bcialg_5.miz
begin
definition
let X be
BCI-algebra;
let x,y be
Element of X;
let m,n be
Nat;
::
BCIALG_5:def1
func
Polynom (m,n,x,y) ->
Element of X equals ((((x,(x
\ y))
to_power (m
+ 1)),(y
\ x))
to_power n);
coherence ;
end
reserve X for
BCI-algebra;
reserve x,y,z for
Element of X;
reserve i,j,k,l,m,n for
Nat;
reserve f,g for
sequence of the
carrier of X;
theorem ::
BCIALG_5:1
Th1: x
<= y & y
<= z implies x
<= z by
BCIALG_1: 3;
theorem ::
BCIALG_5:2
Th2: x
<= y & y
<= x implies x
= y by
BCIALG_1:def 7;
theorem ::
BCIALG_5:3
Th3: for X be
BCK-algebra, x,y be
Element of X holds (x
\ y)
<= x & ((x,y)
to_power (n
+ 1))
<= ((x,y)
to_power n)
proof
let X be
BCK-algebra;
let x,y be
Element of X;
((((x,y)
to_power n)
\ y)
\ ((x,y)
to_power n))
= ((((x,y)
to_power n)
\ ((x,y)
to_power n))
\ y) by
BCIALG_1: 7
.= (y
` ) by
BCIALG_1:def 5
.= (
0. X) by
BCIALG_1:def 8;
then
A1: (((x,y)
to_power n)
\ y)
<= ((x,y)
to_power n);
((x
\ y)
\ x)
= ((x
\ x)
\ y) by
BCIALG_1: 7
.= (y
` ) by
BCIALG_1:def 5
.= (
0. X) by
BCIALG_1:def 8;
hence thesis by
A1,
BCIALG_2: 4;
end;
theorem ::
BCIALG_5:4
Th4: for X be
BCK-algebra, x be
Element of X holds (((
0. X),x)
to_power n)
= (
0. X)
proof
let X be
BCK-algebra;
let x be
Element of X;
defpred
P[
Nat] means $1
<= n implies (((
0. X),x)
to_power $1)
= (
0. X);
now
let k;
assume
A1: k
<= n implies (((
0. X),x)
to_power k)
= (
0. X);
set m = (k
+ 1);
assume m
<= n;
then (((
0. X),x)
to_power m)
= (x
` ) by
A1,
BCIALG_2: 4,
NAT_1: 13
.= (
0. X) by
BCIALG_1:def 8;
hence (((
0. X),x)
to_power m)
= (
0. X);
end;
then
A2: for k st
P[k] holds
P[(k
+ 1)];
A3:
P[
0 ] by
BCIALG_2: 1;
for n holds
P[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
BCIALG_5:5
Th5: for X be
BCK-algebra, x,y be
Element of X st m
>= n holds ((x,y)
to_power m)
<= ((x,y)
to_power n)
proof
let X be
BCK-algebra;
let x,y be
Element of X;
assume m
>= n;
then (m
- n) is
Element of
NAT by
NAT_1: 21;
then
consider k be
Element of
NAT such that
A1: k
= (m
- n);
(((x,y)
to_power k)
\ x)
= (((x
\ x),y)
to_power k) by
BCIALG_2: 7
.= (((
0. X),y)
to_power k) by
BCIALG_1:def 5
.= (
0. X) by
Th4;
then ((x,y)
to_power k)
<= x;
then ((((x,y)
to_power k),y)
to_power n)
<= ((x,y)
to_power n) by
BCIALG_2: 19;
then ((x,y)
to_power (k
+ n))
<= ((x,y)
to_power n) by
BCIALG_2: 10;
hence thesis by
A1;
end;
theorem ::
BCIALG_5:6
Th6: for X be
BCK-algebra, x,y be
Element of X st m
> n & ((x,y)
to_power n)
= ((x,y)
to_power m) holds for k be
Nat st k
>= n holds ((x,y)
to_power n)
= ((x,y)
to_power k)
proof
let X be
BCK-algebra;
let x,y be
Element of X;
assume that
A1: m
> n and
A2: ((x,y)
to_power n)
= ((x,y)
to_power m);
(m
- n) is
Element of
NAT & (m
- n)
> (n
- n) by
A1,
NAT_1: 21,
XREAL_1: 9;
then (m
- n)
>= 1 by
NAT_1: 14;
then ((m
- n)
+ n)
>= (1
+ n) by
XREAL_1: 6;
then
A3: ((x,y)
to_power n)
<= ((x,y)
to_power (n
+ 1)) by
A2,
Th5;
A4: ((x,y)
to_power (n
+ 1))
<= ((x,y)
to_power n) by
Th3;
for k be
Nat st k
>= n holds ((x,y)
to_power n)
= ((x,y)
to_power k)
proof
let k be
Nat;
assume k
>= n;
then (k
- n) is
Element of
NAT by
NAT_1: 21;
then
consider k1 be
Element of
NAT such that
A5: k1
= (k
- n);
((x,y)
to_power n)
= ((((x,y)
to_power n),y)
to_power k1)
proof
defpred
P[
Nat] means $1
<= k1 implies ((x,y)
to_power n)
= ((((x,y)
to_power n),y)
to_power $1);
now
let k;
assume
A6: k
<= k1 implies ((x,y)
to_power n)
= ((((x,y)
to_power n),y)
to_power k);
set m = (k
+ 1);
A7: ((((x,y)
to_power n),y)
to_power m)
= (((((x,y)
to_power n),y)
to_power k)
\ y) by
BCIALG_2: 4
.= (((((x,y)
to_power n)
\ y),y)
to_power k) by
BCIALG_2: 7
.= ((((x,y)
to_power (n
+ 1)),y)
to_power k) by
BCIALG_2: 4
.= ((((x,y)
to_power n),y)
to_power k) by
A4,
A3,
Th2;
assume m
<= k1;
hence ((x,y)
to_power n)
= ((((x,y)
to_power n),y)
to_power m) by
A6,
A7,
NAT_1: 13;
end;
then
A8: for k st
P[k] holds
P[(k
+ 1)];
A9:
P[
0 ] by
BCIALG_2: 1;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A8);
hence thesis;
end;
then ((x,y)
to_power n)
= ((x,y)
to_power (n
+ k1)) by
BCIALG_2: 10;
hence thesis by
A5;
end;
hence thesis;
end;
theorem ::
BCIALG_5:7
Th7: (
Polynom (
0 ,
0 ,x,y))
= (x
\ (x
\ y))
proof
(
Polynom (
0 ,
0 ,x,y))
= ((x,(x
\ y))
to_power (
0
+ 1)) by
BCIALG_2: 1
.= (x
\ (x
\ y)) by
BCIALG_2: 2;
hence thesis;
end;
theorem ::
BCIALG_5:8
(
Polynom (m,n,x,y))
= (((((
Polynom (
0 ,
0 ,x,y)),(x
\ y))
to_power m),(y
\ x))
to_power n)
proof
(((
Polynom (
0 ,
0 ,x,y)),(x
\ y))
to_power m)
= (((x
\ (x
\ y)),(x
\ y))
to_power m) by
Th7
.= (((x,(x
\ y))
to_power m)
\ (x
\ y)) by
BCIALG_2: 7
.= ((x,(x
\ y))
to_power (m
+ 1)) by
BCIALG_2: 4;
hence thesis;
end;
theorem ::
BCIALG_5:9
Th9: (
Polynom ((m
+ 1),n,x,y))
= ((
Polynom (m,n,x,y))
\ (x
\ y))
proof
(
Polynom ((m
+ 1),n,x,y))
= ((((x,(y
\ x))
to_power n),(x
\ y))
to_power ((m
+ 1)
+ 1)) by
BCIALG_2: 11
.= (((((x,(y
\ x))
to_power n),(x
\ y))
to_power (m
+ 1))
\ (x
\ y)) by
BCIALG_2: 4
.= (((((x,(x
\ y))
to_power (m
+ 1)),(y
\ x))
to_power n)
\ (x
\ y)) by
BCIALG_2: 11;
hence thesis;
end;
theorem ::
BCIALG_5:10
Th10: (
Polynom (m,(n
+ 1),x,y))
= ((
Polynom (m,n,x,y))
\ (y
\ x))
proof
consider f such that
A1: ((((x,(x
\ y))
to_power (m
+ 1)),(y
\ x))
to_power (n
+ 1))
= (f
. (n
+ 1)) and
A2: (f
.
0 )
= ((x,(x
\ y))
to_power (m
+ 1)) and
A3: for k st k
< (n
+ 1) holds (f
. (k
+ 1))
= ((f
. k)
\ (y
\ x)) by
BCIALG_2:def 1;
consider g such that
A4: ((((x,(x
\ y))
to_power (m
+ 1)),(y
\ x))
to_power n)
= (g
. n) and
A5: (g
.
