catalan1.miz
begin
theorem ::
CATALAN1:1
Th1: for n be
Nat st n
> 1 holds (n
-' 1)
<= ((2
* n)
-' 3)
proof
let n be
Nat;
assume
A1: n
> 1;
then (n
-' 1)
> (1
-' 1) by
NAT_D: 57;
then
A2: ((n
-' 1)
+ n)
> (
0
+ n) by
XREAL_1: 6;
(2
* 1)
< (2
* n) by
A1,
XREAL_1: 68;
then (2
+ 1)
<= (2
* n) by
NAT_1: 13;
then
A3: ((2
* n)
-' 3)
= ((2
* n)
- 3) by
XREAL_1: 233;
(n
-' 1)
= (n
- 1) by
A1,
XREAL_1: 233;
then (((2
* n)
- 1)
- 1)
> (n
- 1) by
A2,
XREAL_1: 9;
then (((2
* n)
- 2)
- 1)
>= (n
- 1) by
INT_1: 52;
hence thesis by
A1,
A3,
XREAL_1: 233;
end;
theorem ::
CATALAN1:2
Th2: for n be
Nat st n
>= 1 holds (n
-' 1)
<= ((2
* n)
-' 2)
proof
let n be
Nat;
assume
A1: n
>= 1;
then (2
* 1)
<= (2
* n) by
XREAL_1: 64;
then
A2: (1
* (n
-' 1))
<= (2
* (n
-' 1)) & ((2
* n)
-' 2)
= ((2
* n)
- 2) by
XREAL_1: 64,
XREAL_1: 233;
(n
-' 1)
= (n
- 1) by
A1,
XREAL_1: 233;
hence thesis by
A2;
end;
theorem ::
CATALAN1:3
Th3: for n be
Nat st n
> 1 holds n
< ((2
* n)
-' 1)
proof
let n be
Nat;
assume
A1: n
> 1;
then (n
+ n)
> (n
+ 1) by
XREAL_1: 6;
then
A2: ((n
+ n)
- 1)
> ((n
+ 1)
- 1) by
XREAL_1: 9;
(1
* 2)
< (2
* n) by
A1,
XREAL_1: 68;
hence thesis by
A2,
XREAL_1: 233,
XXREAL_0: 2;
end;
theorem ::
CATALAN1:4
Th4: for n be
Nat st n
> 1 holds ((n
-' 2)
+ 1)
= (n
-' 1)
proof
let n be
Nat;
assume n
> 1;
then
A1: (n
-' 1)
>= 1 by
NAT_D: 49;
((n
-' 2)
+ 1)
= (((n
-' 1)
-' 1)
+ 1) by
NAT_D: 45
.= (n
-' 1) by
A1,
XREAL_1: 235;
hence thesis;
end;
theorem ::
CATALAN1:5
for n be
Nat st n
> 1 holds ((((4
* n)
* n)
- (2
* n))
/ (n
+ 1))
> 1
proof
defpred
P[
Nat] means ((((4
* $1)
* $1)
- (2
* $1))
/ ($1
+ 1))
> 1;
let n be
Nat;
A1: for k be non
trivial
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
trivial
Nat such that
A2:
P[k];
set k1 = (k
+ 1);
((((4
* k)
* k)
- (2
* k))
/ (k
+ 1))
= ((((4
* k)
* k)
- (2
* k))
* (1
/ (k
+ 1))) by
XCMPLX_1: 99;
then (((((4
* k)
* k)
- (2
* k))
* (1
/ (k
+ 1)))
* (k
+ 1))
> (1
* (k
+ 1)) by
A2,
XREAL_1: 68;
then (((4
* k)
* k)
- (2
* k))
> (1
* (k
+ 1)) by
XCMPLX_1: 109;
then ((((4
* k)
* k)
- (2
* k))
- (k
+ 1))
>
0 by
XREAL_1: 50;
then (((((4
* k)
* k)
- (3
* k))
- 1)
+ ((8
* k)
+ 1))
> (
0
+
0 );
then (((((4
* k1)
* k1)
- (2
