qc_lang2.miz
begin
reserve A for
QC-alphabet;
reserve sq for
FinSequence,
x,y,z for
bound_QC-variable of A,
p,q,p1,p2,q1 for
Element of (
QC-WFF A);
theorem ::
QC_LANG2:1
Th1: (
the_argument_of (
'not' p))
= p
proof
(
'not' p) is
negative;
hence thesis by
QC_LANG1:def 24;
end;
theorem ::
QC_LANG2:2
Th2: (p
'&' q)
= (p1
'&' q1) implies p
= p1 & q
= q1
proof
assume
A1: (p
'&' q)
= (p1
'&' q1);
((
<*
[2,
0 ]*>
^ (
@ p))
^ (
@ q))
= (
<*
[2,
0 ]*>
^ ((
@ p)
^ (
@ q))) & ((
<*
[2,
0 ]*>
^ (
@ p1))
^ (
@ q1))
= (
<*
[2,
0 ]*>
^ ((
@ p1)
^ (
@ q1))) by
FINSEQ_1: 32;
then
A2: ((
@ p)
^ (
@ q))
= ((
@ p1)
^ (
@ q1)) by
A1,
FINSEQ_1: 33;
then
A3: (
len (
@ p1))
<= (
len (
@ p)) implies ex sq st (
@ p)
= ((
@ p1)
^ sq) by
FINSEQ_1: 47;
A4: (
len (
@ p))
<= (
len (
@ p1)) implies ex sq st (
@ p1)
= ((
@ p)
^ sq) by
A2,
FINSEQ_1: 47;
hence p
= p1 by
A3,
QC_LANG1: 13;
(ex sq st (
@ p1)
= ((
@ p)
^ sq)) implies p1
= p by
QC_LANG1: 13;
hence thesis by
A1,
A3,
A4,
FINSEQ_1: 33,
QC_LANG1: 13;
end;
theorem ::
QC_LANG2:3
Th3: p is
conjunctive implies p
= ((
the_left_argument_of p)
'&' (
the_right_argument_of p))
proof
given p1, q1 such that
A1: p
= (p1
'&' q1);
A2: p is
conjunctive by
A1;
then p1
= (
the_left_argument_of p) by
A1,
QC_LANG1:def 25;
hence thesis by
A1,
A2,
QC_LANG1:def 26;
end;
theorem ::
QC_LANG2:4
Th4: (
the_left_argument_of (p
'&' q))
= p & (
the_right_argument_of (p
'&' q))
= q
proof
(p
'&' q) is
conjunctive;
hence thesis by
QC_LANG1:def 25,
QC_LANG1:def 26;
end;
theorem ::
QC_LANG2:5
Th5: (
All (x,p))
= (
All (y,q)) implies x
= y & p
= q
proof
A1: ((
<*
[3,
0 ]*>
^
<*x*>)
^ (
@ p))
= (
<*
[3,
0 ]*>
^ (
<*x*>
^ (
@ p))) & ((
<*
[3,
0 ]*>
^
<*y*>)
^ (
@ q))
= (
<*
[3,
0 ]*>
^ (
<*y*>
^ (
@ q))) by
FINSEQ_1: 32;
A2: ((
<*x*>
^ (
@ p))
. 1)
= x & ((
<*y*>
^ (
@ q))
. 1)
= y by
FINSEQ_1: 41;
assume
A3: (
All (x,p))
= (
All (y,q));
hence x
= y by
A1,
A2,
FINSEQ_1: 33;
(
<*x*>
^ (
@ p))
= (
<*y*>
^ (
@ q)) by
A3,
A1,
FINSEQ_1: 33;
hence thesis by
A2,
FINSEQ_1: 33;
end;
theorem ::
QC_LANG2:6
Th6: p is
universal implies p
= (
All ((
bound_in p),(
the_scope_of p)))
proof
given x, q such that
A1: p
= (
All (x,q));
A2: p is
universal by
A1;
then x
= (
bound_in p) by
A1,
QC_LANG1:def 27;
hence thesis by
A1,
A2,
QC_LANG1:def 28;
end;
theorem ::
QC_LANG2:7
Th7: (
bound_in (
All (x,p)))
= x & (
the_scope_of (
All (x,p)))
= p
proof
(
All (x,p)) is
universal;
then (
All (x,p))
= (
All ((
bound_in (
All (x,p))),(
the_scope_of (
All (x,p))))) by
Th6;
hence thesis by
Th5;
end;
definition
let A be
QC-alphabet;
::
QC_LANG2:def1
func
FALSUM (A) ->
QC-formula of A equals (
'not' (
VERUM A));
correctness ;
let p,q be
Element of (
QC-WFF A);
::
QC_LANG2:def2
func p
=> q ->
QC-formula of A equals (
'not' (p
'&' (
'not' q)));
correctness ;
::
QC_LANG2:def3
func p
'or' q ->
QC-formula of A equals (
'not' ((
'not' p)
'&' (
'not' q)));
correctness ;
end
definition
let A be
QC-alphabet;
let p,q be
Element of (
QC-WFF A);
::
QC_LANG2:def4
func p
<=> q ->
QC-formula of A equals ((p
=> q)
'&' (q
=> p));
correctness ;
end
definition
let A be
QC-alphabet;
let x be
bound_QC-variable of A, p be
Element of (
QC-WFF A);
::
QC_LANG2:def5
func
Ex (x,p) ->
QC-formula of A equals (
'not' (
All (x,(
'not' p))));
correctness ;
end
theorem ::
QC_LANG2:8
(
FALSUM A) is
negative & (
the_argument_of (
FALSUM A))
= (
VERUM A) by
Th1;
theorem ::
QC_LANG2:9
(p
'or' q)
= ((
'not' p)
=> q);
theorem ::
QC_LANG2:10
(p
'or' q)
= (p1
'or' q1) implies p
= p1 & q
= q1
proof
assume (p
'or' q)
= (p1
'or' q1);
then ((
'not' p)
'&' (
'not' q))
= ((
'not' p1)
'&' (
'not' q1)) by
FINSEQ_1: 33;
then (
'not' p)
= (
'not' p1) & (
'not' q)
= (
'not' q1) by
Th2;
hence thesis by
FINSEQ_1: 33;
end;
theorem ::
QC_LANG2:11
Th11: (p
=> q)
= (p1
=> q1) implies p
= p1 & q
= q1
proof
assume (p
=> q)
= (p1
=> q1);
then
A1: (p
'&' (
'not' q))
= (p1
'&' (
'not' q1)) by
FINSEQ_1: 33;
hence p
= p1 by
Th2;
(
'not' q)
= (
'not' q1) by
A1,
Th2;
hence thesis by
FINSEQ_1: 33;
end;
theorem ::
QC_LANG2:12
(p
<=> q)
= (p1
<=> q1) implies p
= p1 & q
= q1
proof
assume (p
<=> q)
= (p1
<=> q1);
then (p
=> q)
= (p1
=> q1) by
Th2;
hence thesis by
Th11;
end;
theorem ::
QC_LANG2:13
Th13: (
Ex (x,p))
= (
Ex (y,q)) implies x
= y & p
= q
proof
assume (
Ex (x,p))
= (
Ex (y,q));
then
A1: (
All (x,(
'not' p)))
= (
All (y,(
'not' q))) by
FINSEQ_1: 33;
then (
'not' p)
