bvfunc_6.miz
begin
reserve Y for non
empty
set;
theorem ::
BVFUNC_6:1
for a,b be
Function of Y,
BOOLEAN holds (a
'imp' (b
'imp' (a
'&' b)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((a
'imp' (b
'imp' (a
'&' b)))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' (b
'imp' (a
'&' b)))
. x)
= ((
'not' (a
. x))
'or' ((b
'imp' (a
'&' b))
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' ((a
'&' b)
. x))) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' ((a
. x)
'&' (b
. x)))) by
MARGREL1:def 20
.= ((
'not' (a
. x))
'or' (((
'not' (b
. x))
'or' (a
. x))
'&' ((
'not' (b
. x))
'or' (b
. x)))) by
XBOOLEAN: 9
.= ((
'not' (a
. x))
'or' (
TRUE
'&' ((
'not' (b
. x))
'or' (a
. x)))) by
XBOOLEAN: 102
.= (((
'not' (a
. x))
'or' (a
. x))
'or' (
'not' (b
. x)))
.= (
TRUE
'or' (
'not' (b
. x))) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:2
for a,b be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'imp' ((b
'imp' a)
'imp' (a
'eqv' b)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'imp' b)
'imp' ((b
'imp' a)
'imp' (a
'eqv' b)))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'imp' b)
'imp' ((b
'imp' a)
'imp' (a
'eqv' b)))
. x)
= ((
'not' ((a
'imp' b)
. x))
'or' (((b
'imp' a)
'imp' (a
'eqv' b))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (b
. x)))
'or' (((b
'imp' a)
'imp' (a
'eqv' b))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (b
. x)))
'or' ((
'not' ((b
'imp' a)
. x))
'or' ((a
'eqv' b)
. x))) by
BVFUNC_1:def 8
.= (((
'not' (
'not' (a
. x)))
'&' (
'not' (b
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (a
. x)))
'or' ((a
'eqv' b)
. x))) by
BVFUNC_1:def 8
.= (((a
. x)
'&' (
'not' (b
. x)))
'or' (((b
. x)
'&' (
'not' (a
. x)))
'or' (
'not' ((a
. x)
'xor' (b
. x))))) by
BVFUNC_1:def 9
.= (((a
. x)
'&' (
'not' (b
. x)))
'or' ((((
'not' (a
. x))
'&' (b
. x))
'or' (
'not' ((
'not' (a
. x))
'&' (b
. x))))
'&' (((
'not' (a
. x))
'&' (b
. x))
'or' (
'not' ((a
. x)
'&' (
'not' (b
. x))))))) by
XBOOLEAN: 9
.= (((a
. x)
'&' (
'not' (b
. x)))
'or' (
TRUE
'&' (((
'not' (a
. x))
'&' (b
. x))
'or' (
'not' ((a
. x)
'&' (
'not' (b
. x))))))) by
XBOOLEAN: 102
.= ((((a
. x)
'&' (
'not' (b
. x)))
'or' (
'not' ((a
. x)
'&' (
'not' (b
. x)))))
'or' ((
'not' (a
. x))
'&' (b
. x)))
.= (
TRUE
'or' ((
'not' (a
. x))
'&' (b
. x))) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:3
for a,b be
Function of Y,
BOOLEAN holds ((a
'or' b)
'eqv' (b
'or' a))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'or' b)
'eqv' (b
'or' a))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'or' b)
'eqv' (b
'or' a))
. x)
= (
'not' (((a
'or' b)
. x)
'xor' ((b
'or' a)
. x))) by
BVFUNC_1:def 9
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:4
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'&' b)
'imp' c)
'imp' (a
'imp' (b
'imp' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'&' b)
'imp' c)
'imp' (a
'imp' (b
'imp' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'&' b)
'imp' c)
'imp' (a
'imp' (b
'imp' c)))
. x)
= ((
'not' (((a
'&' b)
'imp' c)
. x))
'or' ((a
'imp' (b
'imp' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' ((a
'&' b)
. x))
'or' (c
. x)))
'or' ((a
'imp' (b
'imp' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' ((a
. x)
'&' (b
. x)))
'or' (c
. x)))
'or' ((a
'imp' (b
'imp' c))
. x)) by
MARGREL1:def 20
.= ((
'not' ((
'not' ((a
. x)
'&' (b
. x)))
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' ((b
'imp' c)
. x))) by
BVFUNC_1:def 8
.= ((
'not' (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x)))) by
BVFUNC_1:def 8
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:5
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' (b
'imp' c))
'imp' ((a
'&' b)
'imp' c))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'imp' (b
'imp' c))
'imp' ((a
'&' b)
'imp' c))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'imp' (b
'imp' c))
'imp' ((a
'&' b)
'imp' c))
. x)
= ((
'not' ((a
'imp' (b
'imp' c))
. x))
'or' (((a
'&' b)
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' ((b
'imp' c)
. x)))
'or' (((a
'&' b)
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))))
'or' (((a
'&' b)
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))))
'or' ((
'not' ((a
'&' b)
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))))
'or' (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x))) by
MARGREL1:def 20
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:6
for a,b,c be
Function of Y,
BOOLEAN holds ((c
'imp' a)
'imp' ((c
'imp' b)
'imp' (c
'imp' (a
'&' b))))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((c
'imp' a)
'imp' ((c
'imp' b)
'imp' (c
'imp' (a
'&' b))))
. x)
=
TRUE
proof
let x be
Element of Y;
(((c
'imp' a)
'imp' ((c
'imp' b)
'imp' (c
'imp' (a
'&' b))))
. x)
= ((
'not' ((c
'imp' a)
. x))
'or' (((c
'imp' b)
'imp' (c
'imp' (a
'&' b)))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. x))
'or' (a
. x)))
'or' (((c
'imp' b)
'imp' (c
'imp' (a
'&' b)))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. x))
'or' (a
. x)))
'or' ((
'not' ((c
'imp' b)
. x))
'or' ((c
'imp' (a
'&' b))
. x))) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. x))
'or' (a
. x)))
'or' ((
'not' ((
'not' (c
. x))
'or' (b
. x)))
'or' ((c
'imp' (a
'&' b))
. x))) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. x))
'or' (a
. x)))
'or' ((
'not' ((
'not' (c
. x))
'or' (b
. x)))
'or' ((
'not' (c
. x))
'or' ((a
'&' b)
. x)))) by
BVFUNC_1:def 8
.= (((c
. x)
'&' (
'not' (a
. x)))
'or' (((
'not' (
'not' (c
. x)))
'&' (
'not' (b
. x)))
'or' ((
'not' (c
. x))
'or' ((a
. x)
'&' (b
. x))))) by
MARGREL1:def 20
.= (((c
. x)
'&' (
'not' (a
. x)))
'or' (((c
. x)
'&' (
'not' (b
. x)))
'or' (((
'not' (c
. x))
'or' (a
. x))
'&' ((
'not' (c
. x))
'or' (b
. x))))) by
XBOOLEAN: 9
.= (((c
. x)
'&' (
'not' (a
. x)))
'or' ((((c
. x)
'&' (
'not' (b
. x)))
'or' ((
'not' (c
. x))
'or' (a
. x)))
'&' (((c
. x)
'&' (
'not' (b
. x)))
'or' ((
'not' (c
. x))
'or' (
'not' (
'not' (b
. x))))))) by
XBOOLEAN: 9
.= (((c
. x)
'&' (
'not' (a
. x)))
'or' (
TRUE
'&' (((c
. x)
'&' (
'not' (b
. x)))
'or' ((
'not' (c
. x))
'or' (a
. x))))) by
XBOOLEAN: 102
.= ((((c
. x)
'&' (
'not' (a
. x)))
'or' (
'not' ((c
. x)
'&' (
'not' (a
. x)))))
'or' ((c
. x)
'&' (
'not' (b
. x))))
.= (
TRUE
'or' ((c
. x)
'&' (
'not' (b
. x)))) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:7
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' b)
'imp' c)
'imp' ((a
'imp' c)
'or' (b
'imp' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'or' b)
'imp' c)
'imp' ((a
'imp' c)
'or' (b
'imp' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'or' b)
'imp' c)
'imp' ((a
'imp' c)
'or' (b
'imp' c)))
. x)
= ((
'not' (((a
'or' b)
'imp' c)
. x))
'or' (((a
'imp' c)
'or' (b
'imp' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' ((a
'or' b)
. x))
'or' (c
. x)))
'or' (((a
'imp' c)
'or' (b
'imp' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' ((a
. x)
'or' (b
. x)))
'or' (c
. x)))
'or' (((a
'imp' c)
'or' (b
'imp' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' ((
'not' ((a
. x)
'or' (b
. x)))
'or' (c
. x)))
'or' (((a
'imp' c)
. x)
'or' ((b
'imp' c)
. x))) by
BVFUNC_1:def 4
.= ((
'not' ((
'not' ((a
. x)
'or' (b
. x)))
'or' (c
. x)))
'or' (((
'not' (a
. x))
'or' (c
. x))
'or' ((b
'imp' c)
. x))) by
BVFUNC_1:def 8
.= (((
'not' (
'not' ((a
. x)
'or' (b
. x))))
'&' (
'not' (c
. x)))
'or' (((
'not' (a
. x))
'or' (c
. x))
'or' ((
'not' (b
. x))
'or' (c
. x)))) by
BVFUNC_1:def 8
.= ((((b
. x)
'&' (
'not' (c
. x)))
'or' ((a
. x)
'&' (
'not' (c
. x))))
'or' ((
'not' ((a
. x)
'&' (
'not' (c
. x))))
'or' ((
'not' (b
. x))
'or' (c
. x)))) by
XBOOLEAN: 8
.= ((((b
. x)
'&' (
'not' (c
. x)))
'or' (((a
. x)
'&' (
'not' (c
. x)))
'or' (
'not' ((a
. x)
'&' (
'not' (c
. x))))))
'or' ((
'not' (b
. x))
'or' (c
. x)))
.= ((((b
. x)
'&' (
'not' (c
. x)))
'or'
TRUE )
'or' ((
'not' (b
. x))
'or' (c
. x))) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:8
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' c)
'imp' ((b
'imp' c)
'imp' ((a
'or' b)
'imp' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'imp' c)
'imp' ((b
'imp' c)
'imp' ((a
'or' b)
'imp' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'imp' c)
'imp' ((b
'imp' c)
'imp' ((a
'or' b)
'imp' c)))
. x)
= ((
'not' ((a
'imp' c)
. x))
'or' (((b
'imp' c)
'imp' ((a
'or' b)
'imp' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (((b
'imp' c)
'imp' ((a
'or' b)
'imp' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((b
'imp' c)
. x))
'or' (((a
'or' b)
'imp' c)
. x))) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' (((a
'or' b)
'imp' c)
. x))) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' ((a
'or' b)
. x))
'or' (c
. x)))) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' ((a
. x)
'or' (b
. x)))
'or' (c
. x)))) by
BVFUNC_1:def 4
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' (((c
. x)
'or' (
'not' (a
. x)))
'&' ((
'not' (b
. x))
'or' (c
. x))))) by
XBOOLEAN: 9
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((c
. x)
'or' (
'not' (a
. x))))
'&' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' (b
. x))
'or' (c
. x))))) by
XBOOLEAN: 9
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (
TRUE
'&' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((c
. x)
'or' (
'not' (a
. x)))))) by
XBOOLEAN: 102
.= ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' (c
. x))))
.= (((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' (c
. x)))
'or' (
'not' ((
'not' (b
. x))
'or' (c
. x))))
.= (
TRUE
'or' (
'not' ((
'not' (b
. x))
'or' (c
. x)))) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:9
Th9: for a,b,c be
Function of Y,
BOOLEAN holds (((a
'imp' c)
'&' (b
'imp' c))
'imp' ((a
'or' b)
'imp' c))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'imp' c)
'&' (b
'imp' c))
'imp' ((a
'or' b)
'imp' c))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'imp' c)
'&' (b
'imp' c))
'imp' ((a
'or' b)
'imp' c))
. x)
= ((
'not' (((a
'imp' c)
'&' (b
'imp' c))
. x))
'or' (((a
'or' b)
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((a
'imp' c)
. x)
'&' ((b
'imp' c)
. x)))
'or' (((a
'or' b)
'imp' c)
. x)) by
MARGREL1:def 20
.= ((
'not' (((
'not' (a
. x))
'or' (c
. x))
'&' ((b
'imp' c)
. x)))
'or' (((a
'or' b)
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((
'not' (a
. x))
'or' (c
. x))
'&' ((
'not' (b
. x))
'or' (c
. x))))
'or' (((a
'or' b)
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((
'not' (a
. x))
'or' (c
. x))
'&' ((
'not' (b
. x))
'or' (c
. x))))
'or' ((
'not' ((a
'or' b)
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (
'not' ((
'not' (b
. x))
'or' (c
. x))))
'or' ((c
. x)
'or' (
'not' ((a
. x)
'or' (b
. x))))) by
BVFUNC_1:def 4
.= (((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (
'not' ((
'not' (b
. x))
'or' (c
. x))))
'or' (((
'not' (a
. x))
'or' (c
. x))
'&' ((c
. x)
'or' (
'not' (b
. x))))) by
XBOOLEAN: 9
.= ((((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (
'not' ((
'not' (b
. x))
'or' (c
. x))))
'or' ((
'not' (a
. x))
'or' (c
. x)))
'&' (((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' (
'not' ((
'not' (b
. x))
'or' (c
. x))))
'or' ((
'not' (b
. x))
'or' (c
. x)))) by
XBOOLEAN: 9
.= (((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' (c
. x))))
'&' ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' (b
. x))
'or' (c
. x)))))
.= (((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or'
TRUE )
'&' ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' ((
'not' (b
. x))
'or' (c
. x)))
'or' ((
'not' (b
. x))
'or' (c
. x))))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' ((
'not' (a
. x))
'or' (c
. x)))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:10
for a,b be
Function of Y,
BOOLEAN holds ((a
'imp' (b
'&' (
'not' b)))
'imp' (
'not' a))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'imp' (b
'&' (
'not' b)))
'imp' (
'not' a))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'imp' (b
'&' (
'not' b)))
'imp' (
'not' a))
. x)
= ((
'not' ((a
'imp' (b
'&' (
'not' b)))
. x))
'or' ((
'not' a)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' ((b
'&' (
'not' b))
. x)))
'or' ((
'not' a)
. x)) by
BVFUNC_1:def 8
.= (((a
. x)
'&' ((
'not' (b
. x))
'or' (
'not' ((
'not' b)
. x))))
'or' ((
'not' a)
. x)) by
MARGREL1:def 20
.= (((a
. x)
'&' ((
'not' (b
. x))
'or' (
'not' (
'not' (b
. x)))))
'or' ((
'not' a)
. x)) by
MARGREL1:def 19
.= (((a
. x)
'&'
TRUE )
'or' ((
'not' a)
. x)) by
XBOOLEAN: 102
.= ((a
. x)
'or' (
'not' (a
. x))) by
MARGREL1:def 19
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:11
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' b)
'&' (a
'or' c))
'imp' (a
'or' (b
'&' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'or' b)
'&' (a
'or' c))
'imp' (a
'or' (b
'&' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'or' b)
'&' (a
'or' c))
'imp' (a
'or' (b
'&' c)))
. x)
= ((
'not' (((a
'or' b)
'&' (a
'or' c))
. x))
'or' ((a
'or' (b
'&' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((a
'or' b)
. x)
'&' ((a
'or' c)
. x)))
'or' ((a
'or' (b
'&' c))
. x)) by
MARGREL1:def 20
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' ((a
'or' c)
. x)))
'or' ((a
'or' (b
'&' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' ((a
. x)
'or' (c
. x))))
'or' ((a
'or' (b
'&' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' ((a
. x)
'or' (c
. x))))
'or' ((a
. x)
'or' ((b
'&' c)
. x))) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' ((a
. x)
'or' (c
. x))))
'or' ((a
. x)
'or' ((b
. x)
'&' (c
. x)))) by
MARGREL1:def 20
.= (((
'not' ((a
. x)
'or' (b
. x)))
'or' (
'not' ((a
. x)
'or' (c
. x))))
'or' (((a
. x)
'or' (b
. x))
'&' ((a
. x)
'or' (c
. x)))) by
XBOOLEAN: 9
.= ((((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((a
. x)
'or' (b
. x))))
'or' ((a
. x)
'or' (b
. x)))
'&' (((
'not' ((a
. x)
'or' (b
. x)))
'or' (
'not' ((a
. x)
'or' (c
. x))))
'or' ((a
. x)
'or' (c
. x)))) by
XBOOLEAN: 9
.= (((
'not' ((a
. x)
'or' (c
. x)))
'or' ((
'not' ((a
. x)
'or' (b
. x)))
'or' ((a
. x)
'or' (b
. x))))
'&' ((
'not' ((a
. x)
'or' (b
. x)))
'or' ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((a
. x)
'or' (c
. x)))))
.= (((
'not' ((a
. x)
'or' (c
. x)))
'or'
TRUE )
'&' ((
'not' ((a
. x)
'or' (b
. x)))
'or' ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((a
. x)
'or' (c
. x))))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' ((a
. x)
'or' (b
. x)))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:12
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'&' (b
'or' c))
'imp' ((a
'&' b)
'or' (a
'&' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'&' (b
'or' c))
'imp' ((a
'&' b)
'or' (a
'&' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' (b
'or' c))
'imp' ((a
'&' b)
'or' (a
'&' c)))
. x)
= ((
'not' ((a
'&' (b
'or' c))
. x))
'or' (((a
'&' b)
'or' (a
'&' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'&' ((b
'or' c)
. x)))
'or' (((a
'&' b)
'or' (a
'&' c))
. x)) by
MARGREL1:def 20
.= ((
'not' ((a
. x)
'&' ((b
. x)
'or' (c
. x))))
'or' (((a
'&' b)
'or' (a
'&' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' ((a
. x)
'&' ((b
. x)
'or' (c
. x))))
'or' (((a
'&' b)
. x)
'or' ((a
'&' c)
. x))) by
BVFUNC_1:def 4
.= ((
'not' ((a
. x)
'&' ((b
. x)
'or' (c
. x))))
'or' (((a
. x)
'&' (b
. x))
'or' ((a
'&' c)
. x))) by
MARGREL1:def 20
.= ((
'not' ((a
. x)
'&' ((b
. x)
'or' (c
. x))))
'or' (((a
. x)
'&' (b
. x))
'or' ((a
. x)
'&' (c
. x)))) by
MARGREL1:def 20
.= ((((a
. x)
'&' (b
. x))
'or' ((a
. x)
'&' (c
. x)))
'or' ((
'not' ((a
. x)
'&' (b
. x)))
'&' (
'not' ((a
. x)
'&' (c
. x))))) by
XBOOLEAN: 8
.= (((((a
. x)
'&' (c
. x))
'or' ((a
. x)
'&' (b
. x)))
'or' (
'not' ((a
. x)
'&' (b
. x))))
'&' ((((a
. x)
'&' (b
. x))
'or' ((a
. x)
'&' (c
. x)))
'or' (
'not' ((a
. x)
'&' (c
. x))))) by
XBOOLEAN: 9
.= ((((a
. x)
'&' (c
. x))
'or' (((a
. x)
'&' (b
. x))
'or' (
'not' ((a
. x)
'&' (b
. x)))))
'&' (((a
. x)
'&' (b
. x))
'or' (((a
. x)
'&' (c
. x))
'or' (
'not' ((a
. x)
'&' (c
. x))))))
.= ((((a
. x)
'&' (c
. x))
'or'
TRUE )
'&' (((a
. x)
'&' (b
. x))
'or' (((a
. x)
'&' (c
. x))
'or' (
'not' ((a
. x)
'&' (c
. x)))))) by
XBOOLEAN: 102
.= (
TRUE
'&' (((a
. x)
'&' (b
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:13
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' c)
'&' (b
'or' c))
'imp' ((a
'&' b)
'or' c))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'or' c)
'&' (b
'or' c))
'imp' ((a
'&' b)
'or' c))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'or' c)
'&' (b
'or' c))
'imp' ((a
'&' b)
'or' c))
. x)
= ((
'not' (((a
'or' c)
'&' (b
'or' c))
. x))
'or' (((a
'&' b)
'or' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((a
'or' c)
. x)
'&' ((b
'or' c)
. x)))
'or' (((a
'&' b)
'or' c)
. x)) by
MARGREL1:def 20
.= ((
'not' (((a
. x)
'or' (c
. x))
'&' ((b
'or' c)
. x)))
'or' (((a
'&' b)
'or' c)
. x)) by
BVFUNC_1:def 4
.= (((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((b
. x)
'or' (c
. x))))
'or' (((a
'&' b)
'or' c)
. x)) by
BVFUNC_1:def 4
.= (((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((b
. x)
'or' (c
. x))))
'or' (((a
'&' b)
. x)
'or' (c
. x))) by
BVFUNC_1:def 4
.= (((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((b
. x)
'or' (c
. x))))
'or' ((c
. x)
'or' ((a
. x)
'&' (b
. x)))) by
MARGREL1:def 20
.= (((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((b
. x)
'or' (c
. x))))
'or' (((a
. x)
'or' (c
. x))
'&' ((c
. x)
'or' (b
. x)))) by
XBOOLEAN: 9
.= ((((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((b
. x)
'or' (c
. x))))
'or' ((a
. x)
'or' (c
. x)))
'&' (((
'not' ((a
. x)
'or' (c
. x)))
'or' (
'not' ((b
. x)
'or' (c
. x))))
'or' ((b
. x)
'or' (c
. x)))) by
XBOOLEAN: 9
.= (((
'not' ((b
. x)
'or' (c
. x)))
'or' ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((a
. x)
'or' (c
. x))))
'&' ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((
'not' ((b
. x)
'or' (c
. x)))
'or' ((b
. x)
'or' (c
. x)))))
.= (((
'not' ((b
. x)
'or' (c
. x)))
'or'
TRUE )
'&' ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((
'not' ((b
. x)
'or' (c
. x)))
'or' ((b
. x)
'or' (c
. x))))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' ((a
. x)
'or' (c
. x)))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:14
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' b)
'&' c)
'imp' ((a
'&' c)
'or' (b
'&' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'or' b)
'&' c)
'imp' ((a
'&' c)
'or' (b
'&' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'or' b)
'&' c)
'imp' ((a
'&' c)
'or' (b
'&' c)))
. x)
= ((
'not' (((a
'or' b)
'&' c)
. x))
'or' (((a
'&' c)
'or' (b
'&' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((a
'or' b)
. x)
'&' (c
. x)))
'or' (((a
'&' c)
'or' (b
'&' c))
. x)) by
MARGREL1:def 20
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' (c
. x)))
'or' (((a
'&' c)
'or' (b
'&' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' (c
. x)))
'or' (((a
'&' c)
. x)
'or' ((b
'&' c)
. x))) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'&' (c
. x)))
'or' (((a
. x)
'&' (c
. x))
'or' ((b
'&' c)
. x))) by
MARGREL1:def 20
.= ((
'not' ((c
. x)
'&' ((a
. x)
'or' (b
. x))))
'or' (((a
. x)
'&' (c
. x))
'or' ((b
. x)
'&' (c
. x)))) by
MARGREL1:def 20
.= ((((a
. x)
'&' (c
. x))
'or' ((b
. x)
'&' (c
. x)))
'or' ((
'not' ((a
. x)
'&' (c
. x)))
'&' (
'not' ((b
. x)
'&' (c
. x))))) by
XBOOLEAN: 8
.= (((((b
. x)
'&' (c
. x))
'or' ((a
. x)
'&' (c
. x)))
'or' (
'not' ((a
. x)
'&' (c
. x))))
'&' ((((a
. x)
'&' (c
. x))
'or' ((b
. x)
'&' (c
. x)))
'or' (
'not' ((b
. x)
'&' (c
. x))))) by
XBOOLEAN: 9
.= ((((b
. x)
'&' (c
. x))
'or' (((a
. x)
'&' (c
. x))
'or' (
'not' ((a
. x)
'&' (c
. x)))))
'&' (((a
. x)
'&' (c
. x))
'or' (((b
. x)
'&' (c
. x))
'or' (
'not' ((b
. x)
'&' (c
. x))))))
.= ((((b
. x)
'&' (c
. x))
'or'
TRUE )
'&' (((a
. x)
'&' (c
. x))
'or' (((b
. x)
'&' (c
. x))
'or' (
'not' ((b
. x)
'&' (c
. x)))))) by
XBOOLEAN: 102
.= (
TRUE
'&' (((a
. x)
'&' (c
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:15
for a,b be
Function of Y,
BOOLEAN holds (a
'&' b)
= (
I_el Y) implies (a
'or' b)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
assume
A1: (a
'&' b)
= (
I_el Y);
for x be
Element of Y holds ((a
'or' b)
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'&' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A2: ((a
. x)
'&' (b
. x))
=
TRUE by
MARGREL1:def 20;
then (a
. x)
=
TRUE by
MARGREL1: 12;
then ((a
'or' b)
. x)
= (
TRUE
'or'
TRUE ) by
A2,
BVFUNC_1:def 4
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:16
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' b)
= (
I_el Y) implies ((a
'or' c)
'imp' (b
'or' c))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume
A1: (a
'imp' b)
= (
I_el Y);
for x be
Element of Y holds (((a
'or' c)
'imp' (b
'or' c))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A2: ((
'not' (a
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
(((a
'or' c)
'imp' (b
'or' c))
. x)
= ((
'not' ((a
'or' c)
. x))
'or' ((b
'or' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((b
'or' c)
. x)) by
BVFUNC_1:def 4
.= (((b
. x)
'or' (c
. x))
'or' ((
'not' (a
. x))
'&' (
'not' (c
. x)))) by
BVFUNC_1:def 4
.= ((((c
. x)
'or' (b
. x))
'or' (
'not' (a
. x)))
'&' (((b
. x)
'or' (c
. x))
'or' (
'not' (c
. x)))) by
XBOOLEAN: 9
.= (((c
. x)
'or' ((
'not' (a
. x))
'or' (b
. x)))
'&' (((b
. x)
'or' (c
. x))
'or' (
'not' (c
. x))))
.= (
TRUE
'&' ((b
. x)
'or' ((c
. x)
'or' (
'not' (c
. x))))) by
A2
.= (
TRUE
'&' ((b
. x)
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:17
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' b)
= (
I_el Y) implies ((a
'&' c)
'imp' (b
'&' c))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume
A1: (a
'imp' b)
= (
I_el Y);
for x be
Element of Y holds (((a
'&' c)
'imp' (b
'&' c))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A2: ((
'not' (a
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
(((a
'&' c)
'imp' (b
'&' c))
. x)
= ((
'not' ((a
'&' c)
. x))
'or' ((b
'&' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'&' (c
. x)))
'or' ((b
'&' c)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (
'not' (c
. x)))
'or' ((b
. x)
'&' (c
. x))) by
MARGREL1:def 20
.= ((((
'not' (c
. x))
'or' (
'not' (a
. x)))
'or' (b
. x))
'&' (((
'not' (a
. x))
'or' (
'not' (c
. x)))
'or' (c
. x))) by
XBOOLEAN: 9
.= (((
'not' (c
. x))
'or' ((
'not' (a
. x))
'or' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (c
. x))
'or' (c
. x))))
.= (((
'not' (c
. x))
'or' ((
'not' (a
. x))
'or' (b
. x)))
'&' ((
'not' (a
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE by
A2;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:18
th18: for a,b,c be
Function of Y,
BOOLEAN holds (c
'imp' a)
= (
I_el Y) & (c
'imp' b)
= (
I_el Y) implies (c
'imp' (a
'&' b))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume that
A1: (c
'imp' a)
= (
I_el Y) and
A2: (c
'imp' b)
= (
I_el Y);
for x be
Element of Y holds ((c
'imp' (a
'&' b))
. x)
=
TRUE
proof
let x be
Element of Y;
((c
'imp' a)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A3: ((
'not' (c
. x))
'or' (a
. x))
=
TRUE by
BVFUNC_1:def 8;
((c
'imp' b)
. x)
=
TRUE by
A2,
BVFUNC_1:def 11;
then
A4: ((
'not' (c
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
((c
'imp' (a
'&' b))
. x)
= ((
'not' (c
. x))
'or' ((a
'&' b)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (c
. x))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 20
.= (
TRUE
'&'
TRUE ) by
A3,
A4,
XBOOLEAN: 9
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:19
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' c)
= (
I_el Y) & (b
'imp' c)
= (
I_el Y) implies ((a
'or' b)
'imp' c)
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume that
A1: (a
'imp' c)
= (
I_el Y) and
A2: (b
'imp' c)
= (
I_el Y);
for x be
Element of Y holds (((a
'or' b)
'imp' c)
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' c)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A3: ((
'not' (a
. x))
'or' (c
. x))
=
TRUE by
BVFUNC_1:def 8;
((b
'imp' c)
. x)
=
TRUE by
A2,
BVFUNC_1:def 11;
then
A4: ((
'not' (b
. x))
'or' (c
. x))
=
TRUE by
BVFUNC_1:def 8;
(((a
'or' b)
'imp' c)
. x)
= ((
'not' ((a
'or' b)
. x))
'or' (c
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'or' (b
. x)))
'or' (c
. x)) by
BVFUNC_1:def 4
.= (
TRUE
'&'
TRUE ) by
A3,
A4,
XBOOLEAN: 9
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:20
for a,b be
Function of Y,
BOOLEAN holds (a
'or' b)
= (
I_el Y) & (
'not' a)
= (
I_el Y) implies b
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
assume that
A1: (a
'or' b)
= (
I_el Y) and
A2: (
'not' a)
= (
I_el Y);
for x be
Element of Y holds (b
. x)
=
TRUE
proof
let x be
Element of Y;
((
'not' a)
. x)
=
TRUE by
A2,
BVFUNC_1:def 11;
then
A3: (
'not' (a
. x))
=
TRUE by
MARGREL1:def 19;
((a
'or' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then ((a
. x)
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 4;
hence thesis by
A3;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:21
tt: for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'imp' b)
= (
I_el Y) & (c
'imp' d)
= (
I_el Y) implies ((a
'&' c)
'imp' (b
'&' d))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
assume that
A1: (a
'imp' b)
= (
I_el Y) and
A2: (c
'imp' d)
= (
I_el Y);
for x be
Element of Y holds (((a
'&' c)
'imp' (b
'&' d))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A3: ((
'not' (a
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
((c
'imp' d)
. x)
=
TRUE by
A2,
BVFUNC_1:def 11;
then
A4: ((
'not' (c
. x))
'or' (d
. x))
=
TRUE by
BVFUNC_1:def 8;
(((a
'&' c)
'imp' (b
'&' d))
. x)
= ((
'not' ((a
'&' c)
. x))
'or' ((b
'&' d)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'&' (c
. x)))
'or' ((b
'&' d)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (
'not' (c
. x)))
'or' ((b
. x)
'&' (d
. x))) by
MARGREL1:def 20
.= ((((
'not' (c
. x))
'or' (
'not' (a
. x)))
'or' (b
. x))
'&' (((
'not' (a
. x))
'or' (
'not' (c
. x)))
'or' (d
. x))) by
XBOOLEAN: 9
.= (((
'not' (c
. x))
'or' ((
'not' (a
. x))
'or' (b
. x)))
'&' (((
'not' (a
. x))
'or' (
'not' (c
. x)))
'or' (d
. x)))
.= (
TRUE
'&' ((
'not' (a
. x))
'or'
TRUE )) by
A3,
A4,
BINARITH: 11
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:22
Th22: for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'imp' b)
= (
I_el Y) & (c
'imp' d)
= (
I_el Y) implies ((a
'or' c)
'imp' (b
'or' d))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
assume that
A1: (a
'imp' b)
= (
I_el Y) and
A2: (c
'imp' d)
= (
I_el Y);
for x be
Element of Y holds (((a
'or' c)
'imp' (b
'or' d))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A3: ((
'not' (a
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
((c
'imp' d)
. x)
=
TRUE by
A2,
BVFUNC_1:def 11;
then
A4: ((
'not' (c
. x))
'or' (d
. x))
=
TRUE by
BVFUNC_1:def 8;
(((a
'or' c)
'imp' (b
'or' d))
. x)
= ((
'not' ((a
'or' c)
. x))
'or' ((b
'or' d)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'or' (c
. x)))
'or' ((b
'or' d)
. x)) by
BVFUNC_1:def 4
.= (((b
. x)
'or' (d
. x))
'or' ((
'not' (a
. x))
'&' (
'not' (c
. x)))) by
BVFUNC_1:def 4
.= ((((d
. x)
'or' (b
. x))
'or' (
'not' (a
. x)))
'&' (((b
. x)
'or' (d
. x))
'or' (
'not' (c
. x)))) by
XBOOLEAN: 9
.= (((d
. x)
'or' ((b
. x)
'or' (
'not' (a
. x))))
'&' (((b
. x)
'or' (d
. x))
'or' (
'not' (c
. x))))
.= (
TRUE
'&' ((b
. x)
'or'
TRUE )) by
A3,
A4,
BINARITH: 11
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:23
for a,b be
Function of Y,
BOOLEAN holds ((a
'&' (
'not' b))
'imp' (
'not' a))
= (
I_el Y) implies (a
'imp' b)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
assume
A1: ((a
'&' (
'not' b))
'imp' (
'not' a))
= (
I_el Y);
for x be
Element of Y holds ((a
'imp' b)
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' (
'not' b))
'imp' (
'not' a))
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then ((
'not' ((a
'&' (
'not' b))
. x))
'or' ((
'not' a)
. x))
=
TRUE by
BVFUNC_1:def 8;
then ((
'not' ((a
. x)
'&' ((
'not' b)
. x)))
'or' ((
'not' a)
. x))
=
TRUE by
MARGREL1:def 20;
then (((
'not' (a
. x))
'or' (
'not' (
'not' (b
. x))))
'or' ((
'not' a)
. x))
=
TRUE by
MARGREL1:def 19;
then (((
'not' (a
. x))
'or' (b
. x))
'or' (
'not' (a
. x)))
=
TRUE by
MARGREL1:def 19;
then ((b
. x)
'or' ((
'not' (a
. x))
'or' (
'not' (a
. x))))
=
TRUE by
XBOOLEAN: 4;
hence thesis by
BVFUNC_1:def 8;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:24
for a,b be
Function of Y,
BOOLEAN holds (a
'imp' (
'not' b))
= (
I_el Y) implies (b
'imp' (
'not' a))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
assume
A1: (a
'imp' (
'not' b))
= (
I_el Y);
for x be
Element of Y holds ((b
'imp' (
'not' a))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' (
'not' b))
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then ((
'not' (a
. x))
'or' ((
'not' b)
. x))
=
TRUE by
BVFUNC_1:def 8;
then
A2: ((
'not' (a
. x))
'or' (
'not' (b
. x)))
=
TRUE by
MARGREL1:def 19;
((b
'imp' (
'not' a))
. x)
= ((
'not' (b
. x))
'or' ((
'not' a)
. x)) by
BVFUNC_1:def 8
.=
TRUE by
A2,
MARGREL1:def 19;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:25
for a,b be
Function of Y,
BOOLEAN holds ((
'not' a)
'imp' b)
= (
I_el Y) implies ((
'not' b)
'imp' a)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
assume
A1: ((
'not' a)
'imp' b)
= (
I_el Y);
for x be
Element of Y holds (((
'not' b)
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
(((
'not' a)
'imp' b)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then ((
'not' ((
'not' a)
. x))
'or' (b
. x))
=
TRUE by
BVFUNC_1:def 8;
then
A2: ((
'not' (
'not' (a
. x)))
'or' (b
. x))
=
TRUE by
MARGREL1:def 19;
(((
'not' b)
'imp' a)
. x)
= ((
'not' ((
'not' b)
. x))
'or' (a
. x)) by
BVFUNC_1:def 8
.=
TRUE by
A2,
MARGREL1:def 19;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:26
Th26: for a,b be
Function of Y,
BOOLEAN holds (a
'imp' (a
'or' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((a
'imp' (a
'or' b))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' (a
'or' b))
. x)
= ((
'not' (a
. x))
'or' ((a
'or' b)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((a
. x)
'or' (b
. x))) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'or' (a
. x))
'or' (b
. x))
.= (
TRUE
'or' (b
. x)) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:27
for a,b be
Function of Y,
BOOLEAN holds ((a
'or' b)
'imp' ((
'not' a)
'imp' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'or' b)
'imp' ((
'not' a)
'imp' b))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'or' b)
