lukasi_1.miz
begin
reserve A for
QC-alphabet;
reserve p,q,r,s,t for
Element of (
CQC-WFF A);
reserve X for
Subset of (
CQC-WFF A);
theorem ::
LUKASI_1:1
Th1: ((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
in (
TAUT A)
proof
((p
=> q)
=> ((
'not' (q
'&' (
'not' r)))
=> (
'not' (p
'&' (
'not' r)))))
in (
TAUT A) by
CQC_THE1: 44;
then ((p
=> q)
=> ((q
=> r)
=> (
'not' (p
'&' (
'not' r)))))
in (
TAUT A) by
QC_LANG2:def 2;
hence thesis by
QC_LANG2:def 2;
end;
theorem ::
LUKASI_1:2
Th2: (p
=> q)
in (
TAUT A) implies ((q
=> r)
=> (p
=> r))
in (
TAUT A)
proof
assume
A1: (p
=> q)
in (
TAUT A);
((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
in (
TAUT A) by
Th1;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:3
Th3: (p
=> q)
in (
TAUT A) & (q
=> r)
in (
TAUT A) implies (p
=> r)
in (
TAUT A)
proof
assume that
A1: (p
=> q)
in (
TAUT A) and
A2: (q
=> r)
in (
TAUT A);
((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
in (
TAUT A) by
Th1;
then ((q
=> r)
=> (p
=> r))
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:4
Th4: (p
=> p)
in (
TAUT A)
proof
(((
'not' p)
=> p)
=> p)
in (
TAUT A) & (p
=> ((
'not' p)
=> p))
in (
TAUT A) by
CQC_THE1: 42,
CQC_THE1: 43;
hence thesis by
Th3;
end;
Lm1: ((((q
=> r)
=> (p
=> r))
=> s)
=> ((p
=> q)
=> s))
in (
TAUT A)
proof
((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
in (
TAUT A) by
Th1;
hence thesis by
Th2;
end;
Lm2: ((p
=> (q
=> r))
=> ((s
=> q)
=> (p
=> (s
=> r))))
in (
TAUT A)
proof
(((((q
=> r)
=> (s
=> r))
=> (p
=> (s
=> r)))
=> ((s
=> q)
=> (p
=> (s
=> r))))
=> ((p
=> (q
=> r))
=> ((s
=> q)
=> (p
=> (s
=> r)))))
in (
TAUT A) & ((((q
=> r)
=> (s
=> r))
=> (p
=> (s
=> r)))
=> ((s
=> q)
=> (p
=> (s
=> r))))
in (
TAUT A) by
Lm1;
hence thesis by
CQC_THE1: 46;
end;
Lm3: ((p
=> q)
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
in (
TAUT A)
proof
(((q
=> r)
=> (p
=> r))
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
in (
TAUT A) & ((((q
=> r)
=> (p
=> r))
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
=> ((p
=> q)
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s))))
in (
TAUT A) by
Lm1,
Th1;
hence thesis by
CQC_THE1: 46;
end;
Lm4: ((t
=> ((p
=> r)
=> s))
=> ((p
=> q)
=> (t
=> ((q
=> r)
=> s))))
in (
TAUT A)
proof
((p
=> q)
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
in (
TAUT A) & (((p
=> q)
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
=> ((t
=> ((p
=> r)
=> s))
=> ((p
=> q)
=> (t
=> ((q
=> r)
=> s)))))
in (
TAUT A) by
Lm2,
Lm3;
hence thesis by
CQC_THE1: 46;
end;
Lm5: ((((
'not' p)
=> q)
=> r)
=> (p
=> r))
in (
TAUT A)
proof
(p
=> ((
'not' p)
=> q))
in (
TAUT A) by
CQC_THE1: 43;
hence thesis by
Th2;
end;
Lm6: (p
=> ((((
'not' p)
=> r)
=> s)
=> ((q
=> r)
=> s)))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> ((((
'not' p)
=> r)
=> s)
=> ((q
=> r)
=> s)))
in (
TAUT A) & ((((
'not' p)
=> q)
=> ((((
'not' p)
=> r)
=> s)
=> ((q
=> r)
=> s)))
=> (p
=> ((((
'not' p)
=> r)
=> s)
=> ((q
=> r)
=> s))))
in (
TAUT A) by
Lm3,
Lm5;
hence thesis by
CQC_THE1: 46;
end;
Lm7: ((q
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
in (
TAUT A)
proof
(((
'not' p)
=> p)
=> p)
in (
TAUT A) & ((((
'not' p)
=> p)
=> p)
=> ((((
'not' (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
=> ((q
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))))
in (
TAUT A) by
Lm6,
CQC_THE1: 42;
then (((
'not' (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
in (
TAUT A) & ((((
'not' (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
=> ((q
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p)))
in (
TAUT A) by
CQC_THE1: 42,
CQC_THE1: 46;
hence thesis by
CQC_THE1: 46;
end;
Lm8: (t
=> (((
'not' p)
=> p)
=> p))
in (
TAUT A)
proof
(((
'not' t)
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
