bvfunc_3.miz
begin
reserve Y for non
empty
set,
G for
Subset of (
PARTITIONS Y),
a,b,c,u for
Function of Y,
BOOLEAN ,
PA for
a_partition of Y;
theorem ::
BVFUNC_3:1
(a
'imp' b)
'<' ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
A1: (
'not' (a
. z))
=
TRUE or (
'not' (a
. z))
=
FALSE by
XBOOLEAN:def 3;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((a
'imp' b)
. z)
=
TRUE ;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A3,
A1,
BINARITH: 3;
suppose (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE by
MARGREL1: 11;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A2,
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not'
FALSE )
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. z)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:2
((
All (a,PA,G))
'&' (
All (b,PA,G)))
'<' (a
'&' b)
proof
let z be
Element of Y;
A1: (((
All (a,PA,G))
'&' (
All (b,PA,G)))
. z)
= (((
All (a,PA,G))
. z)
'&' ((
All (b,PA,G))
. z)) by
MARGREL1:def 20;
assume
A2: (((
All (a,PA,G))
'&' (
All (b,PA,G)))
. z)
=
TRUE ;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A2,
A1,
MARGREL1: 12;
end;
A4: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All (b,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A2,
A1,
MARGREL1: 12;
end;
then
A5: (b
. z)
=
TRUE by
A4;
thus ((a
'&' b)
. z)
= ((a
. z)
'&' (b
. z)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A4,
A3,
A5
.=
TRUE ;
end;
theorem ::
BVFUNC_3:3
(a
'&' b)
'<' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
A1: ((a
'&' b)
. z)
= ((a
. z)
'&' (b
. z)) by
MARGREL1:def 20;
assume
A2: ((a
'&' b)
. z)
=
TRUE ;
then
A3: (
Ex (a,PA,G))
= (
B_SUP (a,(
CompF (PA,G)))) & (a
. z)
=
TRUE by
A1,
BVFUNC_2:def 10,
MARGREL1: 12;
A4: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
(b
. z)
=
TRUE by
A2,
A1,
MARGREL1: 12;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A4,
BVFUNC_1:def 17;
then
A5: ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
thus (((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'&' ((
Ex (b,PA,G))
. z)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A3,
A4,
A5,
BVFUNC_1:def 17
.=
TRUE ;
end;
theorem ::
BVFUNC_3:4
(
'not' ((
All (a,PA,G))
'&' (
All (b,PA,G))))
= ((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
proof
A1: (
All (b,PA,G))
= (
B_INF (b,(
CompF (PA,G)))) by
BVFUNC_2:def 9;
A2: (
All (a,PA,G))
= (
B_INF (a,(
CompF (PA,G)))) by
BVFUNC_2:def 9;
A3: ((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
'<' (
'not' ((
All (a,PA,G))
'&' (
All (b,PA,G))))
proof
let z be
Element of Y;
A4: (((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
. z)
= (((
Ex ((
'not' a),PA,G))
. z)
'or' ((
Ex ((
'not' b),PA,G))
. z)) by
BVFUNC_1:def 4;
A5: ((
Ex ((
'not' b),PA,G))
. z)
=
TRUE or ((
Ex ((
'not' b),PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
assume
A6: (((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
. z)
=
TRUE ;
per cases by
A6,
A4,
A5,
BINARITH: 3;
suppose
A7: ((
Ex ((
'not' a),PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((
'not' a)
. x)
=
TRUE );
then ((
B_SUP ((
'not' a),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A7,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A8: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A9: ((
'not' a)
. x1)
=
TRUE ;
(
'not' (a
. x1))
=
TRUE by
A9,
MARGREL1:def 19;
then
A10: (a
. x1)
=
FALSE by
MARGREL1: 11;
thus ((
'not' ((
All (a,PA,G))
'&' (
All (b,PA,G))))
. z)
= (
'not' (((
All (a,PA,G))
'&' (
All (b,PA,G)))
. z)) by
MARGREL1:def 19
.= (
'not' (((
All (a,PA,G))
. z)
'&' ((
All (b,PA,G))
. z))) by
MARGREL1:def 20
.= (
'not' (
FALSE
'&' ((
All (b,PA,G))
. z))) by
A2,
A8,
A10,
BVFUNC_1:def 16
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
suppose
A11: ((
Ex ((
'not' b),PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((
'not' b)
. x)
=
TRUE );
then ((
B_SUP ((
'not' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A11,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A12: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A13: ((
'not' b)
. x1)
=
TRUE ;
(
'not' (b
. x1))
=
TRUE by
A13,
MARGREL1:def 19;
then
A14: (b
. x1)
=
FALSE by
MARGREL1: 11;
thus ((
'not' ((
All (a,PA,G))
'&' (
All (b,PA,G))))
. z)
= (
'not' (((
All (a,PA,G))
'&' (
All (b,PA,G)))
. z)) by
MARGREL1:def 19
.= (
'not' (((
All (a,PA,G))
. z)
'&' ((
All (b,PA,G))
. z))) by
MARGREL1:def 20
.= (
'not' (((
All (a,PA,G))
. z)
'&'
FALSE )) by
A1,
A12,
A14,
BVFUNC_1:def 16
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
end;
(
'not' ((
All (a,PA,G))
'&' (
All (b,PA,G))))
'<' ((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
proof
let z be
Element of Y;
assume ((
'not' ((
All (a,PA,G))
'&' (
All (b,PA,G))))
. z)
=
TRUE ;
then
A15: (
'not' (((
All (a,PA,G))
'&' (
All (b,PA,G)))
. z))
=
TRUE by
MARGREL1:def 19;
(((
All (a,PA,G))
'&' (
All (b,PA,G)))
. z)
= (((
All (a,PA,G))
. z)
'&' ((
All (b,PA,G))
. z)) by
MARGREL1:def 20;
then
A16: (((
All (a,PA,G))
. z)
'&' ((
All (b,PA,G))
. z))
=
FALSE by
A15,
MARGREL1: 11;
per cases by
A16,
MARGREL1: 12;
suppose ((
All (a,PA,G))
. z)
=
FALSE ;
then
consider x1 be
Element of Y such that
A17: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A18: (a
. x1)
<>
TRUE by
A2,
BVFUNC_1:def 16;
(a
. x1)
=
FALSE by
A18,
XBOOLEAN:def 3;
then (
'not' (a
. x1))
=
TRUE by
MARGREL1: 11;
then ((
'not' a)
. x1)
=
TRUE by
MARGREL1:def 19;
then ((
B_SUP ((
'not' a),(
CompF (PA,G))))
. z)
=
TRUE by
A17,
BVFUNC_1:def 17;
then ((
Ex ((
'not' a),PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
. z)
= (
TRUE
'or' ((
Ex ((
'not' b),PA,G))
. z)) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose ((
All (b,PA,G))
. z)
=
FALSE ;
then
consider x1 be
Element of Y such that
A19: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A20: (b
. x1)
<>
TRUE by
A1,
BVFUNC_1:def 16;
(b
. x1)
=
FALSE by
A20,
XBOOLEAN:def 3;
then (
'not' (b
. x1))
=
TRUE by
MARGREL1: 11;
then ((
'not' b)
. x1)
=
TRUE by
MARGREL1:def 19;
then ((
B_SUP ((
'not' b),(
CompF (PA,G))))
. z)
=
TRUE by
A19,
BVFUNC_1:def 17;
then ((
Ex ((
'not' b),PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex ((
'not' a),PA,G))
'or' (
Ex ((
'not' b),PA,G)))
. z)
= (((
Ex ((
'not' a),PA,G))
. z)
'or'
TRUE ) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
end;
hence thesis by
A3,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_3:5
(
'not' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G))))
= ((
All ((
'not' a),PA,G))
'or' (
All ((
'not' b),PA,G)))
proof
A1: (
All ((
'not' b),PA,G))
= (
B_INF ((
'not' b),(
CompF (PA,G)))) by
BVFUNC_2:def 9;
A2: (
Ex (b,PA,G))
= (
B_SUP (b,(
CompF (PA,G)))) by
BVFUNC_2:def 10;
A3: (
Ex (a,PA,G))
= (
B_SUP (a,(
CompF (PA,G)))) by
BVFUNC_2:def 10;
A4: ((
All ((
'not' a),PA,G))
'or' (
All ((
'not' b),PA,G)))
'<' (
'not' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G))))
proof
let z be
Element of Y;
A5: ((
All ((
'not' b),PA,G))
. z)
=
TRUE or ((
All ((
'not' b),PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
assume (((
All ((
'not' a),PA,G))
'or' (
All ((
'not' b),PA,G)))
. z)
=
TRUE ;
then
A6: (((
All ((
'not' a),PA,G))
. z)
'or' ((
All ((
'not' b),PA,G))
. z))
=
TRUE by
BVFUNC_1:def 4;
per cases by
A6,
A5,
BINARITH: 3;
suppose
A7: ((
All ((
'not' a),PA,G))
. z)
=
TRUE ;
A8:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
'not' a)
. x)
=
TRUE );
then ((
B_INF ((
'not' a),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A7,
BVFUNC_2:def 9;
end;
A9:
now
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((
'not' a)
. x)
=
TRUE by
A8;
then (
'not' (a
. x))
=
TRUE by
MARGREL1:def 19;
hence (a
. x)
<>
TRUE by
MARGREL1: 11;
end;
thus ((
'not' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G))))
. z)
= (
'not' (((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
. z)) by