'imp' ((
'not' a)
'imp' b))
. x)
= ((
'not' ((a
'or' b)
. x))
'or' (((
'not' a)
'imp' b)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'or' (b
. x)))
'or' (((
'not' a)
'imp' b)
. x)) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'&' (
'not' (b
. x)))
'or' ((
'not' ((
'not' a)
. x))
'or' (b
. x))) by
BVFUNC_1:def 8
.= (((a
. x)
'or' (b
. x))
'or' ((
'not' (a
. x))
'&' (
'not' (b
. x)))) by
MARGREL1:def 19
.= ((((a
. x)
'or' (b
. x))
'or' (
'not' (a
. x)))
'&' (((a
. x)
'or' (b
. x))
'or' (
'not' (b
. x)))) by
XBOOLEAN: 9
.= ((((a
. x)
'or' (
'not' (a
. x)))
'or' (b
. x))
'&' ((a
. x)
'or' ((b
. x)
'or' (
'not' (b
. x)))))
.= ((
TRUE
'or' (b
. x))
'&' ((a
. x)
'or' ((b
. x)
'or' (
'not' (b
. x))))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((a
. x)
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:28
Th28: for a,b be
Function of Y,
BOOLEAN holds ((
'not' (a
'or' b))
'imp' ((
'not' a)
'&' (
'not' b)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((
'not' (a
'or' b))
'imp' ((
'not' a)
'&' (
'not' b)))
. x)
=
TRUE
proof
let x be
Element of Y;
(((
'not' (a
'or' b))
'imp' ((
'not' a)
'&' (
'not' b)))
. x)
= ((
'not' ((
'not' (a
'or' b))
. x))
'or' (((
'not' a)
'&' (
'not' b))
. x)) by
BVFUNC_1:def 8
.= (((a
'or' b)
. x)
'or' (((
'not' a)
'&' (
'not' b))
. x)) by
MARGREL1:def 19
.= (((a
. x)
'or' (b
. x))
'or' (((
'not' a)
'&' (
'not' b))
. x)) by
BVFUNC_1:def 4
.= (((a
. x)
'or' (b
. x))
'or' (((
'not' a)
. x)
'&' ((
'not' b)
. x))) by
MARGREL1:def 20
.= (((a
. x)
'or' (b
. x))
'or' ((
'not' (a
. x))
'&' ((
'not' b)
. x))) by
MARGREL1:def 19
.= (((a
. x)
'or' (b
. x))
'or' ((
'not' (a
. x))
'&' (
'not' (b
. x)))) by
MARGREL1:def 19
.= ((((a
. x)
'or' (b
. x))
'or' (
'not' (a
. x)))
'&' (((a
. x)
'or' (b
. x))
'or' (
'not' (b
. x)))) by
XBOOLEAN: 9
.= ((((a
. x)
'or' (
'not' (a
. x)))
'or' (b
. x))
'&' ((a
. x)
'or' ((b
. x)
'or' (
'not' (b
. x)))))
.= ((
TRUE
'or' (b
. x))
'&' ((a
. x)
'or' ((b
. x)
'or' (
'not' (b
. x))))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((a
. x)
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:29
for a,b be
Function of Y,
BOOLEAN holds (((
'not' a)
'&' (
'not' b))
'imp' (
'not' (a
'or' b)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
thus (((
'not' a)
'&' (
'not' b))
'imp' (
'not' (a
'or' b)))
= ((
'not' (a
'or' b))
'imp' (
'not' (a
'or' b))) by
BVFUNC_1: 13
.= ((
'not' (a
'or' b))
'imp' ((
'not' a)
'&' (
'not' b))) by
BVFUNC_1: 13
.= (
I_el Y) by
Th28;
end;
theorem ::
BVFUNC_6:30
for a,b be
Function of Y,
BOOLEAN holds ((
'not' (a
'or' b))
'imp' (
'not' a))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((
'not' (a
'or' b))
'imp' (
'not' a))
. x)
=
TRUE
proof
let x be
Element of Y;
(((
'not' (a
'or' b))
'imp' (
'not' a))
. x)
= ((
'not' ((
'not' (a
'or' b))
. x))
'or' ((
'not' a)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (
'not' ((a
'or' b)
. x)))
'or' ((
'not' a)
. x)) by
MARGREL1:def 19
.= (((a
'or' b)
. x)
'or' (
'not' (a
. x))) by
MARGREL1:def 19
.= (((a
. x)
'or' (b
. x))
'or' (
'not' (a
. x))) by
BVFUNC_1:def 4
.= (((a
. x)
'or' (
'not' (a
. x)))
'or' (b
. x))
.= (
TRUE
'or' (b
. x)) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:31
for a be
Function of Y,
BOOLEAN holds ((a
'or' a)
'imp' a)
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'or' a)
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'or' a)
'imp' a)
. x)
= ((
'not' (a
. x))
'or' (a
. x)) by
BVFUNC_1:def 8
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:32
for a,b be
Function of Y,
BOOLEAN holds ((a
'&' (
'not' a))
'imp' b)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'&' (
'not' a))
'imp' b)
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' (
'not' a))
'imp' b)
. x)
= ((
'not' ((a
'&' (
'not' a))
. x))
'or' (b
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'&' ((
'not' a)
. x)))
'or' (b
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (
'not' (
'not' (a
. x))))
'or' (b
. x)) by
MARGREL1:def 19
.= (
TRUE
'or' (b
. x)) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:33
for a,b be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'imp' ((
'not' a)
'or' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'imp' b)
'imp' ((
'not' a)
'or' b))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'imp' b)
'imp' ((
'not' a)
'or' b))
. x)
= ((
'not' ((a
'imp' b)
. x))
'or' (((
'not' a)
'or' b)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (a
. x))
'or' (b
. x)))
'or' (((
'not' a)
'or' b)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (
'not' (a
. x)))
'&' (
'not' (b
. x)))
'or' (((
'not' a)
. x)
'or' (b
. x))) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'or' (b
. x))
'or' ((a
. x)
'&' (
'not' (b
. x)))) by
MARGREL1:def 19
.= ((((
'not' (a
. x))
'or' (b
. x))
'or' (a
. x))
'&' (((
'not' (a
. x))
'or' (b
. x))
'or' (
'not' (b
. x)))) by
XBOOLEAN: 9
.= ((((
'not' (a
. x))
'or' (a
. x))
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' ((b
. x)
'or' (
'not' (b
. x)))))
.= ((
TRUE
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' ((b
. x)
'or' (
'not' (b
. x))))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' (a
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:34
for a,b be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' (
'not' (a
'imp' (
'not' b))))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'&' b)
'imp' (
'not' (a
'imp' (
'not' b))))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' b)
'imp' (
'not' (a
'imp' (
'not' b))))
. x)
= ((
'not' ((a
'&' b)
. x))
'or' ((
'not' (a
'imp' (
'not' b)))
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'&' (b
. x)))
'or' ((
'not' (a
'imp' (
'not' b)))
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (
'not' ((a
'imp' (
'not' b))
. x))) by
MARGREL1:def 19
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (
'not' ((
'not' (a
. x))
'or' ((
'not' b)
. x)))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 19
.= ((((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (a
. x))
'&' (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (b
. x))) by
XBOOLEAN: 9
.= ((((
'not' (a
. x))
'or' (a
. x))
'or' (
'not' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x))))
.= ((
TRUE
'or' (
'not' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x)))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' (a
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:35
for a,b be
Function of Y,
BOOLEAN holds ((
'not' (a
'imp' (
'not' b)))
'imp' (a
'&' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((
'not' (a
'imp' (
'not' b)))
'imp' (a
'&' b))
. x)
=
TRUE
proof
let x be
Element of Y;
(((
'not' (a
'imp' (
'not' b)))
'imp' (a
'&' b))
. x)
= ((
'not' ((
'not' (a
'imp' (
'not' b)))
. x))
'or' ((a
'&' b)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (
'not' ((a
'imp' (
'not' b))
. x)))
'or' ((a
'&' b)
. x)) by
MARGREL1:def 19
.= ((
'not' (
'not' ((a
'imp' (
'not' b))
. x)))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' ((
'not' b)
. x))
'or' ((a
. x)
'&' (b
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 19
.= ((((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (a
. x))
'&' (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (b
. x))) by
XBOOLEAN: 9
.= ((((
'not' (a
. x))
'or' (a
. x))
'or' (
'not' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x))))
.= ((
TRUE
'or' (
'not' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x)))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' (a
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:36
Th36: for a,b be
Function of Y,
BOOLEAN holds ((
'not' (a
'&' b))
'imp' ((
'not' a)
'or' (
'not' b)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((
'not' (a
'&' b))
'imp' ((
'not' a)
'or' (
'not' b)))
. x)
=
TRUE
proof
let x be
Element of Y;
(((
'not' (a
'&' b))
'imp' ((
'not' a)
'or' (
'not' b)))
. x)
= ((
'not' ((
'not' (a
'&' b))
. x))
'or' (((
'not' a)
'or' (
'not' b))
. x)) by
BVFUNC_1:def 8
.= (((a
'&' b)
. x)
'or' (((
'not' a)
'or' (
'not' b))
. x)) by
MARGREL1:def 19
.= (((a
. x)
'&' (b
. x))
'or' (((
'not' a)
'or' (
'not' b))
. x)) by
MARGREL1:def 20
.= ((((
'not' a)
. x)
'or' ((
'not' b)
. x))
'or' ((a
. x)
'&' (b
. x))) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'or' ((
'not' b)
. x))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 19
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 19
.= ((((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (a
. x))
'&' (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (b
. x))) by
XBOOLEAN: 9
.= ((((
'not' (a
. x))
'or' (a
. x))
'or' (
'not' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x))))
.= ((
TRUE
'or' (
'not' (b
. x)))
'&' ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x)))) by
XBOOLEAN: 102
.= (
TRUE
'&' ((
'not' (a
. x))
'or'
TRUE )) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:37
for a,b be
Function of Y,
BOOLEAN holds (((
'not' a)
'or' (
'not' b))
'imp' (
'not' (a
'&' b)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
thus (((
'not' a)
'or' (
'not' b))
'imp' (
'not' (a
'&' b)))
= ((
'not' (a
'&' b))
'imp' (
'not' (a
'&' b))) by
BVFUNC_1: 14
.= ((
'not' (a
'&' b))
'imp' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 14
.= (
I_el Y) by
Th36;
end;
theorem ::
BVFUNC_6:38
Th38: for a,b be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' a)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'&' b)
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' b)
'imp' a)
. x)
= ((
'not' ((a
'&' b)
. x))
'or' (a
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (a
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (a
. x))
'or' (
'not' (b
. x)))
.= (
TRUE
'or' (
'not' (b
. x))) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:39
for a,b be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' (a
'or' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'&' b)
'imp' (a
'or' b))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' b)
'imp' (a
'or' b))
. x)
= ((
'not' ((a
'&' b)
. x))
'or' ((a
'or' b)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((a
'or' b)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((a
. x)
'or' (b
. x))) by
BVFUNC_1:def 4
.= (((
'not' (b
. x))
'or' ((
'not' (a
. x))
'or' (a
. x)))
'or' (b
. x))
.= (((
'not' (b
. x))
'or'
TRUE )
'or' (b
. x)) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:40
for a,b be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' b)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'&' b)
'imp' b)
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'&' b)
'imp' b)
. x)
= ((
'not' ((a
'&' b)
. x))
'or' (b
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (b
. x)) by
MARGREL1:def 20
.= ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (b
. x)))
.= ((
'not' (a
. x))
'or'
TRUE ) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:41
for a be
Function of Y,
BOOLEAN holds (a
'imp' (a
'&' a))
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((a
'imp' (a
'&' a))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' (a
'&' a))
. x)
= (
TRUE
'&' ((
'not' (a
. x))
'or' (a
. x))) by
BVFUNC_1:def 8
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:42
Th42: for a,b be
Function of Y,
BOOLEAN holds ((a
'eqv' b)
'imp' (a
'imp' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'eqv' b)
'imp' (a
'imp' b))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'eqv' b)
'imp' (a
'imp' b))
. x)
= ((
'not' ((a
'eqv' b)
. x))
'or' ((a
'imp' b)
. x)) by
BVFUNC_1:def 8
.= (((a
. x)
'xor' (b
. x))
'or' ((a
'imp' b)
. x)) by
BVFUNC_1:def 9
.= ((((
'not' (a
. x))
'&' (b
. x))
'or' ((a
. x)
'&' (
'not' (b
. x))))
'or' (
'not' ((a
. x)
'&' (
'not' (b
. x))))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'&' (b
. x))
'or' (((a
. x)
'&' (
'not' (b
. x)))
'or' (
'not' ((a
. x)
'&' (
'not' (b
. x))))))
.= (((
'not' (a
. x))
'&' (b
. x))
'or'
TRUE ) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:43
for a,b be
Function of Y,
BOOLEAN holds ((a
'eqv' b)
'imp' (b
'imp' a))
= (
I_el Y) by
Th42;
theorem ::
BVFUNC_6:44
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' b)
'or' c)
'imp' (a
'or' (b
'or' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'or' b)
'or' c)
'imp' (a
'or' (b
'or' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'or' b)
'or' c)
'imp' (a
'or' (b
'or' c)))
. x)
= ((
'not' (((a
'or' b)
'or' c)
. x))
'or' ((a
'or' (b
'or' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((a
'or' b)
. x)
'or' (c
. x)))
'or' ((a
'or' (b
'or' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'or' (c
. x)))
'or' ((a
'or' (b
'or' c))
. x)) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'or' (c
. x)))
'or' ((a
. x)
'or' ((b
'or' c)
. x))) by
BVFUNC_1:def 4
.= ((
'not' (((a
. x)
'or' (b
. x))
'or' (c
. x)))
'or' ((a
. x)
'or' ((b
. x)
'or' (c
. x)))) by
BVFUNC_1:def 4
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:45
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'&' b)
'&' c)
'imp' (a
'&' (b
'&' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'&' b)
'&' c)
'imp' (a
'&' (b
'&' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'&' b)
'&' c)
'imp' (a
'&' (b
'&' c)))
. x)
= ((
'not' (((a
'&' b)
'&' c)
. x))
'or' ((a
'&' (b
'&' c))
. x)) by
BVFUNC_1:def 8
.= ((
'not' (((a
'&' b)
. x)
'&' (c
. x)))
'or' ((a
'&' (b
'&' c))
. x)) by
MARGREL1:def 20
.= ((
'not' (((a
. x)
'&' (b
. x))
'&' (c
. x)))
'or' ((a
'&' (b
'&' c))
. x)) by
MARGREL1:def 20
.= ((
'not' (((a
. x)
'&' (b
. x))
'&' (c
. x)))
'or' ((a
. x)
'&' ((b
'&' c)
. x))) by
MARGREL1:def 20
.= ((
'not' (((a
. x)
'&' (b
. x))
'&' (c
. x)))
'or' ((a
. x)
'&' ((b
. x)
'&' (c
. x)))) by
MARGREL1:def 20
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:46
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'or' (b
'or' c))
'imp' ((a
'or' b)
'or' c))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'or' (b
'or' c))
'imp' ((a
'or' b)
'or' c))
. x)
=
TRUE
proof
let x be
Element of Y;
(((a
'or' (b
'or' c))
'imp' ((a
'or' b)
'or' c))
. x)
= ((
'not' ((a
'or' (b
'or' c))
. x))
'or' (((a
'or' b)
'or' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'or' ((b
'or' c)
. x)))
'or' (((a
'or' b)
'or' c)
. x)) by
BVFUNC_1:def 4
.= ((
'not' ((a
. x)
'or' ((b
. x)
'or' (c
. x))))
'or' (((a
'or' b)
'or' c)
. x)) by
BVFUNC_1:def 4
.= ((
'not' ((a
. x)
'or' ((b
. x)
'or' (c
. x))))
'or' (((a
'or' b)
. x)
'or' (c
. x))) by
BVFUNC_1:def 4
.= ((
'not' ((a
. x)
'or' ((b
. x)
'or' (c
. x))))
'or' (((a
. x)
'or' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 4
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
begin
reserve Y for non
empty
set;
theorem ::
BVFUNC_6:47
for a,b be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' ((
'not' a)
'imp' b))
= b
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
A1: (((a
'imp' b)
'&' ((
'not' a)
'imp' b))
. x)
= (((a
'imp' b)
. x)
'&' (((
'not' a)
'imp' b)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (b
. x))
'&' (((
'not' a)
'imp' b)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' ((
'not' a)
. x))
'or' (b
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((a
. x)
'or' (b
. x))) by
MARGREL1:def 19;
now
per cases by
XBOOLEAN:def 3;
case (a
. x)
=
TRUE ;
then (((a
'imp' b)
'&' ((
'not' a)
'imp' b))
. x)
= ((
FALSE
'or' (b
. x))
'&' (
TRUE
'or' (b
. x))) by
A1
.= ((
FALSE
'or' (b
. x))
'&'
TRUE )
.= (
TRUE
'&' (b
. x))
.= (b
. x);
hence thesis;
end;
case (a
. x)
=
FALSE ;
then (((a
'imp' b)
'&' ((
'not' a)
'imp' b))
. x)
= ((
TRUE
'or' (b
. x))
'&' (
FALSE
'or' (b
. x))) by
A1
.= (
TRUE
'&' (
FALSE
'or' (b
. x)))
.= (
TRUE
'&' (b
. x))
.= (b
. x);
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:48
for a,b be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (a
'imp' (
'not' b)))
= (
'not' a)
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
A1: (((a
'imp' b)
'&' (a
'imp' (
'not' b)))
. x)
= (((a
'imp' b)
. x)
'&' ((a
'imp' (
'not' b))
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((a
'imp' (
'not' b))
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' ((
'not' b)
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' (
'not' (b
. x)))) by
MARGREL1:def 19;
now
per cases by
XBOOLEAN:def 3;
case (b
. x)
=
TRUE ;
then (((a
'imp' b)
'&' (a
'imp' (
'not' b)))
. x)
= (((
'not' (a
. x))
'or'
TRUE )
'&' ((
'not' (a
. x))
'or'
FALSE )) by
A1
.= (((
'not' (a
. x))
'or'
TRUE )
'&' (
'not' (a
. x)))
.= (
TRUE
'&' (
'not' (a
. x)))
.= (
'not' (a
. x))
.= ((
'not' a)
. x) by
MARGREL1:def 19;
hence thesis;
end;
case (b
. x)
=
FALSE ;
then (((a
'imp' b)
'&' (a
'imp' (
'not' b)))
. x)
= (((
'not' (a
. x))
'or'
FALSE )
'&' ((
'not' (a
. x))
'or'
TRUE )) by
A1
.= ((
'not' (a
. x))
'&' ((
'not' (a
. x))
'or'
TRUE ))
.= (
TRUE
'&' (
'not' (a
. x)))
.= (
'not' (a
. x))
.= ((
'not' a)
. x) by
MARGREL1:def 19;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:49
Th73: for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' (b
'or' c))
= ((a
'imp' b)
'or' (a
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'imp' b)
'or' (a
'imp' c))
. x)
= (((a
'imp' b)
. x)
'or' ((a
'imp' c)
. x)) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'or' (b
. x))
'or' ((a
'imp' c)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'or' ((
'not' (a
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' ((
'not' (a
. x))
'or' (b
. x)))
'or' (c
. x))
.= ((((
'not' (a
. x))
'or' (
'not' (a
. x)))
'or' (b
. x))
'or' (c
. x)) by
BINARITH: 11
.= ((
'not' (a
. x))
'or' ((b
. x)
'or' (c
. x)))
.= ((
'not' (a
. x))
'or' ((b
'or' c)
. x)) by
BVFUNC_1:def 4
.= ((a
'imp' (b
'or' c))
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:50
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' (b
'&' c))
= ((a
'imp' b)
'&' (a
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'imp' b)
'&' (a
'imp' c))
. x)
= (((a
'imp' b)
. x)
'&' ((a
'imp' c)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((a
'imp' c)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((b
. x)
'&' (c
. x))) by
XBOOLEAN: 9
.= ((
'not' (a
. x))
'or' ((b
'&' c)
. x)) by
MARGREL1:def 20
.= ((a
'imp' (b
'&' c))
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:51
Th75: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'or' b)
'imp' c)
= ((a
'imp' c)
'&' (b
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'imp' c)
'&' (b
'imp' c))
. x)
= (((a
'imp' c)
. x)
'&' ((b
'imp' c)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (c
. x))
'&' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= (((c
. x)
'or' (
'not' (a
. x)))
'&' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= ((
'not' ((a
. x)
'or' (b
. x)))
'or' (c
. x)) by
XBOOLEAN: 9
.= ((
'not' ((a
'or' b)
. x))
'or' (c
. x)) by
BVFUNC_1:def 4
.= (((a
'or' b)
'imp' c)
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:52
Th76: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' c)
= ((a
'imp' c)
'or' (b
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'imp' c)
'or' (b
'imp' c))
. x)
= (((a
'imp' c)
. x)
'or' ((b
'imp' c)
. x)) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'or' (c
. x))
'or' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (c
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' ((c
. x)
'or' (
'not' (b
. x))))
'or' (c
. x))
.= ((((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x))
'or' (c
. x))
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((c
. x)
'or' (c
. x))) by
BINARITH: 11
.= ((
'not' ((a
'&' b)
. x))
'or' (c
. x)) by
MARGREL1:def 20
.= (((a
'&' b)
'imp' c)
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:53
Th7: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' c)
= (a
'imp' (b
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'imp' (b
'imp' c))
. x)
= ((
'not' (a
. x))
'or' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x))
.= ((
'not' ((a
'&' b)
. x))
'or' (c
. x)) by
MARGREL1:def 20
.= (((a
'&' b)
'imp' c)
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:54
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'&' b)
'imp' c)
= (a
'imp' ((
'not' b)
'or' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'imp' ((
'not' b)
'or' c))
. x)
= ((a
'imp' (b
'imp' c))
. x) by
BVFUNC_4: 8;
hence thesis by
Th7;
end;
theorem ::
BVFUNC_6:55
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' (b
'or' c))
= ((a
'&' (
'not' b))
'imp' c)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'&' (
'not' b))
'imp' c)
. x)
= ((
'not' ((a
'&' (
'not' b))
. x))
'or' (c
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' ((
'not' b)
. x)))
'or' (c
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (b
. x))
'or' (c
. x)) by
MARGREL1:def 19
.= ((
'not' (a
. x))
'or' ((b
. x)
'or' (c
. x)))
.= ((
'not' (a
. x))
'or' ((b
'or' c)
. x)) by
BVFUNC_1:def 4
.= ((a
'imp' (b
'or' c))
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:56
for a,b be
Function of Y,
BOOLEAN holds (a
'&' (a
'imp' b))
= (a
'&' b)
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'&' (a
'imp' b))
. x)
= ((a
. x)
'&' ((a
'imp' b)
. x)) by
MARGREL1:def 20
.= ((a
. x)
'&' ((
'not' (a
. x))
'or' (b
. x))) by
BVFUNC_1:def 8
.= (((a
. x)
'&' (
'not' (a
. x)))
'or' ((a
. x)
'&' (b
. x))) by
XBOOLEAN: 8
.= (
FALSE
'or' ((a
. x)
'&' (b
. x))) by
XBOOLEAN: 138
.= ((a
. x)
'&' (b
. x))
.= ((a
'&' b)
. x) by
MARGREL1:def 20;
hence thesis;
end;
theorem ::
BVFUNC_6:57
for a,b be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (
'not' b))
= ((
'not' a)
'&' (
'not' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'imp' b)
'&' (
'not' b))
. x)
= (((a
'imp' b)
. x)
'&' ((
'not' b)
. x)) by
MARGREL1:def 20
.= (((
'not' b)
. x)
'&' ((
'not' (a
. x))
'or' (b
. x))) by
BVFUNC_1:def 8
.= ((((
'not' b)
. x)
'&' (
'not' (a
. x)))
'or' (((
'not' b)
. x)
'&' (b
. x))) by
XBOOLEAN: 8
.= ((((
'not' b)
. x)
'&' (
'not' (a
. x)))
'or' ((b
. x)
'&' (
'not' (b
. x)))) by
MARGREL1:def 19
.= ((((
'not' b)
. x)
'&' (
'not' (a
. x)))
'or'
FALSE ) by
XBOOLEAN: 138
.= (((
'not' b)
. x)
'&' (
'not' (a
. x)))
.= (((
'not' b)
. x)
'&' ((
'not' a)
. x)) by
MARGREL1:def 19
.= (((
'not' a)
'&' (
'not' b))
. x) by
MARGREL1:def 20;
hence thesis;
end;
theorem ::
BVFUNC_6:58
Th12: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
= (((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
A1: ((((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
. x)
= ((((a
'imp' b)
'&' (b
'imp' c))
. x)
'&' ((a
'imp' c)
. x)) by
MARGREL1:def 20
.= ((((a
'imp' b)
. x)
'&' ((b
'imp' c)
. x))
'&' ((a
'imp' c)
. x)) by
MARGREL1:def 20
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((b
'imp' c)
. x))
'&' ((a
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&' ((a
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&' ((
'not' (a
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&' (
'not' (a
. x)))
'or' ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&' (c
. x))) by
XBOOLEAN: 8;
A2: (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
= (((a
'imp' b)
. x)
'&' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((a
'imp' b)
. x)
'&' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= (((a
'imp' b)
'&' (b
'imp' c))
. x) by
MARGREL1:def 20;
A3: (((a
'imp' b)
'&' (b
'imp' c))
. x)
= (((a
'imp' b)
. x)
'&' ((b
'imp' c)
. x)) by
MARGREL1:def 20
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8;
now
per cases by
XBOOLEAN:def 3;
case (a
. x)
=
TRUE & (c
. x)
=
TRUE ;
then ((((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
. x)
= (((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
FALSE )
'or' ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
TRUE )) by
A1
.= (
FALSE
'or' ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
TRUE ))
.= (
FALSE
'or' (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x))))
.= (((a
'imp' b)
'&' (b
'imp' c))
. x) by
A2;
hence thesis;
end;
case
A4: (a
. x)
=
TRUE & (c
. x)
=
FALSE ;
then
A5: (((a
'imp' b)
'&' (b
'imp' c))
. x)
= ((
FALSE
'or' (b
. x))
'&' ((
'not' (b
. x))
'or'
FALSE )) by
A3
.= ((
FALSE
'or' (b
. x))
'&' (
'not' (b
. x)))
.= ((b
. x)
'&' (
'not' (b
. x)))
.=
FALSE by
XBOOLEAN: 138;
((((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
. x)
= (((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
FALSE )
'or' ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
FALSE )) by
A1,
A4
.=
FALSE ;
hence thesis by
A5;
end;
case (a
. x)
=
FALSE & (c
. x)
=
TRUE ;
then ((((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
. x)
= (((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
TRUE )
'or' ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'&'
TRUE )) by
A1
.= (((a
'imp' b)
'&' (b
'imp' c))
. x) by
A2;
hence thesis;
end;
case (a
. x)
=
FALSE & (c
. x)
=
FALSE ;
then ((((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
. x)
= ((
TRUE
'&' (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x))))
'or' (
FALSE
'&' (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x))))) by
A1
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'or' (
FALSE
'&' (((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))))
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (b
. x))
'or' (c
. x)))
'or'
FALSE )
.= (((a
'imp' b)
'&' (b
'imp' c))
. x) by
A2;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:59
for a be
Function of Y,
BOOLEAN holds ((
I_el Y)
'imp' a)
= a
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((
I_el Y)
'imp' a)
. x)
= ((
'not' ((
I_el Y)
. x))
'or' (a
. x)) by
BVFUNC_1:def 8
.= (
FALSE
'or' (a
. x)) by
BVFUNC_1:def 11;
hence thesis;
end;
theorem ::
BVFUNC_6:60
for a be
Function of Y,
BOOLEAN holds (a
'imp' (
O_el Y))
= (
'not' a)
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'imp' (
O_el Y))
. x)
= ((
'not' (a
. x))
'or' ((
O_el Y)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or'
FALSE ) by
BVFUNC_1:def 10
.= (
'not' (a
. x));
hence thesis by
MARGREL1:def 19;
end;
theorem ::
BVFUNC_6:61
for a be
Function of Y,
BOOLEAN holds ((
O_el Y)
'imp' a)
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((
O_el Y)
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
(((
O_el Y)
'imp' a)
. x)
= ((
'not' ((
O_el Y)
. x))
'or' (a
. x)) by
BVFUNC_1:def 8
.= (
TRUE
'or' (a
. x)) by
BVFUNC_1:def 10;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:62
for a be
Function of Y,
BOOLEAN holds (a
'imp' (
I_el Y))
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((a
'imp' (
I_el Y))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' (
I_el Y))
. x)
= ((
'not' (a
. x))
'or' ((
I_el Y)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or'
TRUE ) by
BVFUNC_1:def 11;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:63
for a be
Function of Y,
BOOLEAN holds (a
'imp' (
'not' a))
= (
'not' a)
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'imp' (
'not' a))
. x)
= ((
'not' (a
. x))
'or' ((
'not' a)
. x)) by
BVFUNC_1:def 8
.= (((
'not' a)
. x)
'or' ((
'not' a)
. x)) by
MARGREL1:def 19
.= ((
'not' a)
. x);
hence thesis;
end;
theorem ::
BVFUNC_6:64
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' b)
'<' ((c
'imp' a)
'imp' (c
'imp' b))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume ((a
'imp' b)
. z)
=
TRUE ;
then
A1: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
A2: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A1,
A2;
case
A3: (
'not' (a
. z))
=
TRUE ;
(((c
'imp' a)
'imp' (c
'imp' b))
. z)
= ((
'not' ((c
'imp' a)
. z))
'or' ((c
'imp' b)
. z)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or' ((c
'imp' b)
. z)) by
BVFUNC_1:def 8
.= ((c
. z)
'or' ((c
'imp' b)
. z)) by
A3
.= ((c
. z)
'or' ((
'not' (c
. z))
'or' (b
. z))) by
BVFUNC_1:def 8
.= (((c
. z)
'or' (
'not' (c
. z)))
'or' (b
. z))
.= (
TRUE
'or' (b
. z)) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
case
A4: (b
. z)
=
TRUE ;
(((c
'imp' a)
'imp' (c
'imp' b))
. z)
= ((
'not' ((c
'imp' a)
. z))
'or' ((c
'imp' b)
. z)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or' ((c
'imp' b)
. z)) by
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or' ((
'not' (c
. z))
'or'
TRUE )) by
A4,
BVFUNC_1:def 8
.= ((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or'
TRUE )
.=
TRUE ;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:65
for a,b,c be
Function of Y,
BOOLEAN holds (a
'eqv' b)
'<' ((a
'eqv' c)
'eqv' (b
'eqv' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((a
'eqv' b)
. z)
= (((a
'imp' b)
'&' (b
'imp' a))
. z) by
BVFUNC_4: 7
.= (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)) by
MARGREL1:def 20;
assume
A2: ((a
'eqv' b)
. z)
=
TRUE ;
then ((a
'imp' b)
. z)
=
TRUE by
A1,
MARGREL1: 12;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
A4: (a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
A5: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
A6: ((b
'imp' a)
. z)
= ((
'not' (b
. z))
'or' (a
. z)) by
BVFUNC_1:def 8;
A7: (((a
'eqv' c)
'eqv' (b
'eqv' c))
. z)
= ((((a
'eqv' c)
'imp' (b
'eqv' c))
'&' ((b
'eqv' c)
'imp' (a
'eqv' c)))
. z) by
BVFUNC_4: 7
.= (((((a
'imp' c)
'&' (c
'imp' a))
'imp' (b
'eqv' c))
'&' ((b
'eqv' c)
'imp' (a
'eqv' c)))
. z) by
BVFUNC_4: 7
.= (((((a
'imp' c)
'&' (c
'imp' a))
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' ((b
'eqv' c)
'imp' (a
'eqv' c)))
. z) by
BVFUNC_4: 7
.= (((((a
'imp' c)
'&' (c
'imp' a))
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' (a
'eqv' c)))
. z) by
BVFUNC_4: 7
.= (((((a
'imp' c)
'&' (c
'imp' a))
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 7
.= ((((((
'not' a)
'or' c)
'&' (c
'imp' a))
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' (((
'not' b)
'or' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' (c
'imp' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
'imp' ((a
'imp' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
'imp' (((
'not' a)
'or' c)
'&' (c
'imp' a))))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
'imp' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
'imp' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_4: 8
.= ((((
'not' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
'imp' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_4: 8
.= ((((
'not' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((
'not' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_4: 8
.= (((((
'not' ((
'not' a)
'or' c))
'or' (
'not' ((
'not' c)
'or' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((
'not' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_1: 14
.= (((((
'not' ((
'not' a)
'or' c))
'or' (
'not' ((
'not' c)
