bvfunc_4.miz
begin
reserve Y for non
empty
set;
theorem ::
BVFUNC_4:1
for a,b,c be
Function of Y,
BOOLEAN holds a
'<' (b
'imp' c) implies (a
'&' b)
'<' c
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume
A1: a
'<' (b
'imp' c);
for x be
Element of Y holds (((a
'&' b)
'imp' c)
. x)
=
TRUE
proof
let x be
Element of Y;
A2: ((a
'imp' (b
'imp' c))
. x)
= ((
'not' (a
. x))
'or' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x));
A3: (((a
'&' b)
'imp' c)
. x)
= ((
'not' ((a
'&' b)
. x))
'or' (c
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x)) by
MARGREL1:def 20;
(a
'imp' (b
'imp' c))
= (
I_el Y) by
A1,
BVFUNC_1: 16;
hence thesis by
A2,
A3,
BVFUNC_1:def 11;
end;
then ((a
'&' b)
'imp' c)
= (
I_el Y) by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_4:2
for a,b,c be
Function of Y,
BOOLEAN holds (a
'&' b)
'<' c implies a
'<' (b
'imp' c)
proof
let a,b,c be
Function of Y,
BOOLEAN ;
assume
A1: (a
'&' b)
'<' c;
for x be
Element of Y holds ((a
'imp' (b
'imp' c))
. x)
=
TRUE
proof
let x be
Element of Y;
A2: ((a
'imp' (b
'imp' c))
. x)
= ((
'not' (a
. x))
'or' ((b
'imp' c)
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' ((
'not' (b
. x))
'or' (c
. x))) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x));
A3: (((a
'&' b)
'imp' c)
. x)
= ((
'not' ((a
'&' b)
. x))
'or' (c
. x)) by
BVFUNC_1:def 8
.= (((
'not' (a
. x))
'or' (
'not' (b
. x)))
'or' (c
. x)) by
MARGREL1:def 20;
((a
'&' b)
'imp' c)
= (
I_el Y) by
A1,
BVFUNC_1: 16;
hence thesis by
A2,
A3,
BVFUNC_1:def 11;
end;
then (a
'imp' (b
'imp' c))
= (
I_el Y) by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_4:3
for a,b be
Function of Y,
BOOLEAN holds (a
'or' (a
'&' b))
= a
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'or' (a
'&' b))
. x)
= ((a
. x)
'or' ((a
'&' b)
. x)) by
BVFUNC_1:def 4
.= ((a
. x)
'or' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 20
.= (a
. x) by
XBOOLEAN: 5;
end;
theorem ::
BVFUNC_4:4
for a,b be
Function of Y,
BOOLEAN holds (a
'&' (a
'or' b))
= a
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'&' (a
'or' b))
. x)
= ((a
. x)
'&' ((a
'or' b)
. x)) by
MARGREL1:def 20
.= ((a
. x)
'&' ((a
. x)
'or' (b
. x))) by
BVFUNC_1:def 4
.= (a
. x) by
XBOOLEAN: 6;
end;
theorem ::
BVFUNC_4:5
Th5: for a be
Function of Y,
BOOLEAN holds (a
'&' (
'not' a))
= (
O_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'&' (
'not' a))
. x)
= ((a
. x)
'&' ((
'not' a)
. x)) by
MARGREL1:def 20
.= ((a
. x)
'&' (
'not' (a
. x))) by
MARGREL1:def 19
.=
FALSE by
XBOOLEAN: 138
.= ((
O_el Y)
. x) by
BVFUNC_1:def 10;
end;
theorem ::
BVFUNC_4:6
for a be
Function of Y,
BOOLEAN holds (a
'or' (
'not' a))
= (
I_el Y)
proof
let a be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'or' (
'not' a))
. x)
= ((a
. x)
'or' ((
'not' a)
. x)) by
BVFUNC_1:def 4
.= ((a
. x)
'or' (
'not' (a
. x))) by
MARGREL1:def 19
.=
TRUE by
XBOOLEAN: 102
.= ((
I_el Y)
. x) by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_4:7
Th7: for a,b be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= ((a
'imp' b)
'&' (b
'imp' a))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'eqv' b)
. x)
= ((a
. x)
<=> (b
. x)) by
BVFUNC_1:def 9
.= (((a
. x)
=> (b
. x))
'&' ((b
. x)
=> (a
. x)))
.= (((a
'imp' b)
. x)
'&' ((b
. x)
=> (a
. x))) by
BVFUNC_1:def 8
.= (((a
'imp' b)
. x)
'&' ((b
'imp' a)
. x)) by
BVFUNC_1:def 8
.= (((a
'imp' b)
'&' (b
'imp' a))
. x) by
MARGREL1:def 20;
