genealg1.miz
begin
reserve D for non
empty
set;
reserve f1,f2 for
FinSequence of D;
reserve i,n,n1,n2,n3,n4,n5,n6 for
Element of
NAT ;
theorem ::
GENEALG1:1
Th1: for n be
Nat holds n
<= (
len f1) implies ((f1
^ f2)
/^ n)
= ((f1
/^ n)
^ f2)
proof
let n be
Nat;
assume
A1: n
<= (
len f1);
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
(
len (f1
^ f2))
= ((
len f1)
+ (
len f2)) by
FINSEQ_1: 22;
then (
len f1)
<= (
len (f1
^ f2)) by
NAT_1: 11;
then
A2: n
<= (
len (f1
^ f2)) by
A1,
XXREAL_0: 2;
then
A3: (
len ((f1
^ f2)
/^ n))
= ((
len (f1
^ f2))
- n) by
RFINSEQ:def 1;
A4: (
len ((f1
/^ n)
^ f2))
= ((
len (f1
/^ n))
+ (
len f2)) by
FINSEQ_1: 22
.= (((
len f1)
- n)
+ (
len f2)) by
A1,
RFINSEQ:def 1
.= (((
len f1)
+ (
len f2))
- n);
A5: for i be
Nat st 1
<= i & i
<= (
len ((f1
^ f2)
/^ n)) holds (((f1
^ f2)
/^ n)
. i)
= (((f1
/^ n)
^ f2)
. i)
proof
let i be
Nat;
assume that
A6: 1
<= i and
A7: i
<= (
len ((f1
^ f2)
/^ n));
i
in (
Seg (
len ((f1
^ f2)
/^ n))) by
A6,
A7,
FINSEQ_1: 1;
then
A8: i
in (
dom ((f1
^ f2)
/^ n)) by
FINSEQ_1:def 3;
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
now
per cases ;
suppose
A9: i
<= ((
len f1)
- n);
i
<= (i
+ n) by
NAT_1: 11;
then
A10: 1
<= (i
+ n) by
A6,
XXREAL_0: 2;
(i
+ n)
<= (
len f1) by
A9,
XREAL_1: 19;
then (i
+ n)
in (
Seg (
len f1)) by
A10,
FINSEQ_1: 1;
then
A11: (i
+ n)
in (
dom f1) by
FINSEQ_1:def 3;
i
<= (
len (f1
/^ n)) by
A1,
A9,
RFINSEQ:def 1;
then i
in (
Seg (
len (f1
/^ n))) by
A6,
FINSEQ_1: 1;
then
A12: i
in (
dom (f1
/^ n)) by
FINSEQ_1:def 3;
then
A13: (((f1
/^ n)
^ f2)
. i)
= ((f1
/^ n)
. i) by
FINSEQ_1:def 7
.= (f1
. (i
+ n)) by
A1,
A12,
RFINSEQ:def 1;
(((f1
^ f2)
/^ n)
. i)
= ((f1
^ f2)
. (i
+ n)) by
A2,
A8,
RFINSEQ:def 1
.= (f1
. (i
+ n)) by
A11,
FINSEQ_1:def 7;
hence thesis by
A13;
end;
suppose
A14: ((
len f1)
- n)
< i;
then
A15: (
len (f1
/^ n))
< i by
A1,
RFINSEQ:def 1;
i
<= (
len ((f1
/^ n)
^ f2)) by
A3,
A4,
A7,
FINSEQ_1: 22;
then
A16: (((f1
/^ n)
^ f2)
. i)
= (f2
. (i
- (
len (f1
/^ n)))) by
A15,
FINSEQ_1: 24
.= (f2
. (i
- ((
len f1)
- n))) by
A1,
RFINSEQ:def 1
.= (f2
. ((i
+ n)
- (
len f1)));
A17: (i
+ n)
<= (
len (f1
^ f2)) by
A3,
A7,
XREAL_1: 19;
A18: (
len f1)
< (i
+ n) by
A14,
XREAL_1: 19;
(((f1
^ f2)
/^ n)
. i)
= ((f1
^ f2)
. (i
+ n)) by
A2,
A8,
RFINSEQ:def 1
.= (f2
. ((i
+ n)
- (
len f1))) by
A18,
A17,
FINSEQ_1: 24;
hence thesis by
A16;
end;
end;
hence thesis;
end;
(
len ((f1
^ f2)
/^ n))
= (
len ((f1
/^ n)
^ f2)) by
A3,
A4,
FINSEQ_1: 22;
hence thesis by
A5,
FINSEQ_1: 14;
end;
theorem ::
GENEALG1:2
Th2: ((f1
^ f2)
| ((
len f1)
+ i))
= (f1
^ (f2
| i))
proof
((f1
^ f2)
| ((
len f1)
+ i))
= ((f1
^ f2)
| (
Seg ((
len f1)
+ i))) & (f2
| i)
= (f2
| (
Seg i)) by
FINSEQ_1:def 15;
hence thesis by
FINSEQ_6: 14;
end;
definition
mode
Gene-Set is
non-empty non
empty
FinSequence;
end
notation
let S be
Gene-Set;
synonym
GA-Space S for
Union S;
end
registration
let f be
non-empty non
empty
Function;
cluster (
Union f) -> non
empty;
coherence
proof
(
Union f)
= (
union (
rng f)) by
CARD_3:def 4;
hence thesis;
end;
end
definition
let S be
Gene-Set;
::
GENEALG1:def1
mode
Individual of S ->
FinSequence of (
GA-Space S) means
:
Def1: (
len it )
= (
len S) & for i st i
in (
dom it ) holds (it
. i)
in (S
. i);
existence
proof
defpred
P[
set,
set] means $2
in (S
. $1);
A1: for k be
Nat st k
in (
Seg (
len S)) holds ex x be
Element of (
GA-Space S) st
P[k, x]
proof
let k be
Nat;
assume
A2: k
in (
Seg (
len S));
then
reconsider k9 = k as
Element of (
dom S) by
FINSEQ_1:def 3;
(S
. k9)
<>
{} ;
then
consider x be
Element of (S
. k) such that
A3: x
in (
[#] (S
. k)) by
SUBSET_1: 4;
k
in (
dom S) by
A2,
FINSEQ_1:def 3;
then (S
. k)
in (
rng S) by
FUNCT_1:def 3;
then (
[#] (S
. k))
c= (
union (
rng S)) by
ZFMISC_1: 74;
then
reconsider x as
Element of (
GA-Space S) by
A3,
CARD_3:def 4;
take x;
thus thesis by
A3;
end;
consider IT be
FinSequence of (
GA-Space S) such that
A4: (
dom IT)
= (
Seg (
len S)) & for k be
Nat st k
in (
Seg (
len S)) holds
P[k, (IT
. k)] from
FINSEQ_1:sch 5(
A1);
take IT;
thus thesis by
A4,
FINSEQ_1:def 3;
end;
end
begin
definition
let S be
Gene-Set, p1,p2 be
FinSequence of (
GA-Space S), n;
::
GENEALG1:def2
func
crossover (p1,p2,n) ->
FinSequence of (
GA-Space S) equals ((p1
| n)
^ (p2
/^ n));
correctness ;
end
definition
let S be
Gene-Set, p1,p2 be
FinSequence of (
GA-Space S), n1, n2;
::
GENEALG1:def3
func
crossover (p1,p2,n1,n2) ->
FinSequence of (
GA-Space S) equals (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n2));
correctness ;
end
definition
let S be
Gene-Set, p1,p2 be
FinSequence of (
GA-Space S), n1, n2, n3;
::
GENEALG1:def4
func
crossover (p1,p2,n1,n2,n3) ->
FinSequence of (
GA-Space S) equals (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2)),n3));
correctness ;
end
definition
let S be
Gene-Set, p1,p2 be
FinSequence of (
GA-Space S), n1, n2, n3, n4;
::
GENEALG1:def5
func
crossover (p1,p2,n1,n2,n3,n4) ->
FinSequence of (
GA-Space S) equals (
crossover ((
crossover (p1,p2,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3)),n4));
correctness ;
end
definition
let S be
Gene-Set, p1,p2 be
FinSequence of (
GA-Space S), n1, n2, n3, n4, n5;
::
GENEALG1:def6
func
crossover (p1,p2,n1,n2,n3,n4,n5) ->
FinSequence of (
GA-Space S) equals (
crossover ((
crossover (p1,p2,n1,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5));
correctness ;
end
definition
let S be
Gene-Set, p1,p2 be
FinSequence of (
GA-Space S), n1, n2, n3, n4, n5, n6;
::
GENEALG1:def7
func
crossover (p1,p2,n1,n2,n3,n4,n5,n6) ->
FinSequence of (
GA-Space S) equals (
crossover ((
crossover (p1,p2,n1,n2,n3,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6));
correctness ;
end
begin
reserve S for
Gene-Set;
reserve p1,p2 for
Individual of S;
theorem ::
GENEALG1:3
Th3: (
crossover (p1,p2,n)) is
Individual of S
proof
A1: (
len (
crossover (p1,p2,n)))
= (
len S)
proof
A2: (
len (
crossover (p1,p2,n)))
= ((
len (p1
| n))
+ (
len (p2
/^ n))) by
FINSEQ_1: 22;
now
per cases ;
suppose
A3: n
<= (
len p1);
(
len (p2
/^ n))
= ((
len p2)
-' n) by
RFINSEQ: 29
.= ((
len S)
-' n) by
Def1
.= ((
len p1)
-' n) by
Def1
.= ((
len p1)
- n) by
A3,
XREAL_1: 233;
then (
len (
crossover (p1,p2,n)))
= (n
+ ((
len p1)
- n)) by
A2,
A3,
FINSEQ_1: 59
.= (
len p1);
hence thesis by
Def1;
end;
suppose
A4: n
> (
len p1);
(p1
| n)
= (p1
| (
Seg n)) by
FINSEQ_1:def 15;
then
A5: (p1
| n)
= p1 by
A4,
FINSEQ_2: 20;
A6: ((
len p1)
- n)
<
0 by
A4,
XREAL_1: 49;
(
len (p2
/^ n))
= ((
len p2)
-' n) by
RFINSEQ: 29
.= ((
len S)
-' n) by
Def1
.= ((
len p1)
-' n) by
Def1
.=
0 by
A6,
XREAL_0:def 2;
hence thesis by
A2,
A5,
Def1;
end;
end;
hence thesis;
end;
for i st i
in (
dom (
crossover (p1,p2,n))) holds ((
crossover (p1,p2,n))
. i)
in (S
. i)
proof
let i;
assume
A7: i
in (
dom (
crossover (p1,p2,n)));
now
per cases by
A7,
FINSEQ_1: 25;
suppose
A8: i
in (
dom (p1
| n));
A9: (
dom (p1
| n))
c= (
dom p1) by
FINSEQ_5: 18;
((p1
| n)
. i)
= ((p1
| n)
/. i) by
A8,
PARTFUN1:def 6
.= (p1
/. i) by
A8,
FINSEQ_4: 70
.= (p1
. i) by
A8,
A9,
PARTFUN1:def 6;
then ((p1
| n)
. i)
in (S
. i) by
A8,
A9,
Def1;
hence thesis by
A8,
FINSEQ_1:def 7;
end;
suppose ex k be
Nat st k
in (
dom (p2
/^ n)) & i
= ((
len (p1
| n))
+ k);
then
consider k be
Nat such that
A10: k
in (
dom (p2
/^ n)) and
A11: i
= ((
len (p1
| n))
+ k);
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A12: n
<= (
len (p1
| n))
proof
(n
+ k)
in (
dom p2) by
A10,
FINSEQ_5: 26;
then (n
+ k)
in (
Seg (
len p2)) by
FINSEQ_1:def 3;
then (n
+ k)
<= (
len p2) by
FINSEQ_1: 1;
then (n
+ k)
<= (
len S) by
Def1;
then (n
+ k)
<= (
len p1) by
Def1;
then
A13: k
<= ((
len p1)
- n) by
XREAL_1: 19;
k
in (
Seg (
len (p2
/^ n))) by
A10,
FINSEQ_1:def 3;
then 1
<= k by
FINSEQ_1: 1;
then 1
<= ((
len p1)
- n) by
A13,
XXREAL_0: 2;
then (1
+ n)
<= (
len p1) by
XREAL_1: 19;
then
A14: n
<= ((
len p1)
- 1) by
XREAL_1: 19;
(
len p1)
<= ((
len p1)
+ 1) by
NAT_1: 11;
then
A15: ((
len p1)
- 1)
<= (
len p1) by
XREAL_1: 20;
assume n
> (
len (p1
| n));
hence contradiction by
A14,
A15,
FINSEQ_1: 59,
XXREAL_0: 2;
end;
(
len (p1
| n))
<= n by
FINSEQ_5: 17;
then
A16: (
len (p1
| n))
= n by
A12,
XXREAL_0: 1;
then (n
+ k)
in (
Seg (
len S)) by
A1,
A7,
A11,
FINSEQ_1:def 3;
then (n
+ k)
in (
Seg (
len p2)) by
Def1;
then
A17: (n
+ k)
in (
dom p2) by
FINSEQ_1:def 3;
((
crossover (p1,p2,n))
. i)
= ((p2
/^ n)
. k) by
A10,
A11,
FINSEQ_1:def 7
.= ((p2
/^ n)
/. k) by
A10,
PARTFUN1:def 6
.= (p2
/. (n
+ k)) by
A10,
FINSEQ_5: 27
.= (p2
. (n
+ k)) by
A17,
PARTFUN1:def 6;
hence thesis by
A11,
A16,
A17,
Def1;
end;
end;
hence thesis;
end;
hence thesis by
A1,
Def1;
end;
definition
let S be
Gene-Set, p1,p2 be
Individual of S, n;
:: original:
crossover
redefine
func
crossover (p1,p2,n) ->
Individual of S ;
correctness by
Th3;
end
theorem ::
GENEALG1:4
Th4: (
crossover (p1,p2,
0 ))
= p2
proof
(
crossover (p1,p2,
0 ))
= (p2
/^
0 ) by
FINSEQ_1: 34
.= p2 by
FINSEQ_5: 28;
hence thesis;
end;
theorem ::
GENEALG1:5
Th5: n
>= (
len p1) implies (
crossover (p1,p2,n))
= p1
proof
assume
A1: n
>= (
len p1);
then n
>= (
len S) by
Def1;
then
A2: n
>= (
len p2) by
Def1;
(
crossover (p1,p2,n))
= (p1
^ (p2
/^ n)) by
A1,
FINSEQ_1: 58
.= (p1
^
{} ) by
A2,
FINSEQ_5: 32
.= p1 by
FINSEQ_1: 34;
hence thesis;
end;
begin
theorem ::
GENEALG1:6
Th6: (
crossover (p1,p2,n1,n2)) is
Individual of S
proof
reconsider q1 = (
crossover (p1,p2,n1)), q2 = (
crossover (p2,p1,n1)) as
Individual of S;
(
crossover (q1,q2,n2)) is
Individual of S;
hence thesis;
end;
definition
let S be
Gene-Set, p1,p2 be
Individual of S, n1, n2;
:: original:
crossover
redefine
func
crossover (p1,p2,n1,n2) ->
Individual of S ;
correctness by
Th6;
end
theorem ::
GENEALG1:7
Th7: (
crossover (p1,p2,
0 ,n))
= (
crossover (p2,p1,n))