'or' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((
'not' ((
'not' b)
'or' c))
'or' (
'not' ((
'not' c)
'or' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_1: 14
.= ((((((
'not' (
'not' a))
'&' (
'not' c))
'or' (
'not' ((
'not' c)
'or' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((
'not' ((
'not' b)
'or' c))
'or' (
'not' ((
'not' c)
'or' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_1: 13
.= ((((((
'not' (
'not' a))
'&' (
'not' c))
'or' ((
'not' (
'not' c))
'&' (
'not' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((
'not' ((
'not' b)
'or' c))
'or' (
'not' ((
'not' c)
'or' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_1: 13
.= ((((((
'not' (
'not' a))
'&' (
'not' c))
'or' ((
'not' (
'not' c))
'&' (
'not' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' (
'not' b))
'&' (
'not' c))
'or' (
'not' ((
'not' c)
'or' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_1: 13
.= (((((a
'&' (
'not' c))
'or' (c
'&' (
'not' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((b
'&' (
'not' c))
'or' ((
'not' (
'not' c))
'&' (
'not' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))))
. z) by
BVFUNC_1: 13
.= (((((a
'&' (
'not' c))
'or' (c
'&' (
'not' a)))
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
. z)
'&' ((((b
'&' (
'not' c))
'or' (c
'&' (
'not' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a)))
. z)) by
MARGREL1:def 20
.= (((((a
'&' (
'not' c))
'or' (c
'&' (
'not' a)))
. z)
'or' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
. z))
'&' ((((b
'&' (
'not' c))
'or' (c
'&' (
'not' b)))
'or' (((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a)))
. z)) by
BVFUNC_1:def 4
.= (((((a
'&' (
'not' c))
'or' (c
'&' (
'not' a)))
. z)
'or' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
. z))
'&' ((((b
'&' (
'not' c))
'or' (c
'&' (
'not' b)))
. z)
'or' ((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
. z))) by
BVFUNC_1:def 4
.= (((((a
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' a))
. z))
'or' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
. z))
'&' ((((b
'&' (
'not' c))
'or' (c
'&' (
'not' b)))
. z)
'or' ((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
. z))) by
BVFUNC_1:def 4
.= (((((a
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' a))
. z))
'or' ((((
'not' b)
'or' c)
. z)
'&' (((
'not' c)
'or' b)
. z)))
'&' ((((b
'&' (
'not' c))
'or' (c
'&' (
'not' b)))
. z)
'or' ((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
. z))) by
MARGREL1:def 20
.= (((((a
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' a))
. z))
'or' ((((
'not' b)
'or' c)
. z)
'&' (((
'not' c)
'or' b)
. z)))
'&' ((((b
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
'&' ((
'not' c)
'or' a))
. z))) by
BVFUNC_1:def 4
.= (((((a
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' a))
. z))
'or' ((((
'not' b)
'or' c)
. z)
'&' (((
'not' c)
'or' b)
. z)))
'&' ((((b
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
MARGREL1:def 20
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
'&' (
'not' a))
. z))
'or' ((((
'not' b)
'or' c)
. z)
'&' (((
'not' c)
'or' b)
. z)))
'&' ((((b
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
MARGREL1:def 20
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
'or' c)
. z)
'&' (((
'not' c)
'or' b)
. z)))
'&' ((((b
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
MARGREL1:def 20
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
'or' b)
. z)))
'&' ((((b
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
'&' (
'not' c))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
'&' (
'not' b))
. z))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
MARGREL1:def 20
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((((
'not' a)
'or' c)
. z)
'&' (((
'not' c)
'or' a)
. z)))) by
MARGREL1:def 20
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' c)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' a)
. z)))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (a
. z))))) by
BVFUNC_1:def 4
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (a
. z))))
'or' ((((
'not' b)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (a
. z))))) by
MARGREL1:def 19
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (a
. z))))
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (a
. z))))) by
MARGREL1:def 19
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (a
. z))))
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (a
. z))))) by
MARGREL1:def 19
.= (((((a
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (a
. z))))
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' (((
'not' (a
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (a
. z))))) by
MARGREL1:def 19;
((b
'imp' a)
. z)
=
TRUE by
A2,
A1,
MARGREL1: 12;
then
A8: (
'not' (b
. z))
=
TRUE or (a
. z)
=
TRUE by
A6,
A4;
now
per cases by
A3,
A5;
case
A9: (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE ;
then (((a
'eqv' c)
'eqv' (b
'eqv' c))
. z)
= (((
FALSE
'or' ((c
. z)
'&'
TRUE ))
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
TRUE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
FALSE )))) by
A7
.= (((
FALSE
'or' (c
. z))
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
TRUE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
FALSE ))))
.= (((c
. z)
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
TRUE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
FALSE ))))
.= (((c
. z)
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
TRUE
'or' (c
. z))
'&' ((
'not' c)
. z))))
.= (((c
. z)
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' (
TRUE
'&' ((
'not' c)
. z))))
.= (((c
. z)
'or' (((
'not' (b
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z)))
.= ((((c
. z)
'or' ((c
. z)
'or' (
'not' (b
. z))))
'&' ((c
. z)
'or' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z))) by
XBOOLEAN: 9
.= (((((c
. z)
'or' (c
. z))
'or' (
'not' (b
. z)))
'&' ((c
. z)
'or' (((
'not' c)
. z)
'or' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z))) by
BINARITH: 11
.= ((((c
. z)
'or' (
'not' (b
. z)))
'&' (((c
. z)
'or' ((
'not' c)
. z))
'or' (b
. z)))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z)))
.= ((((c
. z)
'or' (
'not' (b
. z)))
'&' (((c
. z)
'or' (
'not' (c
. z)))
'or' (b
. z)))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z))) by
MARGREL1:def 19
.= ((((c
. z)
'or' (
'not' (b
. z)))
'&' (
TRUE
'or' (b
. z)))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z))) by
XBOOLEAN: 102
.= ((
TRUE
'&' ((c
. z)
'or' (
'not' (b
. z))))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z)))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' ((((b
. z)
'&' ((
'not' c)
. z))
'or' ((c
. z)
'&' (
'not' (b
. z))))
'or' ((
'not' c)
. z)))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (((b
. z)
'&' ((
'not' c)
. z))
'or' (((
'not' c)
. z)
'or' ((c
. z)
'&' (
'not' (b
. z))))))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (((b
. z)
'&' ((
'not' c)
. z))
'or' ((((
'not' c)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (
'not' (b
. z)))))) by
XBOOLEAN: 9
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (((b
. z)
'&' ((
'not' c)
. z))
'or' (((
'not' (c
. z))
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (
'not' (b
. z)))))) by
MARGREL1:def 19
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (((b
. z)
'&' ((
'not' c)
. z))
'or' (
TRUE
'&' (((
'not' c)
. z)
'or' (
'not' (b
. z)))))) by
XBOOLEAN: 102
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' ((((
'not' c)
. z)
'or' (
'not' (b
. z)))
'or' ((b
. z)
'&' ((
'not' c)
. z))))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (((((
'not' c)
. z)
'or' (
'not' (b
. z)))
'or' (b
. z))
'&' ((((
'not' c)
. z)
'or' (
'not' (b
. z)))
'or' ((
'not' c)
. z)))) by
XBOOLEAN: 9
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' ((((
'not' c)
. z)
'or' ((
'not' (b
. z))
'or' (b
. z)))
'&' ((((
'not' c)
. z)
'or' (
'not' (b
. z)))
'or' ((
'not' c)
. z))))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' ((((
'not' c)
. z)
'or'
TRUE )
'&' ((((
'not' c)
. z)
'or' (
'not' (b
. z)))
'or' ((
'not' c)
. z)))) by
XBOOLEAN: 102
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (
TRUE
'&' ((((
'not' c)
. z)
'or' (
'not' (b
. z)))
'or' ((
'not' c)
. z))))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' (((
'not' (b
. z))
'or' ((
'not' c)
. z))
'or' ((
'not' c)
. z)))
.= (((c
. z)
'or' (
'not' (b
. z)))
'&' ((
'not' (b
. z))
'or' (((
'not' c)
. z)
'or' ((
'not' c)
. z)))) by
BINARITH: 11
.= (((
'not' (b
. z))
'&' ((c
. z)
'or' (
'not' (b
. z))))
'or' (((c
. z)
'or' (
'not' (b
. z)))
'&' ((
'not' c)
. z))) by
XBOOLEAN: 8
.= ((((
'not' (b
. z))
'&' (c
. z))
'or' ((
'not' (b
. z))
'&' (
'not' (b
. z))))
'or' (((
'not' c)
. z)
'&' ((c
. z)
'or' (
'not' (b
. z))))) by
XBOOLEAN: 8
.= ((((
'not' (b
. z))
'&' (c
. z))
'or' (
'not' (b
. z)))
'or' ((((
'not' c)
. z)
'&' (c
. z))
'or' (((
'not' c)
. z)
'&' (
'not' (b
. z))))) by
XBOOLEAN: 8
.= ((((
'not' (b
. z))
'&' (c
. z))
'or' (
'not' (b
. z)))
'or' (((c
. z)
'&' (
'not' (c
. z)))
'or' (((
'not' c)
. z)
'&' (
'not' (b
. z))))) by
MARGREL1:def 19
.= ((((
'not' (b
. z))
'&' (c
. z))
'or' (
'not' (b
. z)))
'or' (
FALSE
'or' (((
'not' c)
. z)
'&' (
'not' (b
. z))))) by
XBOOLEAN: 138
.= (((
'not' (b
. z))
'or' ((
'not' (b
. z))
'&' (c
. z)))
'or' (((
'not' c)
. z)
'&' (
'not' (b
. z))))
.= ((
'not' (b
. z))
'or' (((
'not' (b
. z))
'&' (c
. z))
'or' (((
'not' c)
. z)
'&' (
'not' (b
. z)))))
.=
TRUE by
A8,
A9;
hence thesis;
end;
case (b
. z)
=
TRUE ;
then (
'not' (b
. z))
=
FALSE ;
then (((a
'eqv' c)
'eqv' (b
'eqv' c))
. z)
= (((((
'not' c)
. z)
'or' (
FALSE
'&' (c
. z)))
'or' ((
FALSE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
TRUE )))
'&' ((((
'not' c)
. z)
'or' ((c
. z)
'&'
FALSE ))
'or' ((
FALSE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
TRUE )))) by
A2,
A1,
A6,
A4,
A7
.= (((((
'not' c)
. z)
'or'
FALSE )
'or' ((
FALSE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
TRUE )))
'&' ((((
'not' c)
. z)
'or'
FALSE )
'or' ((
FALSE
'or' (c
. z))
'&' (((
'not' c)
. z)
'or'
TRUE ))))
.= (((((
'not' c)
. z)
'or'
FALSE )
'or' ((
FALSE
'or' (c
. z))
'&'
TRUE ))
'&' ((((
'not' c)
. z)
'or'
FALSE )
'or' ((
FALSE
'or' (c
. z))
'&'
TRUE )))
.= (((((
'not' c)
. z)
'or'
FALSE )
'or' ((c
. z)
'&'
TRUE ))
'&' ((((
'not' c)
. z)
'or'
FALSE )
'or' ((c
. z)
'&'
TRUE )))
.= ((((
'not' c)
. z)
'or' (
TRUE
'&' (c
. z)))
'&' (((
'not' c)
. z)
'or' ((c
. z)
'&'
TRUE )))
.= ((((
'not' c)
. z)
'or' (c
. z))
'&' (((
'not' c)
. z)
'or' (c
. z)))
.= (((
'not' (c
. z))
'or' (c
. z))
'&' ((
'not' (c
. z))
'or' (c
. z))) by
MARGREL1:def 19
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:66
for a,b,c be
Function of Y,
BOOLEAN holds (a
'eqv' b)
'<' ((a
'imp' c)
'eqv' (b
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((a
'eqv' b)
. z)
= (((a
'imp' b)
'&' (b
'imp' a))
. z) by
BVFUNC_4: 7
.= (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)) by
MARGREL1:def 20;
assume
A2: ((a
'eqv' b)
. z)
=
TRUE ;
then ((a
'imp' b)
. z)
=
TRUE by
A1,
MARGREL1: 12;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
((b
'imp' a)
. z)
=
TRUE by
A2,
A1,
MARGREL1: 12;
then
A4: ((
'not' (b
. z))
'or' (a
. z))
=
TRUE by
BVFUNC_1:def 8;
A5: (((a
'imp' c)
'eqv' (b
'imp' c))
. z)
= ((((a
'imp' c)
'imp' (b
'imp' c))
'&' ((b
'imp' c)
'imp' (a
'imp' c)))
. z) by
BVFUNC_4: 7
.= ((((a
'imp' c)
'imp' (b
'imp' c))
. z)
'&' (((b
'imp' c)
'imp' (a
'imp' c))
. z)) by
MARGREL1:def 20
.= (((
'not' ((a
'imp' c)
. z))
'or' ((b
'imp' c)
. z))
'&' (((b
'imp' c)
'imp' (a
'imp' c))
. z)) by
BVFUNC_1:def 8
.= (((
'not' ((a
'imp' c)
. z))
'or' ((b
'imp' c)
. z))
'&' ((
'not' ((b
'imp' c)
. z))
'or' ((a
'imp' c)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (a
. z))
'or' (c
. z)))
'or' ((b
'imp' c)
. z))
'&' ((
'not' ((b
'imp' c)
. z))
'or' ((a
'imp' c)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (a
. z))
'or' (c
. z)))
'or' ((
'not' (b
. z))
'or' (c
. z)))
'&' ((
'not' ((b
'imp' c)
. z))
'or' ((a
'imp' c)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (a
. z))
'or' (c
. z)))
'or' ((
'not' (b
. z))
'or' (c
. z)))
'&' ((
'not' ((
'not' (b
. z))
'or' (c
. z)))
'or' ((a
'imp' c)
. z))) by
BVFUNC_1:def 8
.= ((((a
. z)
'&' (
'not' (c
. z)))
'or' ((
'not' (b
. z))
'or' (c
. z)))
'&' (((b
. z)
'&' (
'not' (c
. z)))
'or' ((
'not' (a
. z))
'or' (c
. z)))) by
BVFUNC_1:def 8;
A6: (a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
A7: ((b
'imp' a)
. z)
= ((
'not' (b
. z))
'or' (a
. z)) by
BVFUNC_1:def 8;
A8: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A3,
A8;
case
A9: (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE ;
then (
'not' (b
. z))
=
TRUE by
A4;
then (((a
'imp' c)
'eqv' (b
'imp' c))
. z)
= ((
FALSE
'or' (
TRUE
'or' (c
. z)))
'&' (
FALSE
'or' (
TRUE
'or' (c
. z)))) by
A5,
A9
.= ((
TRUE
'or' (c
. z))
'&' (
TRUE
'or' (c
. z)))
.=
TRUE ;
hence thesis;
end;
case (b
. z)
=
TRUE ;
then (
'not' (b
. z))
=
FALSE ;
then (((a
'imp' c)
'eqv' (b
'imp' c))
. z)
= (((
'not' (c
. z))
'or' (
FALSE
'or' (c
. z)))
'&' ((
'not' (c
. z))
'or' (
FALSE
'or' (c
. z)))) by
A2,
A1,
A7,
A6,
A5
.= (((
'not' (c
. z))
'or' (c
. z))
'&' ((
'not' (c
. z))
'or' (c
. z)))
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:67
for a,b,c be
Function of Y,
BOOLEAN holds (a
'eqv' b)
'<' ((c
'imp' a)
'eqv' (c
'imp' b))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((a
'eqv' b)
. z)
= (((a
'imp' b)
'&' (b
'imp' a))
. z) by
BVFUNC_4: 7
.= (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)) by
MARGREL1:def 20;
assume
A2: ((a
'eqv' b)
. z)
=
TRUE ;
then ((a
'imp' b)
. z)
=
TRUE by
A1,
MARGREL1: 12;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
((b
'imp' a)
. z)
=
TRUE by
A2,
A1,
MARGREL1: 12;
then
A4: ((
'not' (b
. z))
'or' (a
. z))
=
TRUE by
BVFUNC_1:def 8;
A5: (((c
'imp' a)
'eqv' (c
'imp' b))
. z)
= ((((c
'imp' a)
'imp' (c
'imp' b))
'&' ((c
'imp' b)
'imp' (c
'imp' a)))
. z) by
BVFUNC_4: 7
.= ((((c
'imp' a)
'imp' (c
'imp' b))
. z)
'&' (((c
'imp' b)
'imp' (c
'imp' a))
. z)) by
MARGREL1:def 20
.= (((
'not' ((c
'imp' a)
. z))
'or' ((c
'imp' b)
. z))
'&' (((c
'imp' b)
'imp' (c
'imp' a))
. z)) by
BVFUNC_1:def 8
.= (((
'not' ((c
'imp' a)
. z))
'or' ((c
'imp' b)
. z))
'&' ((
'not' ((c
'imp' b)
. z))
'or' ((c
'imp' a)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or' ((c
'imp' b)
. z))
'&' ((
'not' ((c
'imp' b)
. z))
'or' ((c
'imp' a)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or' ((
'not' (c
. z))
'or' (b
. z)))
'&' ((
'not' ((c
'imp' b)
. z))
'or' ((c
'imp' a)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((
'not' (c
. z))
'or' (a
. z)))
'or' ((
'not' (c
. z))
'or' (b
. z)))
'&' ((
'not' ((
'not' (c
. z))
'or' (b
. z)))
'or' ((c
'imp' a)
. z))) by
BVFUNC_1:def 8
.= ((((c
. z)
'&' (
'not' (a
. z)))
'or' ((
'not' (c
. z))
'or' (b
. z)))
'&' (((c
. z)
'&' (
'not' (b
. z)))
'or' ((
'not' (c
. z))
'or' (a
. z)))) by
BVFUNC_1:def 8;
A7: ((b
'imp' a)
. z)
= ((
'not' (b
. z))
'or' (a
. z)) by
BVFUNC_1:def 8;
A8: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A3,
A8;
case
A9: (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE ;
then (
'not' (b
. z))
=
TRUE by
A4;
then (((c
'imp' a)
'eqv' (c
'imp' b))
. z)
= (((c
. z)
'or' ((
'not' (c
. z))
'or'
FALSE ))
'&' ((c
. z)
'or' ((
'not' (c
. z))
'or'
FALSE ))) by
A5,
A9
.= (((c
. z)
'or' (
'not' (c
. z)))
'&' ((c
. z)
'or' (
'not' (c
. z))))
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
case (b
. z)
=
TRUE ;
then (
'not' (b
. z))
=
FALSE ;
then (((c
'imp' a)
'eqv' (c
'imp' b))
. z)
= ((
FALSE
'or' ((
'not' (c
. z))
'or'
TRUE ))
'&' (
FALSE
'or' ((
'not' (c
. z))
'or'
TRUE ))) by
A2,
A1,
A7,
A5,
MARGREL1: 12
.= (((
'not' (c
. z))
'or'
TRUE )
'&' ((
'not' (c
. z))
'or'
TRUE ))
.=
TRUE ;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:68
for a,b,c be
Function of Y,
BOOLEAN holds (a
'eqv' b)
'<' ((a
'&' c)
'eqv' (b
'&' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((a
'eqv' b)
. z)
= (((a
'imp' b)
'&' (b
'imp' a))
. z) by
BVFUNC_4: 7
.= (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)) by
MARGREL1:def 20;
assume
A2: ((a
'eqv' b)
. z)
=
TRUE ;
then ((a
'imp' b)
. z)
=
TRUE by
A1,
MARGREL1: 12;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
((b
'imp' a)
. z)
=
TRUE by
A2,
A1,
MARGREL1: 12;
then
A4: ((
'not' (b
. z))
'or' (a
. z))
=
TRUE by
BVFUNC_1:def 8;
A5: (((a
'&' c)
'eqv' (b
'&' c))
. z)
= ((((a
'&' c)
'imp' (b
'&' c))
'&' ((b
'&' c)
'imp' (a
'&' c)))
. z) by
BVFUNC_4: 7
.= ((((a
'&' c)
'imp' (b
'&' c))
. z)
'&' (((b
'&' c)
'imp' (a
'&' c))
. z)) by
MARGREL1:def 20
.= (((
'not' ((a
'&' c)
. z))
'or' ((b
'&' c)
. z))
'&' (((b
'&' c)
'imp' (a
'&' c))
. z)) by
BVFUNC_1:def 8
.= (((
'not' ((a
'&' c)
. z))
'or' ((b
'&' c)
. z))
'&' ((
'not' ((b
'&' c)
. z))
'or' ((a
'&' c)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((a
. z)
'&' (c
. z)))
'or' ((b
'&' c)
. z))
'&' ((
'not' ((b
'&' c)
. z))
'or' ((a
'&' c)
. z))) by
MARGREL1:def 20
.= (((
'not' ((a
. z)
'&' (c
. z)))
'or' ((b
. z)
'&' (c
. z)))
'&' ((
'not' ((b
'&' c)
. z))
'or' ((a
'&' c)
. z))) by
MARGREL1:def 20
.= (((
'not' ((a
. z)
'&' (c
. z)))
'or' ((b
. z)
'&' (c
. z)))
'&' ((
'not' ((b
. z)
'&' (c
. z)))
'or' ((a
'&' c)
. z))) by
MARGREL1:def 20
.= ((((
'not' (a
. z))
'or' (
'not' (c
. z)))
'or' ((b
. z)
'&' (c
. z)))
'&' (((
'not' (b
. z))
'or' (
'not' (c
. z)))
'or' ((a
. z)
'&' (c
. z)))) by
MARGREL1:def 20;
A6: (a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
A7: ((b
'imp' a)
. z)
= ((
'not' (b
. z))
'or' (a
. z)) by
BVFUNC_1:def 8;
A8: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A3,
A8;
case
A9: (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE ;
then (
'not' (b
. z))
=
TRUE by
A4;
then (((a
'&' c)
'eqv' (b
'&' c))
. z)
= (((
TRUE
'or' (
'not' (c
. z)))
'or'
FALSE )
'&' ((
TRUE
'or' (
'not' (c
. z)))
'or'
FALSE )) by
A5,
A9
.= ((
TRUE
'or' (
'not' (c
. z)))
'&' (
TRUE
'or' (
'not' (c
. z))))
.=
TRUE ;
hence thesis;
end;
case (b
. z)
=
TRUE ;
then (
'not' (b
. z))
=
FALSE ;
then (((a
'&' c)
'eqv' (b
'&' c))
. z)
= (((
FALSE
'or' (
'not' (c
. z)))
'or' (c
. z))
'&' ((
FALSE
'or' (
'not' (c
. z)))
'or' (c
. z))) by
A2,
A1,
A7,
A6,
A5
.= (((
'not' (c
. z))
'or' (c
. z))
'&' ((
'not' (c
. z))
'or' (c
. z)))
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:69
for a,b,c be
Function of Y,
BOOLEAN holds (a
'eqv' b)
'<' ((a
'or' c)
'eqv' (b
'or' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((a
'eqv' b)
. z)
= (((a
'imp' b)
'&' (b
'imp' a))
. z) by
BVFUNC_4: 7
.= (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)) by
MARGREL1:def 20;
assume
A2: ((a
'eqv' b)
. z)
=
TRUE ;
then ((a
'imp' b)
. z)
=
TRUE by
A1,
MARGREL1: 12;
then
A3: ((
'not' (a
. z))
'or' (b
. z))
=
TRUE by
BVFUNC_1:def 8;
((b
'imp' a)
. z)
=
TRUE by
A2,
A1,
MARGREL1: 12;
then
A4: ((
'not' (b
. z))
'or' (a
. z))
=
TRUE by
BVFUNC_1:def 8;
A5: (((a
'or' c)
'eqv' (b
'or' c))
. z)
= ((((a
'or' c)
'imp' (b
'or' c))
'&' ((b
'or' c)
'imp' (a
'or' c)))
. z) by
BVFUNC_4: 7
.= ((((a
'or' c)
'imp' (b
'or' c))
. z)
'&' (((b
'or' c)
'imp' (a
'or' c))
. z)) by
MARGREL1:def 20
.= (((
'not' ((a
'or' c)
. z))
'or' ((b
'or' c)
. z))
'&' (((b
'or' c)
'imp' (a
'or' c))
. z)) by
BVFUNC_1:def 8
.= (((
'not' ((a
'or' c)
. z))
'or' ((b
'or' c)
. z))
'&' ((
'not' ((b
'or' c)
. z))
'or' ((a
'or' c)
. z))) by
BVFUNC_1:def 8
.= (((
'not' ((a
. z)
'or' (c
. z)))
'or' ((b
'or' c)
. z))
'&' ((
'not' ((b
'or' c)
. z))
'or' ((a
'or' c)
. z))) by
BVFUNC_1:def 4
.= (((
'not' ((a
. z)
'or' (c
. z)))
'or' ((b
. z)
'or' (c
. z)))
'&' ((
'not' ((b
'or' c)
. z))
'or' ((a
'or' c)
. z))) by
BVFUNC_1:def 4
.= (((
'not' ((a
. z)
'or' (c
. z)))
'or' ((b
. z)
'or' (c
. z)))
'&' ((
'not' ((b
. z)
'or' (c
. z)))
'or' ((a
'or' c)
. z))) by
BVFUNC_1:def 4
.= ((((
'not' (a
. z))
'&' (
'not' (c
. z)))
'or' ((b
. z)
'or' (c
. z)))
'&' (((
'not' (b
. z))
'&' (
'not' (c
. z)))
'or' ((a
. z)
'or' (c
. z)))) by
BVFUNC_1:def 4;
A6: (a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
A7: ((b
'imp' a)
. z)
= ((
'not' (b
. z))
'or' (a
. z)) by
BVFUNC_1:def 8;
A8: (b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A3,
A8;
case
A9: (
'not' (a
. z))
=
TRUE ;
then (a
. z)
=
FALSE ;
then (
'not' (b
. z))
=
TRUE by
A4;
then (((a
'or' c)
'eqv' (b
'or' c))
. z)
= (((
'not' (c
. z))
'or' (
FALSE
'or' (c
. z)))
'&' ((
'not' (c
. z))
'or' (
FALSE
'or' (c
. z)))) by
A5,
A9
.= (((
'not' (c
. z))
'or' (c
. z))
'&' ((
'not' (c
. z))
'or' (c
. z)))
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
case (b
. z)
=
TRUE ;
then (
'not' (b
. z))
=
FALSE ;
then (((a
'or' c)
'eqv' (b
'or' c))
. z)
= ((
FALSE
'or' (
TRUE
'or' (c
. z)))
'&' (
FALSE
'or' (
TRUE
'or' (c
. z)))) by
A2,
A1,
A7,
A6,
A5
.= ((
TRUE
'or' (c
. z))
'&' (
TRUE
'or' (c
. z)))
.=
TRUE ;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:70
for a,b be
Function of Y,
BOOLEAN holds a
'<' (((a
'eqv' b)
'eqv' (b
'eqv' a))
'eqv' a)
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((
'not' a)
. z)
= (
'not' (a
. z)) by
MARGREL1:def 19;
assume
A2: (a
. z)
=
TRUE ;
then
A3: (
'not' (a
. z))
=
FALSE ;
A4: (((a
'eqv' b)
'eqv' (b
'eqv' a))
. z)
= ((((a
'eqv' b)
'imp' (b
'eqv' a))
'&' ((b
'eqv' a)
'imp' (a
'eqv' b)))
. z) by
BVFUNC_4: 7
.= ((((
'not' (a
'eqv' b))
'or' (b
'eqv' a))
. z)
'&' (((
'not' (b
'eqv' a))
'or' (a
'eqv' b))
. z)) by
BVFUNC_4: 8
.= ((((
'not' (a
'eqv' b))
. z)
'or' ((b
'eqv' a)
. z))
'&' (((
'not' (b
'eqv' a))
. z)
'or' ((a
'eqv' b)
. z))) by
BVFUNC_1:def 4
.= ((((
'not' ((a
'imp' b)
'&' (b
'imp' a)))
. z)
'or' ((b
'eqv' a)
. z))
'&' (((
'not' (b
'eqv' a))
. z)
'or' ((a
'eqv' b)
. z))) by
BVFUNC_4: 7
.= ((((
'not' ((a
'imp' b)
'&' (b
'imp' a)))
. z)
'or' ((b
'eqv' a)
. z))
'&' (((
'not' (b
'eqv' a))
. z)
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
BVFUNC_4: 7
.= ((((
'not' ((a
'imp' b)
'&' (b
'imp' a)))
. z)
'or' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'&' (((
'not' (b
'eqv' a))
. z)
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
BVFUNC_4: 7
.= ((((
'not' ((a
'imp' b)
'&' (b
'imp' a)))
. z)
'or' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'&' (((
'not' ((b
'imp' a)
'&' (a
'imp' b)))
. z)
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
BVFUNC_4: 7
.= (((
'not' (((a
'imp' b)
'&' (b
'imp' a))
. z))
'or' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'&' ((
'not' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
MARGREL1:def 19
.= (((
'not' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))
'or' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'&' ((
'not' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
MARGREL1:def 20
.= (((
'not' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))
'or' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'&' ((
'not' (((b
'imp' a)
'&' (a
'imp' b))
. z))
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
MARGREL1:def 20
.= (((
'not' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))
'or' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'&' ((
'not' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
'&' (b
'imp' a))
. z))) by
MARGREL1:def 20
.= (((
'not' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))
'or' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'&' ((
'not' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
MARGREL1:def 20
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' a)
. z)))
'or' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'&' ((
'not' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'&' ((
'not' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' ((a
'imp' b)
. z)))
'&' ((
'not' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' (((b
'imp' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' ((a
'imp' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' (((a
'imp' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_4: 8
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' a)
. z)))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (a
. z))))
'or' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (a
. z))))
'or' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
'or' b)
. z)))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (a
. z))))
'or' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (b
. z))))
'&' ((
'not' ((((
'not' b)
'or' a)
. z)
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (a
. z))))
'or' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (b
. z))))
'&' ((
'not' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
'or' b)
. z)))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (a
. z))))
'or' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (b
. z))))
'&' ((
'not' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (b
. z))))
'or' ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (a
. z))))
'or' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (b
. z))))
'&' ((
'not' ((((
'not' b)
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (b
. z))))
'or' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' a)
. z)))) by
BVFUNC_1:def 4
.= (((
'not' ((
FALSE
'or' (b
. z))
'&' (((
'not' b)
. z)
'or'
TRUE )))
'or' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'&' ((
'not' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'or' ((
FALSE
'or' (b
. z))
'&' (((
'not' b)
. z)
'or'
TRUE )))) by
A3,
A1,
BVFUNC_1:def 4
.= (((
'not' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE )))
'or' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'&' ((
'not' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'or' ((
FALSE
'or' (b
. z))
'&' (((
'not' b)
. z)
'or'
TRUE ))))
.= (((
'not' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE )))
'or' ((((
'not' b)
. z)
'or'
TRUE )
'&' (b
. z)))
'&' ((
'not' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'or' ((
FALSE
'or' (b
. z))
'&' (((
'not' b)
. z)
'or'
TRUE ))))
.= (((
'not' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE )))
'or' ((((
'not' b)
. z)
'or'
TRUE )
'&' (b
. z)))
'&' ((
'not' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'or' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE ))))
.= (((
'not' ((b
. z)
'&'
TRUE ))
'or' ((((
'not' b)
. z)
'or'
TRUE )
'&' (b
. z)))
'&' ((
'not' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'or' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE ))))
.= (((
'not' ((b
. z)
'&'
TRUE ))
'or' (
TRUE
'&' (b
. z)))
'&' ((
'not' ((((
'not' b)
. z)
'or'
TRUE )
'&' (
FALSE
'or' (b
. z))))
'or' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE ))))
.= (((
'not' ((b
. z)
'&'
TRUE ))
'or' (
TRUE
'&' (b
. z)))
'&' ((
'not' (
TRUE
'&' (
FALSE
'or' (b
. z))))
'or' ((b
. z)
'&' (((
'not' b)
. z)
'or'
TRUE ))))
.= (((
'not' ((b
. z)
'&'
TRUE ))
'or' (
TRUE
'&' (b
. z)))
'&' ((
'not' (
TRUE
'&' (
FALSE
'or' (b
. z))))
'or' ((b
. z)
'&'
TRUE )))
.= (((
'not' (
TRUE
'&' (b
. z)))
'or' (
TRUE
'&' (b
. z)))
'&' ((
'not' (
TRUE
'&' (b
. z)))
'or' ((b
. z)
'&'
TRUE )))
.= (((
'not' (b
. z))
'or' (
TRUE
'&' (b
. z)))
'&' ((
'not' (b
. z))
'or' (
TRUE
'&' (b
. z))))
.= (((
'not' (b
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (b
. z)))
.=
TRUE by
XBOOLEAN: 102;
((((a
'eqv' b)
'eqv' (b
'eqv' a))
'eqv' a)
. z)
= (((((a
'eqv' b)
'eqv' (b
'eqv' a))
'imp' a)
'&' (a
'imp' ((a
'eqv' b)
'eqv' (b
'eqv' a))))
. z) by
BVFUNC_4: 7
.= (((((a
'eqv' b)
'eqv' (b
'eqv' a))
'imp' a)
. z)
'&' ((a
'imp' ((a
'eqv' b)
'eqv' (b
'eqv' a)))
. z)) by
MARGREL1:def 20
.= (((
'not' (((a
'eqv' b)
'eqv' (b
'eqv' a))
. z))
'or' (a
. z))
'&' ((a
'imp' ((a
'eqv' b)
'eqv' (b
'eqv' a)))
. z)) by
BVFUNC_1:def 8
.= (((
'not' (((a
'eqv' b)
'eqv' (b
'eqv' a))
. z))
'or' (a
. z))
'&' ((
'not' (a
. z))
'or' (((a
'eqv' b)
'eqv' (b
'eqv' a))
. z))) by
BVFUNC_1:def 8
.= ((
FALSE
'or' (a
. z))
'&' ((
'not' (a
. z))
'or'
TRUE )) by
A4
.= ((a
. z)
'&' ((
'not' (a
. z))
'or'
TRUE ))
.= (
TRUE
'&' (a
. z))
.=
TRUE by
A2;
hence thesis;
end;
theorem ::
BVFUNC_6:71
for a,b be
Function of Y,
BOOLEAN holds a
'<' ((a
'imp' b)
'eqv' b)
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume (a
. z)
=
TRUE ;
then
A2: (
'not' (a
. z))
=
FALSE ;
(((a
'imp' b)
'eqv' b)
. z)
= ((((
'not' a)
'or' b)
'eqv' b)
. z) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
'imp' b)
'&' (b
'imp' ((
'not' a)
'or' b)))
. z) by
BVFUNC_4: 7
.= ((((
'not' ((
'not' a)
'or' b))
'or' b)
'&' (b
'imp' ((
'not' a)
'or' b)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' a)
'or' b))
'or' b)
'&' ((
'not' b)
'or' ((
'not' a)
'or' b)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' a)
'or' b))
'or' b)
. z)
'&' (((
'not' b)
'or' ((
'not' a)
'or' b))
. z)) by
MARGREL1:def 20
.= ((((
'not' ((
'not' a)
'or' b))
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' ((
'not' a)
'or' b))
. z)) by
BVFUNC_1:def 4
.= (((
'not' (((
'not' a)
'or' b)
. z))
'or' (b
. z))
'&' (((
'not' b)
'or' ((
'not' a)
'or' b))
. z)) by
MARGREL1:def 19
.= (((
'not' (((
'not' a)
. z)
'or' (b
. z)))
'or' (b
. z))
'&' (((
'not' b)
'or' ((
'not' a)
'or' b))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' (
'not' (a
. z)))
'&' (
'not' (b
. z)))
'or' (b
. z))
'&' (((
'not' b)
'or' ((
'not' a)
'or' b))
. z)) by
MARGREL1:def 19
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (((
'not' a)
'or' b)
. z))) by
BVFUNC_1:def 4
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (((
'not' a)
. z)
'or' (b
. z)))) by
BVFUNC_1:def 4
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' ((
'not' (a
. z))
'or' (b
. z)))) by
MARGREL1:def 19
.= (((
TRUE
'&' (
'not' (b
. z)))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (
FALSE
'or' (b
. z)))) by
A2,
MARGREL1:def 19
.= (((
'not' (b
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (
FALSE
'or' (b
. z))))
.= (((
'not' (b
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (b
. z)))
.=
TRUE by
XBOOLEAN: 102;
hence thesis;
end;
theorem ::
BVFUNC_6:72
for a,b be
Function of Y,
BOOLEAN holds a
'<' ((b
'imp' a)
'eqv' a)
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume (a
. z)
=
TRUE ;
then
A2: (
'not' (a
. z))
=
FALSE ;
(((b
'imp' a)
'eqv' a)
. z)
= ((((
'not' b)
'or' a)
'eqv' a)
. z) by
BVFUNC_4: 8
.= (((((
'not' b)
'or' a)
'imp' a)
'&' (a
'imp' ((
'not' b)
'or' a)))
. z) by
BVFUNC_4: 7
.= ((((
'not' ((
'not' b)
'or' a))
'or' a)
'&' (a
'imp' ((
'not' b)
'or' a)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' b)
'or' a))
'or' a)
'&' ((
'not' a)
'or' ((
'not' b)
'or' a)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' b)