= (
'not' q) by
Th5;
hence thesis by
A1,
Th5,
FINSEQ_1: 33;
end;
definition
let A be
QC-alphabet;
let x,y be
bound_QC-variable of A, p be
Element of (
QC-WFF A);
::
QC_LANG2:def6
func
All (x,y,p) ->
QC-formula of A equals (
All (x,(
All (y,p))));
correctness ;
::
QC_LANG2:def7
func
Ex (x,y,p) ->
QC-formula of A equals (
Ex (x,(
Ex (y,p))));
correctness ;
end
theorem ::
QC_LANG2:14
(
All (x,y,p))
= (
All (x,(
All (y,p)))) & (
Ex (x,y,p))
= (
Ex (x,(
Ex (y,p))));
theorem ::
QC_LANG2:15
Th15: for x1,x2,y1,y2 be
bound_QC-variable of A st (
All (x1,y1,p1))
= (
All (x2,y2,p2)) holds x1
= x2 & y1
= y2 & p1
= p2
proof
let x1,x2,y1,y2 be
bound_QC-variable of A such that
A1: (
All (x1,y1,p1))
= (
All (x2,y2,p2));
thus x1
= x2 by
A1,
Th5;
(
All (y1,p1))
= (
All (y2,p2)) by
A1,
Th5;
hence thesis by
Th5;
end;
theorem ::
QC_LANG2:16
(
All (x,y,p))
= (
All (z,q)) implies x
= z & (
All (y,p))
= q by
Th5;
theorem ::
QC_LANG2:17
Th17: for x1,x2,y1,y2 be
bound_QC-variable of A st (
Ex (x1,y1,p1))
= (
Ex (x2,y2,p2)) holds x1
= x2 & y1
= y2 & p1
= p2
proof
let x1,x2,y1,y2 be
bound_QC-variable of A such that
A1: (
Ex (x1,y1,p1))
= (
Ex (x2,y2,p2));
thus x1
= x2 by
A1,
Th13;
(
Ex (y1,p1))
= (
Ex (y2,p2)) by
A1,
Th13;
hence thesis by
Th13;
end;
theorem ::
QC_LANG2:18
(
Ex (x,y,p))
= (
Ex (z,q)) implies x
= z & (
Ex (y,p))
= q by
Th13;
theorem ::
QC_LANG2:19
(
All (x,y,p)) is
universal & (
bound_in (
All (x,y,p)))
= x & (
the_scope_of (
All (x,y,p)))
= (
All (y,p)) by
Th7;
definition
let A be
QC-alphabet;
let x,y,z be
bound_QC-variable of A, p be
Element of (
QC-WFF A);
::
QC_LANG2:def8
func
All (x,y,z,p) ->
QC-formula of A equals (
All (x,(
All (y,z,p))));
correctness ;
::
QC_LANG2:def9
func
Ex (x,y,z,p) ->
QC-formula of A equals (
Ex (x,(
Ex (y,z,p))));
correctness ;
end
theorem ::
QC_LANG2:20
(
All (x,y,z,p))
= (
All (x,(
All (y,z,p)))) & (
Ex (x,y,z,p))
= (
Ex (x,(
Ex (y,z,p))));
theorem ::
QC_LANG2:21
for x1,x2,y1,y2,z1,z2 be
bound_QC-variable of A st (
All (x1,y1,z1,p1))
= (
All (x2,y2,z2,p2)) holds x1
= x2 & y1
= y2 & z1
= z2 & p1
= p2
proof
let x1,x2,y1,y2,z1,z2 be
bound_QC-variable of A such that
A1: (
All (x1,y1,z1,p1))
= (
All (x2,y2,z2,p2));
thus x1
= x2 by
A1,
Th5;
(
All (y1,z1,p1))
= (
All (y2,z2,p2)) by
A1,
Th5;
hence thesis by
Th15;
end;
reserve s,t for
bound_QC-variable of A;
theorem ::
QC_LANG2:22
(
All (x,y,z,p))
= (
All (t,q)) implies x
= t & (
All (y,z,p))
= q by
Th5;
theorem ::
QC_LANG2:23
(
All (x,y,z,p))
= (
All (t,s,q)) implies x
= t & y
= s & (
All (z,p))
= q
proof
assume
A1: (
All (x,y,z,p))
= (
All (t,s,q));
hence x
= t by
Th5;
(
All (y,z,p))
= (
All (s,q)) by
A1,
Th5;
hence thesis by
Th5;
end;
theorem ::
QC_LANG2:24
for x1,x2,y1,y2,z1,z2 be
bound_QC-variable of A st (
Ex (x1,y1,z1,p1))
= (
Ex (x2,y2,z2,p2)) holds x1
= x2 & y1
= y2 & z1
= z2 & p1
= p2
proof
let x1,x2,y1,y2,z1,z2 be
bound_QC-variable of A such that
A1: (
Ex (x1,y1,z1,p1))
= (
Ex (x2,y2,z2,p2));
thus x1
= x2 by
A1,
Th13;
(
Ex (y1,z1,p1))
= (
Ex (y2,z2,p2)) by
A1,
Th13;
hence thesis by
Th17;
end;
theorem ::
QC_LANG2:25
(
Ex (x,y,z,p))
= (
Ex (t,q)) implies x
= t & (
Ex (y,z,p))
= q by
Th13;
theorem ::
QC_LANG2:26
(
Ex (x,y,z,p))
= (
Ex (t,s,q)) implies x
= t & y
= s & (
Ex (z,p))
= q
proof
assume
A1: (
Ex (x,y,z,p))
= (
Ex (t,s,q));
hence x
= t by
Th13;
(
Ex (y,z,p))
= (
Ex (s,q)) by
A1,
Th13;
hence thesis by
Th13;
end;
theorem ::
QC_LANG2:27
(
All (x,y,z,p)) is
universal & (
bound_in (
All (x,y,z,p)))
= x & (
the_scope_of (
All (x,y,z,p)))
= (
All (y,z,p)) by
Th7;
definition
let A be
QC-alphabet;
let H be
Element of (
QC-WFF A);
::
QC_LANG2:def10
attr H is
disjunctive means ex p,q be
Element of (
QC-WFF A) st H
= (p
'or' q);
::
QC_LANG2:def11
attr H is
conditional means ex p,q be
Element of (
QC-WFF A) st H
= (p
=> q);
::
QC_LANG2:def12
attr H is
biconditional means ex p,q be
Element of (
QC-WFF A) st H
= (p
<=> q);
::
QC_LANG2:def13
attr H is
existential means ex x be
bound_QC-variable of A, p be
Element of (
QC-WFF A) st H
= (
Ex (x,p));
end
theorem ::
QC_LANG2:28
(
Ex (x,y,p)) is
existential & (
Ex (x,y,z,p)) is
existential;
definition
let A be
QC-alphabet;
let H be
Element of (
QC-WFF A);
::
QC_LANG2:def14
func
the_left_disjunct_of H ->
QC-formula of A equals (
the_argument_of (
the_left_argument_of (
the_argument_of H)));
correctness ;
::
QC_LANG2:def15
func
the_right_disjunct_of H ->