end;
theorem ::
BVFUNC_4:8
Th8: for a,b be
Function of Y,
BOOLEAN holds (a
'imp' b)
= ((
'not' a)
'or' b)
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'imp' b)
. x)
= ((a
. x)
=> (b
. x)) by
BVFUNC_1:def 8
.= ((
'not' (a
. x))
'or' (b
. x))
.= (((
'not' a)
. x)
'or' (b
. x)) by
MARGREL1:def 19
.= (((
'not' a)
'or' b)
. x) by
BVFUNC_1:def 4;
end;
theorem ::
BVFUNC_4:9
for a,b be
Function of Y,
BOOLEAN holds (a
'xor' b)
= (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let x be
Element of Y;
thus ((a
'xor' b)
. x)
= ((a
. x)
'xor' (b
. x)) by
BVFUNC_1:def 5
.= (((
'not' (a
. x))
'&' (b
. x))
'or' ((a
. x)
'&' (
'not' (b
. x))))
.= (((
'not' (a
. x))
'&' (b
. x))
'or' ((a
. x)
'&' ((
'not' b)
. x))) by
MARGREL1:def 19
.= ((((
'not' a)
. x)
'&' (b
. x))
'or' ((a
. x)
'&' ((
'not' b)
. x))) by
MARGREL1:def 19
.= ((((
'not' a)
'&' b)
. x)
'or' ((a
. x)
'&' ((
'not' b)
. x))) by
MARGREL1:def 20
.= ((((
'not' a)
'&' b)
. x)
'or' ((a
'&' (
'not' b))
. x)) by
MARGREL1:def 20
.= ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
. x) by
BVFUNC_1:def 4;
end;
theorem ::
BVFUNC_4:10
Th10: for a,b be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= (
I_el Y) iff (a
'imp' b)
= (
I_el Y) & (b
'imp' a)
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
thus (a
'eqv' b)
= (
I_el Y) implies (a
'imp' b)
= (
I_el Y) & (b
'imp' a)
= (
I_el Y)
proof
assume (a
'eqv' b)
= (
I_el Y);
then a
= b by
BVFUNC_1: 17;
hence thesis by
BVFUNC_1: 16;
end;
assume (a
'imp' b)
= (
I_el Y) & (b
'imp' a)
= (
I_el Y);
then (a
'eqv' b)
= ((
I_el Y)
'&' (
I_el Y)) by
Th7;
hence thesis;
end;
theorem ::
BVFUNC_4:11
for a,b be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= (
I_el Y) implies ((
'not' a)
'eqv' (
'not' b))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
assume (a
'eqv' b)
= (
I_el Y);
then a
= b by
BVFUNC_1: 17;
hence thesis by
BVFUNC_1: 17;
end;
theorem ::
BVFUNC_4:12
for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y) implies ((a
'&' c)
'eqv' (b
'&' d))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
assume (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y);
then a
= b & c
= d by
BVFUNC_1: 17;
hence thesis by
BVFUNC_1: 17;
end;
theorem ::
BVFUNC_4:13
for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y) implies ((a
'imp' c)
'eqv' (b
'imp' d))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
assume (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y);
then a
= b & c
= d by
BVFUNC_1: 17;
hence thesis by
BVFUNC_1: 17;
end;
theorem ::
BVFUNC_4:14
for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y) implies ((a
'or' c)
'eqv' (b
'or' d))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
assume (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y);
then a
= b & c
= d by
BVFUNC_1: 17;
hence thesis by
BVFUNC_1: 17;
end;
theorem ::
BVFUNC_4:15
for a,b,c,d be
Function of Y,
BOOLEAN holds (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y) implies ((a
'eqv' c)
'eqv' (b
'eqv' d))
= (
I_el Y)
proof
let a,b,c,d be
Function of Y,
BOOLEAN ;
assume (a
'eqv' b)
= (
I_el Y) & (c
'eqv' d)
= (
I_el Y);
then a
= b & c
= d by
BVFUNC_1: 17;
hence thesis by
BVFUNC_1: 17;
end;
begin
theorem ::
BVFUNC_4:16
for a,b be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds (
All ((a
'eqv' b),PA,G))
= ((
All ((a
'imp' b),PA,G))
'&' (
All ((b
'imp' a),PA,G)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