MARGREL1:def 19
.= (
'not' (((
Ex (a,PA,G))
. z)
'&' ((
Ex (b,PA,G))
. z))) by
MARGREL1:def 20
.= (
'not' (
FALSE
'&' ((
Ex (b,PA,G))
. z))) by
A3,
A9,
BVFUNC_1:def 17
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
suppose
A10: ((
All ((
'not' b),PA,G))
. z)
=
TRUE ;
A11:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
'not' b)
. x)
=
TRUE );
then ((
B_INF ((
'not' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A10,
BVFUNC_2:def 9;
end;
A12:
now
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((
'not' b)
. x)
=
TRUE by
A11;
then (
'not' (b
. x))
=
TRUE by
MARGREL1:def 19;
hence (b
. x)
<>
TRUE by
MARGREL1: 11;
end;
thus ((
'not' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G))))
. z)
= (
'not' (((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
. z)) by
MARGREL1:def 19
.= (
'not' (((
Ex (a,PA,G))
. z)
'&' ((
Ex (b,PA,G))
. z))) by
MARGREL1:def 20
.= (
'not' (((
Ex (a,PA,G))
. z)
'&'
FALSE )) by
A2,
A12,
BVFUNC_1:def 17
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
end;
A13: (
All ((
'not' a),PA,G))
= (
B_INF ((
'not' a),(
CompF (PA,G)))) by
BVFUNC_2:def 9;
(
'not' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G))))
'<' ((
All ((
'not' a),PA,G))
'or' (
All ((
'not' b),PA,G)))
proof
let z be
Element of Y;
assume ((
'not' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G))))
. z)
=
TRUE ;
then (
'not' (((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
. z))
=
TRUE by
MARGREL1:def 19;
then (((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
. z)
=
FALSE by
MARGREL1: 11;
then
A14: (((
Ex (a,PA,G))
. z)
'&' ((
Ex (b,PA,G))
. z))
=
FALSE by
MARGREL1:def 20;
per cases by
A14,
MARGREL1: 12;
suppose
A15: ((
Ex (a,PA,G))
. z)
=
FALSE ;
A16:
now
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then (a
. x)
<>
TRUE by
A3,
A15,
BVFUNC_1:def 17;
then (a
. x)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (a
. x))
=
TRUE by
MARGREL1: 11;
hence ((
'not' a)
. x)
=
TRUE by
MARGREL1:def 19;
end;
thus (((
All ((
'not' a),PA,G))
'or' (
All ((
'not' b),PA,G)))
. z)
= (((
All ((
'not' a),PA,G))
. z)
'or' ((
All ((
'not' b),PA,G))
. z)) by
BVFUNC_1:def 4
.= (
TRUE
'or' ((
All ((
'not' b),PA,G))
. z)) by
A13,
A16,
BVFUNC_1:def 16
.=
TRUE by
BINARITH: 10;
end;
suppose
A17: ((
Ex (b,PA,G))
. z)
=
FALSE ;
A18:
now
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then (b
. x)
<>
TRUE by
A2,
A17,
BVFUNC_1:def 17;
then (b
. x)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (b
. x))
=
TRUE by
MARGREL1: 11;
hence ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
end;
thus (((
All ((
'not' a),PA,G))
'or' (
All ((
'not' b),PA,G)))
. z)
= (((
All ((
'not' a),PA,G))
. z)
'or' ((
All ((
'not' b),PA,G))
. z)) by
BVFUNC_1:def 4
.= (((
All ((
'not' a),PA,G))
. z)
'or'
TRUE ) by
A1,
A18,
BVFUNC_1:def 16
.=
TRUE by
BINARITH: 10;
end;
end;
hence thesis by
A4,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_3:6
((
All (a,PA,G))
'or' (
All (b,PA,G)))
'<' (a
'or' b)
proof
let z be
Element of Y;
A1: ((
All (a,PA,G))
. z)
=
TRUE or ((
All (a,PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (((
All (a,PA,G))
'or' (
All (b,PA,G)))
. z)
=
TRUE ;
then
A3: (((
All (a,PA,G))
. z)
'or' ((
All (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 4;
per cases by
A3,
A1,
BINARITH: 3;
suppose
A4: ((
All (a,PA,G))
. z)
=
TRUE ;
A5:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A4,
BVFUNC_2:def 9;
end;
thus ((a
'or' b)
. z)
= ((a
. z)
'or' (b
. z)) by
BVFUNC_1:def 4
.= (
TRUE
'or' (b
. z)) by
A2,
A5
.=
TRUE by
BINARITH: 10;
end;
suppose
A6: ((
All (b,PA,G))
. z)
=
TRUE ;
A7:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A6,
BVFUNC_2:def 9;
end;
thus ((a
'or' b)
. z)
= ((a
. z)
'or' (b
. z)) by
BVFUNC_1:def 4
.= ((a
. z)
'or'
TRUE ) by
A2,
A7
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:7
(a
'or' b)
'<' ((
Ex (a,PA,G))
'or' (
Ex (b,PA,G)))
proof
A1: (
Ex (a,PA,G))
= (
B_SUP (a,(
CompF (PA,G)))) by
BVFUNC_2:def 10;
let z be
Element of Y;
A2: (
Ex (b,PA,G))
= (
B_SUP (b,(
CompF (PA,G)))) by
BVFUNC_2:def 10;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((a
'or' b)
. z)
=
TRUE ;
then
A4: ((a
. z)
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 4;
A5: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
per cases by
A4,
A5,
BINARITH: 3;
suppose
A6: (a
. z)
=
TRUE ;
thus (((
Ex (a,PA,G))
'or' (
Ex (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 4
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
A1,
A3,
A6,
BVFUNC_1:def 17
.=
TRUE by
BINARITH: 10;
end;
suppose
A7: (b
. z)
=
TRUE ;
thus (((
Ex (a,PA,G))
'or' (
Ex (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 4
.= (((
Ex (a,PA,G))
. z)
'or'
TRUE ) by
A2,
A3,
A7,
BVFUNC_1:def 17
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:8
(a
'xor' b)
'<' ((
'not' ((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G))))
'or' (
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))))
proof
A1: (
Ex ((
'not' a),PA,G))
= (
B_SUP ((
'not' a),(
CompF (PA,G)))) by
BVFUNC_2:def 10;
let z be
Element of Y;
A2: (
Ex ((
'not' b),PA,G))
= (
B_SUP ((
'not' b),(
CompF (PA,G)))) by
BVFUNC_2:def 10;
A3: ((a
. z)
'&' (
'not' (b
. z)))
=
TRUE or ((a
. z)
'&' (
'not' (b
. z)))
=
FALSE by
XBOOLEAN:def 3;
A4: ((a
'xor' b)
. z)
= ((a
. z)
'xor' (b
. z)) by
BVFUNC_1:def 5
.= (((
'not' (a
. z))
'&' (b
. z))
'or' ((a
. z)
'&' (
'not' (b
. z))));
A5: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
A6: (
FALSE
'&'
TRUE )
=
FALSE by
MARGREL1: 13;
assume
A7: ((a
'xor' b)
. z)
=
TRUE ;
per cases by
A7,
A4,
A3,
BINARITH: 3;
suppose
A8: ((
'not' (a
. z))
'&' (b
. z))
=
TRUE ;
then (
'not' (a
. z))
=
TRUE by
MARGREL1: 12;
then ((
'not' a)
. z)
=
TRUE by
MARGREL1:def 19;
then
A9: ((
B_SUP ((
'not' a),(
CompF (PA,G))))
. z)
=
TRUE by
A5,
BVFUNC_1:def 17;
A10: ((
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G))))
. z)
= (
'not' (((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))
. z)) by
MARGREL1:def 19;
(b
. z)
=
TRUE by
A8,
MARGREL1: 12;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A5,
BVFUNC_1:def 17;
then
A11: ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
A12: (((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G)))
. z)
= (((
Ex ((
'not' a),PA,G))
. z)
'xor' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 5
.=
FALSE by
A1,
A6,
A9,
A11,
MARGREL1: 11;
thus (((
'not' ((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G))))
'or' (
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))))
. z)
= (((
'not' ((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G))))
. z)
'or' ((
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G))))
. z)) by
BVFUNC_1:def 4
.= ((
'not'
FALSE )
'or' (
'not' (((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))
. z))) by
A12,
A10,
MARGREL1:def 19
.= (
TRUE
'or' (
'not' (((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))
. z))) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose
A13: ((a
. z)
'&' (
'not' (b
. z)))
=
TRUE ;
then (a
. z)
=
TRUE by
MARGREL1: 12;
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
TRUE by
A5,
BVFUNC_1:def 17;
then
A14: ((
Ex (a,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
A15: ((
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G))))
. z)
= (
'not' (((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))
. z)) by
MARGREL1:def 19;
(
'not' (b
. z))
=
TRUE by
A13,
MARGREL1: 12;
then ((
'not' b)
. z)
=
TRUE by
MARGREL1:def 19;
then
A16: ((
B_SUP ((
'not' b),(
CompF (PA,G))))
. z)
=
TRUE by
A5,
BVFUNC_1:def 17;
A17: (((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'xor' ((
Ex ((
'not' b),PA,G))
. z)) by
BVFUNC_1:def 5
.=
FALSE by
A2,
A6,
A16,
A14,
MARGREL1: 11;
thus (((
'not' ((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G))))
'or' (