in (
TAUT A) & ((((
'not' t)
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> p)
=> p))
=> (t
=> (((
'not' p)
=> p)
=> p)))
in (
TAUT A) by
Lm5,
Lm7;
hence thesis by
CQC_THE1: 46;
end;
Lm9: (((
'not' p)
=> q)
=> (t
=> ((q
=> p)
=> p)))
in (
TAUT A)
proof
(t
=> (((
'not' p)
=> p)
=> p))
in (
TAUT A) & ((t
=> (((
'not' p)
=> p)
=> p))
=> (((
'not' p)
=> q)
=> (t
=> ((q
=> p)
=> p))))
in (
TAUT A) by
Lm4,
Lm8;
hence thesis by
CQC_THE1: 46;
end;
Lm10: (((t
=> ((q
=> p)
=> p))
=> r)
=> (((
'not' p)
=> q)
=> r))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> (t
=> ((q
=> p)
=> p)))
in (
TAUT A) & ((((
'not' p)
=> q)
=> (t
=> ((q
=> p)
=> p)))
=> (((t
=> ((q
=> p)
=> p))
=> r)
=> (((
'not' p)
=> q)
=> r)))
in (
TAUT A) by
Lm9,
Th1;
hence thesis by
CQC_THE1: 46;
end;
Lm11: (((
'not' p)
=> q)
=> ((q
=> p)
=> p))
in (
TAUT A)
proof
(((
'not' ((q
=> p)
=> p))
=> ((q
=> p)
=> p))
=> ((q
=> p)
=> p))
in (
TAUT A) & ((((
'not' ((q
=> p)
=> p))
=> ((q
=> p)
=> p))
=> ((q
=> p)
=> p))
=> (((
'not' p)
=> q)
=> ((q
=> p)
=> p)))
in (
TAUT A) by
Lm10,
CQC_THE1: 42;
hence thesis by
CQC_THE1: 46;
end;
Lm12: (p
=> ((q
=> p)
=> p))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> ((q
=> p)
=> p))
in (
TAUT A) & ((((
'not' p)
=> q)
=> ((q
=> p)
=> p))
=> (p
=> ((q
=> p)
=> p)))
in (
TAUT A) by
Lm5,
Lm11;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:5
Th5: (q
=> (p
=> q))
in (
TAUT A)
proof
(q
=> (((
'not' p)
=> q)
=> q))
in (
TAUT A) & ((q
=> (((
'not' p)
=> q)
=> q))
=> ((p
=> ((
'not' p)
=> q))
=> (q
=> (p
=> q))))
in (
TAUT A) by
Lm2,
Lm12;
then (p
=> ((
'not' p)
=> q))
in (
TAUT A) & ((p
=> ((
'not' p)
=> q))
=> (q
=> (p
=> q)))
in (
TAUT A) by
CQC_THE1: 43,
CQC_THE1: 46;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:6
Th6: (((p
=> q)
=> r)
=> (q
=> r))
in (
TAUT A)
proof
(q
=> (p
=> q))
in (
TAUT A) & ((q
=> (p
=> q))
=> (((p
=> q)
=> r)
=> (q
=> r)))
in (
TAUT A) by
Th1,
Th5;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:7
Th7: (q
=> ((q
=> p)
=> p))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> ((q
=> p)
=> p))
in (
TAUT A) & ((((
'not' p)
=> q)
=> ((q
=> p)
=> p))
=> (q
=> ((q
=> p)
=> p)))
in (
TAUT A) by
Lm11,
Th6;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:8
Th8: ((s
=> (q
=> p))
=> (q
=> (s
=> p)))
in (
TAUT A)
proof
(q
=> ((q
=> p)
=> p))
in (
TAUT A) & ((q
=> ((q
=> p)
=> p))
=> ((s
=> (q
=> p))
=> (q
=> (s
=> p))))
in (
TAUT A) by
Lm2,
Th7;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:9
Th9: ((q
=> r)
=> ((p
=> q)
=> (p
=> r)))
in (
TAUT A)
proof
((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
in (
TAUT A) & (((p
=> q)
=> ((q
=> r)
=> (p
=> r)))
=> ((q
=> r)
=> ((p
=> q)
=> (p
=> r))))
in (
TAUT A) by
Th1,
Th8;
hence thesis by
CQC_THE1: 46;
end;
Lm13: (((q
=> (s
=> p))
=> r)
=> ((s
=> (q
=> p))
=> r))
in (
TAUT A)
proof
((s
=> (q
=> p))
=> (q
=> (s
=> p)))
in (
TAUT A) & (((s
=> (q
=> p))
=> (q
=> (s
=> p)))
=> (((q
=> (s
=> p))
=> r)
=> ((s
=> (q
=> p))
=> r)))
in (
TAUT A) by
Th1,
Th8;
hence thesis by
CQC_THE1: 46;
end;
Lm14: (((p
=> q)
=> p)
=> p)
in (
TAUT A)
proof
(((
'not' p)
=> (p
=> q))
=> (((p
=> q)
=> p)
=> p))
in (
TAUT A) & ((((
'not' p)
=> (p
=> q))
=> (((p
=> q)
=> p)
=> p))
=> ((p
=> ((
'not' p)
=> q))
=> (((p
=> q)
=> p)
=> p)))
in (
TAUT A) by
Lm11,
Lm13;
then (p
=> ((
'not' p)
=> q))
in (
TAUT A) & ((p
=> ((
'not' p)
=> q))
=> (((p
=> q)
=> p)
=> p))
in (
TAUT A) by
CQC_THE1: 43,
CQC_THE1: 46;
hence thesis by
CQC_THE1: 46;
end;
Lm15: (((p
=> r)
=> s)
=> ((p
=> q)
=> ((q
=> r)
=> s)))
in (
TAUT A)
proof
((p
=> q)
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
in (
TAUT A) & (((p
=> q)
=> (((p
=> r)
=> s)
=> ((q
=> r)
=> s)))
=> (((p
=> r)
=> s)
=> ((p
