bvfunc_2.miz
begin
reserve Y for non
empty
set,
G for
Subset of (
PARTITIONS Y);
definition
let X be
set;
:: original:
PARTITIONS
redefine
func
PARTITIONS X ->
Part-Family of X ;
coherence
proof
A1: (
PARTITIONS X)
c= (
bool (
bool X))
proof
let x be
object;
assume x
in (
PARTITIONS X);
then x is
a_partition of X by
PARTIT1:def 3;
hence thesis;
end;
for S be
set st S
in (
PARTITIONS X) holds S is
a_partition of X by
PARTIT1:def 3;
hence thesis by
A1,
EQREL_1:def 7;
end;
end
definition
let X be
set;
let F be non
empty
Part-Family of X;
:: original:
Element
redefine
mode
Element of F ->
a_partition of X ;
coherence by
EQREL_1:def 7;
end
theorem ::
BVFUNC_2:1
Th1: for y be
Element of Y holds ex X be
Subset of Y st y
in X & ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & X
= (
Intersect F) & X
<>
{}
proof
let y be
Element of Y;
deffunc
F(
Element of (
PARTITIONS Y)) = (
EqClass (y,$1));
defpred
P[
set] means $1
in G;
consider h be
PartFunc of (
PARTITIONS Y), (
bool Y) such that
A1: for d be
Element of (
PARTITIONS Y) holds d
in (
dom h) iff
P[d] and
A2: for d be
Element of (
PARTITIONS Y) st d
in (
dom h) holds (h
/. d)
=
F(d) from
PARTFUN2:sch 2;
A3: G
c= (
dom h) by
A1;
A4: for d be
set st d
in G holds (h
. d)
in d
proof
let d be
set;
assume
A5: d
in G;
then
reconsider d as
a_partition of Y by
PARTIT1:def 3;
(h
/. d)
= (h
. d) by
A3,
A5,
PARTFUN1:def 6;
then (h
. d)
= (
EqClass (y,d)) by
A2,
A3,
A5;
hence thesis;
end;
(
dom h)
c= G by
A1;
then
A6: (
dom h)
= G by
A3,
XBOOLE_0:def 10;
reconsider rr = (
rng h) as
Subset-Family of Y;
A7: for d be
Element of (
PARTITIONS Y) st d
in (
dom h) holds y
in (h
. d)
proof
let d be
Element of (
PARTITIONS Y);
assume
A8: d
in (
dom h);
then (h
/. d)
= (
EqClass (y,d)) by
A2;
then (h
. d)
= (
EqClass (y,d)) by
A8,
PARTFUN1:def 6;
hence thesis by
EQREL_1:def 6;
end;
A9: for c be
set holds c
in (
rng h) implies y
in c
proof
let c be
set;
assume c
in (
rng h);
then ex a be
object st a
in (
dom h) & c
= (h
. a) by
FUNCT_1:def 3;
hence thesis by
A7;
end;
per cases ;
suppose (
rng h)
=
{} ;
then (
Intersect rr)
= Y by
SETFAM_1:def 9;
hence thesis by
A6,
A4;
end;
suppose (
rng h)
<>
{} ;
then y
in (
meet (
rng h)) & (
Intersect rr)
= (
meet (
rng h)) by
A9,
SETFAM_1:def 1,
SETFAM_1:def 9;
hence thesis by
A6,
A4;
end;
end;
definition
let Y;
let G be
Subset of (
PARTITIONS Y);
::
BVFUNC_2:def1
func
'/\' G ->
a_partition of Y means
:
Def1: for x be
set holds x
in it iff ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & x
= (
Intersect F) & x
<>
{} ;
existence
proof
defpred
P[
set] means (ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & $1
= (
Intersect F) & $1
<>
{} );
consider X be
set such that
A1: for x be
set holds x
in X iff x
in (
bool Y) &
P[x] from
XFAMILY:sch 1;
A2: for A be
Subset of Y st A
in X holds A
<>
{} & for B be
Subset of Y st B
in X holds A
= B or A
misses B
proof
let A be
Subset of Y;
assume A
in X;
then
consider h1 be
Function, F1 be
Subset-Family of Y such that
A3: (
dom h1)
= G and
A4: (
rng h1)
= F1 and
A5: for d be
set st d
in G holds (h1
. d)
in d and
A6: A
= (
Intersect F1) and
A7: A
<>
{} by
A1;
thus A
<>
{} by
A7;
let B be
Subset of Y;
assume B
in X;
then
consider h2 be
Function, F2 be
Subset-Family of Y such that
A8: (
dom h2)
= G and
A9: (
rng h2)
= F2 and
A10: for d be
set st d
in G holds (h2
. d)
in d and
A11: B
= (
Intersect F2) and B
<>
{} by
A1;
per cases ;
suppose
A12: G
=
{} ;
then (
rng h1)
=
{} by
A3,
RELAT_1: 42;
hence thesis by
A4,
A6,
A8,
A9,
A11,
A12,
RELAT_1: 42;
end;
suppose
A13: G
<>
{} ;
now
assume A
meets B;
then
consider p be
object such that
A14: p
in A and
A15: p
in B by
XBOOLE_0: 3;
A16: p
in (
meet (
rng h2)) by
A9,
A11,
A13,
A15,
A8,
RELAT_1: 42,
SETFAM_1:def 9;
A17: p
in (
meet (
rng h1)) by
A4,
A6,
A3,
A13,
A14,
RELAT_1: 42,
SETFAM_1:def 9;
for g be
object st g
in G holds (h1
. g)
= (h2
. g)
proof
let g be
object;
assume
A18: g
in G;
then
reconsider g as
a_partition of Y by
PARTIT1:def 3;
(h1
. g)
in (
rng h1) by
A3,
A18,
FUNCT_1:def 3;
then
A19: p
in (h1
. g) by
A17,
SETFAM_1:def 1;
(h2
. g)
in (
rng h2) by
A8,
A18,
FUNCT_1:def 3;
then
A20: p
in (h2
. g) by
A16,
SETFAM_1:def 1;
(h1
. g)
in g & (h2
. g)
in g by
A5,
A10,
A18;
hence thesis by
A19,
A20,
EQREL_1:def 4,
XBOOLE_0: 3;
end;
hence thesis by
A3,
A4,
A6,
A8,
A9,
A11,
FUNCT_1: 2;
end;
hence thesis;
end;
end;
A21: Y
c= (
union X)
proof
let y be
object;
assume y
in Y;
then
reconsider y as
Element of Y;
consider a be
Subset of Y such that
A22: y
in a and
A23: ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & a
= (
Intersect F) & a
<>
{} by
Th1;
a
in X by
A1,
A23;
hence thesis by
A22,
TARSKI:def 4;
end;
A24: (
union X)
c= Y
proof
let a be
object;
assume a
in (
union X);
then
consider p be
set such that
A25: a
in p and
A26: p
in X by
TARSKI:def 4;
ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & p
= (
Intersect F) & p
<>
{} by
A1,
A26;
hence thesis by
A25;
end;
take X;
X
c= (
bool Y) by
A1;
then
reconsider X as
Subset-Family of Y;
X is
a_partition of Y by
A24,
A2,
A21,
EQREL_1:def 4,
XBOOLE_0:def 10;
hence thesis by
A1;
end;
uniqueness
proof
let A1,A2 be
a_partition of Y such that
A27: for x be
set holds x
in A1 iff ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & x
= (
Intersect F) & x
<>
{} and
A28: for x be
set holds x
in A2 iff ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & x
= (
Intersect F) & x
<>
{} ;
now
let y be
object;
y
in A1 iff ex h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) & y
= (
Intersect F) & y
<>
{} by
A27;
hence y
in A1 iff y
in A2 by
A28;
end;
hence thesis by
TARSKI: 2;
end;
end
definition
let Y;
let G be
Subset of (
PARTITIONS Y), b be
set;
::
BVFUNC_2:def2
pred b
is_upper_min_depend_of G means (for d be
a_partition of Y st d
in G holds b
is_a_dependent_set_of d) & for e be
set st e
c= b & (for d be
a_partition of Y st d
in G holds e
is_a_dependent_set_of d) holds e
= b;
end
theorem ::
BVFUNC_2:2
Th2: for y be
Element of Y st G
<>
{} holds ex X be
Subset of Y st y
in X & X
is_upper_min_depend_of G
proof
let y be
Element of Y;
defpred
P[
set] means y
in $1 & for d be
a_partition of Y st d
in G holds $1
is_a_dependent_set_of d;
reconsider XX = { X where X be
Subset of Y :
P[X] } as
Subset-Family of Y from
DOMAIN_1:sch 7;
reconsider XX as
Subset-Family of Y;
assume G
<>
{} ;
then
consider g be
object such that
A1: g
in G by
XBOOLE_0:def 1;
reconsider g as
a_partition of Y by
A1,
PARTIT1:def 3;
A2: (
union g)
= Y by
EQREL_1:def 4;
take (
Intersect XX);
Y
c= Y & for d be
a_partition of Y st d
in G holds Y
is_a_dependent_set_of d by
PARTIT1: 7;
then
A3: Y
in XX;
A4: for A be
set st A
in g holds A
<>
{} & for B be
set st B
in g holds A
= B or A
misses B by
EQREL_1:def 4;
A5: for e be
set st e
c= (
Intersect XX) & (for d be
a_partition of Y st d
