qc_lang2.miz
    
    begin
    
    reserve A for
    QC-alphabet;
    
    reserve sq for
    FinSequence, 
    
x,y,z for
    bound_QC-variable of A, 
    
p,q,p1,p2,q1 for
    Element of ( 
    QC-WFF A); 
    
    theorem :: 
    
    QC_LANG2:1
    
    
    
    
    
    Th1: ( 
    the_argument_of ( 
    'not' p)) 
    = p 
    
    proof
    
      (
    'not' p) is 
    negative;
    
      hence thesis by
    QC_LANG1:def 24;
    
    end;
    
    theorem :: 
    
    QC_LANG2:2
    
    
    
    
    
    Th2: (p 
    '&' q) 
    = (p1 
    '&' q1) implies p 
    = p1 & q 
    = q1 
    
    proof
    
      assume
    
      
    
    A1: (p 
    '&' q) 
    = (p1 
    '&' q1); 
    
      ((
    <*
    [2,
    0 ]*> 
    ^ ( 
    @ p)) 
    ^ ( 
    @ q)) 
    = ( 
    <*
    [2,
    0 ]*> 
    ^ (( 
    @ p) 
    ^ ( 
    @ q))) & (( 
    <*
    [2,
    0 ]*> 
    ^ ( 
    @ p1)) 
    ^ ( 
    @ q1)) 
    = ( 
    <*
    [2,
    0 ]*> 
    ^ (( 
    @ p1) 
    ^ ( 
    @ q1))) by 
    FINSEQ_1: 32;
    
      then
    
      
    
    A2: (( 
    @ p) 
    ^ ( 
    @ q)) 
    = (( 
    @ p1) 
    ^ ( 
    @ q1)) by 
    A1,
    FINSEQ_1: 33;
    
      then
    
      
    
    A3: ( 
    len ( 
    @ p1)) 
    <= ( 
    len ( 
    @ p)) implies ex sq st ( 
    @ p) 
    = (( 
    @ p1) 
    ^ sq) by 
    FINSEQ_1: 47;
    
      
    
      
    
    A4: ( 
    len ( 
    @ p)) 
    <= ( 
    len ( 
    @ p1)) implies ex sq st ( 
    @ p1) 
    = (( 
    @ p) 
    ^ sq) by 
    A2,
    FINSEQ_1: 47;
    
      hence p
    = p1 by 
    A3,
    QC_LANG1: 13;
    
      (ex sq st (
    @ p1) 
    = (( 
    @ p) 
    ^ sq)) implies p1 
    = p by 
    QC_LANG1: 13;
    
      hence thesis by
    A1,
    A3,
    A4,
    FINSEQ_1: 33,
    QC_LANG1: 13;
    
    end;
    
    theorem :: 
    
    QC_LANG2:3
    
    
    
    
    
    Th3: p is 
    conjunctive implies p 
    = (( 
    the_left_argument_of p) 
    '&' ( 
    the_right_argument_of p)) 
    
    proof
    
      given p1, q1 such that
    
      
    
    A1: p 
    = (p1 
    '&' q1); 
    
      
    
      
    
    A2: p is 
    conjunctive by 
    A1;
    
      then p1
    = ( 
    the_left_argument_of p) by 
    A1,
    QC_LANG1:def 25;
    
      hence thesis by
    A1,
    A2,
    QC_LANG1:def 26;
    
    end;
    
    theorem :: 
    
    QC_LANG2:4
    
    
    
    
    
    Th4: ( 
    the_left_argument_of (p 
    '&' q)) 
    = p & ( 
    the_right_argument_of (p 
    '&' q)) 
    = q 
    
    proof
    
      (p
    '&' q) is 
    conjunctive;
    
      hence thesis by
    QC_LANG1:def 25,
    QC_LANG1:def 26;
    
    end;
    
    theorem :: 
    
    QC_LANG2:5
    
    
    
    
    
    Th5: ( 
    All (x,p)) 
    = ( 
    All (y,q)) implies x 
    = y & p 
    = q 
    
    proof
    
      
    
      
    
    A1: (( 
    <*
    [3,
    0 ]*> 
    ^  
    <*x*>)
    ^ ( 
    @ p)) 
    = ( 
    <*
    [3,
    0 ]*> 
    ^ ( 
    <*x*>
    ^ ( 
    @ p))) & (( 
    <*
    [3,
    0 ]*> 
    ^  
    <*y*>)
    ^ ( 
    @ q)) 
    = ( 
    <*
    [3,
    0 ]*> 
    ^ ( 
    <*y*>
    ^ ( 
    @ q))) by 
    FINSEQ_1: 32;
    
      
    
      
    
    A2: (( 
    <*x*>
    ^ ( 
    @ p)) 
    . 1) 
    = x & (( 
    <*y*>
    ^ ( 
    @ q)) 
    . 1) 
    = y by 
    FINSEQ_1: 41;
    
      assume
    
      
    
    A3: ( 
    All (x,p)) 
    = ( 
    All (y,q)); 
    
      hence x
    = y by 
    A1,
    A2,
    FINSEQ_1: 33;
    
      (
    <*x*>
    ^ ( 
    @ p)) 
    = ( 
    <*y*>
    ^ ( 
    @ q)) by 
    A3,
    A1,
    FINSEQ_1: 33;
    
      hence thesis by
    A2,
    FINSEQ_1: 33;
    
    end;
    
    theorem :: 
    
    QC_LANG2:6
    
    
    
    
    
    Th6: p is 
    universal implies p 
    = ( 
    All (( 
    bound_in p),( 
    the_scope_of p))) 
    
    proof
    
      given x, q such that
    
      
    
    A1: p 
    = ( 
    All (x,q)); 
    
      
    
      
    
    A2: p is 
    universal by 
    A1;
    
      then x
    = ( 
    bound_in p) by 
    A1,
    QC_LANG1:def 27;
    
      hence thesis by
    A1,
    A2,
    QC_LANG1:def 28;
    
    end;
    
    theorem :: 
    
    QC_LANG2:7
    
    
    
    
    
    Th7: ( 
    bound_in ( 
    All (x,p))) 
    = x & ( 
    the_scope_of ( 
    All (x,p))) 
    = p 
    
    proof
    
      (
    All (x,p)) is 
    universal;
    
      then (
    All (x,p)) 
    = ( 
    All (( 
    bound_in ( 
    All (x,p))),( 
    the_scope_of ( 
    All (x,p))))) by 
    Th6;
    
      hence thesis by
    Th5;
    
    end;
    
    definition
    
      let A be
    QC-alphabet;
    
      :: 
    
    QC_LANG2:def1
    
      func
    
    FALSUM (A) -> 
    QC-formula of A equals ( 
    'not' ( 
    VERUM A)); 
    
      correctness ;
    
      let p,q be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def2
    
      func p
    
    => q -> 
    QC-formula of A equals ( 
    'not' (p 
    '&' ( 
    'not' q))); 
    
      correctness ;
    
      :: 
    
    QC_LANG2:def3
    
      func p
    
    'or' q -> 
    QC-formula of A equals ( 
    'not' (( 
    'not' p) 
    '&' ( 
    'not' q))); 
    
      correctness ;
    
    end
    
    definition
    
      let A be
    QC-alphabet;
    
      let p,q be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def4
    
      func p
    
    <=> q -> 
    QC-formula of A equals ((p 
    => q) 
    '&' (q 
    => p)); 
    
      correctness ;
    
    end
    
    definition
    
      let A be
    QC-alphabet;
    
      let x be
    bound_QC-variable of A, p be 
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def5
    
      func
    
    Ex (x,p) -> 
    QC-formula of A equals ( 
    'not' ( 
    All (x,( 
    'not' p)))); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    QC_LANG2:8
    
    (
    FALSUM A) is 
    negative & ( 
    the_argument_of ( 
    FALSUM A)) 
    = ( 
    VERUM A) by 
    Th1;
    
    theorem :: 
    
    QC_LANG2:9
    
    (p
    'or' q) 
    = (( 
    'not' p) 
    => q); 
    
    theorem :: 
    
    QC_LANG2:10
    
    (p
    'or' q) 
    = (p1 
    'or' q1) implies p 
    = p1 & q 
    = q1 
    
    proof
    
      assume (p
    'or' q) 
    = (p1 
    'or' q1); 
    
      then ((
    'not' p) 
    '&' ( 
    'not' q)) 
    = (( 
    'not' p1) 
    '&' ( 
    'not' q1)) by 
    FINSEQ_1: 33;
    
      then (
    'not' p) 
    = ( 
    'not' p1) & ( 
    'not' q) 
    = ( 
    'not' q1) by 
    Th2;
    
      hence thesis by
    FINSEQ_1: 33;
    
    end;
    
    theorem :: 
    
    QC_LANG2:11
    
    
    
    
    
    Th11: (p 
    => q) 
    = (p1 
    => q1) implies p 
    = p1 & q 
    = q1 
    
    proof
    
      assume (p
    => q) 
    = (p1 
    => q1); 
    
      then
    
      
    
    A1: (p 
    '&' ( 
    'not' q)) 
    = (p1 
    '&' ( 
    'not' q1)) by 
    FINSEQ_1: 33;
    
      hence p
    = p1 by 
    Th2;
    
      (
    'not' q) 
    = ( 
    'not' q1) by 
    A1,
    Th2;
    
      hence thesis by
    FINSEQ_1: 33;
    
    end;
    
    theorem :: 
    
    QC_LANG2:12
    
    (p
    <=> q) 
    = (p1 
    <=> q1) implies p 
    = p1 & q 
    = q1 
    
    proof
    
      assume (p
    <=> q) 
    = (p1 
    <=> q1); 
    
      then (p
    => q) 
    = (p1 
    => q1) by 
    Th2;
    
      hence thesis by
    Th11;
    
    end;
    
    theorem :: 
    
    QC_LANG2:13
    
    
    
    
    
    Th13: ( 
    Ex (x,p)) 
    = ( 
    Ex (y,q)) implies x 
    = y & p 
    = q 
    
    proof
    
      assume (
    Ex (x,p)) 
    = ( 
    Ex (y,q)); 
    
      then
    
      
    
    A1: ( 
    All (x,( 
    'not' p))) 
    = ( 
    All (y,( 
    'not' q))) by 
    FINSEQ_1: 33;
    
      then (
    'not' p) 
    = ( 
    'not' q) by 
    Th5;
    
      hence thesis by
    A1,
    Th5,
    FINSEQ_1: 33;
    
    end;
    
    definition
    
      let A be
    QC-alphabet;
    
      let x,y be
    bound_QC-variable of A, p be 
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def6
    
      func
    
    All (x,y,p) -> 
    QC-formula of A equals ( 
    All (x,( 
    All (y,p)))); 
    
      correctness ;
    
      :: 
    
    QC_LANG2:def7
    
      func
    
    Ex (x,y,p) -> 
    QC-formula of A equals ( 
    Ex (x,( 
    Ex (y,p)))); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    QC_LANG2:14
    
    (
    All (x,y,p)) 
    = ( 
    All (x,( 
    All (y,p)))) & ( 
    Ex (x,y,p)) 
    = ( 
    Ex (x,( 
    Ex (y,p)))); 
    
    theorem :: 
    
    QC_LANG2:15
    
    
    
    
    
    Th15: for x1,x2,y1,y2 be 
    bound_QC-variable of A st ( 
    All (x1,y1,p1)) 
    = ( 
    All (x2,y2,p2)) holds x1 
    = x2 & y1 
    = y2 & p1 
    = p2 
    
    proof
    
      let x1,x2,y1,y2 be
    bound_QC-variable of A such that 
    
      
    
    A1: ( 
    All (x1,y1,p1)) 
    = ( 
    All (x2,y2,p2)); 
    
      thus x1
    = x2 by 
    A1,
    Th5;
    
      (
    All (y1,p1)) 
    = ( 
    All (y2,p2)) by 
    A1,
    Th5;
    
      hence thesis by
    Th5;
    
    end;
    
    theorem :: 
    
    QC_LANG2:16
    
    (
    All (x,y,p)) 
    = ( 
    All (z,q)) implies x 
    = z & ( 
    All (y,p)) 
    = q by 
    Th5;
    
    theorem :: 
    
    QC_LANG2:17
    
    
    
    
    
    Th17: for x1,x2,y1,y2 be 
    bound_QC-variable of A st ( 
    Ex (x1,y1,p1)) 
    = ( 
    Ex (x2,y2,p2)) holds x1 
    = x2 & y1 
    = y2 & p1 
    = p2 
    
    proof
    
      let x1,x2,y1,y2 be
    bound_QC-variable of A such that 
    
      
    