=> q)
=> ((q
=> r)
=> s))))
in (
TAUT A) by
Lm3,
Th8;
hence thesis by
CQC_THE1: 46;
end;
Lm16: (((p
=> q)
=> r)
=> ((r
=> p)
=> p))
in (
TAUT A)
proof
(((p
=> q)
=> p)
=> p)
in (
TAUT A) & ((((p
=> q)
=> p)
=> p)
=> (((p
=> q)
=> r)
=> ((r
=> p)
=> p)))
in (
TAUT A) by
Lm14,
Lm15;
hence thesis by
CQC_THE1: 46;
end;
Lm17: ((((r
=> p)
=> p)
=> s)
=> (((p
=> q)
=> r)
=> s))
in (
TAUT A)
proof
(((p
=> q)
=> r)
=> ((r
=> p)
=> p))
in (
TAUT A) & ((((p
=> q)
=> r)
=> ((r
=> p)
=> p))
=> ((((r
=> p)
=> p)
=> s)
=> (((p
=> q)
=> r)
=> s)))
in (
TAUT A) by
Lm16,
Th1;
hence thesis by
CQC_THE1: 46;
end;
Lm18: (((q
=> r)
=> p)
=> ((q
=> p)
=> p))
in (
TAUT A)
proof
(((p
=> q)
=> q)
=> ((q
=> p)
=> p))
in (
TAUT A) & ((((p
=> q)
=> q)
=> ((q
=> p)
=> p))
=> (((q
=> r)
=> p)
=> ((q
=> p)
=> p)))
in (
TAUT A) by
Lm16,
Lm17;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:10
Th10: ((q
=> (q
=> r))
=> (q
=> r))
in (
TAUT A)
proof
((q
=> r)
=> (q
=> r))
in (
TAUT A) & (((q
=> r)
=> (q
=> r))
=> ((q
=> (q
=> r))
=> (q
=> r)))
in (
TAUT A) by
Lm18,
Th4;
hence thesis by
CQC_THE1: 46;
end;
Lm19: ((q
=> s)
=> (((q
=> r)
=> p)
=> ((s
=> p)
=> p)))
in (
TAUT A)
proof
(((q
=> r)
=> p)
=> ((q
=> p)
=> p))
in (
TAUT A) & ((((q
=> r)
=> p)
=> ((q
=> p)
=> p))
=> ((q
=> s)
=> (((q
=> r)
=> p)
=> ((s
=> p)
=> p))))
in (
TAUT A) by
Lm4,
Lm18;
hence thesis by
CQC_THE1: 46;
end;
Lm20: (((q
=> r)
=> p)
=> ((q
=> s)
=> ((s
=> p)
=> p)))
in (
TAUT A)
proof
((q
=> s)
=> (((q
=> r)
=> p)
=> ((s
=> p)
=> p)))
in (
TAUT A) & (((q
=> s)
=> (((q
=> r)
=> p)
=> ((s
=> p)
=> p)))
=> (((q
=> r)
=> p)
=> ((q
=> s)
=> ((s
=> p)
=> p))))
in (
TAUT A) by
Lm19,
Th8;
hence thesis by
CQC_THE1: 46;
end;
Lm21: ((q
=> s)
=> ((s
=> (p
=> (q
=> r)))
=> (p
=> (q
=> r))))
in (
TAUT A)
proof
((q
=> r)
=> (p
=> (q
=> r)))
in (
TAUT A) & (((q
=> r)
=> (p
=> (q
=> r)))
=> ((q
=> s)
=> ((s
=> (p
=> (q
=> r)))
=> (p
=> (q
=> r)))))
in (
TAUT A) by
Lm20,
Th5;
hence thesis by
CQC_THE1: 46;
end;
Lm22: ((s
=> (p
=> (q
=> r)))
=> ((q
=> s)
=> (p
=> (q
=> r))))
in (
TAUT A)
proof
((q
=> s)
=> ((s
=> (p
=> (q
=> r)))
=> (p
=> (q
=> r))))
in (
TAUT A) & (((q
=> s)
=> ((s
=> (p
=> (q
=> r)))
=> (p
=> (q
=> r))))
=> ((s
=> (p
=> (q
=> r)))
=> ((q
=> s)
=> (p
=> (q
=> r)))))
in (
TAUT A) by
Lm21,
Th8;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:11
Th11: ((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r)))
in (
TAUT A)
proof
((q
=> r)
=> ((p
=> q)
=> (p
=> r)))
in (
TAUT A) & (((q
=> r)
=> ((p
=> q)
=> (p
=> r)))
=> ((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r))))
in (
TAUT A) by
Lm22,
Th9;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:12
Th12: ((
'not' (
VERUM A))
=> p)
in (
TAUT A)
proof
((
VERUM A)
=> ((
'not' (
VERUM A))
=> p))
in (
TAUT A) by
CQC_THE1: 43;
hence thesis by
CQC_THE1: 41,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:13
Th13: q
in (
TAUT A) implies (p
=> q)
in (
TAUT A)
proof
(q
=> (p
=> q))
in (
TAUT A) by
Th5;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:14
p
in (
TAUT A) implies ((p
=> q)
=> q)
in (
TAUT A)
proof
assume
A1: p
in (
TAUT A);
(p
=> ((p
=> q)
=> q))
in (
TAUT A) by
Th7;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:15
Th15: (s
=> (q
=> p))
in (
TAUT A) implies (q
=> (s
=> p))
in (
TAUT A)
proof
assume
A1: (s
=> (q
=> p))
in (
TAUT A);
((s
=> (q
=> p))
=> (q
=> (s
=> p)))
in (
TAUT A) by
Th8;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:16
Th16: (s
=> (q
=> p))
in (
TAUT A) & q
in (
TAUT A) implies (s
=> p)
in (
TAUT A)
proof
assume (s
=> (q
=> p))
in (
TAUT A);
then (q
=> (s
=> p))
in (
TAUT A) by
Th15;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:17
(s
=> (q
=> p))
in (
TAUT A) & q
in (
TAUT A) & s
in (
TAUT A) implies p
in (