in G holds e
is_a_dependent_set_of d) holds e
= (
Intersect XX)
proof
let e be
set;
assume that
A6: e
c= (
Intersect XX) and
A7: for d be
a_partition of Y st d
in G holds e
is_a_dependent_set_of d;
consider Ad be
set such that
A8: Ad
c= g and
A9: Ad
<>
{} and
A10: e
= (
union Ad) by
A1,
A7,
PARTIT1:def 1;
A11: e
c= Y by
A2,
A8,
A10,
ZFMISC_1: 77;
per cases ;
suppose y
in e;
then
A12: e
in XX by
A7,
A11;
(
Intersect XX)
c= e
proof
let X1 be
object;
assume X1
in (
Intersect XX);
then X1
in (
meet XX) by
A3,
SETFAM_1:def 9;
hence thesis by
A12,
SETFAM_1:def 1;
end;
hence thesis by
A6,
XBOOLE_0:def 10;
end;
suppose
A13: not y
in e;
reconsider e as
Subset of Y by
A2,
A8,
A10,
ZFMISC_1: 77;
(e
` )
= (Y
\ e) by
SUBSET_1:def 4;
then
A14: y
in (e
` ) by
A13,
XBOOLE_0:def 5;
e
<> Y by
A13;
then for d be
a_partition of Y st d
in G holds (e
` )
is_a_dependent_set_of d by
A7,
PARTIT1: 10;
then
A15: (e
` )
in XX by
A14;
A16: (
Intersect XX)
c= (e
` )
proof
let X1 be
object;
assume X1
in (
Intersect XX);
then X1
in (
meet XX) by
A3,
SETFAM_1:def 9;
hence thesis by
A15,
SETFAM_1:def 1;
end;
A17: (e
/\ e)
= e;
consider ad be
object such that
A18: ad
in Ad by
A9,
XBOOLE_0:def 1;
reconsider ad as
set by
TARSKI: 1;
(e
/\ (e
` ))
=
{} by
SUBSET_1: 24,
XBOOLE_0:def 7;
then (e
/\ (
Intersect XX))
=
{} by
A16,
XBOOLE_1: 3,
XBOOLE_1: 26;
then e
c=
{} by
A6,
A17,
XBOOLE_1: 26;
then (
union Ad)
=
{} by
A10;
then
A19: ad
c=
{} by
A18,
ZFMISC_1: 74;
ad
<>
{} by
A4,
A8,
A18;
hence thesis by
A19;
end;
end;
for X1 be
set st X1
in XX holds y
in X1
proof
let X1 be
set;
assume X1
in XX;
then ex X be
Subset of Y st X
= X1 & y
in X & for d be
a_partition of Y st d
in G holds X
is_a_dependent_set_of d;
hence thesis;
end;
then
A20: y
in (
meet XX) by
A3,
SETFAM_1:def 1;
then
A21: (
Intersect XX)
<>
{} by
SETFAM_1:def 9;
for d be
a_partition of Y st d
in G holds (
Intersect XX)
is_a_dependent_set_of d
proof
let d be
a_partition of Y;
assume
A22: d
in G;
for X1 be
set st X1
in XX holds X1
is_a_dependent_set_of d
proof
let X1 be
set;
assume X1
in XX;
then ex X be
Subset of Y st X
= X1 & y
in X & for d be
a_partition of Y st d
in G holds X
is_a_dependent_set_of d;
hence thesis by
A22;
end;
hence thesis by
A21,
PARTIT1: 8;
end;
hence thesis by
A3,
A20,
A5,
SETFAM_1:def 9;
end;
definition
let Y;
let G be
Subset of (
PARTITIONS Y);
::
BVFUNC_2:def3
func
'\/' G ->
a_partition of Y means
:
Def3: for x be
set holds x
in it iff x
is_upper_min_depend_of G if G
<>
{}
otherwise it
= (
%I Y);
existence
proof
thus G
<>
{} implies ex X be
a_partition of Y st for x be
set holds x
in X iff x
is_upper_min_depend_of G
proof
defpred
P[
set] means $1
is_upper_min_depend_of G;
consider X be
set such that
A1: for x be
set holds x
in X iff x
in (
bool Y) &
P[x] from
XFAMILY:sch 1;
A2: (
union X)
c= Y
proof
let y be
object;
assume y
in (
union X);
then
consider a be
set such that
A3: y
in a and
A4: a
in X by
TARSKI:def 4;
a
in (
bool Y) by
A1,
A4;
hence thesis by
A3;
end;
assume
A5: G
<>
{} ;
then
consider g be
object such that
A6: g
in G by
XBOOLE_0:def 1;
reconsider g as
a_partition of Y by
A6,
PARTIT1:def 3;
A7: (
union g)
= Y by
EQREL_1:def 4;
A8: for x be
set holds x
in X iff x
is_upper_min_depend_of G
proof
let x be
set;
for x be
set holds x
is_upper_min_depend_of G implies x
in (
bool Y)
proof
let x be
set;
assume x
is_upper_min_depend_of G;
then ex A be
set st A
c= g & A
<>
{} & x
= (
union A) by
A6,
PARTIT1:def 1;
then x
c= (
union g) by
ZFMISC_1: 77;
hence thesis by
A7;
end;
hence thesis by
A1;
end;
A9: Y
c= (
union X)
proof
let y be
object;
assume y
in Y;
then
reconsider y as
Element of Y;
consider a be
Subset of Y such that
A10: y
in a and
A11: a
is_upper_min_depend_of G by
A5,
Th2;
a
in X by
A8,
A11;
hence thesis by
A10,
TARSKI:def 4;
end;
A12: for A be
set st A
in g holds A
<>
{} & for B be
set st B
in g holds A
= B or A
misses B by
EQREL_1:def 4;
A13: for A be
Subset of Y st A
in X holds A
<>
{} & for B be
Subset of Y st B
in X holds A
= B or A
misses B
proof
let A be
Subset of Y;
assume A
in X;
then
A14: A
is_upper_min_depend_of G by
A8;
then
consider Aa be
set such that
A15: Aa
c= g and
A16: Aa
<>
{} and
A17: A
= (
union Aa) by
A6,
PARTIT1:def 1;
consider aa be
object such that
A18: aa
in Aa by
A16,
XBOOLE_0:def 1;
reconsider aa as
set by
TARSKI: 1;
A19: aa
c= (
union Aa) by
A18,
ZFMISC_1: 74;
aa
<>
{} by
A12,
A15,
A18;
hence A
<>
{} by
A17,
A19;
let B be
Subset of Y;
assume B
in X;
then
A20: B
is_upper_min_depend_of G by
A8;
now
assume
A21: A
meets B;
A22: for d be
a_partition of Y st d
in G holds (A
/\ B)
is_a_dependent_set_of d
proof
let d be
a_partition of Y;
assume d
in G;
then A
is_a_dependent_set_of d & B
is_a_dependent_set_of d by
A14,
A20;
hence thesis by
A21,
PARTIT1: 9;
end;
A23: (A
/\ B)
= B by
A20,
A22,
XBOOLE_1: 17;
A24: B
c= A by
A23,
XBOOLE_0:def 4;
A25: (A
/\ B)
= A by
A14,
A22,
XBOOLE_1: 17;
A
c= B by
A25,
XBOOLE_0:def 4;
hence A
= B by
A24,
XBOOLE_0:def 10;
end;
hence thesis;
end;
take X;
X
c= (
bool Y) by
A1;
then
reconsider X as
Subset-Family of Y;
X is
a_partition of Y by
A9,
A13,
A2,
EQREL_1:def 4,
XBOOLE_0:def 10;
hence thesis by
A8;
end;
thus thesis;
end;
uniqueness
proof
let A1,A2 be
a_partition of Y;
now
assume that G
<>
{} and
A26: for x be
set holds x
in A1 iff x
is_upper_min_depend_of G and
A27: for x be
set holds x
in A2 iff x
is_upper_min_depend_of G;
for y be
object holds y
in A1 iff y
in A2 by
A27,
A26;
hence A1
= A2 by
TARSKI: 2;
end;
hence thesis;
end;
consistency ;
end
theorem ::
BVFUNC_2:3
for G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y st PA
in G holds PA
'>' (
'/\' G)
proof
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume
A1: PA
in G;
for x be
set st x
in (
'/\' G) holds ex a be
set st a
in PA & x
c= a
proof
let x be
set;
assume x
in (
'/\' G);
then
consider h be
Function, F be
Subset-Family of Y such that
A2: (
dom h)
= G and
A3: (
rng h)
= F and
A4: for d be
set st d
in G holds (h
. d)
in d and
A5: x
= (
Intersect F) and x
<>
{} by
Def1;
set a = (h
. PA);
A6: a
in PA by
A1,
A4;
A7: a
in (
rng h) by
A1,
A2,
FUNCT_1:def 3;
then (
Intersect F)
= (
meet F) by
A3,
SETFAM_1:def 9;
hence thesis by
A3,
A5,
A6,
A7,
SETFAM_1: 3;
end;
hence thesis by
SETFAM_1:def 2;
end;
theorem ::
BVFUNC_2:4
for G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y st PA
in G holds PA
'<' (
'\/' G)
proof
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume
A1: PA
in G;
for a be
set st a
in PA holds ex b be
set st b
in (
'\/' G) & a
c= b
proof
let a be
set;
set x = the
Element of a;
A2: (
union (
'\/' G))
= Y by
EQREL_1:def 4;
assume
A3: a
in PA;
then
A4: a
<>
{} by
EQREL_1:def 4;
then x
in Y by
A3,
TARSKI:def 3;
then
consider b be
set such that
A5: x
in b and
A6: b
in (
'\/' G) by
A2,
TARSKI:def 4;
b
is_upper_min_depend_of G by
A1,
A6,
Def3;
then
consider B be