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G)))))
. z)
= (((
'not' ((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G))))
. z)
'or' ((
'not' ((
Ex (a,PA,G))
'xor' (
Ex ((
'not' b),PA,G))))
. z)) by
BVFUNC_1:def 4
.= ((
'not' (((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G)))
. z))
'or' (
'not'
FALSE )) by
A17,
A15,
MARGREL1:def 19
.= ((
'not' (((
Ex ((
'not' a),PA,G))
'xor' (
Ex (b,PA,G)))
. z))
'or'
TRUE ) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:9
(
All ((a
'or' b),PA,G))
'<' ((
All (a,PA,G))
'or' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
assume
A1: ((
All ((a
'or' b),PA,G))
. z)
=
TRUE ;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'or' b)
. x)
=
TRUE );
then ((
B_INF ((a
'or' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A1,
BVFUNC_2:def 9;
end;
per cases ;
suppose ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
All (a,PA,G))
'or' (
Ex (b,PA,G)))
. z)
= (((
All (a,PA,G))
. z)
'or'
TRUE ) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 9;
hence (((
All (a,PA,G))
'or' (
Ex (b,PA,G)))
. z)
= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose
A3: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: (a
. x1)
<>
TRUE ;
A6: (b
. x1)
<>
TRUE by
A3,
A4;
A7: (a
. x1)
=
FALSE by
A5,
XBOOLEAN:def 3;
((a
'or' b)
. x1)
= ((a
. x1)
'or' (b
. x1)) by
BVFUNC_1:def 4
.= (
FALSE
'or'
FALSE ) by
A6,
A7,
XBOOLEAN:def 3
.=
FALSE ;
hence thesis by
A2,
A4;
end;
end;
Lm1:
now
let Y, a, b, G, PA;
let z be
Element of Y;
assume
A1: ((
All ((a
'or' b),PA,G))
. z)
=
TRUE ;
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'or' b)
. x)
=
TRUE );
then ((
B_INF ((a
'or' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A1,
BVFUNC_2:def 9;
end;
theorem ::
BVFUNC_3:10
(
All ((a
'or' b),PA,G))
'<' ((
Ex (a,PA,G))
'or' (
All (b,PA,G)))
proof
let z be
Element of Y;
assume
A1: ((
All ((a
'or' b),PA,G))
. z)
=
TRUE ;
per cases ;
suppose ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex (a,PA,G))
'or' (
All (b,PA,G)))
. z)
= (
TRUE
'or' ((
All (b,PA,G))
. z)) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
then ((
All (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 9;
hence (((
Ex (a,PA,G))
'or' (
All (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'or'
TRUE ) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose
A2: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (b
. x1)
<>
TRUE ;
A5: (a
. x1)
<>
TRUE by
A2,
A3;
A6: (b
. x1)
=
FALSE by
A4,
XBOOLEAN:def 3;
((a
'or' b)
. x1)
= ((a
. x1)
'or' (b
. x1)) by
BVFUNC_1:def 4
.= (
FALSE
'or'
FALSE ) by
A5,
A6,
XBOOLEAN:def 3
.=
FALSE ;
hence thesis by
A1,
A3,
Lm1;
end;
end;
theorem ::
BVFUNC_3:11
(
All ((a
'or' b),PA,G))
'<' ((
Ex (a,PA,G))
'or' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((
All ((a
'or' b),PA,G))
. z)
=
TRUE ;
then ((a
'or' b)
. z)
=
TRUE by
A1,
Lm1;
then
A2: ((a
. z)
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 4;
A3: (a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
per cases by
A2,
A3,
BINARITH: 3;
suppose (a
. z)
=
TRUE ;
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
TRUE by
A1,
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex (a,PA,G))
'or' (
Ex (b,PA,G)))
. z)
= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. z)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A1,
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex (a,PA,G))
'or' (
Ex (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'or'
TRUE ) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:12
((
Ex (a,PA,G))
'&' (
All (b,PA,G)))
'<' (
Ex ((a
'&' b),PA,G))
proof
let z be
Element of Y;
assume (((
Ex (a,PA,G))
'&' (
All (b,PA,G)))
. z)
=
TRUE ;
then
A1: (((
Ex (a,PA,G))
. z)
'&' ((
All (b,PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All (b,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A1,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (a
. x1)
=
TRUE ;
((a
'&' b)
. x1)
= ((a
. x1)
'&' (b
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A3,
A4,
A2
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
theorem ::
BVFUNC_3:13
((
All (a,PA,G))
'&' (
Ex (b,PA,G)))
'<' (
Ex ((a
'&' b),PA,G))
proof
let z be
Element of Y;
assume (((
All (a,PA,G))
'&' (
Ex (b,PA,G)))
. z)
=
TRUE ;
then
A1: (((
All (a,PA,G))
. z)
'&' ((
Ex (b,PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A1,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (b
. x1)
=
TRUE ;
((a
'&' b)
. x1)
= ((a
. x1)
'&' (b
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A3,
A4,
A2
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
Lm2:
now
let Y, a, b, G, PA;
let z be
Element of Y;
assume
A1: ((
All ((a
'imp' b),PA,G))
. z)
=
TRUE ;
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' b)
. x)
=
TRUE );
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A1,
BVFUNC_2:def 9;
end;
theorem ::
BVFUNC_3:14
(
All ((a
'imp' b),PA,G))
'<' ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
A1: (
All (a,PA,G))
= (
B_INF (a,(
CompF (PA,G)))) by
BVFUNC_2:def 9;
let z be
Element of Y;
assume
A2: ((
All ((a
'imp' b),PA,G))
. z)
=
TRUE ;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
per cases ;
suppose ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then
A4: (b
. z)
<>
TRUE & (a
. z)
=
TRUE by
A3;
((a
'imp' b)
. z)
= ((
'not' (a
. z))
'or' (b
. z)) by
BVFUNC_1:def 8
.= ((
'not'
TRUE )
'or'
FALSE ) by
A4,
XBOOLEAN:def 3
.= (
FALSE
'or'
FALSE ) by
MARGREL1: 11
.=
FALSE ;
hence thesis by
A2,
A3,
Lm2;
end;
suppose
A5: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
thus (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.= ((
'not'
FALSE )
'or' ((
Ex (b,PA,G))
. z)) by
A1,
A5,
BVFUNC_1:def 16
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:15
(
All ((a
'imp' b),PA,G))
'<' ((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
A1: (
Ex (a,PA,G))
= (
B_SUP (a,(
CompF (PA,G)))) by
BVFUNC_2:def 10;
let z be
Element of Y;
assume
A2: ((
All ((a
'imp' b),PA,G))
. z)
=
TRUE ;
per cases ;
suppose ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
Ex (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose
A3: (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: (a
. x1)
=
TRUE ;
A6: (b
. x1)
<>
TRUE by
A3,
A4;
((a
'imp' b)
. x1)
= ((
'not' (a
. x1))
'or' (b
. x1)) by
BVFUNC_1:def 8
.= ((
'not'
TRUE )
'or'
FALSE ) by
A5,
A6,
XBOOLEAN:def 3
.= (
FALSE
'or'
FALSE ) by
MARGREL1: 11
.=
FALSE ;
hence thesis by
A2,
A4,
Lm2;
end;
suppose
A7: not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
thus (((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
Ex (a,PA,G))
. z))
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.= ((
'not'
FALSE )
'or' ((
Ex (b,PA,G))
. z)) by
A1,
A7,
BVFUNC_1:def 17
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:16
((
Ex (a,PA,G))
'imp' (
All (b,PA,G)))
'<' (
All ((a
'imp' b),PA,G))
proof
let z be
Element of Y;
assume (((
Ex (a,PA,G))
'imp' (
All (b,PA,G)))
. z)
=
TRUE ;
then
A1: ((
'not' ((
Ex (a,PA,G))
. z))
'or' ((
All (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
per cases ;
suppose
A2: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' b)
. x)
=
TRUE
proof
let x be
Element of Y;
assume
A3: x
in (
EqClass (z,(
CompF (PA,G))));
thus ((a
'imp' b)
. x)
= ((
'not' (a
. x))
'or' (b
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or'
TRUE ) by
A2,
A3
.=
TRUE by
BINARITH: 10;
end;
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
suppose
A4: (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
then
A5: (
'not' ((
Ex (a,PA,G))
. z))
=
FALSE by
MARGREL1: 11;
((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
A4,
BVFUNC_1:def 16;
then ((
All (b,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence thesis by
A1,
A5;
end;
suppose
A6: not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
now