0 )
= ((x,(x
\ y))
to_power (m
+ 1)) and
A6: for k st k
< n holds (g
. (k
+ 1))
= ((g
. k)
\ (y
\ x)) by
BCIALG_2:def 1;
defpred
P[
Nat] means $1
<= n implies (f
. $1)
= (g
. $1);
now
let k;
assume
A7: k
<= n implies (f
. k)
= (g
. k);
set m = (k
+ 1);
assume
A8: m
<= n;
then (k
+ 1)
<= (n
+ 1) by
NAT_1: 13;
then k
< (n
+ 1) by
NAT_1: 13;
then
A9: (f
. (k
+ 1))
= ((f
. k)
\ (y
\ x)) by
A3;
k
< n by
A8,
NAT_1: 13;
hence (f
. m)
= (g
. m) by
A6,
A7,
A9;
end;
then
A10: for k st
P[k] holds
P[(k
+ 1)];
A11:
P[
0 ] by
A2,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A11,
A10);
then (f
. n)
= (g
. n);
hence thesis by
A1,
A3,
A4,
XREAL_1: 29;
end;
theorem ::
BCIALG_5:11
(
Polynom ((n
+ 1),(n
+ 1),y,x))
<= (
Polynom (n,(n
+ 1),x,y))
proof
((y
\ x)
\ (y
\ x))
= (
0. X) by
BCIALG_1:def 5;
then ((y
\ (y
\ x))
\ x)
= (
0. X) by
BCIALG_1: 7;
then (y
\ (y
\ x))
<= x;
then (((y
\ (y
\ x)),(x
\ y))
to_power (n
+ 1))
<= ((x,(x
\ y))
to_power (n
+ 1)) by
BCIALG_2: 19;
then (((((y
\ (y
\ x)),(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1))
<= ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 19;
then (((((y
\ (y
\ x)),(y
\ x))
to_power (n
+ 1)),(x
\ y))
to_power (n
+ 1))
<= ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 11;
then ((((((y,(y
\ x))
to_power 1),(y
\ x))
to_power (n
+ 1)),(x
\ y))
to_power (n
+ 1))
<= ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 2;
hence thesis by
BCIALG_2: 10;
end;
theorem ::
BCIALG_5:12
(
Polynom (n,(n
+ 1),x,y))
<= (
Polynom (n,n,y,x))
proof
((x
\ y)
\ (x
\ y))
= (
0. X) by
BCIALG_1:def 5;
then ((x
\ (x
\ y))
\ y)
= (
0. X) by
BCIALG_1: 7;
then (x
\ (x
\ y))
<= y;
then (((x
\ (x
\ y)),(x
\ y))
to_power n)
<= ((y,(x
\ y))
to_power n) by
BCIALG_2: 19;
then (((((x
\ (x
\ y)),(x
\ y))
to_power n),(y
\ x))
to_power (n
+ 1))
<= ((((y,(x
\ y))
to_power n),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 19;
then ((((((x,(x
\ y))
to_power 1),(x
\ y))
to_power n),(y
\ x))
to_power (n
+ 1))
<= ((((y,(x
\ y))
to_power n),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 2;
then ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1))
<= ((((y,(x
\ y))
to_power n),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 10;
hence thesis by
BCIALG_2: 11;
end;
definition
let X be
BCI-algebra;
::
BCIALG_5:def2
attr X is
quasi-commutative means ex i,j,m,n be
Element of
NAT st for x,y be
Element of X holds (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x));
end
registration
cluster
BCI-EXAMPLE ->
quasi-commutative;
coherence
proof
for x,y be
Element of
BCI-EXAMPLE holds (
Polynom (
0 ,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x)) by
STRUCT_0:def 10;
hence thesis;
end;
end
registration
cluster
quasi-commutative for
BCI-algebra;
existence
proof
take
BCI-EXAMPLE ;
thus thesis;
end;
end
definition
let i,j,m,n be
Nat;
::
BCIALG_5:def3
mode
BCI-algebra of i,j,m,n ->
BCI-algebra means
:
Def3: for x,y be
Element of it holds (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x));
existence
proof
for x,y be
Element of
BCI-EXAMPLE holds (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
STRUCT_0:def 10;
hence thesis;
end;
end
theorem ::
BCIALG_5:13
Th13: X is
BCI-algebra of i, j, m, n iff X is
BCI-algebra of m, n, i, j
proof
thus X is
BCI-algebra of i, j, m, n implies X is
BCI-algebra of m, n, i, j
proof
assume X is
BCI-algebra of i, j, m, n;
then for x,y be
Element of X holds (
Polynom (m,n,x,y))
= (
Polynom (i,j,y,x)) by
Def3;
hence thesis by
Def3;
end;
assume X is
BCI-algebra of m, n, i, j;
then for x,y be
Element of X holds (
Polynom (m,n,y,x))
= (
Polynom (i,j,x,y)) by
Def3;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:14
Th14: for X be
BCI-algebra of i, j, m, n holds for k be
Element of
NAT holds X is
BCI-algebra of (i
+ k), j, m, (n
+ k)
proof
let X be
BCI-algebra of i, j, m, n;
let k be
Element of
NAT ;
for x,y be
Element of X holds (
Polynom ((i
+ k),j,x,y))
= (
Polynom (m,(n
+ k),y,x))
proof
let x,y be
Element of X;
A1: (((
Polynom (m,n,y,x)),(x
\ y))
to_power k)
= (
Polynom (m,(n
+ k),y,x)) by
BCIALG_2: 10;
(((
Polynom (i,j,x,y)),(x
\ y))
to_power k)
= ((((((x,(x
\ y))
to_power (i
+ 1)),(x
\ y))
to_power k),(y
\ x))
to_power j) by
BCIALG_2: 11
.= ((((x,(x
\ y))
to_power ((i
+ 1)
+ k)),(y
\ x))
to_power j) by
BCIALG_2: 10
.= (
Polynom ((i
+ k),j,x,y));
hence thesis by
A1,
Def3;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:15
for X be
BCI-algebra of i, j, m, n holds for k be
Element of
NAT holds X is
BCI-algebra of i, (j
+ k), (m
+ k), n
proof
let X be
BCI-algebra of i, j, m, n;
let k be
Element of
NAT ;
for x,y be
Element of X holds (
Polynom (i,(j
+ k),x,y))
= (
Polynom ((m
+ k),n,y,x))
proof
let x,y be
Element of X;
A1: (((
Polynom (m,n,y,x)),(y
\ x))
to_power k)
= ((((((y,(y
\ x))
to_power (m
+ 1)),(y
\ x))
to_power k),(x
\ y))
to_power n) by
BCIALG_2: 11
.= ((((y,(y
\ x))
to_power ((m
+ 1)
+ k)),(x
\ y))
to_power n) by
BCIALG_2: 10
.= (
Polynom ((m
+ k),n,y,x));
(((
Polynom (i,j,x,y)),(y
\ x))
to_power k)
= (
Polynom (i,(j
+ k),x,y)) by
BCIALG_2: 10;
hence thesis by
A1,
Def3;
end;
hence thesis by
Def3;
end;
registration
cluster
quasi-commutative for
BCK-algebra;
existence
proof
take
BCI-EXAMPLE ;
thus thesis;
end;
end
registration
let i,j,m,n be
Nat;
cluster
being_BCK-5 for
BCI-algebra of i, j, m, n;
existence
proof
for x,y be
Element of
BCI-EXAMPLE holds (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
STRUCT_0:def 10;
then
reconsider B =
BCI-EXAMPLE as
BCI-algebra of i, j, m, n by
Def3;
take B;
thus thesis;
end;
end
definition
let i,j,m,n be
Nat;
mode
BCK-algebra of i,j,m,n is
being_BCK-5
BCI-algebra of i, j, m, n;
end
theorem ::
BCIALG_5:16
X is
BCK-algebra of i, j, m, n iff X is
BCK-algebra of m, n, i, j
proof
thus X is
BCK-algebra of i, j, m, n implies X is
BCK-algebra of m, n, i, j
proof
assume
A1: X is
BCK-algebra of i, j, m, n;
then for x,y be
Element of X holds (
Polynom (m,n,x,y))
= (
Polynom (i,j,y,x)) by
Def3;
hence thesis by
A1,
Def3;
end;
assume
A2: X is
BCK-algebra of m, n, i, j;
then for x,y be
Element of X holds (
Polynom (m,n,y,x))
= (
Polynom (i,j,x,y)) by
Def3;
hence thesis by
A2,
Def3;
end;
theorem ::
BCIALG_5:17
Th17: for X be
BCK-algebra of i, j, m, n holds for k be
Element of
NAT holds X is
BCK-algebra of (i
+ k), j, m, (n
+ k)
proof
let X be
BCK-algebra of i, j, m, n;
let k be
Element of
NAT ;
for x,y be
Element of X holds (
Polynom ((i
+ k),j,x,y))
= (
Polynom (m,(n
+ k),y,x))
proof
let x,y be
Element of X;
A1: (((
Polynom (m,n,y,x)),(x
\ y))
to_power k)
= (
Polynom (m,(n
+ k),y,x)) by
BCIALG_2: 10;
(((
Polynom (i,j,x,y)),(x
\ y))
to_power k)
= ((((((x,(x
\ y))
to_power (i
+ 1)),(x
\ y))
to_power k),(y
\ x))
to_power j) by
BCIALG_2: 11
.= ((((x,(x
\ y))
to_power ((i
+ 1)
+ k)),(y
\ x))
to_power j) by
BCIALG_2: 10
.= (
Polynom ((i
+ k),j,x,y));
hence thesis by
A1,
Def3;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:18
Th18: for X be
BCK-algebra of i, j, m, n holds for k be
Element of
NAT holds X is
BCK-algebra of i, (j
+ k), (m
+ k), n
proof
let X be
BCK-algebra of i, j, m, n;
let k be
Element of
NAT ;
for x,y be
Element of X holds (
Polynom (i,(j
+ k),x,y))
= (
Polynom ((m
+ k),n,y,x))
proof
let x,y be
Element of X;
A1: (((
Polynom (m,n,y,x)),(y
\ x))
to_power k)
= ((((((y,(y
\ x))
to_power (m
+ 1)),(y
\ x))
to_power k),(x