set such that
A7: B
c= PA and B
<>
{} and
A8: b
= (
union B) by
A1,
PARTIT1:def 1;
a
in B
proof
consider u be
set such that
A9: x
in u and
A10: u
in B by
A5,
A8,
TARSKI:def 4;
A11: (a
/\ u)
<>
{} by
A4,
A9,
XBOOLE_0:def 4;
u
in PA by
A7,
A10;
hence thesis by
A3,
A10,
A11,
EQREL_1:def 4,
XBOOLE_0:def 7;
end;
hence thesis by
A6,
A8,
ZFMISC_1: 74;
end;
hence thesis by
SETFAM_1:def 2;
end;
begin
definition
let Y;
let G be
Subset of (
PARTITIONS Y);
::
BVFUNC_2:def4
attr G is
generating means (
'/\' G)
= (
%I Y);
end
definition
let Y;
let G be
Subset of (
PARTITIONS Y);
::
BVFUNC_2:def5
attr G is
independent means for h be
Function, F be
Subset-Family of Y st (
dom h)
= G & (
rng h)
= F & (for d be
set st d
in G holds (h
. d)
in d) holds (
Intersect F)
<>
{} ;
end
definition
let Y;
let G be
Subset of (
PARTITIONS Y);
::
BVFUNC_2:def6
pred G
is_a_coordinate means G is
independent
generating;
end
definition
let Y;
let PA be
a_partition of Y;
:: original:
{
redefine
func
{PA} ->
Subset of (
PARTITIONS Y) ;
coherence
proof
PA
in (
PARTITIONS Y) by
PARTIT1:def 3;
hence thesis by
ZFMISC_1: 31;
end;
end
definition
let Y;
let PA be
a_partition of Y;
let G be
Subset of (
PARTITIONS Y);
::
BVFUNC_2:def7
func
CompF (PA,G) ->
a_partition of Y equals (
'/\' (G
\
{PA}));
correctness ;
end
definition
let Y;
let a be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y;
::
BVFUNC_2:def8
pred a
is_independent_of PA,G means a
is_dependent_of (
CompF (PA,G));
end
definition
let Y;
let a be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y;
::
BVFUNC_2:def9
func
All (a,PA,G) ->
Function of Y,
BOOLEAN equals (
B_INF (a,(
CompF (PA,G))));
correctness ;
end
definition
let Y;
let a be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y;
::
BVFUNC_2:def10
func
Ex (a,PA,G) ->
Function of Y,
BOOLEAN equals (
B_SUP (a,(
CompF (PA,G))));
correctness ;
end
theorem ::
BVFUNC_2:5
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
All (a,PA,G))
is_dependent_of (
CompF (PA,G))
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let F be
set;
assume
A1: F
in (
CompF (PA,G));
thus for x1,x2 be
set st x1
in F & x2
in F holds ((
All (a,PA,G))
. x1)
= ((
All (a,PA,G))
. x2)
proof
let x1,x2 be
set;
assume
A2: x1
in F & x2
in F;
then
reconsider x1, x2 as
Element of Y by
A1;
A3: x2
in (
EqClass (x2,(
CompF (PA,G)))) by
EQREL_1:def 6;
F
= (
EqClass (x2,(
CompF (PA,G)))) or F
misses (
EqClass (x2,(
CompF (PA,G)))) by
A1,
EQREL_1:def 4;
then
A4: (
EqClass (x1,(
CompF (PA,G))))
= (
EqClass (x2,(
CompF (PA,G)))) by
A2,
A3,
EQREL_1:def 6,
XBOOLE_0: 3;
per cases ;
suppose
A5: (for x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
then ((
All (a,PA,G))
. x2)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
A5,
BVFUNC_1:def 16;
end;
suppose (for x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
hence thesis by
A4;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
hence thesis by
A4;
end;
suppose
A6: not (for x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then ((
All (a,PA,G))
. x2)
=
FALSE by
BVFUNC_1:def 16;
hence thesis by
A6,
BVFUNC_1:def 16;
end;
end;
end;
theorem ::
BVFUNC_2:6
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
Ex (a,PA,G))
is_dependent_of (
CompF (PA,G))
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let F be
set;
assume
A1: F
in (
CompF (PA,G));
thus for x1,x2 be
set st x1
in F & x2
in F holds ((
Ex (a,PA,G))
. x1)
= ((
Ex (a,PA,G))
. x2)
proof
let x1,x2 be
set;
assume
A2: x1
in F & x2
in F;
then
reconsider x1, x2 as
Element of Y by
A1;
A3: x2
in (
EqClass (x2,(
CompF (PA,G)))) by
EQREL_1:def 6;
F
= (
EqClass (x2,(
CompF (PA,G)))) or F
misses (
EqClass (x2,(
CompF (PA,G)))) by
A1,
EQREL_1:def 4;
then
A4: (
EqClass (x1,(
CompF (PA,G))))
= (
EqClass (x2,(
CompF (PA,G)))) by
A2,
A3,
EQREL_1:def 6,
XBOOLE_0: 3;
per cases ;
suppose
A5: (ex x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then ((
B_SUP (a,(
CompF (PA,G))))
. x1)
=
TRUE by
BVFUNC_1:def 17;
hence thesis by
A5,
BVFUNC_1:def 17;
end;
suppose (ex x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
hence thesis by
A4;
end;
suppose not (ex x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
hence thesis by
A4;
end;
suppose
A6: not (ex x be
Element of Y st x
in (
EqClass (x1,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (x2,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (PA,G))))
. x1)
=
FALSE by
BVFUNC_1:def 17;
hence thesis by
A6,
BVFUNC_1:def 17;
end;
end;
end;
theorem ::
BVFUNC_2:7
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
All ((
I_el Y),PA,G))
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
for z be
Element of Y holds ((
All ((
I_el Y),PA,G))
. z)
=
TRUE
proof
let z be
Element of Y;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
I_el Y)
. x)
=
TRUE by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1:def 16;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_2:8
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
Ex ((
I_el Y),PA,G))
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
for z be
Element of Y holds ((
Ex ((
I_el Y),PA,G))
. z)
=
TRUE
proof
let z be
Element of Y;
z
in (
EqClass (z,(
CompF (PA,G)))) & ((
I_el Y)
. z)
=
TRUE by
BVFUNC_1:def 11,
EQREL_1:def 6;
hence thesis by
BVFUNC_1:def 17;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_2:9
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
All ((
O_el Y),PA,G))
= (
O_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
for z be
Element of Y holds ((
All ((
O_el Y),PA,G))
. z)
=
FALSE
proof
let z be
Element of Y;
z
in (
EqClass (z,(
CompF (PA,G)))) & ((
O_el Y)
. z)
=
FALSE by
BVFUNC_1:def 10,
EQREL_1:def 6;
hence thesis by
BVFUNC_1:def 16;
end;
hence thesis by
BVFUNC_1:def 10;
end;
theorem ::
BVFUNC_2:10
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
Ex ((
O_el Y),PA,G))
= (
O_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
for z be
Element of Y holds ((
Ex ((
O_el Y),PA,G))
. z)
=
FALSE
proof
let z be
Element of Y;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
O_el Y)
. x)
<>
TRUE by
BVFUNC_1:def 10;
hence thesis by
BVFUNC_1:def 17;
end;
hence thesis by
BVFUNC_1:def 10;
end;
theorem ::
BVFUNC_2:11
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
All (a,PA,G))
'<' a
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((
All (a,PA,G))
. z)
=
TRUE ;
hence (a
. z)
=
TRUE by
A1,
BVFUNC_1:def 16;
end;
theorem ::
BVFUNC_2:12
for a be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds a
'<' (
Ex (a,PA,G))
proof
let a be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (a
. z)
=
TRUE ;
hence ((
Ex (a,PA,G))
. z)
=
TRUE by
A1,
BVFUNC_1:def 17;
end;
theorem ::
BVFUNC_2:13
for a,b be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds ((
All (a,PA,G))
'or' (
All (b,PA,G)))
'<' (
All ((a
'or' b),PA,G))
proof