proof
(
crossover (p1,p2,
0 ,n))
= (
crossover (p2,(
crossover (p2,p1,
0 )),n)) by
Th4
.= (
crossover (p2,p1,n)) by
Th4;
hence thesis;
end;
theorem ::
GENEALG1:8
Th8: (
crossover (p1,p2,n,
0 ))
= (
crossover (p2,p1,n))
proof
reconsider q1 = (
crossover (p1,p2,n)) as
Individual of S;
reconsider q2 = (
crossover (p2,p1,n)) as
Individual of S;
(
crossover (p1,p2,n,
0 ))
= (
crossover (q1,q2,
0 ))
.= q2 by
Th4;
hence thesis;
end;
theorem ::
GENEALG1:9
Th9: n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2))
= (
crossover (p1,p2,n2))
proof
assume
A1: n1
>= (
len p1);
then n1
>= (
len S) by
Def1;
then
A2: n1
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2))
= (
crossover (p1,(
crossover (p2,p1,n1)),n2)) by
A1,
Th5;
hence thesis by
A2,
Th5;
end;
theorem ::
GENEALG1:10
Th10: n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2))
= (
crossover (p1,p2,n1))
proof
assume n2
>= (
len p1);
then n2
>= (
len S) by
Def1;
then
A1: n2
>= (
len (
crossover (p1,p2,n1))) by
Def1;
(
crossover (p1,p2,n1,n2))
= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n2));
hence thesis by
A1,
Th5;
end;
theorem ::
GENEALG1:11
n1
>= (
len p1) & n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2))
= p1
proof
assume that
A1: n1
>= (
len p1) and
A2: n2
>= (
len p1);
(
crossover (p1,p2,n1,n2))
= (
crossover (p1,p2,n2)) by
A1,
Th9;
hence thesis by
A2,
Th5;
end;
theorem ::
GENEALG1:12
Th12: (
crossover (p1,p2,n1,n1))
= p1
proof
A1: (((p2
| n1)
^ (p1
/^ n1))
/^ n1)
= (p1
/^ n1)
proof
now
per cases ;
suppose n1
<= (
len p2);
then (
len (p2
| n1))
= n1 by
FINSEQ_1: 59;
hence thesis by
FINSEQ_5: 37;
end;
suppose n1
> (
len p2);
then
A2: n1
> (
len S) by
Def1;
then n1
> (
len (
crossover (p2,p1,n1))) by
Def1;
then
A3: (((p2
| n1)
^ (p1
/^ n1))
/^ n1)
=
{} by
FINSEQ_5: 32;
n1
> (
len p1) by
A2,
Def1;
hence thesis by
A3,
FINSEQ_5: 32;
end;
end;
hence thesis;
end;
(((p1
| n1)
^ (p2
/^ n1))
| n1)
= (p1
| n1)
proof
now
per cases ;
suppose n1
<= (
len p1);
then (
len (p1
| n1))
= n1 by
FINSEQ_1: 59;
hence thesis by
FINSEQ_5: 23;
end;
suppose
A4: n1
> (
len p1);
then
A5: n1
> (
len S) by
Def1;
then
A6: n1
> (
len p2) by
Def1;
n1
> (
len (
crossover (p1,p2,n1))) by
A5,
Def1;
then (((p1
| n1)
^ (p2
/^ n1))
| n1)
= ((p1
| n1)
^ (p2
/^ n1)) by
FINSEQ_1: 58
.= (p1
^ (p2
/^ n1)) by
A4,
FINSEQ_1: 58
.= (p1
^
{} ) by
A6,
FINSEQ_5: 32
.= p1 by
FINSEQ_1: 34
.= (p1
| n1) by
A4,
FINSEQ_1: 58;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis by
A1,
RFINSEQ: 8;
end;
theorem ::
GENEALG1:13
Th13: (
crossover (p1,p2,n1,n2))
= (
crossover (p1,p2,n2,n1))
proof
A1: (
len p1)
= (
len S) by
Def1;
(
len ((p2
| n2)
^ (p1
/^ n2)))
= (
len (
crossover (p2,p1,n2)));
then
A2: (
len ((p2
| n2)
^ (p1
/^ n2)))
= (
len S) by
Def1;
A3: (
len p2)
= (
len S) by
Def1;
(
len ((p1
| n2)
^ (p2
/^ n2)))
= (
len (
crossover (p1,p2,n2)));
then
A4: (
len ((p1
| n2)
^ (p2
/^ n2)))
= (
len S) by
Def1;
now
per cases by
NAT_1: 3;
suppose
A5: n1
>= n2 & n2
>
0 ;
now
per cases ;
suppose
A6: n1
>= (
len p1);
then (p2
| n1)
= p2 by
A1,
A3,
FINSEQ_1: 58;
then
A7: ((p2
| n1)
^ (p1
/^ n1))
= (p2
^
{} ) by
A6,
FINSEQ_5: 32
.= p2 by
FINSEQ_1: 34;
(p1
| n1)
= p1 by
A6,
FINSEQ_1: 58;
then
A8: ((p1
| n1)
^ (p2
/^ n1))
= (p1
^
{} ) by
A1,
A3,
A6,
FINSEQ_5: 32
.= p1 by
FINSEQ_1: 34;
(((p1
| n2)
^ (p2
/^ n2))
| n1)
= ((p1
| n2)
^ (p2
/^ n2)) by
A1,
A4,
A6,
FINSEQ_1: 58;
then (
crossover (p1,p2,n2,n1))
= (((p1
| n2)
^ (p2
/^ n2))
^
{} ) by
A1,
A2,
A6,
FINSEQ_5: 32
.= ((p1
| n2)
^ (p2
/^ n2)) by
FINSEQ_1: 34;
hence thesis by
A8,
A7;
end;
suppose
A9: n1
< (
len p1);
then (
len (p1
| n1))
= n1 by
FINSEQ_1: 59;
then
A10: (((p1
| n1)
^ (p2
/^ n1))
| n2)
= ((p1
| n1)
| n2) by
A5,
FINSEQ_5: 22
.= (p1
| n2) by
A5,
FINSEQ_5: 77;
n1
<= (
len p2) by
A3,
A9,
Def1;
then n2
<= (
len (p2
| n1)) by
A5,
FINSEQ_1: 59;
then
A11: (
crossover (p1,p2,n1,n2))
= ((p1
| n2)
^ (((p2
| n1)
/^ n2)
^ (p1
/^ n1))) by
A10,
Th1
.= (((p1
| n2)
^ ((p2
| n1)
/^ n2))
^ (p1
/^ n1)) by
FINSEQ_1: 32;
(
len (p2
| n2))
= n2 by
A1,
A3,
A5,
A9,
FINSEQ_1: 59,
XXREAL_0: 2;
then
consider i be
Nat such that
A12: ((
len (p2
| n2))
+ i)
= n1 by
A5,
NAT_1: 10;
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
A13: (
len (p1
| n2))
= n2 by
A5,
A9,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A14: ((
len (p1
| n2))
+ i)
= n1 by
A1,
A3,
A5,
A9,
A12,
FINSEQ_1: 59,
XXREAL_0: 2;
then i
= (n1
- n2) by
A13;
then
A15: i
= (n1
-' n2) by
A5,
XREAL_1: 233;
A16: (((p1
| n2)
^ (p2
/^ n2))
| n1)
= ((p1
| n2)
^ ((p2
/^ n2)
| i)) by
A14,
Th2
.= ((p1
| n2)
^ ((p2
| n1)
/^ n2)) by
A15,
FINSEQ_5: 80;
(((p2
| n2)
^ (p1
/^ n2))
/^ n1)
= ((p1
/^ n2)
/^ i) by
A12,
FINSEQ_5: 36
.= (p1
/^ (n2
+ i)) by
FINSEQ_6: 81
.= (p1
/^ n1) by
A1,
A3,
A5,
A9,
A12,
FINSEQ_1: 59,
XXREAL_0: 2;
hence thesis by
A11,
A16;
end;
end;
hence thesis;
end;
suppose
A17: n1
< n2 & n2
>
0 ;
now
per cases ;
suppose
A18: n1
>= (
len p1);
then n2
>= (
len p1) by
A17,
XXREAL_0: 2;
then
A19: n2
>= (
len p2) by
A3,
Def1;
A20: n1
>= (
len p2) by
A3,
A18,
Def1;
then (p2
| n1)
= p2 by
FINSEQ_1: 58;
then ((p2
| n1)
^ (p1
/^ n1))
= (p2
^
{} ) by
A18,
FINSEQ_5: 32
.= p2 by
FINSEQ_1: 34;
then
A21: (((p2
| n1)
^ (p1
/^ n1))
/^ n2)
=
{} by
A19,
FINSEQ_5: 32;
(p1
| n2)
= p1 by
A17,
A18,
FINSEQ_1: 58,
XXREAL_0: 2;
then ((p1
| n2)
^ (p2
/^ n2))
= (p1
^
{} ) by
A19,
FINSEQ_5: 32
.= p1 by
FINSEQ_1: 34;
then
A22: (((p1
| n2)
^ (p2
/^ n2))
| n1)
= p1 by
A18,
FINSEQ_1: 58;
(p2
| n2)
= p2 by
A19,
FINSEQ_1: 58;
then ((p2
| n2)
^ (p1
/^ n2))
= (p2
^
{} ) by
A17,
A18,
FINSEQ_5: 32,
XXREAL_0: 2
.= p2 by
FINSEQ_1: 34;
then
A23: (((p2
| n2)
^ (p1
/^ n2))
/^ n1)
=
{} by
A20,
FINSEQ_5: 32;
(p1
| n1)
= p1 by
A18,
FINSEQ_1: 58;
then ((p1
| n1)
^ (p2
/^ n1))
= (p1
^
{} ) by
A20,
FINSEQ_5: 32
.= p1 by
FINSEQ_1: 34;
hence thesis by
A17,
A18,
A21,
A22,
A23,
FINSEQ_1: 58,
XXREAL_0: 2;
end;
suppose
A24: n1
< (
len p1);
n1
<= (
len (p1
| n2))
proof
now
per cases ;
suppose n2
>= (
len p1);
hence thesis by
A24,
FINSEQ_1: 58;
end;
suppose n2
< (
len p1);
hence thesis by
A17,
FINSEQ_1: 59;
end;
end;
hence thesis;
end;
then
A25: (((p1
| n2)
^ (p2
/^ n2))
| n1)
= ((p1
| n2)
| n1) by
FINSEQ_5: 22
.= (p1
| n1) by
A17,
FINSEQ_5: 77;
A26: (
len (p1
| n1))
= n1 by
A24,
FINSEQ_1: 59;
then
consider i be
Nat such that
A27: ((
len (p1
| n1))
+ i)
= n2 by
A17,
NAT_1: 10;
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
A28: (((p1
| n1)
^ (p2
/^ n1))
| n2)
= ((p1
| n1)
^ ((p2
/^ n1)
| i)) by
A27,
Th2;
(
len (p2
| n1))
= n1 by
A1,
A3,
A24,
FINSEQ_1: 59;
then ((
len (p2
| n1))
+ i)
= n2 by
A24,
A27,
FINSEQ_1: 59;
then
A29: (
crossover (p1,p2,n1,n2))
= (((p1
| n1)
^ ((p2
/^ n1)
| i))
^ ((p1
/^ n1)
/^ i)) by
A28,
FINSEQ_5: 36
.= (((p1
| n1)
^ ((p2
/^ n1)
| i))
^ (p1
/^ (n1
+ i))) by
FINSEQ_6: 81
.= (((p1
| n1)
^ ((p2
/^ n1)
| i))
^ (p1
/^ n2)) by
A24,
A27,
FINSEQ_1: 59;
A30: i
= (n2
- n1) by
A26,
A27;
n1
<= (
len (p2
| n2))
proof
now
per cases ;
suppose n2
>= (
len p2);
hence thesis by
A1,
A3,
A24,
FINSEQ_1: 58;
end;
suppose n2
< (
len p2);
hence thesis by
A17,
FINSEQ_1: 59;
end;
end;
hence thesis;
end;
then (((p2
| n2)
^ (p1
/^ n2))
/^ n1)
= (((p2
| n2)
/^ n1)
^ (p1
/^ n2)) by
Th1
.= (((p2
/^ n1)
| (n2
-' n1))
^ (p1
/^ n2)) by
FINSEQ_5: 80
.= (((p2
/^ n1)
| i)
^ (p1
/^ n2)) by
A17,
A30,
XREAL_1: 233;
hence thesis by
A29,
A25,
FINSEQ_1: 32;
end;
end;
hence thesis;
end;
suppose
A31: n2
=
0 ;
then (
crossover (p1,p2,n1,n2))
= (
crossover (p2,p1,n1)) by
Th8
.= (
crossover (p1,p2,
0 ,n1)) by
Th7;
hence thesis by
A31;
end;
end;
hence thesis;
end;
begin
theorem ::
GENEALG1:14
Th14: (
crossover (p1,p2,n1,n2,n3)) is
Individual of S
proof
reconsider q1 = (
crossover (p1,p2,n1,n2)), q2 = (
crossover (p2,p1,n1,n2)) as
Individual of S;
(
crossover (q1,q2,n3)) is
Individual of S;
hence thesis;
end;
definition
let S be
Gene-Set, p1,p2 be
Individual of S, n1, n2, n3;
:: original:
crossover
redefine
func
crossover (p1,p2,n1,n2,n3) ->
Individual of S ;
correctness by
Th14;
end
theorem ::
GENEALG1:15
Th15: (
crossover (p1,p2,
0 ,n2,n3))
= (
crossover (p2,p1,n2,n3)) & (
crossover (p1,p2,n1,
0 ,n3))
= (
crossover (p2,p1,n1,n3)) & (
crossover (p1,p2,n1,n2,
0 ))
= (
crossover (p2,p1,n1,n2))
proof
(
crossover (p1,p2,
0 ,n2,n3))
= (
crossover ((
crossover (p2,p1,n2)),(
crossover (p2,p1,
0 ,n2)),n3)) by
Th7
.= (
crossover ((
crossover (p2,p1,n2)),(
crossover (p1,p2,n2)),n3)) by
Th7;
hence (
crossover (p1,p2,
0 ,n2,n3))
= (
crossover (p2,p1,n2,n3));
(
crossover (p1,p2,n1,
0 ,n3))
= (
crossover ((
crossover (p2,p1,n1)),(
crossover (p2,p1,n1,
0 )),n3)) by
Th8
.= (
crossover ((
crossover (p2,p1,n1)),(
crossover (p1,p2,n1)),n3)) by
Th8;
hence (
crossover (p1,p2,n1,
0 ,n3))
= (
crossover (p2,p1,n1,n3));
(
crossover (p1,p2,n1,n2,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2)),
0 ));
hence thesis by
Th4;
end;
theorem ::
GENEALG1:16
(
crossover (p1,p2,
0 ,
0 ,n3))
= (
crossover (p1,p2,n3)) & (
crossover (p1,p2,n1,
0 ,
0 ))
= (
crossover (p1,p2,n1)) & (
crossover (p1,p2,
0 ,n2,
0 ))
= (
crossover (p1,p2,n2))
proof
(
crossover (p1,p2,
0 ,
0 ,n3))
= (
crossover (p1,(
crossover (p2,p1,
0 ,
0 )),n3)) by
Th12;
hence (
crossover (p1,p2,
0 ,
0 ,n3))
= (
crossover (p1,p2,n3)) by
Th12;
(
crossover (p1,p2,n1,
0 ,
0 ))
= (
crossover ((
crossover (p2,p1,n1)),(
crossover (p1,p2,n1)),
0 )) by
Th8;
hence (
crossover (p1,p2,n1,
0 ,
0 ))
= (
crossover (p1,p2,n1)) by
Th4;
(
crossover (p1,p2,
0 ,n2,
0 ))
= (
crossover ((
crossover (p2,p1,n2)),(
crossover (p1,p2,n2)),
0 )) by
Th7;
hence thesis by
Th4;
end;
theorem ::
GENEALG1:17
(
crossover (p1,p2,
0 ,
0 ,
0 ))
= p2
proof
(
crossover (p1,p2,
0 ,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,
0 )),p2,
0 )) by
Th12;
hence thesis by
Th4;
end;
theorem ::
GENEALG1:18