\ y))
to_power n) by
BCIALG_2: 11
.= ((((y,(y
\ x))
to_power ((m
+ 1)
+ k)),(x
\ y))
to_power n) by
BCIALG_2: 10
.= (
Polynom ((m
+ k),n,y,x));
(((
Polynom (i,j,x,y)),(y
\ x))
to_power k)
= (
Polynom (i,(j
+ k),x,y)) by
BCIALG_2: 10;
hence thesis by
A1,
Def3;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:19
Th19: for X be
BCK-algebra of i, j, m, n holds for x,y be
Element of X holds ((x,y)
to_power (i
+ 1))
= ((x,y)
to_power (n
+ 1))
proof
let X be
BCK-algebra of i, j, m, n;
let x,y be
Element of X;
A1: ((x
\ y)
\ x)
= ((x
\ x)
\ y) by
BCIALG_1: 7
.= (y
` ) by
BCIALG_1:def 5
.= (
0. X) by
BCIALG_1:def 8;
then
A2: (
Polynom ((m
+ 1),n,(x
\ y),x))
= (((x
\ y),(x
\ (x
\ y)))
to_power n) by
BCIALG_2: 5
.= (((x
\ (x
\ (x
\ y))),(x
\ (x
\ y)))
to_power n) by
BCIALG_1: 8
.= ((((x,(x
\ (x
\ y)))
to_power 1),(x
\ (x
\ y)))
to_power n) by
BCIALG_2: 2
.= ((x,(x
\ (x
\ y)))
to_power (n
+ 1)) by
BCIALG_2: 10
.= ((x,y)
to_power (n
+ 1)) by
BCIALG_2: 8;
X is
BCI-algebra of m, n, i, j by
Th13;
then
A3: X is
BCI-algebra of (m
+ 1), n, i, (j
+ 1) by
Th14;
(
Polynom (i,(j
+ 1),x,(x
\ y)))
= ((x,(x
\ (x
\ y)))
to_power (i
+ 1)) by
A1,
BCIALG_2: 5
.= ((x,y)
to_power (i
+ 1)) by
BCIALG_2: 8;
hence thesis by
A2,
A3,
Def3;
end;
theorem ::
BCIALG_5:20
Th20: for X be
BCK-algebra of i, j, m, n holds for x,y be
Element of X holds ((x,y)
to_power (j
+ 1))
= ((x,y)
to_power (m
+ 1))
proof
let X be
BCK-algebra of i, j, m, n;
let x,y be
Element of X;
A1: ((x
\ y)
\ x)
= ((x
\ x)
\ y) by
BCIALG_1: 7
.= (y
` ) by
BCIALG_1:def 5
.= (
0. X) by
BCIALG_1:def 8;
then
A2: (
Polynom ((i
+ 1),j,(x
\ y),x))
= (((x
\ y),(x
\ (x
\ y)))
to_power j) by
BCIALG_2: 5
.= (((x
\ (x
\ (x
\ y))),(x
\ (x
\ y)))
to_power j) by
BCIALG_1: 8
.= ((((x,(x
\ (x
\ y)))
to_power 1),(x
\ (x
\ y)))
to_power j) by
BCIALG_2: 2
.= ((x,(x
\ (x
\ y)))
to_power (j
+ 1)) by
BCIALG_2: 10
.= ((x,y)
to_power (j
+ 1)) by
BCIALG_2: 8;
A3: X is
BCI-algebra of (i
+ 1), j, m, (n
+ 1) by
Th14;
(
Polynom (m,(n
+ 1),x,(x
\ y)))
= ((x,(x
\ (x
\ y)))
to_power (m
+ 1)) by
A1,
BCIALG_2: 5
.= ((x,y)
to_power (m
+ 1)) by
BCIALG_2: 8;
hence thesis by
A2,
A3,
Def3;
end;
theorem ::
BCIALG_5:21
Th21: for X be
BCK-algebra of i, j, m, n holds X is
BCK-algebra of i, j, j, n
proof
let X be
BCK-algebra of i, j, m, n;
for x,y be
Element of X holds (
Polynom (i,j,x,y))
= (
Polynom (j,n,y,x))
proof
let x,y be
Element of X;
(
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
Def3;
hence thesis by
Th20;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:22
Th22: for X be
BCK-algebra of i, j, m, n holds X is
BCK-algebra of n, j, m, n
proof
let X be
BCK-algebra of i, j, m, n;
for x,y be
Element of X holds (
Polynom (n,j,x,y))
= (
Polynom (m,n,y,x))
proof
let x,y be
Element of X;
(
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
Def3;
hence thesis by
Th19;
end;
hence thesis by
Def3;
end;
definition
let i, j, m, n;
::
BCIALG_5:def4
func
min (i,j,m,n) ->
ExtReal equals (
min ((
min (i,j)),(
min (m,n))));
correctness ;
::
BCIALG_5:def5
func
max (i,j,m,n) ->
ExtReal equals (
max ((
max (i,j)),(
max (m,n))));
correctness ;
end
theorem ::
BCIALG_5:23
(
min (i,j,m,n))
= i or (
min (i,j,m,n))
= j or (
min (i,j,m,n))
= m or (
min (i,j,m,n))
= n
proof
A1: (
min (m,n))
= m or (
min (m,n))
= n by
XXREAL_0: 15;
(
min (i,j))
= i or (
min (i,j))
= j by
XXREAL_0: 15;
hence thesis by
A1,
XXREAL_0: 15;
end;
theorem ::
BCIALG_5:24
(
max (i,j,m,n))
= i or (
max (i,j,m,n))
= j or (
max (i,j,m,n))
= m or (
max (i,j,m,n))
= n
proof
A1: (
max (m,n))
= m or (
max (m,n))
= n by
XXREAL_0: 16;
(
max (i,j))
= i or (
max (i,j))
= j by
XXREAL_0: 16;
hence thesis by
A1,
XXREAL_0: 16;
end;
theorem ::
BCIALG_5:25
Th25: i
= (
min (i,j,m,n)) implies i
<= j & i
<= m & i
<= n
proof
A1: (
min (m,n))
<= n by
XXREAL_0: 17;
assume i
= (
min (i,j,m,n));
then
A2: i
<= (
min (i,j)) & i
<= (
min (m,n)) by
XXREAL_0: 17;
(
min (i,j))
<= j & (
min (m,n))
<= m by
XXREAL_0: 17;
hence thesis by
A2,
A1,
XXREAL_0: 2;
end;
theorem ::
BCIALG_5:26
Th26: (
max (i,j,m,n))
>= i & (
max (i,j,m,n))
>= j & (
max (i,j,m,n))
>= m & (
max (i,j,m,n))
>= n
proof
A1: (
max (m,n))
>= m & (
max (m,n))
>= n by
XXREAL_0: 25;
A2: (
max (i,j,m,n))
>= (
max (i,j)) & (
max (i,j,m,n))
>= (
max (m,n)) by
XXREAL_0: 25;
(
max (i,j))
>= i & (
max (i,j))
>= j by
XXREAL_0: 25;
hence thesis by
A1,
A2,
XXREAL_0: 2;
end;
theorem ::
BCIALG_5:27
Th27: for X be
BCK-algebra of i, j, m, n st i
= (
min (i,j,m,n)) holds (i
= j implies X is
BCK-algebra of i, i, i, i)
proof
let X be
BCK-algebra of i, j, m, n;
assume
A1: i
= (
min (i,j,m,n));
assume
A2: i
= j;
A3: for x,y be
Element of X holds (
Polynom (i,i,x,y))
<= (
Polynom (i,i,y,x))
proof
let x,y be
Element of X;
i
<= n by
A1,
Th25;
then
A4: ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power n)
<= ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power i) by
Th5;
i
<= m by
A1,
Th25;
then (i
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then
A5: ((((y,(y
\ x))
to_power (m
+ 1)),(x
\ y))
to_power n)
<= ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power n) by
Th5,
BCIALG_2: 19;
(
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
Def3;
hence thesis by
A2,
A5,
A4,
Th1;
end;
for x,y be
Element of X holds (
Polynom (i,i,y,x))
= (
Polynom (i,i,x,y))
proof
let x,y be
Element of X;
(
Polynom (i,i,x,y))
<= (
Polynom (i,i,y,x)) by
A3;
then
A6: ((
Polynom (i,i,x,y))
\ (
Polynom (i,i,y,x)))
= (
0. X);
(
Polynom (i,i,y,x))
<= (
Polynom (i,i,x,y)) by
A3;
then ((
Polynom (i,i,y,x))
\ (
Polynom (i,i,x,y)))
= (
0. X);
hence thesis by
A6,
BCIALG_1:def 7;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:28
for X be
BCK-algebra of i, j, m, n st i
= (
min (i,j,m,n)) holds (i
< j & i
< n implies X is
BCK-algebra of i, (i
+ 1), i, (i
+ 1))
proof
let X be
BCK-algebra of i, j, m, n;
assume
A1: i
= (
min (i,j,m,n));
assume that
A2: i
< j and
A3: i
< n;
for x,y be
Element of X holds (
Polynom (i,(i
+ 1),x,y))
= (
Polynom (i,(i
+ 1),y,x))
proof
(n
- i) is
Element of
NAT & (n
- i)
> (i
- i) by
A3,
NAT_1: 21,
XREAL_1: 9;
then (n
- i)
>= 1 by
NAT_1: 14;
then
A4: ((n
- i)
+ i)
>= (1
+ i) by
XREAL_1: 6;
m
>= i by
A1,
Th25;
then
A5: (m
+ 1)
>= (i
+ 1) by
XREAL_1: 6;
(j
- i) is
Element of
NAT & (j
- i)
> (i
- i) by
A2,
NAT_1: 21,
XREAL_1: 9;
then (j
- i)
>= 1 by
NAT_1: 14;
then
A6: ((j
- i)
+ i)
>= (1
+ i) by
XREAL_1: 6;
let x,y be
Element of X;
A7: (i
+ 1)
< (n
+ 1) by
A3,
XREAL_1: 6;
((y,(y
\ x))
to_power (i
+ 1))
= ((y,(y
\ x))
to_power (n
+ 1)) by
Th19;
then
A8: ((y,(y
\ x))
to_power (i
+ 1))
= ((y,(y
\ x))
to_power (m
+ 1)) by
A7,
A5,
Th6;
A9: (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) & ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power (i
+ 1))
= ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power (n
+ 1)) by
Def3,
Th19;
((((x,(x
\ y))
to_power (i
+ 1)),(y
\ x))
to_power (i
+ 1))
= ((((x,(x
\ y))
to_power (i
+ 1)),(y
\ x))
to_power (n
+ 1)) by
Th19;
then ((((x,(x
\ y))
to_power (i
+ 1)),(y
\ x))
to_power (i
+ 1))
= ((((x,(x
\ y))
to_power (i
+ 1)),(y
\ x))
to_power j) by
A7,
A6,
Th6;
hence thesis by
A7,
A8,
A9,
A4,
Th6;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:29
for X be
BCK-algebra of i, j, m, n st i
= (
min (i,j,m,n)) holds (i
= n & i
= m implies X is
BCK-algebra of i, i, i, i)
proof
let X be
BCK-algebra of i, j, m, n;
assume