'or' a))
'or' a)
. z)
'&' (((
'not' a)
'or' ((
'not' b)
'or' a))
. z)) by
MARGREL1:def 20
.= ((((
'not' ((
'not' b)
'or' a))
. z)
'or' (a
. z))
'&' (((
'not' a)
'or' ((
'not' b)
'or' a))
. z)) by
BVFUNC_1:def 4
.= (((
'not' (((
'not' b)
'or' a)
. z))
'or' (a
. z))
'&' (((
'not' a)
'or' ((
'not' b)
'or' a))
. z)) by
MARGREL1:def 19
.= (((
'not' (((
'not' b)
. z)
'or' (a
. z)))
'or' (a
. z))
'&' (((
'not' a)
'or' ((
'not' b)
'or' a))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' (
'not' (b
. z)))
'&' (
'not' (a
. z)))
'or' (a
. z))
'&' (((
'not' a)
'or' ((
'not' b)
'or' a))
. z)) by
MARGREL1:def 19
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (((
'not' b)
'or' a)
. z))) by
BVFUNC_1:def 4
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (((
'not' b)
. z)
'or' (a
. z)))) by
BVFUNC_1:def 4
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' ((
'not' (b
. z))
'or' (a
. z)))) by
MARGREL1:def 19
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' (a
. z))
'&' ((
'not' (a
. z))
'or' ((
'not' (b
. z))
'or' (a
. z)))) by
MARGREL1:def 19
.= (
TRUE
'&' (
FALSE
'or' ((
'not' (b
. z))
'or'
TRUE ))) by
A2
.= (
FALSE
'or' ((
'not' (b
. z))
'or'
TRUE ))
.= ((
'not' (b
. z))
'or'
TRUE )
.=
TRUE ;
hence thesis;
end;
theorem ::
BVFUNC_6:73
for a,b be
Function of Y,
BOOLEAN holds a
'<' (((a
'&' b)
'eqv' (b
'&' a))
'eqv' a)
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume
A1: (a
. z)
=
TRUE ;
A2: (((a
'&' b)
'eqv' (a
'&' b))
. z)
= ((((a
'&' b)
'imp' (a
'&' b))
'&' ((a
'&' b)
'imp' (a
'&' b)))
. z) by
BVFUNC_4: 7
.= (((
'not' (a
'&' b))
'or' (a
'&' b))
. z) by
BVFUNC_4: 8
.= ((
I_el Y)
. z) by
BVFUNC_4: 6
.=
TRUE by
BVFUNC_1:def 11;
((((a
'&' b)
'eqv' (b
'&' a))
'eqv' a)
. z)
= (((((a
'&' b)
'eqv' (a
'&' b))
'imp' a)
'&' (a
'imp' ((a
'&' b)
'eqv' (a
'&' b))))
. z) by
BVFUNC_4: 7
.= (((((a
'&' b)
'eqv' (a
'&' b))
'imp' a)
. z)
'&' ((a
'imp' ((a
'&' b)
'eqv' (a
'&' b)))
. z)) by
MARGREL1:def 20
.= ((((
'not' ((a
'&' b)
'eqv' (a
'&' b)))
'or' a)
. z)
'&' ((a
'imp' ((a
'&' b)
'eqv' (a
'&' b)))
. z)) by
BVFUNC_4: 8
.= ((((
'not' ((a
'&' b)
'eqv' (a
'&' b)))
'or' a)
. z)
'&' (((
'not' a)
'or' ((a
'&' b)
'eqv' (a
'&' b)))
. z)) by
BVFUNC_4: 8
.= ((((
'not' ((a
'&' b)
'eqv' (a
'&' b)))
. z)
'or' (a
. z))
'&' (((
'not' a)
'or' ((a
'&' b)
'eqv' (a
'&' b)))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' ((a
'&' b)
'eqv' (a
'&' b)))
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (((a
'&' b)
'eqv' (a
'&' b))
. z))) by
BVFUNC_1:def 4
.= (((
'not' (((a
'&' b)
'eqv' (a
'&' b))
. z))
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (((a
'&' b)
'eqv' (a
'&' b))
. z))) by
MARGREL1:def 19
.= ((
FALSE
'or' (a
. z))
'&' (((
'not' a)
. z)
'or'
TRUE )) by
A2
.= ((a
. z)
'&' (((
'not' a)
. z)
'or'
TRUE ))
.= (
TRUE
'&' (a
. z))
.=
TRUE by
A1;
hence thesis;
end;
begin
reserve Y for non
empty
set;
theorem ::
BVFUNC_6:74
for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'imp' ((b
'&' c)
'&' d))
= (((a
'imp' b)
'&' (a
'imp' c))
'&' (a
'imp' d))
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((((a
'imp' b)
'&' (a
'imp' c))
'&' (a
'imp' d))
. x)
= ((((a
'imp' b)
'&' (a
'imp' c))
. x)
'&' ((a
'imp' d)
. x)) by
MARGREL1:def 20
.= ((((a
'imp' b)
. x)
'&' ((a
'imp' c)
. x))
'&' ((a
'imp' d)
. x)) by
MARGREL1:def 20
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((a
'imp' c)
. x))
'&' ((a
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' (c
. x)))
'&' ((a
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (b
. x))
'&' ((
'not' (a
. x))
'or' (c
. x)))
'&' ((
'not' (a
. x))
'or' (d
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' ((b
. x)
'&' (c
. x)))
'&' ((
'not' (a
. x))
'or' (d
. x))) by
XBOOLEAN: 9
.= ((
'not' (a
. x))
'or' (((b
. x)
'&' (c
. x))
'&' (d
. x))) by
XBOOLEAN: 9
.= ((
'not' (a
. x))
'or' (((b
'&' c)
. x)
'&' (d
. x))) by
MARGREL1:def 20
.= ((
'not' (a
. x))
'or' (((b
'&' c)
'&' d)
. x)) by
MARGREL1:def 20
.= ((a
'imp' ((b
'&' c)
'&' d))
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:75
for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'imp' ((b
'or' c)
'or' d))
= (((a
'imp' b)
'or' (a
'imp' c))
'or' (a
'imp' d))
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((((a
'imp' b)
'or' (a
'imp' c))
'or' (a
'imp' d))
. x)
= ((((a
'imp' b)
'or' (a
'imp' c))
. x)
'or' ((a
'imp' d)
. x)) by
BVFUNC_1:def 4
.= ((((a
'imp' b)
. x)
'or' ((a
'imp' c)
. x))
'or' ((a
'imp' d)
. x)) by
BVFUNC_1:def 4
.= ((((
'not' (a
. x))
'or' (b
. x))
'or' ((a
'imp' c)
. x))
'or' ((a
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (b
. x))
'or' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((a
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (b
. x))
'or' ((
'not' (a
. x))
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' (d
. x))) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' ((
'not' (a
. x))
'or' (b
. x)))
'or' (c
. x))
'or' ((
'not' (a
. x))
'or' (d
. x)))
.= (((((
'not' (a
. x))
'or' (
'not' (a
. x)))
'or' (b
. x))
'or' (c
. x))
'or' ((
'not' (a
. x))
'or' (d
. x))) by
BINARITH: 11
.= (((
'not' (a
. x))
'or' ((b
. x)
'or' (c
. x)))
'or' ((
'not' (a
. x))
'or' (d
. x)))
.= (((
'not' (a
. x))
'or' ((b
'or' c)
. x))
'or' ((
'not' (a
. x))
'or' (d
. x))) by
BVFUNC_1:def 4
.= (((
'not' (a
. x))
'or' ((
'not' (a
. x))
'or' ((b
'or' c)
. x)))
'or' (d
. x))
.= ((((
'not' (a
. x))
'or' (
'not' (a
. x)))
'or' ((b
'or' c)
. x))
'or' (d
. x)) by
BINARITH: 11
.= ((
'not' (a
. x))
'or' (((b
'or' c)
. x)
'or' (d
. x)))
.= ((
'not' (a
. x))
'or' (((b
'or' c)
'or' d)
. x)) by
BVFUNC_1:def 4
.= ((a
'imp' ((b
'or' c)
'or' d))
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:76
for a,b,c,d be
Function of Y,
BOOLEAN holds (((a
'&' b)
'&' c)
'imp' d)
= (((a
'imp' d)
'or' (b
'imp' d))
'or' (c
'imp' d))
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((((a
'imp' d)
'or' (b
'imp' d))
'or' (c
'imp' d))
. x)
= ((((a
'imp' d)
'or' (b
'imp' d))
. x)
'or' ((c
'imp' d)
. x)) by
BVFUNC_1:def 4
.= ((((a
'imp' d)
. x)
'or' ((b
'imp' d)
. x))
'or' ((c
'imp' d)
. x)) by
BVFUNC_1:def 4
.= ((((
'not' (a
. x))
'or' (d
. x))
'or' ((b
'imp' d)
. x))
'or' ((c
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (d
. x))
'or' ((
'not' (b
. x))
'or' (d
. x)))
'or' ((c
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (d
. x))
'or' ((
'not' (b
. x))
'or' (d
. x)))
'or' ((
'not' (c
. x))
'or' (d
. x))) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' ((d
. x)
'or' (
'not' (b
. x))))
'or' (d
. x))
'or' ((
'not' (c
. x))
'or' (d
. x)))
.= (((((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (d
. x))
'or' (d
. x))
'or' ((
'not' (c
. x))
'or' (d
. x)))
.= ((((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' ((d
. x)
'or' (d
. x)))
'or' ((
'not' (c
. x))
'or' (d
. x))) by
BINARITH: 11
.= (((
'not' ((a
. x)
'&' (b
. x)))
'or' ((d
. x)
'or' (
'not' (c
. x))))
'or' (d
. x))
.= ((((
'not' ((a
. x)
'&' (b
. x)))
'or' (
'not' (c
. x)))
'or' (d
. x))
'or' (d
. x))
.= (((
'not' ((a
. x)
'&' (b
. x)))
'or' (
'not' (c
. x)))
'or' ((d
. x)
'or' (d
. x))) by
BINARITH: 11
.= ((
'not' (((a
'&' b)
. x)
'&' (c
. x)))
'or' (d
. x)) by
MARGREL1:def 20
.= ((
'not' (((a
'&' b)
'&' c)
. x))
'or' (d
. x)) by
MARGREL1:def 20
.= ((((a
'&' b)
'&' c)
'imp' d)
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:77
for a,b,c,d be
Function of Y,
BOOLEAN holds (((a
'or' b)
'or' c)
'imp' d)
= (((a
'imp' d)
'&' (b
'imp' d))
'&' (c
'imp' d))
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((((a
'imp' d)
'&' (b
'imp' d))
'&' (c
'imp' d))
. x)
= ((((a
'imp' d)
'&' (b
'imp' d))
. x)
'&' ((c
'imp' d)
. x)) by
MARGREL1:def 20
.= ((((a
'imp' d)
. x)
'&' ((b
'imp' d)
. x))
'&' ((c
'imp' d)
. x)) by
MARGREL1:def 20
.= ((((
'not' (a
. x))
'or' (d
. x))
'&' ((b
'imp' d)
. x))
'&' ((c
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((
'not' (a
. x))
'or' (d
. x))
'&' ((
'not' (b
. x))
'or' (d
. x)))
'&' ((c
'imp' d)
. x)) by
BVFUNC_1:def 8
.= ((((d
. x)
'or' (
'not' (a
. x)))
'&' ((
'not' (b
. x))
'or' (d
. x)))
'&' ((
'not' (c
. x))
'or' (d
. x))) by
BVFUNC_1:def 8
.= (((
'not' ((a
. x)
'or' (b
. x)))
'or' (d
. x))
'&' ((
'not' (c
. x))
'or' (d
. x))) by
XBOOLEAN: 9
.= (((d
. x)
'or' (
'not' ((a
'or' b)
. x)))
'&' ((
'not' (c
. x))
'or' (d
. x))) by
BVFUNC_1:def 4
.= ((
'not' (((a
'or' b)
. x)
'or' (c
. x)))
'or' (d
. x)) by
XBOOLEAN: 9
.= ((
'not' (((a
'or' b)
'or' c)
. x))
'or' (d
. x)) by
BVFUNC_1:def 4
.= ((((a
'or' b)
'or' c)
'imp' d)
. x) by
BVFUNC_1:def 8;
hence thesis;
end;
theorem ::
BVFUNC_6:78
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
= (((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' (b
'imp' a))
'&' (a
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
= ((((
'not' a)
'or' b)
'&' (b
'imp' c))
'&' (c
'imp' a)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' (c
'imp' a)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a)) by
BVFUNC_4: 8
.= ((((
'not' a)
'&' ((
'not' b)
'or' c))
'or' (b
'&' ((
'not' b)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 12
.= ((((
'not' a)
'&' ((
'not' b)
'or' c))
'or' ((b
'&' (
'not' b))
'or' (b
'&' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 12
.= ((((
'not' a)
'&' ((
'not' b)
'or' c))
'or' ((
O_el Y)
'or' (b
'&' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_4: 5
.= ((((
'not' a)
'&' ((
'not' b)
'or' c))
'or' (b
'&' c))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 9
.= ((((
'not' a)
'or' (b
'&' c))
'&' (((
'not' b)
'or' c)
'or' (b
'&' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'or' c)
'or' (b
'&' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((((
'not' b)
'or' c)
'or' b)
'&' (((
'not' b)
'or' c)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((c
'or' ((
'not' b)
'or' b))
'&' (((
'not' b)
'or' c)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((c
'or' (
I_el Y))
'&' (((
'not' b)
'or' c)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_4: 6
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
I_el Y)
'&' (((
'not' b)
'or' c)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 10
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'or' c)
'or' c))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 6
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' b)
'or' (c
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' a))) by
BVFUNC_1: 4
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'&' ((
'not' c)
'or' a))
'or' (c
'&' ((
'not' c)
'or' a)))) by
BVFUNC_1: 12
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'&' ((
'not' c)
'or' a))
'or' ((c
'&' (
'not' c))
'or' (c
'&' a)))) by
BVFUNC_1: 12
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'&' ((
'not' c)
'or' a))
'or' ((
O_el Y)
'or' (c
'&' a)))) by
BVFUNC_4: 5
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'&' ((
'not' c)
'or' a))
'or' (c
'&' a))) by
BVFUNC_1: 9
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' (((
'not' b)
'or' (c
'&' a))
'&' (((
'not' c)
'or' a)
'or' (c
'&' a)))) by
BVFUNC_1: 11
.= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((((
'not' b)
'or' c)
'&' ((
'not' b)
'or' a))
'&' (((
'not' c)
'or' a)
'or' (c
'&' a)))) by
BVFUNC_1: 11
.= ((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' ((((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c))
'&' ((((
'not' c)
'or' a)
'or' c)
'&' (((
'not' c)
'or' a)
'or' a)))) by
BVFUNC_1: 11
.= ((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' ((((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c))
'&' ((a
'or' ((
'not' c)
'or' c))
'&' (((
'not' c)
'or' a)
'or' a)))) by
BVFUNC_1: 8
.= ((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' ((((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c))
'&' ((a
'or' (
I_el Y))
'&' (((
'not' c)
'or' a)
'or' a)))) by
BVFUNC_4: 6
.= ((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' ((((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c))
'&' ((
I_el Y)
'&' (((
'not' c)
'or' a)
'or' a)))) by
BVFUNC_1: 10
.= ((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' ((((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c))
'&' (((
'not' c)
'or' a)
'or' a))) by
BVFUNC_1: 6
.= ((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' ((((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' (a
'or' a)))) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' c)
'&' ((
'not' a)
'or' b))
'&' (((
'not' b)
'or' a)
'&' ((
'not' b)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 4
.= ((((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' b)
'or' a))
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 4
.= ((((((
'not' b)
'or' a)
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' b))
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 4
.= (((((
'not' b)
'or' a)
'&' ((
'not' a)
'or' c))
'&' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c)))
'&' ((
'not' c)
'or' a)) by
BVFUNC_1: 4
.= ((((
'not' b)
'or' a)
'&' ((
'not' a)
'or' c))
'&' ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a))) by
BVFUNC_1: 4
.= ((((
'not' b)
'or' a)
'&' ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a)))
'&' ((
'not' a)
'or' c)) by
BVFUNC_1: 4
.= (((((a
'imp' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a))
'&' ((
'not' b)
'or' a))
'&' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= (((((a
'imp' b)
'&' (b
'imp' c))
'&' ((
'not' c)
'or' a))
'&' ((
'not' b)
'or' a))
'&' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= (((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' ((
'not' b)
'or' a))
'&' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= (((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' (b
'imp' a))
'&' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= (((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' (b
'imp' a))
'&' (a
'imp' c)) by
BVFUNC_4: 8;
hence thesis;
end;
theorem ::
BVFUNC_6:79
for a,b be
Function of Y,
BOOLEAN holds a
= ((a
'&' b)
'or' (a
'&' (
'not' b)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'&' b)
'or' (a
'&' (
'not' b)))
. x)
= ((a
'&' (b
'or' (
'not' b)))
. x) by
BVFUNC_1: 12
.= ((a
'&' (
I_el Y))
. x) by
BVFUNC_4: 6
.= (a
. x) by
BVFUNC_1: 6;
hence thesis;
end;
theorem ::
BVFUNC_6:80
for a,b be
Function of Y,
BOOLEAN holds a
= ((a
'or' b)
'&' (a
'or' (
'not' b)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'or' b)
'&' (a
'or' (
'not' b)))
. x)
= ((a
'or' (b
'&' (
'not' b)))
. x) by
BVFUNC_1: 11
.= ((a
'or' (
O_el Y))
. x) by
BVFUNC_4: 5
.= (a
. x) by
BVFUNC_1: 9;
hence thesis;
end;
theorem ::
BVFUNC_6:81
for a,b,c be
Function of Y,
BOOLEAN holds a
= (((((a
'&' b)
'&' c)
'or' ((a
'&' b)
'&' (
'not' c)))
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((((((a
'&' b)
'&' c)
'or' ((a
'&' b)
'&' (
'not' c)))
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
. x)
= (((((a
'&' b)
'&' (c
'or' (
'not' c)))
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
. x) by
BVFUNC_1: 12
.= (((((a
'&' b)
'&' (
I_el Y))
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
. x) by
BVFUNC_4: 6
.= ((((a
'&' b)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
. x) by
BVFUNC_1: 6
.= (((a
'&' b)
'or' (((a
'&' (
'not' b))
'&' c)
'or' ((a
'&' (
'not' b))
'&' (
'not' c))))
. x) by
BVFUNC_1: 8
.= (((a
'&' b)
'or' ((a
'&' (
'not' b))
'&' (c
'or' (
'not' c))))
. x) by
BVFUNC_1: 12
.= (((a
'&' b)
'or' ((a
'&' (
'not' b))
'&' (
I_el Y)))
. x) by
BVFUNC_4: 6
.= (((a
'&' b)
'or' (a
'&' (
'not' b)))
. x) by
BVFUNC_1: 6
.= ((a
'&' (b
'or' (
'not' b)))
. x) by
BVFUNC_1: 12
.= ((a
'&' (
I_el Y))
. x) by
BVFUNC_4: 6
.= (a
. x) by
BVFUNC_1: 6;
hence thesis;
end;
theorem ::
BVFUNC_6:82
for a,b,c be
Function of Y,
BOOLEAN holds a
= (((((a
'or' b)
'or' c)
'&' ((a
'or' b)
'or' (
'not' c)))
'&' ((a
'or' (
'not' b))
'or' c))
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((((((a
'or' b)
'or' c)
'&' ((a
'or' b)
'or' (
'not' c)))
'&' ((a
'or' (
'not' b))
'or' c))
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
. x)
= (((((a
'or' b)
'or' (c
'&' (
'not' c)))
'&' ((a
'or' (
'not' b))
'or' c))
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
. x) by
BVFUNC_1: 11
.= (((((a
'or' b)
'or' (
O_el Y))
'&' ((a
'or' (
'not' b))
'or' c))
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
. x) by
BVFUNC_4: 5
.= ((((a
'or' b)
'&' ((a
'or' (
'not' b))
'or' c))
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
. x) by
BVFUNC_1: 9
.= (((a
'or' b)
'&' (((a
'or' (
'not' b))
'or' c)
'&' ((a
'or' (
'not' b))
'or' (
'not' c))))
. x) by
BVFUNC_1: 4
.= (((a
'or' b)
'&' ((a
'or' (
'not' b))
'or' (c
'&' (
'not' c))))
. x) by
BVFUNC_1: 11
.= (((a
'or' b)
'&' ((a
'or' (
'not' b))
'or' (
O_el Y)))
. x) by
BVFUNC_4: 5
.= (((a
'or' b)
'&' (a
'or' (
'not' b)))
. x) by
BVFUNC_1: 9
.= ((a
'or' (b
'&' (
'not' b)))
. x) by
BVFUNC_1: 11
.= ((a
'or' (
O_el Y))
. x) by
BVFUNC_4: 5
.= (a
. x) by
BVFUNC_1: 9;
hence thesis;
end;
theorem ::
BVFUNC_6:83
for a,b be
Function of Y,
BOOLEAN holds (a
'&' b)
= (a
'&' ((
'not' a)
'or' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'&' ((
'not' a)
'or' b))
. x)
= ((a
. x)
'&' (((
'not' a)
'or' b)
. x)) by
MARGREL1:def 20
.= ((a
. x)
'&' (((
'not' a)
. x)
'or' (b
. x))) by
BVFUNC_1:def 4
.= (((a
. x)
'&' ((
'not' a)
. x))
'or' ((a
. x)
'&' (b
. x))) by
XBOOLEAN: 8
.= (((a
. x)
'&' (
'not' (a
. x)))
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 19
.= (
FALSE
'or' ((a
. x)
'&' (b
. x))) by
XBOOLEAN: 138
.= ((a
. x)
'&' (b
. x))
.= ((a
'&' b)
. x) by
MARGREL1:def 20;
hence thesis;
end;
theorem ::
BVFUNC_6:84
for a,b be
Function of Y,
BOOLEAN holds (a
'or' b)
= (a
'or' ((
'not' a)
'&' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'or' ((
'not' a)
'&' b))
. x)
= ((a
. x)
'or' (((
'not' a)
'&' b)
. x)) by
BVFUNC_1:def 4
.= ((a
. x)
'or' (((
'not' a)
. x)
'&' (b
. x))) by
MARGREL1:def 20
.= (((a
. x)
'or' ((
'not' a)
. x))
'&' ((a
. x)
'or' (b
. x))) by
XBOOLEAN: 9
.= (((a
. x)
'or' (
'not' (a
. x)))
'&' ((a
. x)
'or' (b
. x))) by
MARGREL1:def 19
.= (
TRUE
'&' ((a
. x)
'or' (b
. x))) by
XBOOLEAN: 102
.= ((a
. x)
'or' (b
. x))
.= ((a
'or' b)
. x) by
BVFUNC_1:def 4;
hence thesis;
end;
theorem ::
BVFUNC_6:85
for a,b be
Function of Y,
BOOLEAN holds (a
'xor' b)
= (
'not' (a
'eqv' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'xor' b)
. x)
= ((
'not' (
'not' (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))))
. x) by
BVFUNC_4: 9
.= ((
'not' ((
'not' ((
'not' a)
'&' b))
'&' (
'not' (a
'&' (
'not' b)))))
. x) by
BVFUNC_1: 13
.= ((
'not' (((
'not' (
'not' a))
'or' (
'not' b))
'&' (
'not' (a
'&' (
'not' b)))))
. x) by
BVFUNC_1: 14
.= ((
'not' ((a
'or' (
'not' b))
'&' ((
'not' a)
'or' (
'not' (
'not' b)))))
. x) by
BVFUNC_1: 14
.= ((
'not' ((b
'imp' a)
'&' ((
'not' a)
'or' b)))
. x) by
BVFUNC_4: 8
.= ((
'not' ((b
'imp' a)
'&' (a
'imp' b)))
. x) by
BVFUNC_4: 8
.= ((
'not' (a
'eqv' b))
. x) by
BVFUNC_4: 7;
hence thesis;
end;
theorem ::
BVFUNC_6:86
for a,b be
Function of Y,
BOOLEAN holds (a
'xor' b)
= ((a
'or' b)
'&' ((
'not' a)
'or' (
'not' b)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'or' b)
'&' ((
'not' a)
'or' (
'not' b)))
. x)
= (((a
'or' b)
. x)
'&' (((
'not' a)
'or' (
'not' b))
. x)) by
MARGREL1:def 20
.= (((a
. x)
'or' (b
. x))
'&' (((
'not' a)
'or' (
'not' b))
. x)) by
BVFUNC_1:def 4
.= (((a
. x)
'or' (b
. x))
'&' (((
'not' a)
. x)
'or' ((
'not' b)
. x))) by
BVFUNC_1:def 4
.= ((((
'not' a)
. x)
'&' ((a
. x)
'or' (b
. x)))
'or' (((a
. x)
'or' (b
. x))
'&' ((
'not' b)
. x))) by
XBOOLEAN: 8
.= (((((
'not' a)
. x)
'&' (a
. x))
'or' (((
'not' a)
. x)
'&' (b
. x)))
'or' (((
'not' b)
. x)
'&' ((a
. x)
'or' (b
. x)))) by
XBOOLEAN: 8
.= (((((
'not' a)
. x)
'&' (a
. x))
'or' (((
'not' a)
. x)
'&' (b
. x)))
'or' ((((
'not' b)
. x)
'&' (a
. x))
'or' (((
'not' b)
. x)
'&' (b
. x)))) by
XBOOLEAN: 8
.= ((((
'not' (a
. x))
'&' (a
. x))
'or' (((
'not' a)
. x)
'&' (b
. x)))
'or' ((((
'not' b)
. x)
'&' (a
. x))
'or' (((
'not' b)
. x)
'&' (b
. x)))) by
MARGREL1:def 19
.= ((((
'not' (a
. x))
'&' (a
. x))
'or' (((
'not' a)
. x)
'&' (b
. x)))
'or' ((((
'not' b)
. x)
'&' (a
. x))
'or' ((
'not' (b
. x))
'&' (b
. x)))) by
MARGREL1:def 19
.= ((
FALSE
'or' (((
'not' a)
. x)
'&' (b
. x)))
'or' ((((
'not' b)
. x)
'&' (a
. x))
'or' ((
'not' (b
. x))
'&' (b
. x)))) by
XBOOLEAN: 138
.= ((
FALSE
'or' (((
'not' a)
. x)
'&' (b
. x)))
'or' ((((
'not' b)
. x)
'&' (a
. x))
'or'
FALSE )) by
XBOOLEAN: 138
.= ((((
'not' a)
. x)
'&' (b
. x))
'or' ((((
'not' b)
. x)
'&' (a
. x))
'or'
FALSE ))
.= ((((
'not' a)
. x)
'&' (b
. x))
'or' ((a
. x)
'&' ((
'not' b)
. x)))
.= ((((
'not' a)
'&' b)
. x)
'or' ((a
. x)
'&' ((
'not' b)
. x))) by
MARGREL1:def 20
.= ((((
'not' a)
'&' b)
. x)
'or' ((a
'&' (
'not' b))
. x)) by
MARGREL1:def 20
.= ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
. x) by
BVFUNC_1:def 4
.= ((a
'xor' b)
. x) by
BVFUNC_4: 9;
hence thesis;
end;
theorem ::
BVFUNC_6:87
for a be
Function of Y,
BOOLEAN holds (a
'xor' (
I_el Y))
= (
'not' a)
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'xor' (
I_el Y))
. x)
= ((((
'not' a)
'&' (
I_el Y))
'or' (a
'&' (
'not' (
I_el Y))))
. x) by
BVFUNC_4: 9
.= ((((
'not' a)
'&' (
I_el Y))
'or' (a
'&' (
O_el Y)))
. x) by
BVFUNC_1: 2
.= ((((
'not' a)
'&' (
I_el Y))
'or' (
O_el Y))
. x) by
BVFUNC_1: 5
.= (((
'not' a)
'&' (
I_el Y))
. x) by
BVFUNC_1: 9
.= ((
'not' a)
. x) by
BVFUNC_1: 6;
hence thesis;
end;
theorem ::
BVFUNC_6:88
for a be
Function of Y,
BOOLEAN holds (a
'xor' (
O_el Y))
= a
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'xor' (
O_el Y))
. x)
= ((((
'not' a)
'&' (
O_el Y))
'or' (a
'&' (
'not' (
O_el Y))))
. x) by
BVFUNC_4: 9
.= ((((
'not' a)
'&' (
O_el Y))
'or' (a
'&' (
I_el Y)))
. x) by
BVFUNC_1: 2
.= ((((
'not' a)
'&' (
O_el Y))
'or' a)
. x) by
BVFUNC_1: 6
.= (((
O_el Y)
'or' a)
. x) by
BVFUNC_1: 5
.= (a
. x) by
BVFUNC_1: 9;
hence thesis;
end;
theorem ::
BVFUNC_6:89
for a,b be
Function of Y,
BOOLEAN holds (a
'xor' b)
= ((
'not' a)
'xor' (
'not' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((
'not' a)
'xor' (
'not' b))
. x)
= ((((
'not' (
'not' a))
'&' (
'not' b))
'or' ((
'not' a)
'&' (
'not' (
'not' b))))
. x) by
BVFUNC_4: 9
.= ((a
'xor' b)
. x) by
BVFUNC_4: 9;
hence thesis;
end;
theorem ::
BVFUNC_6:90
for a,b be
Function of Y,
BOOLEAN holds (
'not' (a
'xor' b))
= (a
'xor' (
'not' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((
'not' (a
'xor' b))
. x)
= ((
'not' (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b))))
. x) by
BVFUNC_4: 9
.= (((
'not' ((
'not' a)
'&' b))
'&' (
'not' (a
'&' (
'not' b))))
. x) by
BVFUNC_1: 13
.= ((((
'not' (
'not' a))
'or' (
'not' b))
'&' (
'not' (a
'&' (
'not' b))))
. x) by
BVFUNC_1: 14
.= (((a
'or' (
'not' b))
'&' ((
'not' a)
'or' (
'not' (
'not' b))))
. x) by
BVFUNC_1: 14
.= ((((a
'or' (
'not' b))
'&' (
'not' a))
'or' ((a
'or' (
'not' b))
'&' b))
. x) by
BVFUNC_1: 12
.= ((((a
'&' (
'not' a))
'or' ((
'not' b)
'&' (
'not' a)))
'or' ((a
'or' (
'not' b))
'&' b))
. x) by
BVFUNC_1: 12
.= ((((
O_el Y)
'or' ((
'not' b)
'&' (
'not' a)))
'or' ((a
'or' (
'not' b))
'&' b))
. x) by
BVFUNC_4: 5
.= ((((
'not' b)
'&' (
'not' a))
'or' ((a
'or' (
'not' b))
'&' b))
. x) by
BVFUNC_1: 9
.= ((((
'not' b)
'&' (
'not' a))
'or' ((a
'&' b)
'or' ((
'not' b)
'&' b)))
. x) by
BVFUNC_1: 12
.= ((((
'not' b)
'&' (
'not' a))
'or' ((a
'&' b)
'or' (
O_el Y)))
. x) by
BVFUNC_4: 5
.= ((((
'not' a)
'&' (
'not' b))
'or' (a
'&' (
'not' (
'not' b))))
. x) by
BVFUNC_1: 9
.= ((a
'xor' (
'not' b))
. x) by
BVFUNC_4: 9;
hence thesis;
end;
theorem ::
BVFUNC_6:91
Th18: for a,b be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= ((a
'or' (
'not' b))
'&' ((
'not' a)
'or' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'or' (
'not' b))
'&' ((
'not' a)
'or' b))
. x)
= (((a
'or' (
'not' b))
'&' (a
'imp' b))
. x) by
BVFUNC_4: 8
.= (((a
'imp' b)
'&' (b
'imp' a))
. x) by
BVFUNC_4: 8
.= ((a
'eqv' b)
. x) by
BVFUNC_4: 7;
hence thesis;
end;
theorem ::
BVFUNC_6:92
for a,b be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= ((a
'&' b)
'or' ((
'not' a)
'&' (
'not' b)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
(((a
'&' b)
'or' ((
'not' a)
'&' (
'not' b)))
. x)
= ((((a
'&' b)
'or' (
'not' a))
'&' ((a
'&' b)
'or' (
'not' b)))
. x) by
BVFUNC_1: 11
.= ((((a
'or' (
'not' a))
'&' (b
'or' (
'not' a)))
'&' ((a
'&' b)
'or' (
'not' b)))
. x) by
BVFUNC_1: 11
.= ((((a
'or' (
'not' a))
'&' (b
'or' (
'not' a)))
'&' ((a
'or' (
'not' b))
'&' (b
'or' (
'not' b))))
. x) by
BVFUNC_1: 11
.= ((((
I_el Y)
'&' (b
'or' (
'not' a)))
'&' ((a
'or' (
'not' b))
'&' (b
'or' (
'not' b))))
. x) by
BVFUNC_4: 6
.= ((((
I_el Y)
'&' (b
'or' (
'not' a)))
'&' ((a
'or' (
'not' b))
'&' (
I_el Y)))
. x) by
BVFUNC_4: 6
.= (((b
'or' (
'not' a))
'&' ((a
'or' (
'not' b))
'&' (
I_el Y)))
. x) by
BVFUNC_1: 6
.= (((b
'or' (
'not' a))
'&' (a
'or' (
'not' b)))
. x) by
BVFUNC_1: 6
.= ((a
'eqv' b)
. x) by
Th18;
hence thesis;
end;
theorem ::
BVFUNC_6:93
for a be
Function of Y,
BOOLEAN holds (a
'eqv' (
I_el Y))
= a
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'eqv' (
I_el Y))
. x)
= (((a
'imp' (
I_el Y))
'&' ((
I_el Y)
'imp' a))
. x) by
BVFUNC_4: 7
.= ((((
'not' a)
'or' (
I_el Y))
'&' ((
I_el Y)
'imp' a))
. x) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' (
I_el Y))
'&' ((
'not' (
I_el Y))
'or' a))
. x) by
BVFUNC_4: 8
.= (((
I_el Y)
'&' ((
'not' (
I_el Y))
'or' a))
. x) by
BVFUNC_1: 10
.= (((
I_el Y)
'&' ((
O_el Y)
'or' a))
. x) by
BVFUNC_1: 2
.= (((
I_el Y)
'&' a)
. x) by
BVFUNC_1: 9
.= (a
. x) by
BVFUNC_1: 6;
hence thesis;
end;
theorem ::
BVFUNC_6:94
for a be
Function of Y,
BOOLEAN holds (a
'eqv' (
O_el Y))
= (
'not' a)
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((a
'eqv' (
O_el Y))
. x)
= (((a
'imp' (
O_el Y))
'&' ((
O_el Y)
'imp' a))
. x) by
BVFUNC_4: 7
.= ((((
'not' a)
'or' (
O_el Y))
'&' ((
O_el Y)
'imp' a))
. x) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' (
O_el Y))
'&' ((
'not' (
O_el Y))
'or' a))
. x) by
BVFUNC_4: 8
.= (((
'not' a)
'&' ((
'not' (
O_el Y))
'or' a))
. x) by
BVFUNC_1: 9
.= (((
'not' a)
'&' ((
I_el Y)
'or' a))
. x) by
BVFUNC_1: 2
.= (((
'not' a)
'&' (
I_el Y))
. x) by
BVFUNC_1: 10
.= ((
'not' a)
. x) by
BVFUNC_1: 6;
hence thesis;
end;
theorem ::
BVFUNC_6:95
for a,b be
Function of Y,
BOOLEAN holds (
'not' (a
'eqv' b))
= (a
'eqv' (
'not' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
((
'not' (a
'eqv' b))
. x)
= ((
'not' ((a
'imp' b)
'&' (b
'imp' a)))
. x) by
BVFUNC_4: 7
.= ((
'not' (((
'not' a)
'or' b)
'&' (b
'imp' a)))
. x) by
BVFUNC_4: 8
.= ((
'not' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))
. x) by
BVFUNC_4: 8
.= (((
'not' ((
'not' a)
'or' b))
'or' (
'not' ((
'not' b)
'or' a)))
. x) by
BVFUNC_1: 14
.= ((((
'not' (
'not' a))
'&' (
'not' b))
'or' (
'not' ((
'not' b)
'or' a)))
. x) by
BVFUNC_1: 13
.= (((a
'&' (
'not' b))
'or' ((
'not' (
'not' b))
'&' (
'not' a)))
. x) by
BVFUNC_1: 13
.= ((((a
'&' (
'not' b))
'or' b)
'&' ((a
'&' (
'not' b))
'or' (
'not' a)))
. x) by
BVFUNC_1: 11
.= ((((a
'or' b)
'&' ((
'not' b)
'or' b))
'&' ((a
'&' (
'not' b))
'or' (
'not' a)))
. x) by
BVFUNC_1: 11
.= ((((a
'or' b)
'&' ((
'not' b)
'or' b))
'&' ((a
'or' (
'not' a))
'&' ((
'not' b)
'or' (
'not' a))))
. x) by
BVFUNC_1: 11
.= ((((a
'or' b)
'&' (
I_el Y))
'&' ((a
'or' (
'not' a))
'&' ((
'not' b)
'or' (
'not' a))))
. x) by
BVFUNC_4: 6
.= ((((a
'or' b)
'&' (
I_el Y))
'&' ((
I_el Y)
'&' ((
'not' b)
'or' (
'not' a))))
. x) by
BVFUNC_4: 6
.= (((a
'or' b)
'&' ((
I_el Y)
'&' ((
'not' b)
'or' (
'not' a))))
. x) by
BVFUNC_1: 6
.= ((((
'not' a)
'or' (
'not' b))
'&' ((
'not' (
'not' b))
'or' a))
. x) by
BVFUNC_1: 6
.= ((((
'not' a)
'or' (
'not' b))
'&' ((
'not' b)
'imp' a))
. x) by
BVFUNC_4: 8
.= (((a
'imp' (
'not' b))
'&' ((
'not' b)
'imp' a))
. x) by
BVFUNC_4: 8
.= ((a
'eqv' (
'not' b))
. x) by
BVFUNC_4: 7;
hence thesis;
end;
theorem ::
BVFUNC_6:96
for a,b be
Function of Y,
BOOLEAN holds (
'not' a)
'<' ((a
'imp' b)
'eqv' (
'not' a))
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume
A1: ((
'not' a)
. z)
=
TRUE ;
(((a
'imp' b)
'eqv' (
'not' a))
. z)
= ((((
'not' a)
'or' b)
'eqv' (
'not' a))
. z) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
'imp' (
'not' a))
'&' ((
'not' a)
'imp' ((
'not' a)
'or' b)))
. z) by
BVFUNC_4: 7
.= ((((
'not' ((
'not' a)
'or' b))
'or' (
'not' a))
'&' ((
'not' a)
'imp' ((
'not' a)
'or' b)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' a)
'or' b))
'or' (
'not' a))
'&' ((
'not' (
'not' a))
'or' ((
'not' a)
'or' b)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' a)
'or' b))
'or' (
'not' a))
. z)
'&' (((
'not' (
'not' a))
'or' ((
'not' a)
'or' b))
. z)) by
MARGREL1:def 20
.= ((((
'not' ((
'not' a)
'or' b))
. z)
'or' ((
'not' a)
. z))
'&' (((
'not' (
'not' a))
'or' ((
'not' a)
'or' b))
. z)) by
BVFUNC_1:def 4
.= (((
'not' (((
'not' a)
'or' b)
. z))
'or' ((
'not' a)
. z))
'&' (((
'not' (
'not' a))
'or' ((
'not' a)
'or' b))
. z)) by
MARGREL1:def 19
.= (((
'not' (((
'not' a)
. z)
'or' (b
. z)))
'or' ((
'not' a)
. z))
'&' (((
'not' (
'not' a))
'or' ((
'not' a)
'or' b))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' (
'not' (a
. z)))
'&' (
'not' (b
. z)))
'or' ((
'not' a)
. z))
'&' (((
'not' (
'not' a))
'or' ((
'not' a)
'or' b))
. z)) by
MARGREL1:def 19
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' ((
'not' a)
. z))
'&' (((
'not' (
'not' a))
. z)
'or' (((
'not' a)
'or' b)
. z))) by
BVFUNC_1:def 4
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' ((
'not' a)
. z))
'&' ((a
. z)
'or' (((
'not' a)
. z)
'or' (b
. z)))) by
BVFUNC_1:def 4
.= (
TRUE
'&' (
FALSE
'or' (
TRUE
'or' (b
. z)))) by
A1
.= (
FALSE
'or' (
TRUE
'or' (b
. z)))
.= (
TRUE
'or' (b
. z))
.=
TRUE ;
hence thesis;
end;
theorem ::
BVFUNC_6:97
for a,b be
Function of Y,
BOOLEAN holds (
'not' a)
'<' ((b
'imp' a)
'eqv' (
'not' b))
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume ((
'not' a)
. z)
=
TRUE ;
then
A1: (
'not' (a
. z))
=
TRUE by
MARGREL1:def 19;
(((b
'imp' a)
'eqv' (
'not' b))
. z)
= ((((
'not' b)
'or' a)
'eqv' (
'not' b))
. z) by
BVFUNC_4: 8
.= (((((
'not' b)
'or' a)
'imp' (
'not' b))
'&' ((
'not' b)
'imp' ((
'not' b)
'or' a)))
. z) by
BVFUNC_4: 7
.= ((((
'not' ((
'not' b)
'or' a))
'or' (
'not' b))
'&' ((
'not' b)
'imp' ((
'not' b)
'or' a)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' b)
'or' a))
'or' (
'not' b))
'&' ((
'not' (
'not' b))
'or' ((
'not' b)
'or' a)))
. z) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' b)
'or' a))
'or' (
'not' b))
. z)
'&' (((
'not' (
'not' b))
'or' ((
'not' b)
'or' a))
. z)) by