let a,b be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let z be
Element of Y;
assume (((
All (a,PA,G))
'or' (
All (b,PA,G)))
. z)
=
TRUE ;
then
A1: (((
All (a,PA,G))
. z)
'or' ((
All (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 4;
A2: ((
All (b,PA,G))
. z)
=
TRUE or ((
All (b,PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A1,
A2,
BINARITH: 3;
case
A3: ((
All (a,PA,G))
. z)
=
TRUE ;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'or' b)
. x)
=
TRUE
proof
let x be
Element of Y;
assume
A4: x
in (
EqClass (z,(
CompF (PA,G))));
((a
'or' b)
. x)
= ((a
. x)
'or' (b
. x)) by
BVFUNC_1:def 4
.= (
TRUE
'or' (b
. x)) by
A3,
A4,
BVFUNC_1:def 16
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 16;
end;
case
A5: ((
All (b,PA,G))
. z)
=
TRUE ;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'or' b)
. x)
=
TRUE
proof
let x be
Element of Y;
assume
A6: x
in (
EqClass (z,(
CompF (PA,G))));
((a
'or' b)
. x)
= ((a
. x)
'or' (b
. x)) by
BVFUNC_1:def 4
.= ((a
. x)
'or'
TRUE ) by
A5,
A6,
BVFUNC_1:def 16
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 16;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_2:14
for a,b be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds (
All ((a
'imp' b),PA,G))
'<' ((
All (a,PA,G))
'imp' (
All (b,PA,G)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let z be
Element of Y;
assume
A1: ((
All ((a
'imp' b),PA,G))
. z)
=
TRUE ;
A2: (((
All (a,PA,G))
'imp' (
All (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or' ((
All (b,PA,G))
. z)) by
BVFUNC_1:def 8;
per cases ;
suppose (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
then (((
All (a,PA,G))
'imp' (
All (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
suppose
A3: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: (b
. x1)
<>
TRUE ;
A6: (a
. x1)
=
TRUE by
A3,
A4;
((a
'imp' b)
. x1)
= ((
'not' (a
. x1))
'or' (b
. x1)) by
BVFUNC_1:def 8
.= ((
'not'
TRUE )
'or'
FALSE ) by
A5,
A6,
XBOOLEAN:def 3
.= (
FALSE
'or'
FALSE ) by
MARGREL1: 11
.=
FALSE ;
hence thesis by
A1,
A4,
BVFUNC_1:def 16;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
then (((
All (a,PA,G))
'imp' (
All (b,PA,G)))
. z)
= ((
'not' ((
All (a,PA,G))
. z))
'or'
TRUE ) by
A2,
BVFUNC_1:def 16
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then (((
All (a,PA,G))
'imp' (
All (b,PA,G)))
. z)
= (
TRUE
'or' ((
All (b,PA,G))
. z)) by
A2,
BVFUNC_1:def 16,
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
end;
theorem ::
BVFUNC_2:15
for a,b be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds (
Ex ((a
'&' b),PA,G))
'<' ((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
let z be
Element of Y;
assume ((
Ex ((a
'&' b),PA,G))
. z)
=
TRUE ;
then
consider x1 be
Element of Y such that
A1: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A2: ((a
'&' b)
. x1)
=
TRUE by
BVFUNC_1:def 17;
A3: ((a
. x1)
'&' (b
. x1))
=
TRUE by
A2,
MARGREL1:def 20;
then
A4: (b
. x1)
=
TRUE by
MARGREL1: 12;
(a
. x1)
=
TRUE by
A3,
MARGREL1: 12;
then
A5: ((
Ex (a,PA,G))
. z)
=
TRUE by
A1,
BVFUNC_1:def 17;
(((
Ex (a,PA,G))
'&' (
Ex (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'&' ((
Ex (b,PA,G))
. z)) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A1,
A4,
A5,
BVFUNC_1:def 17
.=
TRUE ;
hence thesis;
end;
theorem ::
BVFUNC_2:16
for a,b be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds ((
Ex (a,PA,G))
'xor' (
Ex (b,PA,G)))
'<' (
Ex ((a
'xor' b),PA,G))
proof
let a,b be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let z be
Element of Y;
A1: (((
Ex (a,PA,G))
'xor' (
Ex (b,PA,G)))
. z)
= (((
Ex (a,PA,G))
. z)
'xor' ((
Ex (b,PA,G))
. z)) by
BVFUNC_1:def 5
.= (((
'not' ((
Ex (a,PA,G))
. z))
'&' ((
Ex (b,PA,G))
. z))
'or' (((
Ex (a,PA,G))
. z)
'&' (
'not' ((
Ex (b,PA,G))
. z))));
A2: ((
'not' ((
Ex (a,PA,G))
. z))
'&' ((
Ex (b,PA,G))
. z))
=
TRUE or ((
'not' ((
Ex (a,PA,G))
. z))
'&' ((
Ex (b,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
A3: (
'not'
FALSE )
=
TRUE by
MARGREL1: 11;
assume
A4: (((
Ex (a,PA,G))
'xor' (
Ex (b,PA,G)))
. z)
=
TRUE ;
now
per cases by
A4,
A1,
A2,
BINARITH: 3;
case
A5: ((
'not' ((
Ex (a,PA,G))
. z))
'&' ((
Ex (b,PA,G))
. z))
=
TRUE ;
then ((
Ex (b,PA,G))
. z)
=
TRUE by
MARGREL1: 12;
then
consider x1 be
Element of Y such that
A6: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A7: (b
. x1)
=
TRUE by
BVFUNC_1:def 17;
(
'not' ((
Ex (a,PA,G))
. z))
=
TRUE by
A5,
MARGREL1: 12;
then (a
. x1)
<>
TRUE by
A6,
BVFUNC_1:def 17,
MARGREL1: 11;
then
A8: (a
. x1)
=
FALSE by
XBOOLEAN:def 3;
((a
'xor' b)
. x1)
= ((a
. x1)
'xor' (b
. x1)) by
BVFUNC_1:def 5
.= (
TRUE
'or'
FALSE ) by
A3,
A7,
A8
.=
TRUE by
BINARITH: 10;
hence thesis by
A6,
BVFUNC_1:def 17;
end;
case
A9: (((
Ex (a,PA,G))
. z)
'&' (
'not' ((
Ex (b,PA,G))
. z)))
=
TRUE ;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
MARGREL1: 12;
then
consider x1 be
Element of Y such that
A10: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A11: (a
. x1)
=
TRUE by
BVFUNC_1:def 17;
(
'not' ((
Ex (b,PA,G))
. z))
=
TRUE by
A9,
MARGREL1: 12;
then (b
. x1)
<>
TRUE by
A10,
BVFUNC_1:def 17,
MARGREL1: 11;
then
A12: (b
. x1)
=
FALSE by
XBOOLEAN:def 3;
((a
'xor' b)
. x1)
= ((a
. x1)
'xor' (b
. x1)) by
BVFUNC_1:def 5
.= (
FALSE
'or'
TRUE ) by
A3,
A11,
A12
.=
TRUE by
BINARITH: 10;
hence thesis by
A10,
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_2:17
for a,b be
Function of Y,
BOOLEAN , PA be
a_partition of Y holds ((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
'<' (
Ex ((a
'imp' b),PA,G))
proof
let a,b be
Function of Y,
BOOLEAN ;
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
. z)
=
TRUE ;
then
A2: ((
'not' ((
Ex (a,PA,G))
. z))
'or' ((
Ex (b,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
A3: (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE or (
'not' ((
Ex (a,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A2,
A3,
BINARITH: 3;
case (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE ;
then
A4: (a
. z)
<>
TRUE by
A1,
BVFUNC_1:def 17,
MARGREL1: 11;
((a
'imp' b)
. z)
= ((
'not' (a
. z))
'or' (b
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' (b
. z)) by
A4,
MARGREL1: 11,
XBOOLEAN:def 3
.=
TRUE by
BINARITH: 10;
hence thesis by
A1,
BVFUNC_1:def 17;
end;
case ((
Ex (b,PA,G))
. z)
=
TRUE ;
then
consider x1 be
Element of Y such that
A5: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A6: (b
. x1)
=
TRUE by
BVFUNC_1:def 17;
((a
'imp' b)
. x1)
= ((
'not' (a
. x1))
'or' (b
. x1)) by
BVFUNC_1:def 8
.=
TRUE by
A6,
BINARITH: 10;
hence thesis by
A5,
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
reserve a,u for
Function of Y,
BOOLEAN ;
theorem ::
BVFUNC_2:18
for PA be
a_partition of Y holds (
'not' (
All (a,PA,G)))
= (
Ex ((
'not' a),PA,G))
proof
let PA be
a_partition of Y;
let z be
Element of Y;
per cases ;
suppose
A1: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((