TAUT A)
proof
assume (s
=> (q
=> p))
in (
TAUT A) & q
in (
TAUT A);
then (s
=> p)
in (
TAUT A) by
Th16;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:18
(q
=> (q
=> r))
in (
TAUT A) implies (q
=> r)
in (
TAUT A)
proof
((q
=> (q
=> r))
=> (q
=> r))
in (
TAUT A) by
Th10;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:19
Th19: (p
=> (q
=> r))
in (
TAUT A) implies ((p
=> q)
=> (p
=> r))
in (
TAUT A)
proof
assume
A1: (p
=> (q
=> r))
in (
TAUT A);
((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r)))
in (
TAUT A) by
Th11;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:20
Th20: (p
=> (q
=> r))
in (
TAUT A) & (p
=> q)
in (
TAUT A) implies (p
=> r)
in (
TAUT A)
proof
assume (p
=> (q
=> r))
in (
TAUT A);
then ((p
=> q)
=> (p
=> r))
in (
TAUT A) by
Th19;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:21
(p
=> (q
=> r))
in (
TAUT A) & (p
=> q)
in (
TAUT A) & p
in (
TAUT A) implies r
in (
TAUT A)
proof
assume (p
=> (q
=> r))
in (
TAUT A) & (p
=> q)
in (
TAUT A);
then (p
=> r)
in (
TAUT A) by
Th20;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:22
Th22: (p
=> (q
=> r))
in (
TAUT A) & (p
=> (r
=> s))
in (
TAUT A) implies (p
=> (q
=> s))
in (
TAUT A)
proof
assume that
A1: (p
=> (q
=> r))
in (
TAUT A) and
A2: (p
=> (r
=> s))
in (
TAUT A);
(p
=> ((q
=> r)
=> ((r
=> s)
=> (q
=> s))))
in (
TAUT A) by
Th1,
Th13;
then (p
=> ((r
=> s)
=> (q
=> s)))
in (
TAUT A) by
A1,
Th20;
hence thesis by
A2,
Th20;
end;
theorem ::
LUKASI_1:23
(p
=> (
VERUM A))
in (
TAUT A) by
Th13,
CQC_THE1: 41;
Lm23: ((
'not' p)
=> (p
=> (
'not' (
VERUM A))))
in (
TAUT A)
proof
(p
=> ((
'not' p)
=> (
'not' (
VERUM A))))
in (
TAUT A) by
CQC_THE1: 43;
hence thesis by
Th15;
end;
Lm24: (((
'not' p)
=> (
'not' (
VERUM A)))
=> p)
in (
TAUT A)
proof
((
'not' p)
=> ((
'not' (
VERUM A))
=> p))
in (
TAUT A) & (((
'not' p)
=> ((
'not' (
VERUM A))
=> p))
=> (((
'not' p)
=> (
'not' (
VERUM A)))
=> ((
'not' p)
=> p)))
in (
TAUT A) by
Th11,
Th12,
Th13;
then
A1: (((
'not' p)
=> (
'not' (
VERUM A)))
=> ((
'not' p)
=> p))
in (
TAUT A) by
CQC_THE1: 46;
(((
'not' p)
=> p)
=> p)
in (
TAUT A) by
CQC_THE1: 42;
hence thesis by
A1,
Th3;
end;
theorem ::
LUKASI_1:24
Th24: (((
'not' p)
=> (
'not' q))
=> (q
=> p))
in (
TAUT A)
proof
(q
=> ((
'not' q)
=> (
'not' (
VERUM A))))
in (
TAUT A) & (((
'not' q)
=> (
'not' (
VERUM A)))
=> (((
'not' p)
=> (
'not' q))
=> ((
'not' p)
=> (
'not' (
VERUM A)))))
in (
TAUT A) by
Th9,
CQC_THE1: 43;
then
A1: (q
=> (((
'not' p)
=> (
'not' q))
=> ((
'not' p)
=> (
'not' (
VERUM A)))))
in (
TAUT A) by
Th3;
(q
=> (((
'not' p)
=> (
'not' (
VERUM A)))
=> p))
in (
TAUT A) by
Lm24,
Th13;
then (q
=> (((
'not' p)
=> (
'not' q))
=> p))
in (
TAUT A) by
A1,
Th22;
hence thesis by
Th15;
end;
theorem ::
LUKASI_1:25
Th25: ((
'not' (
'not' p))
=> p)
in (
TAUT A)
proof
((
'not' (
'not' p))
=> ((
'not' p)
=> (
'not' (
VERUM A))))
in (
TAUT A) & (((
'not' p)
=> (
'not' (
VERUM A)))
=> ((
VERUM A)
=> p))
in (
TAUT A) by
Lm23,
Th24;
then ((
'not' (
'not' p))
=> ((
VERUM A)
=> p))
in (
TAUT A) by
Th3;
then ((
VERUM A)
=> ((
'not' (
'not' p))
=> p))
in (
TAUT A) by
Th15;
hence thesis by
CQC_THE1: 41,
CQC_THE1: 46;
end;
Lm25:
now
let A, p;
((
'not' (
'not' p))
=> p)
in (
TAUT A) by
Th25;
then
A1: ((p
=> (
'not' (
VERUM A)))
=> ((
'not' (
'not' p))
=> (
'not' (
VERUM A))))
in (
TAUT A) by
Th2;
(((
'not' (
'not' p))
=> (
'not' (
VERUM A)))
=> (
'not' p))
in (
TAUT A) by
Lm24;
hence ((p
=> (
'not' (
VERUM A)))
=> (
'not' p))
in (
TAUT A) by
A1,
Th3;
end;
theorem ::
LUKASI_1:26
Th26: ((p
=> q)
=> ((
'not' q)
=> (
'not' p)))
in (
TAUT A)
proof
((
'not' q)
=> (q
=> (
'not' (
VERUM A))))
in (
TAUT A) & ((q
=> (
'not' (
VERUM A)))
=> ((p
=> q)
=> (p
=> (
'not' (
VERUM A)))))
in (
TAUT A) by
Lm23,
Th9;
then