MARGREL1:def 20
.= ((((
'not' ((
'not' b)
'or' a))
. z)
'or' ((
'not' b)
. z))
'&' (((
'not' (
'not' b))
'or' ((
'not' b)
'or' a))
. z)) by
BVFUNC_1:def 4
.= (((
'not' (((
'not' b)
'or' a)
. z))
'or' ((
'not' b)
. z))
'&' (((
'not' (
'not' b))
'or' ((
'not' b)
'or' a))
. z)) by
MARGREL1:def 19
.= (((
'not' (((
'not' b)
. z)
'or' (a
. z)))
'or' ((
'not' b)
. z))
'&' (((
'not' (
'not' b))
'or' ((
'not' b)
'or' a))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' (
'not' (b
. z)))
'&' (
'not' (a
. z)))
'or' ((
'not' b)
. z))
'&' (((
'not' (
'not' b))
'or' ((
'not' b)
'or' a))
. z)) by
MARGREL1:def 19
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' ((
'not' b)
. z))
'&' (((
'not' (
'not' b))
. z)
'or' (((
'not' b)
'or' a)
. z))) by
BVFUNC_1:def 4
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' ((
'not' b)
. z))
'&' (((
'not' (
'not' b))
. z)
'or' (((
'not' b)
. z)
'or' (a
. z)))) by
BVFUNC_1:def 4
.= ((((b
. z)
'&' (
'not' (a
. z)))
'or' ((
'not' b)
. z))
'&' ((b
. z)
'or' ((
'not' (b
. z))
'or' (a
. z)))) by
MARGREL1:def 19
.= (((
TRUE
'&' (b
. z))
'or' ((
'not' b)
. z))
'&' ((b
. z)
'or' ((
'not' (b
. z))
'or'
FALSE ))) by
A1
.= (((b
. z)
'or' ((
'not' b)
. z))
'&' ((b
. z)
'or' ((
'not' (b
. z))
'or'
FALSE )))
.= (((b
. z)
'or' (
'not' (b
. z)))
'&' ((b
. z)
'or' ((
'not' (b
. z))
'or'
FALSE ))) by
MARGREL1:def 19
.= (
TRUE
'&' ((b
. z)
'or' ((
'not' (b
. z))
'or'
FALSE )))
.= ((b
. z)
'or' ((
'not' (b
. z))
'or'
FALSE ))
.= (((b
. z)
'or' (
'not' (b
. z)))
'or'
FALSE )
.= (
TRUE
'or'
FALSE ) by
XBOOLEAN: 102
.=
TRUE ;
hence thesis;
end;
theorem ::
BVFUNC_6:98
for a,b be
Function of Y,
BOOLEAN holds a
'<' (((a
'or' b)
'eqv' (b
'or' a))
'eqv' a)
proof
let a,b be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
assume
A1: (a
. z)
=
TRUE ;
A2: (((a
'or' b)
'eqv' (b
'or' a))
. z)
= ((((a
'or' b)
'imp' (a
'or' b))
'&' ((a
'or' b)
'imp' (a
'or' b)))
. z) by
BVFUNC_4: 7
.= (((
'not' (a
'or' b))
'or' (a
'or' b))
. z) by
BVFUNC_4: 8
.= ((
I_el Y)
. z) by
BVFUNC_4: 6
.=
TRUE by
BVFUNC_1:def 11;
((((a
'or' b)
'eqv' (b
'or' a))
'eqv' a)
. z)
= (((((a
'or' b)
'eqv' (a
'or' b))
'imp' a)
'&' (a
'imp' ((a
'or' b)
'eqv' (a
'or' b))))
. z) by
BVFUNC_4: 7
.= (((((a
'or' b)
'eqv' (a
'or' b))
'imp' a)
. z)
'&' ((a
'imp' ((a
'or' b)
'eqv' (a
'or' b)))
. z)) by
MARGREL1:def 20
.= ((((
'not' ((a
'or' b)
'eqv' (a
'or' b)))
'or' a)
. z)
'&' ((a
'imp' ((a
'or' b)
'eqv' (a
'or' b)))
. z)) by
BVFUNC_4: 8
.= ((((
'not' ((a
'or' b)
'eqv' (a
'or' b)))
'or' a)
. z)
'&' (((
'not' a)
'or' ((a
'or' b)
'eqv' (a
'or' b)))
. z)) by
BVFUNC_4: 8
.= ((((
'not' ((a
'or' b)
'eqv' (a
'or' b)))
. z)
'or' (a
. z))
'&' (((
'not' a)
'or' ((a
'or' b)
'eqv' (a
'or' b)))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' ((a
'or' b)
'eqv' (a
'or' b)))
. z)
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (((a
'or' b)
'eqv' (a
'or' b))
. z))) by
BVFUNC_1:def 4
.= (((
'not' (((a
'or' b)
'eqv' (a
'or' b))
. z))
'or' (a
. z))
'&' (((
'not' a)
. z)
'or' (((a
'or' b)
'eqv' (a
'or' b))
. z))) by
MARGREL1:def 19
.= ((
FALSE
'or' (a
. z))
'&' (((
'not' a)
. z)
'or'
TRUE )) by
A2
.= ((a
. z)
'&' (((
'not' a)
. z)
'or'
TRUE ))
.= ((a
. z)
'&'
TRUE )
.=
TRUE by
A1;
hence thesis;
end;
theorem ::
BVFUNC_6:99
for a be
Function of Y,
BOOLEAN holds (a
'imp' ((
'not' a)
'eqv' (
'not' a)))
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((a
'imp' ((
'not' a)
'eqv' (
'not' a)))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' ((
'not' a)
'eqv' (
'not' a)))
. x)
= (((
'not' a)
'or' ((
'not' a)
'eqv' (
'not' a)))
. x) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' a)
'imp' (
'not' a))
'&' ((
'not' a)
'imp' (
'not' a))))
. x) by
BVFUNC_4: 7
.= (((
'not' a)
'or' ((
'not' (
'not' a))
'or' (
'not' a)))
. x) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (
I_el Y))
. x) by
BVFUNC_4: 6
.=
TRUE by
BVFUNC_1: 10,
BVFUNC_1:def 11;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:100
for a,b be
Function of Y,
BOOLEAN holds (((a
'imp' b)
'imp' a)
'imp' a)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds ((((a
'imp' b)
'imp' a)
'imp' a)
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'imp' b)
'imp' a)
'imp' a)
. x)
= (((
'not' ((a
'imp' b)
'imp' a))
'or' a)
. x) by
BVFUNC_4: 8
.= (((
'not' ((
'not' (a
'imp' b))
'or' a))
'or' a)
. x) by
BVFUNC_4: 8
.= (((
'not' ((
'not' ((
'not' a)
'or' b))
'or' a))
'or' a)
. x) by
BVFUNC_4: 8
.= (((
'not' (((
'not' (
'not' a))
'&' (
'not' b))
'or' a))
'or' a)
. x) by
BVFUNC_1: 13
.= (((
'not' ((a
'or' a)
'&' ((
'not' b)
'or' a)))
'or' a)
. x) by
BVFUNC_1: 11
.= ((((
'not' a)
'or' (
'not' ((
'not' b)
'or' a)))
'or' a)
. x) by
BVFUNC_1: 14
.= ((((
'not' a)
'or' ((
'not' (
'not' b))
'&' (
'not' a)))
'or' a)
. x) by
BVFUNC_1: 13
.= (((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' (
'not' a)))
'or' a)
. x) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' b)
'or' a)
'&' ((
'not' a)
'or' a))
. x) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' b)
'or' a)
'&' (
I_el Y))
. x) by
BVFUNC_4: 6
.= ((((
'not' a)
'or' b)
'or' a)
. x) by
BVFUNC_1: 6
.= ((b
'or' ((
'not' a)
'or' a))
. x) by
BVFUNC_1: 8
.= ((b
'or' (
I_el Y))
. x) by
BVFUNC_4: 6
.=
TRUE by
BVFUNC_1: 10,
BVFUNC_1:def 11;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:101
for a,b,c,d be
Function of Y,
BOOLEAN holds ((((a
'imp' c)
'&' (b
'imp' d))
'&' ((
'not' c)
'or' (
'not' d)))
'imp' ((
'not' a)
'or' (
'not' b)))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((((a
'imp' c)
'&' (b
'imp' d))
'&' ((
'not' c)
'or' (
'not' d)))
'imp' ((
'not' a)
'or' (
'not' b)))
. x)
=
TRUE
proof
let x be
Element of Y;
((((a
'imp' c)
'&' (b
'imp' d))
'&' ((
'not' c)
'or' (
'not' d)))
'imp' ((
'not' a)
'or' (
'not' b)))
= ((
'not' (((a
'imp' c)
'&' (b
'imp' d))
'&' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_4: 8
.= ((
'not' ((((
'not' a)
'or' c)
'&' (b
'imp' d))
'&' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_4: 8
.= ((
'not' ((((
'not' a)
'or' c)
'&' ((
'not' b)
'or' d))
'&' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_4: 8
.= (((
'not' (((
'not' a)
'or' c)
'&' ((
'not' b)
'or' d)))
'or' (
'not' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 14
.= ((((
'not' ((
'not' a)
'or' c))
'or' (
'not' ((
'not' b)
'or' d)))
'or' (
'not' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 14
.= (((((
'not' (
'not' a))
'&' (
'not' c))
'or' (
'not' ((
'not' b)
'or' d)))
'or' (
'not' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 13
.= ((((a
'&' (
'not' c))
'or' ((
'not' (
'not' b))
'&' (
'not' d)))
'or' (
'not' ((
'not' c)
'or' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 13
.= ((((a
'&' (
'not' c))
'or' (b
'&' (
'not' d)))
'or' ((
'not' (
'not' c))
'&' (
'not' (
'not' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 13
.= (((a
'&' (
'not' c))
'or' ((b
'&' (
'not' d))
'or' (c
'&' d)))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 8
.= (((a
'&' (
'not' c))
'or' ((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' (c
'&' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 11
.= (((a
'&' (
'not' c))
'or' ((b
'or' (c
'&' d))
'&' (((
'not' d)
'or' c)
'&' ((
'not' d)
'or' d))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 11
.= (((a
'&' (
'not' c))
'or' ((b
'or' (c
'&' d))
'&' (((
'not' d)
'or' c)
'&' (
I_el Y))))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_4: 6
.= (((a
'&' (
'not' c))
'or' ((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c)))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 6
.= (((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c))
'or' ((a
'&' (
'not' c))
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 8
.= (((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c))
'or' ((a
'or' ((
'not' a)
'or' (
'not' b)))
'&' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))) by
BVFUNC_1: 11
.= (((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c))
'or' (((a
'or' (
'not' a))
'or' (
'not' b))
'&' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))) by
BVFUNC_1: 8
.= (((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c))
'or' (((
I_el Y)
'or' (
'not' b))
'&' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))) by
BVFUNC_4: 6
.= (((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c))
'or' ((
I_el Y)
'&' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))) by
BVFUNC_1: 10
.= (((b
'or' (c
'&' d))
'&' ((
'not' d)
'or' c))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 6
.= (((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))
'&' (((
'not' d)
'or' c)
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))) by
BVFUNC_1: 11
.= (((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))
'&' ((((
'not' d)
'or' c)
'or' (
'not' c))
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 8
.= (((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))
'&' (((
'not' d)
'or' (c
'or' (
'not' c)))
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 8
.= (((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))
'&' (((
'not' d)
'or' (
I_el Y))
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_4: 6
.= (((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))
'&' ((
I_el Y)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 10
.= (((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))
'&' (
I_el Y)) by
BVFUNC_1: 10
.= ((b
'or' (c
'&' d))
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 6
.= ((c
'&' d)
'or' (b
'or' ((
'not' c)
'or' ((
'not' a)
'or' (
'not' b))))) by
BVFUNC_1: 8
.= ((c
'&' d)
'or' ((b
'or' ((
'not' b)
'or' (
'not' a)))
'or' (
'not' c))) by
BVFUNC_1: 8
.= ((c
'&' d)
'or' (((b
'or' (
'not' b))
'or' (
'not' a))
'or' (
'not' c))) by
BVFUNC_1: 8
.= ((c
'&' d)
'or' (((
I_el Y)
'or' (
'not' a))
'or' (
'not' c))) by
BVFUNC_4: 6
.= ((c
'&' d)
'or' ((
I_el Y)
'or' (
'not' c))) by
BVFUNC_1: 10
.= ((c
'&' d)
'or' (
I_el Y)) by
BVFUNC_1: 10
.= (
I_el Y) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1:def 11;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_6:102
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'imp' ((a
'imp' (b
'imp' c))
'imp' (a
'imp' c)))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for x be
Element of Y holds (((a
'imp' b)
'imp' ((a
'imp' (b
'imp' c))
'imp' (a
'imp' c)))
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' b)
'imp' ((a
'imp' (b
'imp' c))
'imp' (a
'imp' c)))
= ((
'not' (a
'imp' b))
'or' ((a
'imp' (b
'imp' c))
'imp' (a
'imp' c))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' ((a
'imp' (b
'imp' c))
'imp' (a
'imp' c))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' (((
'not' a)
'or' (b
'imp' c))
'imp' (a
'imp' c))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' (((
'not' a)
'or' ((
'not' b)
'or' c))
'imp' (a
'imp' c))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' (((
'not' a)
'or' ((
'not' b)
'or' c))
'imp' ((
'not' a)
'or' c))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((
'not' a)
'or' c))) by
BVFUNC_4: 8
.= (((
'not' (
'not' a))
'&' (
'not' b))
'or' ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 13
.= (((
'not' (
'not' a))
'&' (
'not' b))
'or' (((
'not' (
'not' a))
'&' (
'not' ((
'not' b)
'or' c)))
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 13
.= ((a
'&' (
'not' b))
'or' (((
'not' (
'not' a))
'&' ((
'not' (
'not' b))
'&' (
'not' c)))
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 13
.= ((a
'&' (
'not' b))
'or' ((a
'or' ((
'not' a)
'or' c))
'&' ((b
'&' (
'not' c))
'or' ((
'not' a)
'or' c)))) by
BVFUNC_1: 11
.= ((a
'&' (
'not' b))
'or' (((a
'or' (
'not' a))
'or' c)
'&' ((b
'&' (
'not' c))
'or' ((
'not' a)
'or' c)))) by
BVFUNC_1: 8
.= ((a
'&' (
'not' b))
'or' (((
I_el Y)
'or' c)
'&' ((b
'&' (
'not' c))
'or' ((
'not' a)
'or' c)))) by
BVFUNC_4: 6
.= ((a
'&' (
'not' b))
'or' ((
I_el Y)
'&' ((b
'&' (
'not' c))
'or' ((
'not' a)
'or' c)))) by
BVFUNC_1: 10
.= ((a
'&' (
'not' b))
'or' ((b
'&' (
'not' c))
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 6
.= ((a
'&' (
'not' b))
'or' ((b
'or' ((
'not' a)
'or' c))
'&' ((
'not' c)
'or' ((
'not' a)
'or' c)))) by
BVFUNC_1: 11
.= ((a
'&' (
'not' b))
'or' ((b
'or' ((
'not' a)
'or' c))
'&' (((
'not' c)
'or' c)
'or' (
'not' a)))) by
BVFUNC_1: 8
.= ((a
'&' (
'not' b))
'or' ((b
'or' ((
'not' a)
'or' c))
'&' ((
I_el Y)
'or' (
'not' a)))) by
BVFUNC_4: 6
.= ((a
'&' (
'not' b))
'or' ((b
'or' ((
'not' a)
'or' c))
'&' (
I_el Y))) by
BVFUNC_1: 10
.= ((a
'&' (
'not' b))
'or' (b
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 6
.= ((a
'or' (b
'or' ((
'not' a)
'or' c)))
'&' ((
'not' b)
'or' (b
'or' ((
'not' a)
'or' c)))) by
BVFUNC_1: 11
.= ((a
'or' (b
'or' ((
'not' a)
'or' c)))
'&' (((
'not' b)
'or' b)
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 8
.= ((a
'or' (b
'or' ((
'not' a)
'or' c)))
'&' ((
I_el Y)
'or' ((
'not' a)
'or' c))) by
BVFUNC_4: 6
.= ((a
'or' (b
'or' ((
'not' a)
'or' c)))
'&' (
I_el Y)) by
BVFUNC_1: 10
.= (a
'or' (b
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 6
.= (a
'or' (((
'not' a)
'or' b)
'or' c)) by
BVFUNC_1: 8
.= ((a
'or' ((
'not' a)
'or' b))
'or' c) by
BVFUNC_1: 8
.= (((a
'or' (
'not' a))
'or' b)
'or' c) by
BVFUNC_1: 8
.= (((
I_el Y)
'or' b)
'or' c) by
BVFUNC_4: 6
.= ((
I_el Y)
'or' c) by
BVFUNC_1: 10
.= (
I_el Y) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1:def 11;
end;
hence thesis by
BVFUNC_1:def 11;
end;
begin
reserve Y for non
empty
set,
a,b,c,d,e,f,g for
Function of Y,
BOOLEAN ;
Lm1: (a
'&' b)
'<' a
proof
let x be
Element of Y;
assume ((a
'&' b)
. x)
=
TRUE ;
then ((a
. x)
'&' (b
. x))
=
TRUE by
MARGREL1:def 20;
hence thesis by
MARGREL1: 12;
end;
Lm2: ((a
'&' b)
'&' c)
'<' a & ((a
'&' b)
'&' c)
'<' b
proof
((a
'&' b)
'&' c)
= ((c
'&' b)
'&' a) & (((c
'&' b)
'&' a)
'imp' a)
= (
I_el Y) by
BVFUNC_1: 4,
Th38;
hence ((a
'&' b)
'&' c)
'<' a by
BVFUNC_1: 16;
((a
'&' b)
'&' c)
= ((a
'&' c)
'&' b) & (((a
'&' c)
'&' b)
'imp' b)
= (
I_el Y) by
BVFUNC_1: 4,
Th38;
hence thesis by
BVFUNC_1: 16;
end;
Lm3: (((a
'&' b)
'&' c)
'&' d)
'<' a & (((a
'&' b)
'&' c)
'&' d)
'<' b
proof
A1: ((((d
'&' c)
'&' b)
'&' a)
'imp' a)
= (
I_el Y) by
Th38;
(((a
'&' b)
'&' c)
'&' d)
= ((d
'&' c)
'&' (b
'&' a)) by
BVFUNC_1: 4
.= (((d
'&' c)
'&' b)
'&' a) by
BVFUNC_1: 4;
hence (((a
'&' b)
'&' c)
'&' d)
'<' a by
A1,
BVFUNC_1: 16;
A2: ((((a
'&' c)
'&' d)
'&' b)
'imp' b)
= (
I_el Y) by
Th38;
(((a
'&' b)
'&' c)
'&' d)
= (((a
'&' c)
'&' b)
'&' d) by
BVFUNC_1: 4
.= (((a
'&' c)
'&' d)
'&' b) by
BVFUNC_1: 4;
hence thesis by
A2,
BVFUNC_1: 16;
end;
Lm4: ((((a
'&' b)
'&' c)
'&' d)
'&' e)
'<' a & ((((a
'&' b)
'&' c)
'&' d)
'&' e)
'<' b
proof
A1: (((((e
'&' d)
'&' c)
'&' b)
'&' a)
'imp' a)
= (
I_el Y) by
Th38;
((((a
'&' b)
'&' c)
'&' d)
'&' e)
= ((e
'&' d)
'&' (c
'&' (b
'&' a))) by
BVFUNC_1: 4
.= (((e
'&' d)
'&' c)
'&' (b
'&' a)) by
BVFUNC_1: 4
.= ((((e
'&' d)
'&' c)
'&' b)
'&' a) by
BVFUNC_1: 4;
hence ((((a
'&' b)
'&' c)
'&' d)
'&' e)
'<' a by
A1,
BVFUNC_1: 16;
A2: (((((a
'&' c)
'&' d)
'&' e)
'&' b)
'imp' b)
= (
I_el Y) by
Th38;
((((a
'&' b)
'&' c)
'&' d)
'&' e)
= ((((a
'&' c)
'&' b)
'&' d)
'&' e) by
BVFUNC_1: 4
.= ((((a
'&' c)
'&' d)
'&' b)
'&' e) by
BVFUNC_1: 4
.= ((((a
'&' c)
'&' d)
'&' e)
'&' b) by
BVFUNC_1: 4;
hence thesis by
A2,
BVFUNC_1: 16;
end;
Lm5: (((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'<' a & (((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'<' b
proof
A1: ((((((f
'&' e)
'&' d)
'&' c)
'&' b)
'&' a)
'imp' a)
= (
I_el Y) by
Th38;
(((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
= ((f
'&' e)
'&' (d
'&' (c
'&' (b
'&' a)))) by
BVFUNC_1: 4
.= (((f
'&' e)
'&' d)
'&' (c
'&' (b
'&' a))) by
BVFUNC_1: 4
.= ((((f
'&' e)
'&' d)
'&' c)
'&' (b
'&' a)) by
BVFUNC_1: 4
.= (((((f
'&' e)
'&' d)
'&' c)
'&' b)
'&' a) by
BVFUNC_1: 4;
hence (((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'<' a by
A1,
BVFUNC_1: 16;
A2: ((((((f
'&' e)
'&' d)
'&' c)
'&' a)
'&' b)
'imp' b)
= (
I_el Y) by
Th38;
(((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
= ((f
'&' e)
'&' (d
'&' (c
'&' (b
'&' a)))) by
BVFUNC_1: 4
.= (((f
'&' e)
'&' d)
'&' (c
'&' (b
'&' a))) by
BVFUNC_1: 4
.= ((((f
'&' e)
'&' d)
'&' c)
'&' (b
'&' a)) by
BVFUNC_1: 4
.= (((((f
'&' e)
'&' d)
'&' c)
'&' a)
'&' b) by
BVFUNC_1: 4;
hence thesis by
A2,
BVFUNC_1: 16;
end;
Lm6: ((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
'<' a & ((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
'<' b
proof
A1: (((((((g
'&' f)
'&' e)
'&' d)
'&' c)
'&' b)
'&' a)
'imp' a)
= (
I_el Y) by
Th38;
((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
= ((g
'&' f)
'&' (e
'&' (d
'&' (c
'&' (b
'&' a))))) by
BVFUNC_1: 4
.= (((g
'&' f)
'&' e)
'&' (d
'&' (c
'&' (b
'&' a)))) by
BVFUNC_1: 4
.= ((((g
'&' f)
'&' e)
'&' d)
'&' (c
'&' (b
'&' a))) by
BVFUNC_1: 4
.= (((((g
'&' f)
'&' e)
'&' d)
'&' c)
'&' (b
'&' a)) by
BVFUNC_1: 4
.= ((((((g
'&' f)
'&' e)
'&' d)
'&' c)
'&' b)
'&' a) by
BVFUNC_1: 4;
hence ((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
'<' a by
A1,
BVFUNC_1: 16;
A2: (((((((a
'&' g)
'&' f)
'&' e)
'&' d)
'&' c)
'&' b)
'imp' b)
= (
I_el Y) by
Th38;
((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
= (((((a
'&' (c
'&' b))
'&' d)
'&' e)
'&' f)
'&' g) by
BVFUNC_1: 4
.= ((((a
'&' (d
'&' (c
'&' b)))
'&' e)
'&' f)
'&' g) by
BVFUNC_1: 4
.= (((a
'&' (e
'&' (d
'&' (c
'&' b))))
'&' f)
'&' g) by
BVFUNC_1: 4
.= ((a
'&' (f
'&' (e
'&' (d
'&' (c
'&' b)))))
'&' g) by
BVFUNC_1: 4
.= ((a
'&' g)
'&' (f
'&' (e
'&' (d
'&' (c
'&' b))))) by
BVFUNC_1: 4
.= (((a
'&' g)
'&' f)
'&' (e
'&' (d
'&' (c
'&' b)))) by
BVFUNC_1: 4
.= ((((a
'&' g)
'&' f)
'&' e)
'&' (d
'&' (c
'&' b))) by
BVFUNC_1: 4
.= (((((a
'&' g)
'&' f)
'&' e)
'&' d)
'&' (c
'&' b)) by
BVFUNC_1: 4
.= ((((((a
'&' g)
'&' f)
'&' e)
'&' d)
'&' c)
'&' b) by
BVFUNC_1: 4;
hence thesis by
A2,
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:103
Th1: ((a
'or' b)
'&' (b
'imp' c))
'<' (a
'or' c)
proof
let z be
Element of Y;
A1: (((a
'or' b)
'&' (b
'imp' c))
. z)
= (((a
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= (((a
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= (((a
'or' b)
. z)
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4
.= (((a
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'or' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
assume ((a
'or' c)
. z)
<>
TRUE ;
then ((a
'or' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: ((a
. z)
'or' (c
. z))
=
FALSE by
BVFUNC_1:def 4;
(c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((a
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
= ((b
. z)
'&' (
'not' (b
. z))) by
A3,
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:104
Th2: (a
'&' (a
'imp' b))
'<' b
proof
let z be
Element of Y;
A1: ((a
'&' (a
'imp' b))
. z)
= ((a
. z)
'&' ((a
'imp' b)
. z)) by
MARGREL1:def 20
.= ((a
. z)
'&' (((
'not' a)
'or' b)
. z)) by
BVFUNC_4: 8
.= ((a
. z)
'&' (((
'not' a)
. z)
'or' (b
. z))) by
BVFUNC_1:def 4
.= (((a
. z)
'&' ((
'not' a)
. z))
'or' ((a
. z)
'&' (b
. z))) by
XBOOLEAN: 8
.= (((a
. z)
'&' (
'not' (a
. z)))
'or' ((a
. z)
'&' (b
. z))) by
MARGREL1:def 19
.= (
FALSE
'or' ((a
. z)
'&' (b
. z))) by
XBOOLEAN: 138
.= ((a
. z)
'&' (b
. z));
assume
A2: ((a
'&' (a
'imp' b))
. z)
=
TRUE ;
now
assume (b
. z)
<>
TRUE ;
then ((a
. z)
'&' (b
. z))
= (
FALSE
'&' (a
. z)) by
XBOOLEAN:def 3
.=
FALSE ;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:105
((a
'imp' b)
'&' (
'not' b))
'<' (
'not' a)
proof
let z be
Element of Y;
reconsider bz = (b
. z) as
boolean
object;
A1: (((a
'imp' b)
'&' (
'not' b))
. z)
= (((a
'imp' b)
. z)
'&' ((
'not' b)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((
'not' b)
. z)) by
BVFUNC_4: 8
.= (((
'not' b)
. z)
'&' (((
'not' a)
. z)
'or' (b
. z))) by
BVFUNC_1:def 4
.= ((((
'not' b)
. z)
'&' ((
'not' a)
. z))
'or' (((
'not' b)
. z)
'&' (b
. z))) by
XBOOLEAN: 8
.= ((((
'not' b)
. z)
'&' ((
'not' a)
. z))
'or' ((
'not' bz)
'&' bz)) by
MARGREL1:def 19
.= ((((
'not' b)
. z)
'&' ((
'not' a)
. z))
'or'
FALSE ) by
XBOOLEAN: 138
.= (((
'not' b)
. z)
'&' ((
'not' a)
. z));
assume
A2: (((a
'imp' b)
'&' (
'not' b))
. z)
=
TRUE ;
now
assume ((
'not' a)
. z)
<>
TRUE ;
then (((
'not' b)
. z)
'&' ((
'not' a)
. z))
= (
FALSE
'&' ((
'not' b)
. z)) by
XBOOLEAN:def 3
.=
FALSE ;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:106
((a
'or' b)
'&' (
'not' a))
'<' b
proof
let z be
Element of Y;
reconsider az = (a
. z) as
boolean
object;
A1: (((a
'or' b)
'&' (
'not' a))
. z)
= (((a
'or' b)
. z)
'&' ((
'not' a)
. z)) by
MARGREL1:def 20
.= (((
'not' a)
. z)
'&' ((a
. z)
'or' (b
. z))) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'&' (a
. z))
'or' (((
'not' a)
. z)
'&' (b
. z))) by
XBOOLEAN: 8
.= (((
'not' az)
'&' az)
'or' (((
'not' a)
. z)
'&' (b
. z))) by
MARGREL1:def 19
.= (
FALSE
'or' (((
'not' a)
. z)
'&' (b
. z))) by
XBOOLEAN: 138
.= (((
'not' a)
. z)
'&' (b
. z));
assume
A2: (((a
'or' b)
'&' (
'not' a))
. z)
=
TRUE ;
now
assume (b
. z)
<>
TRUE ;
then (((
'not' a)
. z)
'&' (b
. z))
= (
FALSE
'&' ((
'not' a)
. z)) by
XBOOLEAN:def 3
.=
FALSE ;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:107
((a
'imp' b)
'&' ((
'not' a)
'imp' b))
'<' b
proof
let z be
Element of Y;
reconsider az = (a
. z) as
boolean
object;
A1: (((a
'imp' b)
'&' ((
'not' a)
'imp' b))
. z)
= (((a
'imp' b)
. z)
'&' (((
'not' a)
'imp' b)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' a)
'imp' b)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' (
'not' a))
'or' b)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' ((a
'or' b)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' ((a
. z)
'or' (b
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' ((
'not' a)
'imp' b))
. z)
=
TRUE ;
now
assume (b
. z)
<>
TRUE ;
then (b
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((((
'not' a)
. z)
'or' (b
. z))
'&' ((a
. z)
'or' (b
. z)))
= ((
'not' az)
'&' az) by
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:108
((a
'imp' b)
'&' (a
'imp' (
'not' b)))
'<' (
'not' a)
proof
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (a
'imp' (
'not' b)))
. z)
= (((a
'imp' b)
. z)
'&' ((a
'imp' (
'not' b))
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((a
'imp' (
'not' b))
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' a)
'or' (
'not' b))
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' a)
'or' (
'not' b))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' a)
. z)
'or' ((
'not' b)
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (a
'imp' (
'not' b)))
. z)
=
TRUE ;
now
assume ((
'not' a)
. z)
<>
TRUE ;
then ((
'not' a)
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' a)
. z)
'or' ((
'not' b)
. z)))
= ((b
. z)
'&' (
'not' (b
. z))) by
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:109
(a
'imp' (b
'&' c))
'<' (a
'imp' b)
proof
let z be
Element of Y;
A1: ((a
'imp' (b
'&' c))
. z)
= (((
'not' a)
'or' (b
'&' c))
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' ((b
'&' c)
. z)) by
BVFUNC_1:def 4
.= (((
'not' a)
. z)
'or' ((b
. z)
'&' (c
. z))) by
MARGREL1:def 20;
assume
A2: ((a
'imp' (b
'&' c))
. z)
=
TRUE ;
now
assume ((a
'imp' b)
. z)
<>
TRUE ;
then ((a
'imp' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((
'not' a)
'or' b)
. z)
=
FALSE by
BVFUNC_4: 8;
then
A3: (((
'not' a)
. z)
'or' (b
. z))
=
FALSE by
BVFUNC_1:def 4;
(((
'not' a)
. z)
'or' ((b
. z)
'&' (c
. z)))
= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' a)
. z)
'or' (c
. z))) by
XBOOLEAN: 9
.=
FALSE by
A3;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:110
((a
'or' b)
'imp' c)
'<' (a
'imp' c)
proof
let z be
Element of Y;
A1: (((a
'or' b)
'imp' c)
. z)
= (((
'not' (a
'or' b))
'or' c)
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'&' (
'not' b))
'or' c)
. z) by
BVFUNC_1: 13
.= ((((
'not' a)
'&' (
'not' b))
. z)
'or' (c
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'&' ((
'not' b)
. z))
'or' (c
. z)) by
MARGREL1:def 20;
assume
A2: (((a
'or' b)
'imp' c)
. z)
=
TRUE ;
now
assume ((a
'imp' c)
. z)
<>
TRUE ;
then ((a
'imp' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((
'not' a)
'or' c)
. z)
=
FALSE by
BVFUNC_4: 8;
then
A3: (((
'not' a)
. z)
'or' (c
. z))
=
FALSE by
BVFUNC_1:def 4;
((((
'not' a)
. z)
'&' ((
'not' b)
. z))
'or' (c
. z))
= (((c
. z)
'or' ((
'not' a)
. z))
'&' ((c
. z)
'or' ((
'not' b)
. z))) by
XBOOLEAN: 9
.=
FALSE by
A3;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:111
(a
'imp' b)
'<' ((a
'&' c)
'imp' b)
proof
let z be
Element of Y;
A1: ((a
'imp' b)
. z)
= (((
'not' a)
'or' b)
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' (b
. z)) by
BVFUNC_1:def 4;
assume
A2: ((a
'imp' b)
. z)
=
TRUE ;
now
assume (((a
'&' c)
'imp' b)
. z)
<>
TRUE ;
then (((a
'&' c)
'imp' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((
'not' (a
'&' c))
'or' b)
. z)
=
FALSE by
BVFUNC_4: 8;
then (((
'not' (a
'&' c))
. z)
'or' (b
. z))
=
FALSE by
BVFUNC_1:def 4;
then ((((
'not' a)
'or' (
'not' c))
. z)
'or' (b
. z))
=
FALSE by
BVFUNC_1: 14;
then ((((
'not' c)
. z)
'or' ((
'not' a)
. z))
'or' (b
. z))
=
FALSE by
BVFUNC_1:def 4;
then (((
'not' c)
. z)
'or' (((
'not' a)
. z)
'or' (b
. z)))
=
FALSE ;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:112
(a
'imp' b)
'<' ((a
'&' c)
'imp' (b
'&' c))
proof
let z be
Element of Y;
A1: ((a
'imp' b)
. z)
= (((
'not' a)
'or' b)
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' (b
. z)) by
BVFUNC_1:def 4;
assume
A2: ((a
'imp' b)
. z)
=
TRUE ;
now
assume (((a
'&' c)
'imp' (b
'&' c))
. z)
<>
TRUE ;
then (((a
'&' c)
'imp' (b
'&' c))
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((
'not' (a
'&' c))
'or' (b
'&' c))
. z)
=
FALSE by
BVFUNC_4: 8;
then (((
'not' (a
'&' c))
. z)
'or' ((b
'&' c)
. z))
=
FALSE by
BVFUNC_1:def 4;
then ((((
'not' a)
'or' (
'not' c))
. z)
'or' ((b
'&' c)
. z))
=
FALSE by
BVFUNC_1: 14;
then ((((
'not' c)
. z)
'or' ((
'not' a)
. z))
'or' ((b
'&' c)
. z))
=
FALSE by
BVFUNC_1:def 4;
then (((
'not' c)
. z)
'or' (((
'not' a)
. z)
'or' ((b
'&' c)
. z)))
=
FALSE ;
then
A3: (((
'not' c)
. z)
'or' (((
'not' a)
. z)
'or' ((b
. z)
'&' (c
. z))))
=
FALSE by
MARGREL1:def 20;
(((
'not' c)
. z)
'or' ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' a)
. z)
'or' (c
. z))))
= ((((
'not' c)
. z)
'or' (c
. z))
'or' ((
'not' a)
. z)) by
A2,
A1
.= (((
'not' (c
. z))
'or' (c
. z))
'or' ((
'not' a)
. z)) by
MARGREL1:def 19
.= (
TRUE
'or' ((
'not' a)
. z)) by
XBOOLEAN: 102
.=
TRUE ;
hence contradiction by
A3,
XBOOLEAN: 9;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:113
(a
'imp' b)
'<' (a
'imp' (b
'or' c))
proof
let z be
Element of Y;
A1: ((a
'imp' b)
. z)
= (((
'not' a)
'or' b)
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' (b
. z)) by
BVFUNC_1:def 4;
assume
A2: ((a
'imp' b)
. z)
=
TRUE ;
now
assume
A3: ((a
'imp' (b
'or' c))
. z)
<>
TRUE ;
((a
'imp' (b
'or' c))
. z)
= (((
'not' a)
'or' (b
'or' c))
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' ((b
'or' c)
. z)) by
BVFUNC_1:def 4
.= (((
'not' a)
. z)
'or' ((b
. z)
'or' (c
. z))) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'or' (c
. z))
.=
TRUE by
A2,
A1;
hence contradiction by
A3;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:114
(a
'imp' b)
'<' ((a
'or' c)
'imp' (b
'or' c))
proof
let z be
Element of Y;
A1: ((a
'imp' b)
. z)
= (((
'not' a)
'or' b)
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' (b
. z)) by
BVFUNC_1:def 4;
assume
A2: ((a
'imp' b)
. z)
=
TRUE ;
now
assume
A3: (((a
'or' c)
'imp' (b
'or' c))
. z)
<>
TRUE ;
(((a
'or' c)
'imp' (b
'or' c))
. z)
= (((
'not' (a
'or' c))
'or' (b
'or' c))
. z) by
BVFUNC_4: 8
.= (((
'not' (a
'or' c))
. z)
'or' ((b
'or' c)
. z)) by
BVFUNC_1:def 4
.= (((
'not' (a
'or' c))
. z)
'or' ((b
. z)
'or' (c
. z))) by
BVFUNC_1:def 4
.= ((((
'not' (a
'or' c))
. z)
'or' (b
. z))
'or' (c
. z))
.= (((((
'not' a)
'&' (
'not' c))
. z)
'or' (b
. z))
'or' (c
. z)) by
BVFUNC_1: 13
.= (((b
. z)
'or' (((
'not' a)
. z)
'&' ((
'not' c)
. z)))
'or' (c
. z)) by
MARGREL1:def 20
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' ((b
. z)
'or' ((
'not' c)
. z)))
'or' (c
. z)) by
XBOOLEAN: 9
.= ((b
. z)
'or' (((
'not' c)
. z)
'or' (c
. z))) by
A2,
A1
.= ((b
. z)
'or' ((
'not' (c
. z))
'or' (c
. z))) by
MARGREL1:def 19
.= ((b
. z)
'or'
TRUE ) by
XBOOLEAN: 102
.=
TRUE ;
hence contradiction by
A3;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:115
((a
'&' b)
'or' c)
'<' (a
'or' c)
proof
let z be
Element of Y;
A1: (((a
'&' b)
'or' c)
. z)
= (((a
'&' b)
. z)
'or' (c
. z)) by
BVFUNC_1:def 4
.= (((a
. z)
'&' (b
. z))
'or' (c
. z)) by
MARGREL1:def 20;
assume
A2: (((a
'&' b)
'or' c)
. z)
=
TRUE ;
now
assume ((a
'or' c)
. z)
<>
TRUE ;
then ((a
'or' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: ((a
. z)
'or' (c
. z))
=
FALSE by
BVFUNC_1:def 4;
(((a
. z)
'&' (b
. z))
'or' (c
. z))
= (((c
. z)
'or' (a
. z))
'&' ((c
. z)
'or' (b
. z))) by
XBOOLEAN: 9
.=
FALSE by
A3;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:116
((a
'&' b)
'or' (c
'&' d))
'<' (a
'or' c)
proof
let z be
Element of Y;
A1: (((a
'&' b)
'or' (c
'&' d))
. z)
= (((a
'&' b)
. z)
'or' ((c
'&' d)
. z)) by
BVFUNC_1:def 4
.= (((a
. z)
'&' (b
. z))
'or' ((c
'&' d)
. z)) by
MARGREL1:def 20
.= (((a
. z)
'&' (b
. z))
'or' ((c
. z)
'&' (d
. z))) by
MARGREL1:def 20;
assume
A2: (((a
'&' b)
'or' (c
'&' d))
. z)
=
TRUE ;
now
assume ((a
'or' c)
. z)
<>
TRUE ;
then ((a
'or' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: ((a
. z)
'or' (c
. z))
=
FALSE by
BVFUNC_1:def 4;
(((a
. z)
'&' (b
. z))
'or' ((c
. z)
'&' (d
. z)))
= (((c
. z)
'or' ((a
. z)
'&' (b
. z)))
'&' (((a
. z)
'&' (b
. z))
'or' (d
. z))) by
XBOOLEAN: 9
.= ((((a
. z)
'or' (c
. z))
'&' ((c
. z)
'or' (b
. z)))
'&' (((a
. z)
'&' (b
. z))
'or' (d
. z))) by
XBOOLEAN: 9
.=
FALSE by
A3;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:117
((a
'imp' b)
'&' ((
'not' a)
'imp' c))
'<' (b
'or' c)
proof
let z be
Element of Y;
A1: (((a
'imp' b)
'&' ((
'not' a)
'imp' c))
. z)
= ((((
'not' a)
'or' b)
'&' ((
'not' a)
'imp' c))
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' (
'not' a))
'or' c))
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' ((a
'or' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' ((a
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' ((a
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' ((
'not' a)
'imp' c))
. z)
=
TRUE ;
now
reconsider az = (a
. z) as
boolean
object;
assume ((b
'or' c)
. z)
<>
TRUE ;
then ((b
'or' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: ((b
. z)
'or' (c
. z))
=
FALSE by
BVFUNC_1:def 4;