Th18: n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n2,n3))
proof
assume
A1: n1
>= (
len p1);
then n1
>= (
len S) by
Def1;
then
A2: n1
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3))
= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n1,n2)),n3)) by
A1,
Th9
.= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n2)),n3)) by
A2,
Th9;
hence thesis;
end;
theorem ::
GENEALG1:19
Th19: n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n1,n3))
proof
assume
A1: n2
>= (
len p1);
then n2
>= (
len S) by
Def1;
then
A2: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3))
= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1,n2)),n3)) by
A1,
Th10
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n3)) by
A2,
Th10;
hence thesis;
end;
theorem ::
GENEALG1:20
Th20: n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n1,n2))
proof
assume n3
>= (
len p1);
then n3
>= (
len S) by
Def1;
then
A1: n3
>= (
len (
crossover (p1,p2,n1,n2))) by
Def1;
(
crossover (p1,p2,n1,n2,n3))
= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2)),n3));
hence thesis by
A1,
Th5;
end;
theorem ::
GENEALG1:21
Th21: n1
>= (
len p1) & n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n3))
proof
assume that
A1: n1
>= (
len p1) and
A2: n2
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n2,n3)) by
A1,
Th18;
hence thesis by
A2,
Th9;
end;
theorem ::
GENEALG1:22
n1
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n2))
proof
assume that
A1: n1
>= (
len p1) and
A2: n3
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n2,n3)) by
A1,
Th18;
hence thesis by
A2,
Th10;
end;
theorem ::
GENEALG1:23
n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n1))
proof
assume that
A1: n2
>= (
len p1) and
A2: n3
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n1,n3)) by
A1,
Th19;
hence thesis by
A2,
Th10;
end;
theorem ::
GENEALG1:24
n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3))
= p1
proof
assume that
A1: n1
>= (
len p1) & n2
>= (
len p1) and
A2: n3
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n3)) by
A1,
Th21;
hence thesis by
A2,
Th5;
end;
theorem ::
GENEALG1:25
Th25: (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n2,n1,n3)) & (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n1,n3,n2))
proof
set q1 = (
crossover (p1,p2,n1));
set q2 = (
crossover (p2,p1,n1));
(
crossover (p1,p2,n1,n2,n3))
= (
crossover ((
crossover (p1,p2,n2,n1)),(
crossover (p2,p1,n1,n2)),n3)) by
Th13
.= (
crossover ((
crossover (p1,p2,n2,n1)),(
crossover (p2,p1,n2,n1)),n3)) by
Th13;
hence (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n2,n1,n3));
(
crossover (p1,p2,n1,n2,n3))
= (
crossover (q1,q2,n2,n3))
.= (
crossover (q1,q2,n3,n2)) by
Th13
.= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n3)),n2));
hence thesis;
end;
theorem ::
GENEALG1:26
Th26: (
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n3,n1,n2))
proof
(
crossover (p1,p2,n1,n2,n3))
= (
crossover (p1,p2,n1,n3,n2)) by
Th25;
hence thesis by
Th25;
end;
theorem ::
GENEALG1:27
Th27: (
crossover (p1,p2,n1,n1,n3))
= (
crossover (p1,p2,n3)) & (
crossover (p1,p2,n1,n2,n1))
= (
crossover (p1,p2,n2)) & (
crossover (p1,p2,n1,n2,n2))
= (
crossover (p1,p2,n1))
proof
(
crossover (p1,p2,n1,n1,n3))
= (
crossover (p1,(
crossover (p2,p1,n1,n1)),n3)) by
Th12;
hence (
crossover (p1,p2,n1,n1,n3))
= (
crossover (p1,p2,n3)) by
Th12;
(
crossover (p1,p2,n1,n2,n1))
= (
crossover (p1,p2,n1,n1,n2)) by
Th25
.= (
crossover (p1,(
crossover (p2,p1,n1,n1)),n2)) by
Th12;
hence (
crossover (p1,p2,n1,n2,n1))
= (
crossover (p1,p2,n2)) by
Th12;
thus (
crossover (p1,p2,n1,n2,n2))
= (
crossover (p1,p2,n2,n2,n1)) by
Th26
.= (
crossover (p1,(
crossover (p2,p1,n2,n2)),n1)) by
Th12
.= (
crossover (p1,p2,n1)) by
Th12;
end;
begin
theorem ::
GENEALG1:28
Th28: (
crossover (p1,p2,n1,n2,n3,n4)) is
Individual of S
proof
reconsider q1 = (
crossover (p1,p2,n1,n2,n3)), q2 = (
crossover (p2,p1,n1,n2,n3)) as
Individual of S;
(
crossover (q1,q2,n4)) is
Individual of S;
hence thesis;
end;
definition
let S be
Gene-Set, p1,p2 be
Individual of S, n1, n2, n3, n4;
:: original:
crossover
redefine
func
crossover (p1,p2,n1,n2,n3,n4) ->
Individual of S ;
correctness by
Th28;
end
theorem ::
GENEALG1:29
Th29: (
crossover (p1,p2,
0 ,n2,n3,n4))
= (
crossover (p2,p1,n2,n3,n4)) & (
crossover (p1,p2,n1,
0 ,n3,n4))
= (
crossover (p2,p1,n1,n3,n4)) & (
crossover (p1,p2,n1,n2,
0 ,n4))
= (
crossover (p2,p1,n1,n2,n4)) & (
crossover (p1,p2,n1,n2,n3,
0 ))
= (
crossover (p2,p1,n1,n2,n3))
proof
(
crossover (p1,p2,
0 ,n2,n3,n4))
= (
crossover ((
crossover (p2,p1,n2,n3)),(
crossover (p2,p1,
0 ,n2,n3)),n4)) by
Th15
.= (
crossover ((
crossover (p2,p1,n2,n3)),(
crossover (p1,p2,n2,n3)),n4)) by
Th15;
hence (
crossover (p1,p2,
0 ,n2,n3,n4))
= (
crossover (p2,p1,n2,n3,n4));
(
crossover (p1,p2,n1,
0 ,n3,n4))
= (
crossover ((
crossover (p2,p1,n1,n3)),(
crossover (p2,p1,n1,
0 ,n3)),n4)) by
Th15
.= (
crossover ((
crossover (p2,p1,n1,n3)),(
crossover (p1,p2,n1,n3)),n4)) by
Th15;
hence (
crossover (p1,p2,n1,
0 ,n3,n4))
= (
crossover (p2,p1,n1,n3,n4));
(
crossover (p1,p2,n1,n2,
0 ,n4))
= (
crossover ((
crossover (p2,p1,n1,n2)),(
crossover (p2,p1,n1,n2,
0 )),n4)) by
Th15
.= (
crossover ((
crossover (p2,p1,n1,n2)),(
crossover (p1,p2,n1,n2)),n4)) by
Th15;
hence (
crossover (p1,p2,n1,n2,
0 ,n4))
= (
crossover (p2,p1,n1,n2,n4));
(
crossover (p1,p2,n1,n2,n3,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3)),
0 ));
hence thesis by
Th4;
end;
theorem ::
GENEALG1:30
Th30: (
crossover (p1,p2,
0 ,
0 ,n3,n4))
= (
crossover (p1,p2,n3,n4)) & (
crossover (p1,p2,
0 ,n2,
0 ,n4))
= (
crossover (p1,p2,n2,n4)) & (
crossover (p1,p2,
0 ,n2,n3,
0 ))
= (
crossover (p1,p2,n2,n3)) & (
crossover (p1,p2,n1,
0 ,n3,
0 ))
= (
crossover (p1,p2,n1,n3)) & (
crossover (p1,p2,n1,
0 ,
0 ,n4))
= (
crossover (p1,p2,n1,n4)) & (
crossover (p1,p2,n1,n2,
0 ,
0 ))
= (
crossover (p1,p2,n1,n2))
proof
(
crossover (p1,p2,
0 ,
0 ,n3,n4))
= (
crossover (p2,p1,
0 ,n3,n4)) by
Th29;
hence (
crossover (p1,p2,
0 ,
0 ,n3,n4))
= (
crossover (p1,p2,n3,n4)) by
Th15;
(
crossover (p1,p2,
0 ,n2,
0 ,n4))
= (
crossover (p2,p1,n2,
0 ,n4)) by
Th29;
hence (
crossover (p1,p2,
0 ,n2,
0 ,n4))
= (
crossover (p1,p2,n2,n4)) by
Th15;
(
crossover (p1,p2,
0 ,n2,n3,
0 ))
= (
crossover (p2,p1,n2,n3,
0 )) by
Th29;
hence (
crossover (p1,p2,
0 ,n2,n3,
0 ))
= (
crossover (p1,p2,n2,n3)) by
Th15;
(
crossover (p1,p2,n1,
0 ,n3,
0 ))
= (
crossover (p2,p1,n1,n3,
0 )) by
Th29;
hence (
crossover (p1,p2,n1,
0 ,n3,
0 ))
= (
crossover (p1,p2,n1,n3)) by
Th15;
(
crossover (p1,p2,n1,
0 ,
0 ,n4))
= (
crossover (p2,p1,n1,
0 ,n4)) by
Th29;
hence (
crossover (p1,p2,n1,
0 ,
0 ,n4))
= (
crossover (p1,p2,n1,n4)) by
Th15;
(
crossover (p1,p2,n1,n2,
0 ,
0 ))
= (
crossover (p2,p1,n1,n2,
0 )) by
Th29;
hence thesis by
Th15;
end;
theorem ::
GENEALG1:31
Th31: (
crossover (p1,p2,n1,
0 ,
0 ,
0 ))
= (
crossover (p2,p1,n1)) & (
crossover (p1,p2,
0 ,n2,
0 ,
0 ))
= (
crossover (p2,p1,n2)) & (
crossover (p1,p2,
0 ,
0 ,n3,
0 ))
= (
crossover (p2,p1,n3)) & (
crossover (p1,p2,
0 ,
0 ,
0 ,n4))
= (
crossover (p2,p1,n4))
proof
(
crossover (p1,p2,n1,
0 ,
0 ,
0 ))
= (
crossover (p1,p2,n1,
0 )) by
Th30;
hence (
crossover (p1,p2,n1,
0 ,
0 ,
0 ))
= (
crossover (p2,p1,n1)) by
Th8;
(
crossover (p1,p2,
0 ,n2,
0 ,
0 ))
= (
crossover (p1,p2,
0 ,n2)) by
Th30;
hence (
crossover (p1,p2,
0 ,n2,
0 ,
0 ))
= (
crossover (p2,p1,n2)) by
Th7;
(
crossover (p1,p2,
0 ,
0 ,n3,
0 ))
= (
crossover (p1,p2,
0 ,n3)) by
Th30;
hence (
crossover (p1,p2,
0 ,
0 ,n3,
0 ))
= (
crossover (p2,p1,n3)) by
Th7;
(
crossover (p1,p2,
0 ,
0 ,
0 ,n4))
= (
crossover (p1,p2,
0 ,n4)) by
Th30;
hence thesis by
Th7;
end;
theorem ::
GENEALG1:32
Th32: (
crossover (p1,p2,
0 ,
0 ,
0 ,
0 ))
= p1
proof
(
crossover (p1,p2,
0 ,
0 ,
0 ,
0 ))
= (
crossover (p2,p1,
0 )) by
Th31;
hence thesis by
Th4;
end;
theorem ::
GENEALG1:33
Th33: (n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4))) & (n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n4))) & (n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n4))) & (n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n3)))
proof
A1: n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n3))
proof
assume n4
>= (
len p1);
then n4
>= (
len S) by
Def1;
then
A2: n4
>= (
len (
crossover (p1,p2,n1,n2,n3))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3)),n4));
hence thesis by
A2,
Th5;
end;
A3: n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n4))
proof
assume
A4: n2
>= (
len p1);
then n2
>= (
len S) by
Def1;
then
A5: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
A4,
Th19
.= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n3)),n4)) by
A5,
Th19;
hence thesis;
end;
A6: n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n4))
proof
assume
A7: n3
>= (
len p1);
then n3
>= (
len S) by
Def1;
then
A8: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
A7,
Th20
.= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2)),n4)) by
A8,
Th20;
hence thesis;
end;
n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4))
proof
assume
A9: n1
>= (
len p1);
then n1
>= (
len S) by
Def1;
then
A10: n1
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
A9,
Th18
.= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n2,n3)),n4)) by
A10,
Th18;
hence thesis;
end;
hence thesis by
A3,
A6,
A1;
end;
theorem ::
GENEALG1:34
Th34: (n1
>= (
len p1) & n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4))) & (n1
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4))) & (n1
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3))) & (n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n4))) & (n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3))) & (n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2)))
proof
A1: n1
