1:def 2;

            then ex z9,yx9 be Element of REAL+ st z = z9 & ( + (y,x)) = yx9 & ( + (z,( + (y,x)))) = (z9 + yx9) by A90, Def1;

            hence ( + (z,( + (y,x)))) = ( + (( + (z,y)),x)) by A97, A93, A94, A96, A100, A101, A102, ARYTM_1: 20;

          end;

            suppose

             A103: not x9 <=' y9;

            then

             A104: ( + (y,x)) = [ 0 , (x9 -' y9)] by A99, ARYTM_1:def 2;

            then ( + (y,x)) in [: { 0 }, REAL+ :] by Lm1;

            then

            consider z9,yx9 be Element of REAL+ such that

             A105: z = z9 and

             A106: ( + (y,x)) = [ 0 , yx9] & ( + (z,( + (y,x)))) = (z9 - yx9) by A90, Def1;

            

            thus ( + (z,( + (y,x)))) = (z9 - (x9 -' y9)) by A104, A106, XTUPLE_0: 1

            .= ( + (( + (z,y)),x)) by A97, A93, A94, A96, A100, A103, A105, ARYTM_1: 21;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A107: x in [: { 0 }, REAL+ :] and

         A108: y in REAL+ and

         A109: z in [: { 0 }, REAL+ :];

        consider y9,z9 be Element of REAL+ such that

         A110: y = y9 and

         A111: z = [ 0 , z9] and

         A112: ( + (y,z)) = (y9 - z9) by A108, A109, Def1;

        consider x99,y99 be Element of REAL+ such that

         A113: x = [ 0 , x99] and

         A114: y = y99 and

         A115: ( + (x,y)) = (y99 - x99) by A107, A108, Def1;

        now

          per cases ;

            suppose that

             A116: x99 <=' y99 and

             A117: z9 <=' y9;

            

             A118: ( + (y,z)) = (y9 -' z9) by A112, A117, ARYTM_1:def 2;

            then

            consider x9,yz9 be Element of REAL+ such that

             A119: x = [ 0 , x9] and

             A120: ( + (y,z)) = yz9 & ( + (x,( + (y,z)))) = (yz9 - x9) by A107, Def1;

            

             A121: x9 = x99 by A113, A119, XTUPLE_0: 1;

            then

             A122: ( + (x,y)) = (y9 -' x9) by A110, A114, A115, A116, ARYTM_1:def 2;

            then

            consider z99,xy99 be Element of REAL+ such that

             A123: z = [ 0 , z99] and

             A124: ( + (x,y)) = xy99 & ( + (z,( + (x,y)))) = (xy99 - z99) by A109, Def1;

            z9 = z99 by A111, A123, XTUPLE_0: 1;

            hence thesis by A110, A114, A116, A117, A118, A120, A121, A122, A124, ARYTM_1: 25;

          end;

            suppose that

             A125: not x99 <=' y99 and

             A126: z9 <=' y9;

            

             A127: not (z in REAL+ & ( + (x,y)) in [: { 0 }, REAL+ :]) by A109, Th5, XBOOLE_0: 3;

            

             A128: ( + (y,x)) = [ 0 , (x99 -' y99)] by A115, A125, ARYTM_1:def 2;

            then ( + (y,x)) in [: { 0 }, REAL+ :] by Lm1;

            then not (( + (x,y)) in REAL+ & z in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider z99,yx9 be Element of REAL+ such that

             A129: z = [ 0 , z99] and

             A130: ( + (y,x)) = [ 0 , yx9] & ( + (z,( + (y,x)))) = [ 0 , (z99 + yx9)] by A128, A127, Def1, Lm1;

            

             A131: z9 = z99 by A111, A129, XTUPLE_0: 1;

            

             A132: ( + (y,z)) = (y9 -' z9) by A112, A126, ARYTM_1:def 2;

            then

            consider x9,yz9 be Element of REAL+ such that

             A133: x = [ 0 , x9] and

             A134: ( + (y,z)) = yz9 and

             A135: ( + (x,( + (y,z)))) = (yz9 - x9) by A107, Def1;