(c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((((
'not' a)
. z)
'or' (b
. z))
'&' ((a
. z)
'or' (c
. z)))
= ((
'not' az)
'&' az) by
A3,
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:118
((a
'imp' c)
'&' (b
'imp' (
'not' c)))
'<' ((
'not' a)
'or' (
'not' b))
proof
let z be
Element of Y;
A1: (((a
'imp' c)
'&' (b
'imp' (
'not' c)))
. z)
= (((a
'imp' c)
. z)
'&' ((b
'imp' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' c)
. z)
'&' ((b
'imp' (
'not' c))
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' c)
. z)
'&' (((
'not' b)
'or' (
'not' c))
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' b)
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' b)
. z)
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' c)
'&' (b
'imp' (
'not' c)))
. z)
=
TRUE ;
now
assume (((
'not' a)
'or' (
'not' b))
. z)
<>
TRUE ;
then (((
'not' a)
'or' (
'not' b))
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: (((
'not' a)
. z)
'or' ((
'not' b)
. z))
=
FALSE by
BVFUNC_1:def 4;
((
'not' b)
. z)
=
TRUE or ((
'not' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' b)
. z)
'or' ((
'not' c)
. z)))
= ((c
. z)
'&' (
'not' (c
. z))) by
A3,
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:119
((a
'or' b)
'&' ((
'not' a)
'or' c))
'<' (b
'or' c)
proof
let z be
Element of Y;
A1: (((a
'or' b)
'&' ((
'not' a)
'or' c))
. z)
= (((a
'or' b)
. z)
'&' (((
'not' a)
'or' c)
. z)) by
MARGREL1:def 20
.= (((a
. z)
'or' (b
. z))
'&' (((
'not' a)
'or' c)
. z)) by
BVFUNC_1:def 4
.= (((a
. z)
'or' (b
. z))
'&' (((
'not' a)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'or' b)
'&' ((
'not' a)
'or' c))
. z)
=
TRUE ;
now
assume ((b
'or' c)
. z)
<>
TRUE ;
then ((b
'or' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: ((b
. z)
'or' (c
. z))
=
FALSE by
BVFUNC_1:def 4;
(c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((a
. z)
'or' (b
. z))
'&' (((
'not' a)
. z)
'or' (c
. z)))
= ((a
. z)
'&' (
'not' (a
. z))) by
A3,
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence contradiction by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:120
Th918: ((a
'imp' b)
'&' (c
'imp' d))
'<' ((a
'&' c)
'imp' (b
'&' d))
proof
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (c
'imp' d))
. z)
= (((a
'imp' b)
. z)
'&' ((c
'imp' d)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((c
'imp' d)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' c)
'or' d)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' c)
'or' d)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' c)
. z)
'or' (d
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (c
'imp' d))
. z)
=
TRUE ;
now
A3: ((
'not' c)
. z)
=
TRUE or ((
'not' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: (((
'not' a)
. z)
'or' ((
'not' c)
. z))
=
TRUE or (((
'not' a)
. z)
'or' ((
'not' c)
. z))
=
FALSE by
XBOOLEAN:def 3;
A5: ((b
. z)
'&' (d
. z))
=
TRUE or ((b
. z)
'&' (d
. z))
=
FALSE by
XBOOLEAN:def 3;
A6: (((a
'&' c)
'imp' (b
'&' d))
. z)
= (((
'not' (a
'&' c))
'or' (b
'&' d))
. z) by
BVFUNC_4: 8
.= (((
'not' (a
'&' c))
. z)
'or' ((b
'&' d)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
'or' (
'not' c))
. z)
'or' ((b
'&' d)
. z)) by
BVFUNC_1: 14
.= ((((
'not' a)
. z)
'or' ((
'not' c)
. z))
'or' ((b
'&' d)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' ((
'not' c)
. z))
'or' ((b
. z)
'&' (d
. z))) by
MARGREL1:def 20;
assume
A7: (((a
'&' c)
'imp' (b
'&' d))
. z)
<>
TRUE ;
now
per cases by
A7,
A6,
A5,
MARGREL1: 12;
case (b
. z)
=
FALSE ;
thus thesis by
A2,
A1,
A6,
A4,
A3;
end;
case (d
. z)
=
FALSE ;
thus thesis by
A2,
A1,
A6,
A4,
A3;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:121
((a
'imp' b)
'&' (a
'imp' c))
'<' (a
'imp' (b
'&' c))
proof
((a
'imp' b)
'&' (a
'imp' c))
'<' ((a
'&' a)
'imp' (b
'&' c)) by
Th918;
hence thesis;
end;
theorem ::
BVFUNC_6:122
Th20: ((a
'imp' c)
'&' (b
'imp' c))
'<' ((a
'or' b)
'imp' c)
proof
(((a
'imp' c)
'&' (b
'imp' c))
'imp' ((a
'or' b)
'imp' c))
= (
I_el Y) by
Th9;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:123
Th21: ((a
'imp' b)
'&' (c
'imp' d))
'<' ((a
'or' c)
'imp' (b
'or' d))
proof
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (c
'imp' d))
. z)
= ((((
'not' a)
'or' b)
'&' (c
'imp' d))
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' c)
'or' d))
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' c)
'or' d)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' c)
'or' d)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' c)
. z)
'or' (d
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (c
'imp' d))
. z)
=
TRUE ;
now
A3: (d
. z)
=
TRUE or (d
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: ((b
. z)
'or' (d
. z))
=
TRUE or ((b
. z)
'or' (d
. z))
=
FALSE by
XBOOLEAN:def 3;
A5: (((
'not' a)
. z)
'&' ((
'not' c)
. z))
=
TRUE or (((
'not' a)
. z)
'&' ((
'not' c)
. z))
=
FALSE by
XBOOLEAN:def 3;
A6: (((a
'or' c)
'imp' (b
'or' d))
. z)
= (((
'not' (a
'or' c))
'or' (b
'or' d))
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'&' (
'not' c))
'or' (b
'or' d))
. z) by
BVFUNC_1: 13
.= ((((
'not' a)
'&' (
'not' c))
. z)
'or' ((b
'or' d)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'&' ((
'not' c)
. z))
'or' ((b
'or' d)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
. z)
'&' ((
'not' c)
. z))
'or' ((b
. z)
'or' (d
. z))) by
BVFUNC_1:def 4;
assume
A7: (((a
'or' c)
'imp' (b
'or' d))
. z)
<>
TRUE ;
now
per cases by
A7,
A6,
A5,
MARGREL1: 12;
case ((
'not' a)
. z)
=
FALSE ;
thus thesis by
A2,
A1,
A6,
A4,
A3;
end;
case ((
'not' c)
. z)
=
FALSE ;
thus thesis by
A2,
A1,
A6,
A4,
A3;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:124
((a
'imp' b)
'&' (a
'imp' c))
'<' (a
'imp' (b
'or' c))
proof
((a
'imp' b)
'&' (a
'imp' c))
'<' ((a
'or' a)
'imp' (b
'or' c)) by
Th21;
hence thesis;
end;
theorem ::
BVFUNC_6:125
Th23: for a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN holds (((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'<' (a2
'imp' a1)
proof
let a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN ;
A1: (((((b1
'or' c1)
'imp' (b2
'or' c2))
'&' ((b2
'or' c2)
'imp' (
'not' a2)))
'&' ((b1
'or' c1)
'imp' (
'not' a2)))
'imp' ((b1
'or' c1)
'imp' (
'not' a2)))
= (
I_el Y) by
Th38;
A2: ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (c1
'imp' c2))
= (
I_el Y) by
Lm4,
BVFUNC_1: 16;
A3: (((b1
'imp' b2)
'&' (c1
'imp' c2))
'imp' ((b1
'or' c1)
'imp' (b2
'or' c2)))
= (
I_el Y) by
Th21,
BVFUNC_1: 16;
((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (b1
'imp' b2))
= (
I_el Y) by
Lm4,
BVFUNC_1: 16;
then ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
= (
I_el Y) by
A2,
th18;
then
A4: ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' ((b1
'or' c1)
'imp' (b2
'or' c2)))
= (
I_el Y) by
A3,
BVFUNC_5: 9;
A5: ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (
'not' (a2
'&' c2)))
= (
I_el Y) by
Lm1,
BVFUNC_1: 16;
((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (
'not' (a2
'&' b2)))
= (
I_el Y) by
Lm2,
BVFUNC_1: 16;
then ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' ((
'not' (a2
'&' b2))
'&' (
'not' (a2
'&' c2))))
= (
I_el Y) by
A5,
th18;
then
A6: ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (((b1
'or' c1)
'imp' (b2
'or' c2))
'&' ((
'not' (a2
'&' b2))
'&' (
'not' (a2
'&' c2)))))
= (
I_el Y) by
A4,
th18;
((
'not' (a2
'&' b2))
'&' (
'not' (a2
'&' c2)))
= (((
'not' a2)
'or' (
'not' b2))
'&' (
'not' (a2
'&' c2))) by
BVFUNC_1: 14
.= (((
'not' b2)
'or' (
'not' a2))
'&' ((
'not' c2)
'or' (
'not' a2))) by
BVFUNC_1: 14
.= ((b2
'imp' (
'not' a2))
'&' ((
'not' c2)
'or' (
'not' a2))) by
BVFUNC_4: 8
.= ((b2
'imp' (
'not' a2))
'&' (c2
'imp' (
'not' a2))) by
BVFUNC_4: 8
.= ((b2
'or' c2)
'imp' (
'not' a2)) by
Th75;
then ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' ((((b1
'or' c1)
'imp' (b2
'or' c2))
'&' ((b2
'or' c2)
'imp' (
'not' a2)))
'&' ((b1
'or' c1)
'imp' (
'not' a2))))
= (
I_el Y) by
A6,
Th12;
then
A7: ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' ((b1
'or' c1)
'imp' (
'not' a2)))
= (
I_el Y) by
A1,
BVFUNC_5: 9;
(((a1
'or' b1)
'or' c1)
'&' ((b1
'or' c1)
'imp' (
'not' a2)))
= ((a1
'or' (b1
'or' c1))
'&' ((b1
'or' c1)
'imp' (
'not' a2))) & ((a1
'or' (b1
'or' c1))
'&' ((b1
'or' c1)
'imp' (
'not' a2)))
'<' (a1
'or' (
'not' a2)) by
Th1,
BVFUNC_1: 8;
then
A8: ((((a1
'or' b1)
'or' c1)
'&' ((b1
'or' c1)
'imp' (
'not' a2)))
'imp' (a1
'or' (
'not' a2)))
= (
I_el Y) by
BVFUNC_1: 16;
((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' ((a1
'or' b1)
'or' c1))
= (
I_el Y) by
Lm3,
BVFUNC_1: 16;
then ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (((a1
'or' b1)
'or' c1)
'&' ((b1
'or' c1)
'imp' (
'not' a2))))
= (
I_el Y) by
A7,
th18;
then ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (a1
'or' (
'not' a2)))
= (
I_el Y) by
A8,
BVFUNC_5: 9;
then ((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (a2
'imp' a1))
= (
I_el Y) by
BVFUNC_4: 8;
hence thesis by
BVFUNC_1: 16;
end;
Lm7: for a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN holds ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2))))
= (
I_el Y)
proof
let a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN ;
A1: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (a2
'&' c2)))
= (
I_el Y) by
Lm2,
BVFUNC_1: 16;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (a1
'imp' a2))
= (
I_el Y) & ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (b1
'imp' b2))
= (
I_el Y) by
Lm6,
BVFUNC_1: 16;
then
A2: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((a1
'imp' a2)
'&' (b1
'imp' b2)))
= (
I_el Y) by
th18;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((a1
'or' b1)
'or' c1))
= (
I_el Y) by
Lm4,
BVFUNC_1: 16;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1)))
= (
I_el Y) by
A2,
th18;
then
A3: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' c2))))
= (
I_el Y) by
A1,
th18;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (b2
'&' c2)))
= (
I_el Y) by
Lm1,
BVFUNC_1: 16;
hence thesis by
A3,
th18;
end;
Lm8: for a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN holds ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (b2
'&' a2)))
'&' (
'not' (b2
'&' c2))))
= (
I_el Y)
proof
let a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN ;
A1: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (a2
'&' b2)))
= (
I_el Y) by
Lm3,
BVFUNC_1: 16;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (a1
'imp' a2))
= (
I_el Y) & ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (c1
'imp' c2))
= (
I_el Y) by
Lm5,
Lm6,
BVFUNC_1: 16;
then
A2: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((a1
'imp' a2)
'&' (c1
'imp' c2)))
= (
I_el Y) by
th18;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((a1
'or' b1)
'or' c1))
= (
I_el Y) by
Lm4,
BVFUNC_1: 16;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1)))
= (
I_el Y) by
A2,
th18;
then
A3: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2))))
= (
I_el Y) by
A1,
th18;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (b2
'&' c2)))
= (
I_el Y) by
Lm1,
BVFUNC_1: 16;
hence thesis by
A3,
th18;
end;
Lm9: for a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN holds ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2))))
= (
I_el Y)
proof
let a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN ;
A1: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (a2
'&' b2)))
= (
I_el Y) by
Lm3,
BVFUNC_1: 16;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (b1
'imp' b2))
= (
I_el Y) & ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (c1
'imp' c2))
= (
I_el Y) by
Lm5,
Lm6,
BVFUNC_1: 16;
then
A2: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
= (
I_el Y) by
th18;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((a1
'or' b1)
'or' c1))
= (
I_el Y) by
Lm4,
BVFUNC_1: 16;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1)))
= (
I_el Y) by
A2,
th18;
then
A3: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2))))
= (
I_el Y) by
A1,
th18;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (a2
'&' c2)))
= (
I_el Y) by
Lm2,
BVFUNC_1: 16;
hence thesis by
A3,
th18;
end;
theorem ::
BVFUNC_6:126
for a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN holds (((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'<' (((a2
'imp' a1)
'&' (b2
'imp' b1))
'&' (c2
'imp' c1))
proof
let a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN ;
A1: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2))))
= (
I_el Y) by
Lm9;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2))))
= (
I_el Y) & ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (b2
'&' a2)))
'&' (
'not' (b2
'&' c2))))
= (
I_el Y) by
Lm7,
Lm8;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'&' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (b2
'&' a2)))
'&' (
'not' (b2
'&' c2)))))
= (
I_el Y) by
th18;
then
A2: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'&' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))))
'&' (((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))))
= (
I_el Y) by
A1,
th18;
A3: ((((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2)))
'imp' (b2
'imp' b1))
= (
I_el Y) by
Th23,
BVFUNC_1: 16;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'&' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))))
'&' (((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2))))
'imp' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))))
= (
I_el Y) by
Lm2,
BVFUNC_1: 16;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))))
= (
I_el Y) by
A2,
BVFUNC_5: 9;
then
A4: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (b2
'imp' b1))
= (
I_el Y) by
A3,
BVFUNC_5: 9;
((((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'imp' (a2
'imp' a1))
= (
I_el Y) by
Th23,
BVFUNC_1: 16;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (a2
'imp' a1))
= (
I_el Y) by
A1,
BVFUNC_5: 9;
then
A5: ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' ((a2
'imp' a1)
'&' (b2
'imp' b1)))
= (
I_el Y) by
A4,
th18;
(((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' c1)
'or' b1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'<' (c2
'imp' c1) by
Th23;
then (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'<' (c2
'imp' c1) by
BVFUNC_1: 8;
then
A6: ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'imp' (c2
'imp' c1))
= (
I_el Y) by
BVFUNC_1: 16;
((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2)))
'&' (((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))))
'&' (((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2))))
'imp' (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2))))
= (
I_el Y) by
Lm2,
BVFUNC_1: 16;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (c2
'&' a2)))
'&' (
'not' (c2
'&' b2))))
= (
I_el Y) by
A2,
BVFUNC_5: 9;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (c2
'imp' c1))
= (
I_el Y) by
A6,
BVFUNC_5: 9;
then ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'imp' (((a2
'imp' a1)
'&' (b2
'imp' b1))
'&' (c2
'imp' c1)))
= (
I_el Y) by
A5,
th18;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:127
Th25: for a1,b1,a2,b2 be
Function of Y,
BOOLEAN holds ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'imp' (
'not' (a1
'&' b1)))
= (
I_el Y)
proof
let a1,b1,a2,b2 be
Function of Y,
BOOLEAN ;
for z be
Element of Y st ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
. z)
=
TRUE holds ((
'not' (a1
'&' b1))
. z)
=
TRUE
proof
let z be
Element of Y;
A1: ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
. z)
= ((((a1
'imp' a2)
'&' (b1
'imp' b2))
. z)
'&' ((
'not' (a2
'&' b2))
. z)) by
MARGREL1:def 20
.= ((((a1
'imp' a2)
. z)
'&' ((b1
'imp' b2)
. z))
'&' ((
'not' (a2
'&' b2))
. z)) by
MARGREL1:def 20
.= (((((
'not' a1)
'or' a2)
. z)
'&' ((b1
'imp' b2)
. z))
'&' ((
'not' (a2
'&' b2))
. z)) by
BVFUNC_4: 8
.= (((((
'not' a1)
'or' a2)
. z)
'&' (((
'not' b1)
'or' b2)
. z))
'&' ((
'not' (a2
'&' b2))
. z)) by
BVFUNC_4: 8
.= (((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
'or' b2)
. z))
'&' ((
'not' (a2
'&' b2))
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' ((
'not' (a2
'&' b2))
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' a2)
'or' (
'not' b2))
. z)) by
BVFUNC_1: 14
.= (((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' a2)
. z)
'or' ((
'not' b2)
. z))) by
BVFUNC_1:def 4;
assume
A2: ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
. z)
=
TRUE ;
now
A3: ((
'not' b1)
. z)
=
TRUE or ((
'not' b1)
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: ((
'not' a1)
. z)
=
TRUE or ((
'not' a1)
. z)
=
FALSE by
XBOOLEAN:def 3;
A5: ((
'not' (a1
'&' b1))
. z)
= (((
'not' a1)
'or' (
'not' b1))
. z) by
BVFUNC_1: 14
.= (((
'not' a1)
. z)
'or' ((
'not' b1)
. z)) by
BVFUNC_1:def 4;
assume ((
'not' (a1
'&' b1))
. z)
<>
TRUE ;
then ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
. z)
= ((((b2
. z)
'&' (a2
. z))
'&' ((
'not' a2)
. z))
'or' (((a2
. z)
'&' (b2
. z))
'&' ((
'not' b2)
. z))) by
A1,
A5,
A4,
A3,
XBOOLEAN: 8
.= (((b2
. z)
'&' ((a2
. z)
'&' ((
'not' a2)
. z)))
'or' ((a2
. z)
'&' ((b2
. z)
'&' ((
'not' b2)
. z))))
.= (((b2
. z)
'&' ((a2
. z)
'&' (
'not' (a2
. z))))
'or' ((a2
. z)
'&' ((b2
. z)
'&' ((
'not' b2)
. z)))) by
MARGREL1:def 19
.= (((b2
. z)
'&' ((a2
. z)
'&' (
'not' (a2
. z))))
'or' ((a2
. z)
'&' ((b2
. z)
'&' (
'not' (b2
. z))))) by
MARGREL1:def 19
.= (((b2
. z)
'&'
FALSE )
'or' ((a2
. z)
'&' ((b2
. z)
'&' (
'not' (b2
. z))))) by
XBOOLEAN: 138
.= (
FALSE
'or' (
FALSE
'&' (a2
. z))) by
XBOOLEAN: 138
.=
FALSE ;
hence contradiction by
A2;
end;
hence thesis;
end;
hence thesis by
BVFUNC_1: 16,
BVFUNC_1:def 12;
end;
theorem ::
BVFUNC_6:128
for a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN holds ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
'<' (((
'not' (a1
'&' b1))
'&' (
'not' (a1
'&' c1)))
'&' (
'not' (b1
'&' c1)))
proof
let a1,b1,c1,a2,b2,c2 be
Function of Y,
BOOLEAN ;
A1: ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2)))))
= (
I_el Y) by
Th38;
A2: ((((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2)))
'imp' (
'not' (a1
'&' c1)))
= (
I_el Y) by
Th25;
(((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'imp' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
= (
I_el Y) by
Th38;
then ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
= (
I_el Y) by
A1,
BVFUNC_5: 9;
then
A3: ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (
'not' (a1
'&' c1)))
= (
I_el Y) by
A2,
BVFUNC_5: 9;
A4: ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'imp' (
'not' (a1
'&' b1)))
= (
I_el Y) by
Th25;
((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
= (
I_el Y) & ((((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2)))
'imp' (
'not' (b1
'&' c1)))
= (
I_el Y) by
Th25,
Th38;
then
A5: ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (
'not' (b1
'&' c1)))
= (
I_el Y) by
BVFUNC_5: 9;
(((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'imp' (((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2))))
= (
I_el Y) by
Th38;
then ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2))))
= (
I_el Y) by
A1,
BVFUNC_5: 9;
then ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (
'not' (a1
'&' b1)))
= (
I_el Y) by
A4,
BVFUNC_5: 9;
then ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' ((
'not' (a1
'&' b1))
'&' (
'not' (a1
'&' c1))))
= (
I_el Y) by
A3,
th18;
then
A6: ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'imp' (((
'not' (a1
'&' b1))
'&' (
'not' (a1
'&' c1)))
'&' (
'not' (b1
'&' c1))))
= (
I_el Y) by
A5,
th18;
((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
= (((((((a1
'imp' a2)
'&' (a1
'imp' a2))
'&' ((b1
'imp' b2)
'&' (b1
'imp' b2)))
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2)))
.= ((((((((a1
'imp' a2)
'&' (a1
'imp' a2))
'&' (b1
'imp' b2))
'&' (b1
'imp' b2))
'&' ((c1
'imp' c2)
'&' (c1
'imp' c2)))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (a1
'imp' a2))
'&' (b1
'imp' b2))
'&' ((c1
'imp' c2)
'&' (c1
'imp' c2)))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= (((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (a1
'imp' a2))
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (a1
'imp' a2))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' (a1
'imp' a2))
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= (((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' ((a1
'imp' a2)
'&' (c1
'imp' c2)))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= (((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' ((a1
'imp' a2)
'&' (c1
'imp' c2)))
'&' (
'not' (a2
'&' c2)))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (
'not' (a2
'&' b2)))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (
'not' (b2
'&' c2))) by
BVFUNC_1: 4
.= ((((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' ((b1
'imp' b2)
'&' (c1
'imp' c2)))
'&' (
'not' (b2
'&' c2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2)))) by
BVFUNC_1: 4
.= (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2))))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2)))) by
BVFUNC_1: 4
.= (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (
'not' (a2
'&' b2)))
'&' (((a1
'imp' a2)
'&' (c1
'imp' c2))
'&' (
'not' (a2
'&' c2))))
'&' (((b1
'imp' b2)
'&' (c1
'imp' c2))
'&' (
'not' (b2
'&' c2)))) by
BVFUNC_1: 4;
hence thesis by
A6,
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:129
(a
'&' b)
'<' a by
Lm1;
theorem ::
BVFUNC_6:130
((a
'&' b)
'&' c)
'<' a & ((a
'&' b)
'&' c)
'<' b by
Lm2;
theorem ::
BVFUNC_6:131
(((a
'&' b)
'&' c)
'&' d)
'<' a & (((a
'&' b)
'&' c)
'&' d)
'<' b by
Lm3;
theorem ::
BVFUNC_6:132
((((a
'&' b)
'&' c)
'&' d)
'&' e)
'<' a & ((((a
'&' b)
'&' c)
'&' d)
'&' e)
'<' b by
Lm4;
theorem ::
BVFUNC_6:133
(((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'<' a & (((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'<' b by
Lm5;
theorem ::
BVFUNC_6:134
((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
'<' a & ((((((a
'&' b)
'&' c)
'&' d)
'&' e)
'&' f)
'&' g)
'<' b by
Lm6;
theorem ::
BVFUNC_6:135
Th33: a
'<' b & c
'<' d implies (a
'&' c)
'<' (b
'&' d)
proof
assume a
'<' b & c
'<' d;
then (a
'imp' b)
= (
I_el Y) & (c
'imp' d)
= (
I_el Y) by
BVFUNC_1: 16;
then ((a
'&' c)
'imp' (b
'&' d))
= (
I_el Y) by
tt;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:136
(a
'&' b)
'<' c implies (a
'&' (
'not' c))
'<' (
'not' b)
proof
assume (a
'&' b)
'<' c;
then (
I_el Y)
= ((a
'&' b)
'imp' c) by
BVFUNC_1: 16
.= ((
'not' (a
'&' b))
'or' c) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (
'not' b))
'or' c) by
BVFUNC_1: 14
.= (((
'not' a)
'or' (
'not' (
'not' c)))
'or' (
'not' b)) by
BVFUNC_1: 8
.= ((
'not' (a
'&' (
'not' c)))
'or' (
'not' b)) by
BVFUNC_1: 14
.= ((a
'&' (
'not' c))
'imp' (
'not' b)) by
BVFUNC_4: 8;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:137
(((a
'imp' c)
'&' (b
'imp' c))
'&' (a
'or' b))
'<' c
proof
set K1 = ((a
'imp' c)
'&' (b
'imp' c));
K1
'<' ((a
'or' b)
'imp' c) by
Th20;
then
A1: (K1
'&' (a
'or' b))
'<' (((a
'or' b)
'imp' c)
'&' (a
'or' b)) by
Th33;
(((a
'or' b)
'imp' c)
'&' (a
'or' b))
'<' c by
Th2;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_6:138
(((a
'imp' c)
'or' (b
'imp' c))
'&' (a
'&' b))
'<' c
proof
((a
'imp' c)
'or' (b
'imp' c))
= ((a
'&' b)
'imp' c) by
Th76;
hence thesis by
Th2;
end;
theorem ::
BVFUNC_6:139
a
'<' b & c
'<' d implies (a
'or' c)
'<' (b
'or' d)
proof
assume a
'<' b & c
'<' d;
then (a
'imp' b)
= (
I_el Y) & (c
'imp' d)
= (
I_el Y) by
BVFUNC_1: 16;
then ((a
'or' c)
'imp' (b
'or' d))
= (
I_el Y) by
Th22;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:140
Th38a: a
'<' (a
'or' b)
proof
(a
'imp' (a
'or' b))
= (
I_el Y) by
Th26;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:141
(a
'&' b)
'<' (a
'or' b)
proof
(a
'&' b)
'<' a & a
'<' (a
'or' b) by
Lm1,
Th38a;
hence thesis by
BVFUNC_1: 15;
end;
begin
reserve Y for non
empty
set;
theorem ::
BVFUNC_6:142
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
= (((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for z be
Element of Y st ((((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
. z)
=
TRUE holds ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
=
TRUE
proof
let z be
Element of Y;
A1: ((((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
. z)
= ((((a
'&' b)
'or' (b
'&' c))
. z)
'or' ((c
'&' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
'&' b)
. z)
'or' ((b
'&' c)
. z))
'or' ((c
'&' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'&' (b
. z))
'or' ((b
'&' c)
. z))
'or' ((c
'&' a)
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'or' ((b
. z)
'&' (c
. z)))
'or' ((c
'&' a)
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'or' ((b
. z)
'&' (c
. z)))
'or' ((c
. z)
'&' (a
. z))) by
MARGREL1:def 20;
assume
A2: ((((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
. z)
=
TRUE ;
now
A3: ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
= ((((a
'or' b)
'&' (b
'or' c))
. z)
'&' ((c
'or' a)
. z)) by
MARGREL1:def 20
.= ((((a
'or' b)
. z)
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'or' (b
. z))
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
'or' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z))) by
BVFUNC_1:def 4;
assume
A4: ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
<>
TRUE ;
now
per cases by
A4,
A3,
MARGREL1: 12,
XBOOLEAN:def 3;
case
A5: (((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
=
FALSE ;
now
per cases by
A5,
MARGREL1: 12;
case
A6: ((a
. z)
'or' (b
. z))
=
FALSE ;
(b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A2,
A1,
A6;
end;
case
A7: ((b
. z)
'or' (c
. z))
=
FALSE ;
(c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A2,
A1,
A7;
end;
end;
hence thesis;
end;
case
A8: ((c
. z)
'or' (a
. z))
=
FALSE ;
(a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A2,
A1,
A8;
end;
end;
hence thesis;
end;
hence thesis;
end;
then
A9: (((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
'<' (((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a));
for z be
Element of Y st ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
=
TRUE holds ((((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
. z)
=
TRUE
proof
let z be
Element of Y;
A10: ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
= ((((a
'or' b)
'&' (b
'or' c))
. z)
'&' ((c
'or' a)
. z)) by
MARGREL1:def 20
.= ((((a
'or' b)
. z)
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'or' (b
. z))
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
'or' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z))) by
BVFUNC_1:def 4;
assume
A11: ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
=
TRUE ;
now
A12: ((b
. z)
'&' (c
. z))
=
TRUE or ((b
. z)
'&' (c
. z))
=
FALSE by
XBOOLEAN:def 3;
A13: ((c
. z)
'&' (a
. z))
=
TRUE or ((c
. z)
'&' (a
. z))
=
FALSE by
XBOOLEAN:def 3;
A14: ((((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
. z)
= ((((a
'&' b)
'or' (b
'&' c))
. z)
'or' ((c
'&' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
'&' b)
. z)
'or' ((b
'&' c)
. z))
'or' ((c
'&' a)
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'&' (b
. z))
'or' ((b
'&' c)
. z))
'or' ((c
'&' a)
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'or' ((b
. z)
'&' (c
. z)))
'or' ((c
'&' a)
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'or' ((b
. z)
'&' (c
. z)))
'or' ((c
. z)
'&' (a
. z))) by
MARGREL1:def 20;
assume
A15: ((((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a))
. z)
<>
TRUE ;
now
per cases by
A15,
A14,
A13,
A12,
MARGREL1: 12,
XBOOLEAN:def 3;
case (a
. z)
=
FALSE & (b
. z)
=
FALSE ;
hence thesis by
A11,
A10;
end;
case (b
. z)
=
FALSE & (c
. z)
=
FALSE ;
hence thesis by
A11,
A10;
end;
case (c
. z)
=
FALSE & (a
. z)
=
FALSE ;
hence thesis by
A11,
A10;
end;
end;
hence thesis;
end;
hence thesis;
end;
then (((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'<' (((a
'&' b)
'or' (b
'&' c))
'or' (c
'&' a));
hence thesis by
A9,
BVFUNC_1: 15;
end;
Lm1: for a,b,c be
Function of Y,
BOOLEAN holds (((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (c
'&' (
'not' a)))
'<' (((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
'or' (a
'&' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (c
'&' (
'not' a)))
. z)
= ((((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
. z)
'or' ((c
'&' (
'not' a))
. z)) by
BVFUNC_1:def 4
.= ((((a
'&' (
'not' b))
. z)
'or' ((b
'&' (
'not' c))
. z))
'or' ((c
'&' (
'not' a))
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'&' ((
'not' b)
. z))
'or' ((b
'&' (
'not' c))
. z))
'or' ((c
'&' (
'not' a))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' ((
'not' b)
. z))
'or' ((b
. z)
'&' ((
'not' c)
. z)))
'or' ((c
'&' (
'not' a))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' ((
'not' b)
. z))
'or' ((b
. z)
'&' ((
'not' c)
. z)))
'or' ((c
. z)
'&' ((
'not' a)
. z))) by
MARGREL1:def 20
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' ((b
. z)
'&' ((
'not' c)
. z)))
'or' ((c
. z)
'&' ((
'not' a)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' ((b
. z)
'&' (
'not' (c
. z))))
'or' ((c
. z)
'&' ((
'not' a)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'&' (
'not' (b
. z)))
'or' ((b
. z)
'&' (
'not' (c
. z))))
'or' ((c
. z)
'&' (
'not' (a
. z)))) by
MARGREL1:def 19;
assume
A2: ((((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (c
'&' (
'not' a)))
. z)
=
TRUE ;
now
A3: ((a
. z)
'&' ((
'not' c)
. z))
=
TRUE or ((a
. z)
'&' ((
'not' c)
. z))
=
FALSE by
XBOOLEAN:def 3;
assume
A4: ((((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
'or' (a
'&' (
'not' c)))
. z)
<>
TRUE ;
A5: ((c
. z)
'&' ((
'not' b)
. z))
=
TRUE or ((c
. z)
'&' ((
'not' b)
. z))
=
FALSE by
XBOOLEAN:def 3;
A6: ((((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
'or' (a
'&' (
'not' c)))
. z)
= ((((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
. z)
'or' ((a
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((b
'&' (
'not' a))
. z)
'or' ((c
'&' (
'not' b))
. z))
'or' ((a
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((b
. z)
'&' ((
'not' a)
. z))
'or' ((c
'&' (
'not' b))
. z))
'or' ((a
'&' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((b
. z)
'&' ((
'not' a)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((a
'&' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((b
. z)
'&' ((
'not' a)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
'or' ((a
. z)
'&' ((
'not' c)
. z))) by
MARGREL1:def 20;
(((b
. z)
'&' ((
'not' a)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
=
TRUE or (((b
. z)
'&' ((
'not' a)
. z))
'or' ((c
. z)
'&' ((
'not' b)
. z)))
=
FALSE by
XBOOLEAN:def 3;
then
A7: (b
. z)
=