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then
A7: (a
. x)
<>
TRUE by
A6;
thus ((a
'imp' b)
. x)
= ((
'not' (a
. x))
'or' (b
. x)) by
BVFUNC_1:def 8
.= ((
'not'
FALSE )
'or' (b
. x)) by
A7,
XBOOLEAN:def 3
.= (
TRUE
'or' (b
. x)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
end;
theorem ::
BVFUNC_3:17
(a
'imp' b)
'<' (a
'imp' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
A1: (
'not' (a
. z))
=
TRUE or (
'not' (a
. z))
=
FALSE by
XBOOLEAN:def 3;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((a
'imp' b)
. z)
=
TRUE ;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A3,
A1,
BINARITH: 3;
suppose (
'not' (a
. z))
=
TRUE ;
hence ((a
'imp' (
Ex (b,PA,G)))
. z)
= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. z)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence ((a
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' (a
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:18
(a
'imp' b)
'<' ((
All (a,PA,G))
'imp' b)
proof
let z be
Element of Y;
A1: (
'not' (a
. z))
=
TRUE or (
'not' (a
. z))
=
FALSE by
XBOOLEAN:def 3;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((a
'imp' b)
. z)
=
TRUE ;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A3,
A1,
BINARITH: 3;
suppose (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE by
MARGREL1: 11;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A2,
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence (((
All (a,PA,G))
'imp' b)
. z)
= ((
'not'
FALSE )
'or' (b
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' (b
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. z)
=
TRUE ;
hence (((
All (a,PA,G))
'imp' b)
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:19
(
Ex ((a
'imp' b),PA,G))
'<' ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
assume
A1: ((
Ex ((a
'imp' b),PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'imp' b)
. x)
=
TRUE );
then ((
B_SUP ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A1,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: ((a
'imp' b)
. x1)
=
TRUE ;
A4: ((
'not' (a
. x1))
'or' (b
. x1))
=
TRUE by
A3,
BVFUNC_1:def 8;
A5: (b
. x1)
=
TRUE or (b
. x1)
=
FALSE by
XBOOLEAN:def 3;
per cases by
A4,
A5,
BINARITH: 3;
suppose (
'not' (a
. x1))
=
TRUE ;
then (a
. x1)
=
FALSE by
MARGREL1: 11;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A2,
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not'
FALSE )
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. x1)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:20
(
All (a,PA,G))
'<' ((
Ex (b,PA,G))
'imp' (
Ex ((a
'&' b),PA,G)))
proof
let z be
Element of Y;
assume
A1: ((
All (a,PA,G))
. z)
=
TRUE ;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A1,
BVFUNC_2:def 9;
end;
per cases ;
suppose
A3: ((
Ex (b,PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A3,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: (b
. x1)
=
TRUE ;
((a
'&' b)
. x1)
= ((a
. x1)
'&' (b
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A2,
A4,
A5
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A4,
BVFUNC_1:def 17;
then ((
Ex ((a
'&' b),PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
Ex (b,PA,G))
'imp' (
Ex ((a
'&' b),PA,G)))
. z)
= ((
'not' ((
Ex (b,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose ((
Ex (b,PA,G))
. z)
<>
TRUE ;
then ((
Ex (b,PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
hence (((
Ex (b,PA,G))
'imp' (
Ex ((a
'&' b),PA,G)))
. z)
= ((
'not'
FALSE )
'or' ((
Ex ((a
'&' b),PA,G))
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' ((
Ex ((a
'&' b),PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:21
u
is_independent_of (PA,G) implies (
Ex ((u
'imp' a),PA,G))
'<' (u
'imp' (
Ex (a,PA,G)))
proof
assume u
is_independent_of (PA,G);
then
A1: u
is_dependent_of (
CompF (PA,G)) by
BVFUNC_2:def 8;
let z be
Element of Y;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) & (
EqClass (z,(
CompF (PA,G))))
in (
CompF (PA,G)) by
EQREL_1:def 6;
assume
A3: ((
Ex ((u
'imp' a),PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((u
'imp' a)
. x)
=
TRUE );
then ((
B_SUP ((u
'imp' a),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A3,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: ((u
'imp' a)
. x1)
=
TRUE ;
A6: ((
'not' (u
. x1))
'or' (a
. x1))
=
TRUE by
A5,
BVFUNC_1:def 8;
A7: (
'not' (u
. x1))
=
TRUE or (
'not' (u
. x1))
=
FALSE by
XBOOLEAN:def 3;
per cases by
A6,
A7,
BINARITH: 3;
suppose
A8: (
'not' (u
. x1))
=
TRUE ;
(u
. x1)
= (u
. z) by
A1,
A4,
A2;
then (u
. z)
=
FALSE by
A8,
MARGREL1: 11;
hence ((u
'imp' (
Ex (a,PA,G)))
. z)
= ((
'not'
FALSE )
'or' ((
Ex (a,PA,G))
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' ((
Ex (a,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose (a
. x1)
=
TRUE ;
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
TRUE by
A4,
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence ((u
'imp' (
Ex (a,PA,G)))
. z)
= ((
'not' (u
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:22
u
is_independent_of (PA,G) implies (
Ex ((a
'imp' u),PA,G))
'<' ((
All (a,PA,G))
'imp' u)
proof
assume u
is_independent_of (PA,G);
then
A1: u
is_dependent_of (
CompF (PA,G)) by
BVFUNC_2:def 8;
let z be
Element of Y;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) & (
EqClass (z,(
CompF (PA,G))))
in (
CompF (PA,G)) by
EQREL_1:def 6;
assume
A3: ((
Ex ((a
'imp' u),PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'imp' u)
. x)
=
TRUE );
then ((
B_SUP ((a
'imp' u),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A3,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: ((a
'imp' u)
. x1)
=
TRUE ;
A6: ((
'not' (a
. x1))
'or' (u
. x1))
=
TRUE by
A5,
BVFUNC_1:def 8;
A7: (
'not' (a
. x1))
=
TRUE or (
'not' (a
. x1))
=
FALSE by
XBOOLEAN:def 3;
per cases by
A6,
A7,
BINARITH: 3;
suppose (
'not' (a
. x1))
=
TRUE ;
then (a
. x1)
=
FALSE by
MARGREL1: 11;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A4,
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence (((
All (a,PA,G))
'imp' u)
. z)
= ((
'not'
FALSE )
'or' (u
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' (u
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose
A8: (u
. x1)
=
TRUE ;
(u
. x1)
= (u
. z) by
A1,
A4,
A2;
hence (((
All (a,PA,G))
'imp' u)
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
A8,
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:23
((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
= (
Ex ((a
'imp' b),PA,G))
proof
A1: (
All (a,PA,G))
= (
B_INF (a,(
CompF (PA,G)))) by
BVFUNC_2:def 9;
A2: ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
'<' (
Ex ((a
'imp' b),PA,G))
proof
let z be
Element of Y;
A3: (
'not' ((
All (a,PA,G))
. z))
=
TRUE or (
'not' ((
All (a,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
assume (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
=
TRUE ;
then
A4: ((
'not' ((
All (a,PA,G))
. z))
'or' ((
Ex (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A4,
A3,
BINARITH: 3;
suppose (
'not' ((
All (a,PA,G))
. z))
=
TRUE ;
then ((
All (a,PA,G))
. z)
=
FALSE by
MARGREL1: 11;
then
consider x1 be
Element of Y such that
A5: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A6: (a
. x1)
<>
TRUE by
A1,
BVFUNC_1:def 16;
((a
'imp' b)
. x1)
= ((
'not' (a
. x1))
'or' (b
. x1)) by
BVFUNC_1:def 8
.= ((
'not'
FALSE )
'or' (b
. x1)) by
A6,
XBOOLEAN:def 3
.= (
TRUE
'or' (b
. x1)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
then ((
B_SUP ((a
'imp' b),(
CompF (PA,G))))
. z)
=
TRUE by
A5,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
suppose
A7: ((
Ex (b,PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A7,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A8: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A9: (b
. x1)
=
TRUE ;
((a
'imp' b)
. x1)
= ((
'not' (a
. x1))
'or'
TRUE ) by
A9,
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