    A1: ( 
    Ex (x1,y1,p1)) 
    = ( 
    Ex (x2,y2,p2)); 
    
      thus x1
    = x2 by 
    A1,
    Th13;
    
      (
    Ex (y1,p1)) 
    = ( 
    Ex (y2,p2)) by 
    A1,
    Th13;
    
      hence thesis by
    Th13;
    
    end;
    
    theorem :: 
    
    QC_LANG2:18
    
    (
    Ex (x,y,p)) 
    = ( 
    Ex (z,q)) implies x 
    = z & ( 
    Ex (y,p)) 
    = q by 
    Th13;
    
    theorem :: 
    
    QC_LANG2:19
    
    (
    All (x,y,p)) is 
    universal & ( 
    bound_in ( 
    All (x,y,p))) 
    = x & ( 
    the_scope_of ( 
    All (x,y,p))) 
    = ( 
    All (y,p)) by 
    Th7;
    
    definition
    
      let A be
    QC-alphabet;
    
      let x,y,z be
    bound_QC-variable of A, p be 
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def8
    
      func
    
    All (x,y,z,p) -> 
    QC-formula of A equals ( 
    All (x,( 
    All (y,z,p)))); 
    
      correctness ;
    
      :: 
    
    QC_LANG2:def9
    
      func
    
    Ex (x,y,z,p) -> 
    QC-formula of A equals ( 
    Ex (x,( 
    Ex (y,z,p)))); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    QC_LANG2:20
    
    (
    All (x,y,z,p)) 
    = ( 
    All (x,( 
    All (y,z,p)))) & ( 
    Ex (x,y,z,p)) 
    = ( 
    Ex (x,( 
    Ex (y,z,p)))); 
    
    theorem :: 
    
    QC_LANG2:21
    
    for x1,x2,y1,y2,z1,z2 be
    bound_QC-variable of A st ( 
    All (x1,y1,z1,p1)) 
    = ( 
    All (x2,y2,z2,p2)) holds x1 
    = x2 & y1 
    = y2 & z1 
    = z2 & p1 
    = p2 
    
    proof
    
      let x1,x2,y1,y2,z1,z2 be
    bound_QC-variable of A such that 
    
      
    
    A1: ( 
    All (x1,y1,z1,p1)) 
    = ( 
    All (x2,y2,z2,p2)); 
    
      thus x1
    = x2 by 
    A1,
    Th5;
    
      (
    All (y1,z1,p1)) 
    = ( 
    All (y2,z2,p2)) by 
    A1,
    Th5;
    
      hence thesis by
    Th15;
    
    end;
    
    reserve s,t for
    bound_QC-variable of A; 
    
    theorem :: 
    
    QC_LANG2:22
    
    (
    All (x,y,z,p)) 
    = ( 
    All (t,q)) implies x 
    = t & ( 
    All (y,z,p)) 
    = q by 
    Th5;
    
    theorem :: 
    
    QC_LANG2:23
    
    (
    All (x,y,z,p)) 
    = ( 
    All (t,s,q)) implies x 
    = t & y 
    = s & ( 
    All (z,p)) 
    = q 
    
    proof
    
      assume
    
      
    
    A1: ( 
    All (x,y,z,p)) 
    = ( 
    All (t,s,q)); 
    
      hence x
    = t by 
    Th5;
    
      (
    All (y,z,p)) 
    = ( 
    All (s,q)) by 
    A1,
    Th5;
    
      hence thesis by
    Th5;
    
    end;
    
    theorem :: 
    
    QC_LANG2:24
    
    for x1,x2,y1,y2,z1,z2 be
    bound_QC-variable of A st ( 
    Ex (x1,y1,z1,p1)) 
    = ( 
    Ex (x2,y2,z2,p2)) holds x1 
    = x2 & y1 
    = y2 & z1 
    = z2 & p1 
    = p2 
    
    proof
    
      let x1,x2,y1,y2,z1,z2 be
    bound_QC-variable of A such that 
    
      
    
    A1: ( 
    Ex (x1,y1,z1,p1)) 
    = ( 
    Ex (x2,y2,z2,p2)); 
    
      thus x1
    = x2 by 
    A1,
    Th13;
    
      (
    Ex (y1,z1,p1)) 
    = ( 
    Ex (y2,z2,p2)) by 
    A1,
    Th13;
    
      hence thesis by
    Th17;
    
    end;
    
    theorem :: 
    
    QC_LANG2:25
    
    (
    Ex (x,y,z,p)) 
    = ( 
    Ex (t,q)) implies x 
    = t & ( 
    Ex (y,z,p)) 
    = q by 
    Th13;
    
    theorem :: 
    
    QC_LANG2:26
    
    (
    Ex (x,y,z,p)) 
    = ( 
    Ex (t,s,q)) implies x 
    = t & y 
    = s & ( 
    Ex (z,p)) 
    = q 
    
    proof
    
      assume
    
      
    
    A1: ( 
    Ex (x,y,z,p)) 
    = ( 
    Ex (t,s,q)); 
    
      hence x
    = t by 
    Th13;
    
      (
    Ex (y,z,p)) 
    = ( 
    Ex (s,q)) by 
    A1,
    Th13;
    
      hence thesis by
    Th13;
    
    end;
    
    theorem :: 
    
    QC_LANG2:27
    
    (
    All (x,y,z,p)) is 
    universal & ( 
    bound_in ( 
    All (x,y,z,p))) 
    = x & ( 
    the_scope_of ( 
    All (x,y,z,p))) 
    = ( 
    All (y,z,p)) by 
    Th7;
    
    definition
    
      let A be
    QC-alphabet;
    
      let H be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def10
    
      attr H is
    
    disjunctive means ex p,q be 
    Element of ( 
    QC-WFF A) st H 
    = (p 
    'or' q); 
    
      :: 
    
    QC_LANG2:def11
    
      attr H is
    
    conditional means ex p,q be 
    Element of ( 
    QC-WFF A) st H 
    = (p 
    => q); 
    
      :: 
    
    QC_LANG2:def12
    
      attr H is
    
    biconditional means ex p,q be 
    Element of ( 
    QC-WFF A) st H 
    = (p 
    <=> q); 
    
      :: 
    
    QC_LANG2:def13
    
      attr H is
    
    existential means ex x be 
    bound_QC-variable of A, p be 
    Element of ( 
    QC-WFF A) st H 
    = ( 
    Ex (x,p)); 
    
    end
    
    theorem :: 
    
    QC_LANG2:28
    
    (
    Ex (x,y,p)) is 
    existential & ( 
    Ex (x,y,z,p)) is 
    existential;
    
    definition
    
      let A be
    QC-alphabet;
    
      let H be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def14
    
      func
    
    the_left_disjunct_of H -> 
    QC-formula of A equals ( 
    the_argument_of ( 
    the_left_argument_of ( 
    the_argument_of H))); 
    
      correctness ;
    
      :: 
    
    QC_LANG2:def15
    
      func
    
    the_right_disjunct_of H -> 
    QC-formula of A equals ( 
    the_argument_of ( 
    the_right_argument_of ( 
    the_argument_of H))); 
    
      correctness ;
    
      :: 
    
    QC_LANG2:def16
    
      func
    
    the_antecedent_of H -> 
    QC-formula of A equals ( 
    the_left_argument_of ( 
    the_argument_of H)); 
    
      correctness ;
    
    end
    
    notation
    
      let A be
    QC-alphabet;
    
      let H be
    Element of ( 
    QC-WFF A); 
    
      synonym 
    
    the_consequent_of H for 
    the_right_disjunct_of H; 
    
    end
    
    definition
    
      let A be
    QC-alphabet;
    
      let H be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def17
    
      func
    
    the_left_side_of H -> 
    QC-formula of A equals ( 
    the_antecedent_of ( 
    the_left_argument_of H)); 
    
      correctness ;
    
      :: 
    
    QC_LANG2:def18
    
      func
    
    the_right_side_of H -> 
    QC-formula of A equals ( 
    the_consequent_of ( 
    the_left_argument_of H)); 
    
      correctness ;
    
    end
    
    reserve F,G,H,H1 for
    Element of ( 
    QC-WFF A); 
    
    theorem :: 
    
    QC_LANG2:29
    
    
    
    
    
    Th29: ( 
    the_left_disjunct_of (F 
    'or' G)) 
    = F & ( 
    the_right_disjunct_of (F 
    'or' G)) 
    = G & ( 
    the_argument_of (F 
    'or' G)) 
    = (( 
    'not' F) 
    '&' ( 
    'not' G)) 
    
    proof
    
      
    
      thus (
    the_left_disjunct_of (F 
    'or' G)) 
    = ( 
    the_argument_of ( 
    the_left_argument_of (( 
    'not' F) 
    '&' ( 
    'not' G)))) by 
    Th1
    
      .= (
    the_argument_of ( 
    'not' F)) by 
    Th4
    
      .= F by
    Th1;
    
      
    
      thus (
    the_right_disjunct_of (F 
    'or' G)) 
    = ( 
    the_argument_of ( 
    the_right_argument_of (( 
    'not' F) 
    '&' ( 
    'not' G)))) by 
    Th1
    
      .= (
    the_argument_of ( 
    'not' G)) by 
    Th4
    
      .= G by
    Th1;
    
      thus thesis by
    Th1;
    
    end;
    
    theorem :: 
    
    QC_LANG2:30
    
    
    
    
    
    Th30: ( 
    the_antecedent_of (F 
    => G)) 
    = F & ( 
    the_consequent_of (F 
    => G)) 
    = G & ( 
    the_argument_of (F 
    => G)) 
    = (F 
    '&' ( 
    'not' G)) 
    
    proof
    
      
    
      thus (
    the_antecedent_of (F 
    => G)) 
    = ( 
    the_left_argument_of (F 
    '&' ( 
    'not' G))) by 
    Th1
    
      .= F by
    Th4;
    
      
    
      thus (
    the_consequent_of (F 
    => G)) 
    = ( 
    the_argument_of ( 
    the_right_argument_of (F 
    '&' ( 
    'not' G)))) by 
    Th1
    
      .= (
    the_argument_of ( 
    'not' G)) by 
    Th4
    
      .= G by
    Th1;
    
      thus thesis by
    Th1;
    
    end;
    
    theorem :: 
    
    QC_LANG2:31
    
    
    
    
    
    Th31: ( 
    the_left_side_of (F 
    <=> G)) 
    = F & ( 
    the_right_side_of (F 
    <=> G)) 
    = G & ( 
    the_left_argument_of (F 
    <=> G)) 
    = (F 
    => G) & ( 
    the_right_argument_of (F 
    <=> G)) 
    = (G 
    => F) 
    
    proof
    
      (
    the_antecedent_of (F 
    => G)) 
    = F & ( 
    the_consequent_of (F 
    => G)) 
    = G by 
    Th30;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    QC_LANG2:32
    
    (
    the_argument_of ( 
    Ex (x,H))) 
    = ( 
    All (x,( 
    'not' H))) by 
    Th1;
    
    theorem :: 
    
    QC_LANG2:33
    
    H is
    disjunctive implies H is 
    conditional & H is 
    negative & ( 
    the_argument_of H) is 
    conjunctive & ( 
    the_left_argument_of ( 
    the_argument_of H)) is 
    negative & ( 
    the_right_argument_of ( 
    the_argument_of H)) is 
    negative
    
    proof
    
      given F, G such that
    
      
    
    A1: H 
    = (F 
    'or' G); 
    
      (F
    'or' G) 
    = (( 
    'not' F) 
    => G); 
    
      hence H is
    conditional by 
    A1;
    
      thus H is
    negative by 
    A1;
    
      
    
      
    
    A2: ( 
    the_argument_of H) 
    = (( 
    'not' F) 
    '&' ( 
    'not' G)) by 
    A1,
    Th1;
    
      hence (
    the_argument_of H) is 
    conjunctive;
    
      (
    the_left_argument_of ( 
    the_argument_of H)) 
    = ( 
    'not' F) & ( 
    the_right_argument_of ( 
    the_argument_of H)) 
    = ( 
    'not' G) by 
    A2,
    Th4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:34
    
    H is
    conditional implies H is 
    negative & ( 
    the_argument_of H) is 
    conjunctive & ( 
    the_right_argument_of ( 
    the_argument_of H)) is 
    negative
    
    proof
    
      given F, G such that
    
      
    
    A1: H 
    = (F 
    => G); 
    
      (
    the_argument_of ( 
    'not' (F 
    '&' ( 
    'not' G)))) 
    = (F 
    '&' ( 
    'not' G)) & ( 
    the_right_argument_of (F 
    '&' ( 
    'not' G))) 
    = ( 
    'not' G) by 
    Th1,
    Th4;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    QC_LANG2:35
    