A1: i
= (
min (i,j,m,n));
assume
A2: i
= n & i
= m;
then for x,y be
Element of X holds (
Polynom (i,i,x,y))
= (
Polynom (i,j,y,x)) by
Def3;
then
A3: X is
BCK-algebra of i, i, i, j by
Def3;
i
= (
min (i,i,i,j)) by
A1,
A2;
hence thesis by
A3,
Th27;
end;
theorem ::
BCIALG_5:30
for X be
BCK-algebra of i, j, m, n st i
= n & m
< j holds X is
BCK-algebra of i, (m
+ 1), m, i
proof
let X be
BCK-algebra of i, j, m, n;
assume that
A1: i
= n and
A2: m
< j;
for x,y be
Element of X holds (
Polynom (i,(m
+ 1),x,y))
= (
Polynom (m,i,y,x))
proof
(j
- m) is
Element of
NAT & (j
- m)
> (m
- m) by
A2,
NAT_1: 21,
XREAL_1: 9;
then (j
- m)
>= 1 by
NAT_1: 14;
then
A3: ((j
- m)
+ m)
>= (1
+ m) by
XREAL_1: 6;
let x,y be
Element of X;
A4: (m
+ 1)
< (j
+ 1) by
A2,
XREAL_1: 6;
(
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) & ((((x,(x
\ y))
to_power (i
+ 1)),(y
\ x))
to_power (j
+ 1))
= ((((x,(x
\ y))
to_power (i
+ 1)),(y
\ x))
to_power (m
+ 1)) by
Def3,
Th20;
hence thesis by
A1,
A4,
A3,
Th6;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:31
for X be
BCK-algebra of i, j, m, n st i
= n holds X is
BCK-algebra of i, j, j, i
proof
let X be
BCK-algebra of i, j, m, n;
assume i
= n;
then
reconsider X as
BCK-algebra of i, j, m, i;
for x,y be
Element of X holds (
Polynom (i,j,x,y))
= (
Polynom (j,i,y,x))
proof
let x,y be
Element of X;
(
Polynom (i,j,x,y))
= (
Polynom (m,i,y,x)) by
Def3;
hence thesis by
Th20;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:32
for X be
BCK-algebra of i, j, m, n st l
>= j & k
>= n holds X is
BCK-algebra of k, l, l, k
proof
let X be
BCK-algebra of i, j, m, n;
assume that
A1: l
>= j and
A2: k
>= n;
(l
- j) is
Element of
NAT by
A1,
NAT_1: 21;
then
consider t be
Element of
NAT such that
A3: t
= (l
- j);
(k
- n) is
Element of
NAT by
A2,
NAT_1: 21;
then
consider t1 be
Element of
NAT such that
A4: t1
= (k
- n);
X is
BCK-algebra of n, j, m, n by
Th22;
then X is
BCK-algebra of n, j, j, n by
Th21;
then X is
BCK-algebra of (n
+ t1), j, j, (n
+ t1) by
Th17;
then X is
BCK-algebra of k, (j
+ t), (j
+ t), k by
A4,
Th18;
hence thesis by
A3;
end;
theorem ::
BCIALG_5:33
for X be
BCK-algebra of i, j, m, n st k
>= (
max (i,j,m,n)) holds X is
BCK-algebra of k, k, k, k
proof
let X be
BCK-algebra of i, j, m, n;
assume
A1: k
>= (
max (i,j,m,n));
(
max (i,j,m,n))
>= n by
Th26;
then (k
- n) is
Element of
NAT by
A1,
NAT_1: 21,
XXREAL_0: 2;
then
consider t1 be
Element of
NAT such that
A2: t1
= (k
- n);
(
max (i,j,m,n))
>= j by
Th26;
then (k
- j) is
Element of
NAT by
A1,
NAT_1: 21,
XXREAL_0: 2;
then
consider t be
Element of
NAT such that
A3: t
= (k
- j);
X is
BCK-algebra of n, j, m, n by
Th22;
then X is
BCK-algebra of n, j, j, n by
Th21;
then X is
BCK-algebra of (n
+ t1), j, j, (n
+ t1) by
Th17;
then X is
BCK-algebra of k, (j
+ t), (j
+ t), k by
A2,
Th18;
hence thesis by
A3;
end;
theorem ::
BCIALG_5:34
for X be
BCK-algebra of i, j, m, n st i
<= m & j
<= n holds X is
BCK-algebra of i, j, i, j
proof
let X be
BCK-algebra of i, j, m, n;
assume that
A1: i
<= m and
A2: j
<= n;
A3: for x,y be
Element of X holds (
Polynom (i,j,x,y))
<= (
Polynom (i,j,y,x))
proof
let x,y be
Element of X;
(i
+ 1)
<= (m
+ 1) by
A1,
XREAL_1: 6;
then
A4: ((((y,(y
\ x))
to_power (m
+ 1)),(x
\ y))
to_power n)
<= ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power n) by
Th5,
BCIALG_2: 19;
(
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) & ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power n)
<= ((((y,(y
\ x))
to_power (i
+ 1)),(x
\ y))
to_power j) by
A2,
Def3,
Th5;
hence thesis by
A4,
Th1;
end;
for x,y be
Element of X holds (
Polynom (i,j,y,x))
= (
Polynom (i,j,x,y))
proof
let x,y be
Element of X;
(
Polynom (i,j,x,y))
<= (
Polynom (i,j,y,x)) by
A3;
then
A5: ((
Polynom (i,j,x,y))
\ (
Polynom (i,j,y,x)))
= (
0. X);
(
Polynom (i,j,y,x))
<= (
Polynom (i,j,x,y)) by
A3;
then ((
Polynom (i,j,y,x))
\ (
Polynom (i,j,x,y)))
= (
0. X);
hence thesis by
A5,
BCIALG_1:def 7;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:35
for X be
BCK-algebra of i, j, m, n holds (i
<= m & i
< n implies X is
BCK-algebra of i, j, i, (i
+ 1))
proof
let X be
BCK-algebra of i, j, m, n;
assume that
A1: i
<= m and
A2: i
< n;
for x,y be
Element of X holds (
Polynom (i,j,x,y))
= (
Polynom (i,(i
+ 1),y,x))
proof
(n
- i) is
Element of
NAT & (n
- i)
> (i
- i) by
A2,
NAT_1: 21,
XREAL_1: 9;
then (n
- i)
>= 1 by
NAT_1: 14;
then
A3: ((n
- i)
+ i)
>= (1
+ i) by
XREAL_1: 6;
let x,y be
Element of X;
A4: (i
+ 1)
< (n
+ 1) by
A2,
XREAL_1: 6;
A5: (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) & ((((y,(y
\ x))
to_power (m
+ 1)),(x
\ y))
to_power (i
+ 1))
= ((((y,(y
\ x))
to_power (m
+ 1)),(x
\ y))
to_power (n
+ 1)) by
Def3,
Th19;
((y,(y
\ x))
to_power (i
+ 1))
= ((y,(y
\ x))
to_power (n
+ 1)) & (m
+ 1)
>= (i
+ 1) by
A1,
Th19,
XREAL_1: 6;
then ((y,(y
\ x))
to_power (i
+ 1))
= ((y,(y
\ x))
to_power (m
+ 1)) by
A4,
Th6;
hence thesis by
A4,
A5,
A3,
Th6;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:36
Th36: X is
BCI-algebra of i, j, (j
+ k), (i
+ k) implies X is
BCK-algebra
proof
assume
A1: X is
BCI-algebra of i, j, (j
+ k), (i
+ k);
for y be
Element of X holds ((
0. X)
\ y)
= (
0. X)
proof
let y be
Element of X;
A2: ((((y,y)
to_power ((j
+ k)
+ 1)),((
0. X)
\ y))
to_power (i
+ k))
= (((((y,y)
to_power (j
+ k))
\ y),((
0. X)
\ y))
to_power (i
+ k)) by
BCIALG_2: 4
.= (((((y
\ y),y)
to_power (j
+ k)),((
0. X)
\ y))
to_power (i
+ k)) by
BCIALG_2: 7
.= (((((
0. X),y)
to_power (j
+ k)),((
0. X)
\ y))
to_power (i
+ k)) by
BCIALG_1:def 5
.= (((((
0. X),((
0. X)
\ y))
to_power (i
+ k)),y)
to_power (j
+ k)) by
BCIALG_2: 11
.= ((((((
0. X),(
0. X))
to_power (i
+ k))
\ (((
0. X),y)
to_power (i
+ k))),y)
to_power (j
+ k)) by
BCIALG_2: 18
.= ((((
0. X)
\ (((
0. X),y)
to_power (i
+ k))),y)
to_power (j
+ k)) by
BCIALG_2: 6
.= ((((
0. X),y)
to_power (j
+ k))
\ (((
0. X),y)
to_power (i
+ k))) by
BCIALG_2: 7
.= ((((((
0. X),y)
to_power j),y)
to_power k)
\ (((
0. X),y)
to_power (i
+ k))) by
BCIALG_2: 10
.= ((((((
0. X),y)
to_power j),y)
to_power k)
\ (((((
0. X),y)
to_power i),y)
to_power k)) by
BCIALG_2: 10;
A3: ((((((
0. X),y)
to_power j),y)
to_power k)
\ (((((
0. X),y)
to_power i),y)
to_power k))
<= ((((
0. X),y)
to_power j)
\ (((
0. X),y)
to_power i)) by
BCIALG_2: 21;
(
Polynom (i,j,(
0. X),y))
= (
Polynom ((j
+ k),(i
+ k),y,(
0. X))) by
A1,
Def3;
then (((((
0. X),((
0. X)
\ y))
to_power (i
+ 1)),y)
to_power j)
= ((((y,(y
\ (
0. X)))
to_power ((j
+ k)
+ 1)),((
0. X)
\ y))
to_power (i
+ k)) by
BCIALG_1: 2;
then (((((
0. X),((
0. X)
\ y))
to_power (i
+ 1)),y)
to_power j)
= ((((y,y)
to_power ((j
+ k)
+ 1)),((
0. X)
\ y))
to_power (i
+ k)) by
BCIALG_1: 2;
then
A4: (((((
0. X),y)
to_power j),((
0. X)
\ y))
to_power (i
+ 1))
= ((((y,y)
to_power ((j
+ k)
+ 1)),((
0. X)
\ y))
to_power (i
+ k)) by
BCIALG_2: 11;
(((((
0. X),y)
to_power j),((
0. X)
\ y))
to_power (i
+ 1))
= (((((
0. X),((
0. X)
\ y))
to_power (i
+ 1)),y)
to_power j) by
BCIALG_2: 11
.= ((((((
0. X),(
0. X))
to_power (i
+ 1))
\ (((
0. X),y)
to_power (i
+ 1))),y)
to_power j) by
BCIALG_2: 18
.= ((((
0. X)
\ (((
0. X),y)
to_power (i
+ 1))),y)
to_power j) by
BCIALG_2: 6
.= ((((
0. X),y)
to_power j)
\ (((
0. X),y)
to_power (i
+ 1))) by
BCIALG_2: 7;
then (((((
0. X),y)
to_power j)
\ (((
0. X),y)
to_power (i
+ 1)))
\ ((((
0. X),y)
to_power j)
\ (((
0. X),y)
to_power i)))