let z be
Element of Y;
((
All ((a
'eqv' b),PA,G))
. z)
= ((
All (((a
'imp' b)
'&' (b
'imp' a)),PA,G))
. z) by
Th7
.= (((
All ((a
'imp' b),PA,G))
'&' (
All ((b
'imp' a),PA,G)))
. z) by
BVFUNC_1: 39;
hence thesis;
end;
theorem ::
BVFUNC_4:17
for a be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA,PB be
a_partition of Y holds (
All (a,PA,G))
'<' (
Ex (a,PB,G))
proof
let a be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA,PB be
a_partition of Y;
(
All (a,PA,G))
'<' a & a
'<' (
Ex (a,PB,G)) by
BVFUNC_2: 11,
BVFUNC_2: 12;
hence thesis by
BVFUNC_1: 15;
end;
theorem ::
BVFUNC_4:18
for a,u be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y st (a
'imp' u)
= (
I_el Y) holds ((
All (a,PA,G))
'imp' u)
= (
I_el Y)
proof
let a,u be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume
A1: (a
'imp' u)
= (
I_el Y);
for x be
Element of Y holds (((
All (a,PA,G))
'imp' u)
. x)
=
TRUE
proof
let x be
Element of Y;
((a
'imp' u)
. x)
=
TRUE by
A1,
BVFUNC_1:def 11;
then
A2: ((
'not' (a
. x))
'or' (u
. x))
=
TRUE by
BVFUNC_1:def 8;
A3: (
'not' (a
. x))
=
TRUE or (
'not' (a
. x))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A2,
A3;
case
A4: (
'not' (a
. x))
=
TRUE ;
x
in (
EqClass (x,(
CompF (PA,G)))) by
EQREL_1:def 6;
then ((
B_INF (a,(
CompF (PA,G))))
. x)
=
FALSE by
A4,
BVFUNC_1:def 16;
then (((
All (a,PA,G))
'imp' u)
. x)
= (
TRUE
'or' (u
. x)) by
BVFUNC_1:def 8
.=
TRUE ;
hence thesis;
end;
case (u
. x)
=
TRUE ;
then (((
All (a,PA,G))
'imp' u)
. x)
= ((
'not' ((
All (a,PA,G))
. x))
'or'
TRUE ) by
BVFUNC_1:def 8
.=
TRUE ;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_4:19
for u be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y st u
is_independent_of (PA,G) holds (
Ex (u,PA,G))
'<' u
proof
let u be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume u
is_independent_of (PA,G);
then
A1: u
is_dependent_of (
CompF (PA,G));
for z be
Element of Y holds (((
Ex (u,PA,G))
'imp' u)
. z)
=
TRUE
proof
let z be
Element of Y;
A2: (((
Ex (u,PA,G))
'imp' u)
. z)
= ((
'not' ((
Ex (u,PA,G))
. z))
'or' (u
. z)) by
BVFUNC_1:def 8;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) & (
EqClass (z,(
CompF (PA,G))))
in (
CompF (PA,G)) by
EQREL_1:def 6;
now
per cases by
XBOOLEAN:def 3;
case (u
. z)
=
TRUE ;
hence thesis by
A2;
end;
case (u
. z)
=
FALSE ;
then not ex x1 be
Element of Y st x1
in (
EqClass (z,(
CompF (PA,G)))) & (u
. x1)
=
TRUE by
A1,
A3;
then ((
B_SUP (u,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence thesis by
A2;
end;
end;
hence thesis;
end;
then ((
Ex (u,PA,G))
'imp' u)
= (
I_el Y) by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_4:20
for u be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y st u
is_independent_of (PA,G) holds u
'<' (
All (u,PA,G))
proof
let u be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume u
is_independent_of (PA,G);
then
A1: u
is_dependent_of (
CompF (PA,G));
for z be
Element of Y holds ((u
'imp' (
All (u,PA,G)))
. z)
=
TRUE
proof
let z be
Element of Y;
A2: ((u
'imp' (
All (u,PA,G)))
. z)
= ((
'not' (u
. z))
'or' ((
All (u,PA,G))
. z)) by
BVFUNC_1:def 8;
A3: z
in (
EqClass (z,(
CompF (PA,G)))) & (
EqClass (z,(
CompF (PA,G))))
in (
CompF (PA,G)) by
EQREL_1:def 6;
now
per cases by
XBOOLEAN:def 3;
case (u
. z)
=
FALSE ;
hence thesis by
A2;
end;
case (u
. z)
=
TRUE ;
then for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (u