    H is
    biconditional implies H is 
    conjunctive & ( 
    the_left_argument_of H) is 
    conditional & ( 
    the_right_argument_of H) is 
    conditional by 
    Th4;
    
    theorem :: 
    
    QC_LANG2:36
    
    H is
    existential implies H is 
    negative & ( 
    the_argument_of H) is 
    universal & ( 
    the_scope_of ( 
    the_argument_of H)) is 
    negative
    
    proof
    
      given x, H1 such that
    
      
    
    A1: H 
    = ( 
    Ex (x,H1)); 
    
      (
    the_argument_of ( 
    'not' ( 
    All (x,( 
    'not' H1))))) 
    = ( 
    All (x,( 
    'not' H1))) & ( 
    the_scope_of ( 
    All (x,( 
    'not' H1)))) 
    = ( 
    'not' H1) by 
    Th1,
    Th7;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    QC_LANG2:37
    
    H is
    disjunctive implies H 
    = (( 
    the_left_disjunct_of H) 
    'or' ( 
    the_right_disjunct_of H)) 
    
    proof
    
      given F, G such that
    
      
    
    A1: H 
    = (F 
    'or' G); 
    
      (
    the_left_disjunct_of H) 
    = F by 
    A1,
    Th29;
    
      hence thesis by
    A1,
    Th29;
    
    end;
    
    theorem :: 
    
    QC_LANG2:38
    
    H is
    conditional implies H 
    = (( 
    the_antecedent_of H) 
    => ( 
    the_consequent_of H)) 
    
    proof
    
      given F, G such that
    
      
    
    A1: H 
    = (F 
    => G); 
    
      (
    the_antecedent_of H) 
    = F by 
    A1,
    Th30;
    
      hence thesis by
    A1,
    Th30;
    
    end;
    
    theorem :: 
    
    QC_LANG2:39
    
    H is
    biconditional implies H 
    = (( 
    the_left_side_of H) 
    <=> ( 
    the_right_side_of H)) 
    
    proof
    
      given F, G such that
    
      
    
    A1: H 
    = (F 
    <=> G); 
    
      (
    the_left_side_of H) 
    = F by 
    A1,
    Th31;
    
      hence thesis by
    A1,
    Th31;
    
    end;
    
    theorem :: 
    
    QC_LANG2:40
    
    H is
    existential implies H 
    = ( 
    Ex (( 
    bound_in ( 
    the_argument_of H)),( 
    the_argument_of ( 
    the_scope_of ( 
    the_argument_of H))))) 
    
    proof
    
      given x, H1 such that
    
      
    
    A1: H 
    = ( 
    Ex (x,H1)); 
    
      
    
      
    
    A2: ( 
    the_argument_of ( 
    'not' H1)) 
    = H1 by 
    Th1;
    
      (
    the_argument_of ( 
    'not' ( 
    All (x,( 
    'not' H1))))) 
    = ( 
    All (x,( 
    'not' H1))) & ( 
    the_scope_of ( 
    All (x,( 
    'not' H1)))) 
    = ( 
    'not' H1) by 
    Th1,
    Th7;
    
      hence thesis by
    A1,
    A2,
    Th7;
    
    end;
    
    definition
    
      let A be
    QC-alphabet;
    
      let G,H be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def19
    
      pred G
    
    is_immediate_constituent_of H means H 
    = ( 
    'not' G) or (ex F be 
    Element of ( 
    QC-WFF A) st H 
    = (G 
    '&' F) or H 
    = (F 
    '&' G)) or ex x be 
    bound_QC-variable of A st H 
    = ( 
    All (x,G)); 
    
    end
    
    reserve x,y,z for
    bound_QC-variable of A, 
    
k,n,m for
    Nat, 
    
P for
    QC-pred_symbol of k, A, 
    
V for
    QC-variable_list of k, A; 
    
    theorem :: 
    
    QC_LANG2:41
    
    
    
    
    
    Th41: not H 
    is_immediate_constituent_of ( 
    VERUM A) 
    
    proof
    
       not ((
    VERUM A) is 
    negative or ( 
    VERUM A) is 
    conjunctive or ( 
    VERUM A) is 
    universal) by
    QC_LANG1: 20;
    
      then not (((
    VERUM A) 
    = ( 
    'not' H)) or (ex H1 st ( 
    VERUM A) 
    = (H 
    '&' H1) or ( 
    VERUM A) 
    = (H1 
    '&' H)) or (ex x be 
    bound_QC-variable of A st ( 
    VERUM A) 
    = ( 
    All (x,H)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:42
    
    
    
    
    
    Th42: not H 
    is_immediate_constituent_of (P 
    ! V) 
    
    proof
    
      assume
    
      
    
    A1: not thesis; 
    
      
    
      
    
    A2: (P 
    ! V) is 
    atomic;
    
      then
    
      
    
    A3: ((( 
    @ (P 
    ! V)) 
    . 1) 
    `1 ) 
    <> 3 by 
    QC_LANG1: 19;
    
      
    
      
    
    A4: ((( 
    @ (P 
    ! V)) 
    . 1) 
    `1 ) 
    <> 2 by 
    A2,
    QC_LANG1: 19;
    
      
    
      
    
    A5: not ex H1 be 
    Element of ( 
    QC-WFF A) st (P 
    ! V) 
    = (H 
    '&' H1) or (P 
    ! V) 
    = (H1 
    '&' H) by 
    A4,
    QC_LANG1: 18,
    QC_LANG1:def 20;
    
      (
    'not' H) is 
    negative;
    
      then
    
      
    
    A6: ((( 
    @ ( 
    'not' H)) 
    . 1) 
    `1 ) 
    = 1 by 
    QC_LANG1: 18;
    
      (((
    @ (P 
    ! V)) 
    . 1) 
    `1 ) 
    <> 1 by 
    A2,
    QC_LANG1: 19;
    
      then
    
      consider z such that
    
      
    
    A7: (P 
    ! V) 
    = ( 
    All (z,H)) by 
    A1,
    A6,
    A5;
    
      (
    All (z,H)) is 
    universal;
    
      hence contradiction by
    A3,
    A7,
    QC_LANG1: 18;
    
    end;
    
    theorem :: 
    
    QC_LANG2:43
    
    
    
    
    
    Th43: F 
    is_immediate_constituent_of ( 
    'not' H) iff F 
    = H 
    
    proof
    
      thus F
    is_immediate_constituent_of ( 
    'not' H) implies F 
    = H 
    
      proof
    
        (
    'not' H) is 
    negative;
    
        then
    
        
    
    A1: ((( 
    @ ( 
    'not' H)) 
    . 1) 
    `1 ) 
    = 1 by 
    QC_LANG1: 18;
    
        
    
        
    
    A2: not ex H1 st ( 
    'not' H) 
    = (F 
    '&' H1) or ( 
    'not' H) 
    = (H1 
    '&' F) by 
    A1,
    QC_LANG1: 18,
    QC_LANG1:def 20;
    
        
    
        
    
    A3: not ex x st ( 
    'not' H) 
    = ( 
    All (x,F)) by 
    A1,
    QC_LANG1: 18,
    QC_LANG1:def 21;
    
        assume (
    'not' H) 
    = ( 
    'not' F) or (ex H1 st ( 
    'not' H) 
    = (F 
    '&' H1) or ( 
    'not' H) 
    = (H1 
    '&' F)) or ex x st ( 
    'not' H) 
    = ( 
    All (x,F)); 
    
        hence thesis by
    A2,
    A3,
    FINSEQ_1: 33;
    
      end;
    
      thus thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:44
    
    H
    is_immediate_constituent_of ( 
    FALSUM A) iff H 
    = ( 
    VERUM A) by 
    Th43;
    
    theorem :: 
    
    QC_LANG2:45
    
    
    
    
    
    Th45: F 
    is_immediate_constituent_of (G 
    '&' H) iff F 
    = G or F 
    = H 
    
    proof
    
      thus F
    is_immediate_constituent_of (G 
    '&' H) implies F 
    = G or F 
    = H 
    
      proof
    
        (G
    '&' H) is 
    conjunctive;
    
        then
    
        
    
    A1: ((( 
    @ (G 
    '&' H)) 
    . 1) 
    `1 ) 
    = 2 by 
    QC_LANG1: 18;
    
        
    
        
    
    A2: (G 
    '&' H) 
    <> ( 
    'not' F) by 
    A1,
    QC_LANG1: 18,
    QC_LANG1:def 19;
    
        
    
        
    
    A3: not ex x st (G 
    '&' H) 
    = ( 
    All (x,F)) by 
    A1,
    QC_LANG1: 18,
    QC_LANG1:def 21;
    
        assume (G
    '&' H) 
    = ( 
    'not' F) or (ex H1 st (G 
    '&' H) 
    = (F 
    '&' H1) or (G 
    '&' H) 
    = (H1 
    '&' F)) or ex x st (G 
    '&' H) 
    = ( 
    All (x,F)); 
    
        hence thesis by
    A2,
    A3,
    Th2;
    
      end;
    
      assume F
    = G or F 
    = H; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:46
    
    
    
    
    
    Th46: F 
    is_immediate_constituent_of ( 
    All (x,H)) iff F 
    = H 
    
    proof
    
      thus F
    is_immediate_constituent_of ( 
    All (x,H)) implies F 
    = H 
    
      proof
    
        (
    All (x,H)) is 
    universal;
    
        then
    
        
    
    A1: ((( 
    @ ( 
    All (x,H))) 
    . 1) 
    `1 ) 
    = 3 by 
    QC_LANG1: 18;
    
        
    
        
    
    A2: ( 
    All (x,H)) 
    <> ( 
    'not' F) by 
    A1,
    QC_LANG1: 18,
    QC_LANG1:def 19;
    
        
    
        
    
    A3: not ex G st ( 
    All (x,H)) 
    = (F 
    '&' G) or ( 
    All (x,H)) 
    = (G 
    '&' F) by 
    A1,
    QC_LANG1: 18,
    QC_LANG1:def 20;
    
        assume (
    All (x,H)) 
    = ( 
    'not' F) or (ex H1 st ( 
    All (x,H)) 
    = (F 
    '&' H1) or ( 
    All (x,H)) 
    = (H1 
    '&' F)) or ex y st ( 
    All (x,H)) 
    = ( 
    All (y,F)); 
    
        hence thesis by
    A2,
    A3,
    Th5;
    
      end;
    
      thus thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:47
    
    
    
    
    
    Th47: H is 
    atomic implies not F 
    is_immediate_constituent_of H by 
    Th42;
    
    theorem :: 
    
    QC_LANG2:48
    
    
    
    
    
    Th48: H is 
    negative implies (F 
    is_immediate_constituent_of H iff F 
    = ( 
    the_argument_of H)) 
    
    proof
    
      assume H is
    negative;
    
      then H
    = ( 
    'not' ( 
    the_argument_of H)) by 
    QC_LANG1:def 24;
    
      hence thesis by
    Th43;
    
    end;
    
    theorem :: 
    
    QC_LANG2:49
    
    
    
    
    
    Th49: H is 
    conjunctive implies (F 
    is_immediate_constituent_of H iff F 
    = ( 
    the_left_argument_of H) or F 
    = ( 
    the_right_argument_of H)) 
    
    proof
    
      assume H is
    conjunctive;
    
      then H
    = (( 
    the_left_argument_of H) 
    '&' ( 
    the_right_argument_of H)) by 
    Th3;
    
      hence thesis by
    Th45;
    
    end;
    
    theorem :: 
    
    QC_LANG2:50
    
    
    
    
    
    Th50: H is 
    universal implies (F 
    is_immediate_constituent_of H iff F 
    = ( 
    the_scope_of H)) 
    
    proof
    
      assume H is
    universal;
    
      then H
    = ( 
    All (( 
    bound_in H),( 
    the_scope_of H))) by 
    Th6;
    
      hence thesis by
    Th46;
    
    end;
    
    reserve L,L9 for
    FinSequence;
    
    definition
    
      let A be
    QC-alphabet;
    
      let G,H be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def20
    
      pred G
    
    is_subformula_of H means ex n, L st 1 
    <= n & ( 
    len L) 
    = n & (L 
    . 1) 
    = G & (L 
    . n) 
    = H & for k st 1 
    <= k & k 
    < n holds ex G1,H1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = G1 & (L 
    . (k 
    + 1)) 
    = H1 & G1 
    is_immediate_constituent_of H1; 
    
      reflexivity
    
      proof
    
        let H be
    Element of ( 
    QC-WFF A); 
    
        reconsider L =
    <*H*> as
    FinSequence;
    
        take 1, L;
    
        thus 1
    <= 1 & ( 
    len L) 
    = 1 & (L 
    . 1) 
    = H & (L 
    . 1) 
    = H by 
    FINSEQ_1: 40;
    
        let k;
    
        assume 1
    <= k & k 
    < 1; 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let A be
    QC-alphabet;
    
      let H,F be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def21
    
      pred H
    
    is_proper_subformula_of F means 
    
      :
    