'not' a)
. x)
=
TRUE ;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: ((
'not' a)
. x1)
=
TRUE ;
(
'not' (a
. x1))
=
TRUE by
A3,
MARGREL1:def 19;
hence thesis by
A1,
A2,
MARGREL1: 11;
end;
suppose
A4: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((
'not' a)
. x)
=
TRUE );
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
then
A5: ((
'not' (
B_INF (a,(
CompF (PA,G)))))
. z)
= (
'not'
TRUE ) by
MARGREL1:def 19;
((
B_SUP ((
'not' a),(
CompF (PA,G))))
. z)
=
FALSE by
A4,
BVFUNC_1:def 17;
hence thesis by
A5,
MARGREL1: 11;
end;
suppose
A6: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((
'not' a)
. x)
=
TRUE ;
then ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then
A7: ((
'not' (
B_INF (a,(
CompF (PA,G)))))
. z)
= (
'not'
FALSE ) by
MARGREL1:def 19;
((
B_SUP ((
'not' a),(
CompF (PA,G))))
. z)
=
TRUE by
A6,
BVFUNC_1:def 17;
hence thesis by
A7,
MARGREL1: 11;
end;
suppose
A8: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((
'not' a)
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A9: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A10: (a
. x1)
<>
TRUE ;
((
'not' a)
. x1)
<>
TRUE by
A8,
A9;
then (
'not' (a
. x1))
<>
TRUE by
MARGREL1:def 19;
hence thesis by
A10,
MARGREL1: 11,
XBOOLEAN:def 3;
end;
end;
theorem ::
BVFUNC_2:19
for PA be
a_partition of Y holds (
'not' (
Ex (a,PA,G)))
= (
All ((
'not' a),PA,G))
proof
let PA be
a_partition of Y;
let z be
Element of Y;
per cases ;
suppose
A1: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
'not' a)
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then
consider x1 be
Element of Y such that
A2: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A3: (a
. x1)
=
TRUE ;
((
'not' a)
. x1)
= (
'not'
TRUE ) by
A3,
MARGREL1:def 19;
hence thesis by
A1,
A2,
MARGREL1: 11;
end;
suppose
A4: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
'not' a)
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then (
'not' ((
B_SUP (a,(
CompF (PA,G))))
. z))
=
TRUE by
BVFUNC_1:def 17,
MARGREL1: 11;
then ((
'not' (
B_SUP (a,(
CompF (PA,G)))))
. z)
=
TRUE by
MARGREL1:def 19;
hence thesis by
A4,
BVFUNC_1:def 16;
end;
suppose
A5: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
'not' a)
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then ((
B_SUP (a,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then
A6: ((
'not' (
B_SUP (a,(
CompF (PA,G)))))
. z)
= (
'not'
TRUE ) by
MARGREL1:def 19;
((
B_INF ((
'not' a),(
CompF (PA,G))))
. z)
=
FALSE by
A5,
BVFUNC_1:def 16;
hence thesis by
A6,
MARGREL1: 11;
end;
suppose
A7: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((
'not' a)
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A8: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A9: ((
'not' a)
. x1)
<>
TRUE ;
((
'not' a)
. x1)
=
FALSE by
A9,
XBOOLEAN:def 3;
then (
'not' (a
. x1))
=
FALSE by
MARGREL1:def 19;
hence thesis by
A7,
A8,
MARGREL1: 11;
end;
end;
theorem ::
BVFUNC_2:20
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((u
'imp' a),PA,G))
= (u
'imp' (
All (a,PA,G)))
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
A2: (u
'imp' (
All (a,PA,G)))
'<' (
All ((u
'imp' a),PA,G))
proof
let z be
Element of Y;
assume ((u
'imp' (
All (a,PA,G)))
. z)
=
TRUE ;
then
A3: ((
'not' (u
. z))
'or' ((
All (a,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
A4: ((
All (a,PA,G))
. z)
=
TRUE or ((
All (a,PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A3,
A4,
BINARITH: 3;
suppose
A5: ((
All (a,PA,G))
. z)
=
TRUE ;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((u
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
assume
A6: x
in (
EqClass (z,(
CompF (PA,G))));
((u
'imp' a)
. x)
= ((
'not' (u
. x))
'or' (a
. x)) by
BVFUNC_1:def 8
.= ((
'not' (u
. x))
'or'
TRUE ) by
A5,
A6,
BVFUNC_1:def 16
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 16;
end;
suppose
A7: ((
All (a,PA,G))
. z)
<>
TRUE & (
'not' (u
. z))
=
TRUE ;
A8: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((u
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((u
'imp' a)
. x)
= ((
'not' (u
. x))
'or' (a
. x)) & (u
. x)
= (u
. z) by
A1,
A8,
BVFUNC_1:def 8,
BVFUNC_1:def 15;
hence thesis by
A7,
BINARITH: 10;
end;
hence thesis by
BVFUNC_1:def 16;
end;
end;
hence thesis;
end;
(
All ((u
'imp' a),PA,G))
'<' (u
'imp' (
All (a,PA,G)))
proof
let z be
Element of Y;
assume
A9: ((
All ((u
'imp' a),PA,G))
. z)
=
TRUE ;
A10: ((u
'imp' (
All (a,PA,G)))
. z)
= ((
'not' (u
. z))
'or' ((
All (a,PA,G))
. z)) by
BVFUNC_1:def 8;
per cases ;
suppose for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
then ((
All (a,PA,G))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
A10,
BINARITH: 10;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (
'not' (u
. x))
=
TRUE ;
then (
'not' (u
. z))
=
TRUE by
EQREL_1:def 6;
hence thesis by
A10,
BINARITH: 10;
end;
suppose
A11: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (
'not' (u
. x))
=
TRUE );
then
consider x1 be
Element of Y such that
A12: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A13: (
'not' (u
. x1))
<>
TRUE ;
consider x2 be
Element of Y such that
A14: x2
in (
EqClass (z,(
CompF (PA,G)))) and
A15: (a
. x2)
<>
TRUE by
A11;
(u
. x1)
= (u
. x2) by
A1,
A12,
A14,
BVFUNC_1:def 15;
then
A16: (u
. x2)
=
TRUE by
A13,
MARGREL1: 11,
XBOOLEAN:def 3;
(a
. x2)
=
FALSE by
A15,
XBOOLEAN:def 3;
then ((u
'imp' a)
. x2)
= ((
'not'
TRUE )
'or'
FALSE ) by
A16,
BVFUNC_1:def 8;
then ((u
'imp' a)
. x2)
= (
FALSE
'or'
FALSE ) by
MARGREL1: 11
.=
FALSE ;
hence thesis by
A9,
A14,
BVFUNC_1:def 16;
end;
end;
hence thesis by
A2,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_2:21
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((a
'imp' u),PA,G))
= ((
Ex (a,PA,G))
'imp' u)
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
A2: ((
Ex (a,PA,G))
'imp' u)
'<' (
All ((a
'imp' u),PA,G))
proof
let z be
Element of Y;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (((
Ex (a,PA,G))
'imp' u)
. z)
=
TRUE ;
then
A4: ((
'not' ((
Ex (a,PA,G))
. z))
'or' (u
. z))
=
TRUE by
BVFUNC_1:def 8;
A5: (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE or (
'not' ((
Ex (a,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A4,
A5,
BINARITH: 3,
XBOOLEAN:def 3;
case
A6: (u
. z)
=
TRUE ;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' u)
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((a
'imp' u)
. x)
= ((
'not' (a
. x))
'or' (u
. x)) & (u
. x)
= (u
. z) by
A1,
A3,
BVFUNC_1:def 8,
BVFUNC_1:def 15;
hence thesis by
A6,
BINARITH: 10;
end;
hence thesis by
BVFUNC_1:def 16;
end;
case
A7: (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE & (u
. z)
=
FALSE ;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((a
'imp' u)
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then (a
. x)
<>
TRUE by
A7,
BVFUNC_1:def 17,
MARGREL1: 11;
then ((a