* k1))
- (k1
+ 1))
+ (k1
+ 1))
> (
0
+ (k1
+ 1)) by
XREAL_1: 8;
then ((((4
* k1)
* k1)
- (2
* k1))
/ (k1
+ 1))
> ((k1
+ 1)
/ (k1
+ 1)) by
XREAL_1: 74;
hence thesis by
XCMPLX_1: 60;
end;
assume n
> 1;
then
A3: n is non
trivial by
NAT_2: 28;
A4:
P[2];
for k be non
trivial
Nat holds
P[k] from
NAT_2:sch 2(
A4,
A1);
hence thesis by
A3;
end;
theorem ::
CATALAN1:6
Th6: for n be
Nat st n
> 1 holds (((((2
* n)
-' 2)
! )
* n)
* (n
+ 1))
< ((2
* n)
! )
proof
let n be
Nat;
assume
A1: n
> 1;
then
A2: (2
* 1)
< (2
* n) by
XREAL_1: 68;
then
A3: (((2
* n)
-' 1)
+ 1)
= (2
* n) by
XREAL_1: 235,
XXREAL_0: 2;
(2
- 1)
< ((2
* n)
- 1) by
A2,
XREAL_1: 9;
then
A4: 1
< ((2
* n)
-' 1) by
A2,
XREAL_1: 233,
XXREAL_0: 2;
(((2
* n)
-' 2)
+ 1)
= ((((2
* n)
-' 1)
-' 1)
+ 1) by
NAT_D: 45
.= ((2
* n)
-' 1) by
A4,
XREAL_1: 235;
then
A5: (((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1))
* (2
* n))
= ((((2
* n)
-' 1)
! )
* (2
* n)) by
NEWTON: 15
.= ((2
* n)
! ) by
A3,
NEWTON: 15;
(((2
* n)
-' 2)
! )
>
0 by
NEWTON: 17;
then
A6: ((((2
* n)
-' 2)
! )
* n)
> (
0
* n) & ((((2
* n)
-' 2)
! )
* n)
< ((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1)) by
A1,
Th3,
XREAL_1: 68;
(n
+ 1)
< (n
+ n) by
A1,
XREAL_1: 6;
hence thesis by
A5,
A6,
XREAL_1: 98;
end;
theorem ::
CATALAN1:7
Th7: for n be
Nat holds (2
* (2
- (3
/ (n
+ 1))))
< 4
proof
let n be
Nat;
assume (2
* (2
- (3
/ (n
+ 1))))
>= 4;
then ((2
* (2
- (3
/ (n
+ 1))))
/ 2)
>= (4
/ 2) by
XREAL_1: 72;
then ((2
- (3
/ (n
+ 1)))
- 2)
>= (2
- 2) by
XREAL_1: 9;
then (
- (
- (
- (3
/ (n
+ 1)))))
>=
0 ;
hence thesis by
XREAL_1: 139;
end;
begin
definition
let n be
Nat;
::
CATALAN1:def1
func
Catalan (n) ->
Real equals ((((2
* n)
-' 2)
choose (n
-' 1))
/ n);
coherence ;
end
theorem ::
CATALAN1:8
Th8: for n be
Nat st n
> 1 holds (
Catalan n)
= ((((2
* n)
-' 2)
! )
/ (((n
-' 1)
! )
* (n
! )))
proof
let n be
Nat;
assume
A1: n
> 1;
then
A2: (2
* 1)
<= (2
* n) by
XREAL_1: 64;
A3: ((n
-' 1)
+ 1)
= n by
A1,
XREAL_1: 235;
A4: (n
-' 1)
<= ((2
* n)
-' 2) by
A1,
Th2;
(((2
* n)
-' 2)
- (n
-' 1))
= (((2
* n)
-' 2)
- (n
- 1)) by
A1,
XREAL_1: 233
.= (((2
* n)
- 2)
- (n
- 1)) by
A2,
XREAL_1: 233
.= (n
-' 1) by
A1,
XREAL_1: 233;
then (((2