    Def21: H 
    is_subformula_of F & H 
    <> F; 
    
      irreflexivity ;
    
    end
    
    theorem :: 
    
    QC_LANG2:51
    
    
    
    
    
    Th51: H 
    is_immediate_constituent_of F implies ( 
    len ( 
    @ H)) 
    < ( 
    len ( 
    @ F)) 
    
    proof
    
      
    
      
    
    A1: F 
    = ( 
    VERUM A) or F is 
    atomic or F is 
    negative or F is 
    conjunctive or F is 
    universal by 
    QC_LANG1: 9;
    
      assume H
    is_immediate_constituent_of F; 
    
      then F is
    negative & H 
    = ( 
    the_argument_of F) or F is 
    conjunctive & H 
    = ( 
    the_left_argument_of F) or F is 
    conjunctive & H 
    = ( 
    the_right_argument_of F) or F is 
    universal & H 
    = ( 
    the_scope_of F) by 
    A1,
    Th41,
    Th47,
    Th48,
    Th49,
    Th50;
    
      hence thesis by
    QC_LANG1: 14,
    QC_LANG1: 15,
    QC_LANG1: 16;
    
    end;
    
    theorem :: 
    
    QC_LANG2:52
    
    
    
    
    
    Th52: H 
    is_immediate_constituent_of F implies H 
    is_subformula_of F 
    
    proof
    
      assume
    
      
    
    A1: H 
    is_immediate_constituent_of F; 
    
      take n = 2, L =
    <*H, F*>;
    
      thus 1
    <= n; 
    
      thus (
    len L) 
    = n by 
    FINSEQ_1: 44;
    
      thus (L
    . 1) 
    = H & (L 
    . n) 
    = F by 
    FINSEQ_1: 44;
    
      let k;
    
      assume that
    
      
    
    A2: 1 
    <= k and 
    
      
    
    A3: k 
    < n; 
    
      take H, F;
    
      k
    < (1 
    + 1) by 
    A3;
    
      then k
    <= 1 by 
    NAT_1: 13;
    
      then k
    = 1 by 
    A2,
    XXREAL_0: 1;
    
      hence (L
    . k) 
    = H & (L 
    . (k 
    + 1)) 
    = F by 
    FINSEQ_1: 44;
    
      thus thesis by
    A1;
    
    end;
    
    theorem :: 
    
    QC_LANG2:53
    
    
    
    
    
    Th53: H 
    is_immediate_constituent_of F implies H 
    is_proper_subformula_of F 
    
    proof
    
      assume
    
      
    
    A1: H 
    is_immediate_constituent_of F; 
    
      hence H
    is_subformula_of F by 
    Th52;
    
      assume H
    = F; 
    
      then (
    len ( 
    @ H)) 
    = ( 
    len ( 
    @ F)); 
    
      hence contradiction by
    A1,
    Th51;
    
    end;
    
    theorem :: 
    
    QC_LANG2:54
    
    
    
    
    
    Th54: H 
    is_proper_subformula_of F implies ( 
    len ( 
    @ H)) 
    < ( 
    len ( 
    @ F)) 
    
    proof
    
      given n, L such that
    
      
    
    A1: 1 
    <= n and ( 
    len L) 
    = n and 
    
      
    
    A2: (L 
    . 1) 
    = H and 
    
      
    
    A3: (L 
    . n) 
    = F and 
    
      
    
    A4: for k st 1 
    <= k & k 
    < n holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = H1 & (L 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      defpred
    
    P[
    Nat] means 1
    <= $1 & $1 
    < n implies for H1 st (L 
    . ($1 
    + 1)) 
    = H1 holds ( 
    len ( 
    @ H)) 
    < ( 
    len ( 
    @ H1)); 
    
      
    
      
    
    A5: for k st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k such that
    
        
    
    A6: 1 
    <= k & k 
    < n implies for H1 st (L 
    . (k 
    + 1)) 
    = H1 holds ( 
    len ( 
    @ H)) 
    < ( 
    len ( 
    @ H1)) and 
    
        
    
    A7: 1 
    <= (k 
    + 1) and 
    
        
    
    A8: (k 
    + 1) 
    < n; 
    
        consider F1,G be
    Element of ( 
    QC-WFF A) such that 
    
        
    
    A9: (L 
    . (k 
    + 1)) 
    = F1 and 
    
        
    
    A10: (L 
    . ((k 
    + 1) 
    + 1)) 
    = G & F1 
    is_immediate_constituent_of G by 
    A4,
    A7,
    A8;
    
        let H1 such that
    
        
    
    A11: (L 
    . ((k 
    + 1) 
    + 1)) 
    = H1; 
    
        
    
    A12: 
    
        now
    
          given m be
    Nat such that 
    
          
    
    A13: k 
    = (m 
    + 1); 
    
          (
    len ( 
    @ H)) 
    < ( 
    len ( 
    @ F1)) by 
    A6,
    A8,
    A9,
    A13,
    NAT_1: 11,
    NAT_1: 13;
    
          hence thesis by
    A11,
    A10,
    Th51,
    XXREAL_0: 2;
    
        end;
    
        k
    =  
    0 implies ( 
    len ( 
    @ H)) 
    < ( 
    len ( 
    @ H1)) by 
    A2,
    A11,
    A9,
    A10,
    Th51;
    
        hence thesis by
    A12,
    NAT_1: 6;
    
      end;
    
      assume H
    <> F; 
    
      then 1
    < n by 
    A1,
    A2,
    A3,
    XXREAL_0: 1;
    
      then (1
    + 1) 
    <= n by 
    NAT_1: 13;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A14: n 
    = (2 
    + k) by 
    NAT_1: 10;
    
      
    
      
    
    A15: 
    P[
    0 ]; 
    
      
    
      
    
    A16: for k holds 
    P[k] from
    NAT_1:sch 2(
    A15,
    A5);
    
      reconsider k as
    Nat;
    
      
    
      
    
    A17: ((1 
    + 1) 
    + k) 
    = ((1 
    + k) 
    + 1); 
    
      then (1
    + k) 
    < n by 
    A14,
    NAT_1: 13;
    
      hence thesis by
    A3,
    A16,
    A14,
    A17,
    NAT_1: 11;
    
    end;
    
    theorem :: 
    
    QC_LANG2:55
    
    
    
    
    
    Th55: H 
    is_proper_subformula_of F implies ex G st G 
    is_immediate_constituent_of F 
    
    proof
    
      given n, L such that
    
      
    
    A1: 1 
    <= n and ( 
    len L) 
    = n and 
    
      
    
    A2: (L 
    . 1) 
    = H and 
    
      
    
    A3: (L 
    . n) 
    = F and 
    
      
    
    A4: for k st 1 
    <= k & k 
    < n holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = H1 & (L 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      assume H
    <> F; 
    
      then 1
    < n by 
    A1,
    A2,
    A3,
    XXREAL_0: 1;
    
      then (1
    + 1) 
    <= n by 
    NAT_1: 13;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A5: n 
    = (2 
    + k) by 
    NAT_1: 10;
    
      reconsider k as
    Nat;
    
      ((1
    + 1) 
    + k) 
    = ((1 
    + k) 
    + 1); 
    
      then (1
    + k) 
    < n by 
    A5,
    NAT_1: 13;
    
      then
    
      consider H1,F1 be
    Element of ( 
    QC-WFF A) such that (L 
    . (1 
    + k)) 
    = H1 and 
    
      
    
    A6: (L 
    . ((1 
    + k) 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1 by 
    A4,
    NAT_1: 11;
    
      take H1;
    
      thus thesis by
    A3,
    A5,
    A6;
    
    end;
    
    theorem :: 
    
    QC_LANG2:56
    
    
    
    
    
    Th56: F 
    is_proper_subformula_of G & G 
    is_proper_subformula_of H implies F 
    is_proper_subformula_of H 
    
    proof
    
      assume that
    
      
    
    A1: F 
    is_proper_subformula_of G and 
    
      
    
    A2: G 
    is_proper_subformula_of H; 
    
      F
    is_subformula_of G by 
    A1;
    
      then
    
      consider n, L such that
    
      
    
    A3: 1 
    <= n and 
    
      
    
    A4: ( 
    len L) 
    = n and 
    
      
    
    A5: (L 
    . 1) 
    = F and 
    
      
    
    A6: (L 
    . n) 
    = G and 
    
      
    
    A7: for k st 1 
    <= k & k 
    < n holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = H1 & (L 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      1
    < n by 
    A1,
    A3,
    A5,
    A6,
    XXREAL_0: 1;
    
      then (1
    + 1) 
    <= n by 
    NAT_1: 13;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A8: n 
    = (2 
    + k) by 
    NAT_1: 10;
    
      G
    is_subformula_of H by 
    A2;
    
      then
    
      consider m, L9 such that
    
      
    
    A9: 1 
    <= m and 
    
      
    
    A10: ( 
    len L9) 
    = m and 
    
      
    
    A11: (L9 
    . 1) 
    = G and 
    
      
    
    A12: (L9 
    . m) 
    = H and 
    
      
    
    A13: for k st 1 
    <= k & k 
    < m holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L9 
    . k) 
    = H1 & (L9 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      reconsider k as
    Nat;
    
      reconsider L1 = (L
    | ( 
    Seg (1 
    + k))) as 
    FinSequence by 
    FINSEQ_1: 15;
    
      thus F
    is_subformula_of H 
    
      proof
    
        take l = ((1
    + k) 
    + m), K = (L1 
    ^ L9); 
    
        
    
        
    
    A14: (((1 
    + k) 
    + m) 
    - (1 
    + k)) 
    = m; 
    
        m
    <= (m 
    + (1 
    + k)) by 
    NAT_1: 11;
    
        hence 1
    <= l by 
    A9,
    XXREAL_0: 2;
    
        ((1
    + 1) 
    + k) 
    = ((1 
    + k) 
    + 1); 
    
        then
    
        
    
    A15: (1 
    + k) 
    <= n by 
    A8,
    NAT_1: 11;
    
        then
    
        
    
    A16: ( 
    len L1) 
    = (1 
    + k) by 
    A4,
    FINSEQ_1: 17;
    
        hence
    
        
    
    A17: ( 
    len K) 
    = l by 
    A10,
    FINSEQ_1: 22;
    
        
    
    A18: 
    
        now
    
          let j be
    Nat;
    
          assume 1
    <= j & j 
    <= (1 
    + k); 
    
          then
    
          
    
    A19: j 
    in ( 
    Seg (1 
    + k)) by 
    FINSEQ_1: 1;
    
          then j
    in ( 
    dom L1) by 
    A4,
    A15,
    FINSEQ_1: 17;
    
          then (K
    . j) 
    = (L1 
    . j) by 
    FINSEQ_1:def 7;
    
          hence (K
    . j) 
    = (L 
    . j) by 
    A19,
    FUNCT_1: 49;
    
        end;
    
        1
    <= (1 
    + k) by 
    NAT_1: 11;
    
        hence (K
    . 1) 
    = F by 
    A5,
    A18;
    
        ((
    len L1) 
    + 1) 
    <= (( 
    len L1) 
    + m) by 
    A9,
    XREAL_1: 7;
    
        then (
    len L1) 
    < l by 
    A16,
    NAT_1: 13;
    
        then (K
    . l) 
    = (L9 
    . (l 
    - ( 
    len L1))) by 
    A17,
    FINSEQ_1: 24;
    
        hence (K
    . l) 
    = H by 
    A4,
    A12,
    A15,
    A14,
    FINSEQ_1: 17;
    
        let j be
    Nat such that 
    
        
    
    A20: 1 
    <= j and 
    
        
    
    A21: j 
    < l; 
    
        (j
    +  
    0 ) 
    <= (j 
    + 1) by 
    XREAL_1: 7;
    
        then
    
        
    
    A22: 1 
    <= (j 
    + 1) by 
    A20,
    XXREAL_0: 2;
    
        
    
    A23: 
    
        now
    
          assume
    
          
    
    A24: j 
    < (1 
    + k); 
    
          then
    
          
    