A1: ((
'not' q)
=> ((p
=> q)
=> (p
=> (
'not' (
VERUM A)))))
in (
TAUT A) by
Th3;
((
'not' q)
=> ((p
=> (
'not' (
VERUM A)))
=> (
'not' p)))
in (
TAUT A) by
Lm25,
Th13;
then ((
'not' q)
=> ((p
=> q)
=> (
'not' p)))
in (
TAUT A) by
A1,
Th22;
hence thesis by
Th15;
end;
theorem ::
LUKASI_1:27
Th27: (p
=> (
'not' (
'not' p)))
in (
TAUT A)
proof
(((
VERUM A)
=> p)
=> ((
'not' p)
=> (
'not' (
VERUM A))))
in (
TAUT A) & (((
'not' p)
=> (
'not' (
VERUM A)))
=> (
'not' (
'not' p)))
in (
TAUT A) by
Lm25,
Th26;
then
A1: (((
VERUM A)
=> p)
=> (
'not' (
'not' p)))
in (
TAUT A) by
Th3;
(p
=> ((
VERUM A)
=> p))
in (
TAUT A) by
Th5;
hence thesis by
A1,
Th3;
end;
theorem ::
LUKASI_1:28
Th28: (((
'not' (
'not' p))
=> q)
=> (p
=> q))
in (
TAUT A) & ((p
=> q)
=> ((
'not' (
'not' p))
=> q))
in (
TAUT A)
proof
(p
=> (
'not' (
'not' p)))
in (
TAUT A) by
Th27;
hence (((
'not' (
'not' p))
=> q)
=> (p
=> q))
in (
TAUT A) by
Th2;
((
'not' (
'not' p))
=> p)
in (
TAUT A) by
Th25;
hence thesis by
Th2;
end;
theorem ::
LUKASI_1:29
Th29: ((p
=> (
'not' (
'not' q)))
=> (p
=> q))
in (
TAUT A) & ((p
=> q)
=> (p
=> (
'not' (
'not' q))))
in (
TAUT A)
proof
((p
=> ((
'not' (
'not' q))
=> q))
=> ((p
=> (
'not' (
'not' q)))
=> (p
=> q)))
in (
TAUT A) & (p
=> ((
'not' (
'not' q))
=> q))
in (
TAUT A) by
Th11,
Th13,
Th25;
hence ((p
=> (
'not' (
'not' q)))
=> (p
=> q))
in (
TAUT A) by
CQC_THE1: 46;
((p
=> (q
=> (
'not' (
'not' q))))
=> ((p
=> q)
=> (p
=> (
'not' (
'not' q)))))
in (
TAUT A) & (p
=> (q
=> (
'not' (
'not' q))))
in (
TAUT A) by
Th11,
Th13,
Th27;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:30
Th30: ((p
=> (
'not' q))
=> (q
=> (
'not' p)))
in (
TAUT A)
proof
((p
=> (
'not' q))
=> ((
'not' (
'not' q))
=> (
'not' p)))
in (
TAUT A) & (((
'not' (
'not' q))
=> (
'not' p))
=> (q
=> (
'not' p)))
in (
TAUT A) by
Th26,
Th28;
hence thesis by
Th3;
end;
theorem ::
LUKASI_1:31
Th31: (((
'not' p)
=> q)
=> ((
'not' q)
=> p))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> ((
'not' q)
=> (
'not' (
'not' p))))
in (
TAUT A) & (((
'not' q)
=> (
'not' (
'not' p)))
=> ((
'not' q)
=> p))
in (
TAUT A) by
Th26,
Th29;
hence thesis by
Th3;
end;
theorem ::
LUKASI_1:32
((p
=> (
'not' p))
=> (
'not' p))
in (
TAUT A)
proof
(((
'not' (
'not' p))
=> (
'not' p))
=> (
'not' p))
in (
TAUT A) & ((p
=> (
'not' p))
=> ((
'not' (
'not' p))
=> (
'not' p)))
in (
TAUT A) by
Th28,
CQC_THE1: 42;
hence thesis by
Th3;
end;
theorem ::
LUKASI_1:33
((
'not' p)
=> (p
=> q))
in (
TAUT A)
proof
((
'not' p)
=> ((
'not' (
'not' p))
=> q))
in (
TAUT A) & (((
'not' (
'not' p))
=> q)
=> (p
=> q))
in (
TAUT A) by
Th28,
CQC_THE1: 43;
hence thesis by
Th3;
end;
theorem ::
LUKASI_1:34
Th34: (p
=> q)
in (
TAUT A) iff ((
'not' q)
=> (
'not' p))
in (
TAUT A)
proof
((p
=> q)
=> ((
'not' q)
=> (
'not' p)))
in (
TAUT A) by
Th26;
hence (p
=> q)
in (
TAUT A) implies ((
'not' q)
=> (
'not' p))
in (
TAUT A) by
CQC_THE1: 46;
(((
'not' q)
=> (
'not' p))
=> (p
=> q))
in (
TAUT A) by
Th24;
hence ((
'not' q)
=> (
'not' p))
in (
TAUT A) implies (p
=> q)
in (
TAUT A) by
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:35
((
'not' p)
=> (
'not' q))
in (
TAUT A) implies (q
=> p)
in (
TAUT A) by
Th34;
theorem ::
LUKASI_1:36
p
in (
TAUT A) iff (
'not' (
'not' p))
in (
TAUT A)
proof
thus p
in (
TAUT A) implies (
'not' (
'not' p))
in (
TAUT A)
proof
assume
A1: p
in (
TAUT A);
(p
=> (
'not' (
'not' p)))
in (
TAUT A) by
Th27;
hence thesis by
A1,
CQC_THE1: 46;
end;
assume
A2: (
'not' (
'not' p))
in (
TAUT A);
((
'not' (
'not' p))
=> p)
in (
TAUT A) by
Th25;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:37
(p
=> q)
in (
TAUT A) iff (p
=> (
'not' (
'not' q)))
in (
TAUT A)
proof
thus (p
=> q)
in (
TAUT A) implies (p
=> (
'not' (
'not' q)))
in (
TAUT A)
proof