= (
0. X) by
A4,
A2,
A3;
then ((
0. X)
\ ((((
0. X),y)
to_power i)
\ (((
0. X),y)
to_power (i
+ 1))))
= (
0. X) by
BCIALG_1: 11;
then
A5: (
0. X)
<= ((((
0. X),y)
to_power i)
\ (((
0. X),y)
to_power (i
+ 1)));
((((
0. X),y)
to_power i)
\ (((
0. X),y)
to_power (i
+ 1)))
= ((((
0. X),y)
to_power i)
\ ((((
0. X),y)
to_power i)
\ y)) by
BCIALG_2: 4
.= ((((
0. X),y)
to_power i)
\ ((((
0. X)
\ y),y)
to_power i)) by
BCIALG_2: 7;
then ((((
0. X),y)
to_power i)
\ (((
0. X),y)
to_power (i
+ 1)))
<= ((
0. X)
\ ((
0. X)
\ y)) by
BCIALG_2: 21;
then (
0. X)
<= ((
0. X)
\ ((
0. X)
\ y)) by
A5,
Th1;
then ((
0. X)
\ ((
0. X)
\ ((
0. X)
\ y)))
= (
0. X);
hence thesis by
BCIALG_1: 8;
end;
then for x be
Element of X holds (x
` )
= (
0. X);
hence thesis by
BCIALG_1:def 8;
end;
theorem ::
BCIALG_5:37
Th37: X is
BCI-algebra of
0 ,
0 ,
0 ,
0 iff X is
BCK-algebra of
0 ,
0 ,
0 ,
0
proof
thus X is
BCI-algebra of
0 ,
0 ,
0 ,
0 implies X is
BCK-algebra of
0 ,
0 ,
0 ,
0
proof
assume
A1: X is
BCI-algebra of
0 ,
0 ,
0 ,
0 ;
then X is
BCI-algebra of
0 ,
0 , (
0
+
0 ), (
0
+
0 );
then
reconsider X as
BCK-algebra by
Th36;
for x,y be
Element of X holds (
Polynom (
0 ,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x)) by
A1,
Def3;
hence thesis by
Def3;
end;
thus thesis;
end;
theorem ::
BCIALG_5:38
Th38: X is
commutative
BCK-algebra iff X is
BCI-algebra of
0 ,
0 ,
0 ,
0
proof
thus X is
commutative
BCK-algebra implies X is
BCI-algebra of
0 ,
0 ,
0 ,
0
proof
assume
A1: X is
commutative
BCK-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
A2: (x
\ (x
\ y))
= (y
\ (y
\ x)) by
A1,
BCIALG_3:def 1;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power
0 )
= ((x,(x
\ y))
to_power 1) by
BCIALG_2: 1
.= (y
\ (y
\ x)) by
A2,
BCIALG_2: 2
.= ((y,(y
\ x))
to_power 1) by
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 1;
hence thesis;
end;
hence thesis by
Def3;
end;
assume
A3: X is
BCI-algebra of
0 ,
0 ,
0 ,
0 ;
for x,y be
Element of X holds (x
\ (x
\ y))
= (y
\ (y
\ x))
proof
let x,y be
Element of X;
A4: (
Polynom (
0 ,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x)) by
A3,
Def3;
(x
\ (x
\ y))
= ((x,(x
\ y))
to_power 1) by
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
A4,
BCIALG_2: 1
.= ((y,(y
\ x))
to_power 1) by
BCIALG_2: 1
.= (y
\ (y
\ x)) by
BCIALG_2: 2;
hence thesis;
end;
hence thesis by
A3,
Th37,
BCIALG_3:def 1;
end;
notation
let X be
BCI-algebra;
synonym
p-Semisimple-part (X) for
AtomSet (X);
end
reserve B,P for non
empty
Subset of X;
theorem ::
BCIALG_5:39
for X be
BCI-algebra st B
= (
BCK-part X) & P
= (
p-Semisimple-part X) holds (B
/\ P)
=
{(
0. X)}
proof
let X be
BCI-algebra;
assume that
A1: B
= (
BCK-part X) and
A2: P
= (
p-Semisimple-part X);
thus (B
/\ P)
c=
{(
0. X)}
proof
let x be
object;
assume
A3: x
in (B
/\ P);
then
A4: x
in P by
XBOOLE_0:def 4;
A5: x
in B by
A3,
XBOOLE_0:def 4;
then
A6: ex x1 be
Element of X st x
= x1 & (
0. X)
<= x1 by
A1;
reconsider x as
Element of X by
A1,
A5;
A7: ((
0. X)
\ x)
= (
0. X) by
A6;
ex x2 be
Element of X st x
= x2 & x2 is
minimal by
A2,
A4;
then x
= (
0. X) by
A7;
hence thesis by
TARSKI:def 1;
end;
(
0. X)
in (
BCK-part X) & (
0. X)
in (
p-Semisimple-part X) by
BCIALG_1: 19;
then (
0. X)
in (B
/\ P) by
A1,
A2,
XBOOLE_0:def 4;
then for x be
object st x
in
{(
0. X)} holds x
in (B
/\ P) by
TARSKI:def 1;
hence thesis;
end;
theorem ::
BCIALG_5:40
for X be
BCI-algebra st P
= (
p-Semisimple-part X) holds (X is
BCK-algebra iff P
=
{(
0. X)})
proof
let X be
BCI-algebra;
assume
A1: P
= (
p-Semisimple-part X);
thus X is
BCK-algebra implies P
=
{(
0. X)}
proof
assume
A2: X is
BCK-algebra;
thus P
c=
{(
0. X)}
proof
let x be
object;
assume
A3: x
in P;
then
A4: ex x1 be
Element of X st x
= x1 & x1 is
minimal by
A1;
reconsider x as
Element of X by
A1,
A3;
((
0. X)
\ x)
= (x
` )
.= (
0. X) by
A2,
BCIALG_1:def 8;
then x
= (
0. X) by
A4;
hence thesis by
TARSKI:def 1;
end;
(
0. X)
in P by
A1;
then for x be
object st x
in
{(
0. X)} holds x
in P by
TARSKI:def 1;
hence thesis;
end;
assume
A5: P
=
{(
0. X)};
for x be
Element of X holds ((
0. X)
\ x)
= (
0. X)
proof
let x be
Element of X;
(
0. X)
in P by
A5,
TARSKI:def 1;
then ((
0. X)
\ x)
in P by
A1,
BCIALG_1: 33;
hence thesis by
A5,
TARSKI:def 1;
end;
then for x be
Element of X holds (x
` )
= (
0. X);
hence thesis by
BCIALG_1:def 8;
end;
theorem ::
BCIALG_5:41
for X be
BCI-algebra st B
= (
BCK-part X) holds (X is
p-Semisimple
BCI-algebra iff B
=
{(
0. X)})
proof
let X be
BCI-algebra;
assume
A1: B
= (
BCK-part X);
thus X is
p-Semisimple
BCI-algebra implies B
=
{(
0. X)}
proof
assume
A2: X is
p-Semisimple
BCI-algebra;
thus B
c=
{(
0. X)}
proof
let x be
object;
assume
A3: x
in B;
then
A4: ex x1 be
Element of X st x
= x1 & (
0. X)
<= x1 by
A1;
reconsider x as
Element of X by
A1,
A3;
((x
` )
` )
= x by
A2,
BCIALG_1:def 26;
then ((
0. X)
` )
= x by
A4;
then x
= (
0. X) by
BCIALG_1:def 5;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume
A5: x
in
{(
0. X)};
then
reconsider x as
Element of X by
TARSKI:def 1;
x
= (
0. X) by
A5,
TARSKI:def 1;
then (x
` )
= (
0. X) by
BCIALG_1:def 5;
then (
0. X)
<= x;
hence thesis by
A1;
end;
assume
A6: B
=
{(
0. X)};
for x be
Element of X holds ((x
` )
` )
= x
proof
let x be
Element of X;
((
0. X)
\ (x
\ ((
0. X)
\ ((
0. X)
\ x))))
= (((
0. X),(x
\ ((
0. X)
\ ((
0. X)
\ x))))
to_power 1) by
BCIALG_2: 2
.= ((((
0. X),x)
to_power 1)
\ (((
0. X),((
0. X)
\ ((
0. X)
\ x)))
to_power 1)) by
BCIALG_2: 18
.= ((((
0. X),x)
to_power 1)
\ (((
0. X),x)
to_power 1)) by
BCIALG_2: 8
.= (
0. X) by
BCIALG_1:def 5;
then (
0. X)
<= (x
\ ((
0. X)
\ ((
0. X)
\ x)));
then (x
\ ((
0. X)
\ ((
0. X)
\ x)))
in B by
A1;
then
A7: (x
\ ((
0. X)
\ ((
0. X)
\ x)))
= (
0. X) by
A6,
TARSKI:def 1;
(((
0. X)
\ ((
0. X)
\ x))
\ x)
= (((
0. X)
\ x)
\ ((
0. X)
\ x)) by
BCIALG_1: 7
.= (
0. X) by
BCIALG_1:def 5;
hence thesis by
A7,
BCIALG_1:def 7;
end;
hence thesis by
BCIALG_1: 54;
end;
theorem ::
BCIALG_5:42
Th42: X is
p-Semisimple
BCI-algebra implies X is
BCI-algebra of
0 , 1,
0 ,
0
proof
assume
A1: X is
p-Semisimple
BCI-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power 1)
= (((x
\ (x
\ y)),(y
\ x))
to_power 1) by
BCIALG_2: 2
.= ((y,(y
\ x))
to_power 1) by
A1,
BCIALG_1:def 26
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 1;
hence thesis;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:43
X is
p-Semisimple
BCI-algebra implies X is
BCI-algebra of (n
+ j), n, m, ((m
+ j)
+ 1)
proof
assume
A1: X is
p-Semisimple
BCI-algebra;
A2: for x,y be
Element of X holds (
Polynom (n,n,x,y))
= y
proof
let x,y be
Element of X;
defpred
P[
Nat] means $1
<= n implies (
Polynom ($1,$1,x,y))
= y;
now
let k;
assume
A3: k
<= n implies (
Polynom (k,k,x,y))
= y;
set m = (k
+ 1);
A4: (
Polynom (m,m,x,y))
= ((
Polynom (k,(k
+ 1),x,y))
\ (x
\ y)) by
Th9
.= (((
Polynom (k,k,x,y))
\ (y
\ x))
\ (x
\ y)) by
Th10;
assume m
<= n;
then (
Polynom (m,m,x,y))
= (x
\ (x
\ y)) by
A1,
A3,
A4,
BCIALG_1:def 26,
NAT_1: 13;
hence (
Polynom (m,m,x,y))
= y by
A1,
BCIALG_1:def 26;
end;
then
A5: for k st
P[k] holds
P[(k
+ 1)];
(
Polynom (
0 ,
0 ,x,y))
= (x
\ (x
\ y)) by
Th7
.= y by
A1,
BCIALG_1:def 26;
then
A6:
P[
0 ];
for n holds
P[n] from
NAT_1:sch 2(
A6,
A5);
hence thesis;
end;
A7: for x,y be
Element of X holds (
Polynom (m,(m
+ 1),x,y))
= x
proof
let x,y be
Element of X;
defpred
P[
Nat] means $1
<= m implies (