    A25: (j 
    + 1) 
    <= (1 
    + k) by 
    NAT_1: 13;
    
          then (j
    + 1) 
    <= n by 
    A15,
    XXREAL_0: 2;
    
          then j
    < n by 
    NAT_1: 13;
    
          then
    
          consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
          
    
    A26: (L 
    . j) 
    = F1 & (L 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A7,
    A20;
    
          take F1, G1;
    
          thus (K
    . j) 
    = F1 & (K 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A18,
    A20,
    A22,
    A24,
    A25,
    A26;
    
        end;
    
        
    
    A27: 
    
        now
    
          
    
          
    
    A28: (j 
    + 1) 
    <= l by 
    A21,
    NAT_1: 13;
    
          assume
    
          
    
    A29: (1 
    + k) 
    < j; 
    
          then
    
          
    
    A30: (1 
    + k) 
    < (j 
    + 1) by 
    NAT_1: 13;
    
          ((1
    + k) 
    + 1) 
    <= j by 
    A29,
    NAT_1: 13;
    
          then
    
          consider j1 be
    Nat such that 
    
          
    
    A31: j 
    = (((1 
    + k) 
    + 1) 
    + j1) by 
    NAT_1: 10;
    
          reconsider j1 as
    Nat;
    
          (j
    - (1 
    + k)) 
    < (l 
    - (1 
    + k)) by 
    A21,
    XREAL_1: 9;
    
          then
    
          consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
          
    
    A32: (L9 
    . (1 
    + j1)) 
    = F1 & (L9 
    . ((1 
    + j1) 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A13,
    A31,
    NAT_1: 11;
    
          take F1, G1;
    
          
    
          
    
    A33: (((1 
    + j1) 
    + (1 
    + k)) 
    - (1 
    + k)) 
    = (((1 
    + j1) 
    + (1 
    + k)) 
    + ( 
    - (1 
    + k))); 
    
          ((j
    + 1) 
    - ( 
    len L1)) 
    = (1 
    + (j 
    + ( 
    - ( 
    len L1)))) 
    
          .= ((1
    + j1) 
    + 1) by 
    A4,
    A15,
    A31,
    A33,
    FINSEQ_1: 17;
    
          hence (K
    . j) 
    = F1 & (K 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A16,
    A17,
    A21,
    A29,
    A30,
    A28,
    A33,
    A32,
    FINSEQ_1: 24;
    
        end;
    
        now
    
          
    
          
    
    A34: (j 
    + 1) 
    <= l & ((j 
    + 1) 
    - j) 
    = ((j 
    + 1) 
    + ( 
    - j)) by 
    A21,
    NAT_1: 13;
    
          assume
    
          
    
    A35: j 
    = (1 
    + k); 
    
          then j
    < ((1 
    + k) 
    + 1) by 
    NAT_1: 13;
    
          then
    
          consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
          
    
    A36: (L 
    . j) 
    = F1 & (L 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A7,
    A8,
    A20;
    
          take F1, G1;
    
          (1
    + k) 
    < (j 
    + 1) by 
    A35,
    NAT_1: 13;
    
          hence (K
    . j) 
    = F1 & (K 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A6,
    A11,
    A8,
    A16,
    A17,
    A18,
    A20,
    A35,
    A34,
    A36,
    FINSEQ_1: 24;
    
        end;
    
        hence thesis by
    A23,
    A27,
    XXREAL_0: 1;
    
      end;
    
      (
    len ( 
    @ F)) 
    < ( 
    len ( 
    @ G)) by 
    A1,
    Th54;
    
      hence thesis by
    A2,
    Th54;
    
    end;
    
    theorem :: 
    
    QC_LANG2:57
    
    
    
    
    
    Th57: F 
    is_subformula_of G & G 
    is_subformula_of H implies F 
    is_subformula_of H 
    
    proof
    
      assume that
    
      
    
    A1: F 
    is_subformula_of G and 
    
      
    
    A2: G 
    is_subformula_of H; 
    
      now
    
        assume F
    <> G; 
    
        then
    
        
    
    A3: F 
    is_proper_subformula_of G by 
    A1;
    
        now
    
          assume G
    <> H; 
    
          then G
    is_proper_subformula_of H by 
    A2;
    
          then F
    is_proper_subformula_of H by 
    A3,
    Th56;
    
          hence thesis;
    
        end;
    
        hence thesis by
    A1;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    QC_LANG2:58
    
    
    
    
    
    Th58: G 
    is_subformula_of H & H 
    is_subformula_of G implies G 
    = H 
    
    proof
    
      assume that
    
      
    
    A1: G 
    is_subformula_of H and 
    
      
    
    A2: H 
    is_subformula_of G; 
    
      assume
    
      
    
    A3: G 
    <> H; 
    
      then G
    is_proper_subformula_of H by 
    A1;
    
      then
    
      
    
    A4: ( 
    len ( 
    @ G)) 
    < ( 
    len ( 
    @ H)) by 
    Th54;
    
      H
    is_proper_subformula_of G by 
    A2,
    A3;
    
      hence contradiction by
    A4,
    Th54;
    
    end;
    
    theorem :: 
    
    QC_LANG2:59
    
    
    
    
    
    Th59: not (G 
    is_proper_subformula_of H & H 
    is_subformula_of G) by 
    Th58;
    
    theorem :: 
    
    QC_LANG2:60
    
     not (G
    is_proper_subformula_of H & H 
    is_proper_subformula_of G) by 
    Th59;
    
    theorem :: 
    
    QC_LANG2:61
    
    
    
    
    
    Th61: not (G 
    is_subformula_of H & H 
    is_immediate_constituent_of G) by 
    Th53,
    Th59;
    
    theorem :: 
    
    QC_LANG2:62
    
     not (G
    is_proper_subformula_of H & H 
    is_immediate_constituent_of G) by 
    Th53,
    Th59;
    
    theorem :: 
    
    QC_LANG2:63
    
    
    
    
    
    Th63: F 
    is_proper_subformula_of G & G 
    is_subformula_of H or F 
    is_subformula_of G & G 
    is_proper_subformula_of H or F 
    is_subformula_of G & G 
    is_immediate_constituent_of H or F 
    is_immediate_constituent_of G & G 
    is_subformula_of H or F 
    is_proper_subformula_of G & G 
    is_immediate_constituent_of H or F 
    is_immediate_constituent_of G & G 
    is_proper_subformula_of H implies F 
    is_proper_subformula_of H 
    
    proof
    
      assume
    
      
    
    A1: F 
    is_proper_subformula_of G & G 
    is_subformula_of H or F 
    is_subformula_of G & G 
    is_proper_subformula_of H or F 
    is_subformula_of G & G 
    is_immediate_constituent_of H or F 
    is_immediate_constituent_of G & G 
    is_subformula_of H or F 
    is_proper_subformula_of G & G 
    is_immediate_constituent_of H or F 
    is_immediate_constituent_of G & G 
    is_proper_subformula_of H; 
    
      then F
    is_subformula_of G & G 
    is_subformula_of H by 
    Th52;
    
      hence F
    is_subformula_of H by 
    Th57;
    
      thus thesis by
    A1,
    Th59,
    Th61;
    
    end;
    
    theorem :: 
    
    QC_LANG2:64
    
    
    
    
    
    Th64: not F 
    is_proper_subformula_of ( 
    VERUM A) 
    
    proof
    
      assume not thesis;
    
      then
    
      consider G such that
    
      
    
    A1: G 
    is_immediate_constituent_of ( 
    VERUM A) by 
    Th55;
    
      thus thesis by
    A1,
    Th41;
    
    end;
    
    theorem :: 
    
    QC_LANG2:65
    
    
    
    
    
    Th65: not F 
    is_proper_subformula_of (P 
    ! V) 
    
    proof
    
      assume F
    is_proper_subformula_of (P 
    ! V); 
    
      then ex G st G
    is_immediate_constituent_of (P 
    ! V) by 
    Th55;
    
      hence contradiction by
    Th42;
    
    end;
    
    theorem :: 
    
    QC_LANG2:66
    
    
    
    
    
    Th66: F 
    is_subformula_of H iff F 
    is_proper_subformula_of ( 
    'not' H) 
    
    proof
    
      H
    is_immediate_constituent_of ( 
    'not' H); 
    
      hence F
    is_subformula_of H implies F 
    is_proper_subformula_of ( 
    'not' H) by 
    Th63;
    
      given n, L such that
    
      
    
    A1: 1 
    <= n and 
    
      
    
    A2: ( 
    len L) 
    = n and 
    
      
    
    A3: (L 
    . 1) 
    = F and 
    
      
    
    A4: (L 
    . n) 
    = ( 
    'not' H) and 
    
      
    
    A5: for k st 1 
    <= k & k 
    < n holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = H1 & (L 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      assume F
    <> ( 
    'not' H); 
    
      then 1
    < n by 
    A1,
    A3,
    A4,
    XXREAL_0: 1;
    
      then (1
    + 1) 
    <= n by 
    NAT_1: 13;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A6: n 
    = (2 
    + k) by 
    NAT_1: 10;
    
      reconsider k as
    Nat;
    
      reconsider L1 = (L
    | ( 
    Seg (1 
    + k))) as 
    FinSequence by 
    FINSEQ_1: 15;
    
      take m = (1
    + k), L1; 
    
      thus
    
      
    
    A7: 1 
    <= m by 
    NAT_1: 11;
    
      (1
    + k) 
    <= ((1 
    + k) 
    + 1) by 
    NAT_1: 11;
    
      hence (
    len L1) 
    = m by 
    A2,
    A6,
    FINSEQ_1: 17;
    
      
    
      
    
    A8: for j be 
    Nat st 1 
    <= j 
    <= m holds (L1 
    . j) 
    = (L 
    . j) by 
    FUNCT_1: 49,
    FINSEQ_1: 1;
    
      hence (L1
    . 1) 
    = F by 
    A3,
    A7;
    
      m
    < (m 
    + 1) by 
    NAT_1: 13;
    
      then
    
      consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
      
    
    A9: (L 
    . m) 
    = F1 and 
    
      
    
    A10: (L 
    . (m 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A5,
    A6,
    NAT_1: 11;
    
      F1
    = H by 
    A4,
    A6,
    A10,
    Th43;
    
      hence (L1
    . m) 
    = H by 
    A7,
    A8,
    A9;
    
      let j be
    Nat;
    
      assume that
    
      
    
    A11: 1 
    <= j and 
    
      
    
    A12: j 
    < m; 
    
      m
    <= (m 
    + 1) by 
    NAT_1: 11;
    
      then j
    < n by 
    A6,
    A12,
    XXREAL_0: 2;
    
      then
    
      consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
      
    
    A13: (L 
    . j) 
    = F1 & (L 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A5,
    A11;
    
      take F1, G1;
    
      1
    <= (1 
    + j) & (j 
    + 1) 
    <= m by 
    A11,
    A12,
    NAT_1: 13;
    
      hence thesis by
    A8,
    A11,
    A12,
    A13;
    
    end;
    
    theorem :: 
    
    QC_LANG2:67
    
    (
    'not' F) 
    is_subformula_of H implies F 
    is_proper_subformula_of H 
    
    proof
    
      F
    is_proper_subformula_of ( 
    'not' F) by 
    Th66;
    
      hence thesis by
    Th63;
    
    end;
    
    theorem :: 
    
    QC_LANG2:68
    
    F
    is_proper_subformula_of ( 
    FALSUM A) iff F 
    is_subformula_of ( 
    VERUM A) by 
    Th66;
    
    theorem :: 
    
    QC_LANG2:69
    
    
    
    
    
    Th69: F 
    is_subformula_of G or F 
    is_subformula_of H iff F 
    is_proper_subformula_of (G 
    '&' H) 
    
    proof
    
      G
    is_immediate_constituent_of (G 
    '&' H) & H 
    is_immediate_constituent_of (G 
    '&' H); 
    
      hence F
    is_subformula_of G or F 
    is_subformula_of H implies F 
    is_proper_subformula_of (G 
    '&' H) by 
    Th63;
    
      given n, L such that
    
      
    
    A1: 1 
    <= n and 
    
      
    
    A2: ( 
    len L) 
    = n and 
    
      
    
    A3: (L 
    . 1) 
    = F and 
    
      
    
    A4: (L 
    . n) 
    = (G 
    '&' H) and 
    
      
    
    A5: for k st 1 
    <= k & k 
    < n holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = H1 & (L 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      assume F
    <> (G 
    '&' H); 
    
      then 1
    < n by 
    A1,
    A3,
    A4,
    XXREAL_0: 1;
    
      then (1
    + 1) 
    <= n by 
    NAT_1: 13;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A6: n 
    = (2 
    + k) by 
    NAT_1: 10;
    
      reconsider k as
    Nat;
    