            

             A136: x9 = x99 by A113, A133, XTUPLE_0: 1;

            yz9 <=' y9 by A132, A134, ARYTM_1: 11;

            then not x9 <=' yz9 by A110, A114, A125, A136, ARYTM_1: 3;

            

            hence ( + (x,( + (y,z)))) = [ 0 , (x9 -' (y9 -' z9))] by A132, A134, A135, ARYTM_1:def 2

            .= [ 0 , ((x99 -' y99) + z99)] by A110, A114, A125, A126, A136, A131, ARYTM_1: 14

            .= ( + (( + (x,y)),z)) by A128, A130, XTUPLE_0: 1;

          end;

            suppose that

             A137: not z9 <=' y9 and

             A138: x99 <=' y99;

            

             A139: not (x in REAL+ & ( + (z,y)) in [: { 0 }, REAL+ :]) by A107, Th5, XBOOLE_0: 3;

            

             A140: ( + (y,z)) = [ 0 , (z9 -' y9)] by A112, A137, ARYTM_1:def 2;

            then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

            then not (( + (z,y)) in REAL+ & x in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider x9,yz99 be Element of REAL+ such that

             A141: x = [ 0 , x9] and

             A142: ( + (y,z)) = [ 0 , yz99] & ( + (x,( + (y,z)))) = [ 0 , (x9 + yz99)] by A140, A139, Def1, Lm1;

            

             A143: x99 = x9 by A113, A141, XTUPLE_0: 1;

            

             A144: ( + (y,x)) = (y99 -' x99) by A115, A138, ARYTM_1:def 2;

            then

            consider z99,yx99 be Element of REAL+ such that

             A145: z = [ 0 , z99] and

             A146: ( + (y,x)) = yx99 and

             A147: ( + (z,( + (y,x)))) = (yx99 - z99) by A109, Def1;

            

             A148: z99 = z9 by A111, A145, XTUPLE_0: 1;

            yx99 <=' y99 by A144, A146, ARYTM_1: 11;

            then

             A149: not z99 <=' yx99 by A110, A114, A137, A148, ARYTM_1: 3;

            

            thus ( + (x,( + (y,z)))) = [ 0 , ((z9 -' y9) + x9)] by A140, A142, XTUPLE_0: 1

            .= [ 0 , (z99 -' (y99 -' x99))] by A110, A114, A137, A138, A148, A143, ARYTM_1: 14

            .= ( + (( + (x,y)),z)) by A144, A146, A147, A149, ARYTM_1:def 2;

          end;

            suppose that

             A150: not x99 <=' y99 and

             A151: not z9 <=' y9;

            

             A152: not (x in REAL+ & ( + (z,y)) in [: { 0 }, REAL+ :]) by A107, Th5, XBOOLE_0: 3;

            

             A153: not (z in REAL+ & ( + (x,y)) in [: { 0 }, REAL+ :]) by A109, Th5, XBOOLE_0: 3;

            

             A154: ( + (y,x)) = [ 0 , (x99 -' y99)] by A115, A150, ARYTM_1:def 2;

            then ( + (y,x)) in [: { 0 }, REAL+ :] by Lm1;

            then not (( + (x,y)) in REAL+ & z in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider z99,yx9 be Element of REAL+ such that

             A155: z = [ 0 , z99] and

             A156: ( + (y,x)) = [ 0 , yx9] & ( + (z,( + (y,x)))) = [ 0 , (z99 + yx9)] by A154, A153, Def1, Lm1;

            

             A157: z9 = z99 by A111, A155, XTUPLE_0: 1;

            

             A158: ( + (y,z)) = [ 0 , (z9 -' y9)] by A112, A151, ARYTM_1:def 2;

            then ( + (y,z)) in [: { 0 }, REAL+ :] by Lm1;

            then not (( + (z,y)) in REAL+ & x in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider x9,yz99 be Element of REAL+ such that

             A159: x = [ 0 , x9] and

             A160: ( + (y,z)) = [ 0 , yz99] & ( + (x,( + (y,z)))) = [ 0 , (x9 + yz99)] by A158, A152, Def1, Lm1;