Polynom ($1,($1
+ 1),x,y))
= x;
now
let k;
assume
A8: k
<= m implies (
Polynom (k,(k
+ 1),x,y))
= x;
set l = (k
+ 1);
A9: (
Polynom (l,(l
+ 1),x,y))
= ((
Polynom (k,((k
+ 1)
+ 1),x,y))
\ (x
\ y)) by
Th9
.= (((
Polynom (k,(k
+ 1),x,y))
\ (y
\ x))
\ (x
\ y)) by
Th10;
assume l
<= m;
then (
Polynom (l,(l
+ 1),x,y))
= ((x
\ (x
\ y))
\ (y
\ x)) by
A8,
A9,
BCIALG_1: 7,
NAT_1: 13
.= (y
\ (y
\ x)) by
A1,
BCIALG_1:def 26;
hence (
Polynom (l,(l
+ 1),x,y))
= x by
A1,
BCIALG_1:def 26;
end;
then
A10: for k st
P[k] holds
P[(k
+ 1)];
(
Polynom (
0 ,1,x,y))
= ((
Polynom (
0 ,
0 ,x,y))
\ (y
\ x)) by
Th10
.= ((x
\ (x
\ y))
\ (y
\ x)) by
Th7
.= (y
\ (y
\ x)) by
A1,
BCIALG_1:def 26
.= x by
A1,
BCIALG_1:def 26;
then
A11:
P[
0 ];
for m holds
P[m] from
NAT_1:sch 2(
A11,
A10);
hence thesis;
end;
for x,y be
Element of X holds (
Polynom ((n
+ j),n,x,y))
= (
Polynom (m,((m
+ j)
+ 1),y,x))
proof
let x,y be
Element of X;
defpred
P[
Nat] means $1
<= j implies (
Polynom ((n
+ $1),n,x,y))
= (
Polynom (m,((m
+ $1)
+ 1),y,x));
now
let k;
assume
A12: k
<= j implies (
Polynom ((n
+ k),n,x,y))
= (
Polynom (m,((m
+ k)
+ 1),y,x));
set l = (k
+ 1);
assume l
<= j;
then (
Polynom ((n
+ l),n,x,y))
= ((
Polynom (m,((m
+ k)
+ 1),y,x))
\ (x
\ y)) by
A12,
Th9,
NAT_1: 13
.= (
Polynom (m,(((m
+ k)
+ 1)
+ 1),y,x)) by
Th10;
hence (
Polynom ((n
+ l),n,x,y))
= (
Polynom (m,((m
+ l)
+ 1),y,x));
end;
then
A13: for k st
P[k] holds
P[(k
+ 1)];
(
Polynom ((n
+
0 ),n,x,y))
= y by
A2
.= (
Polynom (m,((m
+
0 )
+ 1),y,x)) by
A7;
then
A14:
P[
0 ];
for j holds
P[j] from
NAT_1:sch 2(
A14,
A13);
hence thesis;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:44
X is
associative
BCI-algebra implies X is
BCI-algebra of
0 , 1,
0 ,
0 & X is
BCI-algebra of 1,
0 ,
0 ,
0
proof
assume
A1: X is
associative
BCI-algebra;
for x be
Element of X holds ((x
` )
` )
= x
proof
let x be
Element of X;
(x
` )
= x by
A1,
BCIALG_1: 47;
hence thesis;
end;
then
A2: X is
p-Semisimple by
BCIALG_1: 54;
for x,y be
Element of X holds (
Polynom (1,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
(x
\ (x
\ y))
= y by
A2;
then
A3: ((x
\ (x
\ y))
\ (x
\ y))
= (y
\ (y
\ x)) by
A1,
BCIALG_1: 48;
((((x,(x
\ y))
to_power (1
+ 1)),(y
\ x))
to_power
0 )
= ((x,(x
\ y))
to_power 2) by
BCIALG_2: 1
.= ((x
\ (x
\ y))
\ (x
\ y)) by
BCIALG_2: 3
.= ((y,(y
\ x))
to_power 1) by
A3,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 1;
hence thesis;
end;
hence thesis by
A2,
Def3,
Th42;
end;
theorem ::
BCIALG_5:45
X is
weakly-positive-implicative
BCI-algebra implies X is
BCI-algebra of
0 , 1, 1, 1
proof
assume
A1: X is
weakly-positive-implicative
BCI-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (1,1,y,x))
proof
let x,y be
Element of X;
A2: ((x
\ (x
\ y))
\ (y
\ x))
= (((y
\ (y
\ x))
\ (y
\ x))
\ (x
\ y)) by
A1,
BCIALG_1: 85;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power 1)
= (((x,(x
\ y))
to_power 1)
\ (y
\ x)) by
BCIALG_2: 2
.= ((x
\ (x
\ y))
\ (y
\ x)) by
BCIALG_2: 2
.= ((((y
\ (y
\ x))
\ (y
\ x)),(x
\ y))
to_power 1) by
A2,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 2),(x
\ y))
to_power 1) by
BCIALG_2: 3;
hence thesis;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:46
X is
positive-implicative
BCI-algebra implies X is
BCI-algebra of
0 , 1, 1, 1
proof
assume
A1: X is
positive-implicative
BCI-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (1,1,y,x))
proof
let x,y be
Element of X;
A2: ((x
\ (x
\ y))
\ (y
\ x))
= (((y
\ (y
\ x))
\ (y
\ x))
\ (x
\ y)) by
A1,
BCIALG_1: 85;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power 1)
= (((x,(x
\ y))
to_power 1)
\ (y
\ x)) by
BCIALG_2: 2
.= ((x
\ (x
\ y))
\ (y
\ x)) by
BCIALG_2: 2
.= ((((y
\ (y
\ x))
\ (y
\ x)),(x
\ y))
to_power 1) by
A2,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 2),(x
\ y))
to_power 1) by
BCIALG_2: 3;
hence thesis;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:47
X is
implicative
BCI-algebra implies X is
BCI-algebra of
0 , 1,
0 ,
0
proof
assume
A1: X is
implicative
BCI-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
A2: ((x
\ (x
\ y))
\ (y
\ x))
= (y
\ (y
\ x)) by
A1,
BCIALG_1:def 24;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power 1)
= (((x
\ (x
\ y)),(y
\ x))
to_power 1) by
BCIALG_2: 2
.= ((x
\ (x
\ y))
\ (y
\ x)) by
BCIALG_2: 2
.= ((y,(y
\ x))
to_power 1) by
A2,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 1;
hence thesis;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:48
X is
alternative
BCI-algebra implies X is
BCI-algebra of
0 , 1,
0 ,
0
proof
assume
A1: X is
alternative
BCI-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
A2: ((x
\ (x
\ y))
\ (y
\ x))
= (y
\ (y
\ x)) by
A1,
BCIALG_1: 76;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power 1)
= (((x
\ (x
\ y)),(y
\ x))
to_power 1) by
BCIALG_2: 2
.= ((x
\ (x
\ y))
\ (y
\ x)) by
BCIALG_2: 2
.= ((y,(y
\ x))
to_power 1) by
A2,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 1;
hence thesis;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:49
Th49: X is
BCK-positive-implicative
BCK-algebra iff X is
BCK-algebra of
0 , 1,
0 , 1
proof
thus X is
BCK-positive-implicative
BCK-algebra implies X is
BCK-algebra of
0 , 1,
0 , 1
proof
assume
A1: X is
BCK-positive-implicative
BCK-algebra;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,1,y,x))
proof
let x,y be
Element of X;
((x
\ y)
\ (x
\ y))
= (
0. X) by
BCIALG_1:def 5;
then ((x
\ (x
\ y))
\ y)
= (
0. X) by
BCIALG_1: 7;
then
A2: (x
\ (x
\ y))
<= y;
(x
\ (x
\ y))
= ((x
\ (x
\ y))
\ (x
\ y)) by
A1,
BCIALG_3: 28;
then (x
\ (x
\ y))
<= (y
\ (x
\ y)) by
A2,
BCIALG_1: 5;
then ((x
\ (x
\ y))
\ (y
\ x))
<= ((y
\ (x
\ y))
\ (y
\ x)) by
BCIALG_1: 5;
then
A3: ((x
\ (x
\ y))
\ (y
\ x))
<= ((y
\ (y
\ x))
\ (x
\ y)) by
BCIALG_1: 7;
((y
\ x)
\ (y
\ x))
= (
0. X) by
BCIALG_1:def 5;
then ((y
\ (y
\ x))
\ x)
= (
0. X) by
BCIALG_1: 7;
then (y
\ (y
\ x))
<= x;
then
A4: ((y
\ (y
\ x))
\ (y
\ x))
<= (x
\ (y
\ x)) by
BCIALG_1: 5;
(y
\ (y
\ x))
= ((y
\ (y
\ x))
\ (y
\ x)) by
A1,
BCIALG_3: 28;
then ((y
\ (y
\ x))
\ (x
\ y))
<= ((x
\ (y
\ x))
\ (x
\ y)) by
A4,
BCIALG_1: 5;
then ((y
\ (y
\ x))
\ (x
\ y))
<= ((x
\ (x
\ y))
\ (y
\ x)) by
BCIALG_1: 7;
then
A5: ((x
\ (x
\ y))
\ (y
\ x))
= ((y
\ (y
\ x))
\ (x
\ y)) by
A3,
Th2;
((((x,(x
\ y))
to_power 1),(y
\ x))
to_power 1)
= (((x,(x
\ y))
to_power 1)
\ (y
\ x)) by
BCIALG_2: 2
.= ((x
\ (x
\ y))
\ (y
\ x)) by
BCIALG_2: 2
.= (((y
\ (y
\ x)),(x
\ y))
to_power 1) by
A5,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power 1) by
BCIALG_2: 2;
hence thesis;
end;
hence thesis by
A1,
Def3;
end;
assume
A6: X is
BCK-algebra of
0 , 1,
0 , 1;
for x,y be
Element of X holds (x
\ y)
= ((x
\ y)
\ y)
proof
let x,y be
Element of X;
A7: (
Polynom (
0 ,1,x,(x
\ y)))
= (
Polynom (
0 ,1,(x
\ y),x)) by
A6,
Def3;
A8: ((x
\ y)
\ x)
= ((x
\ x)
\ y) by
BCIALG_1: 7
.= (y
` ) by
BCIALG_1:def 5
.= (
0. X) by
A6,
BCIALG_1:def 8;
then
A9: (((x
\ y)
\ ((x
\ y)
\ x))
\ (x
\ (x
\ y)))
= ((x
\ y)
\ (x
\ (x
\ y))) by
BCIALG_1: 2
.= ((x
\ (x
\ (x
\ y)))
\ y) by
BCIALG_1: 7
.= ((x
\ y)
\ y) by
BCIALG_1: 8;
A10: ((x
\ (x
\ (x
\ y)))
\ ((x
\ y)
\ x))
= ((x
\ y)
\ ((x
\ y)
\ x)) by
BCIALG_1: 8
.= (x
\ y) by
A8,
BCIALG_1: 2;
((x
\ (x
\ (x
\ y)))
\ ((x
\ y)
\ x))
= (((x,(x
\ (x
\ y)))
to_power 1)
\ ((x
\ y)
\ x)) by
BCIALG_2: 2
.= (((((x
\ y),((x
\ y)
\ x))
to_power 1),(x
\ (x
\ y)))
to_power 1) by
A7,