      ((1
    + 1) 
    + k) 
    = ((1 
    + k) 
    + 1); 
    
      then (1
    + k) 
    < n by 
    A6,
    NAT_1: 13;
    
      then
    
      consider H1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
      
    
    A7: (L 
    . (1 
    + k)) 
    = H1 and 
    
      
    
    A8: (L 
    . ((1 
    + k) 
    + 1)) 
    = G1 & H1 
    is_immediate_constituent_of G1 by 
    A5,
    NAT_1: 11;
    
      reconsider L1 = (L
    | ( 
    Seg (1 
    + k))) as 
    FinSequence by 
    FINSEQ_1: 15;
    
      F
    is_subformula_of H1 
    
      proof
    
        take m = (1
    + k), L1; 
    
        thus
    
        
    
    A9: 1 
    <= m by 
    NAT_1: 11;
    
        (1
    + k) 
    <= ((1 
    + k) 
    + 1) by 
    NAT_1: 11;
    
        hence (
    len L1) 
    = m by 
    A2,
    A6,
    FINSEQ_1: 17;
    
        
    
        
    
    A10: for j be 
    Nat st 1 
    <= j 
    <= m holds (L1 
    . j) 
    = (L 
    . j) by 
    FUNCT_1: 49,
    FINSEQ_1: 1;
    
        hence (L1
    . 1) 
    = F by 
    A3,
    A9;
    
        thus (L1
    . m) 
    = H1 by 
    A7,
    A9,
    A10;
    
        let j be
    Nat;
    
        assume that
    
        
    
    A11: 1 
    <= j and 
    
        
    
    A12: j 
    < m; 
    
        m
    <= (m 
    + 1) by 
    NAT_1: 11;
    
        then j
    < n by 
    A6,
    A12,
    XXREAL_0: 2;
    
        then
    
        consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
        
    
    A13: (L 
    . j) 
    = F1 & (L 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A5,
    A11;
    
        take F1, G1;
    
        1
    <= (1 
    + j) & (j 
    + 1) 
    <= m by 
    A11,
    A12,
    NAT_1: 13;
    
        hence thesis by
    A10,
    A11,
    A12,
    A13;
    
      end;
    
      hence thesis by
    A4,
    A6,
    A8,
    Th45;
    
    end;
    
    theorem :: 
    
    QC_LANG2:70
    
    (F
    '&' G) 
    is_subformula_of H implies F 
    is_proper_subformula_of H & G 
    is_proper_subformula_of H 
    
    proof
    
      F
    is_proper_subformula_of (F 
    '&' G) & G 
    is_proper_subformula_of (F 
    '&' G) by 
    Th69;
    
      hence thesis by
    Th63;
    
    end;
    
    theorem :: 
    
    QC_LANG2:71
    
    
    
    
    
    Th71: F 
    is_subformula_of H iff F 
    is_proper_subformula_of ( 
    All (x,H)) 
    
    proof
    
      H
    is_immediate_constituent_of ( 
    All (x,H)); 
    
      hence F
    is_subformula_of H implies F 
    is_proper_subformula_of ( 
    All (x,H)) by 
    Th63;
    
      given n, L such that
    
      
    
    A1: 1 
    <= n and 
    
      
    
    A2: ( 
    len L) 
    = n and 
    
      
    
    A3: (L 
    . 1) 
    = F and 
    
      
    
    A4: (L 
    . n) 
    = ( 
    All (x,H)) and 
    
      
    
    A5: for k st 1 
    <= k & k 
    < n holds ex H1,F1 be 
    Element of ( 
    QC-WFF A) st (L 
    . k) 
    = H1 & (L 
    . (k 
    + 1)) 
    = F1 & H1 
    is_immediate_constituent_of F1; 
    
      assume F
    <> ( 
    All (x,H)); 
    
      then 1
    < n by 
    A1,
    A3,
    A4,
    XXREAL_0: 1;
    
      then (1
    + 1) 
    <= n by 
    NAT_1: 13;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A6: n 
    = (2 
    + k) by 
    NAT_1: 10;
    
      reconsider k as
    Nat;
    
      reconsider L1 = (L
    | ( 
    Seg (1 
    + k))) as 
    FinSequence by 
    FINSEQ_1: 15;
    
      take m = (1
    + k), L1; 
    
      thus
    
      
    
    A7: 1 
    <= m by 
    NAT_1: 11;
    
      (1
    + k) 
    <= ((1 
    + k) 
    + 1) by 
    NAT_1: 11;
    
      hence (
    len L1) 
    = m by 
    A2,
    A6,
    FINSEQ_1: 17;
    
      
    
      
    
    A8: for j be 
    Nat st 1 
    <= j 
    <= m holds (L1 
    . j) 
    = (L 
    . j) by 
    FUNCT_1: 49,
    FINSEQ_1: 1;
    
      hence (L1
    . 1) 
    = F by 
    A3,
    A7;
    
      m
    < (m 
    + 1) by 
    NAT_1: 13;
    
      then
    
      consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
      
    
    A9: (L 
    . m) 
    = F1 and 
    
      
    
    A10: (L 
    . (m 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A5,
    A6,
    NAT_1: 11;
    
      F1
    = H by 
    A4,
    A6,
    A10,
    Th46;
    
      hence (L1
    . m) 
    = H by 
    A7,
    A8,
    A9;
    
      let j be
    Nat;
    
      assume that
    
      
    
    A11: 1 
    <= j and 
    
      
    
    A12: j 
    < m; 
    
      m
    <= (m 
    + 1) by 
    NAT_1: 11;
    
      then j
    < n by 
    A6,
    A12,
    XXREAL_0: 2;
    
      then
    
      consider F1,G1 be
    Element of ( 
    QC-WFF A) such that 
    
      
    
    A13: (L 
    . j) 
    = F1 & (L 
    . (j 
    + 1)) 
    = G1 & F1 
    is_immediate_constituent_of G1 by 
    A5,
    A11;
    
      take F1, G1;
    
      1
    <= (1 
    + j) & (j 
    + 1) 
    <= m by 
    A11,
    A12,
    NAT_1: 13;
    
      hence thesis by
    A8,
    A11,
    A12,
    A13;
    
    end;
    
    theorem :: 
    
    QC_LANG2:72
    
    (
    All (x,H)) 
    is_subformula_of F implies H 
    is_proper_subformula_of F 
    
    proof
    
      H
    is_proper_subformula_of ( 
    All (x,H)) by 
    Th71;
    
      hence thesis by
    Th63;
    
    end;
    
    theorem :: 
    
    QC_LANG2:73
    
    (F
    '&' ( 
    'not' G)) 
    is_proper_subformula_of (F 
    => G) & F 
    is_proper_subformula_of (F 
    => G) & ( 
    'not' G) 
    is_proper_subformula_of (F 
    => G) & G 
    is_proper_subformula_of (F 
    => G) 
    
    proof
    
      thus
    
      
    
    A1: (F 
    '&' ( 
    'not' G)) 
    is_proper_subformula_of (F 
    => G) by 
    Th66;
    
      F
    is_proper_subformula_of (F 
    '&' ( 
    'not' G)) & ( 
    'not' G) 
    is_proper_subformula_of (F 
    '&' ( 
    'not' G)) by 
    Th69;
    
      hence
    
      
    
    A2: F 
    is_proper_subformula_of (F 
    => G) & ( 
    'not' G) 
    is_proper_subformula_of (F 
    => G) by 
    A1,
    Th56;
    
      G
    is_proper_subformula_of ( 
    'not' G) by 
    Th66;
    
      hence thesis by
    A2,
    Th56;
    
    end;
    
    theorem :: 
    
    QC_LANG2:74
    
    ((
    'not' F) 
    '&' ( 
    'not' G)) 
    is_proper_subformula_of (F 
    'or' G) & ( 
    'not' F) 
    is_proper_subformula_of (F 
    'or' G) & ( 
    'not' G) 
    is_proper_subformula_of (F 
    'or' G) & F 
    is_proper_subformula_of (F 
    'or' G) & G 
    is_proper_subformula_of (F 
    'or' G) 
    
    proof
    
      thus
    
      
    
    A1: (( 
    'not' F) 
    '&' ( 
    'not' G)) 
    is_proper_subformula_of (F 
    'or' G) by 
    Th66;
    
      (
    'not' F) 
    is_proper_subformula_of (( 
    'not' F) 
    '&' ( 
    'not' G)) & ( 
    'not' G) 
    is_proper_subformula_of (( 
    'not' F) 
    '&' ( 
    'not' G)) by 
    Th69;
    
      hence
    
      
    
    A2: ( 
    'not' F) 
    is_proper_subformula_of (F 
    'or' G) & ( 
    'not' G) 
    is_proper_subformula_of (F 
    'or' G) by 
    A1,
    Th56;
    
      G
    is_proper_subformula_of ( 
    'not' G) & F 
    is_proper_subformula_of ( 
    'not' F) by 
    Th66;
    
      hence thesis by
    A2,
    Th56;
    
    end;
    
    theorem :: 
    
    QC_LANG2:75
    
    H is
    atomic implies not F 
    is_proper_subformula_of H by 
    Th65;
    
    theorem :: 
    
    QC_LANG2:76
    
    H is
    negative implies ( 
    the_argument_of H) 
    is_proper_subformula_of H 
    
    proof
    
      assume H is
    negative;
    
      then (
    the_argument_of H) 
    is_immediate_constituent_of H by 
    Th48;
    
      hence thesis by
    Th53;
    
    end;
    
    theorem :: 
    
    QC_LANG2:77
    
    H is
    conjunctive implies ( 
    the_left_argument_of H) 
    is_proper_subformula_of H & ( 
    the_right_argument_of H) 
    is_proper_subformula_of H 
    
    proof
    
      assume H is
    conjunctive;
    
      then (
    the_left_argument_of H) 
    is_immediate_constituent_of H & ( 
    the_right_argument_of H) 
    is_immediate_constituent_of H by 
    Th49;
    
      hence thesis by
    Th53;
    
    end;
    
    theorem :: 
    
    QC_LANG2:78
    
    H is
    universal implies ( 
    the_scope_of H) 
    is_proper_subformula_of H 
    
    proof
    
      assume H is
    universal;
    
      then (
    the_scope_of H) 
    is_immediate_constituent_of H by 
    Th50;
    
      hence thesis by
    Th53;
    
    end;
    
    theorem :: 
    
    QC_LANG2:79
    
    
    
    
    
    Th79: H 
    is_subformula_of ( 
    VERUM A) iff H 
    = ( 
    VERUM A) by 
    Def21,
    Th64;
    
    theorem :: 
    
    QC_LANG2:80
    
    
    
    
    
    Th80: H 
    is_subformula_of (P 
    ! V) iff H 
    = (P 
    ! V) 
    
    proof
    
      thus H
    is_subformula_of (P 
    ! V) implies H 
    = (P 
    ! V) 
    
      proof
    
        assume
    
        
    
    A1: H 
    is_subformula_of (P 
    ! V); 
    
        assume H
    <> (P 
    ! V); 
    
        then H
    is_proper_subformula_of (P 
    ! V) by 
    A1;
    
        then ex F st F
    is_immediate_constituent_of (P 
    ! V) by 
    Th55;
    
        hence contradiction by
    Th42;
    
      end;
    
      thus thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:81
    
    
    
    
    
    Th81: H 
    is_subformula_of ( 
    FALSUM A) iff H 
    = ( 
    FALSUM A) or H 
    = ( 
    VERUM A) 
    
    proof
    
      thus H
    is_subformula_of ( 
    FALSUM A) implies H 
    = ( 
    FALSUM A) or H 
    = ( 
    VERUM A) 
    
      proof
    
        assume H
    is_subformula_of ( 
    FALSUM A) & H 
    <> ( 
    FALSUM A); 
    
        then H
    is_proper_subformula_of ( 
    FALSUM A); 
    
        then H
    is_subformula_of ( 
    VERUM A) by 
    Th66;
    
        hence thesis by
    Th79;
    
      end;
    
      (
    VERUM A) 
    is_immediate_constituent_of ( 
    FALSUM A); 
    
      then (
    VERUM A) 
    is_proper_subformula_of ( 
    FALSUM A) by 
    Th53;
    
      hence thesis;
    
    end;
    
    definition
    
      let A be
    QC-alphabet;
    
      let H be
    Element of ( 
    QC-WFF A); 
    
      :: 
    
    QC_LANG2:def22
    
      func
    
    Subformulae H -> 
    set means 
    
      :
    