* n)
-' 2)
choose (n
-' 1))
= ((((2
* n)
-' 2)
! )
/ (((n
-' 1)
! )
* ((n
-' 1)
! ))) by
A4,
NEWTON:def 3;
then (
Catalan n)
= ((((2
* n)
-' 2)
! )
/ ((((n
-' 1)
! )
* ((n
-' 1)
! ))
* n)) by
XCMPLX_1: 78
.= ((((2
* n)
-' 2)
! )
/ (((n
-' 1)
! )
* (((n
-' 1)
! )
* n)))
.= ((((2
* n)
-' 2)
! )
/ (((n
-' 1)
! )
* (n
! ))) by
A3,
NEWTON: 15;
hence thesis;
end;
theorem ::
CATALAN1:9
Th9: for n be
Nat st n
> 1 holds (
Catalan n)
= ((4
* (((2
* n)
-' 3)
choose (n
-' 1)))
- (((2
* n)
-' 1)
choose (n
-' 1)))
proof
let n be
Nat;
assume
A1: n
> 1;
then
A2: (n
-' 1)
<= ((2
* n)
-' 3) by
Th1;
A3: (2
* 1)
<= (2
* n) by
A1,
XREAL_1: 64;
then
A4: ((2
* n)
-' 2)
= ((2
* n)
- 2) by
XREAL_1: 233;
A5: (1
+ 1)
<= n by
A1,
NAT_1: 13;
then
A6: (2
* 2)
<= (2
* n) by
XREAL_1: 64;
then ((2
* n)
-' 3)
= ((2
* n)
- 3) by
XREAL_1: 233,
XXREAL_0: 2;
then
A7: (((2
* n)
-' 3)
+ 1)
= ((2
* n)
- 2)
.= ((2
* n)
-' 2) by
A3,
XREAL_1: 233;
(((2
* n)
-' 3)
- (n
-' 1))
= (((2
* n)
-' 3)
- (n
- 1)) by
A1,
XREAL_1: 233
.= (((2
* n)
- 3)
- (n
- 1)) by
A6,
XREAL_1: 233,
XXREAL_0: 2
.= (n
- 2)
.= (n
-' 2) by
A5,
XREAL_1: 233;
then (((2
* n)
-' 3)
choose (n
-' 1))
= ((((2
* n)
-' 3)
! )
/ (((n
-' 1)
! )
* ((n
-' 2)
! ))) by
A2,
NEWTON:def 3;
then
A8: (4
* (((2
* n)
-' 3)
choose (n
-' 1)))
= ((4
* (((2
* n)
-' 3)
! ))
/ (((n
-' 1)
! )
* ((n
-' 2)
! ))) by
XCMPLX_1: 74;
A9: ((n
-' 2)
+ 1)
= (n
-' 1) by
A1,
Th4;
A10: (n
-' 1)
= (n
- 1) by
A1,
XREAL_1: 233;
then
A11: ((n
-' 1)
+ 1)
= n;
A12: (1
* n)
< (2
* n) by
A1,
XREAL_1: 68;
then
A13: ((2
* n)
-' 1)
= ((2
* n)
- 1) by
A1,
XREAL_1: 233,
XXREAL_0: 2;
1
< (2
* n) by
A1,
A12,
XXREAL_0: 2;
then
A14: (((2
* n)
-' 2)
+ 1)
= ((2
* n)
-' 1) by
Th4;
1
< (2
* n) by
A1,
A12,
XXREAL_0: 2;
then
A15: (n
-' 1)
< ((2
* n)
-' 1) by
A12,
NAT_D: 57;
(((2
* n)
-' 1)
- (n
-' 1))
= (((2
* n)
-' 1)
- (n
- 1)) by
A1,
XREAL_1: 233
.= ((((2
* n)
-' 1)
- n)
+ 1)
.= ((((2
* n)
- 1)
- n)
+ 1) by
A1,
A12,
XREAL_1: 233,
XXREAL_0: 2
.= n;
then (((2
* n)
-' 1)
choose (n
-' 1))
= ((((2
* n)
-' 1)
! )
/ (((n
-' 1)
! )
* (n
! ))) by
A15,
NEWTON:def 3;
then
A16: (((2
* n)
-' 1)
choose (n
-' 1))
= (((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1))