then ((
B_SUP ((a
'imp' b),(
CompF (PA,G))))
. z)
=
TRUE by
A8,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
end;
(
Ex ((a
'imp' b),PA,G))
'<' ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
assume
A10: ((
Ex ((a
'imp' b),PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'imp' b)
. x)
=
TRUE );
then ((
B_SUP ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A10,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A11: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A12: ((a
'imp' b)
. x1)
=
TRUE ;
A13: ((
'not' (a
. x1))
'or' (b
. x1))
=
TRUE by
A12,
BVFUNC_1:def 8;
A14: (
'not' (a
. x1))
=
TRUE or (
'not' (a
. x1))
=
FALSE by
XBOOLEAN:def 3;
per cases by
A13,
A14,
BINARITH: 3;
suppose (
'not' (a
. x1))
=
TRUE ;
then (a
. x1)
=
FALSE by
MARGREL1: 11;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A11,
BVFUNC_1:def 16;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not'
FALSE )
'or' ((
Ex (b,PA,G))
. z)) by
A1,
BVFUNC_1:def 8
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. x1)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A11,
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
hence thesis by
A2,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_3:24
((
All (a,PA,G))
'imp' (
All (b,PA,G)))
'<' ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
let z be
Element of Y;
A1: (
'not' ((
All (a,PA,G))
. z))
=
TRUE or (
'not' ((
All (a,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
A2: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (((
All (a,PA,G))
'imp' (
All (b,PA,G)))
. z)
=
TRUE ;
then
A3: ((
'not' ((
All (a,PA,G))
. z))
'or' ((
All (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A3,
A1,
BINARITH: 3;
suppose (
'not' ((
All (a,PA,G))
. z))
=
TRUE ;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose
A4: ((
All (b,PA,G))
. z)
=
TRUE ;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A4,
BVFUNC_2:def 9;
end;
then (b
. z)
=
TRUE by
A2;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:25
((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
'<' ((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
proof
A1: (
Ex (a,PA,G))
= (
B_SUP (a,(
CompF (PA,G)))) by
BVFUNC_2:def 10;
let z be
Element of Y;
A2: (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE or (
'not' ((
Ex (a,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
assume (((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
=
TRUE ;
then
A3: ((
'not' ((
Ex (a,PA,G))
. z))
'or' ((
Ex (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
A4: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
per cases by
A3,
A2,
BINARITH: 3;
suppose (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE ;
then ((
Ex (a,PA,G))
. z)
=
FALSE by
MARGREL1: 11;
then (a
. z)
<>
TRUE by
A1,
A4,
BVFUNC_1:def 17;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A4,
BVFUNC_1:def 16;
then ((
All (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not'
FALSE )
'or' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' ((
Ex (b,PA,G))
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
end;
suppose ((
Ex (b,PA,G))
. z)
=
TRUE ;
hence (((
All (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
theorem ::
BVFUNC_3:26
Th26: (
All ((a
'imp' b),PA,G))
= (
All (((
'not' a)
'or' b),PA,G))
proof
A1: (
All (((
'not' a)
'or' b),PA,G))
'<' (
All ((a
'imp' b),PA,G))
proof
let z be
Element of Y;
assume
A2: ((
All (((
'not' a)
'or' b),PA,G))
. z)
=
TRUE ;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (((
'not' a)
'or' b)
. x)
=
TRUE );
then ((
B_INF (((
'not' a)
'or' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A2,
BVFUNC_2:def 9;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' b)
. x)
=
TRUE
proof
let x be
Element of Y;
A4: ((
'not' a)
. x)
=
TRUE or ((
'not' a)
. x)
=
FALSE by
XBOOLEAN:def 3;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then (((
'not' a)
'or' b)
. x)
=
TRUE by
A3;
then
A5: (((
'not' a)
. x)
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 4;
per cases by
A5,
A4,
BINARITH: 3;
suppose ((
'not' a)
. x)
=
TRUE ;
then (
'not' (a
. x))
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' b)
. x)
= (
TRUE
'or' (b
. x)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. x)
=
TRUE ;
hence ((a
'imp' b)
. x)
= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
(
All ((a
'imp' b),PA,G))
'<' (
All (((
'not' a)
'or' b),PA,G))
proof
let z be
Element of Y;
assume
A6: ((
All ((a
'imp' b),PA,G))
. z)
=
TRUE ;
A7:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' b)
. x)
=
TRUE );
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A6,
BVFUNC_2:def 9;
end;
now
let x be
Element of Y;
A8: (
'not' (a
. x))
=
TRUE or (
'not' (a
. x))
=
FALSE by
XBOOLEAN:def 3;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((a
'imp' b)
. x)
=
TRUE by
A7;
then
A9: ((
'not' (a
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A9,
A8,
BINARITH: 3;
suppose (
'not' (a
. x))
=
TRUE ;
then ((
'not' a)
. x)
=
TRUE by
MARGREL1:def 19;
hence (((
'not' a)
'or' b)
. x)
= (
TRUE
'or' (b
. x)) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
suppose (b
. x)
=
TRUE ;
hence (((
'not' a)
'or' b)
. x)
= (((
'not' a)
. x)
'or'
TRUE ) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
end;
end;
then ((
B_INF (((
'not' a)
'or' b),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_3:27
(
All ((a
'imp' b),PA,G))
= (
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))
proof
(
'not' (
All (((
'not' a)
'or' b),PA,G)))
= (
Ex ((
'not' ((
'not' a)
'or' b)),PA,G)) & (
'not' ((
'not' a)
'or' b))
= ((
'not' (
'not' a))
'&' (
'not' b)) by
BVFUNC_1: 13,
BVFUNC_2: 18;
hence thesis by
Th26;
end;
theorem ::
BVFUNC_3:28
(
Ex (a,PA,G))
'<' (
'not' ((
All ((a
'imp' b),PA,G))
'&' (
All ((a
'imp' (
'not' b)),PA,G))))
proof
let z be
Element of Y;
A1: ((
'not' ((
All ((a
'imp' b),PA,G))
'&' (
All ((a
'imp' (
'not' b)),PA,G))))
. z)
= (
'not' (((
All ((a
'imp' b),PA,G))
'&' (
All ((a
'imp' (
'not' b)),PA,G)))
. z)) by
MARGREL1:def 19
.= (
'not' (((
All ((a
'imp' b),PA,G))
. z)
'&' ((
All ((a
'imp' (
'not' b)),PA,G))
. z))) by
MARGREL1:def 20;
assume
A2: ((
Ex (a,PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A2,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (a
. x1)
=
TRUE ;
A5: ((a
'imp' b)
. x1)
= ((
'not'
TRUE )
'or' (b
. x1)) by
A4,
BVFUNC_1:def 8
.= (
FALSE
'or' (b
. x1)) by
MARGREL1: 11
.= (b
. x1) by
BINARITH: 3;
A6: ((a
'imp' (
'not' b))
. x1)
= ((
'not'
TRUE )
'or' ((
'not' b)
. x1)) by
A4,
BVFUNC_1:def 8
.= (
FALSE
'or' ((
'not' b)
. x1)) by
MARGREL1: 11
.= ((
'not' b)
. x1) by
BINARITH: 3;
per cases by
XBOOLEAN:def 3;
suppose (b
. x1)
=
TRUE ;
then ((a
'imp' (
'not' b))
. x1)
= (
'not'
TRUE ) by
A6,
MARGREL1:def 19
.=
FALSE by
MARGREL1: 11;
then ((
B_INF ((a
'imp' (
'not' b)),(
CompF (PA,G))))
. z)
=
FALSE by
A3,
BVFUNC_1:def 16;
hence ((
'not' ((
All ((a
'imp' b),PA,G))
'&' (
All ((a
'imp' (
'not' b)),PA,G))))
. z)
= (
'not' (((
All ((a
'imp' b),PA,G))
. z)
'&'
FALSE )) by
A1,
BVFUNC_2:def 9
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
suppose (b
. x1)
=
FALSE ;
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
A3,
A5,
BVFUNC_1:def 16;
hence ((
'not' ((
All ((a
'imp' b),PA,G))
'&' (
All ((a
'imp' (
'not' b)),PA,G))))
. z)
= (
'not' (
FALSE
'&' ((
All ((a
'imp' (
'not' b)),PA,G))
. z))) by
A1,
BVFUNC_2:def 9
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
end;
theorem ::
BVFUNC_3:29
(
Ex (a,PA,G))
'<' (
'not' ((
'not' (
Ex ((a
'&' b),PA,G)))
'&' (
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))))
proof
let z be
Element of Y;
A1: ((
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))
. z)
= (
'not' ((
Ex ((a
'&' (
'not' b)),PA,G))
. z)) by
MARGREL1:def 19;
A2: ((
'not' ((
'not' (
Ex ((a
'&' b),PA,G)))
'&' (