QC-formula of A equals (
the_argument_of (
the_right_argument_of (
the_argument_of H)));
correctness ;
::
QC_LANG2:def16
func
the_antecedent_of H ->
QC-formula of A equals (
the_left_argument_of (
the_argument_of H));
correctness ;
end
notation
let A be
QC-alphabet;
let H be
Element of (
QC-WFF A);
synonym
the_consequent_of H for
the_right_disjunct_of H;
end
definition
let A be
QC-alphabet;
let H be
Element of (
QC-WFF A);
::
QC_LANG2:def17
func
the_left_side_of H ->
QC-formula of A equals (
the_antecedent_of (
the_left_argument_of H));
correctness ;
::
QC_LANG2:def18
func
the_right_side_of H ->
QC-formula of A equals (
the_consequent_of (
the_left_argument_of H));
correctness ;
end
reserve F,G,H,H1 for
Element of (
QC-WFF A);
theorem ::
QC_LANG2:29
Th29: (
the_left_disjunct_of (F
'or' G))
= F & (
the_right_disjunct_of (F
'or' G))
= G & (
the_argument_of (F
'or' G))
= ((
'not' F)
'&' (
'not' G))
proof
thus (
the_left_disjunct_of (F
'or' G))
= (
the_argument_of (
the_left_argument_of ((
'not' F)
'&' (
'not' G)))) by
Th1
.= (
the_argument_of (
'not' F)) by
Th4
.= F by
Th1;
thus (
the_right_disjunct_of (F
'or' G))
= (
the_argument_of (
the_right_argument_of ((
'not' F)
'&' (
'not' G)))) by
Th1
.= (
the_argument_of (
'not' G)) by
Th4
.= G by
Th1;
thus thesis by
Th1;
end;
theorem ::
QC_LANG2:30
Th30: (
the_antecedent_of (F
=> G))
= F & (
the_consequent_of (F
=> G))
= G & (
the_argument_of (F
=> G))
= (F
'&' (
'not' G))
proof
thus (
the_antecedent_of (F
=> G))
= (
the_left_argument_of (F
'&' (
'not' G))) by
Th1
.= F by
Th4;
thus (
the_consequent_of (F
=> G))
= (
the_argument_of (
the_right_argument_of (F
'&' (
'not' G)))) by
Th1
.= (
the_argument_of (
'not' G)) by
Th4
.= G by
Th1;
thus thesis by
Th1;
end;
theorem ::
QC_LANG2:31
Th31: (
the_left_side_of (F
<=> G))
= F & (
the_right_side_of (F
<=> G))
= G & (
the_left_argument_of (F
<=> G))
= (F
=> G) & (
the_right_argument_of (F
<=> G))
= (G
=> F)
proof
(
the_antecedent_of (F
=> G))
= F & (
the_consequent_of (F
=> G))
= G by
Th30;
hence thesis by
Th4;
end;
theorem ::
QC_LANG2:32
(
the_argument_of (
Ex (x,H)))
= (
All (x,(
'not' H))) by
Th1;
theorem ::
QC_LANG2:33
H is
disjunctive implies H is
conditional & H is
negative & (
the_argument_of H) is
conjunctive & (
the_left_argument_of (
the_argument_of H)) is
negative & (
the_right_argument_of (
the_argument_of H)) is
negative
proof
given F, G such that
A1: H
= (F
'or' G);
(F
'or' G)
= ((
'not' F)
=> G);
hence H is
conditional by
A1;
thus H is
negative by
A1;
A2: (
the_argument_of H)
= ((
'not' F)
'&' (
'not' G)) by
A1,
Th1;
hence (
the_argument_of H) is
conjunctive;
(
the_left_argument_of (
the_argument_of H))
= (
'not' F) & (
the_right_argument_of (
the_argument_of H))
= (
'not' G) by
A2,
Th4;
hence thesis;
end;
theorem ::
QC_LANG2:34
H is
conditional implies H is
negative & (
the_argument_of H) is
conjunctive & (
the_right_argument_of (
the_argument_of H)) is
negative
proof
given F, G such that
A1: H
= (F
=> G);
(
the_argument_of (
'not' (F
'&' (
'not' G))))
= (F
'&' (
'not' G)) & (
the_right_argument_of (F
'&' (
'not' G)))
= (
'not' G) by
Th1,
Th4;
hence thesis by
A1;
end;
theorem ::
QC_LANG2:35
H is
biconditional implies H is
conjunctive & (
the_left_argument_of H) is
conditional & (
the_right_argument_of H) is
conditional by
Th4;
theorem ::
QC_LANG2:36
H is
existential implies H is
negative & (
the_argument_of H) is
universal & (
the_scope_of (
the_argument_of H)) is
negative
proof
given x, H1 such that
A1: H
= (
Ex (x,H1));
(
the_argument_of (
'not' (
All (x,(
'not' H1)))))
= (
All (x,(
'not' H1))) & (
the_scope_of (
All (x,(
'not' H1))))
= (
'not' H1) by
Th1,
Th7;
hence thesis by
A1;
end;
theorem ::
QC_LANG2:37
H is
disjunctive implies H
= ((
the_left_disjunct_of H)
'or' (
the_right_disjunct_of H))
proof
given F, G such that
A1: H
= (F
'or' G);
(
the_left_disjunct_of H)
= F by
A1,
Th29;
hence thesis by
A1,
Th29;
end;
theorem ::
QC_LANG2:38
H is
conditional implies H
= ((
the_antecedent_of H)
=> (
the_consequent_of H))
proof
given F, G such that
A1: H
= (F
=> G);
(
the_antecedent_of H)
= F by
A1,
Th30;
hence thesis by
A1,
Th30;
end;
theorem ::
QC_LANG2:39
H is
biconditional implies H
= ((
the_left_side_of H)
<=> (
the_right_side_of H))
proof
given F, G such that
A1: H
= (F
<=> G);
(
the_left_side_of H)
= F by
A1,
Th31;
hence thesis by
A1,
Th31;
end;