BCIALG_2: 2
.= ((((x
\ y)
\ ((x
\ y)
\ x)),(x
\ (x
\ y)))
to_power 1) by
BCIALG_2: 2
.= (((x
\ y)
\ ((x
\ y)
\ x))
\ (x
\ (x
\ y))) by
BCIALG_2: 2;
hence thesis by
A10,
A9;
end;
hence thesis by
A6,
BCIALG_3: 28;
end;
theorem ::
BCIALG_5:50
Th50: X is
BCK-implicative
BCK-algebra iff X is
BCK-algebra of 1,
0 ,
0 ,
0
proof
thus X is
BCK-implicative
BCK-algebra implies X is
BCK-algebra of 1,
0 ,
0 ,
0
proof
assume
A1: X is
BCK-implicative
BCK-algebra;
for x,y be
Element of X holds (
Polynom (1,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
A2: ((x
\ (x
\ y))
\ (x
\ y))
= (y
\ (y
\ x)) by
A1,
BCIALG_3: 35;
((((x,(x
\ y))
to_power (1
+ 1)),(y
\ x))
to_power
0 )
= ((x,(x
\ y))
to_power 2) by
BCIALG_2: 1
.= ((x
\ (x
\ y))
\ (x
\ y)) by
BCIALG_2: 3
.= ((y,(y
\ x))
to_power 1) by
A2,
BCIALG_2: 2
.= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 1;
hence thesis;
end;
hence thesis by
A1,
Def3;
end;
assume
A3: X is
BCK-algebra of 1,
0 ,
0 ,
0 ;
for x,y be
Element of X holds ((x
\ (x
\ y))
\ (x
\ y))
= (y
\ (y
\ x))
proof
let x,y be
Element of X;
A4: (
Polynom (1,
0 ,x,y))
= (
Polynom (
0 ,
0 ,y,x)) by
A3,
Def3;
((x
\ (x
\ y))
\ (x
\ y))
= ((x,(x
\ y))
to_power 2) by
BCIALG_2: 3
.= ((((x,(x
\ y))
to_power (1
+ 1)),(y
\ x))
to_power
0 ) by
BCIALG_2: 1
.= ((y,(y
\ x))
to_power 1) by
A4,
BCIALG_2: 1
.= (y
\ (y
\ x)) by
BCIALG_2: 2;
hence thesis;
end;
hence thesis by
A3,
BCIALG_3: 35;
end;
registration
cluster
BCK-implicative ->
commutative for
BCK-algebra;
coherence by
BCIALG_3: 34;
cluster
BCK-implicative ->
BCK-positive-implicative for
BCK-algebra;
coherence by
BCIALG_3: 34;
end
theorem ::
BCIALG_5:51
X is
BCK-algebra of 1,
0 ,
0 ,
0 iff X is
BCK-algebra of
0 ,
0 ,
0 ,
0 & X is
BCK-algebra of
0 , 1,
0 , 1
proof
thus X is
BCK-algebra of 1,
0 ,
0 ,
0 implies X is
BCK-algebra of
0 ,
0 ,
0 ,
0 & X is
BCK-algebra of
0 , 1,
0 , 1
proof
assume X is
BCK-algebra of 1,
0 ,
0 ,
0 ;
then X is
BCK-implicative
BCK-algebra by
Th50;
hence thesis by
Th38,
Th49;
end;
assume X is
BCK-algebra of
0 ,
0 ,
0 ,
0 & X is
BCK-algebra of
0 , 1,
0 , 1;
then X is
commutative
BCK-algebra & X is
BCK-positive-implicative
BCK-algebra by
Th38,
Th49;
then X is
BCK-implicative
BCK-algebra by
BCIALG_3: 34;
hence thesis by
Th50;
end;
theorem ::
BCIALG_5:52
for X be
quasi-commutative
BCK-algebra holds (X is
BCK-algebra of
0 , 1,
0 , 1 iff for x,y be
Element of X holds (x
\ y)
= ((x
\ y)
\ y)) by
BCIALG_3: 28,
Th49;
theorem ::
BCIALG_5:53
for X be
quasi-commutative
BCK-algebra holds (X is
BCK-algebra of n, (n
+ 1), n, (n
+ 1) iff for x,y be
Element of X holds ((x,y)
to_power (n
+ 1))
= ((x,y)
to_power (n
+ 2)))
proof
let X be
quasi-commutative
BCK-algebra;
thus X is
BCK-algebra of n, (n
+ 1), n, (n
+ 1) implies for x,y be
Element of X holds ((x,y)
to_power (n
+ 1))
= ((x,y)
to_power (n
+ 2))
proof
assume
A1: X is
BCK-algebra of n, (n
+ 1), n, (n
+ 1);
for x,y be
Element of X holds ((x,y)
to_power (n
+ 1))
= ((x,y)
to_power (n
+ 2))
proof
let x,y be
Element of X;
A2: ((x
\ y)
\ x)
= ((x
\ x)
\ y) by
BCIALG_1: 7
.= (y
` ) by
BCIALG_1:def 5
.= (
0. X) by
BCIALG_1:def 8;
then
A3: ((((x,(x
\ (x
\ y)))
to_power (n
+ 1)),((x
\ y)
\ x))
to_power (n
+ 1))
= ((((x,y)
to_power (n
+ 1)),(
0. X))
to_power (n
+ 1)) by
BCIALG_2: 8
.= ((x,y)
to_power (n
+ 1)) by
BCIALG_2: 5;
A4: (((((x
\ y),((x
\ y)
\ x))
to_power (n
+ 1)),(x
\ (x
\ y)))
to_power (n
+ 1))
= (((x
\ y),(x
\ (x
\ y)))
to_power (n
+ 1)) by
A2,
BCIALG_2: 5
.= (((x,(x
\ (x
\ y)))
to_power (n
+ 1))
\ y) by
BCIALG_2: 7
.= (((x,y)
to_power (n
+ 1))
\ y) by
BCIALG_2: 8
.= ((x,y)
to_power ((n
+ 1)
+ 1)) by
BCIALG_2: 4;
(
Polynom (n,(n
+ 1),x,(x
\ y)))
= (
Polynom (n,(n
+ 1),(x
\ y),x)) by
A1,
Def3;
hence thesis by
A3,
A4;
end;
hence thesis;
end;
assume
A5: for x,y be
Element of X holds ((x,y)
to_power (n
+ 1))
= ((x,y)
to_power (n
+ 2));
for x,y be
Element of X holds (
Polynom (n,(n
+ 1),x,y))
= (
Polynom (n,(n
+ 1),y,x))
proof
let x,y be
Element of X;
((x
\ y)
\ (x
\ y))
= (
0. X) by
BCIALG_1:def 5;
then ((x
\ (x
\ y))
\ y)
= (
0. X) by
BCIALG_1: 7;
then (x
\ (x
\ y))
<= y;
then (((x
\ (x
\ y)),(x
\ y))
to_power (n
+ 1))
<= ((y,(x
\ y))
to_power (n
+ 1)) by
BCIALG_2: 19;
then ((((x,(x
\ y))
to_power 1),(x
\ y))
to_power (n
+ 1))
<= ((y,(x
\ y))
to_power (n
+ 1)) by
BCIALG_2: 2;
then
A6: ((x,(x
\ y))
to_power (1
+ (n
+ 1)))
<= ((y,(x
\ y))
to_power (n
+ 1)) by
BCIALG_2: 10;
((y
\ x)
\ (y
\ x))
= (
0. X) by
BCIALG_1:def 5;
then ((y
\ (y
\ x))
\ x)
= (
0. X) by
BCIALG_1: 7;
then (y
\ (y
\ x))
<= x;
then (((y
\ (y
\ x)),(y
\ x))
to_power (n
+ 1))
<= ((x,(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 19;
then ((((y,(y
\ x))
to_power 1),(y
\ x))
to_power (n
+ 1))
<= ((x,(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 2;
then
A7: ((y,(y
\ x))
to_power (1
+ (n
+ 1)))
<= ((x,(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 10;
((y,(y
\ x))
to_power (n
+ 1))
= ((y,(y
\ x))
to_power (n
+ 2)) by
A5;
then ((((y,(y
\ x))
to_power (n
+ 1)),(x
\ y))
to_power (n
+ 1))
<= ((((x,(y
\ x))
to_power (n
+ 1)),(x
\ y))
to_power (n
+ 1)) by
A7,
BCIALG_2: 19;
then
A8: ((((y,(y
\ x))
to_power (n
+ 1)),(x
\ y))
to_power (n
+ 1))
<= ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1)) by
BCIALG_2: 11;
((x,(x
\ y))
to_power (n
+ 1))
= ((x,(x
\ y))
to_power (n
+ 2)) by
A5;
then ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1))
<= ((((y,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1)) by
A6,
BCIALG_2: 19;
then ((((x,(x
\ y))
to_power (n
+ 1)),(y
\ x))
to_power (n
+ 1))
<= ((((y,(y
\ x))
to_power (n
+ 1)),(x
\ y))
to_power (n
+ 1)) by
BCIALG_2: 11;
hence thesis by
A8,
Th2;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:54
X is
BCI-algebra of
0 , 1,
0 ,
0 implies X is
BCI-commutative
BCI-algebra
proof
assume
A1: X is
BCI-algebra of
0 , 1,
0 ,
0 ;
for x,y be
Element of X st (y
\ x)
= (
0. X) holds y
= (x
\ (x
\ y))
proof
let x,y be
Element of X;
(
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,
0 ,y,x)) by
A1,
Def3;
then (((x,(x
\ y))
to_power 1)
\ (y
\ x))
= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 2;
then ((x
\ (x
\ y))
\ (y
\ x))
= ((((y,(y
\ x))
to_power 1),(x
\ y))
to_power
0 ) by
BCIALG_2: 2;
then
A2: ((x
\ (x
\ y))
\ (y
\ x))
= ((y,(y
\ x))
to_power 1) by
BCIALG_2: 1;
assume (y
\ x)
= (
0. X);
then ((x
\ (x
\ y))
\ (
0. X))
= (y
\ (
0. X)) by
A2,
BCIALG_2: 2;
then y
= ((x
\ (x
\ y))
\ (
0. X)) by
BCIALG_1: 2;
hence thesis by
BCIALG_1: 2;
end;
then for x,y be
Element of X st (x
\ y)
= (
0. X) holds x
= (y
\ (y
\ x));
hence thesis by
BCIALG_3:def 4;
end;
theorem ::
BCIALG_5:55
X is
BCI-algebra of n,
0 , m, m implies X is
BCI-commutative
BCI-algebra
proof
A1: for x,y be
Element of X st (x
\ y)
= (
0. X) holds ((y,(y
\ x))
to_power (m
+ 1))
<= ((y,(y
\ x))
to_power 1)
proof
let x,y be
Element of X;
defpred
P[
Nat] means $1
<= m implies ((y,(y
\ x))
to_power ($1
+ 1))
<= ((y,(y
\ x))
to_power 1);
assume
A2: (x
\ y)
= (
0. X);
now
(((
0. X),(y
\ x))
to_power 1)
= ((((
0. X),y)
to_power 1)
\ (((
0. X),x)
to_power 1)) by
BCIALG_2: 18;
then ((
0. X)
\ (y
\ x))
= ((((
0. X),y)
to_power 1)
\ (((
0. X),x)
to_power 1)) by
BCIALG_2: 2;
then
A3: ((
0. X)
\ (y
\ x))
= (((
0. X)
\ y)
\ (((
0. X),x)
to_power 1)) by
BCIALG_2: 2;
let k;
assume
A4: k
<= m implies ((y,(y
\ x))
to_power (k
+ 1))
<= ((y,(y
\ x))
to_power 1);
((((