/ (((n
-' 1)
! )
* (n
! ))) by
A14,
NEWTON: 15;
(n
- 1)
>
0 by
A1,
XREAL_1: 50;
then (4
* (((2
* n)
-' 3)
choose (n
-' 1)))
= (((n
* (n
- 1))
* (4
* (((2
* n)
-' 3)
! )))
/ ((n
* (n
- 1))
* (((n
-' 1)
! )
* ((n
-' 2)
! )))) by
A1,
A8,
XCMPLX_1: 6,
XCMPLX_1: 91
.= ((((n
- 1)
* n)
* (4
* (((2
* n)
-' 3)
! )))
/ (((n
- 1)
* (n
* ((n
-' 1)
! )))
* ((n
-' 2)
! )))
.= ((((n
- 1)
* n)
* (4
* (((2
* n)
-' 3)
! )))
/ (((n
- 1)
* (n
! ))
* ((n
-' 2)
! ))) by
A11,
NEWTON: 15
.= ((((n
- 1)
* n)
* (4
* (((2
* n)
-' 3)
! )))
/ ((n
! )
* ((n
-' 1)
* ((n
-' 2)
! )))) by
A10
.= (((2
* n)
* (((2
* n)
-' 2)
* (((2
* n)
-' 3)
! )))
/ ((n
! )
* ((n
-' 1)
! ))) by
A4,
A9,
NEWTON: 15
.= (((2
* n)
* (((2
* n)
-' 2)
! ))
/ ((n
! )
* ((n
-' 1)
! ))) by
A7,
NEWTON: 15;
then ((4
* (((2
* n)
-' 3)
choose (n
-' 1)))
- (((2
* n)
-' 1)
choose (n
-' 1)))
= ((((2
* n)
* (((2
* n)
-' 2)
! ))
- ((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1)))
/ ((n
! )
* ((n
-' 1)
! ))) by
A16,
XCMPLX_1: 120
.= (
Catalan n) by
A1,
A13,
Th8;
hence thesis;
end;
theorem ::
CATALAN1:10
(
Catalan
0 )
=
0 ;
theorem ::
CATALAN1:11
Th11: (
Catalan 1)
= 1
proof
(
Catalan 1)
= (((2
* 1)
-' 2)
choose
0 ) by
XREAL_1: 232
.= 1 by
NEWTON: 19;
hence thesis;
end;
theorem ::
CATALAN1:12
Th12: (
Catalan 2)
= 1
proof
A1: (4
-' 2)
= (4
- 2) by
XREAL_1: 233
.= 2;
(2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
then (
Catalan 2)
= (2
/ 2) by
A1,
NEWTON: 23
.= 1;
hence thesis;
end;
theorem ::
CATALAN1:13
Th13: for n be
Nat holds (
Catalan n) is
Integer
proof
let n be
Nat;
per cases by
NAT_1: 25;
suppose n
=
0 ;
hence thesis;
end;
suppose n
= 1;
hence thesis;
end;
suppose n
> 1;
then (
Catalan n)
= ((4
* (((2
* n)
-' 3)
choose (n
-' 1)))
- (((2
* n)
-' 1)
choose (n
-' 1))) by
Th9;
hence thesis;
end;
end;
theorem ::
CATALAN1:14
Th14: for k be
Nat holds (
Catalan (k
+ 1))
= (((2
* k)
! )
/ ((k
! )
* ((k
+ 1)
! )))
proof
let k be
Nat;
reconsider l = ((2
* k)
- k) as
Nat;
l
= k & (1
* k)
<= (2
* k) by
XREAL_1: 64;
then
A1: ((2
* k)
choose k)
= (((2
* k)
! )
/ ((k
! )
* (k
! ))) by
NEWTON:def 3;
(((2
* k)
+ 2)
-' 2)
= (2
* k) & ((k
+ 1)
-' 1)
= k by
NAT_D: 34;
then (
Catalan (k
+ 1))
= (((2