theorem ::
QC_LANG2:40
H is
existential implies H
= (
Ex ((
bound_in (
the_argument_of H)),(
the_argument_of (
the_scope_of (
the_argument_of H)))))
proof
given x, H1 such that
A1: H
= (
Ex (x,H1));
A2: (
the_argument_of (
'not' H1))
= H1 by
Th1;
(
the_argument_of (
'not' (
All (x,(
'not' H1)))))
= (
All (x,(
'not' H1))) & (
the_scope_of (
All (x,(
'not' H1))))
= (
'not' H1) by
Th1,
Th7;
hence thesis by
A1,
A2,
Th7;
end;
definition
let A be
QC-alphabet;
let G,H be
Element of (
QC-WFF A);
::
QC_LANG2:def19
pred G
is_immediate_constituent_of H means H
= (
'not' G) or (ex F be
Element of (
QC-WFF A) st H
= (G
'&' F) or H
= (F
'&' G)) or ex x be
bound_QC-variable of A st H
= (
All (x,G));
end
reserve x,y,z for
bound_QC-variable of A,
k,n,m for
Nat,
P for
QC-pred_symbol of k, A,
V for
QC-variable_list of k, A;
theorem ::
QC_LANG2:41
Th41: not H
is_immediate_constituent_of (
VERUM A)
proof
not ((
VERUM A) is
negative or (
VERUM A) is
conjunctive or (
VERUM A) is
universal) by
QC_LANG1: 20;
then not (((
VERUM A)
= (
'not' H)) or (ex H1 st (
VERUM A)
= (H
'&' H1) or (
VERUM A)
= (H1
'&' H)) or (ex x be
bound_QC-variable of A st (
VERUM A)
= (
All (x,H))));
hence thesis;
end;
theorem ::
QC_LANG2:42
Th42: not H
is_immediate_constituent_of (P
! V)
proof
assume
A1: not thesis;
A2: (P
! V) is
atomic;
then
A3: (((
@ (P
! V))
. 1)
`1 )
<> 3 by
QC_LANG1: 19;
A4: (((
@ (P
! V))
. 1)
`1 )
<> 2 by
A2,
QC_LANG1: 19;
A5: not ex H1 be
Element of (
QC-WFF A) st (P
! V)
= (H
'&' H1) or (P
! V)
= (H1
'&' H) by
A4,
QC_LANG1: 18,
QC_LANG1:def 20;
(
'not' H) is
negative;
then
A6: (((
@ (
'not' H))
. 1)
`1 )
= 1 by
QC_LANG1: 18;
(((
@ (P
! V))
. 1)
`1 )
<> 1 by
A2,
QC_LANG1: 19;
then
consider z such that
A7: (P
! V)
= (
All (z,H)) by
A1,
A6,
A5;
(
All (z,H)) is
universal;
hence contradiction by
A3,
A7,
QC_LANG1: 18;
end;
theorem ::
QC_LANG2:43
Th43: F
is_immediate_constituent_of (
'not' H) iff F
= H
proof
thus F
is_immediate_constituent_of (
'not' H) implies F
= H
proof
(
'not' H) is
negative;
then
A1: (((
@ (
'not' H))
. 1)
`1 )
= 1 by
QC_LANG1: 18;
A2: not ex H1 st (
'not' H)
= (F
'&' H1) or (
'not' H)
= (H1
'&' F) by
A1,
QC_LANG1: 18,
QC_LANG1:def 20;
A3: not ex x st (
'not' H)
= (
All (x,F)) by
A1,
QC_LANG1: 18,
QC_LANG1:def 21;
assume (
'not' H)
= (
'not' F) or (ex H1 st (
'not' H)
= (F
'&' H1) or (
'not' H)
= (H1
'&' F)) or ex x st (
'not' H)
= (
All (x,F));
hence thesis by
A2,
A3,
FINSEQ_1: 33;
end;
thus thesis;
end;
theorem ::
QC_LANG2:44
H
is_immediate_constituent_of (
FALSUM A) iff H
= (
VERUM A) by
Th43;
theorem ::
QC_LANG2:45
Th45: F
is_immediate_constituent_of (G
'&' H) iff F
= G or F
= H
proof
thus F
is_immediate_constituent_of (G
'&' H) implies F
= G or F
= H
proof
(G
'&' H) is
conjunctive;
then
A1: (((
@ (G
'&' H))
. 1)
`1 )
= 2 by
QC_LANG1: 18;
A2: (G
'&' H)
<> (
'not' F) by
A1,
QC_LANG1: 18,
QC_LANG1:def 19;
A3: not ex x st (G
'&' H)
= (
All (x,F)) by
A1,
QC_LANG1: 18,
QC_LANG1:def 21;
assume (G
'&' H)
= (
'not' F) or (ex H1 st (G
'&' H)
= (F
'&' H1) or (G
'&' H)
= (H1
'&' F)) or ex x st (G
'&' H)
= (
All (x,F));
hence thesis by
A2,
A3,
Th2;
end;
assume F
= G or F
= H;
hence thesis;
end;
theorem ::
QC_LANG2:46
Th46: F
is_immediate_constituent_of (
All (x,H)) iff F
= H
proof
thus F
is_immediate_constituent_of (
All (x,H)) implies F
= H
proof
(
All (x,H)) is
universal;
then
A1: (((
@ (
All (x,H)))
. 1)
`1 )
= 3 by
QC_LANG1: 18;
A2: (
All (x,H))
<> (
'not' F) by
A1,
QC_LANG1: 18,
QC_LANG1:def 19;
A3: not ex G st (
All (x,H))
= (F
'&' G) or (
All (x,H))
= (G
'&' F) by
A1,
QC_LANG1: 18,
QC_LANG1:def 20;
assume (
All (x,H))
= (
'not' F) or (ex H1 st (
All (x,H))
= (F
'&' H1) or (
All (x,H))
= (H1
'&' F)) or ex y st (
All (x,H))
= (
All (y,F));
hence thesis by
A2,
A3,
Th5;
end;
thus thesis;
end;
theorem ::
QC_LANG2:47
Th47: H is
atomic implies not F
is_immediate_constituent_of H by
Th42;
theorem ::
QC_LANG2:48
Th48: H is
negative implies (F
is_immediate_constituent_of H iff F
= (
the_argument_of H))
proof
assume H is
negative;
then H
= (
'not' (
the_argument_of H)) by
QC_LANG1:def 24;
hence thesis by
Th43;
end;
theorem ::
QC_LANG2:49
Th49: H is
conjunctive implies (F
is_immediate_constituent_of H iff F
= (
the_left_argument_of H) or F
= (
the_right_argument_of H))
proof
assume H is
conjunctive;
then H
= ((
the_left_argument_of H)
'&' (
the_right_argument_of H)) by
Th3;
hence thesis by