0. X)
\ y)
\ ((
0. X)
\ x))
\ (x
\ y))
= (
0. X) by
BCIALG_1: 1;
then (((
0. X)
\ y)
\ ((
0. X)
\ x))
= (
0. X) by
A2,
BCIALG_1: 2;
then ((
0. X)
\ (y
\ x))
= (
0. X) by
A3,
BCIALG_2: 2;
then ((y
\ y)
\ (y
\ x))
= (
0. X) by
BCIALG_1:def 5;
then ((y
\ (y
\ x))
\ y)
= (
0. X) by
BCIALG_1: 7;
then (y
\ (y
\ x))
<= y;
then (((y
\ (y
\ x)),(y
\ x))
to_power (k
+ 1))
<= ((y,(y
\ x))
to_power (k
+ 1)) by
BCIALG_2: 19;
then ((((y,(y
\ x))
to_power 1),(y
\ x))
to_power (k
+ 1))
<= ((y,(y
\ x))
to_power (k
+ 1)) by
BCIALG_2: 2;
then
A5: ((y,(y
\ x))
to_power ((k
+ 1)
+ 1))
<= ((y,(y
\ x))
to_power (k
+ 1)) by
BCIALG_2: 10;
set m1 = (k
+ 1);
assume m1
<= m;
hence ((y,(y
\ x))
to_power (m1
+ 1))
<= ((y,(y
\ x))
to_power 1) by
A4,
A5,
Th1,
NAT_1: 13;
end;
then
A6: for k st
P[k] holds
P[(k
+ 1)];
(((y,(y
\ x))
to_power (
0
+ 1))
\ ((y,(y
\ x))
to_power 1))
= (
0. X) by
BCIALG_1:def 5;
then
A7:
P[
0 ] by
BCIALG_1:def 11;
for m holds
P[m] from
NAT_1:sch 2(
A7,
A6);
hence thesis;
end;
assume
A8: X is
BCI-algebra of n,
0 , m, m;
for x,y be
Element of X st (x
\ y)
= (
0. X) holds x
= (y
\ (y
\ x))
proof
let x,y be
Element of X;
assume
A9: (x
\ y)
= (
0. X);
(
Polynom (n,
0 ,x,y))
= (
Polynom (m,m,y,x)) by
A8,
Def3;
then ((x,(y
\ x))
to_power
0 )
= ((((y,(y
\ x))
to_power (m
+ 1)),(
0. X))
to_power m) by
A9,
BCIALG_2: 5;
then ((x,(y
\ x))
to_power
0 )
= (((((y,(y
\ x))
to_power (m
+ 1)),(
0. X))
to_power m)
\ (
0. X)) by
BCIALG_1: 2;
then ((x,(y
\ x))
to_power
0 )
= ((((y,(y
\ x))
to_power (m
+ 1)),(
0. X))
to_power (m
+ 1)) by
BCIALG_2: 4;
then ((x,(y
\ x))
to_power
0 )
= ((y,(y
\ x))
to_power (m
+ 1)) by
BCIALG_2: 5;
then x
= ((y,(y
\ x))
to_power (m
+ 1)) by
BCIALG_2: 1;
then x
<= ((y,(y
\ x))
to_power 1) by
A1,
A9;
then
A10: x
<= (y
\ (y
\ x)) by
BCIALG_2: 2;
((y
\ (y
\ x))
\ x)
= ((y
\ x)
\ (y
\ x)) by
BCIALG_1: 7;
then ((y
\ (y
\ x))
\ x)
= (
0. X) by
BCIALG_1:def 5;
then (y
\ (y
\ x))
<= x;
hence thesis by
A10,
Th2;
end;
hence thesis by
BCIALG_3:def 4;
end;
theorem ::
BCIALG_5:56
for X be
BCK-algebra of i, j, m, n holds (j
=
0 & m
>
0 implies X is
BCK-algebra of
0 ,
0 ,
0 ,
0 )
proof
let X be
BCK-algebra of i, j, m, n;
assume that
A1: j
=
0 and
A2: m
>
0 ;
for x,y be
Element of X holds (
Polynom (
0 ,
0 ,x,y))
= (
Polynom (
0 ,n,y,x))
proof
let x,y be
Element of X;
A3: (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
Def3;
A4: (i
+ 1)
>= (j
+ 1) by
A1,
XREAL_1: 6;
((x,(x
\ y))
to_power (j
+ 1))
= ((x,(x
\ y))
to_power (m
+ 1)) & (j
+ 1)
< (m
+ 1) by
A1,
A2,
Th20,
XREAL_1: 6;
then ((x,(x
\ y))
to_power (i
+ 1))
= ((x,(x
\ y))
to_power (
0
+ 1)) by
A1,
A4,
Th6;
hence thesis by
A1,
A3,
Th20;
end;
then
reconsider X as
BCK-algebra of
0 ,
0 ,
0 , n by
Def3;
A5: for x,y be
Element of X holds (
Polynom (
0 ,
0 ,x,y))
<= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
(
Polynom (
0 ,
0 ,x,y))
= (
Polynom (
0 ,n,y,x)) by
Def3;
hence thesis by
Th5;
end;
for x,y be
Element of X holds (
Polynom (
0 ,
0 ,y,x))
= (
Polynom (
0 ,
0 ,x,y))
proof
let x,y be
Element of X;
(
Polynom (
0 ,
0 ,x,y))
<= (
Polynom (
0 ,
0 ,y,x)) by
A5;
then
A6: ((
Polynom (
0 ,
0 ,x,y))
\ (
Polynom (
0 ,
0 ,y,x)))
= (
0. X);
(
Polynom (
0 ,
0 ,y,x))
<= (
Polynom (
0 ,
0 ,x,y)) by
A5;
then ((
Polynom (
0 ,
0 ,y,x))
\ (
Polynom (
0 ,
0 ,x,y)))
= (
0. X);
hence thesis by
A6,
BCIALG_1:def 7;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:57
for X be
BCK-algebra of i, j, m, n holds (m
=
0 & j
>
0 implies X is
BCK-algebra of
0 , 1,
0 , 1)
proof
let X be
BCK-algebra of i, j, m, n;
reconsider X as
BCK-algebra of (i
+ 1), j, m, (n
+ 1) by
Th17;
assume that
A1: m
=
0 and
A2: j
>
0 ;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,1,y,x))
proof
let x,y be
Element of X;
A3: ((i
+ 1)
+ 1)
> ((m
+ 1)
+
0 ) by
A1,
XREAL_1: 8;
A4: ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (j
+ 1))
= ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (m
+ 1)) by
Th20;
A5: (j
+ 1)
> (m
+ 1) by
A1,
A2,
XREAL_1: 6;
(n
+ 1)
>= (m
+ 1) & ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (j
+ 1))
= ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (m
+ 1)) by
A1,
Th20,
XREAL_1: 6;
then
A6: ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (
0
+ 1))
= ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (n
+ 1)) by
A1,
A5,
Th6;
(
Polynom ((i
+ 1),j,x,y))
= (
Polynom (m,(n
+ 1),y,x)) & ((x,(x
\ y))
to_power (j
+ 1))
= ((x,(x
\ y))
to_power (m
+ 1)) by
Def3,
Th20;
then ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power j)
= ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (n
+ 1)) by
A1,
A5,
A3,
Th6;
hence thesis by
A1,
A5,
A6,
A4,
Th6,
NAT_1: 14;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:58
for X be
BCK-algebra of i, j, m, n holds (n
=
0 & i
<>
0 implies X is
BCK-algebra of
0 ,
0 ,
0 ,
0 )
proof
let X be
BCK-algebra of i, j, m, n;
assume that
A1: n
=
0 and
A2: i
<>
0 ;
for x,y be
Element of X holds (
Polynom (
0 ,j,x,y))
= (
Polynom (
0 ,
0 ,y,x))
proof
let x,y be
Element of X;
A3: (
Polynom (i,j,x,y))
= (
Polynom (m,n,y,x)) by
Def3;
A4: (m
+ 1)
>= (n
+ 1) by
A1,
XREAL_1: 6;
((y,(y
\ x))
to_power (n
+ 1))
= ((y,(y
\ x))
to_power (i
+ 1)) & (n
+ 1)
< (i
+ 1) by
A1,
A2,
Th19,
XREAL_1: 6;
then ((y,(y
\ x))
to_power (m
+ 1))
= ((y,(y
\ x))
to_power (
0
+ 1)) by
A1,
A4,
Th6;
hence thesis by
A1,
A3,
Th19;
end;
then
reconsider X as
BCK-algebra of
0 , j,
0 ,
0 by
Def3;
A5: for x,y be
Element of X holds (
Polynom (
0 ,
0 ,y,x))
<= (
Polynom (
0 ,
0 ,x,y))
proof
let x,y be
Element of X;
(
Polynom (
0 ,j,x,y))
= (
Polynom (
0 ,
0 ,y,x)) by
Def3;
hence thesis by
Th5;
end;
for x,y be
Element of X holds (
Polynom (
0 ,
0 ,y,x))
= (
Polynom (
0 ,
0 ,x,y))
proof
let x,y be
Element of X;
(
Polynom (
0 ,
0 ,x,y))
<= (
Polynom (
0 ,
0 ,y,x)) by
A5;
then
A6: ((
Polynom (
0 ,
0 ,x,y))
\ (
Polynom (
0 ,
0 ,y,x)))
= (
0. X);
(
Polynom (
0 ,
0 ,y,x))
<= (
Polynom (
0 ,
0 ,x,y)) by
A5;
then ((
Polynom (
0 ,
0 ,y,x))
\ (
Polynom (
0 ,
0 ,x,y)))
= (
0. X);
hence thesis by
A6,
BCIALG_1:def 7;
end;
hence thesis by
Def3;
end;
theorem ::
BCIALG_5:59
for X be
BCK-algebra of i, j, m, n holds (i
=
0 & n
<>
0 implies X is
BCK-algebra of
0 , 1,
0 , 1)
proof
let X be
BCK-algebra of i, j, m, n;
reconsider X as
BCK-algebra of i, (j
+ 1), (m
+ 1), n by
Th18;
assume that
A1: i
=
0 and
A2: n
<>
0 ;
for x,y be
Element of X holds (
Polynom (
0 ,1,x,y))
= (
Polynom (
0 ,1,y,x))
proof
let x,y be
Element of X;
A3: ((m
+ 1)
+ 1)
> ((i
+ 1)
+
0 ) by
A1,
XREAL_1: 8;
A4: ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (i
+ 1))
= ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power (n
+ 1)) by
Th19;
A5: (n
+ 1)
> (i
+ 1) by
A1,
A2,
XREAL_1: 6;
(j
+ 1)
>= (i
+ 1) & ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (n
+ 1))
= ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (i
+ 1)) by
A1,
Th19,
XREAL_1: 6;
then
A6: ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (
0
+ 1))
= ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (j
+ 1)) by
A1,
A5,
Th6;
(
Polynom (i,(j
+ 1),x,y))
= (
Polynom ((m
+ 1),n,y,x)) & ((y,(y
\ x))
to_power (n
+ 1))
= ((y,(y
\ x))
to_power (i
+ 1)) by
Def3,
Th19;
then ((((x,(x
\ y))
to_power (
0
+ 1)),(y
\ x))
to_power (j
+ 1))
= ((((y,(y
\ x))
to_power (
0
+ 1)),(x
\ y))
to_power n) by
A1,
A5,
A3,
Th6;
hence thesis by
A1,
A5,
A6,
A4,
Th6,
NAT_1: 14;
end;
hence thesis by
Def3;
end;