'imp' u)
. x)
= ((
'not' (a
. x))
'or' (u
. x)) & (a
. x)
=
FALSE by
BVFUNC_1:def 8,
XBOOLEAN:def 3;
then ((a
'imp' u)
. x)
= (
TRUE
'or' (u
. x)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 16;
end;
end;
hence thesis;
end;
(
All ((a
'imp' u),PA,G))
'<' ((
Ex (a,PA,G))
'imp' u)
proof
let z be
Element of Y;
assume
A8: ((
All ((a
'imp' u),PA,G))
. z)
=
TRUE ;
A9: (((
Ex (a,PA,G))
'imp' u)
. z)
= ((
'not' ((
Ex (a,PA,G))
. z))
'or' (u
. z)) by
BVFUNC_1:def 8;
per cases ;
suppose for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ;
then (((
Ex (a,PA,G))
'imp' u)
. z)
= ((
'not' ((
Ex (a,PA,G))
. z))
'or'
TRUE ) by
A9,
EQREL_1:def 6
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
suppose
A10: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then
consider x1 be
Element of Y such that
A11: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A12: (u
. x1)
<>
TRUE ;
consider x2 be
Element of Y such that
A13: x2
in (
EqClass (z,(
CompF (PA,G)))) and
A14: (a
. x2)
=
TRUE by
A10;
A15: (u
. x1)
= (u
. x2) by
A1,
A11,
A13,
BVFUNC_1:def 15;
((a
'imp' u)
. x2)
= ((
'not' (a
. x2))
'or' (u
. x2)) by
BVFUNC_1:def 8
.= ((
'not'
TRUE )
'or'
FALSE ) by
A12,
A14,
A15,
XBOOLEAN:def 3
.= (
FALSE
'or'
FALSE ) by
MARGREL1: 11
.=
FALSE ;
hence thesis by
A8,
A13,
BVFUNC_1:def 16;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then (((
Ex (a,PA,G))
'imp' u)
. z)
= ((
'not'
FALSE )
'or' (u
. z)) by
A9,
BVFUNC_1:def 17
.= (
TRUE
'or' (u
. z)) by
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
end;
hence thesis by
A2,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_2:22
Th22: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((u
'or' a),PA,G))
= (u
'or' (
All (a,PA,G)))
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
let z be
Element of Y;
A2: ((u
'or' (
B_INF (a,(
CompF (PA,G)))))
. z)
= ((u
. z)
'or' ((
B_INF (a,(
CompF (PA,G))))
. z)) by
BVFUNC_1:def 4;
per cases ;
suppose
A3: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
A4: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((u
'or' a)
. x)
=
TRUE
proof
let x be
Element of Y;
assume
A5: x
in (
EqClass (z,(
CompF (PA,G))));
((u
'or' a)
. x)
= ((u
. x)
'or' (a
. x)) by
BVFUNC_1:def 4
.= ((u
. x)
'or'
TRUE ) by
A3,
A5
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
((
B_INF (a,(
CompF (PA,G))))
. z)
=
TRUE by
A3,
BVFUNC_1:def 16;
then ((u
'or' (
B_INF (a,(
CompF (PA,G)))))
. z)
=
TRUE by
A2,
BINARITH: 10;
hence thesis by
A4,
BVFUNC_1:def 16;
end;
suppose
A6: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ;
A7: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((u
'or' a)
. x)
=
TRUE
proof
let x be
Element of Y;
assume
A8: x
in (
EqClass (z,(
CompF (PA,G))));
((u
'or' a)
. x)
= ((u
. x)
'or' (a
. x)) by
BVFUNC_1:def 4
.= (
TRUE
'or' (a
. x)) by
A6,
A8
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
((u
'or' (
B_INF (a,(
CompF (PA,G)))))
. z)
= (
TRUE
'or' ((
B_INF (a,(
CompF (PA,G))))
. z)) by
A2,
A6,
EQREL_1:def 6;
then ((u
'or' (
B_INF (a,(
CompF (PA,G)))))
. z)
=
TRUE by
BINARITH: 10;
hence thesis by
A7,
BVFUNC_1:def 16;
end;
suppose
A9: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE );
then
consider x2 be
Element of Y such that
A10: x2
in (
EqClass (z,(
CompF (PA,G)))) and
A11: (u
. x2)
<>
TRUE ;
consider x1 be
Element of Y such that
A12: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A13: (a
. x1)
<>
TRUE by
A9;
(u
. x1)
= (u
. x2) by
A1,
A12,
A10,
BVFUNC_1:def 15;
then
A14: (u
. x1)
=
FALSE by
A11,
XBOOLEAN:def 3;
A15: ((
B_INF (a,(
CompF (PA,G))))
. z)
=
FALSE by
A9,
BVFUNC_1:def 16;
z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
then
A16: (u
. x1)
= (u
. z) by
A1,
A12,
BVFUNC_1:def 15;
(a
. x1)
=
FALSE by
A13,
XBOOLEAN:def 3;
then ((u
'or' a)
. x1)
= (
FALSE
'or'
FALSE ) by
A14,
BVFUNC_1:def 4;
hence thesis by
A2,
A15,
A12,
A14,
A16,
BVFUNC_1:def 16;
end;
end;
theorem ::
BVFUNC_2:23
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((a
'or' u),PA,G))
= ((
All (a,PA,G))
'or' u) by
Th22;
theorem ::
BVFUNC_2:24
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((a
'or' u),PA,G))
'<' ((
Ex (a,PA,G))
'or' u)
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
let z be
Element of Y;
assume
A2: ((
All ((a
'or' u),PA,G))
. z)
=
TRUE ;
A3: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE or (u
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((a
'or' u)
. x)
=
TRUE by
A2,
BVFUNC_1:def 16;
then
A4: ((a
. x)
'or' (u
. x))
=
TRUE by
BVFUNC_1:def 4;
(u
. x)
=
TRUE or (u
. x)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A4,
BINARITH: 3;
end;
A5: (((
Ex (a,PA,G))
'or' u)
. z)
= (((
Ex (a,PA,G))
. z)
'or' (u
. z)) by
BVFUNC_1:def 4;
per cases ;
suppose for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ;
then (((
Ex (a,PA,G))
'or' u)
. z)
= (((
Ex (a,PA,G))
. z)
'or'
TRUE ) by
A5,
EQREL_1:def 6
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then (((
Ex (a,PA,G))
'or' u)
. z)
= (
TRUE
'or' (u
. z)) by
A5,
BVFUNC_1:def 17
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
suppose
A6: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
A7: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
A8: (a
. z)
<>
TRUE by
A6,
EQREL_1:def 6;
consider x1 be
Element of Y such that
A9: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A10: (u
. x1)
<>
TRUE by
A6;
(u
. x1)
= (u
. z) by
A1,
A7,
A9,
BVFUNC_1:def 15;
hence thesis by
A3,
A8,
A10,
EQREL_1:def 6;
end;
end;
theorem ::
BVFUNC_2:25
Th25: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((u
'&' a),PA,G))
= (u
'&' (
All (a,PA,G)))
proof
let PA be
a_partition of Y;
A1: (
All ((u
'&' a),PA,G))
'<' (u
'&' (
All (a,PA,G)))
proof
let z be
Element of Y;
assume
A2: ((
All ((u
'&' a),PA,G))
. z)
=
TRUE ;
A3: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then
A4: ((u
'&' a)
. x)
=
TRUE by
A2,
BVFUNC_1:def 16;
((u
'&' a)
. x)
= ((u
. x)
'&' (a
. x)) by
MARGREL1:def 20;
hence thesis by
A4,
MARGREL1: 12;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then
A5: ((u
'&' a)
. x)
=
TRUE by
A2,
BVFUNC_1:def 16;
((u
'&' a)
. x)
= ((u
. x)
'&' (a
. x)) by
MARGREL1:def 20;
hence thesis by
A5,
MARGREL1: 12;
end;
then
A6: ((u
'&' (
All (a,PA,G)))
. z)
= ((u
. z)
'&' ((
All (a,PA,G))
. z)) & ((
All (a,PA,G))
. z)
=
TRUE by
BVFUNC_1:def 16,
MARGREL1:def 20;
(u
. z)
=
TRUE by
A3,
EQREL_1:def 6;
hence thesis by
A6;
end;
assume
A7: u
is_independent_of (PA,G);
(u
'&' (
All (a,PA,G)))
'<' (
All ((u
'&' a),PA,G))
proof
let z be
Element of Y;
A8: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((u
'&' (
All (a,PA,G)))
. z)
=
TRUE ;
then
A9: ((u
. z)
'&' ((
All (a,PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then
A10: ((
All (a,PA,G))
. z)
=
TRUE by
MARGREL1: 12;
A11: (u
. z)
=
TRUE by
A9,
MARGREL1: 12;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds ((u
'&' a)