assume
A1: (p
=> q)
in (
TAUT A);
((p
=> q)
=> (p
=> (
'not' (
'not' q))))
in (
TAUT A) by
Th29;
hence thesis by
A1,
CQC_THE1: 46;
end;
assume
A2: (p
=> (
'not' (
'not' q)))
in (
TAUT A);
((p
=> (
'not' (
'not' q)))
=> (p
=> q))
in (
TAUT A) by
Th29;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:38
(p
=> q)
in (
TAUT A) iff ((
'not' (
'not' p))
=> q)
in (
TAUT A)
proof
thus (p
=> q)
in (
TAUT A) implies ((
'not' (
'not' p))
=> q)
in (
TAUT A)
proof
assume
A1: (p
=> q)
in (
TAUT A);
((p
=> q)
=> ((
'not' (
'not' p))
=> q))
in (
TAUT A) by
Th28;
hence thesis by
A1,
CQC_THE1: 46;
end;
assume
A2: ((
'not' (
'not' p))
=> q)
in (
TAUT A);
(((
'not' (
'not' p))
=> q)
=> (p
=> q))
in (
TAUT A) by
Th28;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:39
(p
=> (
'not' q))
in (
TAUT A) implies (q
=> (
'not' p))
in (
TAUT A)
proof
assume
A1: (p
=> (
'not' q))
in (
TAUT A);
((p
=> (
'not' q))
=> (q
=> (
'not' p)))
in (
TAUT A) by
Th30;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
LUKASI_1:40
((
'not' p)
=> q)
in (
TAUT A) implies ((
'not' q)
=> p)
in (
TAUT A)
proof
assume
A1: ((
'not' p)
=> q)
in (
TAUT A);
(((
'not' p)
=> q)
=> ((
'not' q)
=> p))
in (
TAUT A) by
Th31;
hence thesis by
A1,
CQC_THE1: 46;
end;
registration
let A, p, q, r;
cluster ((p
=> q)
=> ((q
=> r)
=> (p
=> r))) ->
valid;
coherence by
Th1;
end
theorem ::
LUKASI_1:41
(p
=> q) is
valid implies ((q
=> r)
=> (p
=> r)) is
valid
proof
assume
A1: (p
=> q) is
valid;
((p
=> q)
=> ((q
=> r)
=> (p
=> r))) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
LUKASI_1:42
Th42: (p
=> q) is
valid & (q
=> r) is
valid implies (p
=> r) is
valid by
Th3;
registration
let A, p;
cluster (p
=> p) ->
valid;
coherence by
Th4;
end
registration
let A, p, q;
cluster (p
=> (q
=> p)) ->
valid;
coherence by
Th5;
end
theorem ::
LUKASI_1:43
p is
valid implies (q
=> p) is
valid by
Th13;
registration
let A, p, q, s;
cluster ((s
=> (q
=> p))
=> (q
=> (s
=> p))) ->
valid;
coherence by
Th8;
end
theorem ::
LUKASI_1:44
Th44: (p
=> (q
=> r)) is
valid implies (q
=> (p
=> r)) is
valid by
Th15;
theorem ::
LUKASI_1:45
(p
=> (q
=> r)) is
valid & q is
valid implies (p
=> r) is
valid
proof
assume (p
=> (q
=> r)) is
valid;
then (q
=> (p
=> r)) is
valid by
Th44;
hence thesis by
CQC_THE1: 65;
end;
theorem ::
LUKASI_1:46
(p
=> (
VERUM A)) is
valid & ((
'not' (
VERUM A))
=> p) is
valid by
Th13,
CQC_THE1: 41,
Th12;
registration
let A, p, q;
cluster (p
=> ((p
=> q)
=> q)) ->
valid;
coherence by
Th7;
end
registration
let A, q, r;
cluster ((q
=> (q
=> r))
=> (q
=> r)) ->
valid;
coherence by
Th10;
end
theorem ::
LUKASI_1:47
(q
=> (q
=> r)) is
valid implies (q
=> r) is
valid
proof
assume
A1: (q
=> (q
=> r)) is
valid;
((q
=> (q
=> r))
=> (q
=> r)) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
registration
let A, p, q, r;
cluster ((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r))) ->
valid;
coherence by
Th11;
end
theorem ::
LUKASI_1:48
Th48: (p
=> (q
=> r)) is
valid implies ((p
=> q)
=> (p
=> r)) is
valid
proof
assume
A1: (p
=> (q
=> r)) is
valid;
((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r))) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
LUKASI_1:49
(p
=> (q
=> r)) is
valid & (p
=> q) is
valid implies (p
=> r) is
valid
proof
assume that
A1: (p
=> (q
=> r)) is
valid and
A2: (p
=> q) is
valid;
((p
=> q)
=> (p
=> r)) is
valid by
A1,
Th48;
hence thesis by
A2,
CQC_THE1: 65;
end;
registration
let A, p, q, r;
cluster (((p
=> q)
=> r)
=> (q
=> r)) ->
valid;
coherence by
Th6;
end
theorem ::
LUKASI_1:50
((p
=> q)
=> r) is
valid implies (q
=> r) is
valid
proof
assume
A1: ((p
=> q)
=> r) is
valid;
(((p
=> q)
=> r)
=> (q
=> r)) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
registration
let A, p, q, r;
cluster ((p
=> q)