FALSE or ((
'not' a)
. z)
=
FALSE by
A4,
A6,
A5,
MARGREL1: 12;
now
per cases by
A4,
A6,
A3,
MARGREL1: 12;
case (a
. z)
=
FALSE ;
hence thesis by
A2,
A1,
A6,
A7,
MARGREL1:def 19;
end;
case ((
'not' c)
. z)
=
FALSE ;
then
A8: (
'not' (c
. z))
=
FALSE by
MARGREL1:def 19;
then (
'not' (b
. z))
=
FALSE by
A4,
A6,
A5,
MARGREL1:def 19;
hence thesis by
A2,
A1,
A6,
A5,
A8,
MARGREL1:def 19;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:143
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (c
'&' (
'not' a)))
= (((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
'or' (a
'&' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
(((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (c
'&' (
'not' a)))
'<' (((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
'or' (a
'&' (
'not' c))) & (((b
'&' (
'not' a))
'or' (c
'&' (
'not' b)))
'or' (a
'&' (
'not' c)))
'<' (((a
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (c
'&' (
'not' a))) by
Lm1;
hence thesis by
BVFUNC_1: 15;
end;
Lm2: for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
'&' (c
'or' (
'not' a)))
'<' (((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
'&' (a
'or' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
'&' (c
'or' (
'not' a)))
. z)
= ((((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
. z)
'&' ((c
'or' (
'not' a))
. z)) by
MARGREL1:def 20
.= ((((a
'or' (
'not' b))
. z)
'&' ((b
'or' (
'not' c))
. z))
'&' ((c
'or' (
'not' a))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'or' ((
'not' b)
. z))
'&' ((b
'or' (
'not' c))
. z))
'&' ((c
'or' (
'not' a))
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' ((
'not' b)
. z))
'&' ((b
. z)
'or' ((
'not' c)
. z)))
'&' ((c
'or' (
'not' a))
. z)) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' ((
'not' b)
. z))
'&' ((b
. z)
'or' ((
'not' c)
. z)))
'&' ((c
. z)
'or' ((
'not' a)
. z))) by
BVFUNC_1:def 4
.= ((((a
. z)
'or' (
'not' (b
. z)))
'&' ((b
. z)
'or' ((
'not' c)
. z)))
'&' ((c
. z)
'or' ((
'not' a)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'or' (
'not' (b
. z)))
'&' ((b
. z)
'or' (
'not' (c
. z))))
'&' ((c
. z)
'or' ((
'not' a)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'or' (
'not' (b
. z)))
'&' ((b
. z)
'or' (
'not' (c
. z))))
'&' ((c
. z)
'or' (
'not' (a
. z)))) by
MARGREL1:def 19;
assume
A2: ((((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
'&' (c
'or' (
'not' a)))
. z)
=
TRUE ;
now
A3: ((((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
'&' (a
'or' (
'not' c)))
. z)
= ((((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
. z)
'&' ((a
'or' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((b
'or' (
'not' a))
. z)
'&' ((c
'or' (
'not' b))
. z))
'&' ((a
'or' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((b
. z)
'or' ((
'not' a)
. z))
'&' ((c
'or' (
'not' b))
. z))
'&' ((a
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((b
. z)
'or' ((
'not' a)
. z))
'&' ((c
. z)
'or' ((
'not' b)
. z)))
'&' ((a
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((b
. z)
'or' ((
'not' a)
. z))
'&' ((c
. z)
'or' ((
'not' b)
. z)))
'&' ((a
. z)
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4;
assume
A4: ((((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
'&' (a
'or' (
'not' c)))
. z)
<>
TRUE ;
now
per cases by
A4,
A3,
MARGREL1: 12,
XBOOLEAN:def 3;
case
A5: (((b
. z)
'or' ((
'not' a)
. z))
'&' ((c
. z)
'or' ((
'not' b)
. z)))
=
FALSE ;
now
per cases by
A5,
MARGREL1: 12;
case
A6: ((b
. z)
'or' ((
'not' a)
. z))
=
FALSE ;
A7: ((
'not' a)
. z)
=
TRUE or ((
'not' a)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (a
. z))
=
FALSE by
A6,
MARGREL1:def 19;
hence thesis by
A2,
A1,
A6,
A7,
XBOOLEAN: 138;
end;
case
A8: ((c
. z)
'or' ((
'not' b)
. z))
=
FALSE ;
A9: ((
'not' b)
. z)
=
TRUE or ((
'not' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (b
. z))
=
FALSE by
A8,
MARGREL1:def 19;
hence thesis by
A2,
A1,
A8,
A9,
XBOOLEAN: 138;
end;
end;
hence thesis;
end;
case
A10: ((a
. z)
'or' ((
'not' c)
. z))
=
FALSE ;
A11: ((
'not' c)
. z)
=
TRUE or ((
'not' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (c
. z))
=
FALSE by
A10,
MARGREL1:def 19;
hence thesis by
A2,
A1,
A10,
A11,
XBOOLEAN: 138;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:144
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
'&' (c
'or' (
'not' a)))
= (((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
'&' (a
'or' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
(((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
'&' (c
'or' (
'not' a)))
'<' (((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
'&' (a
'or' (
'not' c))) & (((b
'or' (
'not' a))
'&' (c
'or' (
'not' b)))
'&' (a
'or' (
'not' c)))
'<' (((a
'or' (
'not' b))
'&' (b
'or' (
'not' c)))
'&' (c
'or' (
'not' a))) by
Lm2;
hence thesis by
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_6:145
for a,b,c be
Function of Y,
BOOLEAN holds (c
'imp' a)
= (
I_el Y) & (c
'imp' b)
= (
I_el Y) implies (c
'imp' (a
'or' b))
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume
A1: (c
'imp' a)
= (
I_el Y) & (c
'imp' b)
= (
I_el Y);
(c
'imp' (a
'or' b))
= ((c
'imp' a)
'or' (c
'imp' b)) by
Th73
.= (
I_el Y) by
A1;
hence thesis;
end;
theorem ::
BVFUNC_6:146
for a,b,c be
Function of Y,
BOOLEAN holds (a
'imp' c)
= (
I_el Y) & (b
'imp' c)
= (
I_el Y) implies ((a
'&' b)
'imp' c)
= (
I_el Y)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
(a
'imp' c)
= (
I_el Y) & (b
'imp' c)
= (
I_el Y) implies ((a
'&' b)
'imp' (c
'&' c))
= (
I_el Y) by
tt;
hence thesis;
end;
theorem ::
BVFUNC_6:147
for a1,a2,b1,b2,c1,c2 be
Function of Y,
BOOLEAN holds ((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
'<' ((a2
'or' b2)
'or' c2)
proof
let a1,a2,b1,b2,c1,c2 be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
. z)
= (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
. z)
'&' (((a1
'or' b1)
'or' c1)
. z)) by
MARGREL1:def 20
.= (((((a1
'imp' a2)
'&' (b1
'imp' b2))
. z)
'&' ((c1
'imp' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
MARGREL1:def 20
.= (((((a1
'imp' a2)
. z)
'&' ((b1
'imp' b2)
. z))
'&' ((c1
'imp' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
MARGREL1:def 20
.= ((((((
'not' a1)
'or' a2)
. z)
'&' ((b1
'imp' b2)
. z))
'&' ((c1
'imp' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_4: 8
.= ((((((
'not' a1)
'or' a2)
. z)
'&' (((
'not' b1)
'or' b2)
. z))
'&' ((c1
'imp' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_4: 8
.= ((((((
'not' a1)
'or' a2)
. z)
'&' (((
'not' b1)
'or' b2)
. z))
'&' (((
'not' c1)
'or' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_4: 8
.= ((((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
'or' b2)
. z))
'&' (((
'not' c1)
'or' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' c1)
'or' c2)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' c1)
. z)
'or' (c2
. z)))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' c1)
. z)
'or' (c2
. z)))
'&' (((a1
'or' b1)
. z)
'or' (c1
. z))) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' c1)
. z)
'or' (c2
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
BVFUNC_1:def 4
.= (((((
'not' (a1
. z))
'or' (a2
. z))
'&' (((
'not' b1)
. z)
'or' (b2
. z)))
'&' (((
'not' c1)
. z)
'or' (c2
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
MARGREL1:def 19
.= (((((
'not' (a1
. z))
'or' (a2
. z))
'&' ((
'not' (b1
. z))
'or' (b2
. z)))
'&' (((
'not' c1)
. z)
'or' (c2
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
MARGREL1:def 19
.= (((((
'not' (a1
. z))
'or' (a2
. z))
'&' ((
'not' (b1
. z))
'or' (b2
. z)))
'&' ((
'not' (c1
. z))
'or' (c2
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
MARGREL1:def 19;
assume
A2: (((((a1
'imp' a2)
'&' (b1
'imp' b2))
'&' (c1
'imp' c2))
'&' ((a1
'or' b1)
'or' c1))
. z)
=
TRUE ;
now
A3: (b2
. z)
=
TRUE or (b2
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: (c2
. z)
=
TRUE or (c2
. z)
=
FALSE by
XBOOLEAN:def 3;
A5: ((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' ((a1
'or' b1)
'or' c1))
= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' (a1
'or' b1))
'or' ((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' c1)) by
BVFUNC_1: 12
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' (a1
'or' b1))
'or' (((
'not' a1)
'&' (
'not' b1))
'&' ((
'not' c1)
'&' c1))) by
BVFUNC_1: 4
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' (a1
'or' b1))
'or' (((
'not' a1)
'&' (
'not' b1))
'&' (
O_el Y))) by
BVFUNC_4: 5
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' (a1
'or' b1))
'or' (
O_el Y)) by
BVFUNC_1: 5
.= ((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' (a1
'or' b1)) by
BVFUNC_1: 9
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' a1)
'or' ((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' b1)) by
BVFUNC_1: 12
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' a1)
'or' ((((
'not' a1)
'&' (
'not' c1))
'&' (
'not' b1))
'&' b1)) by
BVFUNC_1: 4
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' a1)
'or' (((
'not' a1)
'&' (
'not' c1))
'&' ((
'not' b1)
'&' b1))) by
BVFUNC_1: 4
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' a1)
'or' (((
'not' a1)
'&' (
'not' c1))
'&' (
O_el Y))) by
BVFUNC_4: 5
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' a1)
'or' (
O_el Y)) by
BVFUNC_1: 5
.= ((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' a1) by
BVFUNC_1: 9
.= ((((
'not' b1)
'&' (
'not' c1))
'&' (
'not' a1))
'&' a1) by
BVFUNC_1: 4
.= (((
'not' b1)
'&' (
'not' c1))
'&' ((
'not' a1)
'&' a1)) by
BVFUNC_1: 4
.= (((
'not' b1)
'&' (
'not' c1))
'&' (
O_el Y)) by
BVFUNC_4: 5
.= (
O_el Y) by
BVFUNC_1: 5;
A6: ((a2
. z)
'or' (b2
. z))
=
TRUE or ((a2
. z)
'or' (b2
. z))
=
FALSE by
XBOOLEAN:def 3;
A7: (((a2
'or' b2)
'or' c2)
. z)
= (((a2
'or' b2)
. z)
'or' (c2
. z)) by
BVFUNC_1:def 4
.= (((a2
. z)
'or' (b2
. z))
'or' (c2
. z)) by
BVFUNC_1:def 4;
assume (((a2
'or' b2)
'or' c2)
. z)
<>
TRUE ;
then (((((
'not' (a1
. z))
'or' (a2
. z))
'&' ((
'not' (b1
. z))
'or' (b2
. z)))
'&' ((
'not' (c1
. z))
'or' (c2
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z)))
= (((((
'not' a1)
. z)
'&' (
'not' (b1
. z)))
'&' (
'not' (c1
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
A7,
A6,
A4,
A3,
MARGREL1:def 19
.= (((((
'not' a1)
. z)
'&' ((
'not' b1)
. z))
'&' (
'not' (c1
. z)))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
MARGREL1:def 19
.= (((((
'not' a1)
. z)
'&' ((
'not' b1)
. z))
'&' ((
'not' c1)
. z))
'&' (((a1
. z)
'or' (b1
. z))
'or' (c1
. z))) by
MARGREL1:def 19
.= (((((
'not' a1)
. z)
'&' ((
'not' b1)
. z))
'&' ((
'not' c1)
. z))
'&' (((a1
'or' b1)
. z)
'or' (c1
. z))) by
BVFUNC_1:def 4
.= (((((
'not' a1)
. z)
'&' ((
'not' b1)
. z))
'&' ((
'not' c1)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a1)
'&' (
'not' b1))
. z)
'&' ((
'not' c1)
. z))
'&' (((a1
'or' b1)
'or' c1)
. z)) by
MARGREL1:def 20
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
. z)
'&' (((a1
'or' b1)
'or' c1)
. z)) by
MARGREL1:def 20
.= (((((
'not' a1)
'&' (
'not' b1))
'&' (
'not' c1))
'&' ((a1
'or' b1)
'or' c1))
. z) by
MARGREL1:def 20;
hence contradiction by
A2,
A1,
A5,
BVFUNC_1:def 10;
end;
hence thesis;
end;
Lm3: for a1,a2,b1,b2 be
Function of Y,
BOOLEAN holds ((((a1
'imp' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
'<' ((((b1
'imp' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
proof
let a1,a2,b1,b2 be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((((a1
'imp' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
. z)
= ((((((
'not' a1)
'or' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a1)
'or' b1)
'&' ((
'not' a2)
'or' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
. z) by
BVFUNC_4: 8
.= ((((((
'not' a1)
'or' b1)
'&' ((
'not' a2)
'or' b2))
'&' (a1
'or' a2))
. z)
'&' ((
'not' (b1
'&' b2))
. z)) by
MARGREL1:def 20
.= ((((((
'not' a1)
'or' b1)
'&' ((
'not' a2)
'or' b2))
. z)
'&' ((a1
'or' a2)
. z))
'&' ((
'not' (b1
'&' b2))
. z)) by
MARGREL1:def 20
.= ((((((
'not' a1)
'or' b1)
'&' ((
'not' a2)
'or' b2))
. z)
'&' ((a1
'or' a2)
. z))
'&' (((
'not' b1)
'or' (
'not' b2))
. z)) by
BVFUNC_1: 14
.= ((((((
'not' a1)
'or' b1)
. z)
'&' (((
'not' a2)
'or' b2)
. z))
'&' ((a1
'or' a2)
. z))
'&' (((
'not' b1)
'or' (
'not' b2))
. z)) by
MARGREL1:def 20
.= ((((((
'not' a1)
. z)
'or' (b1
. z))
'&' (((
'not' a2)
'or' b2)
. z))
'&' ((a1
'or' a2)
. z))
'&' (((
'not' b1)
'or' (
'not' b2))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (b1
. z))
'&' (((
'not' a2)
. z)
'or' (b2
. z)))
'&' ((a1
'or' a2)
. z))
'&' (((
'not' b1)
'or' (
'not' b2))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (b1
. z))
'&' (((
'not' a2)
. z)
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' (((
'not' b1)
'or' (
'not' b2))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a1)
. z)
'or' (b1
. z))
'&' (((
'not' a2)
. z)
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' (((
'not' b1)
. z)
'or' ((
'not' b2)
. z))) by
BVFUNC_1:def 4
.= (((((
'not' (a1
. z))
'or' (b1
. z))
'&' (((
'not' a2)
. z)
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' (((
'not' b1)
. z)
'or' ((
'not' b2)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' (((
'not' b1)
. z)
'or' ((
'not' b2)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' ((
'not' (b1
. z))
'or' ((
'not' b2)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' ((
'not' (b1
. z))
'or' (
'not' (b2
. z)))) by
MARGREL1:def 19;
assume
A2: (((((a1
'imp' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
. z)
=
TRUE ;
now
A3: (((((b1
'imp' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
. z)
= ((((((
'not' b1)
'or' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
. z) by
BVFUNC_4: 8
.= ((((((
'not' b1)
'or' a1)
'&' ((
'not' b2)
'or' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
. z) by
BVFUNC_4: 8
.= ((((((
'not' b1)
'or' a1)
'&' ((
'not' b2)
'or' a2))
'&' (b1
'or' b2))
. z)
'&' ((
'not' (a1
'&' a2))
. z)) by
MARGREL1:def 20
.= ((((((
'not' b1)
'or' a1)
'&' ((
'not' b2)
'or' a2))
. z)
'&' ((b1
'or' b2)
. z))
'&' ((
'not' (a1
'&' a2))
. z)) by
MARGREL1:def 20
.= ((((((
'not' b1)
'or' a1)
. z)
'&' (((
'not' b2)
'or' a2)
. z))
'&' ((b1
'or' b2)
. z))
'&' ((
'not' (a1
'&' a2))
. z)) by
MARGREL1:def 20
.= ((((((
'not' b1)
'or' a1)
. z)
'&' (((
'not' b2)
'or' a2)
. z))
'&' ((b1
'or' b2)
. z))
'&' (((
'not' a1)
'or' (
'not' a2))
. z)) by
BVFUNC_1: 14
.= ((((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
'or' a2)
. z))
'&' ((b1
'or' b2)
. z))
'&' (((
'not' a1)
'or' (
'not' a2))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
. z)
'or' (a2
. z)))
'&' ((b1
'or' b2)
. z))
'&' (((
'not' a1)
'or' (
'not' a2))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
. z)
'or' (a2
. z)))
'&' ((b1
. z)
'or' (b2
. z)))
'&' (((
'not' a1)
'or' (
'not' a2))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
. z)
'or' (a2
. z)))
'&' ((b1
. z)
'or' (b2
. z)))
'&' (((
'not' a1)
. z)
'or' ((
'not' a2)
. z))) by
BVFUNC_1:def 4;
assume (((((b1
'imp' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
. z)
<>
TRUE ;
then
A4: ((((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
. z)
'or' (a2
. z)))
'&' ((b1
. z)
'or' (b2
. z)))
'&' (((
'not' a1)
. z)
'or' ((
'not' a2)
. z)))
=
FALSE by
A3,
XBOOLEAN:def 3;
now
per cases by
A4,
MARGREL1: 12;
case
A5: (((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
. z)
'or' (a2
. z)))
'&' ((b1
. z)
'or' (b2
. z)))
=
FALSE ;
now
per cases by
A5,
MARGREL1: 12;
case
A6: ((((
'not' b1)
. z)
'or' (a1
. z))
'&' (((
'not' b2)
. z)
'or' (a2
. z)))
=
FALSE ;
now
per cases by
A6,
MARGREL1: 12;
case
A7: (((
'not' b1)
. z)
'or' (a1
. z))
=
FALSE ;
A8: (a1
. z)
=
TRUE or (a1
. z)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (b1
. z))
=
FALSE by
A7,
MARGREL1:def 19;
then (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' ((
'not' (b1
. z))
'or' (
'not' (b2
. z))))
= ((((a2
. z)
'&' (
'not' (a2
. z)))
'or' ((a2
. z)
'&' (b2
. z)))
'&' (
'not' (b2
. z))) by
A7,
A8,
XBOOLEAN: 8
.= ((
FALSE
'or' ((a2
. z)
'&' (b2
. z)))
'&' (
'not' (b2
. z))) by
XBOOLEAN: 138
.= (((a2
. z)
'&' (b2
. z))
'&' (
'not' (b2
. z)))
.= ((a2
. z)
'&' ((b2
. z)
'&' (
'not' (b2
. z))))
.= (
FALSE
'&' (a2
. z)) by
XBOOLEAN: 138
.=
FALSE ;
hence thesis by
A2,
A1;
end;
case
A9: (((
'not' b2)
. z)
'or' (a2
. z))
=
FALSE ;
A10: (a2
. z)
=
TRUE or (a2
. z)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (b2
. z))
=
FALSE by
A9,
MARGREL1:def 19;
then (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' ((
'not' (b1
. z))
'or' (
'not' (b2
. z))))
= ((((a1
. z)
'&' (
'not' (a1
. z)))
'or' ((a1
. z)
'&' (b1
. z)))
'&' (
'not' (b1
. z))) by
A9,
A10,
XBOOLEAN: 8
.= ((
FALSE
'or' ((a1
. z)
'&' (b1
. z)))
'&' (
'not' (b1
. z))) by
XBOOLEAN: 138
.= (((a1
. z)
'&' (b1
. z))
'&' (
'not' (b1
. z)))
.= ((a1
. z)
'&' ((b1
. z)
'&' (
'not' (b1
. z))))
.= (
FALSE
'&' (a1
. z)) by
XBOOLEAN: 138
.=
FALSE ;
hence thesis by
A2,
A1;
end;
end;
hence thesis;
end;
case
A11: ((b1
. z)
'or' (b2
. z))
=
FALSE ;
reconsider a2z = (a2
. z) as
boolean
object;
reconsider a1z = (a1
. z) as
boolean
object;
(b1
. z)
=
TRUE or (b1
. z)
=
FALSE by
XBOOLEAN:def 3;
then (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' ((
'not' (b1
. z))
'or' (
'not' (b2
. z))))
= ((
'not' (a1
. z))
'&' ((
'not' (a2
. z))
'&' ((a1
. z)
'or' (a2
. z)))) by
A11
.= ((
'not' (a1
. z))
'&' (((
'not' (a2
. z))
'&' (a1
. z))
'or' ((
'not' a2z)
'&' a2z))) by
XBOOLEAN: 8
.= ((
'not' (a1
. z))
'&' (((
'not' (a2
. z))
'&' (a1
. z))
'or'
FALSE )) by
XBOOLEAN: 138
.= ((
'not' (a1
. z))
'&' ((a1
. z)
'&' (
'not' (a2
. z))))
.= (((
'not' a1z)
'&' a1z)
'&' (
'not' (a2
. z)))
.= (
FALSE
'&' (
'not' (a2
. z))) by
XBOOLEAN: 138
.=
FALSE ;
hence thesis by
A2,
A1;
end;
end;
hence thesis;
end;
case
A12: (((
'not' a1)
. z)
'or' ((
'not' a2)
. z))
=
FALSE ;
((
'not' a2)
. z)
=
TRUE or ((
'not' a2)
. z)
=
FALSE by
XBOOLEAN:def 3;
then (
'not' (a1
. z))
=
FALSE & (
'not' (a2
. z))
=
FALSE by
A12,
MARGREL1:def 19;
then (((((
'not' (a1
. z))
'or' (b1
. z))
'&' ((
'not' (a2
. z))
'or' (b2
. z)))
'&' ((a1
. z)
'or' (a2
. z)))
'&' ((
'not' (b1
. z))
'or' (
'not' (b2
. z))))
= ((b1
. z)
'&' ((b2
. z)
'&' ((
'not' (b1
. z))
'or' (
'not' (b2
. z)))))
.= ((b1
. z)
'&' (((b2
. z)
'&' (
'not' (b1
. z)))
'or' ((b2
. z)
'&' (
'not' (b2
. z))))) by
XBOOLEAN: 8
.= ((b1
. z)
'&' (((b2
. z)
'&' (
'not' (b1
. z)))
'or'
FALSE )) by
XBOOLEAN: 138
.= ((b1
. z)
'&' ((
'not' (b1
. z))
'&' (b2
. z)))
.= (((b1
. z)
'&' (
'not' (b1
. z)))
'&' (b2
. z))
.= (
FALSE
'&' (b2
. z)) by
XBOOLEAN: 138
.=
FALSE ;
hence thesis by
A2,
A1;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:148
for a1,a2,b1,b2 be
Function of Y,
BOOLEAN holds ((((a1
'imp' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
= ((((b1
'imp' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
proof
let a1,a2,b1,b2 be
Function of Y,
BOOLEAN ;
((((a1
'imp' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2)))
'<' ((((b1
'imp' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2))) & ((((b1
'imp' a1)
'&' (b2
'imp' a2))
'&' (b1
'or' b2))
'&' (
'not' (a1
'&' a2)))
'<' ((((a1
'imp' b1)
'&' (a2
'imp' b2))
'&' (a1
'or' a2))
'&' (
'not' (b1
'&' b2))) by
Lm3;
hence thesis by
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_6:149
for a,b,c,d be
Function of Y,
BOOLEAN holds ((a
'or' b)
'&' (c
'or' d))
= ((((a
'&' c)
'or' (a
'&' d))
'or' (b
'&' c))
'or' (b
'&' d))
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
((a
'or' b)
'&' (c
'or' d))
= (((a
'or' b)
'&' c)
'or' ((a
'or' b)
'&' d)) by
BVFUNC_1: 12
.= (((a
'&' c)
'or' (b
'&' c))
'or' ((a
'or' b)
'&' d)) by
BVFUNC_1: 12
.= (((a
'&' c)
'or' (b
'&' c))
'or' ((a
'&' d)
'or' (b
'&' d))) by
BVFUNC_1: 12
.= ((((a
'&' c)
'or' (b
'&' c))
'or' (a
'&' d))
'or' (b
'&' d)) by
BVFUNC_1: 8
.= ((((a
'&' c)
'or' (a
'&' d))
'or' (b
'&' c))
'or' (b
'&' d)) by
BVFUNC_1: 8;
hence thesis;
end;
theorem ::
BVFUNC_6:150
for a1,a2,b1,b2,b3 be
Function of Y,
BOOLEAN holds ((a1
'&' a2)
'or' ((b1
'&' b2)
'&' b3))
= ((((((a1
'or' b1)
'&' (a1
'or' b2))
'&' (a1
'or' b3))
'&' (a2
'or' b1))
'&' (a2
'or' b2))
'&' (a2
'or' b3))
proof
let a1,a2,b1,b2,b3 be
Function of Y,
BOOLEAN ;
((((((a1
'or' b1)
'&' (a1
'or' b2))
'&' (a1
'or' b3))
'&' (a2
'or' b1))
'&' (a2
'or' b2))
'&' (a2
'or' b3))
= (((((a1
'or' (b1
'&' b2))
'&' (a1
'or' b3))
'&' (a2
'or' b1))
'&' (a2
'or' b2))
'&' (a2
'or' b3)) by
BVFUNC_1: 11
.= ((((a1
'or' ((b1
'&' b2)
'&' b3))
'&' (a2
'or' b1))
'&' (a2
'or' b2))
'&' (a2
'or' b3)) by
BVFUNC_1: 11
.= (((a1
'or' ((b1
'&' b2)
'&' b3))
'&' ((a2
'or' b1)
'&' (a2
'or' b2)))
'&' (a2
'or' b3)) by
BVFUNC_1: 4
.= ((a1
'or' ((b1
'&' b2)
'&' b3))
'&' (((a2
'or' b1)
'&' (a2
'or' b2))
'&' (a2
'or' b3))) by
BVFUNC_1: 4
.= ((a1
'or' ((b1
'&' b2)
'&' b3))
'&' ((a2
'or' (b1
'&' b2))
'&' (a2
'or' b3))) by
BVFUNC_1: 11
.= ((a1
'or' ((b1
'&' b2)
'&' b3))
'&' (a2
'or' ((b1
'&' b2)
'&' b3))) by
BVFUNC_1: 11
.= ((a1
'&' a2)
'or' ((b1
'&' b2)
'&' b3)) by
BVFUNC_1: 11;
hence thesis;
end;
theorem ::
BVFUNC_6:151
for a,b,c,d be
Function of Y,
BOOLEAN holds (((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
= (((a
'imp' ((b
'&' c)
'&' d))
'&' (b
'imp' (c
'&' d)))
'&' (c
'imp' d))
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
A1: (((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
= ((((a
'imp' b)
'&' (b
'imp' c))
'&' (a
'imp' c))
'&' (c
'imp' d)) by
Th12
.= (((a
'imp' b)
'&' (b
'imp' c))
'&' ((a
'imp' c)
'&' (c
'imp' d))) by
BVFUNC_1: 4
.= (((a
'imp' b)
'&' (b
'imp' c))
'&' (((a
'imp' c)
'&' (c
'imp' d))
'&' (a
'imp' d))) by
Th12
.= ((((a
'imp' b)
'&' (b
'imp' c))
'&' ((a
'imp' c)
'&' (c
'imp' d)))
'&' (a
'imp' d)) by
BVFUNC_1: 4
.= (((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (a
'imp' c))
'&' (a
'imp' d)) by
BVFUNC_1: 4
.= ((((a
'imp' b)
'&' ((b
'imp' c)
'&' (c
'imp' d)))
'&' (a
'imp' c))
'&' (a
'imp' d)) by
BVFUNC_1: 4
.= ((((a
'imp' b)
'&' (((b
'imp' c)
'&' (c
'imp' d))
'&' (b
'imp' d)))
'&' (a
'imp' c))
'&' (a
'imp' d)) by
Th12
.= (((((a
'imp' b)
'&' ((b
'imp' c)
'&' (c
'imp' d)))
'&' (b
'imp' d))
'&' (a
'imp' c))
'&' (a
'imp' d)) by
BVFUNC_1: 4
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (b
'imp' d))
'&' (a
'imp' c))
'&' (a
'imp' d)) by
BVFUNC_1: 4
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (a
'imp' c))
'&' (b
'imp' d))
'&' (a
'imp' d)) by
BVFUNC_1: 4
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (a
'imp' c))
'&' (a
'imp' d))
'&' (b
'imp' d)) by
BVFUNC_1: 4;
(((a
'imp' ((b
'&' c)
'&' d))
'&' (b
'imp' (c
'&' d)))
'&' (c
'imp' d))
= ((((
'not' a)
'or' ((b
'&' c)
'&' d))
'&' (b
'imp' (c
'&' d)))
'&' (c
'imp' d)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' ((b
'&' c)
'&' d))
'&' ((
'not' b)
'or' (c
'&' d)))
'&' (c
'imp' d)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' ((b
'&' c)
'&' d))
'&' ((
'not' b)
'or' (c
'&' d)))
'&' ((
'not' c)
'or' d)) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' (c
'&' d)))
'&' ((
'not' c)
'or' d)) by
BVFUNC_5: 39
.= ((((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' (((
'not' b)
'or' c)
'&' ((
'not' b)
'or' d)))
'&' ((
'not' c)
'or' d)) by
BVFUNC_1: 11
.= (((((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' c))
'&' ((
'not' b)
'or' d))
'&' ((
'not' c)
'or' d)) by
BVFUNC_1: 4
.= (((((((
'not' a)
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' b)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d))
'&' ((
'not' c)
'or' d)) by
BVFUNC_1: 4
.= (((((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d))
'&' ((
'not' c)
'or' d)) by
BVFUNC_1: 4
.= (((((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' c)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_1: 4
.= (((((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' a)
'or' c))
'&' ((
'not' c)
'or' d))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_1: 4
.= (((((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' d))
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_1: 4
.= ((((((a
'imp' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' d))
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_4: 8
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' ((
'not' c)
'or' d))
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_4: 8
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' ((
'not' a)
'or' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_4: 8
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (a
'imp' c))
'&' ((
'not' a)
'or' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_4: 8
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (a
'imp' c))
'&' (a
'imp' d))
'&' ((
'not' b)
'or' d)) by
BVFUNC_4: 8
.= ((((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' d))
'&' (a
'imp' c))
'&' (a
'imp' d))
'&' (b
'imp' d)) by
BVFUNC_4: 8;
hence thesis by
A1;
end;
theorem ::
BVFUNC_6:152
for a,b,c,d be
Function of Y,
BOOLEAN holds (((a
'imp' c)
'&' (b
'imp' d))
'&' (a
'or' b))
'<' (c
'or' d)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((((a
'imp' c)
'&' (b
'imp' d))
'&' (a
'or' b))
. z)
= ((((a
'imp' c)
'&' (b
'imp' d))
. z)
'&' ((a
'or' b)
. z)) by
MARGREL1:def 20
.= ((((a
'imp' c)
. z)
'&' ((b
'imp' d)
. z))
'&' ((a
'or' b)
. z)) by
MARGREL1:def 20
.= (((((
'not' a)
'or' c)
. z)
'&' ((b
'imp' d)
. z))
'&' ((a
'or' b)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' c)
. z)
'&' (((
'not' b)
'or' d)
. z))
'&' ((a
'or' b)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' b)
'or' d)
. z))
'&' ((a
'or' b)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' b)
. z)
'or' (d
. z)))
'&' ((a
'or' b)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a)
. z)
'or' (c
. z))
'&' (((
'not' b)
. z)
'or' (d
. z)))
'&' ((a
. z)
'or' (b
. z))) by
BVFUNC_1:def 4
.= ((((
'not' (a
. z))
'or' (c
. z))
'&' (((
'not' b)
. z)
'or' (d
. z)))
'&' ((a
. z)
'or' (b
. z))) by
MARGREL1:def 19
.= ((((
'not' (a
. z))
'or' (c
. z))
'&' ((
'not' (b
. z))
'or' (d
. z)))
'&' ((a
. z)
'or' (b
. z))) by
MARGREL1:def 19;
reconsider bz = (b
. z) as
boolean
object;
reconsider az = (a
. z) as
boolean
object;
assume
A2: ((((a
'imp' c)
'&' (b
'imp' d))
'&' (a
'or' b))
. z)
=
TRUE ;
now
assume ((c
'or' d)
. z)
<>
TRUE ;
then ((c
'or' d)
. z)
=
FALSE by
XBOOLEAN:def 3;
then
A3: ((c
. z)
'or' (d
. z))
=
FALSE by
BVFUNC_1:def 4;
(d
. z)
=
TRUE or (d
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((((
'not' (a
. z))
'or' (c
. z))
'&' ((
'not' (b
. z))
'or' (d
. z)))
'&' ((a
. z)
'or' (b
. z)))
= ((
'not' (a
. z))
'&' ((
'not' (b
. z))
'&' ((b
. z)
'or' (a
. z)))) by
A3
.= ((
'not' (a
. z))
'&' (((
'not' bz)
'&' bz)
'or' ((
'not' (b
. z))
'&' (a
. z)))) by
XBOOLEAN: 8
.= ((
'not' (a
. z))
'&' (
FALSE
'or' ((
'not' (b
. z))
'&' (a
. z)))) by
XBOOLEAN: 138
.= ((
'not' (a
. z))
'&' ((a
. z)
'&' (
'not' (b
. z))))
.= (((
'not' az)
'&' az)
'&' (
'not' (b
. z)))
.= (
FALSE
'&' (
'not' (b
. z))) by
XBOOLEAN: 138
.=
FALSE ;
hence thesis by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:153
for a,b,c be
Function of Y,
BOOLEAN holds ((((a
'&' b)
'imp' (
'not' c))
'&' a)
'&' c)
'<' (
'not' b)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((((a
'&' b)
'imp' (
'not' c))
'&' a)
'&' c)
. z)
= (((((a
'&' b)
'imp' (
'not' c))
'&' a)
. z)
'&' (c
. z)) by
MARGREL1:def 20
.= (((((a
'&' b)
'imp' (
'not' c))
. z)
'&' (a
. z))
'&' (c
. z)) by
MARGREL1:def 20
.= (((((
'not' (a
'&' b))
'or' (
'not' c))
. z)
'&' (a
. z))
'&' (c
. z)) by
BVFUNC_4: 8
.= ((((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)
'&' (a
. z))
'&' (c
. z)) by
BVFUNC_1: 14
.= ((((((
'not' a)
'or' (
'not' b))
. z)
'or' ((
'not' c)
. z))
'&' (a
. z))
'&' (c
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a)
. z)
'or' ((
'not' b)
. z))
'or' ((
'not' c)
. z))
'&' (a
. z))
'&' (c
. z)) by
BVFUNC_1:def 4;
reconsider cz = (c
. z) as
boolean
object;
assume
A2: (((((a
'&' b)
'imp' (
'not' c))
'&' a)
'&' c)
. z)
=
TRUE ;
now
assume ((
'not' b)
. z)
<>
TRUE ;
then ((
'not' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((((((
'not' a)
. z)
'or' ((
'not' b)
. z))
'or' ((
'not' c)
. z))
'&' (a
. z))
'&' (c
. z))
= ((((
'not' (a
. z))
'or' ((
'not' c)
. z))
'&' (a
. z))
'&' (c
. z)) by
MARGREL1:def 19
.= (((a
. z)
'&' ((
'not' (a
. z))
'or' (
'not' (c
. z))))
'&' (c
. z)) by
MARGREL1:def 19
.= ((((a
. z)
'&' (
'not' (a
. z)))
'or' ((a
. z)
'&' (
'not' (c
. z))))
'&' (c
. z)) by
XBOOLEAN: 8
.= ((
FALSE
'or' ((a
. z)
'&' (
'not' (c
. z))))
'&' (c
. z)) by
XBOOLEAN: 138
.= (((a
. z)
'&' (
'not' (c
. z)))
'&' (c
. z))
.= ((a
. z)
'&' ((
'not' cz)
'&' cz))
.= (
FALSE
'&' (a
. z)) by
XBOOLEAN: 138
.=
FALSE ;
hence thesis by
A2,
A1;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:154
for a1,a2,a3,b1,b2,b3 be
Function of Y,
BOOLEAN holds (((a1
'&' a2)
'&' a3)
'imp' ((b1
'or' b2)
'or' b3))
= ((((
'not' b1)
'&' (
'not' b2))
'&' a3)
'imp' (((
'not' a1)
'or' (
'not' a2))
'or' b3))
proof
let a1,a2,a3,b1,b2,b3 be
Function of Y,
BOOLEAN ;
((((
'not' b1)
'&' (
'not' b2))
'&' a3)
'imp' (((
'not' a1)
'or' (
'not' a2))
'or' b3))
= ((
'not' (((
'not' b1)
'&' (
'not' b2))
'&' a3))
'or' (((
'not' a1)
'or' (
'not' a2))
'or' b3)) by
BVFUNC_4: 8
.= ((((
'not' (
'not' b1))
'or' (
'not' (
'not' b2)))
'or' (
'not' a3))
'or' (((
'not' a1)
'or' (
'not' a2))
'or' b3)) by
BVFUNC_5: 37
.= ((((b1
'or' b2)
'or' (
'not' a3))
'or' ((
'not' a1)
'or' (
'not' a2)))
'or' b3) by
BVFUNC_1: 8
.= (((b1
'or' b2)
'or' (((
'not' a1)
'or' (
'not' a2))
'or' (
'not' a3)))
'or' b3) by
BVFUNC_1: 8
.= ((((
'not' a1)
'or' (
'not' a2))
'or' (
'not' a3))
'or' ((b1
'or' b2)
'or' b3)) by
BVFUNC_1: 8
.= ((
'not' ((a1
'&' a2)
'&' a3))
'or' ((b1
'or' b2)
'or' b3)) by
BVFUNC_5: 37
.= (((a1
'&' a2)
'&' a3)
'imp' ((b1
'or' b2)
'or' b3)) by
BVFUNC_4: 8;
hence thesis;
end;
theorem ::
BVFUNC_6:155
for a,b,c be
Function of Y,
BOOLEAN holds (((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
= (((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
for z be
Element of Y st ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
. z)
=
TRUE holds ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
. z)
=
TRUE
proof
let z be
Element of Y;
A1: ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
. z)
= ((((a
'imp' b)
'&' (b
'imp' c))
. z)
'&' ((c
'imp' a)
. z)) by
MARGREL1:def 20
.= ((((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z))
'&' ((c
'imp' a)
. z)) by
MARGREL1:def 20
.= (((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z))
'&' ((c
'imp' a)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z))
'&' ((c
'imp' a)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z))