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4))
proof
assume that
A2: n1
>= (
len p1) and
A3: n3
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4)) by
A2,
Th33;
hence thesis by
A3,
Th19;
end;
A4: n1
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3))
proof
assume that
A5: n1
>= (
len p1) and
A6: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4)) by
A5,
Th33;
hence thesis by
A6,
Th20;
end;
A7: n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2))
proof
assume that
A8: n3
>= (
len p1) and
A9: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n4)) by
A8,
Th33;
hence thesis by
A9,
Th20;
end;
A10: n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3))
proof
assume that
A11: n2
>= (
len p1) and
A12: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n4)) by
A11,
Th33;
hence thesis by
A12,
Th20;
end;
A13: n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n4))
proof
assume that
A14: n2
>= (
len p1) and
A15: n3
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n4)) by
A14,
Th33;
hence thesis by
A15,
Th19;
end;
n1
>= (
len p1) & n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4))
proof
assume that
A16: n1
>= (
len p1) and
A17: n2
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4)) by
A16,
Th33;
hence thesis by
A17,
Th18;
end;
hence thesis by
A1,
A4,
A13,
A10,
A7;
end;
theorem ::
GENEALG1:35
Th35: (n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4))) & (n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3))) & (n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2))) & (n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1)))
proof
A1: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4))
proof
assume that
A2: n1
>= (
len p1) & n2
>= (
len p1) and
A3: n3
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4)) by
A2,
Th34;
hence thesis by
A3,
Th9;
end;
A4: n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2))
proof
assume that
A5: n1
>= (
len p1) & n3
>= (
len p1) and
A6: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4)) by
A5,
Th34
.= (
crossover (p1,p2,n4,n2)) by
Th13;
hence thesis by
A6,
Th9;
end;
A7: n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1))
proof
assume that
A8: n2
>= (
len p1) & n3
>= (
len p1) and
A9: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n4)) by
A8,
Th34
.= (
crossover (p1,p2,n4,n1)) by
Th13;
hence thesis by
A9,
Th9;
end;
n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3))
proof
assume that
A10: n1
>= (
len p1) & n2
>= (
len p1) and
A11: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4)) by
A10,
Th34
.= (
crossover (p1,p2,n4,n3)) by
Th13;
hence thesis by
A11,
Th9;
end;
hence thesis by
A1,
A4,
A7;
end;
theorem ::
GENEALG1:36
Th36: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4))
= p1
proof
assume that
A1: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) and
A2: n4
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4)) by
A1,
Th35;
hence thesis by
A2,
Th5;
end;
theorem ::
GENEALG1:37
Th37: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n4,n3)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n2,n4)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n4,n2)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n4,n3,n2)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n1,n3,n4)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n1,n4,n3)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n1,n4)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4,n1)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4,n1,n3)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4,n3,n1)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n2,n1,n4)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n2,n4,n1)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4,n1,n2)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4,n2,n1)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4,n2,n3,n1)) & (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4,n3,n2,n1))
proof
A1: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n2,n4,n3))
proof
set q2 = (
crossover (p2,p1,n1,n2));
set q1 = (
crossover (p1,p2,n1,n2));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (q1,q2,n3,n4))
.= (
crossover (q1,q2,n4,n3)) by
Th13
.= (
crossover ((
crossover (q1,q2,n4)),(
crossover (q2,q1,n4)),n3));
hence thesis;
end;
A2: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n1,n3,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n1,n3,n2)),(
crossover (p2,p1,n1,n3,n2)),n4)) by
Th25;
A3: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n3,n4,n1))
proof
set q2 = (
crossover (p2,p1,n2,n3));
set q1 = (
crossover (p1,p2,n2,n3));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n3,n1)),n4)) by
Th25
.= (
crossover (q1,q2,n1,n4))
.= (
crossover (q1,q2,n4,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4)),n1));
hence thesis;
end;
A4: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n4,n3,n2))
proof
set q2 = (
crossover (p2,p1,n1,n3));
set q1 = (
crossover (p1,p2,n1,n3));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n1,n3,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n1,n3,n2)),(
crossover (p2,p1,n1,n3,n2)),n4)) by
Th25
.= (
crossover (q1,q2,n2,n4))
.= (
crossover (q1,q2,n4,n2)) by
Th13
.= (
crossover ((
crossover (p1,p2,n1,n3,n4)),(
crossover (p2,p1,n1,n3,n4)),n2))
.= (
crossover ((
crossover (p1,p2,n1,n4,n3)),(
crossover (p2,p1,n1,n3,n4)),n2)) by
Th25
.= (
crossover ((
crossover (p1,p2,n1,n4,n3)),(
crossover (p2,p1,n1,n4,n3)),n2)) by
Th25;
hence thesis;
end;
A5: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4,n3,n2,n1))
proof
set q2 = (
crossover (p2,p1,n3,n2));
set q1 = (
crossover (p1,p2,n3,n2));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n2,n1)),n4)) by
Th25
.= (
crossover (q1,q2,n1,n4))
.= (
crossover (q1,q2,n4,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n3,n2,n4)),(
crossover (p2,p1,n3,n2,n4)),n1))
.= (
crossover ((
crossover (p1,p2,n4,n3,n2)),(
crossover (p2,p1,n3,n2,n4)),n1)) by
Th26
.= (
crossover ((
crossover (p1,p2,n4,n3,n2)),(
crossover (p2,p1,n4,n3,n2)),n1)) by
Th26;
hence thesis;
end;
A6: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n1,n4,n3))
proof
set q2 = (
crossover (p2,p1,n2,n1));
set q1 = (
crossover (p1,p2,n2,n1));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover (q1,q2,n3,n4))
.= (
crossover (q1,q2,n4,n3)) by
Th13
.= (
crossover ((
crossover (p1,p2,n2,n1,n4)),(
crossover (p2,p1,n2,n1,n4)),n3));
hence thesis;
end;
A7: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n4,n2,n3,n1))
proof
set q2 = (
crossover (p2,p1,n2,n3));
set q1 = (
crossover (p1,p2,n2,n3));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n3,n1)),n4)) by
Th25
.= (
crossover (q1,q2,n1,n4))
.= (
crossover (q1,q2,n4,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4)),n1))
.= (
crossover ((
crossover (p1,p2,n4,n2,n3)),(
crossover (p2,p1,n2,n3,n4)),n1)) by
Th26
.= (
crossover ((
crossover (p1,p2,n4,n2,n3)),(
crossover (p2,p1,n4,n2,n3)),n1)) by
Th26;
hence thesis;
end;
A8: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n1,n3,n4,n2))
proof
set q2 = (
crossover (p2,p1,n1,n3));
set q1 = (
crossover (p1,p2,n1,n3));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n1,n3,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n1,n3,n2)),(
crossover (p2,p1,n1,n3,n2)),n4)) by
Th25
.= (
crossover (q1,q2,n2,n4))
.= (
crossover (q1,q2,n4,n2)) by
Th13
.= (
crossover ((
crossover (q1,q2,n4)),(
crossover (q2,q1,n4)),n2));
hence thesis;
end;
A9: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n2,n4,n1))
proof
set q2 = (
crossover (p2,p1,n3,n2));
set q1 = (
crossover (p1,p2,n3,n2));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n2,n1)),n4)) by
Th25
.= (
crossover (q1,q2,n1,n4))
.= (
crossover (q1,q2,n4,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n3,n2,n4)),(
crossover (p2,p1,n3,n2,n4)),n1));
hence thesis;
end;
A10: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4,n1,n3))
proof
set q2 = (
crossover (p2,p1,n2,n1));
set q1 = (
crossover (p1,p2,n2,n1));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover (q1,q2,n3,n4))
.= (
crossover (q1,q2,n4,n3)) by
Th13
.= (
crossover ((
crossover (p1,p2,n2,n1,n4)),(
crossover (p2,p1,n2,n1,n4)),n3))
.= (
crossover ((
crossover (p1,p2,n2,n4,n1)),(
crossover (p2,p1,n2,n1,n4)),n3)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n4,n1)),(
crossover (p2,p1,n2,n4,n1)),n3)) by
Th25;
hence thesis;
end;
A11: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4,n2,n1))
proof
set q2 = (
crossover (p2,p1,n3,n2));
set q1 = (
crossover (p1,p2,n3,n2));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n2,n1)),n4)) by
Th25
.= (
crossover (q1,q2,n1,n4))
.= (
crossover (q1,q2,n4,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n3,n2,n4)),(
crossover (p2,p1,n3,n2,n4)),n1))
.= (
crossover ((
crossover (p1,p2,n3,n4,n2)),(
crossover (p2,p1,n3,n2,n4)),n1)) by
Th25
.= (
crossover ((
crossover (p1,p2,n3,n4,n2)),(
crossover (p2,p1,n3,n4,n2)),n1)) by
Th25;
hence thesis;
end;
A12: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n3,n2,n1)),(
crossover (p2,p1,n3,n2,n1)),n4)) by
Th25;
A13: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n3,n4,n1,n2))
proof
set q2 = (
crossover (p2,p1,n3,n1));
set q1 = (
crossover (p1,p2,n3,n1));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th26
.= (
crossover ((
crossover (p1,p2,n3,n1,n2)),(
crossover (p2,p1,n3,n1,n2)),n4)) by
Th26
.= (
crossover (q1,q2,n2,n4))
.= (
crossover (q1,q2,n4,n2)) by
Th13
.= (
crossover ((
crossover (p1,p2,n3,n1,n4)),(
crossover (p2,p1,n3,n1,n4)),n2))
.= (
crossover ((
crossover (p1,p2,n3,n4,n1)),(
crossover (p2,p1,n3,n1,n4)),n2)) by
Th25
.= (
crossover ((
crossover (p1,p2,n3,n4,n1)),(
crossover (p2,p1,n3,n4,n1)),n2)) by