            

             A161: x9 = x99 by A113, A159, XTUPLE_0: 1;

            

            thus ( + (x,( + (y,z)))) = [ 0 , ((z9 -' y9) + x9)] by A158, A160, XTUPLE_0: 1

            .= [ 0 , ((x99 -' y99) + z99)] by A110, A114, A150, A151, A157, A161, ARYTM_1: 15

            .= ( + (( + (x,y)),z)) by A154, A156, XTUPLE_0: 1;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A162: z in REAL+ and

         A163: y in [: { 0 }, REAL+ :] and

         A164: x in [: { 0 }, REAL+ :];

        ( not (x in REAL+ & y in [: { 0 }, REAL+ :])) & not (y in REAL+ & x in [: { 0 }, REAL+ :]) by A163, A164, Th5, XBOOLE_0: 3;

        then

        consider y9,x9 be Element of REAL+ such that

         A165: y = [ 0 , y9] and

         A166: x = [ 0 , x9] and

         A167: ( + (y,x)) = [ 0 , (y9 + x9)] by A163, Def1;

        ( + (y,x)) in [: { 0 }, REAL+ :] by A167, Lm1;

        then

        consider z9,yx9 be Element of REAL+ such that

         A168: z = z9 and

         A169: ( + (y,x)) = [ 0 , yx9] and

         A170: ( + (z,( + (y,x)))) = (z9 - yx9) by A162, Def1;

        consider z99,y99 be Element of REAL+ such that

         A171: z = z99 and

         A172: y = [ 0 , y99] and

         A173: ( + (z,y)) = (z99 - y99) by A162, A163, Def1;

        

         A174: y9 = y99 by A165, A172, XTUPLE_0: 1;

        now

          per cases ;

            suppose

             A175: y99 <=' z99;

            then

             A176: ( + (z,y)) = (z99 -' y99) by A173, ARYTM_1:def 2;

            then

            consider zy99,x99 be Element of REAL+ such that

             A177: ( + (z,y)) = zy99 and

             A178: x = [ 0 , x99] and

             A179: ( + (( + (z,y)),x)) = (zy99 - x99) by A164, Def1;

            

             A180: x9 = x99 by A166, A178, XTUPLE_0: 1;

            

            thus ( + (z,( + (y,x)))) = (z9 - (y9 + x9)) by A167, A169, A170, XTUPLE_0: 1

            .= ( + (( + (z,y)),x)) by A171, A168, A174, A175, A176, A177, A179, A180, ARYTM_1: 24;

          end;

            suppose

             A181: not y99 <=' z99;

            

             A182: not (x in REAL+ & ( + (z,y)) in [: { 0 }, REAL+ :]) by A164, Th5, XBOOLE_0: 3;

            

             A183: ( + (z,y)) = [ 0 , (y99 -' z99)] by A173, A181, ARYTM_1:def 2;

            then ( + (z,y)) in [: { 0 }, REAL+ :] by Lm1;

            then not (( + (z,y)) in REAL+ & x in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

            then

            consider zy99,x99 be Element of REAL+ such that

             A184: ( + (z,y)) = [ 0 , zy99] and

             A185: x = [ 0 , x99] and

             A186: ( + (( + (z,y)),x)) = [ 0 , (zy99 + x99)] by A183, A182, Def1, Lm1;

            

             A187: x9 = x99 by A166, A185, XTUPLE_0: 1;

            

             A188: yx9 = (x9 + y9) by A167, A169, XTUPLE_0: 1;

            then y99 <=' yx9 by A174, ARYTM_2: 19;

            then not yx9 <=' z9 by A171, A168, A181, ARYTM_1: 3;

            

            hence ( + (z,( + (y,x)))) = [ 0 , ((x9 + y9) -' z9)] by A170, A188, ARYTM_1:def 2