. x)
=
TRUE by
A1,
A3;
then ((
All (u,PA,G))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
A2;
end;
end;
hence thesis;
end;
then (u
'imp' (
All (u,PA,G)))
= (
I_el Y) by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_4:21
for u be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA,PB be
a_partition of Y st u
is_independent_of (PB,G) holds (
All (u,PA,G))
'<' (
All (u,PB,G))
proof
let u be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA,PB be
a_partition of Y;
assume u
is_independent_of (PB,G);
then
A1: u
is_dependent_of (
CompF (PB,G));
for z be
Element of Y holds (((
All (u,PA,G))
'imp' (
All (u,PB,G)))
. z)
=
TRUE
proof
let z be
Element of Y;
A2: z
in (
EqClass (z,(
CompF (PB,G)))) & (
EqClass (z,(
CompF (PB,G))))
in (
CompF (PB,G)) by
EQREL_1:def 6;
A3: (((
All (u,PA,G))
'imp' (
All (u,PB,G)))
. z)
= ((
'not' ((
All (u,PA,G))
. z))
'or' ((
All (u,PB,G))
. z)) by
BVFUNC_1:def 8;
A4: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
now
per cases by
XBOOLEAN:def 3;
case ((
All (u,PA,G))
. z)
=
FALSE ;
hence thesis by
A3;
end;
case ((
All (u,PA,G))
. z)
=
TRUE ;
then (u
. z)
=
TRUE by
A4,
BVFUNC_1:def 16;
then for x be
Element of Y st x
in (
EqClass (z,(
CompF (PB,G)))) holds (u
. x)
=
TRUE by
A1,
A2;
then ((
All (u,PB,G))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
A3;
end;
end;
hence thesis;
end;
then ((
All (u,PA,G))
'imp' (
All (u,PB,G)))
= (
I_el Y) by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_4:22
for u be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA,PB be
a_partition of Y st u
is_independent_of (PA,G) holds (
Ex (u,PA,G))
'<' (
Ex (u,PB,G))
proof
let u be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA,PB be
a_partition of Y;
assume u
is_independent_of (PA,G);
then
A1: u
is_dependent_of (
CompF (PA,G));
for z be
Element of Y holds (((
Ex (u,PA,G))
'imp' (
Ex (u,PB,G)))
. z)
=
TRUE
proof
let z be
Element of Y;
A2: z
in (
EqClass (z,(
CompF (PB,G)))) by
EQREL_1:def 6;
A3: (((
Ex (u,PA,G))
'imp' (
Ex (u,PB,G)))
. z)
= ((
'not' ((
Ex (u,PA,G))
. z))
'or' ((
Ex (u,PB,G))
. z)) by
BVFUNC_1:def 8;
A4: z
in (
EqClass (z,(
CompF (PA,G)))) & (
EqClass (z,(
CompF (PA,G))))
in (
CompF (PA,G)) by
EQREL_1:def 6;
now
per cases by
XBOOLEAN:def 3;
case ((
Ex (u,PB,G))
. z)
=
TRUE ;
hence thesis by
A3;
end;
case ((
Ex (u,PB,G))
. z)
=
FALSE ;
then (u
. z)
<>
TRUE by
A2,
BVFUNC_1:def 17;
then not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (u
. x)
=
TRUE ) by
A1,
A4;
then ((
B_SUP (u,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence thesis by
A3;
end;
end;
hence thesis;
end;
then ((
Ex (u,PA,G))
'imp' (
Ex (u,PB,G)))
= (
I_el Y) by
BVFUNC_1:def 11;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC_4:23
for a,b be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds (
All ((a
'eqv' b),PA,G))
'<' ((
All (a,PA,G))
'eqv' (
All (b,PA,G)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
let z be
Element of Y;
assume
A1: ((
All ((a
'eqv' b),PA,G))
. z)
=
TRUE ;
A2: (((
All (a,PA,G))
'eqv' (
All (b,PA,G)))
. z)
= (
'not' (((
All (a,PA,G))
. z)
'xor' ((
All (b,PA,G))
. z))) by
BVFUNC_1:def 9
.= (((((
All (a,PA,G))
. z)
'or' (
'not' ((
All (b,PA,G))
. z)))
'&' (
'not' ((
All (a,PA,G))
. z)))
'or' ((((
All (a,PA,G))
. z)
'or' (
'not' ((
All (b,PA,G))
. z)))
'&' ((
All (b,PA,G))
. z))) by
XBOOLEAN: 8
.= ((((
'not' ((
All (a,PA,G))
. z))
'&' ((
All (a,PA,G))