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then (a
. x)
=
TRUE & (u
. x)
= (u
. z) by
A7,
A10,
A8,
BVFUNC_1:def 15,
BVFUNC_1:def 16;
then ((u
'&' a)
. x)
= (
TRUE
'&'
TRUE ) by
A11,
MARGREL1:def 20
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 16;
end;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_2:26
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((a
'&' u),PA,G))
= ((
All (a,PA,G))
'&' u) by
Th25;
theorem ::
BVFUNC_2:27
for PA be
a_partition of Y holds (
All ((a
'&' u),PA,G))
'<' ((
Ex (a,PA,G))
'&' u)
proof
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume
A2: ((
All ((a
'&' u),PA,G))
. z)
=
TRUE ;
A3: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE & (u
. x)
=
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (PA,G))));
then ((a
'&' u)
. x)
=
TRUE by
A2,
BVFUNC_1:def 16;
then ((a
. x)
'&' (u
. x))
=
TRUE by
MARGREL1:def 20;
hence thesis by
MARGREL1: 12;
end;
A4: (((
Ex (a,PA,G))
'&' u)
. z)
= (((
Ex (a,PA,G))
. z)
'&' (u
. z)) by
MARGREL1:def 20;
per cases ;
suppose
A5: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ;
now
per cases ;
suppose ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
BVFUNC_1:def 17;
hence (((
Ex (a,PA,G))
'&' u)
. z)
= (
TRUE
'&'
TRUE ) by
A4,
A5,
EQREL_1:def 6
.=
TRUE ;
end;
suppose not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE );
then (a
. z)
<>
TRUE by
EQREL_1:def 6;
hence thesis by
A3,
A1;
end;
end;
hence thesis;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE );
hence thesis by
A3;
end;
end;
theorem ::
BVFUNC_2:28
Th28: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((u
'xor' a),PA,G))
'<' (u
'xor' (
All (a,PA,G)))
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
let z be
Element of Y;
assume
A2: ((
All ((u
'xor' a),PA,G))
. z)
=
TRUE ;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
A4: (
'not'
FALSE )
=
TRUE & ((u
'xor' (
All (a,PA,G)))
. z)
= (((
All (a,PA,G))
. z)
'xor' (u
. z)) by
BVFUNC_1:def 5,
MARGREL1: 11;
per cases ;
suppose (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
then
A5: (u
. z)
=
TRUE & (a
. z)
=
TRUE by
EQREL_1:def 6;
A6: (
FALSE
'&'
TRUE )
=
FALSE by
MARGREL1: 12;
((u
'xor' a)
. z)
= ((a
. z)
'xor' (u
. z)) by
BVFUNC_1:def 5
.=
FALSE by
A5,
A6,
MARGREL1: 11;
hence thesis by
A2,
A3,
BVFUNC_1:def 16;
end;
suppose
A7: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A8: x1
in (
EqClass (z,(
CompF (PA,G)))) and (a
. x1)
<>
TRUE ;
A9: (u
. x1)
=
TRUE by
A7,
A8;
A10: ((
All (a,PA,G))
. z)
=
FALSE by
A7,
BVFUNC_1:def 16;
(u
. z)
= (u
. x1) by
A1,
A3,
A8,
BVFUNC_1:def 15;
then ((u
'xor' (
All (a,PA,G)))
. z)
= (
TRUE
'or'
FALSE ) by
A4,
A10,
A9
.=
TRUE by
BINARITH: 3;
hence thesis;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A11: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A12: (u
. x1)
<>
TRUE ;
now
per cases ;
suppose
A13: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
(u
. z)
= (u
. x1) by
A1,
A3,
A11,
BVFUNC_1:def 15;
then
A14: (u
. z)
=
FALSE by
A12,
XBOOLEAN:def 3;
((
All (a,PA,G))
. z)
=
TRUE by
A13,
BVFUNC_1:def 16;
then ((u
'xor' (
All (a,PA,G)))
. z)
= (
FALSE
'or'
TRUE ) by
A4,
A14
.=
TRUE by
BINARITH: 3;
hence thesis;
end;
suppose not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then
consider x2 be
Element of Y such that
A15: x2
in (
EqClass (z,(
CompF (PA,G)))) and
A16: (a
. x2)
<>
TRUE ;
A17: (a
. x2)
=
FALSE by
A16,
XBOOLEAN:def 3;
(u
. x1)
= (u
. x2) by
A1,
A11,
A15,
BVFUNC_1:def 15;
then
A18: (u
. x2)
=
FALSE by
A12,
XBOOLEAN:def 3;
((u
'xor' a)
. x2)
= ((a
. x2)
'xor' (u
. x2)) by
BVFUNC_1:def 5
.=
FALSE by
A18,
A17,
MARGREL1: 12;
hence thesis by
A2,
A15,
BVFUNC_1:def 16;
end;
end;
hence thesis;
end;
end;
theorem ::
BVFUNC_2:29
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((a
'xor' u),PA,G))
'<' ((
All (a,PA,G))
'xor' u) by
Th28;
theorem ::
BVFUNC_2:30
Th30: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((u
'eqv' a),PA,G))
'<' (u
'eqv' (
All (a,PA,G)))
proof
let PA be
a_partition of Y;
A1: (
'not'
FALSE )
=
TRUE by
MARGREL1: 11;
assume
A2: u
is_independent_of (PA,G);
let z be
Element of Y;
assume
A3: ((
All ((u
'eqv' a),PA,G))
. z)
=
TRUE ;
A4: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
per cases ;
suppose (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
then
A5: ((
All (a,PA,G))
. z)
=
TRUE & (u
. z)
=
TRUE by
BVFUNC_1:def 16,
EQREL_1:def 6;
((u
'eqv' (
All (a,PA,G)))
. z)
= (
'not' ((u
. z)
'xor' ((
All (a,PA,G))
. z))) by
BVFUNC_1:def 9
.=
TRUE by
A1,
A5,
MARGREL1: 13;
hence thesis;
end;
suppose
A6: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A7: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A8: (a
. x1)
<>
TRUE ;
A9: (u
. x1)
=
TRUE by
A6,
A7;
A10: (a
. x1)
=
FALSE by
A8,
XBOOLEAN:def 3;
((u
'eqv' a)
. x1)
= (
'not' ((u
. x1)
'xor' (a
. x1))) by
BVFUNC_1:def 9
.= (
'not' (
FALSE
'or'
TRUE )) by
A1,
A9,
A10
.=
FALSE by
BINARITH: 3,
MARGREL1: 11;
hence thesis by
A3,
A7,
BVFUNC_1:def 16;
end;
suppose
A11: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ;
then
consider x1 be
Element of Y such that
A12: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A13: (u
. x1)
<>
TRUE ;
A14: (a
. x1)
=
TRUE by
A11,
A12;
A15: (u
. x1)
=
FALSE by
A13,
XBOOLEAN:def 3;
((u
'eqv' a)
. x1)
= (
'not' ((u
. x1)
'xor' (a
. x1))) by
BVFUNC_1:def 9
.= (
'not' (
TRUE
'or'
FALSE )) by
A1,
A15,
A14
.=
FALSE by
BINARITH: 3,
MARGREL1: 11;
hence thesis by
A3,
A12,
BVFUNC_1:def 16;
end;
suppose
A16: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A17: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A18: (u
. x1)
<>
TRUE ;
(u
. x1)
= (u
. z) by
A2,
A4,
A17,
BVFUNC_1:def 15;
then
A19: (u
. z)
=
FALSE by
A18,
XBOOLEAN:def 3;
A20: ((
All (a,PA,G))
. z)
=
FALSE by
A16,
BVFUNC_1:def 16;
((u
'eqv' (
All (a,PA,G)))
. z)
= (
'not' ((u
. z)
'xor' ((
All (a,PA,G))
. z))) by
BVFUNC_1:def 9
.=
TRUE by
A20,
A19,
MARGREL1: 11,
MARGREL1: 13;
hence thesis;
end;
end;
theorem ::
BVFUNC_2:31
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
All ((a
'eqv' u),PA,G))
'<' ((
All (a,PA,G))
'eqv' u) by
Th30;
theorem ::
BVFUNC_2:32
Th32: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
Ex ((u
'or' a),PA,G))
= (u
'or' (
Ex (a,PA,G)))
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
A2: (
Ex ((u
'or' a),PA,G))
'<' (u
'or' (
Ex (a,PA,G)))
proof
let z be
Element of Y;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
A4: ((u
'or' (
Ex (a,PA,G)))
. z)
= ((u
. z)
'or' ((
Ex (a,PA,G))
. z)) by
BVFUNC_1:def 4;
assume ((
Ex ((u
'or' a),PA,G))
. z)
=
TRUE ;
then
consider x1 be
Element of Y such that
A5: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A6: ((u
'or' a)
. x1)
=
TRUE by
BVFUNC_1:def 17;
A7: (u
. x1)
=
TRUE or (u
. x1)
=
FALSE by
XBOOLEAN:def 3;
A8: ((u
. x1)
'or' (a
. x1))
=
TRUE by
A6,
BVFUNC_1:def 4;
now
per cases by
A8,
A7,
BINARITH: 3;