Th45;
end;
theorem ::
QC_LANG2:50
Th50: H is
universal implies (F
is_immediate_constituent_of H iff F
= (
the_scope_of H))
proof
assume H is
universal;
then H
= (
All ((
bound_in H),(
the_scope_of H))) by
Th6;
hence thesis by
Th46;
end;
reserve L,L9 for
FinSequence;
definition
let A be
QC-alphabet;
let G,H be
Element of (
QC-WFF A);
::
QC_LANG2:def20
pred G
is_subformula_of H means ex n, L st 1
<= n & (
len L)
= n & (L
. 1)
= G & (L
. n)
= H & for k st 1
<= k & k
< n holds ex G1,H1 be
Element of (
QC-WFF A) st (L
. k)
= G1 & (L
. (k
+ 1))
= H1 & G1
is_immediate_constituent_of H1;
reflexivity
proof
let H be
Element of (
QC-WFF A);
reconsider L =
<*H*> as
FinSequence;
take 1, L;
thus 1
<= 1 & (
len L)
= 1 & (L
. 1)
= H & (L
. 1)
= H by
FINSEQ_1: 40;
let k;
assume 1
<= k & k
< 1;
hence thesis;
end;
end
definition
let A be
QC-alphabet;
let H,F be
Element of (
QC-WFF A);
::
QC_LANG2:def21
pred H
is_proper_subformula_of F means
:
Def21: H
is_subformula_of F & H
<> F;
irreflexivity ;
end
theorem ::
QC_LANG2:51
Th51: H
is_immediate_constituent_of F implies (
len (
@ H))
< (
len (
@ F))
proof
A1: F
= (
VERUM A) or F is
atomic or F is
negative or F is
conjunctive or F is
universal by
QC_LANG1: 9;
assume H
is_immediate_constituent_of F;
then F is
negative & H
= (
the_argument_of F) or F is
conjunctive & H
= (
the_left_argument_of F) or F is
conjunctive & H
= (
the_right_argument_of F) or F is
universal & H
= (
the_scope_of F) by
A1,
Th41,
Th47,
Th48,
Th49,
Th50;
hence thesis by
QC_LANG1: 14,
QC_LANG1: 15,
QC_LANG1: 16;
end;
theorem ::
QC_LANG2:52
Th52: H
is_immediate_constituent_of F implies H
is_subformula_of F
proof
assume
A1: H
is_immediate_constituent_of F;
take n = 2, L =
<*H, F*>;
thus 1
<= n;
thus (
len L)
= n by
FINSEQ_1: 44;
thus (L
. 1)
= H & (L
. n)
= F by
FINSEQ_1: 44;
let k;
assume that
A2: 1
<= k and
A3: k
< n;
take H, F;
k
< (1
+ 1) by
A3;
then k
<= 1 by
NAT_1: 13;
then k
= 1 by
A2,
XXREAL_0: 1;
hence (L
. k)
= H & (L
. (k
+ 1))
= F by
FINSEQ_1: 44;
thus thesis by
A1;
end;
theorem ::
QC_LANG2:53
Th53: H
is_immediate_constituent_of F implies H
is_proper_subformula_of F
proof
assume
A1: H
is_immediate_constituent_of F;
hence H
is_subformula_of F by
Th52;
assume H
= F;
then (
len (
@ H))
= (
len (
@ F));
hence contradiction by
A1,
Th51;
end;
theorem ::
QC_LANG2:54
Th54: H
is_proper_subformula_of F implies (
len (
@ H))
< (
len (
@ F))
proof
given n, L such that
A1: 1
<= n and (
len L)
= n and
A2: (L
. 1)
= H and
A3: (L
. n)
= F and
A4: for k st 1
<= k & k
< n holds ex H1,F1 be
Element of (
QC-WFF A) st (L
. k)
= H1 & (L
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
defpred
P[
Nat] means 1
<= $1 & $1
< n implies for H1 st (L
. ($1
+ 1))
= H1 holds (
len (
@ H))
< (
len (
@ H1));
A5: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A6: 1
<= k & k
< n implies for H1 st (L
. (k
+ 1))
= H1 holds (
len (
@ H))
< (
len (
@ H1)) and
A7: 1
<= (k
+ 1) and
A8: (k
+ 1)
< n;
consider F1,G be
Element of (
QC-WFF A) such that
A9: (L
. (k
+ 1))
= F1 and
A10: (L
. ((k
+ 1)
+ 1))
= G & F1
is_immediate_constituent_of G by
A4,
A7,
A8;
let H1 such that
A11: (L
. ((k
+ 1)
+ 1))
= H1;
A12:
now
given m be
Nat such that
A13: k
= (m
+ 1);
(
len (
@ H))
< (
len (
@ F1)) by
A6,
A8,
A9,
A13,
NAT_1: 11,
NAT_1: 13;
hence thesis by
A11,
A10,
Th51,
XXREAL_0: 2;
end;
k
=
0 implies (
len (
@ H))
< (
len (
@ H1)) by
A2,
A11,
A9,
A10,
Th51;
hence thesis by
A12,
NAT_1: 6;
end;
assume H
<> F;
then 1
< n by
A1,
A2,
A3,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then
consider k be
Nat such that
A14: n
= (2
+ k) by
NAT_1: 10;
A15:
P[
0 ];
A16: for k holds
P[k] from
NAT_1:sch 2(
A15,
A5);
reconsider k as
Nat;
A17: ((1
+ 1)
+ k)
= ((1
+ k)
+ 1);
then (1
+ k)
< n by
A14,
NAT_1: 13;
hence thesis by
A3,
A16,
A14,
A17,
NAT_1: 11;
end;
theorem ::
QC_LANG2:55
Th55: H
is_proper_subformula_of F implies ex G st G
is_immediate_constituent_of F
proof
given n, L such that
A1: 1
<= n and (
len L)
= n and
A2: (L
. 1)
= H and
A3: (L
. n)
= F and
A4: for k st 1
<= k & k
< n holds ex H1,F1 be
Element of (
QC-WFF A) st (L
. k)
= H1 & (L
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
assume H
<> F;
then 1
< n by
A1,
A2,
A3,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then
consider k be
Nat such that
A5: n
= (2
+ k) by
NAT_1: 10;
reconsider k as
Nat;
((1
+ 1)
+ k)
= ((1
+ k)