=> ((r
=> p)
=> (r
=> q))) ->
valid;
coherence by
Th9;
end
theorem ::
LUKASI_1:51
(p
=> q) is
valid implies ((r
=> p)
=> (r
=> q)) is
valid
proof
assume
A1: (p
=> q) is
valid;
((p
=> q)
=> ((r
=> p)
=> (r
=> q))) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
registration
let A, p, q;
cluster ((p
=> q)
=> ((
'not' q)
=> (
'not' p))) ->
valid;
coherence by
Th26;
end
registration
let A, p, q;
cluster (((
'not' p)
=> (
'not' q))
=> (q
=> p)) ->
valid;
coherence by
Th24;
end
theorem ::
LUKASI_1:52
((
'not' p)
=> (
'not' q)) is
valid iff (q
=> p) is
valid
proof
thus ((
'not' p)
=> (
'not' q)) is
valid implies (q
=> p) is
valid
proof
assume
A1: ((
'not' p)
=> (
'not' q)) is
valid;
(((
'not' p)
=> (
'not' q))
=> (q
=> p)) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
assume
A2: (q
=> p) is
valid;
((q
=> p)
=> ((
'not' p)
=> (
'not' q))) is
valid;
hence thesis by
A2,
CQC_THE1: 65;
end;
registration
let A, p;
cluster (p
=> (
'not' (
'not' p))) ->
valid;
coherence by
Th27;
end
registration
let A, p;
cluster ((
'not' (
'not' p))
=> p) ->
valid;
coherence by
Th25;
end
theorem ::
LUKASI_1:53
(
'not' (
'not' p)) is
valid iff p is
valid
proof
thus (
'not' (
'not' p)) is
valid implies p is
valid
proof
assume
A1: (
'not' (
'not' p)) is
valid;
((
'not' (
'not' p))
=> p) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
assume
A2: p is
valid;
(p
=> (
'not' (
'not' p))) is
valid;
hence thesis by
A2,
CQC_THE1: 65;
end;
registration
let A, p, q;
cluster (((
'not' (
'not' p))
=> q)
=> (p
=> q)) ->
valid;
coherence by
Th28;
end
theorem ::
LUKASI_1:54
((
'not' (
'not' p))
=> q) is
valid iff (p
=> q) is
valid
proof
thus ((
'not' (
'not' p))
=> q) is
valid implies (p
=> q) is
valid
proof
assume
A1: ((
'not' (
'not' p))
=> q) is
valid;
(((
'not' (
'not' p))
=> q)
=> (p
=> q)) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
assume
A2: (p
=> q) is
valid;
((
'not' (
'not' p))
=> p) is
valid;
hence thesis by
A2,
Th42;
end;
registration
let A, p, q;
cluster ((p
=> (
'not' (
'not' q)))
=> (p
=> q)) ->
valid;
coherence by
Th29;
end
theorem ::
LUKASI_1:55
(p
=> (
'not' (
'not' q))) is
valid iff (p
=> q) is
valid
proof
thus (p
=> (
'not' (
'not' q))) is
valid implies (p
=> q) is
valid
proof
assume
A1: (p
=> (
'not' (
'not' q))) is
valid;
((p
=> (
'not' (
'not' q)))
=> (p
=> q)) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
assume
A2: (p
=> q) is
valid;
(q
=> (
'not' (
'not' q))) is
valid;
hence thesis by
A2,
Th42;
end;
registration
let A, p, q;
cluster ((p
=> (
'not' q))
=> (q
=> (
'not' p))) ->
valid;
coherence by
Th30;
end
theorem ::
LUKASI_1:56
(p
=> (
'not' q)) is
valid implies (q
=> (
'not' p)) is
valid
proof
assume
A1: (p
=> (
'not' q)) is
valid;
((p
=> (
'not' q))
=> (q
=> (
'not' p))) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
registration
let A, p, q;
cluster (((
'not' p)
=> q)
=> ((
'not' q)
=> p)) ->
valid;
coherence by
Th31;
end
theorem ::
LUKASI_1:57
((
'not' p)
=> q) is
valid implies ((
'not' q)
=> p) is
valid
proof
assume
A1: ((
'not' p)
=> q) is
valid;
(((
'not' p)
=> q)
=> ((
'not' q)
=> p)) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
LUKASI_1:58
X
|- (p
=> q) implies X
|- ((q
=> r)
=> (p
=> r))
proof
assume
A1: X
|- (p
=> q);
X
|- ((p
=> q)
=> ((q
=> r)
=> (p
=> r))) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:59
Th59: X
|- (p
=> q) & X
|- (q
=> r) implies X
|- (p
=> r)
proof
assume that
A1: X
|- (p
=> q) and
A2: X
|- (q
=> r);
X
|- ((p
=> q)
=> ((q
=> r)
=> (p
=> r))) by
CQC_THE1: 59;
then X
|- ((q
=> r)
=> (p
=> r)) by
A1,
CQC_THE1: 55;
hence thesis by
A2,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:60
X
|- (p
=> p) by
CQC_THE1: 59;
theorem ::
LUKASI_1:61
X
|- p implies X
|- (q
=> p)
proof
assume
A1: X
|- p;
X
|- (p