case
A9: (u
. x1)
=
TRUE ;
(u
. z)
= (u
. x1) by
A1,
A5,
A3,
BVFUNC_1:def 15;
hence thesis by
A4,
A9,
BINARITH: 10;
end;
case (a
. x1)
=
TRUE ;
then ((u
'or' (
Ex (a,PA,G)))
. z)
= ((u
. z)
'or'
TRUE ) by
A5,
A4,
BVFUNC_1:def 17
.=
TRUE by
BINARITH: 10;
hence thesis;
end;
end;
hence thesis;
end;
(u
'or' (
Ex (a,PA,G)))
'<' (
Ex ((u
'or' a),PA,G))
proof
let z be
Element of Y;
A10: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((u
'or' (
Ex (a,PA,G)))
. z)
=
TRUE ;
then
A11: ((u
. z)
'or' ((
Ex (a,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 4;
A12: ((
Ex (a,PA,G))
. z)
=
TRUE or ((
Ex (a,PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A11,
A12,
BINARITH: 3;
case (u
. z)
=
TRUE ;
then ((u
'or' a)
. z)
= (
TRUE
'or' (a
. z)) by
BVFUNC_1:def 4
.=
TRUE by
BINARITH: 10;
hence thesis by
A10,
BVFUNC_1:def 17;
end;
case ((
Ex (a,PA,G))
. z)
=
TRUE ;
then
consider x1 be
Element of Y such that
A13: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A14: (a
. x1)
=
TRUE by
BVFUNC_1:def 17;
((u
'or' a)
. x1)
= ((u
. x1)
'or' (a
. x1)) by
BVFUNC_1:def 4
.=
TRUE by
A14,
BINARITH: 10;
hence thesis by
A13,
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
hence thesis by
A2,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_2:33
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
Ex ((a
'or' u),PA,G))
= ((
Ex (a,PA,G))
'or' u) by
Th32;
theorem ::
BVFUNC_2:34
Th34: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
Ex ((u
'&' a),PA,G))
= (u
'&' (
Ex (a,PA,G)))
proof
let PA be
a_partition of Y;
assume
A1: u
is_independent_of (PA,G);
A2: (
Ex ((u
'&' a),PA,G))
'<' (u
'&' (
Ex (a,PA,G)))
proof
let z be
Element of Y;
assume ((
Ex ((u
'&' a),PA,G))
. z)
=
TRUE ;
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: ((u
'&' a)
. x1)
=
TRUE by
BVFUNC_1:def 17;
A5: ((u
. x1)
'&' (a
. x1))
=
TRUE by
A4,
MARGREL1:def 20;
then (a
. x1)
=
TRUE by
MARGREL1: 12;
then
A6: ((
Ex (a,PA,G))
. z)
=
TRUE by
A3,
BVFUNC_1:def 17;
z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
then
A7: (u
. z)
= (u
. x1) by
A1,
A3,
BVFUNC_1:def 15;
(u
. x1)
=
TRUE by
A5,
MARGREL1: 12;
then ((u
'&' (
Ex (a,PA,G)))
. z)
= (
TRUE
'&'
TRUE ) by
A6,
A7,
MARGREL1:def 20
.=
TRUE ;
hence thesis;
end;
(u
'&' (
Ex (a,PA,G)))
'<' (
Ex ((u
'&' a),PA,G))
proof
let z be
Element of Y;
assume ((u
'&' (
Ex (a,PA,G)))
. z)
=
TRUE ;
then
A8: ((u
. z)
'&' ((
Ex (a,PA,G))
. z))
=
TRUE by
MARGREL1:def 20;
then
A9: (u
. z)
=
TRUE by
MARGREL1: 12;
((
Ex (a,PA,G))
. z)
=
TRUE by
A8,
MARGREL1: 12;
then
consider x1 be
Element of Y such that
A10: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A11: (a
. x1)
=
TRUE by
BVFUNC_1:def 17;
z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
then (u
. x1)
= (u
. z) by
A1,
A10,
BVFUNC_1:def 15;
then ((u
'&' a)
. x1)
= (
TRUE
'&'
TRUE ) by
A9,
A11,
MARGREL1:def 20
.=
TRUE ;
hence thesis by
A10,
BVFUNC_1:def 17;
end;
hence thesis by
A2,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_2:35
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
Ex ((a
'&' u),PA,G))
= ((
Ex (a,PA,G))
'&' u) by
Th34;
theorem ::
BVFUNC_2:36
for PA be
a_partition of Y holds (u
'imp' (
Ex (a,PA,G)))
'<' (
Ex ((u
'imp' a),PA,G))
proof
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume ((u
'imp' (
Ex (a,PA,G)))
. z)
=
TRUE ;
then
A2: ((
'not' (u
. z))
'or' ((
Ex (a,PA,G))
. z))
=
TRUE by
BVFUNC_1:def 8;
A3: ((
Ex (a,PA,G))
. z)
=
TRUE or ((
Ex (a,PA,G))
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A2,
A3,
BINARITH: 3;
case
A4: (
'not' (u
. z))
=
TRUE ;
((u
'imp' a)
. z)
= ((
'not' (u
. z))
'or' (a
. z)) by
BVFUNC_1:def 8
.=
TRUE by
A4,
BINARITH: 10;
hence thesis by
A1,
BVFUNC_1:def 17;
end;
case ((
Ex (a,PA,G))
. z)
=
TRUE ;
then
consider x1 be
Element of Y such that
A5: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A6: (a
. x1)
=
TRUE by
BVFUNC_1:def 17;
((u
'imp' a)
. x1)
= ((
'not' (u
. x1))
'or' (a
. x1)) by
BVFUNC_1:def 8
.=
TRUE by
A6,
BINARITH: 10;
hence thesis by
A5,
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_2:37
for PA be
a_partition of Y holds ((
Ex (a,PA,G))
'imp' u)
'<' (
Ex ((a
'imp' u),PA,G))
proof
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (((
Ex (a,PA,G))
'imp' u)
. z)
=
TRUE ;
then
A2: ((
'not' ((
Ex (a,PA,G))
. z))
'or' (u
. z))
=
TRUE by
BVFUNC_1:def 8;
A3: (u
. z)
=
TRUE or (u
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A2,
A3,
BINARITH: 3;
case (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE ;
then
A4: (a
. z)
<>
TRUE by
A1,
BVFUNC_1:def 17,
MARGREL1: 11;
((a
'imp' u)
. z)
= ((
'not' (a
. z))
'or' (u
. z)) by
BVFUNC_1:def 8
.= (
TRUE
'or' (u
. z)) by
A4,
MARGREL1: 11,
XBOOLEAN:def 3
.=
TRUE by
BINARITH: 10;
hence thesis by
A1,
BVFUNC_1:def 17;
end;
case
A5: (u
. z)
=
TRUE ;
((a
'imp' u)
. z)
= ((
'not' (a
. z))
'or' (u
. z)) by
BVFUNC_1:def 8
.=
TRUE by
A5,
BINARITH: 10;
hence thesis by
A1,
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_2:38
Th38: for PA be
a_partition of Y st u
is_independent_of (PA,G) holds (u
'xor' (
Ex (a,PA,G)))
'<' (
Ex ((u
'xor' a),PA,G))
proof
let PA be
a_partition of Y;
A1: (
'not'
FALSE )
=
TRUE by
MARGREL1: 11;
assume
A2: u
is_independent_of (PA,G);
let z be
Element of Y;
A3: ((u
'xor' (
Ex (a,PA,G)))
. z)
= ((u
. z)
'xor' ((
Ex (a,PA,G))
. z)) by
BVFUNC_1:def 5
.= (((
'not' (u
. z))
'&' ((
Ex (a,PA,G))
. z))
'or' ((u
. z)
'&' (
'not' ((
Ex (a,PA,G))
. z))));
A4: ((u
. z)
'&' (
'not' ((
Ex (a,PA,G))
. z)))
=
TRUE or ((u
. z)
'&' (
'not' ((
Ex (a,PA,G))
. z)))
=
FALSE by
XBOOLEAN:def 3;
A5: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume
A6: ((u
'xor' (
Ex (a,PA,G)))
. z)
=
TRUE ;
now
per cases by
A6,
A3,
A4,
BINARITH: 3;
case
A7: ((
'not' (u
. z))
'&' ((
Ex (a,PA,G))
. z))
=
TRUE ;
then ((
Ex (a,PA,G))
. z)
=
TRUE by
MARGREL1: 12;
then
consider x1 be
Element of Y such that
A8: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A9: (a
. x1)
=
TRUE by
BVFUNC_1:def 17;
A10: (u
. z)
= (u
. x1) by
A2,
A5,
A8,
BVFUNC_1:def 15;
A11: (
'not' (u
. z))
=
TRUE by
A7,
MARGREL1: 12;
((u
'xor' a)
. x1)
= ((u
. x1)
'xor' (a
. x1)) by
BVFUNC_1:def 5
.= (
TRUE
'or'
FALSE ) by
A11,
A9,
A10,
MARGREL1: 11
.=
TRUE by
BINARITH: 10;
hence thesis by
A8,
BVFUNC_1:def 17;
end;
case
A12: ((u
. z)
'&' (
'not' ((
Ex (a,PA,G))
. z)))
=
TRUE ;
then (
'not' ((
Ex (a,PA,G))
. z))
=
TRUE by
MARGREL1: 12;
then (a
. z)
<>
TRUE by
A5,
BVFUNC_1:def 17,
MARGREL1: 11;
then
A13: (a
. z)
=
FALSE by
XBOOLEAN:def 3;
A14: (u
. z)
=
TRUE by
A12,
MARGREL1: 12;
((u
'xor' a)
. z)
= ((u
. z)
'xor' (a
. z)) by
BVFUNC_1:def 5
.= (
FALSE
'or'
TRUE ) by
A1,
A14,
A13
.=
TRUE by
BINARITH: 10;
hence thesis by
A5,
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_2:39
for PA be
a_partition of Y st u
is_independent_of (PA,G) holds ((
Ex (a,PA,G))
'xor' u)
'<' (
Ex ((a
'xor' u),PA,G)) by
Th38;