'&' (((
'not' c)
'or' a)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z))
'&' (((
'not' c)
'or' a)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
'&' (((
'not' c)
'or' a)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
'&' (((
'not' c)
. z)
'or' (a
. z))) by
BVFUNC_1:def 4
.= ((((
'not' (a
. z))
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
'&' (((
'not' c)
. z)
'or' (a
. z))) by
MARGREL1:def 19
.= ((((
'not' (a
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (c
. z)))
'&' (((
'not' c)
. z)
'or' (a
. z))) by
MARGREL1:def 19
.= ((((
'not' (a
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (c
. z)))
'&' ((
'not' (c
. z))
'or' (a
. z))) by
MARGREL1:def 19;
assume
A2: ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
. z)
=
TRUE ;
now
A3: (((
'not' (a
. z))
'&' (
'not' (b
. z)))
'&' (
'not' (c
. z)))
=
TRUE or (((
'not' (a
. z))
'&' (
'not' (b
. z)))
'&' (
'not' (c
. z)))
=
FALSE by
XBOOLEAN:def 3;
assume
A4: ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
. z)
<>
TRUE ;
A5: ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
. z)
= ((((a
'&' b)
'&' c)
. z)
'or' ((((
'not' a)
'&' (
'not' b))
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((a
'&' b)
. z)
'&' (c
. z))
'or' ((((
'not' a)
'&' (
'not' b))
'&' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' ((((
'not' a)
'&' (
'not' b))
'&' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' ((((
'not' a)
'&' (
'not' b))
. z)
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' ((((
'not' a)
. z)
'&' ((
'not' b)
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((
'not' (a
. z))
'&' ((
'not' b)
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((
'not' (a
. z))
'&' (
'not' (b
. z)))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((
'not' (a
. z))
'&' (
'not' (b
. z)))
'&' (
'not' (c
. z)))) by
MARGREL1:def 19;
A6: (((a
. z)
'&' (b
. z))
'&' (c
. z))
=
TRUE or (((a
. z)
'&' (b
. z))
'&' (c
. z))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A4,
A5,
A6,
MARGREL1: 12;
case
A7: ((a
. z)
'&' (b
. z))
=
FALSE ;
now
per cases by
A7,
MARGREL1: 12;
case
A8: (a
. z)
=
FALSE ;
now
per cases by
A4,
A5,
A3,
A8,
MARGREL1: 12;
case (
'not' (b
. z))
=
FALSE ;
hence thesis by
A2,
A1,
A8,
XBOOLEAN: 138;
end;
case (
'not' (c
. z))
=
FALSE ;
hence thesis by
A2,
A1,
A8;
end;
end;
hence thesis;
end;
case
A9: (b
. z)
=
FALSE ;
now
per cases by
A4,
A5,
A3,
A9,
MARGREL1: 12;
case (
'not' (a
. z))
=
FALSE ;
hence thesis by
A2,
A1,
A9;
end;
case (
'not' (c
. z))
=
FALSE ;
hence thesis by
A2,
A1,
A9,
XBOOLEAN: 138;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
case
A10: (c
. z)
=
FALSE ;
now
per cases by
A4,
A5,
A3,
A10,
MARGREL1: 12;
case (
'not' (a
. z))
=
FALSE ;
hence thesis by
A2,
A1,
A10,
XBOOLEAN: 138;
end;
case (
'not' (b
. z))
=
FALSE ;
hence thesis by
A2,
A1,
A10;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis;
end;
then
A11: (((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'<' (((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)));
for z be
Element of Y st ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
. z)
=
TRUE holds ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
. z)
=
TRUE
proof
let z be
Element of Y;
A12: ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
. z)
= ((((a
'&' b)
'&' c)
. z)
'or' ((((
'not' a)
'&' (
'not' b))
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((a
'&' b)
. z)
'&' (c
. z))
'or' ((((
'not' a)
'&' (
'not' b))
'&' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' ((((
'not' a)
'&' (
'not' b))
'&' (
'not' c))
. z)) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' ((((
'not' a)
'&' (
'not' b))
. z)
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' ((((
'not' a)
. z)
'&' ((
'not' b)
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((
'not' (a
. z))
'&' ((
'not' b)
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((
'not' (a
. z))
'&' (
'not' (b
. z)))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= ((((a
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((
'not' (a
. z))
'&' (
'not' (b
. z)))
'&' (
'not' (c
. z)))) by
MARGREL1:def 19;
assume
A13: ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
. z)
=
TRUE ;
now
A14: ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
. z)
= ((((a
'imp' b)
'&' (b
'imp' c))
. z)
'&' ((c
'imp' a)
. z)) by
MARGREL1:def 20
.= ((((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z))
'&' ((c
'imp' a)
. z)) by
MARGREL1:def 20
.= (((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z))
'&' ((c
'imp' a)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z))
'&' ((c
'imp' a)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z))
'&' (((
'not' c)
'or' a)
. z)) by
BVFUNC_4: 8
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z))
'&' (((
'not' c)
'or' a)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
'&' (((
'not' c)
'or' a)
. z)) by
BVFUNC_1:def 4
.= (((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
'&' (((
'not' c)
. z)
'or' (a
. z))) by
BVFUNC_1:def 4
.= ((((
'not' (a
. z))
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
'&' (((
'not' c)
. z)
'or' (a
. z))) by
MARGREL1:def 19
.= ((((
'not' (a
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (c
. z)))
'&' (((
'not' c)
. z)
'or' (a
. z))) by
MARGREL1:def 19
.= ((((
'not' (a
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (c
. z)))
'&' ((
'not' (c
. z))
'or' (a
. z))) by
MARGREL1:def 19;
assume ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
. z)
<>
TRUE ;
then
A15: ((((
'not' (a
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (c
. z)))
'&' ((
'not' (c
. z))
'or' (a
. z)))
=
FALSE by
A14,
XBOOLEAN:def 3;
now
per cases by
A15,
MARGREL1: 12;
case
A16: (((
'not' (a
. z))
'or' (b
. z))
'&' ((
'not' (b
. z))
'or' (c
. z)))
=
FALSE ;
now
per cases by
A16,
MARGREL1: 12;
case
A17: ((
'not' (a
. z))
'or' (b
. z))
=
FALSE ;
(b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A13,
A12,
A17;
end;
case
A18: ((
'not' (b
. z))
'or' (c
. z))
=
FALSE ;
(c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A13,
A12,
A18;
end;
end;
hence thesis;
end;
case
A19: ((
'not' (c
. z))
'or' (a
. z))
=
FALSE ;
(a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A13,
A12,
A19;
end;
end;
hence thesis;
end;
hence thesis;
end;
then (((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' (
'not' c)))
'<' (((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a));
hence thesis by
A11,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_6:156
for a,b,c be
Function of Y,
BOOLEAN holds ((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' ((a
'or' b)
'or' c))
= ((a
'&' b)
'&' c)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
((((a
'imp' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' ((a
'or' b)
'or' c))
= (((((
'not' a)
'or' b)
'&' (b
'imp' c))
'&' (c
'imp' a))
'&' ((a
'or' b)
'or' c)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' (c
'imp' a))
'&' ((a
'or' b)
'or' c)) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((
'not' c)
'or' a))
'&' ((a
'or' b)
'or' c)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' (((
'not' c)
'or' a)
'&' ((a
'or' b)
'or' c))) by
BVFUNC_1: 4
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((((
'not' c)
'or' a)
'&' (a
'or' b))
'or' (((
'not' c)
'or' a)
'&' c))) by
BVFUNC_1: 12
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((((
'not' c)
'or' a)
'&' (a
'or' b))
'or' (((
'not' c)
'&' c)
'or' (a
'&' c)))) by
BVFUNC_1: 12
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((((
'not' c)
'or' a)
'&' (a
'or' b))
'or' ((
O_el Y)
'or' (a
'&' c)))) by
BVFUNC_4: 5
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((((
'not' c)
'or' a)
'&' (a
'or' b))
'or' (a
'&' c))) by
BVFUNC_1: 9
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((a
'or' ((
'not' c)
'&' b))
'or' (a
'&' c))) by
BVFUNC_1: 11
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((a
'or' (a
'&' c))
'or' ((
'not' c)
'&' b))) by
BVFUNC_1: 8
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' (((a
'&' (
I_el Y))
'or' (a
'&' c))
'or' ((
'not' c)
'&' b))) by
BVFUNC_1: 6
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((a
'&' ((
I_el Y)
'or' c))
'or' ((
'not' c)
'&' b))) by
BVFUNC_1: 12
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((a
'&' (
I_el Y))
'or' ((
'not' c)
'&' b))) by
BVFUNC_1: 10
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' (a
'or' ((
'not' c)
'&' b))) by
BVFUNC_1: 6
.= ((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c))
'&' ((a
'or' (
'not' c))
'&' (a
'or' b))) by
BVFUNC_1: 11
.= (((a
'or' b)
'&' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' c)))
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 4
.= ((((a
'or' b)
'&' ((
'not' a)
'or' b))
'&' ((
'not' b)
'or' c))
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 4
.= ((((a
'&' (
'not' a))
'or' b)
'&' ((
'not' b)
'or' c))
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 11
.= ((((
O_el Y)
'or' b)
'&' ((
'not' b)
'or' c))
'&' (a
'or' (
'not' c))) by
BVFUNC_4: 5
.= ((b
'&' ((
'not' b)
'or' c))
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 9
.= (((b
'&' (
'not' b))
'or' (b
'&' c))
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 12
.= (((
O_el Y)
'or' (b
'&' c))
'&' (a
'or' (
'not' c))) by
BVFUNC_4: 5
.= ((b
'&' c)
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 9
.= (((b
'&' c)
'&' a)
'or' ((b
'&' c)
'&' (
'not' c))) by
BVFUNC_1: 12
.= (((b
'&' c)
'&' a)
'or' (b
'&' (c
'&' (
'not' c)))) by
BVFUNC_1: 4
.= (((b
'&' c)
'&' a)
'or' (b
'&' (
O_el Y))) by
BVFUNC_4: 5
.= (((b
'&' c)
'&' a)
'or' (
O_el Y)) by
BVFUNC_1: 5
.= ((b
'&' c)
'&' a) by
BVFUNC_1: 9
.= ((a
'&' b)
'&' c) by
BVFUNC_1: 4;
hence thesis;
end;
Lm4: for a,b,c be
Function of Y,
BOOLEAN holds (((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'<' ((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
. z)
= ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
. z)
'or' (((a
'&' b)
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
'&' c)
. z))
'or' (((a
'&' b)
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
'&' c)
. z))
'or' (((a
'&' b)
. z)
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
'&' c)
. z))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
. z)
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
. z)
'&' (c
. z))
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= (((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' (
'not' (c
. z)))) by
MARGREL1:def 19;
assume
A2: ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
. z)
=
TRUE ;
now
A3: (((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c)))
. z)
= (((a
'or' b)
'&' (((
'not' a)
'or' (
'not' b))
'or' (
'not' c)))
. z) by
BVFUNC_5: 37
.= (((a
'or' b)
. z)
'&' ((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)) by
MARGREL1:def 20
.= (((a
. z)
'or' (b
. z))
'&' ((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= (((a
. z)
'or' (b
. z))
'&' ((((
'not' a)
'or' (
'not' b))
. z)
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4
.= (((a
. z)
'or' (b
. z))
'&' ((((
'not' a)
. z)
'or' ((
'not' b)
. z))
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4
.= (((a
. z)
'or' (b
. z))
'&' (((
'not' (a
. z))
'or' ((
'not' b)
. z))
'or' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((a
. z)
'or' (b
. z))
'&' (((
'not' (a
. z))
'or' (
'not' (b
. z)))
'or' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((a
. z)
'or' (b
. z))
'&' (((
'not' (a
. z))
'or' (
'not' (b
. z)))
'or' (
'not' (c
. z)))) by
MARGREL1:def 19;
assume (((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c)))
. z)
<>
TRUE ;
then
A4: (((a
. z)
'or' (b
. z))
'&' (((
'not' (a
. z))
'or' (
'not' (b
. z)))
'or' (
'not' (c
. z))))
=
FALSE by
A3,
XBOOLEAN:def 3;
now
per cases by
A4,
MARGREL1: 12;
case
A5: ((a
. z)
'or' (b
. z))
=
FALSE ;
(b
. z)
=
TRUE or (b
. z)
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A2,
A1,
A5;
end;
case
A6: (((
'not' (a
. z))
'or' (
'not' (b
. z)))
'or' (
'not' (c
. z)))
=
FALSE ;
A7: (
'not' (b
. z))
=
TRUE or (
'not' (b
. z))
=
FALSE by
XBOOLEAN:def 3;
((
'not' (a
. z))
'or' (
'not' (b
. z)))
=
TRUE or ((
'not' (a
. z))
'or' (
'not' (b
. z)))
=
FALSE by
XBOOLEAN:def 3;
hence thesis by
A2,
A1,
A6,
A7;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:157
for a,b,c be
Function of Y,
BOOLEAN holds ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)))
= (((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
A1: ((((a
'or' b)
'&' (b
'or' c))
'&' (
'not' ((a
'&' b)
'&' c)))
'&' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))))
= (((((a
'or' b)
'&' (b
'or' c))
'&' (
'not' ((a
'&' b)
'&' c)))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4
.= (((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)))
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4
.= ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' ((
'not' ((a
'&' b)
'&' c))
'&' (
'not' ((a
'&' b)
'&' c)))) by
BVFUNC_1: 4
.= ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)));
for z be
Element of Y st (((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)))
. z)
=
TRUE holds ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
. z)
=
TRUE
proof
let z be
Element of Y;
A2: (((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)))
. z)
= (((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
. z)
'&' ((
'not' ((a
'&' b)
'&' c))
. z)) by
MARGREL1:def 20
.= (((((a
'or' b)
'&' (b
'or' c))
. z)
'&' ((c
'or' a)
. z))
'&' ((
'not' ((a
'&' b)
'&' c))
. z)) by
MARGREL1:def 20
.= (((((a
'or' b)
. z)
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z))
'&' ((
'not' ((a
'&' b)
'&' c))
. z)) by
MARGREL1:def 20
.= (((((a
'or' b)
. z)
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z))
'&' ((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)) by
BVFUNC_5: 37
.= (((((a
. z)
'or' (b
. z))
'&' ((b
'or' c)
. z))
'&' ((c
'or' a)
. z))
'&' ((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
'or' a)
. z))
'&' ((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z)))
'&' ((((
'not' a)
'or' (
'not' b))
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z)))
'&' ((((
'not' a)
'or' (
'not' b))
. z)
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z)))
'&' ((((
'not' a)
. z)
'or' ((
'not' b)
. z))
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z)))
'&' (((
'not' (a
. z))
'or' ((
'not' b)
. z))
'or' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z)))
'&' (((
'not' (a
. z))
'or' (
'not' (b
. z)))
'or' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((((a
. z)
'or' (b
. z))
'&' ((b
. z)
'or' (c
. z)))
'&' ((c
. z)
'or' (a
. z)))
'&' (((
'not' (a
. z))
'or' (
'not' (b
. z)))
'or' (
'not' (c
. z)))) by
MARGREL1:def 19;
assume
A3: (((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)))
. z)
=
TRUE ;
now
A4: (((a
. z)
'&' (b
. z))
'&' (
'not' (c
. z)))
=
TRUE or (((a
. z)
'&' (b
. z))
'&' (
'not' (c
. z)))
=
FALSE by
XBOOLEAN:def 3;
assume
A5: ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
. z)
<>
TRUE ;
A6: (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z))
=
TRUE or (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z))
=
FALSE by
XBOOLEAN:def 3;
A7: ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
. z)
= ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
. z)
'or' (((a
'&' b)
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
'&' c)
. z))
'or' (((a
'&' b)
'&' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
'&' c)
. z))
'or' (((a
'&' b)
. z)
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
'&' c)
. z))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
'&' (
'not' b))
. z)
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
'&' c)
. z)
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
'&' b)
. z)
'&' (c
. z))
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= ((((((
'not' a)
. z)
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 20
.= (((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' ((
'not' b)
. z))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' ((
'not' c)
. z))) by
MARGREL1:def 19
.= (((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z)))
'or' (((a
. z)
'&' (b
. z))
'&' (
'not' (c
. z)))) by
MARGREL1:def 19;
A8: ((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z)))
=
TRUE or ((((
'not' (a
. z))
'&' (b
. z))
'&' (c
. z))
'or' (((a
. z)
'&' (
'not' (b
. z)))
'&' (c
. z)))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A5,
A7,
A8,
A6,
MARGREL1: 12;
case
A9: ((
'not' (a
. z))
'&' (b
. z))
=
FALSE ;
now
per cases by
A9,
MARGREL1: 12;
case
A10: (
'not' (a
. z))
=
FALSE ;
now
per cases by
A5,
A7,
A6,
A10,
MARGREL1: 12;
case (
'not' (b
. z))
=
FALSE ;
hence thesis by
A3,
A2,
A7,
A10;
end;
case (c
. z)
=
FALSE ;
hence thesis by
A3,
A2,
A7,
A10;
end;
end;
hence thesis;
end;
case
A11: (b
. z)
=
FALSE ;
now
per cases by
A5,
A7,
A6,
A11,
MARGREL1: 12;
case (a
. z)
=
FALSE ;
hence thesis by
A3,
A2,
A11;
end;
case (c
. z)
=
FALSE ;
hence thesis by
A3,
A2,
A11;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
case
A12: (c
. z)
=
FALSE ;
now
per cases by
A5,
A7,
A4,
A12,
MARGREL1: 12;
case (a
. z)
=
FALSE ;
hence thesis by
A3,
A2,
A12;
end;
case (b
. z)
=
FALSE ;
hence thesis by
A3,
A2,
A12;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis;
end;
then
A13: ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c)))
'<' (((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)));
(((((
'not' c)
'&' a)
'&' b)
'or' ((c
'&' (
'not' a))
'&' b))
'or' ((c
'&' a)
'&' (
'not' b)))
'<' ((c
'or' a)
'&' (
'not' ((c
'&' a)
'&' b))) by
Lm4;
then (((((
'not' c)
'&' a)
'&' b)
'or' ((c
'&' (
'not' a))
'&' b))
'or' ((c
'&' a)
'&' (
'not' b)))
'<' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then ((((a
'&' b)
'&' (
'not' c))
'or' ((c
'&' (
'not' a))
'&' b))
'or' ((c
'&' a)
'&' (
'not' b)))
'<' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then ((((a
'&' b)
'&' (
'not' c))
'or' (((
'not' a)
'&' b)
'&' c))
'or' ((c
'&' a)
'&' (
'not' b)))
'<' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then ((((a
'&' b)
'&' (
'not' c))
'or' (((
'not' a)
'&' b)
'&' c))
'or' ((a
'&' (
'not' b))
'&' c))
'<' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then (((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'<' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 8;
then
A14: ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c))))
= (
I_el Y) by
BVFUNC_1: 16;
(((((
'not' b)
'&' c)
'&' a)
'or' ((b
'&' (
'not' c))
'&' a))
'or' ((b
'&' c)
'&' (
'not' a)))
'<' ((b
'or' c)
'&' (
'not' ((b
'&' c)
'&' a))) by
Lm4;
then (((((
'not' b)
'&' c)
'&' a)
'or' ((b
'&' (
'not' c))
'&' a))
'or' ((b
'&' c)
'&' (
'not' a)))
'<' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then (((((
'not' b)
'&' c)
'&' a)
'or' ((b
'&' (
'not' c))
'&' a))
'or' (((
'not' a)
'&' b)
'&' c))
'<' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then ((((a
'&' (
'not' b))
'&' c)
'or' ((b
'&' (
'not' c))
'&' a))
'or' (((
'not' a)
'&' b)
'&' c))
'<' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then ((((a
'&' (
'not' b))
'&' c)
'or' ((a
'&' b)
'&' (
'not' c)))
'or' (((
'not' a)
'&' b)
'&' c))
'<' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 4;
then (((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'<' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c))) by
BVFUNC_1: 8;
then
A15: ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c))))
= (
I_el Y) by
BVFUNC_1: 16;
(((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'<' ((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c))) by
Lm4;
then ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' ((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c))))
= (
I_el Y) by
BVFUNC_1: 16;
then ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' (((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c)))
'&' ((b
'or' c)
'&' (
'not' ((a
'&' b)
'&' c)))))
= (
I_el Y) by
A15,
th18;
then ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' ((((a
'or' b)
'&' (
'not' ((a
'&' b)
'&' c)))
'&' (b
'or' c))
'&' (
'not' ((a
'&' b)
'&' c))))
= (
I_el Y) by
BVFUNC_1: 4;
then ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' ((((a
'or' b)
'&' (b
'or' c))
'&' (
'not' ((a
'&' b)
'&' c)))
'&' (
'not' ((a
'&' b)
'&' c))))
= (
I_el Y) by
BVFUNC_1: 4;
then ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' (((a
'or' b)
'&' (b
'or' c))
'&' ((
'not' ((a
'&' b)
'&' c))
'&' (
'not' ((a
'&' b)
'&' c)))))
= (
I_el Y) by
BVFUNC_1: 4;
then ((((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'imp' ((((a
'or' b)
'&' (b
'or' c))
'&' (
'not' ((a
'&' b)
'&' c)))
'&' ((c
'or' a)
'&' (
'not' ((a
'&' b)
'&' c)))))
= (
I_el Y) by
A14,
th18;
then (((((
'not' a)
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' c))
'or' ((a
'&' b)
'&' (
'not' c)))
'<' ((((a
'or' b)
'&' (b
'or' c))
'&' (c
'or' a))
'&' (
'not' ((a
'&' b)
'&' c))) by
A1,
BVFUNC_1: 16;
hence thesis by
A13,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_6:158
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'&' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (b
'imp' c))
. z)
= (((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
A3: ((a
'imp' (b
'&' c))
. z)
= (((
'not' a)
'or' (b
'&' c))
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' ((b
'&' c)
. z)) by
BVFUNC_1:def 4
.= (((
'not' a)
. z)
'or' ((b
. z)
'&' (c
. z))) by
MARGREL1:def 20
.= ((
'not' (a
. z))
'or' ((b
. z)
'&' (c
. z))) by
MARGREL1:def 19;
assume
A4: ((a
'imp' (b
'&' c))
. z)
<>
TRUE ;
(
'not' (a
. z))
=
TRUE or (
'not' (a
. z))
=
FALSE by
XBOOLEAN:def 3;
then
A5: ((
'not' a)
. z)
=
FALSE by
A4,
A3,
MARGREL1:def 19;
A6: ((b
. z)
'&' (c
. z))
=
TRUE or ((b
. z)
'&' (c
. z))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A4,
A3,
A6,
MARGREL1: 12;
case (b
. z)
=
FALSE ;
hence thesis by
A2,
A1,
A5;
end;
case (c
. z)
=
FALSE ;
then ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
= ((b
. z)
'&' (
'not' (b
. z))) by
A5,
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence thesis by
A2,
A1;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:159
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' ((a
'or' b)
'imp' c)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (b
'imp' c))
. z)
= (((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
A3: (c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
assume
A4: (((a
'or' b)
'imp' c)
. z)
<>
TRUE ;
A5: (((a
'or' b)
'imp' c)
. z)
= (((
'not' (a
'or' b))
'or' c)
. z) by
BVFUNC_4: 8
.= ((((
'not' a)
'&' (
'not' b))
'or' c)
. z) by
BVFUNC_1: 13
.= ((((
'not' a)
'&' (
'not' b))
. z)
'or' (c
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'&' ((
'not' b)
. z))
'or' (c
. z)) by
MARGREL1:def 20;
A6: (((
'not' a)
. z)
'&' ((
'not' b)
. z))
=
TRUE or (((
'not' a)
. z)
'&' ((
'not' b)
. z))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A4,
A5,
A6,
MARGREL1: 12;
case ((
'not' a)
. z)
=
FALSE ;
then ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
= ((b
. z)
'&' (
'not' (b
. z))) by
A4,
A5,
A3,
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138;
hence thesis by
A2,
A1;
end;
case ((
'not' b)
. z)
=
FALSE ;
then ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z)))
= ((((
'not' a)
. z)
'or' (b
. z))
'&'
FALSE ) by
A4,
A5,
XBOOLEAN:def 3
.=
FALSE ;
hence thesis by
A2,
A1;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:160
Th19: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'or' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (b
'imp' c))
. z)
= (((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
assume ((a
'imp' (b
'or' c))
. z)
<>
TRUE ;
A3: ((
'not' a)
. z)
=
TRUE or ((
'not' a)
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: ((b
. z)
'or' (c
. z))
=
TRUE or ((b
. z)
'or' (c
. z))
=
FALSE by
XBOOLEAN:def 3;
A5: (c
. z)
=
TRUE or (c
. z)
=
FALSE by
XBOOLEAN:def 3;
((a
'imp' (b
'or' c))
. z)
= (((
'not' a)
'or' (b
'or' c))
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' ((b
'or' c)
. z)) by
BVFUNC_1:def 4
.= (((
'not' a)
. z)
'or' ((b
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
hence thesis by
A2,
A1,
A3,
A4,
A5;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:161
Th20: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'or' (
'not' c)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (b
'imp' c))
. z)
= (((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
assume ((a
'imp' (b
'or' (
'not' c)))
. z)
<>
TRUE ;
A3: ((
'not' a)
. z)
=
TRUE or ((
'not' a)
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: ((b
. z)
'or' ((
'not' c)
. z))
=
TRUE or ((b
. z)
'or' ((
'not' c)
. z))
=
FALSE by
XBOOLEAN:def 3;
A5: ((
'not' c)
. z)
=
TRUE or ((
'not' c)
. z)
=
FALSE by
XBOOLEAN:def 3;
((a
'imp' (b
'or' (
'not' c)))
. z)
= (((
'not' a)
'or' (b
'or' (
'not' c)))
. z) by
BVFUNC_4: 8
.= (((
'not' a)
. z)
'or' ((b
'or' (
'not' c))
. z)) by
BVFUNC_1:def 4
.= (((
'not' a)
. z)
'or' ((b
. z)
'or' ((
'not' c)
. z))) by
BVFUNC_1:def 4;
hence thesis by
A2,
A1,
A3,
A4,
A5;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:162
Th21: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' (b
'imp' (c
'or' a))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (b
'imp' c))
. z)
= (((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
assume ((b
'imp' (c
'or' a))
. z)
<>
TRUE ;
A3: ((
'not' b)
. z)
=
TRUE or ((
'not' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: ((c
. z)
'or' (a
. z))
=
TRUE or ((c
. z)
'or' (a
. z))
=
FALSE by
XBOOLEAN:def 3;
A5: (a
. z)
=
TRUE or (a
. z)
=
FALSE by
XBOOLEAN:def 3;
((b
'imp' (c
'or' a))
. z)
= (((
'not' b)
'or' (c
'or' a))
. z) by
BVFUNC_4: 8
.= (((
'not' b)
. z)
'or' ((c
'or' a)
. z)) by
BVFUNC_1:def 4
.= (((
'not' b)
. z)
'or' ((c
. z)
'or' (a
. z))) by
BVFUNC_1:def 4;
hence thesis by
A2,
A1,
A3,
A4,
A5;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:163
Th22: for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' (b
'imp' (c
'or' (
'not' a)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
let z be
Element of Y;
A1: (((a
'imp' b)
'&' (b
'imp' c))
. z)
= (((a
'imp' b)
. z)
'&' ((b
'imp' c)
. z)) by
MARGREL1:def 20
.= ((((
'not' a)
'or' b)
. z)
'&' ((b
'imp' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' b)
. z)
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_4: 8
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
'or' c)
. z)) by
BVFUNC_1:def 4
.= ((((
'not' a)
. z)
'or' (b
. z))
'&' (((
'not' b)
. z)
'or' (c
. z))) by
BVFUNC_1:def 4;
assume
A2: (((a
'imp' b)
'&' (b
'imp' c))
. z)
=
TRUE ;
now
assume ((b
'imp' (c
'or' (
'not' a)))
. z)
<>
TRUE ;
A3: ((
'not' b)
. z)
=
TRUE or ((
'not' b)
. z)
=
FALSE by
XBOOLEAN:def 3;
A4: ((c
. z)
'or' ((
'not' a)
. z))
=
TRUE or ((c
. z)
'or' ((
'not' a)
. z))
=
FALSE by
XBOOLEAN:def 3;
A5: ((
'not' a)
. z)
=
TRUE or ((
'not' a)
. z)
=
FALSE by
XBOOLEAN:def 3;
((b
'imp' (c
'or' (
'not' a)))
. z)
= (((
'not' b)
'or' (c
'or' (
'not' a)))
. z) by
BVFUNC_4: 8
.= (((
'not' b)
. z)
'or' ((c
'or' (
'not' a))
. z)) by
BVFUNC_1:def 4
.= (((
'not' b)
. z)
'or' ((c
. z)
'or' ((
'not' a)
. z))) by
BVFUNC_1:def 4;
hence thesis by
A2,
A1,
A3,
A4,
A5;
end;
hence thesis;
end;
theorem ::
BVFUNC_6:164
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' ((a
'imp' b)
'&' (b
'imp' (c
'or' a)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
((a
'imp' b)
'&' (b
'imp' c))
'<' (b
'imp' (c
'or' a)) by
Th21;
then
A1: (((a
'imp' b)
'&' (b
'imp' c))
'imp' (b
'imp' (c
'or' a)))
= (
I_el Y) by
BVFUNC_1: 16;
(((a
'imp' b)
'&' (b
'imp' c))
'imp' (a
'imp' b))
= (
I_el Y) by
Th38;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' ((a
'imp' b)
'&' (b
'imp' (c
'or' a))))
= (
I_el Y) by
A1,
th18;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:165
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' ((a
'imp' (b
'or' (
'not' c)))
'&' (b
'imp' c))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'or' (
'not' c))) by
Th20;
then
A1: (((a
'imp' b)
'&' (b
'imp' c))
'imp' (a
'imp' (b
'or' (
'not' c))))
= (
I_el Y) by
BVFUNC_1: 16;
(((a
'imp' b)
'&' (b
'imp' c))
'imp' (b
'imp' c))
= (
I_el Y) by
Th38;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' ((a
'imp' (b
'or' (
'not' c)))
'&' (b
'imp' c)))
= (
I_el Y) by
A1,
th18;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:166
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' ((a
'imp' (b
'or' c))
'&' (b
'imp' (c
'or' a)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
((a
'imp' b)
'&' (b
'imp' c))
'<' (b
'imp' (c
'or' a)) by
Th21;
then
A1: (((a
'imp' b)
'&' (b
'imp' c))
'imp' (b
'imp' (c
'or' a)))
= (
I_el Y) by
BVFUNC_1: 16;
((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'or' c)) by
Th19;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' (a
'imp' (b
'or' c)))
= (
I_el Y) by
BVFUNC_1: 16;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' ((a
'imp' (b
'or' c))
'&' (b
'imp' (c
'or' a))))
= (
I_el Y) by
A1,
th18;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:167
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' ((a
'imp' (b
'or' (
'not' c)))
'&' (b
'imp' (c
'or' a)))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
((a
'imp' b)
'&' (b
'imp' c))
'<' (b
'imp' (c
'or' a)) by
Th21;
then
A1: (((a
'imp' b)
'&' (b
'imp' c))
'imp' (b
'imp' (c
'or' a)))
= (
I_el Y) by
BVFUNC_1: 16;
((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'or' (
'not' c))) by
Th20;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' (a
'imp' (b
'or' (
'not' c))))
= (
I_el Y) by
BVFUNC_1: 16;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' ((a
'imp' (b
'or' (
'not' c)))
'&' (b
'imp' (c
'or' a))))
= (
I_el Y) by
A1,
th18;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_6:168
for a,b,c be
Function of Y,
BOOLEAN holds ((a
'imp' b)
'&' (b
'imp' c))
'<' ((a
'imp' (b
'or' (
'not' c)))
'&' (b
'imp' (c
'or' (
'not' a))))
proof
let a,b,c be
Function of Y,
BOOLEAN ;
((a
'imp' b)
'&' (b
'imp' c))
'<' (b
'imp' (c
'or' (
'not' a))) by
Th22;
then
A1: (((a
'imp' b)
'&' (b
'imp' c))
'imp' (b
'imp' (c
'or' (
'not' a))))
= (
I_el Y) by
BVFUNC_1: 16;
((a
'imp' b)
'&' (b
'imp' c))
'<' (a
'imp' (b
'or' (
'not' c))) by
Th20;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' (a
'imp' (b
'or' (
'not' c))))
= (
I_el Y) by
BVFUNC_1: 16;
then (((a
'imp' b)
'&' (b
'imp' c))
'imp' ((a
'imp' (b
'or' (
'not' c)))
'&' (b
'imp' (c
'or' (
'not' a)))))
= (
I_el Y) by
A1,
th18;
hence thesis by
BVFUNC_1: 16;
end;