+ 1);
then (1
+ k)
< n by
A5,
NAT_1: 13;
then
consider H1,F1 be
Element of (
QC-WFF A) such that (L
. (1
+ k))
= H1 and
A6: (L
. ((1
+ k)
+ 1))
= F1 & H1
is_immediate_constituent_of F1 by
A4,
NAT_1: 11;
take H1;
thus thesis by
A3,
A5,
A6;
end;
theorem ::
QC_LANG2:56
Th56: F
is_proper_subformula_of G & G
is_proper_subformula_of H implies F
is_proper_subformula_of H
proof
assume that
A1: F
is_proper_subformula_of G and
A2: G
is_proper_subformula_of H;
F
is_subformula_of G by
A1;
then
consider n, L such that
A3: 1
<= n and
A4: (
len L)
= n and
A5: (L
. 1)
= F and
A6: (L
. n)
= G and
A7: for k st 1
<= k & k
< n holds ex H1,F1 be
Element of (
QC-WFF A) st (L
. k)
= H1 & (L
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
1
< n by
A1,
A3,
A5,
A6,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then
consider k be
Nat such that
A8: n
= (2
+ k) by
NAT_1: 10;
G
is_subformula_of H by
A2;
then
consider m, L9 such that
A9: 1
<= m and
A10: (
len L9)
= m and
A11: (L9
. 1)
= G and
A12: (L9
. m)
= H and
A13: for k st 1
<= k & k
< m holds ex H1,F1 be
Element of (
QC-WFF A) st (L9
. k)
= H1 & (L9
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
reconsider k as
Nat;
reconsider L1 = (L
| (
Seg (1
+ k))) as
FinSequence by
FINSEQ_1: 15;
thus F
is_subformula_of H
proof
take l = ((1
+ k)
+ m), K = (L1
^ L9);
A14: (((1
+ k)
+ m)
- (1
+ k))
= m;
m
<= (m
+ (1
+ k)) by
NAT_1: 11;
hence 1
<= l by
A9,
XXREAL_0: 2;
((1
+ 1)
+ k)
= ((1
+ k)
+ 1);
then
A15: (1
+ k)
<= n by
A8,
NAT_1: 11;
then
A16: (
len L1)
= (1
+ k) by
A4,
FINSEQ_1: 17;
hence
A17: (
len K)
= l by
A10,
FINSEQ_1: 22;
A18:
now
let j be
Nat;
assume 1
<= j & j
<= (1
+ k);
then
A19: j
in (
Seg (1
+ k)) by
FINSEQ_1: 1;
then j
in (
dom L1) by
A4,
A15,
FINSEQ_1: 17;
then (K
. j)
= (L1
. j) by
FINSEQ_1:def 7;
hence (K
. j)
= (L
. j) by
A19,
FUNCT_1: 49;
end;
1
<= (1
+ k) by
NAT_1: 11;
hence (K
. 1)
= F by
A5,
A18;
((
len L1)
+ 1)
<= ((
len L1)
+ m) by
A9,
XREAL_1: 7;
then (
len L1)
< l by
A16,
NAT_1: 13;
then (K
. l)
= (L9
. (l
- (
len L1))) by
A17,
FINSEQ_1: 24;
hence (K
. l)
= H by
A4,
A12,
A15,
A14,
FINSEQ_1: 17;
let j be
Nat such that
A20: 1
<= j and
A21: j
< l;
(j
+
0 )
<= (j
+ 1) by
XREAL_1: 7;
then
A22: 1
<= (j
+ 1) by
A20,
XXREAL_0: 2;
A23:
now
assume
A24: j
< (1
+ k);
then
A25: (j
+ 1)
<= (1
+ k) by
NAT_1: 13;
then (j
+ 1)
<= n by
A15,
XXREAL_0: 2;
then j
< n by
NAT_1: 13;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A26: (L
. j)
= F1 & (L
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A7,
A20;
take F1, G1;
thus (K
. j)
= F1 & (K
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A18,
A20,
A22,
A24,
A25,
A26;
end;
A27:
now
A28: (j
+ 1)
<= l by
A21,
NAT_1: 13;
assume
A29: (1
+ k)
< j;
then
A30: (1
+ k)
< (j
+ 1) by
NAT_1: 13;
((1
+ k)
+ 1)
<= j by
A29,
NAT_1: 13;
then
consider j1 be
Nat such that
A31: j
= (((1
+ k)
+ 1)
+ j1) by
NAT_1: 10;
reconsider j1 as
Nat;
(j
- (1
+ k))
< (l
- (1
+ k)) by
A21,
XREAL_1: 9;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A32: (L9
. (1
+ j1))
= F1 & (L9
. ((1
+ j1)
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A13,
A31,
NAT_1: 11;
take F1, G1;
A33: (((1
+ j1)
+ (1
+ k))
- (1
+ k))
= (((1
+ j1)
+ (1
+ k))
+ (
- (1
+ k)));
((j
+ 1)
- (
len L1))
= (1
+ (j
+ (
- (
len L1))))
.= ((1
+ j1)
+ 1) by
A4,
A15,
A31,
A33,
FINSEQ_1: 17;
hence (K
. j)
= F1 & (K
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A16,
A17,
A21,
A29,
A30,
A28,
A33,
A32,
FINSEQ_1: 24;
end;
now
A34: (j
+ 1)
<= l & ((j
+ 1)
- j)
= ((j
+ 1)
+ (
- j)) by
A21,
NAT_1: 13;
assume
A35: j
= (1
+ k);
then j
< ((1
+ k)
+ 1) by
NAT_1: 13;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A36: (L
. j)
= F1 & (L
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A7,
A8,
A20;
take F1, G1;
(1
+ k)
< (j
+ 1) by
A35,
NAT_1: 13;
hence (K
. j)
= F1 & (K
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A6,
A11,
A8,
A16,
A17,
A18,
A20,
A35,
A34,
A36,
FINSEQ_1: 24;
end;
hence thesis by
A23,
A27,
XXREAL_0: 1;
end;
(
len (
@ F))
< (
len (
@ G)) by
A1,
Th54;
hence thesis by
A2,
Th54;
end;
theorem ::
QC_LANG2:57
Th57: F
is_subformula_of G & G
is_subformula_of H implies F
is_subformula_of H
proof
assume that
A1: F
is_subformula_of G and
A2: G
is_subformula_of H;
now
assume F
<> G;
then
A3: F
is_proper_subformula_of G by
A1;
now
assume G
<> H;
then G
is_proper_subformula_of H by
A2;
then F
is_proper_subformula_of H by