Th25;
hence thesis;
end;
A14: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover (p1,p2,n2,n4,n3,n1))
proof
set q2 = (
crossover (p2,p1,n2,n3));
set q1 = (
crossover (p1,p2,n2,n3));
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n3,n1)),n4)) by
Th25
.= (
crossover (q1,q2,n1,n4))
.= (
crossover (q1,q2,n4,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4)),n1))
.= (
crossover ((
crossover (p1,p2,n2,n4,n3)),(
crossover (p2,p1,n2,n3,n4)),n1)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n4,n3)),(
crossover (p2,p1,n2,n4,n3)),n1)) by
Th25;
hence thesis;
end;
A15: (
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25;
(
crossover (p1,p2,n1,n2,n3,n4))
= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n1,n2,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n1,n3)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n1,n3)),n4)) by
Th25
.= (
crossover ((
crossover (p1,p2,n2,n3,n1)),(
crossover (p2,p1,n2,n3,n1)),n4)) by
Th25;
hence thesis by
A2,
A15,
A1,
A8,
A4,
A6,
A3,
A10,
A14,
A12,
A9,
A13,
A11,
A7,
A5;
end;
theorem ::
GENEALG1:38
Th38: (
crossover (p1,p2,n1,n1,n3,n4))
= (
crossover (p1,p2,n3,n4)) & (
crossover (p1,p2,n1,n2,n1,n4))
= (
crossover (p1,p2,n2,n4)) & (
crossover (p1,p2,n1,n2,n3,n1))
= (
crossover (p1,p2,n2,n3)) & (
crossover (p1,p2,n1,n2,n2,n4))
= (
crossover (p1,p2,n1,n4)) & (
crossover (p1,p2,n1,n2,n3,n2))
= (
crossover (p1,p2,n1,n3)) & (
crossover (p1,p2,n1,n2,n3,n3))
= (
crossover (p1,p2,n1,n2))
proof
(
crossover (p1,p2,n1,n1,n3,n4))
= (
crossover ((
crossover (p1,p2,n3)),(
crossover (p2,p1,n1,n1,n3)),n4)) by
Th27
.= (
crossover ((
crossover (p1,p2,n3)),(
crossover (p2,p1,n3)),n4)) by
Th27;
hence (
crossover (p1,p2,n1,n1,n3,n4))
= (
crossover (p1,p2,n3,n4));
(
crossover (p1,p2,n1,n2,n1,n4))
= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n1,n2,n1)),n4)) by
Th27
.= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n2)),n4)) by
Th27;
hence (
crossover (p1,p2,n1,n2,n1,n4))
= (
crossover (p1,p2,n2,n4));
(
crossover (p1,p2,n1,n2,n3,n1))
= (
crossover (p1,p2,n1,n1,n2,n3)) by
Th37
.= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n1,n1,n2)),n3)) by
Th27
.= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n2)),n3)) by
Th27;
hence (
crossover (p1,p2,n1,n2,n3,n1))
= (
crossover (p1,p2,n2,n3));
(
crossover (p1,p2,n1,n2,n2,n4))
= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1,n2,n2)),n4)) by
Th27
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n4)) by
Th27;
hence (
crossover (p1,p2,n1,n2,n2,n4))
= (
crossover (p1,p2,n1,n4));
(
crossover (p1,p2,n1,n2,n3,n2))
= (
crossover (p1,p2,n1,n2,n2,n3)) by
Th37
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1,n2,n2)),n3)) by
Th27
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n3)) by
Th27;
hence (
crossover (p1,p2,n1,n2,n3,n2))
= (
crossover (p1,p2,n1,n3));
(
crossover (p1,p2,n1,n2,n3,n3))
= (
crossover (p1,p2,n1,n3,n3,n2)) by
Th37
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1,n3,n3)),n2)) by
Th27
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n2)) by
Th27;
hence thesis;
end;
theorem ::
GENEALG1:39
(
crossover (p1,p2,n1,n1,n3,n3))
= p1 & (
crossover (p1,p2,n1,n2,n1,n2))
= p1 & (
crossover (p1,p2,n1,n2,n2,n1))
= p1
proof
(
crossover (p1,p2,n1,n1,n3,n3))
= (
crossover (p1,p2,n3,n3)) by
Th38;
hence (
crossover (p1,p2,n1,n1,n3,n3))
= p1 by
Th12;
(
crossover (p1,p2,n1,n2,n1,n2))
= (
crossover (p1,p2,n2,n2)) by
Th38;
hence (
crossover (p1,p2,n1,n2,n1,n2))
= p1 by
Th12;
(
crossover (p1,p2,n1,n2,n2,n1))
= (
crossover (p1,p2,n2,n2)) by
Th38;
hence thesis by
Th12;
end;
begin
theorem ::
GENEALG1:40
Th40: (
crossover (p1,p2,n1,n2,n3,n4,n5)) is
Individual of S
proof
reconsider q1 = (
crossover (p1,p2,n1,n2,n3,n4)), q2 = (
crossover (p2,p1,n1,n2,n3,n4)) as
Individual of S;
(
crossover (q1,q2,n5)) is
Individual of S;
hence thesis;
end;
definition
let S be
Gene-Set, p1,p2 be
Individual of S, n1, n2, n3, n4, n5;
:: original:
crossover
redefine
func
crossover (p1,p2,n1,n2,n3,n4,n5) ->
Individual of S ;
correctness by
Th40;
end
theorem ::
GENEALG1:41
Th41: (
crossover (p1,p2,
0 ,n2,n3,n4,n5))
= (
crossover (p2,p1,n2,n3,n4,n5)) & (
crossover (p1,p2,n1,
0 ,n3,n4,n5))
= (
crossover (p2,p1,n1,n3,n4,n5)) & (
crossover (p1,p2,n1,n2,
0 ,n4,n5))
= (
crossover (p2,p1,n1,n2,n4,n5)) & (
crossover (p1,p2,n1,n2,n3,
0 ,n5))
= (
crossover (p2,p1,n1,n2,n3,n5)) & (
crossover (p1,p2,n1,n2,n3,n4,
0 ))
= (
crossover (p2,p1,n1,n2,n3,n4))
proof
A1: (
crossover (p1,p2,n1,n2,n3,n4,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),
0 ));
A2: (
crossover (p1,p2,n1,
0 ,n3,n4,n5))
= (
crossover ((
crossover (p2,p1,n1,n3,n4)),(
crossover (p2,p1,n1,
0 ,n3,n4)),n5)) by
Th29
.= (
crossover ((
crossover (p2,p1,n1,n3,n4)),(
crossover (p1,p2,n1,n3,n4)),n5)) by
Th29;
A3: (
crossover (p1,p2,n1,n2,n3,
0 ,n5))
= (
crossover ((
crossover (p2,p1,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3,
0 )),n5)) by
Th29
.= (
crossover ((
crossover (p2,p1,n1,n2,n3)),(
crossover (p1,p2,n1,n2,n3)),n5)) by
Th29;
A4: (
crossover (p1,p2,n1,n2,
0 ,n4,n5))
= (
crossover ((
crossover (p2,p1,n1,n2,n4)),(
crossover (p2,p1,n1,n2,
0 ,n4)),n5)) by
Th29
.= (
crossover ((
crossover (p2,p1,n1,n2,n4)),(
crossover (p1,p2,n1,n2,n4)),n5)) by
Th29;
(
crossover (p1,p2,
0 ,n2,n3,n4,n5))
= (
crossover ((
crossover (p2,p1,n2,n3,n4)),(
crossover (p2,p1,
0 ,n2,n3,n4)),n5)) by
Th29
.= (
crossover ((
crossover (p2,p1,n2,n3,n4)),(
crossover (p1,p2,n2,n3,n4)),n5)) by
Th29;
hence thesis by
A2,
A4,
A3,
A1,
Th4;
end;
theorem ::
GENEALG1:42
(
crossover (p1,p2,
0 ,
0 ,n3,n4,n5))
= (
crossover (p1,p2,n3,n4,n5)) & (
crossover (p1,p2,
0 ,n2,
0 ,n4,n5))
= (
crossover (p1,p2,n2,n4,n5)) & (
crossover (p1,p2,
0 ,n2,n3,
0 ,n5))
= (
crossover (p1,p2,n2,n3,n5)) & (
crossover (p1,p2,
0 ,n2,n3,n4,
0 ))
= (
crossover (p1,p2,n2,n3,n4)) & (
crossover (p1,p2,n1,
0 ,
0 ,n4,n5))
= (
crossover (p1,p2,n1,n4,n5)) & (
crossover (p1,p2,n1,
0 ,n3,
0 ,n5))
= (
crossover (p1,p2,n1,n3,n5)) & (
crossover (p1,p2,n1,
0 ,n3,n4,
0 ))
= (
crossover (p1,p2,n1,n3,n4)) & (
crossover (p1,p2,n1,n2,
0 ,
0 ,n5))
= (
crossover (p1,p2,n1,n2,n5)) & (
crossover (p1,p2,n1,n2,
0 ,n4,
0 ))
= (
crossover (p1,p2,n1,n2,n4)) & (
crossover (p1,p2,n1,n2,n3,
0 ,
0 ))
= (
crossover (p1,p2,n1,n2,n3))
proof
A1: (
crossover (p1,p2,
0 ,n2,n3,n4,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,n2,n3,n4)),(
crossover (p1,p2,n2,n3,n4)),
0 )) & (
crossover (p1,p2,n1,
0 ,n3,n4,
0 ))
= (
crossover ((
crossover (p1,p2,n1,
0 ,n3,n4)),(
crossover (p1,p2,n1,n3,n4)),
0 )) by
Th29;
A2: (
crossover (p1,p2,n1,n2,
0 ,n4,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2,
0 ,n4)),(
crossover (p1,p2,n1,n2,n4)),
0 )) & (
crossover (p1,p2,n1,n2,n3,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,
0 )),(
crossover (p1,p2,n1,n2,n3)),
0 )) by
Th29;
A3: (
crossover (p1,p2,n1,
0 ,n3,
0 ,n5))
= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,
0 ,n3,
0 )),n5)) by
Th30
.= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n3)),n5)) by
Th30;
A4: (
crossover (p1,p2,n1,
0 ,
0 ,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n4)),(
crossover (p2,p1,n1,
0 ,
0 ,n4)),n5)) by
Th30
.= (
crossover ((
crossover (p1,p2,n1,n4)),(
crossover (p2,p1,n1,n4)),n5)) by
Th30;
A5: (
crossover (p1,p2,n1,n2,
0 ,
0 ,n5))
= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2,
0 ,
0 )),n5)) by
Th30
.= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2)),n5)) by
Th30;
A6: (
crossover (p1,p2,
0 ,n2,n3,
0 ,n5))
= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,
0 ,n2,n3,
0 )),n5)) by
Th30
.= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n2,n3)),n5)) by
Th30;
A7: (
crossover (p1,p2,
0 ,n2,
0 ,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,
0 ,n2,
0 ,n4)),n5)) by
Th30
.= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,n2,n4)),n5)) by
Th30;
(
crossover (p1,p2,
0 ,
0 ,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,
0 ,
0 ,n3,n4)),n5)) by
Th30
.= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,n3,n4)),n5)) by
Th30;
hence thesis by
A7,
A6,
A4,
A3,
A1,
A5,
A2,
Th4;
end;
theorem ::
GENEALG1:43
(
crossover (p1,p2,
0 ,
0 ,
0 ,n4,n5))
= (
crossover (p2,p1,n4,n5)) & (
crossover (p1,p2,
0 ,
0 ,n3,
0 ,n5))
= (
crossover (p2,p1,n3,n5)) & (
crossover (p1,p2,
0 ,
0 ,n3,n4,
0 ))
= (
crossover (p2,p1,n3,n4)) & (
crossover (p1,p2,
0 ,n2,
0 ,
0 ,n5))
= (
crossover (p2,p1,n2,n5)) & (
crossover (p1,p2,
0 ,n2,
0 ,n4,
0 ))
= (
crossover (p2,p1,n2,n4)) & (
crossover (p1,p2,
0 ,n2,n3,
0 ,
0 ))
= (
crossover (p2,p1,n2,n3)) & (
crossover (p1,p2,n1,
0 ,
0 ,
0 ,n5))
= (
crossover (p2,p1,n1,n5)) & (
crossover (p1,p2,n1,
0 ,
0 ,n4,
0 ))
= (
crossover (p2,p1,n1,n4)) & (
crossover (p1,p2,n1,
0 ,n3,
0 ,
0 ))
= (
crossover (p2,p1,n1,n3)) & (
crossover (p1,p2,n1,n2,
0 ,
0 ,
0 ))
= (
crossover (p2,p1,n1,n2))
proof
A1: (
crossover (p1,p2,
0 ,
0 ,n3,n4,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,
0 ,n3,n4)),(
crossover (p2,p1,n3,n4)),
0 )) & (
crossover (p1,p2,
0 ,n2,
0 ,n4,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,n2,
0 ,n4)),(
crossover (p2,p1,n2,n4)),
0 )) by
Th30;
A2: (
crossover (p1,p2,
0 ,n2,n3,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,n2,n3,
0 )),(
crossover (p2,p1,n2,n3)),
0 )) & (
crossover (p1,p2,n1,
0 ,
0 ,n4,
0 ))
= (
crossover ((
crossover (p1,p2,n1,
0 ,
0 ,n4)),(
crossover (p2,p1,n1,n4)),
0 )) by
Th30;
A3: (
crossover (p1,p2,
0 ,
0 ,n3,
0 ,n5))
= (
crossover ((
crossover (p2,p1,n3)),(
crossover (p2,p1,
0 ,
0 ,n3,
0 )),n5)) by
Th31
.= (
crossover ((
crossover (p2,p1,n3)),(
crossover (p1,p2,n3)),n5)) by
Th31;
A4: (
crossover (p1,p2,n1,
0 ,n3,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,n1,
0 ,n3,
0 )),(
crossover (p2,p1,n1,n3)),
0 )) & (
crossover (p1,p2,n1,n2,