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))))
. z)
= (
'not' (((
'not' (
Ex ((a
'&' b),PA,G)))
'&' (
'not' (
Ex ((a
'&' (
'not' b)),PA,G))))
. z)) by
MARGREL1:def 19
.= (
'not' (((
'not' (
Ex ((a
'&' b),PA,G)))
. z)
'&' ((
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))
. z))) by
MARGREL1:def 20
.= (
'not' ((
'not' ((
Ex ((a
'&' b),PA,G))
. z))
'&' (
'not' ((
Ex ((a
'&' (
'not' b)),PA,G))
. z)))) by
A1,
MARGREL1:def 19;
assume
A3: ((
Ex (a,PA,G))
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence contradiction by
A3,
BVFUNC_2:def 10;
end;
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: (a
. x1)
=
TRUE ;
A6: ((a
'&' b)
. x1)
= (
TRUE
'&' (b
. x1)) by
A5,
MARGREL1:def 20
.= (b
. x1) by
MARGREL1: 14;
A7: ((a
'&' (
'not' b))
. x1)
= (
TRUE
'&' ((
'not' b)
. x1)) by
A5,
MARGREL1:def 20
.= ((
'not' b)
. x1) by
MARGREL1: 14;
per cases by
XBOOLEAN:def 3;
suppose (b
. x1)
=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A4,
A6,
BVFUNC_1:def 17;
hence ((
'not' ((
'not' (
Ex ((a
'&' b),PA,G)))
'&' (
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))))
. z)
= (
'not' ((
'not'
TRUE )
'&' (
'not' ((
Ex ((a
'&' (
'not' b)),PA,G))
. z)))) by
A2,
BVFUNC_2:def 10
.= (
'not' (
FALSE
'&' (
'not' ((
Ex ((a
'&' (
'not' b)),PA,G))
. z)))) by
MARGREL1: 11
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
suppose (b
. x1)
=
FALSE ;
then ((a
'&' (
'not' b))
. x1)
= (
'not'
FALSE ) by
A7,
MARGREL1:def 19;
then ((a
'&' (
'not' b))
. x1)
=
TRUE by
MARGREL1: 11;
then ((
B_SUP ((a
'&' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
A4,
BVFUNC_1:def 17;
hence ((
'not' ((
'not' (
Ex ((a
'&' b),PA,G)))
'&' (
'not' (
Ex ((a
'&' (
'not' b)),PA,G)))))
. z)
= (
'not' ((
'not' ((
Ex ((a
'&' b),PA,G))
. z))
'&' (
'not'
TRUE ))) by
A2,
BVFUNC_2:def 10
.= (
'not' ((
'not' ((
Ex ((a
'&' b),PA,G))
. z))
'&'
FALSE )) by
MARGREL1: 11
.= (
'not'
FALSE ) by
MARGREL1: 12
.=
TRUE by
MARGREL1: 11;
end;
end;
theorem ::
BVFUNC_3:30
((
Ex (a,PA,G))
'&' (
All ((a
'imp' b),PA,G)))
'<' (
Ex ((a
'&' b),PA,G))
proof
let z be
Element of Y;
A1: (
'not'
FALSE )
=
TRUE by
MARGREL1: 11;
assume (((
Ex (a,PA,G))
'&' (
All ((a
'imp' b),PA,G)))
. z)
=
TRUE ;
then
A2: (((
Ex (a,PA,G))
. z)
'&' ((
All ((a
'imp' b),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A2,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (a
. x1)
=
TRUE ;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' b)
. x)
=
TRUE );
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((a
'imp' b),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A2,
MARGREL1: 12;
end;
then ((a
'imp' b)
. x1)
=
TRUE by
A3;
then
A5: ((
'not' (a
. x1))
'or' (b
. x1))
=
TRUE by
BVFUNC_1:def 8;
((a
'&' b)
. x1)
= ((a
. x1)
'&' (b
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A4,
A5,
A1,
BINARITH: 3
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
theorem ::
BVFUNC_3:31
((
Ex (a,PA,G))
'&' (
'not' (
Ex ((a
'&' b),PA,G))))
'<' (
'not' (
All ((a
'imp' b),PA,G)))
proof
let z be
Element of Y;
assume (((
Ex (a,PA,G))
'&' (
'not' (
Ex ((a
'&' b),PA,G))))
. z)
=
TRUE ;
then
A1: (((
Ex (a,PA,G))
. z)
'&' ((
'not' (
Ex ((a
'&' b),PA,G)))
. z))
=
TRUE by
MARGREL1:def 20;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (a,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A1,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: (a
. x1)
=
TRUE ;
((
'not' (
Ex ((a
'&' b),PA,G)))
. z)
=
TRUE by
A1,
MARGREL1: 12;
then (
'not' ((
Ex ((a
'&' b),PA,G))
. z))
=
TRUE by
MARGREL1:def 19;
then (
Ex ((a
'&' b),PA,G))
= (
B_SUP ((a
'&' b),(
CompF (PA,G)))) & ((
Ex ((a
'&' b),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10,
MARGREL1: 11;
then ((a
'&' b)
. x1)
<>
TRUE by
A2,
BVFUNC_1:def 17;
then ((a
'&' b)
. x1)
=
FALSE by
XBOOLEAN:def 3;
then
A4: ((a
. x1)
'&' (b
. x1))
=
FALSE by
MARGREL1:def 20;
per cases by
A4,
MARGREL1: 12;
suppose (a
. x1)
=
FALSE ;
hence thesis by
A3;
end;
suppose (b
. x1)
=
FALSE ;
then ((a
'imp' b)
. x1)
= ((
'not'
TRUE )
'or'
FALSE ) by
A3,
BVFUNC_1:def 8
.= (
FALSE
'or'
FALSE ) by
MARGREL1: 11
.=
FALSE ;
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
A2,
BVFUNC_1:def 16;
then ((
All ((a
'imp' b),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence ((
'not' (
All ((a
'imp' b),PA,G)))
. z)
= (
'not'
FALSE ) by
MARGREL1:def 19
.=
TRUE by
MARGREL1: 11;
end;
end;
theorem ::
BVFUNC_3:32
((
All ((a
'imp' c),PA,G))
'&' (
All ((c
'imp' b),PA,G)))
'<' (
All ((a
'imp' b),PA,G))
proof
let z be
Element of Y;
assume (((
All ((a
'imp' c),PA,G))
'&' (
All ((c
'imp' b),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((a
'imp' c),PA,G))
. z)
'&' ((
All ((c
'imp' b),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' b)
. x)
=
TRUE );
then ((
B_INF ((c
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' b),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' c)
. x)
=
TRUE );
then ((
B_INF ((a
'imp' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((a
'imp' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' b)
. x)
=
TRUE
proof
let x be
Element of Y;
A4: (
'not' (a
. x))
=
TRUE or (
'not' (a
. x))
=
FALSE by
XBOOLEAN:def 3;
A5: (
'not' (c
. x))
=
TRUE or (
'not' (c
. x))
=
FALSE by
XBOOLEAN:def 3;
assume
A6: x
in (
EqClass (z,(
CompF (PA,G))));
then ((a
'imp' c)
. x)
=
TRUE by
A3;
then
A7: ((
'not' (a
. x))
'or' (c
. x))
=
TRUE by
BVFUNC_1:def 8;
((c
'imp' b)
. x)
=
TRUE by
A2,
A6;
then
A8: ((
'not' (c
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A7,
A4,
A8,
A5,
BINARITH: 3;
suppose (
'not' (a
. x))
=
TRUE & (
'not' (c
. x))
=
TRUE ;
hence ((a
'imp' b)
. x)
= (
TRUE
'or' (b
. x)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (
'not' (a
. x))
=
TRUE & (b
. x)
=
TRUE ;
hence ((a
'imp' b)
. x)
= (
TRUE
'or' (b
. x)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (c
. x)
=
TRUE & (
'not' (c
. x))
=
TRUE ;
hence thesis by
MARGREL1: 11;
end;
suppose (c
. x)
=
TRUE & (b
. x)
=
TRUE ;
hence ((a
'imp' b)
. x)
= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
then ((
B_INF ((a
'imp' b),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
theorem ::
BVFUNC_3:33
((
All ((c
'imp' b),PA,G))
'&' (
Ex ((a
'&' c),PA,G)))
'<' (
Ex ((a
'&' b),PA,G))
proof
let z be
Element of Y;
assume (((
All ((c
'imp' b),PA,G))
'&' (
Ex ((a
'&' c),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((c
'imp' b),PA,G))
. z)
'&' ((
Ex ((a
'&' c),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'&' c)
. x)
=
TRUE );
then ((
B_SUP ((a
'&' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex ((a
'&' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A1,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: ((a
'&' c)
. x1)
=
TRUE ;
A4: ((a
. x1)
'&' (c
. x1))
=
TRUE by
A3,
MARGREL1:def 20;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' b)
. x)
=
TRUE );
then ((
B_INF ((c
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' b),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
then ((c
'imp' b)
. x1)
=
TRUE by
A2;
then
A5: ((
'not' (c
. x1))
'or' (b
. x1))
=
TRUE by
BVFUNC_1:def 8;
A6: (
'not' (c
. x1))
=
TRUE or (
'not' (c
. x1))
=
FALSE by
XBOOLEAN:def 3;
per cases by
A5,
A6,
A4,
BINARITH: 3,
MARGREL1: 12;
suppose (a
. x1)
=
TRUE & (c
. x1)
=
TRUE & (
'not' (c
. x1))
=
TRUE ;
hence thesis by
MARGREL1: 11;
end;
suppose (a
. x1)
=
TRUE & (c
. x1)
=
TRUE & (b
. x1)
=
TRUE ;
then ((a
'&' b)
. x1)
= (
TRUE
'&'
TRUE ) by
MARGREL1:def 20
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
end;
theorem ::
BVFUNC_3:34
((
All ((b
'imp' (
'not' c)),PA,G))
'&' (
All ((a
'imp' c),PA,G)))
'<' (
All ((a
'imp' (
'not' b)),PA,G))
proof
let z be
Element of Y;
assume (((
All ((b
'imp' (
'not' c)),PA,G))
'&' (
All ((a
'imp' c),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((b
'imp' (
'not' c)),PA,G))
. z)
'&' ((
All ((a