    Def22: for a be 
    object holds a 
    in it iff ex F be 
    Element of ( 
    QC-WFF A) st F 
    = a & F 
    is_subformula_of H; 
    
      existence
    
      proof
    
        defpred
    
    P[
    object] means ex F be
    Element of ( 
    QC-WFF A) st F 
    = $1 & F 
    is_subformula_of H; 
    
        consider X be
    set such that 
    
        
    
    A1: for a be 
    object holds a 
    in X iff a 
    in ( 
    QC-WFF A) & 
    P[a] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let a be
    object;
    
        thus a
    in X implies ex F be 
    Element of ( 
    QC-WFF A) st F 
    = a & F 
    is_subformula_of H by 
    A1;
    
        given F be
    Element of ( 
    QC-WFF A) such that 
    
        
    
    A2: F 
    = a & F 
    is_subformula_of H; 
    
        thus thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        defpred
    
    P[
    object] means ex F be
    Element of ( 
    QC-WFF A) st F 
    = $1 & F 
    is_subformula_of H; 
    
        let X,Y be
    set such that 
    
        
    
    A3: for a be 
    object holds a 
    in X iff 
    P[a] and
    
        
    
    A4: for a be 
    object holds a 
    in Y iff 
    P[a];
    
        thus thesis from
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    theorem :: 
    
    QC_LANG2:82
    
    
    
    
    
    Th82: G 
    in ( 
    Subformulae H) implies G 
    is_subformula_of H 
    
    proof
    
      assume G
    in ( 
    Subformulae H); 
    
      then ex F st F
    = G & F 
    is_subformula_of H by 
    Def22;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    QC_LANG2:83
    
    
    
    
    
    Th83: F 
    is_subformula_of H implies ( 
    Subformulae F) 
    c= ( 
    Subformulae H) 
    
    proof
    
      assume
    
      
    
    A1: F 
    is_subformula_of H; 
    
      let a be
    object;
    
      assume a
    in ( 
    Subformulae F); 
    
      then
    
      consider F1 be
    Element of ( 
    QC-WFF A) such that 
    
      
    
    A2: F1 
    = a and 
    
      
    
    A3: F1 
    is_subformula_of F by 
    Def22;
    
      F1
    is_subformula_of H by 
    A1,
    A3,
    Th57;
    
      hence thesis by
    A2,
    Def22;
    
    end;
    
    theorem :: 
    
    QC_LANG2:84
    
    G
    in ( 
    Subformulae H) implies ( 
    Subformulae G) 
    c= ( 
    Subformulae H) by 
    Th82,
    Th83;
    
    theorem :: 
    
    QC_LANG2:85
    
    
    
    
    
    Th85: ( 
    Subformulae ( 
    VERUM A)) 
    =  
    {(
    VERUM A)} 
    
    proof
    
      thus (
    Subformulae ( 
    VERUM A)) 
    c=  
    {(
    VERUM A)} 
    
      proof
    
        let a be
    object;
    
        assume a
    in ( 
    Subformulae ( 
    VERUM A)); 
    
        then
    
        consider F be
    Element of ( 
    QC-WFF A) such that 
    
        
    
    A1: F 
    = a and 
    
        
    
    A2: F 
    is_subformula_of ( 
    VERUM A) by 
    Def22;
    
        F
    = ( 
    VERUM A) by 
    A2,
    Th79;
    
        hence thesis by
    A1,
    TARSKI:def 1;
    
      end;
    
      let a be
    object;
    
      assume a
    in  
    {(
    VERUM A)}; 
    
      then a
    = ( 
    VERUM A) by 
    TARSKI:def 1;
    
      hence thesis by
    Def22;
    
    end;
    
    theorem :: 
    
    QC_LANG2:86
    
    
    
    
    
    Th86: ( 
    Subformulae (P 
    ! V)) 
    =  
    {(P
    ! V)} 
    
    proof
    
      thus (
    Subformulae (P 
    ! V)) 
    c=  
    {(P
    ! V)} 
    
      proof
    
        let a be
    object;
    
        assume a
    in ( 
    Subformulae (P 
    ! V)); 
    
        then
    
        consider F such that
    
        
    
    A1: F 
    = a and 
    
        
    
    A2: F 
    is_subformula_of (P 
    ! V) by 
    Def22;
    
        F
    = (P 
    ! V) by 
    A2,
    Th80;
    
        hence thesis by
    A1,
    TARSKI:def 1;
    
      end;
    
      let a be
    object;
    
      assume a
    in  
    {(P
    ! V)}; 
    
      then a
    = (P 
    ! V) by 
    TARSKI:def 1;
    
      hence thesis by
    Def22;
    
    end;
    
    theorem :: 
    
    QC_LANG2:87
    
    (
    Subformulae ( 
    FALSUM A)) 
    =  
    {(
    VERUM A), ( 
    FALSUM A)} 
    
    proof
    
      thus (
    Subformulae ( 
    FALSUM A)) 
    c=  
    {(
    VERUM A), ( 
    FALSUM A)} 
    
      proof
    
        let a be
    object;
    
        assume a
    in ( 
    Subformulae ( 
    FALSUM A)); 
    
        then ex F st F
    = a & F 
    is_subformula_of ( 
    FALSUM A) by 
    Def22;
    
        then a
    = ( 
    FALSUM A) or a 
    = ( 
    VERUM A) by 
    Th81;
    
        hence thesis by
    TARSKI:def 2;
    
      end;
    
      let a be
    object;
    
      assume
    
      
    
    A1: a 
    in  
    {(
    VERUM A), ( 
    FALSUM A)}; 
    
      then
    
      
    
    A2: a 
    = ( 
    VERUM A) or a 
    = ( 
    FALSUM A) by 
    TARSKI:def 2;
    
      reconsider a as
    Element of ( 
    QC-WFF A) by 
    A1,
    TARSKI:def 2;
    
      a
    is_subformula_of ( 
    FALSUM A) by 
    A2,
    Th81;
    
      hence thesis by
    Def22;
    
    end;
    
    theorem :: 
    
    QC_LANG2:88
    
    
    
    
    
    Th88: ( 
    Subformulae ( 
    'not' H)) 
    = (( 
    Subformulae H) 
    \/  
    {(
    'not' H)}) 
    
    proof
    
      thus (
    Subformulae ( 
    'not' H)) 
    c= (( 
    Subformulae H) 
    \/  
    {(
    'not' H)}) 
    
      proof
    
        let a be
    object;
    
        assume a
    in ( 
    Subformulae ( 
    'not' H)); 
    
        then
    
        consider F such that
    
        
    
    A1: F 
    = a and 
    
        
    
    A2: F 
    is_subformula_of ( 
    'not' H) by 
    Def22;
    
        now
    
          assume F
    <> ( 
    'not' H); 
    
          then F
    is_proper_subformula_of ( 
    'not' H) by 
    A2;
    
          then F
    is_subformula_of H by 
    Th66;
    
          hence a
    in ( 
    Subformulae H) by 
    A1,
    Def22;
    
        end;
    
        then a
    in ( 
    Subformulae H) or a 
    in  
    {(
    'not' H)} by 
    A1,
    TARSKI:def 1;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      let a be
    object such that 
    
      
    
    A3: a 
    in (( 
    Subformulae H) 
    \/  
    {(
    'not' H)}); 
    
      
    
    A4: 
    
      now
    
        assume a
    in ( 
    Subformulae H); 
    
        then
    
        consider F such that
    
        
    
    A5: F 
    = a and 
    
        
    
    A6: F 
    is_subformula_of H by 
    Def22;
    
        H
    is_immediate_constituent_of ( 
    'not' H); 
    
        then H
    is_proper_subformula_of ( 
    'not' H) by 
    Th53;
    
        then H
    is_subformula_of ( 
    'not' H); 
    
        then F
    is_subformula_of ( 
    'not' H) by 
    A6,
    Th57;
    
        hence thesis by
    A5,
    Def22;
    
      end;
    
      now
    
        assume a
    in  
    {(
    'not' H)}; 
    
        then a
    = ( 
    'not' H) by 
    TARSKI:def 1;
    
        hence thesis by
    Def22;
    
      end;
    
      hence thesis by
    A3,
    A4,
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    QC_LANG2:89
    
    
    
    
    
    Th89: ( 
    Subformulae (H 
    '&' F)) 
    = ((( 
    Subformulae H) 
    \/ ( 
    Subformulae F)) 
    \/  
    {(H
    '&' F)}) 
    
    proof
    
      thus (
    Subformulae (H 
    '&' F)) 
    c= ((( 
    Subformulae H) 
    \/ ( 
    Subformulae F)) 
    \/  
    {(H
    '&' F)}) 
    
      proof
    
        let a be
    object;
    
        assume a
    in ( 
    Subformulae (H 
    '&' F)); 
    
        then
    
        consider G such that
    
        
    
    A1: G 
    = a and 
    
        
    
    A2: G 
    is_subformula_of (H 
    '&' F) by 
    Def22;
    
        now
    
          assume G
    <> (H 
    '&' F); 
    
          then G
    is_proper_subformula_of (H 
    '&' F) by 
    A2;
    
          then G
    is_subformula_of H or G 
    is_subformula_of F by 
    Th69;
    
          then a
    in ( 
    Subformulae H) or a 
    in ( 
    Subformulae F) by 
    A1,
    Def22;
    
          hence a
    in (( 
    Subformulae H) 
    \/ ( 
    Subformulae F)) by 
    XBOOLE_0:def 3;
    
        end;
    
        then a
    in (( 
    Subformulae H) 
    \/ ( 
    Subformulae F)) or a 
    in  
    {(H
    '&' F)} by 
    A1,
    TARSKI:def 1;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      let a be
    object such that 
    
      
    
    A3: a 
    in ((( 
    Subformulae H) 
    \/ ( 
    Subformulae F)) 
    \/  
    {(H
    '&' F)}); 
    
      
    
    A4: 
    
      now
    
        assume a
    in  
    {(H
    '&' F)}; 
    
        then a
    = (H 
    '&' F) by 
    TARSKI:def 1;
    
        hence thesis by
    Def22;
    
      end;
    
      
    
    A5: 
    
      now
    
        assume a
    in ( 
    Subformulae F); 
    
        then
    
        consider G such that
    
        
    
    A6: G 
    = a and 
    
        
    
    A7: G 
    is_subformula_of F by 
    Def22;
    
        F
    is_immediate_constituent_of (H 
    '&' F); 
    
        then F
    is_proper_subformula_of (H 
    '&' F) by 
    Th53;
    
        then F
    is_subformula_of (H 
    '&' F); 
    
        then G
    is_subformula_of (H 
    '&' F) by 
    A7,
    Th57;
    
        hence thesis by
    A6,
    Def22;
    
      end;
    
      
    
    A8: 
    
      now
    
        assume a
    in ( 
    Subformulae H); 
    
        then
    
        consider G such that
    
        
    
    A9: G 
    = a and 
    
        
    
    A10: G 
    is_subformula_of H by 
    Def22;
    
        H
    is_immediate_constituent_of (H 
    '&' F); 
    
        then H
    is_proper_subformula_of (H 
    '&' F) by 
    Th53;
    
        then H
    is_subformula_of (H 
    '&' F); 
    
        then G
    is_subformula_of (H 
    '&' F) by 
    A10,
    Th57;
    
        hence thesis by
    A9,
    Def22;
    
      end;
    
      a
    in (( 
    Subformulae H) 
    \/ ( 
    Subformulae F)) implies a 
    in ( 
    Subformulae H) or a 
    in ( 
    Subformulae F) by 
    XBOOLE_0:def 3;
    
      hence thesis by
    A3,
    A8,
    A5,
    A4,
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    QC_LANG2:90
    
    
    
    
    
    Th90: ( 
    Subformulae ( 
    All (x,H))) 
    = (( 
    Subformulae H) 
    \/  
    {(
    All (x,H))}) 
    
    proof
    
      thus (
    Subformulae ( 
    All (x,H))) 
    c= (( 
    Subformulae H) 
    \/  
    {(
    All (x,H))}) 
    
      proof
    
        let a be
    object;
    
        assume a
    in ( 
    Subformulae ( 
    All (x,H))); 
    
        then
    
        consider F such that
    
        
    
    A1: F 
    = a and 
    
        
    
    A2: F 
    is_subformula_of ( 
    All (x,H)) by 
    Def22;
    
        now
    
          assume F
    <> ( 
    All (x,H)); 
    
          then F
    is_proper_subformula_of ( 
    All (x,H)) by 
    A2;
    
          then F
    is_subformula_of H by 
    Th71;
    
          hence a
    in ( 
    Subformulae H) by 
    A1,
    Def22;
    
        end;
    
        then a
    in ( 
    Subformulae H) or a 
    in  
    {(
    All (x,H))} by 
    A1,
    TARSKI:def 1;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      let a be
    object such that 
    