0 ,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2,
0 ,
0 )),(
crossover (p2,p1,n1,n2)),
0 )) by
Th30;
A5: (
crossover (p1,p2,n1,
0 ,
0 ,
0 ,n5))
= (
crossover ((
crossover (p2,p1,n1)),(
crossover (p2,p1,n1,
0 ,
0 ,
0 )),n5)) by
Th31
.= (
crossover ((
crossover (p2,p1,n1)),(
crossover (p1,p2,n1)),n5)) by
Th31;
A6: (
crossover (p1,p2,
0 ,n2,
0 ,
0 ,n5))
= (
crossover ((
crossover (p2,p1,n2)),(
crossover (p2,p1,
0 ,n2,
0 ,
0 )),n5)) by
Th31
.= (
crossover ((
crossover (p2,p1,n2)),(
crossover (p1,p2,n2)),n5)) by
Th31;
(
crossover (p1,p2,
0 ,
0 ,
0 ,n4,n5))
= (
crossover ((
crossover (p2,p1,n4)),(
crossover (p2,p1,
0 ,
0 ,
0 ,n4)),n5)) by
Th31
.= (
crossover ((
crossover (p2,p1,n4)),(
crossover (p1,p2,n4)),n5)) by
Th31;
hence thesis by
A3,
A6,
A1,
A5,
A2,
A4,
Th4;
end;
theorem ::
GENEALG1:44
(
crossover (p1,p2,
0 ,
0 ,
0 ,
0 ,n5))
= (
crossover (p1,p2,n5)) & (
crossover (p1,p2,
0 ,
0 ,
0 ,n4,
0 ))
= (
crossover (p1,p2,n4)) & (
crossover (p1,p2,
0 ,
0 ,n3,
0 ,
0 ))
= (
crossover (p1,p2,n3)) & (
crossover (p1,p2,
0 ,n2,
0 ,
0 ,
0 ))
= (
crossover (p1,p2,n2)) & (
crossover (p1,p2,n1,
0 ,
0 ,
0 ,
0 ))
= (
crossover (p1,p2,n1))
proof
A1: (
crossover (p1,p2,
0 ,
0 ,n3,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,
0 ,n3,
0 )),(
crossover (p1,p2,n3)),
0 )) & (
crossover (p1,p2,
0 ,n2,
0 ,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,n2,
0 ,
0 )),(
crossover (p1,p2,n2)),
0 )) by
Th31;
A2: (
crossover (p1,p2,n1,
0 ,
0 ,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,n1,
0 ,
0 ,
0 )),(
crossover (p1,p2,n1)),
0 )) by
Th31;
(
crossover (p1,p2,
0 ,
0 ,
0 ,
0 ,n5))
= (
crossover (p1,(
crossover (p2,p1,
0 ,
0 ,
0 ,
0 )),n5)) & (
crossover (p1,p2,
0 ,
0 ,
0 ,n4,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,
0 ,
0 ,n4)),(
crossover (p1,p2,n4)),
0 )) by
Th31,
Th32;
hence thesis by
A1,
A2,
Th4,
Th32;
end;
theorem ::
GENEALG1:45
(
crossover (p1,p2,
0 ,
0 ,
0 ,
0 ,
0 ))
= p2
proof
(
crossover (p1,p2,
0 ,
0 ,
0 ,
0 ,
0 ))
= (
crossover ((
crossover (p1,p2,
0 ,
0 ,
0 ,
0 )),p2,
0 )) by
Th32;
hence thesis by
Th4;
end;
theorem ::
GENEALG1:46
Th46: (n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3,n4,n5))) & (n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3,n4,n5))) & (n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n4,n5))) & (n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n3,n5))) & (n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n3,n4)))
proof
A1: n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n3,n4))
proof
assume n5
>= (
len p1);
then n5
>= (
len S) by
Def1;
then
A2: n5
>= (
len (
crossover (p1,p2,n1,n2,n3,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5));
hence thesis by
A2,
Th5;
end;
A3: n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3,n4,n5))
proof
assume
A4: n2
>= (
len p1);
then n2
>= (
len S) by
Def1;
then
A5: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A4,
Th33
.= (
crossover ((
crossover (p1,p2,n1,n3,n4)),(
crossover (p2,p1,n1,n3,n4)),n5)) by
A5,
Th33;
hence thesis;
end;
A6: n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n3,n5))
proof
assume
A7: n4
>= (
len p1);
then n4
>= (
len S) by
Def1;
then
A8: n4
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A7,
Th33
.= (
crossover ((
crossover (p1,p2,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3)),n5)) by
A8,
Th33;
hence thesis;
end;
A9: n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n4,n5))
proof
assume
A10: n3
>= (
len p1);
then n3
>= (
len S) by
Def1;
then
A11: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A10,
Th33
.= (
crossover ((
crossover (p1,p2,n1,n2,n4)),(
crossover (p2,p1,n1,n2,n4)),n5)) by
A11,
Th33;
hence thesis;
end;
n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3,n4,n5))
proof
assume
A12: n1
>= (
len p1);
then n1
>= (
len S) by
Def1;
then
A13: n1
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A12,
Th33
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4)),n5)) by
A13,
Th33;
hence thesis;
end;
hence thesis by
A3,
A9,
A6,
A1;
end;
theorem ::
GENEALG1:47
(n1
>= (
len p1) & n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n4,n5))) & (n1
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n4,n5))) & (n1
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3,n5))) & (n1
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3,n4))) & (n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n4,n5))) & (n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3,n5))) & (n2
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3,n4))) & (n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n5))) & (n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n4))) & (n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n3)))
proof
A1: n2
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3,n4))
proof
assume that
A2: n2
>= (
len p1) and
A3: n5
>= (
len p1);
n5
>= (
len S) by
A3,
Def1;
then
A4: n5
>= (
len (
crossover (p1,p2,n1,n3,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A2,
Th33;
hence thesis by
A4,
Th5;
end;
A5: n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n4))
proof
assume that
A6: n3
>= (
len p1) and
A7: n5
>= (
len p1);
n5
>= (
len S) by
A7,
Def1;
then
A8: n5
>= (
len (
crossover (p1,p2,n1,n2,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A6,
Th33;
hence thesis by
A8,
Th5;
end;
A9: n1
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3,n5))
proof
assume that
A10: n1
>= (
len p1) and
A11: n4
>= (
len p1);
n1
>= (
len S) by
A10,
Def1;
then
A12: n1
>= (
len p2) by
Def1;
n4
>= (
len S) by
A11,
Def1;
then
A13: n4
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A10,
A11,
Th34
.= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n2,n3)),n5)) by
A12,
A13,
Th34;
hence thesis;
end;
A14: n1
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n4,n5))
proof
assume that
A15: n1
>= (
len p1) and
A16: n3
>= (
len p1);
n1
>= (
len S) by
A15,
Def1;
then
A17: n1
>= (
len p2) by
Def1;
n3
>= (
len S) by
A16,
Def1;
then
A18: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A15,
A16,
Th34
.= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,n2,n4)),n5)) by
A17,
A18,
Th34;
hence thesis;
end;
A19: n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3,n5))
proof
assume that
A20: n2
>= (
len p1) and
A21: n4
>= (
len p1);
n2
>= (
len S) by
A20,
Def1;
then
A22: n2
>= (
len p2) by
Def1;
n4
>= (
len S) by
A21,
Def1;
then
A23: n4
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A20,
A21,
Th34
.= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n3)),n5)) by
A22,
A23,
Th34;
hence thesis;
end;
A24: n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n4,n5))
proof
assume that
A25: n2
>= (
len p1) and
A26: n3
>= (
len p1);
n2
>= (
len S) by
A25,
Def1;
then
A27: n2
>= (
len p2) by
Def1;
n3
>= (
len S) by
A26,
Def1;
then
A28: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A25,
A26,
Th34
.= (
crossover ((
crossover (p1,p2,n1,n4)),(
crossover (p2,p1,n1,n4)),n5)) by
A27,
A28,
Th34;
hence thesis;
end;
A29: n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n5))
proof
assume that
A30: n3
>= (
len p1) and
A31: n4
>= (
len p1);
n3
>= (
len S) by
A30,
Def1;
then
A32: n3
>= (
len p2) by
Def1;
n4
>= (
len S) by
A31,
Def1;
then
A33: n4
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A30,
A31,
Th34
.= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2)),n5)) by
A32,
A33,
Th34;
hence thesis;
end;
A34: n1
>= (
len p1) & n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n4,n5))
proof
assume that
A35: n1
>= (
len p1) and
A36: n2
>= (
len p1);
n1
>= (
len S) by
A35,
Def1;
then
A37: n1
>= (
len p2) by
Def1;
n2
>= (
len S) by
A36,
Def1;
then
A38: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A35,
A36,
Th34
.= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,n3,n4)),n5)) by
A37,
A38,
Th34;
hence thesis;
end;
A39: n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2,n3))
proof
assume that
A40: n4
>= (
len p1) and
A41: n5
>= (
len p1);
n5
>= (
len S) by
A41,
Def1;
then
A42: n5
>= (
len (
crossover (p1,p2,n1,n2,n3))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A40,
Th33;
hence thesis by
A42,
Th5;
end;
n1
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3,n4))
proof
assume that
A43: n1
>= (
len p1) and
A44: n5
>= (
len p1);
n5
>= (
len S) by
A44,
Def1;
then
A45: n5
>= (
len (
crossover (p1,p2,n2,n3,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A43,
Th33;
hence thesis by
A45,
Th5;
end;
hence thesis by
A34,
A14,
A9,
A24,
A19,
A1,
A29,
A5,
A39;
end;
theorem ::
GENEALG1:48
(n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n4,n5))) & (n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n5))) & (n1
>= (
len p1) & n2
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n4))) & (n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n5))) & (n1
>= (
len p1) & n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n4))) & (n1
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3))) & (n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n5))) & (n2
>= (
len p1) & n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n4))) & (n2
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3))) & (n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2)))
proof
A1: n1
>= (
len p1) & n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n4))
proof
assume that
A2: n1
>= (
len p1) & n3
>= (
len p1) and
A3: n5
>= (
len p1);
n5
>= (
len S) by
A3,
Def1;
then
A4: n5
>= (
len (
crossover (p1,p2,n2,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A2,
Th34;
hence thesis by
A4,
Th5;
end;
A5: n1
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n3))
proof
assume that
A6: n1
>= (
len p1) & n4
>= (
len p1) and
A7: n5
>= (
len p1);
n5
>= (
len S) by
A7,
Def1;
then