'imp' c),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' c)
. x)
=
TRUE );
then ((
B_INF ((a
'imp' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((a
'imp' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' (
'not' c))
. x)
=
TRUE );
then ((
B_INF ((b
'imp' (
'not' c)),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' (
'not' c)),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' (
'not' b))
. x)
=
TRUE
proof
let x be
Element of Y;
A4: (
'not' (b
. x))
=
TRUE or (
'not' (b
. x))
=
FALSE by
XBOOLEAN:def 3;
A5: (
'not' (a
. x))
=
TRUE or (
'not' (a
. x))
=
FALSE by
XBOOLEAN:def 3;
assume
A6: x
in (
EqClass (z,(
CompF (PA,G))));
then ((b
'imp' (
'not' c))
. x)
=
TRUE by
A3;
then
A7: ((
'not' (b
. x))
'or' ((
'not' c)
. x))
=
TRUE by
BVFUNC_1:def 8;
((a
'imp' c)
. x)
=
TRUE by
A2,
A6;
then
A8: ((
'not' (a
. x))
'or' (c
. x))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A7,
A4,
A8,
A5,
BINARITH: 3;
suppose
A9: (
'not' (b
. x))
=
TRUE & (
'not' (a
. x))
=
TRUE ;
then ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= (
TRUE
'or'
TRUE ) by
A9,
BVFUNC_1:def 8
.=
TRUE ;
end;
suppose (
'not' (b
. x))
=
TRUE & (c
. x)
=
TRUE ;
then ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose ((
'not' c)
. x)
=
TRUE & (
'not' (a
. x))
=
TRUE ;
hence ((a
'imp' (
'not' b))
. x)
= (
TRUE
'or' ((
'not' b)
. x)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose
A10: ((
'not' c)
. x)
=
TRUE & (c
. x)
=
TRUE ;
then (
'not' (c
. x))
=
TRUE by
MARGREL1:def 19;
hence thesis by
A10,
MARGREL1: 11;
end;
end;
then ((
B_INF ((a
'imp' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
theorem ::
BVFUNC_3:35
((
All ((b
'imp' c),PA,G))
'&' (
All ((a
'imp' (
'not' c)),PA,G)))
'<' (
All ((a
'imp' (
'not' b)),PA,G))
proof
let z be
Element of Y;
assume (((
All ((b
'imp' c),PA,G))
'&' (
All ((a
'imp' (
'not' c)),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((b
'imp' c),PA,G))
. z)
'&' ((
All ((a
'imp' (
'not' c)),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' (
'not' c))
. x)
=
TRUE );
then ((
B_INF ((a
'imp' (
'not' c)),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((a
'imp' (
'not' c)),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' c)
. x)
=
TRUE );
then ((
B_INF ((b
'imp' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' (
'not' b))
. x)
=
TRUE
proof
let x be
Element of Y;
A4: (
'not' (b
. x))
=
TRUE or (
'not' (b
. x))
=
FALSE by
XBOOLEAN:def 3;
A5: (
'not' (a
. x))
=
TRUE or (
'not' (a
. x))
=
FALSE by
XBOOLEAN:def 3;
assume
A6: x
in (
EqClass (z,(
CompF (PA,G))));
then ((b
'imp' c)
. x)
=
TRUE by
A3;
then
A7: ((
'not' (b
. x))
'or' (c
. x))
=
TRUE by
BVFUNC_1:def 8;
((a
'imp' (
'not' c))
. x)
=
TRUE by
A2,
A6;
then
A8: ((
'not' (a
. x))
'or' ((
'not' c)
. x))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A7,
A4,
A8,
A5,
BINARITH: 3;
suppose
A9: (
'not' (b
. x))
=
TRUE & (
'not' (a
. x))
=
TRUE ;
then ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= (
TRUE
'or'
TRUE ) by
A9,
BVFUNC_1:def 8
.=
TRUE ;
end;
suppose (
'not' (b
. x))
=
TRUE & ((
'not' c)
. x)
=
TRUE ;
then ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (c
. x)
=
TRUE & (
'not' (a
. x))
=
TRUE ;
hence ((a
'imp' (
'not' b))
. x)
= (
TRUE
'or' ((
'not' b)
. x)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose
A10: (c
. x)
=
TRUE & ((
'not' c)
. x)
=
TRUE ;
then (
'not' (c
. x))
=
TRUE by
MARGREL1:def 19;
hence thesis by
A10,
MARGREL1: 11;
end;
end;
then ((
B_INF ((a
'imp' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
theorem ::
BVFUNC_3:36
((
All ((b
'imp' (
'not' c)),PA,G))
'&' (
Ex ((a
'&' c),PA,G)))
'<' (
Ex ((a
'&' (
'not' b)),PA,G))
proof
let z be
Element of Y;
assume (((
All ((b
'imp' (
'not' c)),PA,G))
'&' (
Ex ((a
'&' c),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((b
'imp' (
'not' c)),PA,G))
. z)
'&' ((
Ex ((a
'&' c),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'&' c)
. x)
=
TRUE );
then ((
B_SUP ((a
'&' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex ((a
'&' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A1,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: ((a
'&' c)
. x1)
=
TRUE ;
A4: ((a
. x1)
'&' (c
. x1))
=
TRUE by
A3,
MARGREL1:def 20;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' (
'not' c))
. x)
=
TRUE );
then ((
B_INF ((b
'imp' (
'not' c)),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' (
'not' c)),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
then ((b
'imp' (
'not' c))
. x1)
=
TRUE by
A2;
then
A5: ((
'not' (b
. x1))
'or' ((
'not' c)
. x1))
=
TRUE by
BVFUNC_1:def 8;
A6: (
'not' (b
. x1))
=
TRUE or (
'not' (b
. x1))
=
FALSE by
XBOOLEAN:def 3;
per cases by
A5,
A6,
A4,
BINARITH: 3,
MARGREL1: 12;
suppose
A7: (a
. x1)
=
TRUE & (c
. x1)
=
TRUE & (
'not' (b
. x1))
=
TRUE ;
((a
'&' (
'not' b))
. x1)
= ((a
. x1)
'&' ((
'not' b)
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A7,
MARGREL1:def 19
.=
TRUE ;
then ((
B_SUP ((a
'&' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
suppose
A8: (a
. x1)
=
TRUE & (c
. x1)
=
TRUE & ((
'not' c)
. x1)
=
TRUE ;
then (
'not' (c
. x1))
=
TRUE by
MARGREL1:def 19;
hence thesis by
A8,
MARGREL1: 11;
end;
end;
theorem ::
BVFUNC_3:37
((
All ((b
'imp' c),PA,G))
'&' (
Ex ((a
'&' (
'not' c)),PA,G)))
'<' (
Ex ((a
'&' (
'not' b)),PA,G))
proof
let z be
Element of Y;
assume (((
All ((b
'imp' c),PA,G))
'&' (
Ex ((a
'&' (
'not' c)),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((b
'imp' c),PA,G))
. z)
'&' ((
Ex ((a
'&' (
'not' c)),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'&' (
'not' c))
. x)
=
TRUE );
then ((
B_SUP ((a
'&' (
'not' c)),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex ((a
'&' (
'not' c)),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A1,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: ((a
'&' (
'not' c))
. x1)
=
TRUE ;
A4: ((a
. x1)
'&' ((
'not' c)
. x1))
=
TRUE by
A3,
MARGREL1:def 20;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' c)
. x)
=
TRUE );
then ((
B_INF ((b
'imp' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
then ((b
'imp' c)
. x1)
=
TRUE by
A2;
then
A5: ((
'not' (b
. x1))
'or' (c
. x1))
=
TRUE by
BVFUNC_1:def 8;
A6: (
'not' (b
. x1))
=
TRUE or (
'not' (b
. x1))
=
FALSE by
XBOOLEAN:def 3;
per cases by
A5,
A6,
A4,
BINARITH: 3,
MARGREL1: 12;
suppose
A7: (a
. x1)
=
TRUE & ((
'not' c)
. x1)
=
TRUE & (
'not' (b
. x1))
=
TRUE ;
((a
'&' (
'not' b))
. x1)
= ((a
. x1)
'&' ((
'not' b)
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A7,
MARGREL1:def 19
.=
TRUE ;
then ((
B_SUP ((a
'&' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
A2,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
suppose
A8: (a
. x1)
=
TRUE & ((
'not' c)
. x1)
=
TRUE & (c
. x1)
=
TRUE ;
then (
'not' (c
. x1))
=
TRUE by
MARGREL1:def 19;
hence thesis by
A8,
MARGREL1: 11;
end;
end;
theorem ::
BVFUNC_3:38
(((
Ex (c,PA,G))
'&' (
All ((c
'imp' b),PA,G)))
'&' (
All ((c
'imp' a),PA,G)))
'<' (
Ex ((a
'&' b),PA,G))
proof
let z be
Element of Y;
assume ((((
Ex (c,PA,G))
'&' (
All ((c
'imp' b),PA,G)))
'&' (
All ((c
'imp' a),PA,G)))
. z)
=
TRUE ;
then
A1: ((((
Ex (c,PA,G))
'&' (
All ((c
'imp' b),PA,G)))
. z)
'&' ((
All ((c
'imp' a),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then ((((
Ex (c,PA,G))
. z)
'&' ((
All ((c
'imp' b),PA,G))
. z))
'&' ((
All ((c
'imp' a),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then
A2: (((
Ex (c,PA,G))
. z)
'&' ((
All ((c
'imp' b),PA,G))
. z))
=
TRUE by
MARGREL1: 12;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (c
. x)
=
TRUE );
then ((
B_SUP (c,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (c,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A2,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (c
. x1)
=
TRUE ;
A5: (
'not' (c
. x1))
=
TRUE or (
'not' (c
. x1))
=
FALSE by