      
    
    A3: a 
    in (( 
    Subformulae H) 
    \/  
    {(
    All (x,H))}); 
    
      
    
    A4: 
    
      now
    
        assume a
    in ( 
    Subformulae H); 
    
        then
    
        consider F such that
    
        
    
    A5: F 
    = a and 
    
        
    
    A6: F 
    is_subformula_of H by 
    Def22;
    
        H
    is_immediate_constituent_of ( 
    All (x,H)); 
    
        then H
    is_proper_subformula_of ( 
    All (x,H)) by 
    Th53;
    
        then H
    is_subformula_of ( 
    All (x,H)); 
    
        then F
    is_subformula_of ( 
    All (x,H)) by 
    A6,
    Th57;
    
        hence thesis by
    A5,
    Def22;
    
      end;
    
      now
    
        assume a
    in  
    {(
    All (x,H))}; 
    
        then a
    = ( 
    All (x,H)) by 
    TARSKI:def 1;
    
        hence thesis by
    Def22;
    
      end;
    
      hence thesis by
    A3,
    A4,
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    QC_LANG2:91
    
    
    
    
    
    Th91: ( 
    Subformulae (F 
    => G)) 
    = ((( 
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)}) 
    
    proof
    
      
    
      thus (
    Subformulae (F 
    => G)) 
    = (( 
    Subformulae (F 
    '&' ( 
    'not' G))) 
    \/  
    {(F
    => G)}) by 
    Th88
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae ( 
    'not' G))) 
    \/  
    {(F
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    => G)}) by 
    Th89
    
      .= ((((
    Subformulae F) 
    \/ (( 
    Subformulae G) 
    \/  
    {(
    'not' G)})) 
    \/  
    {(F
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    => G)}) by 
    Th88
    
      .= (((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G)}) 
    \/  
    {(F
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    => G)}) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G)}) 
    \/ ( 
    {(F
    '&' ( 
    'not' G))} 
    \/  
    {(F
    => G)})) by 
    XBOOLE_1: 4
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ ( 
    {(
    'not' G)} 
    \/ ( 
    {(F
    '&' ( 
    'not' G))} 
    \/  
    {(F
    => G)}))) by 
    XBOOLE_1: 4
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ ( 
    {(
    'not' G)} 
    \/  
    {(F
    '&' ( 
    'not' G)), (F 
    => G)})) by 
    ENUMSET1: 1
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)}) by 
    ENUMSET1: 2;
    
    end;
    
    theorem :: 
    
    QC_LANG2:92
    
    (
    Subformulae (F 
    'or' G)) 
    = ((( 
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), ( 
    'not' F), (( 
    'not' F) 
    '&' ( 
    'not' G)), (F 
    'or' G)}) 
    
    proof
    
      
    
      thus (
    Subformulae (F 
    'or' G)) 
    = (( 
    Subformulae (( 
    'not' F) 
    '&' ( 
    'not' G))) 
    \/  
    {(F
    'or' G)}) by 
    Th88
    
      .= ((((
    Subformulae ( 
    'not' F)) 
    \/ ( 
    Subformulae ( 
    'not' G))) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    Th89
    
      .= ((((
    Subformulae ( 
    'not' F)) 
    \/ (( 
    Subformulae G) 
    \/  
    {(
    'not' G)})) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    Th88
    
      .= (((((
    Subformulae F) 
    \/  
    {(
    'not' F)}) 
    \/ (( 
    Subformulae G) 
    \/  
    {(
    'not' G)})) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    Th88
    
      .= ((((
    Subformulae F) 
    \/ ((( 
    Subformulae G) 
    \/  
    {(
    'not' G)}) 
    \/  
    {(
    'not' F)})) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ (( 
    Subformulae G) 
    \/ ( 
    {(
    'not' G)} 
    \/  
    {(
    'not' F)}))) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ (( 
    Subformulae G) 
    \/  
    {(
    'not' G), ( 
    'not' F)})) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    ENUMSET1: 1
    
      .= (((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), ( 
    'not' F)}) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G))}) 
    \/  
    {(F
    'or' G)}) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), ( 
    'not' F)}) 
    \/ ( 
    {((
    'not' F) 
    '&' ( 
    'not' G))} 
    \/  
    {(F
    'or' G)})) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), ( 
    'not' F)}) 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G)), (F 
    'or' G)}) by 
    ENUMSET1: 1
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ ( 
    {(
    'not' G), ( 
    'not' F)} 
    \/  
    {((
    'not' F) 
    '&' ( 
    'not' G)), (F 
    'or' G)})) by 
    XBOOLE_1: 4
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), ( 
    'not' F), (( 
    'not' F) 
    '&' ( 
    'not' G)), (F 
    'or' G)}) by 
    ENUMSET1: 5;
    
    end;
    
    theorem :: 
    
    QC_LANG2:93
    
    (
    Subformulae (F 
    <=> G)) 
    = ((( 
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G), ( 
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F), (F 
    <=> G)}) 
    
    proof
    
      
    
      thus (
    Subformulae (F 
    <=> G)) 
    = ((( 
    Subformulae (F 
    => G)) 
    \/ ( 
    Subformulae (G 
    => F))) 
    \/  
    {(F
    <=> G)}) by 
    Th89
    
      .= (((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)}) 
    \/ ( 
    Subformulae (G 
    => F))) 
    \/  
    {(F
    <=> G)}) by 
    Th91
    
      .= (((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)}) 
    \/ ((( 
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F)})) 
    \/  
    {(F
    <=> G)}) by 
    Th91
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ (((( 
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)}) 
    \/  
    {(
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F)})) 
    \/  
    {(F
    <=> G)}) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ ((( 
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ ( 
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)} 
    \/  
    {(
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F)}))) 
    \/  
    {(F
    <=> G)}) by 
    XBOOLE_1: 4
    
      .= (((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ (( 
    Subformulae F) 
    \/ ( 
    Subformulae G))) 
    \/ ( 
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G)} 
    \/  
    {(
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F)})) 
    \/  
    {(F
    <=> G)}) by 
    XBOOLE_1: 4
    
      .= ((((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G), ( 
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F)}) 
    \/  
    {(F
    <=> G)}) by 
    ENUMSET1: 13
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/ ( 
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G), ( 
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F)} 
    \/  
    {(F
    <=> G)})) by 
    XBOOLE_1: 4
    
      .= (((
    Subformulae F) 
    \/ ( 
    Subformulae G)) 
    \/  
    {(
    'not' G), (F 
    '&' ( 
    'not' G)), (F 
    => G), ( 
    'not' F), (G 
    '&' ( 
    'not' F)), (G 
    => F), (F 
    <=> G)}) by 
    ENUMSET1: 21;
    
    end;
    
    theorem :: 
    
    QC_LANG2:94
    
    H
    = ( 
    VERUM A) or H is 
    atomic iff ( 
    Subformulae H) 
    =  
    {H}
    
    proof
    
      H is
    atomic implies ( 
    Subformulae H) 
    =  
    {H} by
    Th86;
    
      hence H
    = ( 
    VERUM A) or H is 
    atomic implies ( 
    Subformulae H) 
    =  
    {H} by
    Th85;
    
      assume
    
      
    
    A1: ( 
    Subformulae H) 
    =  
    {H};
    
      
    
    A2: 
    
      now
    
        assume H
    = ( 
    'not' ( 
    the_argument_of H)); 
    
        then
    
        
    
    A3: ( 
    the_argument_of H) 
    is_immediate_constituent_of H; 
    
        then (
    the_argument_of H) 
    is_proper_subformula_of H by 
    Th53;
    
        then (
    the_argument_of H) 
    is_subformula_of H; 
    
        then
    
        
    
    A4: ( 
    the_argument_of H) 
    in ( 
    Subformulae H) by 
    Def22;
    
        (
    len ( 
    @ ( 
    the_argument_of H))) 
    <> ( 
    len ( 
    @ H)) by 
    A3,
    Th51;
    
        hence contradiction by
    A1,
    A4,
    TARSKI:def 1;
    
      end;
    
      
    
    A5: 
    
      now
    
        assume H
    = (( 
    the_left_argument_of H) 
    '&' ( 
    the_right_argument_of H)); 
    
        then
    
        
    
    A6: ( 
    the_left_argument_of H) 
    is_immediate_constituent_of H; 
    
        then (
    the_left_argument_of H) 
    is_proper_subformula_of H by 
    Th53;
    
        then (
    the_left_argument_of H) 
    is_subformula_of H; 
    
        then
    
        
    
    A7: ( 
    the_left_argument_of H) 
    in ( 
    Subformulae H) by 
    Def22;
    
        (
    len ( 
    @ ( 
    the_left_argument_of H))) 
    <> ( 
    len ( 
    @ H)) by 
    A6,
    Th51;
    
        hence contradiction by
    A1,
    A7,
    TARSKI:def 1;
    
      end;
    
      assume H
    <> ( 
    VERUM A) & not H is 
    atomic;
    
      then H is
    negative or H is 
    conjunctive or H is 
    universal by 
    QC_LANG1: 9;
    
      then H
    = ( 
    'not' ( 
    the_argument_of H)) or H 
    = (( 
    the_left_argument_of H) 
    '&' ( 
    the_right_argument_of H)) or H 
    = ( 
    All (( 
    bound_in H),( 
    the_scope_of H))) by 
    Th3,
    Th6,
    QC_LANG1:def 24;
    
      then
    
      
    
    A8: ( 
    the_scope_of H) 
    is_immediate_constituent_of H by 
    A2,
    A5;
    
      then (
    the_scope_of H) 
    is_proper_subformula_of H by 
    Th53;
    
      then (
    the_scope_of H) 
    is_subformula_of H; 
    
      then
    
      
    
    A9: ( 
    the_scope_of H) 
    in ( 
    Subformulae H) by 
    Def22;
    
      (
    len ( 
    @ ( 
    the_scope_of H))) 
    <> ( 
    len ( 
    @ H)) by 
    A8,
    Th51;
    
      hence contradiction by
    A1,
    A9,
    TARSKI:def 1;
    
    end;
    
    theorem :: 
    
    QC_LANG2:95
    
    H is
    negative implies ( 
    Subformulae H) 
    = (( 
    Subformulae ( 
    the_argument_of H)) 
    \/  
    {H})
    
    proof
    
      assume H is
    negative;
    
      then H
    = ( 
    'not' ( 
    the_argument_of H)) by 
    QC_LANG1:def 24;
    
      hence thesis by
    Th88;
    
    end;
    
    theorem :: 
    
    QC_LANG2:96
    
    H is
    conjunctive implies ( 
    Subformulae H) 
    = ((( 
    Subformulae ( 
    the_left_argument_of H)) 
    \/ ( 
    Subformulae ( 
    the_right_argument_of H))) 
    \/  
    {H})
    
    proof
    
      assume H is
    conjunctive;
    
      then H
    = (( 
    the_left_argument_of H) 
    '&' ( 
    the_right_argument_of H)) by 
    Th3;
    
      hence thesis by
    Th89;
    
    end;
    
    theorem :: 
    
    QC_LANG2:97
    
    H is
    universal implies ( 
    Subformulae H) 
    = (( 
    Subformulae ( 
    the_scope_of H)) 
    \/  
    {H})
    
    proof
    
      assume H is
    universal;
    
      then H
    = ( 
    All (( 
    bound_in H),( 
    the_scope_of H))) by 
    Th6;
    
      hence thesis by
    Th90;
    
    end;
    
    theorem :: 
    
    QC_LANG2:98
    
    (H
    is_immediate_constituent_of G or H 
    is_proper_subformula_of G or H 
    is_subformula_of G) & G 
    in ( 
    Subformulae F) implies H 
    in ( 
    Subformulae F) 
    
    proof
    
      assume that
    
      
    
    A1: H 
    is_immediate_constituent_of G or H 
    is_proper_subformula_of G or H 
    is_subformula_of G and 
    
      
    
    A2: G 
    in ( 
    Subformulae F); 
    
      H
    is_proper_subformula_of G or H 
    is_subformula_of G by 
    A1,
    Th53;
    
      then
    
      
    
    A3: H 
    is_subformula_of G; 
    
      G
    is_subformula_of F by 
    A2,
    Th82;
    
      then H
    is_subformula_of F by 
    A3,
    Th57;
    
      hence thesis by
    Def22;
    
    end;