A8: n5
>= (
len (
crossover (p1,p2,n2,n3))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A6,
Th34;
hence thesis by
A8,
Th5;
end;
A9: n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n5))
proof
assume that
A10: n1
>= (
len p1) and
A11: n2
>= (
len p1) and
A12: n4
>= (
len p1);
n1
>= (
len S) by
A10,
Def1;
then
A13: n1
>= (
len p2) by
Def1;
n4
>= (
len S) by
A12,
Def1;
then
A14: n4
>= (
len p2) by
Def1;
n2
>= (
len S) by
A11,
Def1;
then
A15: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A10,
A11,
A12,
Th35
.= (
crossover ((
crossover (p1,p2,n3)),(
crossover (p2,p1,n3)),n5)) by
A13,
A15,
A14,
Th35;
hence thesis;
end;
A16: n2
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n3))
proof
assume that
A17: n2
>= (
len p1) & n4
>= (
len p1) and
A18: n5
>= (
len p1);
n5
>= (
len S) by
A18,
Def1;
then
A19: n5
>= (
len (
crossover (p1,p2,n1,n3))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A17,
Th34;
hence thesis by
A19,
Th5;
end;
A20: n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n5))
proof
assume that
A21: n2
>= (
len p1) and
A22: n3
>= (
len p1) and
A23: n4
>= (
len p1);
n2
>= (
len S) by
A21,
Def1;
then
A24: n2
>= (
len p2) by
Def1;
n4
>= (
len S) by
A23,
Def1;
then
A25: n4
>= (
len p2) by
Def1;
n3
>= (
len S) by
A22,
Def1;
then
A26: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A21,
A22,
A23,
Th35
.= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1)),n5)) by
A24,
A26,
A25,
Th35;
hence thesis;
end;
A27: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n4,n5))
proof
assume that
A28: n1
>= (
len p1) and
A29: n2
>= (
len p1) and
A30: n3
>= (
len p1);
n1
>= (
len S) by
A28,
Def1;
then
A31: n1
>= (
len p2) by
Def1;
n3
>= (
len S) by
A30,
Def1;
then
A32: n3
>= (
len p2) by
Def1;
n2
>= (
len S) by
A29,
Def1;
then
A33: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A28,
A29,
A30,
Th35
.= (
crossover ((
crossover (p1,p2,n4)),(
crossover (p2,p1,n4)),n5)) by
A31,
A33,
A32,
Th35;
hence thesis;
end;
A34: n2
>= (
len p1) & n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n4))
proof
assume that
A35: n2
>= (
len p1) & n3
>= (
len p1) and
A36: n5
>= (
len p1);
n5
>= (
len S) by
A36,
Def1;
then
A37: n5
>= (
len (
crossover (p1,p2,n1,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A35,
Th34;
hence thesis by
A37,
Th5;
end;
A38: n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n5))
proof
assume that
A39: n1
>= (
len p1) and
A40: n3
>= (
len p1) and
A41: n4
>= (
len p1);
n1
>= (
len S) by
A39,
Def1;
then
A42: n1
>= (
len p2) by
Def1;
n4
>= (
len S) by
A41,
Def1;
then
A43: n4
>= (
len p2) by
Def1;
n3
>= (
len S) by
A40,
Def1;
then
A44: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A39,
A40,
A41,
Th35
.= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n2)),n5)) by
A42,
A44,
A43,
Th35;
hence thesis;
end;
A45: n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1,n2))
proof
assume that
A46: n3
>= (
len p1) & n4
>= (
len p1) and
A47: n5
>= (
len p1);
n5
>= (
len S) by
A47,
Def1;
then
A48: n5
>= (
len (
crossover (p1,p2,n1,n2))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1,n2)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A46,
Th34;
hence thesis by
A48,
Th5;
end;
n1
>= (
len p1) & n2
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n4))
proof
assume that
A49: n1
>= (
len p1) & n2
>= (
len p1) and
A50: n5
>= (
len p1);
n5
>= (
len S) by
A50,
Def1;
then
A51: n5
>= (
len (
crossover (p1,p2,n3,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A49,
Th34;
hence thesis by
A51,
Th5;
end;
hence thesis by
A27,
A9,
A38,
A1,
A5,
A20,
A34,
A16,
A45;
end;
theorem ::
GENEALG1:49
(n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n5))) & (n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n4))) & (n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3))) & (n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2))) & (n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1)))
proof
A1: n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3))
proof
assume that
A2: n1
>= (
len p1) & n2
>= (
len p1) & n4
>= (
len p1) and
A3: n5
>= (
len p1);
n5
>= (
len S) by
A3,
Def1;
then
A4: n5
>= (
len (
crossover (p1,p2,n3))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A2,
Th35;
hence thesis by
A4,
Th5;
end;
A5: n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2))
proof
assume that
A6: n1
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) and
A7: n5
>= (
len p1);
n5
>= (
len S) by
A7,
Def1;
then
A8: n5
>= (
len (
crossover (p1,p2,n2))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A6,
Th35;
hence thesis by
A8,
Th5;
end;
A9: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n5))
proof
assume that
A10: n1
>= (
len p1) and
A11: n2
>= (
len p1) and
A12: n3
>= (
len p1) and
A13: n4
>= (
len p1);
n1
>= (
len S) by
A10,
Def1;
then
A14: n1
>= (
len p2) by
Def1;
n3
>= (
len S) by
A12,
Def1;
then
A15: n3
>= (
len p2) by
Def1;
n2
>= (
len S) by
A11,
Def1;
then
A16: n2
>= (
len p2) by
Def1;
n4
>= (
len S) by
A13,
Def1;
then
A17: n4
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A10,
A11,
A12,
A13,
Th36;
hence thesis by
A14,
A16,
A15,
A17,
Th36;
end;
A18: n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n1))
proof
assume that
A19: n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) and
A20: n5
>= (
len p1);
n5
>= (
len S) by
A20,
Def1;
then
A21: n5
>= (
len (
crossover (p1,p2,n1))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n1)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A19,
Th35;
hence thesis by
A21,
Th5;
end;
n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n4))
proof
assume that
A22: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) and
A23: n5
>= (
len p1);
n5
>= (
len S) by
A23,
Def1;
then
A24: n5
>= (
len (
crossover (p1,p2,n4))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A22,
Th35;
hence thesis by
A24,
Th5;
end;
hence thesis by
A9,
A1,
A5,
A18;
end;
theorem ::
GENEALG1:50
n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) & n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5))
= p1
proof
assume that
A1: n1
>= (
len p1) & n2
>= (
len p1) & n3
>= (
len p1) & n4
>= (
len p1) and
A2: n5
>= (
len p1);
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
A1,
Th36;
hence thesis by
A2,
Th5;
end;
theorem ::
GENEALG1:51
Th51: (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n2,n1,n3,n4,n5)) & (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n3,n2,n1,n4,n5)) & (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n4,n2,n3,n1,n5)) & (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n5,n2,n3,n4,n1))
proof
A1: (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3,n2,n1,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
Th37
.= (
crossover ((
crossover (p1,p2,n3,n2,n1,n4)),(
crossover (p2,p1,n3,n2,n1,n4)),n5)) by
Th37;
A2: (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n4,n2,n3,n1)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
Th37
.= (
crossover ((
crossover (p1,p2,n4,n2,n3,n1)),(
crossover (p2,p1,n4,n2,n3,n1)),n5)) by
Th37;
A3: (
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover (p1,p2,n5,n2,n3,n4,n1))
proof
set q2 = (
crossover (p2,p1,n2,n3,n4));
set q1 = (
crossover (p1,p2,n2,n3,n4));
A4: (
crossover (p1,p2,n2,n3,n4,n5))
= (
crossover (q1,q2,n5));
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n3,n4,n1)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
Th37
.= (
crossover ((
crossover (p1,p2,n2,n3,n4,n1)),(
crossover (p2,p1,n2,n3,n4,n1)),n5)) by
Th37
.= (
crossover (q1,q2,n1,n5))
.= (
crossover (q1,q2,n5,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n5,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4,n5)),n1)) by
A4,
Th37
.= (
crossover ((
crossover (p1,p2,n5,n2,n3,n4)),(
crossover (p2,p1,n5,n2,n3,n4)),n1)) by
Th37;
hence thesis;
end;
(
crossover (p1,p2,n1,n2,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n1,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n5)) by
Th37
.= (
crossover ((
crossover (p1,p2,n2,n1,n3,n4)),(
crossover (p2,p1,n2,n1,n3,n4)),n5)) by
Th37;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
GENEALG1:52
Th52: (
crossover (p1,p2,n1,n1,n3,n4,n5))
= (
crossover (p1,p2,n3,n4,n5)) & (
crossover (p1,p2,n1,n2,n1,n4,n5))
= (
crossover (p1,p2,n2,n4,n5)) & (
crossover (p1,p2,n1,n2,n3,n1,n5))
= (
crossover (p1,p2,n2,n3,n5)) & (
crossover (p1,p2,n1,n2,n3,n4,n1))
= (
crossover (p1,p2,n2,n3,n4))
proof
set q1 = (
crossover (p1,p2,n2,n3,n4));
set q2 = (
crossover (p2,p1,n2,n3,n4));
(
crossover (p1,p2,n1,n1,n3,n4,n5))
= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,n1,n1,n3,n4)),n5)) by
Th38
.= (
crossover ((
crossover (p1,p2,n3,n4)),(
crossover (p2,p1,n3,n4)),n5)) by
Th38;
hence (
crossover (p1,p2,n1,n1,n3,n4,n5))
= (
crossover (p1,p2,n3,n4,n5));
(
crossover (p1,p2,n1,n2,n1,n4,n5))
= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,n1,n2,n1,n4)),n5)) by
Th38
.= (
crossover ((
crossover (p1,p2,n2,n4)),(
crossover (p2,p1,n2,n4)),n5)) by
Th38;
hence (
crossover (p1,p2,n1,n2,n1,n4,n5))
= (
crossover (p1,p2,n2,n4,n5));
(
crossover (p1,p2,n1,n2,n3,n1,n5))
= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n1,n2,n3,n1)),n5)) by
Th38
.= (
crossover ((
crossover (p1,p2,n2,n3)),(
crossover (p2,p1,n2,n3)),n5)) by
Th38;
hence (
crossover (p1,p2,n1,n2,n3,n1,n5))
= (
crossover (p1,p2,n2,n3,n5));
(
crossover (p1,p2,n1,n2,n3,n4,n1))
= (
crossover ((
crossover (p1,p2,n2,n3,n4,n1)),(
crossover (p2,p1,n1,n2,n3,n4)),n1)) by
Th37
.= (
crossover ((
crossover (p1,p2,n2,n3,n4,n1)),(
crossover (p2,p1,n2,n3,n4,n1)),n1)) by
Th37
.= (
crossover (q1,q2,n1,n1));
hence thesis by
Th12;
end;
begin
theorem ::
GENEALG1:53
Th53: (
crossover (p1,p2,n1,n2,n3,n4,n5,n6)) is
Individual of S
proof