A3,
Th56;
hence thesis;
end;
hence thesis by
A1;
end;
hence thesis by
A2;
end;
theorem ::
QC_LANG2:58
Th58: G
is_subformula_of H & H
is_subformula_of G implies G
= H
proof
assume that
A1: G
is_subformula_of H and
A2: H
is_subformula_of G;
assume
A3: G
<> H;
then G
is_proper_subformula_of H by
A1;
then
A4: (
len (
@ G))
< (
len (
@ H)) by
Th54;
H
is_proper_subformula_of G by
A2,
A3;
hence contradiction by
A4,
Th54;
end;
theorem ::
QC_LANG2:59
Th59: not (G
is_proper_subformula_of H & H
is_subformula_of G) by
Th58;
theorem ::
QC_LANG2:60
not (G
is_proper_subformula_of H & H
is_proper_subformula_of G) by
Th59;
theorem ::
QC_LANG2:61
Th61: not (G
is_subformula_of H & H
is_immediate_constituent_of G) by
Th53,
Th59;
theorem ::
QC_LANG2:62
not (G
is_proper_subformula_of H & H
is_immediate_constituent_of G) by
Th53,
Th59;
theorem ::
QC_LANG2:63
Th63: F
is_proper_subformula_of G & G
is_subformula_of H or F
is_subformula_of G & G
is_proper_subformula_of H or F
is_subformula_of G & G
is_immediate_constituent_of H or F
is_immediate_constituent_of G & G
is_subformula_of H or F
is_proper_subformula_of G & G
is_immediate_constituent_of H or F
is_immediate_constituent_of G & G
is_proper_subformula_of H implies F
is_proper_subformula_of H
proof
assume
A1: F
is_proper_subformula_of G & G
is_subformula_of H or F
is_subformula_of G & G
is_proper_subformula_of H or F
is_subformula_of G & G
is_immediate_constituent_of H or F
is_immediate_constituent_of G & G
is_subformula_of H or F
is_proper_subformula_of G & G
is_immediate_constituent_of H or F
is_immediate_constituent_of G & G
is_proper_subformula_of H;
then F
is_subformula_of G & G
is_subformula_of H by
Th52;
hence F
is_subformula_of H by
Th57;
thus thesis by
A1,
Th59,
Th61;
end;
theorem ::
QC_LANG2:64
Th64: not F
is_proper_subformula_of (
VERUM A)
proof
assume not thesis;
then
consider G such that
A1: G
is_immediate_constituent_of (
VERUM A) by
Th55;
thus thesis by
A1,
Th41;
end;
theorem ::
QC_LANG2:65
Th65: not F
is_proper_subformula_of (P
! V)
proof
assume F
is_proper_subformula_of (P
! V);
then ex G st G
is_immediate_constituent_of (P
! V) by
Th55;
hence contradiction by
Th42;
end;
theorem ::
QC_LANG2:66
Th66: F
is_subformula_of H iff F
is_proper_subformula_of (
'not' H)
proof
H
is_immediate_constituent_of (
'not' H);
hence F
is_subformula_of H implies F
is_proper_subformula_of (
'not' H) by
Th63;
given n, L such that
A1: 1
<= n and
A2: (
len L)
= n and
A3: (L
. 1)
= F and
A4: (L
. n)
= (
'not' H) and
A5: for k st 1
<= k & k
< n holds ex H1,F1 be
Element of (
QC-WFF A) st (L
. k)
= H1 & (L
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
assume F
<> (
'not' H);
then 1
< n by
A1,
A3,
A4,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then
consider k be
Nat such that
A6: n
= (2
+ k) by
NAT_1: 10;
reconsider k as
Nat;
reconsider L1 = (L
| (
Seg (1
+ k))) as
FinSequence by
FINSEQ_1: 15;
take m = (1
+ k), L1;
thus
A7: 1
<= m by
NAT_1: 11;
(1
+ k)
<= ((1
+ k)
+ 1) by
NAT_1: 11;
hence (
len L1)
= m by
A2,
A6,
FINSEQ_1: 17;
A8: for j be
Nat st 1
<= j
<= m holds (L1
. j)
= (L
. j) by
FUNCT_1: 49,
FINSEQ_1: 1;
hence (L1
. 1)
= F by
A3,
A7;
m
< (m
+ 1) by
NAT_1: 13;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A9: (L
. m)
= F1 and
A10: (L
. (m
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A5,
A6,
NAT_1: 11;
F1
= H by
A4,
A6,
A10,
Th43;
hence (L1
. m)
= H by
A7,
A8,
A9;
let j be
Nat;
assume that
A11: 1
<= j and
A12: j
< m;
m
<= (m
+ 1) by
NAT_1: 11;
then j
< n by
A6,
A12,
XXREAL_0: 2;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A13: (L
. j)
= F1 & (L
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A5,
A11;
take F1, G1;
1
<= (1
+ j) & (j
+ 1)
<= m by
A11,
A12,
NAT_1: 13;
hence thesis by
A8,
A11,
A12,
A13;
end;
theorem ::
QC_LANG2:67
(
'not' F)
is_subformula_of H implies F
is_proper_subformula_of H
proof
F
is_proper_subformula_of (
'not' F) by
Th66;
hence thesis by
Th63;
end;
theorem ::
QC_LANG2:68
F
is_proper_subformula_of (
FALSUM A) iff F
is_subformula_of (
VERUM A) by
Th66;
theorem ::
QC_LANG2:69
Th69: F
is_subformula_of G or F
is_subformula_of H iff F
is_proper_subformula_of (G
'&' H)
proof
G
is_immediate_constituent_of (G
'&' H) & H
is_immediate_constituent_of (G
'&' H);
hence F
is_subformula_of G or F
is_subformula_of H implies F
is_proper_subformula_of (G
'&' H) by
Th63;