. z))
'or' ((
'not' ((
All (a,PA,G))
. z))
'&' (
'not' ((
All (b,PA,G))
. z))))
'or' (((
All (b,PA,G))
. z)
'&' (((
All (a,PA,G))
. z)
'or' (
'not' ((
All (b,PA,G))
. z))))) by
XBOOLEAN: 8
.= ((((
'not' ((
All (a,PA,G))
. z))
'&' ((
All (a,PA,G))
. z))
'or' ((
'not' ((
All (a,PA,G))
. z))
'&' (
'not' ((
All (b,PA,G))
. z))))
'or' ((((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z))
'or' (((
All (b,PA,G))
. z)
'&' (
'not' ((
All (b,PA,G))
. z))))) by
XBOOLEAN: 8
.= ((
FALSE
'or' ((
'not' ((
All (a,PA,G))
. z))
'&' (
'not' ((
All (b,PA,G))
. z))))
'or' ((((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z))
'or' (((
All (b,PA,G))
. z)
'&' (
'not' ((
All (b,PA,G))
. z))))) by
XBOOLEAN: 138
.= (((
'not' ((
All (a,PA,G))
. z))
'&' (
'not' ((
All (b,PA,G))
. z)))
'or' ((((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z))
'or'
FALSE )) by
XBOOLEAN: 138
.= (((
'not' ((
All (a,PA,G))
. z))
'&' (
'not' ((
All (b,PA,G))
. z)))
'or' (((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z)));
per cases ;
suppose
A3: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
hence thesis by
A2,
A3,
BVFUNC_1:def 16;
end;
suppose
A4: (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A5: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A6: (b
. x1)
<>
TRUE ;
A7: (a
. x1)
=
TRUE by
A4,
A5;
((a
'eqv' b)
. x1)
= (
'not' ((a
. x1)
'xor' (b
. x1))) by
BVFUNC_1:def 9
.=
FALSE by
A6,
A7,
XBOOLEAN:def 3;
hence thesis by
A1,
A5,
BVFUNC_1:def 16;
end;
suppose
A8: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
then
consider x1 be
Element of Y such that
A9: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A10: (a
. x1)
<>
TRUE ;
A11: (b
. x1)
=
TRUE by
A8,
A9;
((a
'eqv' b)
. x1)
= (
'not' ((a
. x1)
'xor' (b
. x1))) by
BVFUNC_1:def 9
.=
FALSE by
A10,
A11,
XBOOLEAN:def 3;
hence thesis by
A1,
A9,
BVFUNC_1:def 16;
end;
suppose
A12: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) & not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then ((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence thesis by
A2,
A12,
BVFUNC_1:def 16;
end;
end;
theorem ::
BVFUNC_4:24
for a,b be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds (
All ((a
'&' b),PA,G))
'<' (a
'&' (
All (b,PA,G)))
proof
let a,b be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
let z be
Element of Y;
assume
A1: ((
All ((a
'&' b),PA,G))
. z)
=
TRUE ;
A2:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A3: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A4: (a
. x1)
<>
TRUE ;
((a
'&' b)
. x1)
=
TRUE by
A1,
A3,
BVFUNC_1:def 16;
then
A5: ((a
. x1)
'&' (b
. x1))
=
TRUE by
MARGREL1:def 20;
(a
. x1)
=
FALSE by
A4,
XBOOLEAN:def 3;
hence contradiction by
A5;
end;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A6: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A7: (b
. x1)
<>
TRUE ;
((a
'&' b)
. x1)
=
TRUE by
A1,
A6,
BVFUNC_1:def 16;
then
A8: ((a
. x1)
'&' (b
. x1))
=
TRUE by
MARGREL1:def 20;
(b
. x1)
=
FALSE by
A7,
XBOOLEAN:def 3;
hence contradiction by
A8;
end;
then
A9: ((
B_INF (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 16;
z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
then (a
. z)
=
TRUE by
A2;
then ((a
'&' (
All (b,PA,G)))
. z)
= (
TRUE
'&'
TRUE ) by
A9,
MARGREL1:def 20
.=
TRUE ;
hence thesis;
end;
theorem ::
BVFUNC_4:25
for a,u be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds ((
All (a,PA,G))