* k)
! )
/ (((k
! )
* (k
! ))
* (k
+ 1))) by
A1,
XCMPLX_1: 78
.= (((2
* k)
! )
/ ((k
! )
* ((k
! )
* (k
+ 1))))
.= (((2
* k)
! )
/ ((k
! )
* ((k
+ 1)
! ))) by
NEWTON: 15;
hence thesis;
end;
theorem ::
CATALAN1:15
Th15: for n be
Nat st n
> 1 holds (
Catalan n)
< (
Catalan (n
+ 1))
proof
let n be
Nat;
set a = (((2
* n)
-' 2)
! );
set b = ((2
* n)
! );
A1: (
Catalan (n
+ 1))
= (((2
* n)
! )
/ ((n
! )
* ((n
+ 1)
! ))) by
Th14;
assume
A2: n
> 1;
then ((n
-' 1)
+ 1)
= n by
XREAL_1: 235;
then
A3: (((a
* n)
* (n
+ 1))
/ ((n
! )
* ((n
+ 1)
! )))
= (((a
* n)
* (n
+ 1))
/ ((n
* ((n
-' 1)
! ))
* ((n
+ 1)
! ))) by
NEWTON: 15
.= ((n
* (a
* (n
+ 1)))
/ (n
* (((n
-' 1)
! )
* ((n
+ 1)
! ))))
.= ((a
* (n
+ 1))
/ (((n
-' 1)
! )
* ((n
+ 1)
! ))) by
A2,
XCMPLX_1: 91
.= ((a
* (n
+ 1))
/ (((n
-' 1)
! )
* ((n
+ 1)
* (n
! )))) by
NEWTON: 15
.= ((a
* (n
+ 1))
/ ((((n
-' 1)
! )
* (n
! ))
* (n
+ 1)))
.= (a
/ (((n
-' 1)
! )
* (n
! ))) by
XCMPLX_1: 91;
(n
! )
>
0 & ((n
+ 1)
! )
>
0 by
NEWTON: 17;
then ((n
! )
* ((n
+ 1)
! ))
> (
0
* (n
! )) by
XREAL_1: 68;
then (((a
* n)
* (n
+ 1))
/ ((n
! )
* ((n
+ 1)
! )))
< (b
/ ((n
! )
* ((n
+ 1)
! ))) by
A2,
Th6,
XREAL_1: 74;
hence thesis by
A2,
A1,
A3,
Th8;
end;
theorem ::
CATALAN1:16
Th16: for n be
Nat holds (
Catalan n)
<= (
Catalan (n
+ 1))
proof
let n be
Nat;
per cases by
NAT_1: 25;
suppose n
=
0 ;
hence thesis;
end;
suppose n
= 1;
hence thesis by
Th11,
Th12;
end;
suppose n
> 1;
hence thesis by
Th15;
end;
end;
theorem ::
CATALAN1:17
for n be
Nat holds (
Catalan n)
>=
0 ;
theorem ::
CATALAN1:18
Th18: for n be
Nat holds (
Catalan n) is
Element of
NAT
proof
let n be
Nat;
(
Catalan n) is
Integer by
Th13;
hence thesis by
INT_1: 3;
end;
theorem ::
CATALAN1:19
Th19: for n be
Nat st n
>
0 holds (
Catalan (n
+ 1))
= ((2
* (2
- (3
/ (n
+ 1))))
* (
Catalan n))
proof
let n be
Nat;
assume
A1: n
>
0 ;
then
A2: n
>= (1
+
0 ) by
NAT_1: 13;
then
A3: (2
* (n
-' 1))
= (2
* (n
- 1)) by
XREAL_1: 233
.= ((2
* n)
- (2
* 1))
.= ((2
* n)
-' 2) by
A2,
XREAL_1: 64,
XREAL_1: 233;
A4: (
Catalan n)
= (
Catalan ((n
-' 1)
+ 1)) by
A2,
XREAL_1: 235
.= (((2
* (n
-' 1))
! )
/ (((n
-' 1)
! )
* (((n
-' 1)
+ 1)
! ))) by
Th14
.= ((((2
* n)
-' 2)
! )