XBOOLEAN:def 3;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' b)
. x)
=
TRUE );
then ((
B_INF ((c
'imp' b),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' b),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A2,
MARGREL1: 12;
end;
then ((c
'imp' b)
. x1)
=
TRUE by
A3;
then
A6: ((
'not' (c
. x1))
'or' (b
. x1))
=
TRUE by
BVFUNC_1:def 8;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' a)
. x)
=
TRUE );
then ((
B_INF ((c
'imp' a),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' a),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
then ((c
'imp' a)
. x1)
=
TRUE by
A3;
then
A7: ((
'not' (c
. x1))
'or' (a
. x1))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A7,
A5,
A6,
BINARITH: 3;
suppose (
'not' (c
. x1))
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose (
'not' (c
. x1))
=
TRUE & (b
. x1)
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose (a
. x1)
=
TRUE & (
'not' (c
. x1))
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose (a
. x1)
=
TRUE & (b
. x1)
=
TRUE ;
then ((a
'&' b)
. x1)
= (
TRUE
'&'
TRUE ) by
MARGREL1:def 20
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
end;
theorem ::
BVFUNC_3:39
((
All ((b
'imp' c),PA,G))
'&' (
All ((c
'imp' (
'not' a)),PA,G)))
'<' (
All ((a
'imp' (
'not' b)),PA,G))
proof
let z be
Element of Y;
assume (((
All ((b
'imp' c),PA,G))
'&' (
All ((c
'imp' (
'not' a)),PA,G)))
. z)
=
TRUE ;
then
A1: (((
All ((b
'imp' c),PA,G))
. z)
'&' ((
All ((c
'imp' (
'not' a)),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' c)
. x)
=
TRUE );
then ((
B_INF ((b
'imp' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' (
'not' a))
. x)
=
TRUE );
then ((
B_INF ((c
'imp' (
'not' a)),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' (
'not' a)),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' (
'not' b))
. x)
=
TRUE
proof
let x be
Element of Y;
A4: (
'not' (c
. x))
=
TRUE or (
'not' (c
. x))
=
FALSE by
XBOOLEAN:def 3;
A5: (
'not' (b
. x))
=
TRUE or (
'not' (b
. x))
=
FALSE by
XBOOLEAN:def 3;
assume
A6: x
in (
EqClass (z,(
CompF (PA,G))));
then ((c
'imp' (
'not' a))
. x)
=
TRUE by
A3;
then
A7: ((
'not' (c
. x))
'or' ((
'not' a)
. x))
=
TRUE by
BVFUNC_1:def 8;
((b
'imp' c)
. x)
=
TRUE by
A2,
A6;
then
A8: ((
'not' (b
. x))
'or' (c
. x))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A7,
A4,
A8,
A5,
BINARITH: 3;
suppose (
'not' (c
. x))
=
TRUE & (
'not' (b
. x))
=
TRUE ;
then ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose (
'not' (c
. x))
=
TRUE & (c
. x)
=
TRUE ;
hence thesis by
MARGREL1: 11;
end;
suppose ((
'not' a)
. x)
=
TRUE & (
'not' (b
. x))
=
TRUE ;
then ((
'not' b)
. x)
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
suppose ((
'not' a)
. x)
=
TRUE & (c
. x)
=
TRUE ;
then (
'not' (a
. x))
=
TRUE by
MARGREL1:def 19;
hence ((a
'imp' (
'not' b))
. x)
= (
TRUE
'or' ((
'not' b)
. x)) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
end;
end;
then ((
B_INF ((a
'imp' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
BVFUNC_2:def 9;
end;
theorem ::
BVFUNC_3:40
(((
Ex (b,PA,G))
'&' (
All ((b
'imp' c),PA,G)))
'&' (
All ((c
'imp' a),PA,G)))
'<' (
Ex ((a
'&' b),PA,G))
proof
let z be
Element of Y;
assume ((((
Ex (b,PA,G))
'&' (
All ((b
'imp' c),PA,G)))
'&' (
All ((c
'imp' a),PA,G)))
. z)
=
TRUE ;
then
A1: ((((
Ex (b,PA,G))
'&' (
All ((b
'imp' c),PA,G)))
. z)
'&' ((
All ((c
'imp' a),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then ((((
Ex (b,PA,G))
. z)
'&' ((
All ((b
'imp' c),PA,G))
. z))
'&' ((
All ((c
'imp' a),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then
A2: (((
Ex (b,PA,G))
. z)
'&' ((
All ((b
'imp' c),PA,G))
. z))
=
TRUE by
MARGREL1: 12;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (b,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A2,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (b
. x1)
=
TRUE ;
A5: (
'not' (c
. x1))
=
TRUE or (
'not' (c
. x1))
=
FALSE by
XBOOLEAN:def 3;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' a)
. x)
=
TRUE );
then ((
B_INF ((c
'imp' a),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' a),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
then ((c
'imp' a)
. x1)
=
TRUE by
A3;
then
A6: ((
'not' (c
. x1))
'or' (a
. x1))
=
TRUE by
BVFUNC_1:def 8;
A7: (
'not' (b
. x1))
=
TRUE or (
'not' (b
. x1))
=
FALSE by
XBOOLEAN:def 3;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' c)
. x)
=
TRUE );
then ((
B_INF ((b
'imp' c),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' c),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A2,
MARGREL1: 12;
end;
then ((b
'imp' c)
. x1)
=
TRUE by
A3;
then
A8: ((
'not' (b
. x1))
'or' (c
. x1))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A6,
A5,
A8,
A7,
BINARITH: 3;
suppose (
'not' (c
. x1))
=
TRUE & (
'not' (b
. x1))
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose (
'not' (c
. x1))
=
TRUE & (c
. x1)
=
TRUE ;
hence thesis by
MARGREL1: 11;
end;
suppose (a
. x1)
=
TRUE & (
'not' (b
. x1))
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose (a
. x1)
=
TRUE & (c
. x1)
=
TRUE ;
then ((a
'&' b)
. x1)
= (
TRUE
'&'
TRUE ) by
A4,
MARGREL1:def 20
.=
TRUE ;
then ((
B_SUP ((a
'&' b),(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
end;
theorem ::
BVFUNC_3:41
(((
Ex (c,PA,G))
'&' (
All ((b
'imp' (
'not' c)),PA,G)))
'&' (
All ((c
'imp' a),PA,G)))
'<' (
Ex ((a
'&' (
'not' b)),PA,G))
proof
let z be
Element of Y;
assume ((((
Ex (c,PA,G))
'&' (
All ((b
'imp' (
'not' c)),PA,G)))
'&' (
All ((c
'imp' a),PA,G)))
. z)
=
TRUE ;
then
A1: ((((
Ex (c,PA,G))
'&' (
All ((b
'imp' (
'not' c)),PA,G)))
. z)
'&' ((
All ((c
'imp' a),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then ((((
Ex (c,PA,G))
. z)
'&' ((
All ((b
'imp' (
'not' c)),PA,G))
. z))
'&' ((
All ((c
'imp' a),PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then
A2: (((
Ex (c,PA,G))
. z)
'&' ((
All ((b
'imp' (
'not' c)),PA,G))
. z))
=
TRUE by
MARGREL1: 12;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (c
. x)
=
TRUE );
then ((
B_SUP (c,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (c,PA,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A2,
MARGREL1: 12;
end;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (c
. x1)
=
TRUE ;
A5: (
'not' (c
. x1))
=
TRUE or (
'not' (c
. x1))
=
FALSE by
XBOOLEAN:def 3;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((c
'imp' a)
. x)
=
TRUE );
then ((
B_INF ((c
'imp' a),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((c
'imp' a),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A1,
MARGREL1: 12;
end;
then ((c
'imp' a)
. x1)
=
TRUE by
A3;
then
A6: ((
'not' (c
. x1))
'or' (a
. x1))
=
TRUE by
BVFUNC_1:def 8;
A7: (
'not' (b
. x1))
=
TRUE or (
'not' (b
. x1))
=
FALSE by
XBOOLEAN:def 3;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((b
'imp' (
'not' c))
. x)
=
TRUE );
then ((
B_INF ((b
'imp' (
'not' c)),(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((b
'imp' (
'not' c)),PA,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
hence contradiction by
A2,
MARGREL1: 12;
end;
then ((b
'imp' (
'not' c))
. x1)
=
TRUE by
A3;
then
A8: ((
'not' (b
. x1))
'or' ((
'not' c)
. x1))
=
TRUE by
BVFUNC_1:def 8;
per cases by
A6,
A5,
A8,
A7,
BINARITH: 3;
suppose (
'not' (c
. x1))
=
TRUE & (
'not' (b
. x1))
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose (
'not' (c
. x1))
=
TRUE & ((
'not' c)
. x1)
=
TRUE ;
hence thesis by
A4,
MARGREL1: 11;
end;
suppose
A9: (a
. x1)
=
TRUE & (
'not' (b
. x1))
=
TRUE ;
((a
'&' (
'not' b))
. x1)
= ((a
. x1)
'&' ((
'not' b)
. x1)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A9,
MARGREL1:def 19
.=
TRUE ;
then ((
B_SUP ((a
'&' (
'not' b)),(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
suppose (a
. x1)
=
TRUE & ((
'not' c)
. x1)
=
TRUE ;
then (
'not' (c
. x1))
=
TRUE by
MARGREL1:def 19;
hence thesis by
A4,
MARGREL1: 11;
end;
end;