'imp' u)
'<' (
Ex ((a
'imp' u),PA,G))
proof
let a,u be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (PA,G)))) by
EQREL_1:def 6;
assume (((
All (a,PA,G))
'imp' u)
. z)
=
TRUE ;
then
A2: ((
'not' ((
All (a,PA,G))
. z))
'or' (u
. z))
=
TRUE by
BVFUNC_1:def 8;
A3: (
'not' ((
All (a,PA,G))
. z))
=
TRUE or (
'not' ((
All (a,PA,G))
. z))
=
FALSE by
XBOOLEAN:def 3;
now
per cases by
A2,
A3;
case (
'not' ((
All (a,PA,G))
. z))
=
TRUE ;
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A5: (a
. x1)
<>
TRUE by
BVFUNC_1:def 16;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'imp' u)
. x)
=
TRUE );
then ((a
'imp' u)
. x1)
<>
TRUE by
A4;
then ((a
'imp' u)
. x1)
=
FALSE by
XBOOLEAN:def 3;
then
A6: ((
'not' (a
. x1))
'or' (u
. x1))
=
FALSE by
BVFUNC_1:def 8;
(
'not' (a
. x1))
=
TRUE or (
'not' (a
. x1))
=
FALSE by
XBOOLEAN:def 3;
hence contradiction by
A5,
A6;
end;
hence thesis by
BVFUNC_1:def 17;
end;
case
A7: (u
. z)
=
TRUE ;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & ((a
'imp' u)
. x)
=
TRUE );
then ((a
'imp' u)
. z)
<>
TRUE by
A1;
then ((a
'imp' u)
. z)
=
FALSE by
XBOOLEAN:def 3;
then ((
'not' (a
. z))
'or' (u
. z))
=
FALSE by
BVFUNC_1:def 8;
hence contradiction by
A7;
end;
hence thesis by
BVFUNC_1:def 17;
end;
end;
hence thesis;
end;
theorem ::
BVFUNC_4:26
for a,b be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds (a
'eqv' b)
= (
I_el Y) implies ((
All (a,PA,G))
'eqv' (
All (b,PA,G)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume
A1: (a
'eqv' b)
= (
I_el Y);
then (b
'imp' a)
= (
I_el Y) by
Th10;
then
A2: ((
'not' b)
'or' a)
= (
I_el Y) by
Th8;
(a
'imp' b)
= (
I_el Y) by
A1,
Th10;
then
A3: ((
'not' a)
'or' b)
= (
I_el Y) by
Th8;
for z be
Element of Y holds (((
All (a,PA,G))
'eqv' (
All (b,PA,G)))
. z)
=
TRUE
proof
let z be
Element of Y;
A4:
now
assume that
A5: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE and
A6: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
consider x1 be
Element of Y such that
A7: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A8: (b
. x1)
<>
TRUE by
A6;
A9: (a
. x1)
=
TRUE by
A5,
A7;
A10: (b
. x1)
=
FALSE by
A8,
XBOOLEAN:def 3;
(((
'not' a)
'or' b)
. x1)
= (((
'not' a)
. x1)
'or' (b
. x1)) by
BVFUNC_1:def 4
.= (
FALSE
'or'
FALSE ) by
A10,
A9,
MARGREL1:def 19
.=
FALSE ;
hence thesis by
A3,
BVFUNC_1:def 11;
end;
A11:
now
assume that
A12: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) and
A13: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
consider x1 be
Element of Y such that
A14: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A15: (a
. x1)
<>
TRUE by
A12;
A16: (b
. x1)
=
TRUE by
A13,
A14;
A17: (a
. x1)
=
FALSE by
A15,
XBOOLEAN:def 3;
(((
'not' b)
'or' a)
. x1)
= (((
'not' b)
. x1)
'or' (a
. x1)) by
BVFUNC_1:def 4
.= (
FALSE
'or'
FALSE ) by
A17,
A16,
MARGREL1:def 19
.=
FALSE ;
hence thesis by
A2,
BVFUNC_1:def 11;
end;
((
All (a,PA,G))
'eqv' (
All (b,PA,G)))
= (((
All (a,PA,G))
'imp' (
All (b,PA,G)))
'&' ((
All (b,PA,G))
'imp' (
All (a,PA,G)))) by
Th7
.= (((
'not' (
All (a,PA,G)))
'or' (
All (b,PA,G)))
'&' ((
All (b,PA,G))
'imp' (
All (a,PA,G)))) by
Th8
.= (((
'not' (
All (a,PA,G)))
'or' (
All (b,PA,G)))
'&' ((
'not' (
All (b,PA,G)))
'or' (
All (a,PA,G)))) by
Th8
.= ((((
'not' (
All (a,PA,G)))
'or' (
All (b,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' (((
'not' (
All (a,PA,G)))
'or' (
All (b,PA,G)))
'&' (
All (a,PA,G)))) by