/ (((n
-' 1)
! )
* (n
! ))) by
A2,
A3,
XREAL_1: 235;
A5: ((n
-' 1)
+ 1)
= n by
A2,
XREAL_1: 235;
A6: (1
* 2)
<= (2
* n) by
A2,
XREAL_1: 64;
then
A7: ((2
* n)
-' 1)
= ((2
* n)
- 1) by
XREAL_1: 233,
XXREAL_0: 2;
A8: (2
* (2
- (3
/ (n
+ 1))))
= (2
* (((2
* (n
+ 1))
/ (n
+ 1))
- (3
/ (n
+ 1)))) by
XCMPLX_1: 89
.= (2
* (((2
* (n
+ 1))
- 3)
/ (n
+ 1))) by
XCMPLX_1: 120
.= ((2
* ((2
* n)
- 1))
/ (n
+ 1)) by
XCMPLX_1: 74
.= (((((2
* n)
-' 1)
* 2)
* n)
/ (n
* (n
+ 1))) by
A1,
A7,
XCMPLX_1: 91
.= ((((2
* n)
-' 1)
* (2
* n))
/ (n
* (n
+ 1)));
A9: (((2
* n)
-' 1)
+ 1)
= (2
* n) by
A6,
XREAL_1: 235,
XXREAL_0: 2;
1
< (2
* n) by
A6,
XXREAL_0: 2;
then
A10: (((2
* n)
-' 2)
+ 1)
= ((2
* n)
-' 1) by
Th4;
(
Catalan (n
+ 1))
= (((2
* n)
! )
/ ((n
! )
* ((n
+ 1)
! ))) by
Th14
.= (((((2
* n)
-' 1)
! )
* (2
* n))
/ ((n
! )
* ((n
+ 1)
! ))) by
A9,
NEWTON: 15
.= ((((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1))
* (2
* n))
/ ((n
! )
* ((n
+ 1)
! ))) by
A10,
NEWTON: 15
.= ((((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1))
* (2
* n))
/ ((n
! )
* ((n
! )
* (n
+ 1)))) by
NEWTON: 15
.= ((((((2
* n)
-' 2)
! )
* ((2
* n)
-' 1))
* (2
* n))
/ ((n
! )
* ((((n
-' 1)
! )
* n)
* (n
+ 1)))) by
A5,
NEWTON: 15
.= (((((2
* n)
-' 2)
! )
* (((2
* n)
-' 1)
* (2
* n)))
/ (((n
! )
* ((n
-' 1)
! ))
* (n
* (n
+ 1))))
.= ((
Catalan n)
* ((((2
* n)
-' 1)
* (2
* n))
/ (n
* (n
+ 1)))) by
A4,
XCMPLX_1: 76;
hence thesis by
A8;
end;
registration
let n be
Nat;
cluster (
Catalan n) ->
natural;
coherence by
Th18;
end
theorem ::
CATALAN1:20
Th20: for n be
Nat st n
>
0 holds (
Catalan n)
>
0
proof
defpred
P[
Nat] means (
Catalan $1)
>
0 ;
let n be
Nat;
assume
A1: n
>
0 ;
A2: for n be non
zero
Nat st
P[n] holds
P[(n
+ 1)] by
Th16;
A3:
P[1] by
Th11;
for n be non
zero
Nat holds
P[n] from
NAT_1:sch 10(
A3,
A2);
hence thesis by
A1;
end;
registration
let n be non
zero
Nat;
cluster (
Catalan n) -> non
zero;
coherence by
Th20;
end
theorem ::
CATALAN1:21
for n be
Nat st n
>
0 holds (
Catalan (n
+ 1))
< (4
* (
Catalan n))
proof
let n be
Nat;
assume
A1: n
>
0 ;
then (
Catalan (n
+ 1))
= ((2
* (2
- (3
/ (n
+ 1))))
* (
Catalan n)) by
Th19;
hence thesis by
A1,
Th7,
XREAL_1: 68;
end;