reconsider q1 = (
crossover (p1,p2,n1,n2,n3,n4,n5)), q2 = (
crossover (p2,p1,n1,n2,n3,n4,n5)) as
Individual of S;
(
crossover (q1,q2,n6)) is
Individual of S;
hence thesis;
end;
definition
let S be
Gene-Set, p1,p2 be
Individual of S, n1, n2, n3, n4, n5, n6;
:: original:
crossover
redefine
func
crossover (p1,p2,n1,n2,n3,n4,n5,n6) ->
Individual of S ;
correctness by
Th53;
end
theorem ::
GENEALG1:54
(
crossover (p1,p2,
0 ,n2,n3,n4,n5,n6))
= (
crossover (p2,p1,n2,n3,n4,n5,n6)) & (
crossover (p1,p2,n1,
0 ,n3,n4,n5,n6))
= (
crossover (p2,p1,n1,n3,n4,n5,n6)) & (
crossover (p1,p2,n1,n2,
0 ,n4,n5,n6))
= (
crossover (p2,p1,n1,n2,n4,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,
0 ,n5,n6))
= (
crossover (p2,p1,n1,n2,n3,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,
0 ,n6))
= (
crossover (p2,p1,n1,n2,n3,n4,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n5,
0 ))
= (
crossover (p2,p1,n1,n2,n3,n4,n5))
proof
(
crossover (p1,p2,
0 ,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p2,p1,n2,n3,n4,n5)),(
crossover (p2,p1,
0 ,n2,n3,n4,n5)),n6)) by
Th41
.= (
crossover ((
crossover (p2,p1,n2,n3,n4,n5)),(
crossover (p1,p2,n2,n3,n4,n5)),n6)) by
Th41;
hence (
crossover (p1,p2,
0 ,n2,n3,n4,n5,n6))
= (
crossover (p2,p1,n2,n3,n4,n5,n6));
(
crossover (p1,p2,n1,
0 ,n3,n4,n5,n6))
= (
crossover ((
crossover (p2,p1,n1,n3,n4,n5)),(
crossover (p2,p1,n1,
0 ,n3,n4,n5)),n6)) by
Th41
.= (
crossover ((
crossover (p2,p1,n1,n3,n4,n5)),(
crossover (p1,p2,n1,n3,n4,n5)),n6)) by
Th41;
hence (
crossover (p1,p2,n1,
0 ,n3,n4,n5,n6))
= (
crossover (p2,p1,n1,n3,n4,n5,n6));
(
crossover (p1,p2,n1,n2,
0 ,n4,n5,n6))
= (
crossover ((
crossover (p2,p1,n1,n2,n4,n5)),(
crossover (p2,p1,n1,n2,
0 ,n4,n5)),n6)) by
Th41
.= (
crossover ((
crossover (p2,p1,n1,n2,n4,n5)),(
crossover (p1,p2,n1,n2,n4,n5)),n6)) by
Th41;
hence (
crossover (p1,p2,n1,n2,
0 ,n4,n5,n6))
= (
crossover (p2,p1,n1,n2,n4,n5,n6));
(
crossover (p1,p2,n1,n2,n3,
0 ,n5,n6))
= (
crossover ((
crossover (p2,p1,n1,n2,n3,n5)),(
crossover (p2,p1,n1,n2,n3,
0 ,n5)),n6)) by
Th41
.= (
crossover ((
crossover (p2,p1,n1,n2,n3,n5)),(
crossover (p1,p2,n1,n2,n3,n5)),n6)) by
Th41;
hence (
crossover (p1,p2,n1,n2,n3,
0 ,n5,n6))
= (
crossover (p2,p1,n1,n2,n3,n5,n6));
(
crossover (p1,p2,n1,n2,n3,n4,
0 ,n6))
= (
crossover ((
crossover (p2,p1,n1,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4,
0 )),n6)) by
Th41
.= (
crossover ((
crossover (p2,p1,n1,n2,n3,n4)),(
crossover (p1,p2,n1,n2,n3,n4)),n6)) by
Th41;
hence (
crossover (p1,p2,n1,n2,n3,n4,
0 ,n6))
= (
crossover (p2,p1,n1,n2,n3,n4,n6));
thus (
crossover (p1,p2,n1,n2,n3,n4,n5,
0 ))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),
0 ))
.= (
crossover (p2,p1,n1,n2,n3,n4,n5)) by
Th4;
end;
theorem ::
GENEALG1:55
(n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n2,n3,n4,n5,n6))) & (n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n3,n4,n5,n6))) & (n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n4,n5,n6))) & (n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n3,n5,n6))) & (n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n3,n4,n6))) & (n6
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n3,n4,n5)))
proof
A1: n6
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n3,n4,n5))
proof
assume n6
>= (
len p1);
then n6
>= (
len S) by
Def1;
then
A2: n6
>= (
len (
crossover (p1,p2,n1,n2,n3,n4,n5))) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6));
hence thesis by
A2,
Th5;
end;
A3: n2
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n3,n4,n5,n6))
proof
assume
A4: n2
>= (
len p1);
then n2
>= (
len S) by
Def1;
then
A5: n2
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n1,n3,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
A4,
Th46
.= (
crossover ((
crossover (p1,p2,n1,n3,n4,n5)),(
crossover (p2,p1,n1,n3,n4,n5)),n6)) by
A5,
Th46;
hence thesis;
end;
A6: n5
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n3,n4,n6))
proof
assume
A7: n5
>= (
len p1);
then n5
>= (
len S) by
Def1;
then
A8: n5
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
A7,
Th46
.= (
crossover ((
crossover (p1,p2,n1,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4)),n6)) by
A8,
Th46;
hence thesis;
end;
A9: n4
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n3,n5,n6))
proof
assume
A10: n4
>= (
len p1);
then n4
>= (
len S) by
Def1;
then
A11: n4
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n1,n2,n3,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
A10,
Th46
.= (
crossover ((
crossover (p1,p2,n1,n2,n3,n5)),(
crossover (p2,p1,n1,n2,n3,n5)),n6)) by
A11,
Th46;
hence thesis;
end;
A12: n3
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n1,n2,n4,n5,n6))
proof
assume
A13: n3
>= (
len p1);
then n3
>= (
len S) by
Def1;
then
A14: n3
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n1,n2,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
A13,
Th46
.= (
crossover ((
crossover (p1,p2,n1,n2,n4,n5)),(
crossover (p2,p1,n1,n2,n4,n5)),n6)) by
A14,
Th46;
hence thesis;
end;
n1
>= (
len p1) implies (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n2,n3,n4,n5,n6))
proof
assume
A15: n1
>= (
len p1);
then n1
>= (
len S) by
Def1;
then
A16: n1
>= (
len p2) by
Def1;
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n2,n3,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
A15,
Th46
.= (
crossover ((
crossover (p1,p2,n2,n3,n4,n5)),(
crossover (p2,p1,n2,n3,n4,n5)),n6)) by
A16,
Th46;
hence thesis;
end;
hence thesis by
A3,
A12,
A9,
A6,
A1;
end;
theorem ::
GENEALG1:56
Th56: (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n2,n1,n3,n4,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n3,n2,n1,n4,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n4,n2,n3,n1,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n5,n2,n3,n4,n1,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n6,n2,n3,n4,n5,n1))
proof
set q1 = (
crossover (p1,p2,n5,n2,n3,n4));
set q2 = (
crossover (p2,p1,n5,n2,n3,n4));
A1: (
crossover (p1,p2,n5,n2,n3,n4,n6))
= (
crossover (q1,q2,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n2,n1,n3,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
Th51
.= (
crossover ((
crossover (p1,p2,n2,n1,n3,n4,n5)),(
crossover (p2,p1,n2,n1,n3,n4,n5)),n6)) by
Th51;
hence (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n2,n1,n3,n4,n5,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n3,n2,n1,n4,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
Th51
.= (
crossover ((
crossover (p1,p2,n3,n2,n1,n4,n5)),(
crossover (p2,p1,n3,n2,n1,n4,n5)),n6)) by
Th51;
hence (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n3,n2,n1,n4,n5,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n4,n2,n3,n1,n5)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
Th51
.= (
crossover ((
crossover (p1,p2,n4,n2,n3,n1,n5)),(
crossover (p2,p1,n4,n2,n3,n1,n5)),n6)) by
Th51;
hence (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n4,n2,n3,n1,n5,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n5,n2,n3,n4,n1)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
Th51
.= (
crossover ((
crossover (p1,p2,n5,n2,n3,n4,n1)),(
crossover (p2,p1,n5,n2,n3,n4,n1)),n6)) by
Th51;
hence (
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover (p1,p2,n5,n2,n3,n4,n1,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n5,n2,n3,n4,n1)),(
crossover (p2,p1,n1,n2,n3,n4,n5)),n6)) by
Th51
.= (
crossover ((
crossover (p1,p2,n5,n2,n3,n4,n1)),(
crossover (p2,p1,n5,n2,n3,n4,n1)),n6)) by
Th51
.= (
crossover (q1,q2,n1,n6))
.= (
crossover (q1,q2,n6,n1)) by
Th13
.= (
crossover ((
crossover (p1,p2,n6,n2,n3,n4,n5)),(
crossover (p2,p1,n5,n2,n3,n4,n6)),n1)) by
A1,
Th51
.= (
crossover ((
crossover (p1,p2,n6,n2,n3,n4,n5)),(
crossover (p2,p1,n6,n2,n3,n4,n5)),n1)) by
Th51;
hence thesis;
end;
theorem ::
GENEALG1:57
(
crossover (p1,p2,n1,n1,n3,n4,n5,n6))
= (
crossover (p1,p2,n3,n4,n5,n6)) & (
crossover (p1,p2,n1,n2,n1,n4,n5,n6))
= (
crossover (p1,p2,n2,n4,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,n1,n5,n6))
= (
crossover (p1,p2,n2,n3,n5,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n1,n6))
= (
crossover (p1,p2,n2,n3,n4,n6)) & (
crossover (p1,p2,n1,n2,n3,n4,n5,n1))
= (
crossover (p1,p2,n2,n3,n4,n5))
proof
(
crossover (p1,p2,n1,n1,n3,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n3,n4,n5)),(
crossover (p2,p1,n1,n1,n3,n4,n5)),n6)) by
Th52
.= (
crossover ((
crossover (p1,p2,n3,n4,n5)),(
crossover (p2,p1,n3,n4,n5)),n6)) by
Th52;
hence (
crossover (p1,p2,n1,n1,n3,n4,n5,n6))
= (
crossover (p1,p2,n3,n4,n5,n6));
(
crossover (p1,p2,n1,n2,n1,n4,n5,n6))
= (
crossover ((
crossover (p1,p2,n2,n4,n5)),(
crossover (p2,p1,n1,n2,n1,n4,n5)),n6)) by
Th52
.= (
crossover ((
crossover (p1,p2,n2,n4,n5)),(
crossover (p2,p1,n2,n4,n5)),n6)) by
Th52;
hence (
crossover (p1,p2,n1,n2,n1,n4,n5,n6))
= (
crossover (p1,p2,n2,n4,n5,n6));
(
crossover (p1,p2,n1,n2,n3,n1,n5,n6))
= (
crossover ((
crossover (p1,p2,n2,n3,n5)),(
crossover (p2,p1,n1,n2,n3,n1,n5)),n6)) by
Th52
.= (
crossover ((
crossover (p1,p2,n2,n3,n5)),(
crossover (p2,p1,n2,n3,n5)),n6)) by
Th52;
hence (
crossover (p1,p2,n1,n2,n3,n1,n5,n6))
= (
crossover (p1,p2,n2,n3,n5,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n1,n6))
= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4,n1)),n6)) by
Th52
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4)),n6)) by
Th52;
hence (
crossover (p1,p2,n1,n2,n3,n4,n1,n6))
= (
crossover (p1,p2,n2,n3,n4,n6));
(
crossover (p1,p2,n1,n2,n3,n4,n5,n1))
= (
crossover (p1,p2,n5,n2,n3,n4,n1,n1)) by
Th56
.= (
crossover (p1,p2,n1,n2,n3,n4,n1,n5)) by
Th56
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n1,n2,n3,n4,n1)),n5)) by
Th52
.= (
crossover ((
crossover (p1,p2,n2,n3,n4)),(
crossover (p2,p1,n2,n3,n4)),n5)) by
Th52;
hence thesis;
end;