            .= [ 0 , (x99 + (y99 -' z99))] by A171, A168, A174, A181, A187, ARYTM_1: 13

            .= ( + (( + (z,y)),x)) by A183, A184, A186, XTUPLE_0: 1;

          end;

        end;

        hence thesis;

      end;

        suppose that

         A189: x in [: { 0 }, REAL+ :] and

         A190: y in [: { 0 }, REAL+ :] and

         A191: z in [: { 0 }, REAL+ :];

        

         A192: not (x in REAL+ & ( + (z,y)) in [: { 0 }, REAL+ :]) by A189, Th5, XBOOLE_0: 3;

        ( not (z in REAL+ & y in [: { 0 }, REAL+ :])) & not (y in REAL+ & z in [: { 0 }, REAL+ :]) by A190, A191, Th5, XBOOLE_0: 3;

        then

        consider y9,z9 be Element of REAL+ such that

         A193: y = [ 0 , y9] and

         A194: z = [ 0 , z9] and

         A195: ( + (y,z)) = [ 0 , (y9 + z9)] by A190, Def1;

        ( + (z,y)) in [: { 0 }, REAL+ :] by A195, Lm1;

        then not (( + (z,y)) in REAL+ & x in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

        then

        consider x9,yz9 be Element of REAL+ such that

         A196: x = [ 0 , x9] and

         A197: ( + (y,z)) = [ 0 , yz9] & ( + (x,( + (y,z)))) = [ 0 , (x9 + yz9)] by A195, A192, Def1, Lm1;

        

         A198: not (z in REAL+ & ( + (x,y)) in [: { 0 }, REAL+ :]) by A191, Th5, XBOOLE_0: 3;

        ( not (x in REAL+ & y in [: { 0 }, REAL+ :])) & not (y in REAL+ & x in [: { 0 }, REAL+ :]) by A189, A190, Th5, XBOOLE_0: 3;

        then

        consider x99,y99 be Element of REAL+ such that

         A199: x = [ 0 , x99] and

         A200: y = [ 0 , y99] and

         A201: ( + (x,y)) = [ 0 , (x99 + y99)] by A189, Def1;

        

         A202: x9 = x99 by A199, A196, XTUPLE_0: 1;

        ( + (x,y)) in [: { 0 }, REAL+ :] by A201, Lm1;

        then not (( + (x,y)) in REAL+ & z in [: { 0 }, REAL+ :]) by Th5, XBOOLE_0: 3;

        then

        consider xy99,z99 be Element of REAL+ such that

         A203: ( + (x,y)) = [ 0 , xy99] and

         A204: z = [ 0 , z99] and

         A205: ( + (( + (x,y)),z)) = [ 0 , (xy99 + z99)] by A201, A198, Def1, Lm1;

        

         A206: z9 = z99 by A194, A204, XTUPLE_0: 1;

        

         A207: y9 = y99 by A193, A200, XTUPLE_0: 1;

        

        thus ( + (x,( + (y,z)))) = [ 0 , ((z9 + y9) + x9)] by A195, A197, XTUPLE_0: 1

        .= [ 0 , (z99 + (y99 + x99))] by A206, A202, A207, ARYTM_2: 6

        .= ( + (( + (x,y)),z)) by A201, A203, A205, XTUPLE_0: 1;

      end;

    end;

    theorem :: ARYTM_0:24

     [*x, y*] in REAL implies y = 0

    proof

      assume

       A1: [*x, y*] in REAL ;

      assume y <> 0 ;

      then [*x, y*] = (( 0 ,1) --> (x,y)) by Def5;

      hence contradiction by A1, Th8;

    end;

    theorem :: ARYTM_0:25

    for x,y be Element of REAL holds ( opp ( + (x,y))) = ( + (( opp x),( opp y)))

    proof

      reconsider o = 0 as Element of REAL by Lm3;

      let x,y be Element of REAL ;

      ( + (( + (x,y)),( + (( opp x),( opp y))))) = ( + (x,( + (y,( + (( opp x),( opp y))))))) by Th23

      .= ( + (x,( + (( opp x),( + (y,( opp y))))))) by Th23

      .= ( + (x,( + (( opp x),o)))) by Def3

      .= ( + (x,( opp x))) by Th11

      .= 0 by Def3;

      hence thesis by Def3;

    end;