BVFUNC_1: 12
.= ((((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' ((
All (b,PA,G))
'&' (
'not' (
All (b,PA,G)))))
'or' (((
'not' (
All (a,PA,G)))
'or' (
All (b,PA,G)))
'&' (
All (a,PA,G)))) by
BVFUNC_1: 12
.= ((((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' ((
All (b,PA,G))
'&' (
'not' (
All (b,PA,G)))))
'or' (((
'not' (
All (a,PA,G)))
'&' (
All (a,PA,G)))
'or' ((
All (b,PA,G))
'&' (
All (a,PA,G))))) by
BVFUNC_1: 12
.= ((((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' (
O_el Y))
'or' (((
'not' (
All (a,PA,G)))
'&' (
All (a,PA,G)))
'or' ((
All (b,PA,G))
'&' (
All (a,PA,G))))) by
Th5
.= ((((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' (
O_el Y))
'or' ((
O_el Y)
'or' ((
All (b,PA,G))
'&' (
All (a,PA,G))))) by
Th5
.= (((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' ((
O_el Y)
'or' ((
All (b,PA,G))
'&' (
All (a,PA,G))))) by
BVFUNC_1: 9
.= (((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
'or' ((
All (b,PA,G))
'&' (
All (a,PA,G)))) by
BVFUNC_1: 9;
then
A18: (((
All (a,PA,G))
'eqv' (
All (b,PA,G)))
. z)
= ((((
'not' (
All (a,PA,G)))
'&' (
'not' (
All (b,PA,G))))
. z)
'or' (((
All (b,PA,G))
'&' (
All (a,PA,G)))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' (
All (a,PA,G)))
. z)
'&' ((
'not' (
All (b,PA,G)))
. z))
'or' (((
All (b,PA,G))
'&' (
All (a,PA,G)))
. z)) by
MARGREL1:def 20
.= ((((
'not' (
All (a,PA,G)))
. z)
'&' ((
'not' (
All (b,PA,G)))
. z))
'or' (((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z))) by
MARGREL1:def 20
.= (((
'not' ((
All (a,PA,G))
. z))
'&' ((
'not' (
All (b,PA,G)))
. z))
'or' (((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z))) by
MARGREL1:def 19
.= (((
'not' ((
All (a,PA,G))
. z))
'&' (
'not' ((
All (b,PA,G))
. z)))
'or' (((
All (b,PA,G))
. z)
'&' ((
All (a,PA,G))
. z))) by
MARGREL1:def 19;
A19:
now
assume that
A20: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE ) and
A21: not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE );
((
B_INF (b,(
CompF (PA,G))))
. z)
=
FALSE by
A21,
BVFUNC_1:def 16;
hence thesis by
A18,
A20,
BVFUNC_1:def 16;
end;
now
assume that
A22: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (a
. x)
=
TRUE and
A23: for x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) holds (b
. x)
=
TRUE ;
((
B_INF (b,(
CompF (PA,G))))
. z)
=
TRUE by
A23,
BVFUNC_1:def 16;
hence thesis by
A18,
A22,
BVFUNC_1:def 16;
end;
hence thesis by
A4,
A11,
A19;
end;
hence thesis by
BVFUNC_1:def 11;
end;
theorem ::
BVFUNC_4:27
for a,b be
Function of Y,
BOOLEAN , G be
Subset of (
PARTITIONS Y), PA be
a_partition of Y holds (a
'eqv' b)
= (
I_el Y) implies ((
Ex (a,PA,G))
'eqv' (
Ex (b,PA,G)))
= (
I_el Y)
proof
let a,b be
Function of Y,
BOOLEAN ;
let G be
Subset of (
PARTITIONS Y);
let PA be
a_partition of Y;
assume
A1: (a
'eqv' b)
= (
I_el Y);
then (b
'imp' a)
= (
I_el Y) by
Th10;
then
A2: ((
'not' b)
'or' a)
= (
I_el Y) by
Th8;
(a
'imp' b)
= (
I_el Y) by
A1,
Th10;
then
A3: ((
'not' a)
'or' b)
= (
I_el Y) by
Th8;
for z be
Element of Y holds (((
Ex (a,PA,G))
'eqv' (
Ex (b,PA,G)))
. z)
=
TRUE
proof
let z be
Element of Y;
((
Ex (a,PA,G))
'eqv' (
Ex (b,PA,G)))
= (((
Ex (a,PA,G))
'imp' (
Ex (b,PA,G)))
'&' ((
Ex (b,PA,G))
'imp' (
Ex (a,PA,G)))) by
Th7
.= (((
'not' (
Ex (a,PA,G)))
'or' (
Ex (b,PA,G)))
'&' ((
Ex (b,PA,G))
'imp' (
Ex (a,PA,G)))) by
Th8
.= (((
'not' (
Ex (a,PA,G)))
'or' (
Ex (b,PA,G)))
'&' ((