=> (q
=> p)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:62
X
|- p implies X
|- ((p
=> q)
=> q)
proof
assume
A1: X
|- p;
X
|- (p
=> ((p
=> q)
=> q)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:63
Th63: X
|- (p
=> (q
=> r)) implies X
|- (q
=> (p
=> r))
proof
assume
A1: X
|- (p
=> (q
=> r));
X
|- ((p
=> (q
=> r))
=> (q
=> (p
=> r))) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:64
X
|- (p
=> (q
=> r)) & X
|- q implies X
|- (p
=> r)
proof
assume X
|- (p
=> (q
=> r));
then X
|- (q
=> (p
=> r)) by
Th63;
hence thesis by
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:65
X
|- (p
=> (p
=> q)) implies X
|- (p
=> q)
proof
assume
A1: X
|- (p
=> (p
=> q));
X
|- ((p
=> (p
=> q))
=> (p
=> q)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:66
X
|- ((p
=> q)
=> r) implies X
|- (q
=> r)
proof
assume
A1: X
|- ((p
=> q)
=> r);
X
|- (((p
=> q)
=> r)
=> (q
=> r)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:67
Th67: X
|- (p
=> (q
=> r)) implies X
|- ((p
=> q)
=> (p
=> r))
proof
assume
A1: X
|- (p
=> (q
=> r));
X
|- ((p
=> (q
=> r))
=> ((p
=> q)
=> (p
=> r))) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:68
X
|- (p
=> (q
=> r)) & X
|- (p
=> q) implies X
|- (p
=> r)
proof
assume X
|- (p
=> (q
=> r));
then X
|- ((p
=> q)
=> (p
=> r)) by
Th67;
hence thesis by
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:69
X
|- ((
'not' p)
=> (
'not' q)) iff X
|- (q
=> p)
proof
thus X
|- ((
'not' p)
=> (
'not' q)) implies X
|- (q
=> p)
proof
assume
A1: X
|- ((
'not' p)
=> (
'not' q));
X
|- (((
'not' p)
=> (
'not' q))
=> (q
=> p)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
assume
A2: X
|- (q
=> p);
X
|- ((q
=> p)
=> ((
'not' p)
=> (
'not' q))) by
CQC_THE1: 59;
hence thesis by
A2,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:70
X
|- (
'not' (
'not' p)) iff X
|- p
proof
thus X
|- (
'not' (
'not' p)) implies X
|- p
proof
assume
A1: X
|- (
'not' (
'not' p));
X
|- ((
'not' (
'not' p))
=> p) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
assume
A2: X
|- p;
X
|- (p
=> (
'not' (
'not' p))) by
CQC_THE1: 59;
hence thesis by
A2,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:71
X
|- (p
=> (
'not' (
'not' q))) iff X
|- (p
=> q)
proof
thus X
|- (p
=> (
'not' (
'not' q))) implies X
|- (p
=> q)
proof
assume
A1: X
|- (p
=> (
'not' (
'not' q)));
X
|- ((p
=> (
'not' (
'not' q)))
=> (p
=> q)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
assume
A2: X
|- (p
=> q);
X
|- (q
=> (
'not' (
'not' q))) by
CQC_THE1: 59;
hence thesis by
A2,
Th59;
end;
theorem ::
LUKASI_1:72
X
|- ((
'not' (
'not' p))
=> q) iff X
|- (p
=> q)
proof
thus X
|- ((
'not' (
'not' p))
=> q) implies X
|- (p
=> q)
proof
assume
A1: X
|- ((
'not' (
'not' p))
=> q);
X
|- (((
'not' (
'not' p))
=> q)
=> (p
=> q)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
assume
A2: X
|- (p
=> q);
X
|- ((
'not' (
'not' p))
=> p) by
CQC_THE1: 59;
hence thesis by
A2,
Th59;
end;
theorem ::
LUKASI_1:73
Th73: X
|- (p
=> (
'not' q)) implies X
|- (q
=> (
'not' p))
proof
assume
A1: X
|- (p
=> (
'not' q));
X
|- ((p
=> (
'not' q))
=> (q
=> (
'not' p))) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:74
Th74: X
|- ((
'not' p)
=> q) implies X
|- ((
'not' q)
=> p)
proof
assume
A1: X
|- ((
'not' p)
=> q);
X
|- (((
'not' p)
=> q)
=> ((
'not' q)
=> p)) by
CQC_THE1: 59;
hence thesis by
A1,
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:75
X
|- (p
=> (
'not' q)) & X
|- q implies X
|- (
'not' p)
proof
assume X
|- (p
=> (
'not' q));
then X
|- (q
=> (
'not' p)) by
Th73;
hence thesis by
CQC_THE1: 55;
end;
theorem ::
LUKASI_1:76
X
|- ((
'not' p)
=> q) & X
|- (
'not' q) implies X
|- p
proof
assume X
|- ((
'not' p)
=> q);
then X
|- ((
'not' q)
=> p) by
Th74;
hence thesis by
CQC_THE1: 55;
end;