'not' (
Ex (b,PA,G)))
'or' (
Ex (a,PA,G)))) by
Th8
.= ((((
'not' (
Ex (a,PA,G)))
'or' (
Ex (b,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' (((
'not' (
Ex (a,PA,G)))
'or' (
Ex (b,PA,G)))
'&' (
Ex (a,PA,G)))) by
BVFUNC_1: 12
.= ((((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' ((
Ex (b,PA,G))
'&' (
'not' (
Ex (b,PA,G)))))
'or' (((
'not' (
Ex (a,PA,G)))
'or' (
Ex (b,PA,G)))
'&' (
Ex (a,PA,G)))) by
BVFUNC_1: 12
.= ((((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' ((
Ex (b,PA,G))
'&' (
'not' (
Ex (b,PA,G)))))
'or' (((
'not' (
Ex (a,PA,G)))
'&' (
Ex (a,PA,G)))
'or' ((
Ex (b,PA,G))
'&' (
Ex (a,PA,G))))) by
BVFUNC_1: 12
.= ((((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' (
O_el Y))
'or' (((
'not' (
Ex (a,PA,G)))
'&' (
Ex (a,PA,G)))
'or' ((
Ex (b,PA,G))
'&' (
Ex (a,PA,G))))) by
Th5
.= ((((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' (
O_el Y))
'or' ((
O_el Y)
'or' ((
Ex (b,PA,G))
'&' (
Ex (a,PA,G))))) by
Th5
.= (((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' ((
O_el Y)
'or' ((
Ex (b,PA,G))
'&' (
Ex (a,PA,G))))) by
BVFUNC_1: 9
.= (((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
'or' ((
Ex (b,PA,G))
'&' (
Ex (a,PA,G)))) by
BVFUNC_1: 9;
then
A4: (((
Ex (a,PA,G))
'eqv' (
Ex (b,PA,G)))
. z)
= ((((
'not' (
Ex (a,PA,G)))
'&' (
'not' (
Ex (b,PA,G))))
. z)
'or' (((
Ex (b,PA,G))
'&' (
Ex (a,PA,G)))
. z)) by
BVFUNC_1:def 4
.= ((((
'not' (
Ex (a,PA,G)))
. z)
'&' ((
'not' (
Ex (b,PA,G)))
. z))
'or' (((
Ex (b,PA,G))
'&' (
Ex (a,PA,G)))
. z)) by
MARGREL1:def 20
.= ((((
'not' (
Ex (a,PA,G)))
. z)
'&' ((
'not' (
Ex (b,PA,G)))
. z))
'or' (((
Ex (b,PA,G))
. z)
'&' ((
Ex (a,PA,G))
. z))) by
MARGREL1:def 20
.= (((
'not' ((
Ex (a,PA,G))
. z))
'&' ((
'not' (
Ex (b,PA,G)))
. z))
'or' (((
Ex (b,PA,G))
. z)
'&' ((
Ex (a,PA,G))
. z))) by
MARGREL1:def 19
.= (((
'not' ((
Ex (a,PA,G))
. z))
'&' (
'not' ((
Ex (b,PA,G))
. z)))
'or' (((
Ex (b,PA,G))
. z)
'&' ((
Ex (a,PA,G))
. z))) by
MARGREL1:def 19;
per cases ;
suppose
A5: (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE ;
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
hence thesis by
A4,
A5,
BVFUNC_1:def 17;
end;
suppose
A6: (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then
consider x1 be
Element of Y such that
A7: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A8: (a
. x1)
=
TRUE ;
(b
. x1)
<>
TRUE by
A6,
A7;
then
A9: (b
. x1)
=
FALSE by
XBOOLEAN:def 3;
(((
'not' a)
'or' b)
. x1)
= (((
'not' a)
. x1)
'or' (b
. x1)) by
BVFUNC_1:def 4
.= (
FALSE
'or'
FALSE ) by
A8,
A9,
MARGREL1:def 19
.=
FALSE ;
hence thesis by
A3,
BVFUNC_1:def 11;
end;
suppose
A10: not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE ;
then
consider x1 be
Element of Y such that
A11: x1
in (
EqClass (z,(
CompF (PA,G)))) and
A12: (b
. x1)
=
TRUE ;
(a
. x1)
<>
TRUE by
A10,
A11;
then
A13: (a
. x1)
=
FALSE by
XBOOLEAN:def 3;
(((
'not' b)
'or' a)
. x1)
= (((
'not' b)
. x1)
'or' (a
. x1)) by
BVFUNC_1:def 4
.= (
FALSE
'or'
FALSE ) by
A12,
A13,
MARGREL1:def 19
.=
FALSE ;
hence thesis by
A2,
BVFUNC_1:def 11;
end;
suppose
A14: not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (a
. x)
=
TRUE ) & not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (PA,G)))) & (b
. x)
=
TRUE );
then ((
B_SUP (b,(
CompF (PA,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
hence thesis by
A4,
A14,
BVFUNC_1:def 17;
end;
end;
hence thesis by
BVFUNC_1:def 11;
end;