given n, L such that
A1: 1
<= n and
A2: (
len L)
= n and
A3: (L
. 1)
= F and
A4: (L
. n)
= (G
'&' H) and
A5: for k st 1
<= k & k
< n holds ex H1,F1 be
Element of (
QC-WFF A) st (L
. k)
= H1 & (L
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
assume F
<> (G
'&' H);
then 1
< n by
A1,
A3,
A4,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then
consider k be
Nat such that
A6: n
= (2
+ k) by
NAT_1: 10;
reconsider k as
Nat;
((1
+ 1)
+ k)
= ((1
+ k)
+ 1);
then (1
+ k)
< n by
A6,
NAT_1: 13;
then
consider H1,G1 be
Element of (
QC-WFF A) such that
A7: (L
. (1
+ k))
= H1 and
A8: (L
. ((1
+ k)
+ 1))
= G1 & H1
is_immediate_constituent_of G1 by
A5,
NAT_1: 11;
reconsider L1 = (L
| (
Seg (1
+ k))) as
FinSequence by
FINSEQ_1: 15;
F
is_subformula_of H1
proof
take m = (1
+ k), L1;
thus
A9: 1
<= m by
NAT_1: 11;
(1
+ k)
<= ((1
+ k)
+ 1) by
NAT_1: 11;
hence (
len L1)
= m by
A2,
A6,
FINSEQ_1: 17;
A10: for j be
Nat st 1
<= j
<= m holds (L1
. j)
= (L
. j) by
FUNCT_1: 49,
FINSEQ_1: 1;
hence (L1
. 1)
= F by
A3,
A9;
thus (L1
. m)
= H1 by
A7,
A9,
A10;
let j be
Nat;
assume that
A11: 1
<= j and
A12: j
< m;
m
<= (m
+ 1) by
NAT_1: 11;
then j
< n by
A6,
A12,
XXREAL_0: 2;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A13: (L
. j)
= F1 & (L
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A5,
A11;
take F1, G1;
1
<= (1
+ j) & (j
+ 1)
<= m by
A11,
A12,
NAT_1: 13;
hence thesis by
A10,
A11,
A12,
A13;
end;
hence thesis by
A4,
A6,
A8,
Th45;
end;
theorem ::
QC_LANG2:70
(F
'&' G)
is_subformula_of H implies F
is_proper_subformula_of H & G
is_proper_subformula_of H
proof
F
is_proper_subformula_of (F
'&' G) & G
is_proper_subformula_of (F
'&' G) by
Th69;
hence thesis by
Th63;
end;
theorem ::
QC_LANG2:71
Th71: F
is_subformula_of H iff F
is_proper_subformula_of (
All (x,H))
proof
H
is_immediate_constituent_of (
All (x,H));
hence F
is_subformula_of H implies F
is_proper_subformula_of (
All (x,H)) by
Th63;
given n, L such that
A1: 1
<= n and
A2: (
len L)
= n and
A3: (L
. 1)
= F and
A4: (L
. n)
= (
All (x,H)) and
A5: for k st 1
<= k & k
< n holds ex H1,F1 be
Element of (
QC-WFF A) st (L
. k)
= H1 & (L
. (k
+ 1))
= F1 & H1
is_immediate_constituent_of F1;
assume F
<> (
All (x,H));
then 1
< n by
A1,
A3,
A4,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then
consider k be
Nat such that
A6: n
= (2
+ k) by
NAT_1: 10;
reconsider k as
Nat;
reconsider L1 = (L
| (
Seg (1
+ k))) as
FinSequence by
FINSEQ_1: 15;
take m = (1
+ k), L1;
thus
A7: 1
<= m by
NAT_1: 11;
(1
+ k)
<= ((1
+ k)
+ 1) by
NAT_1: 11;
hence (
len L1)
= m by
A2,
A6,
FINSEQ_1: 17;
A8: for j be
Nat st 1
<= j
<= m holds (L1
. j)
= (L
. j) by
FUNCT_1: 49,
FINSEQ_1: 1;
hence (L1
. 1)
= F by
A3,
A7;
m
< (m
+ 1) by
NAT_1: 13;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A9: (L
. m)
= F1 and
A10: (L
. (m
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A5,
A6,
NAT_1: 11;
F1
= H by
A4,
A6,
A10,
Th46;
hence (L1
. m)
= H by
A7,
A8,
A9;
let j be
Nat;
assume that
A11: 1
<= j and
A12: j
< m;
m
<= (m
+ 1) by
NAT_1: 11;
then j
< n by
A6,
A12,
XXREAL_0: 2;
then
consider F1,G1 be
Element of (
QC-WFF A) such that
A13: (L
. j)
= F1 & (L
. (j
+ 1))
= G1 & F1
is_immediate_constituent_of G1 by
A5,
A11;
take F1, G1;
1
<= (1
+ j) & (j
+ 1)
<= m by
A11,
A12,
NAT_1: 13;
hence thesis by
A8,
A11,
A12,
A13;
end;
theorem ::
QC_LANG2:72
(
All (x,H))
is_subformula_of F implies H
is_proper_subformula_of F
proof
H
is_proper_subformula_of (
All (x,H)) by
Th71;
hence thesis by
Th63;
end;
theorem ::
QC_LANG2:73
(F
'&' (
'not' G))
is_proper_subformula_of (F
=> G) & F
is_proper_subformula_of (F
=> G) & (
'not' G)
is_proper_subformula_of (F
=> G) & G
is_proper_subformula_of (F
=> G)
proof
thus
A1: (F
'&' (
'not' G))
is_proper_subformula_of (F
=> G) by
Th66;
F
is_proper_subformula_of (F
'&' (
'not' G)) & (
'not' G)
is_proper_subformula_of (F
'&' (
'not' G)) by
Th69;
hence
A2: F
is_proper_subformula_of (F
=> G) & (
'not' G)
is_proper_subformula_of (F
=> G) by
A1,
Th56;
G
is_proper_subformula_of (
'not' G) by
Th66;
hence thesis by
A2,
Th56;
end;
theorem ::
QC_LANG2:74
((
'not' F)
'&' (
'not' G))
is_proper_subformula_of (F
'or' G) & (
'not' F)
is_proper_subformula_of (F
'or' G) & (
'not' G)
is_proper_subformula_of (F
'or' G) & F
is_proper_subformula_of (F
'or' G) & G
is_proper_subformula_of (F
'or' G)
proof
thus
A1: ((
'not' F)
'&' (
'not' G))
is_proper_subformula_of (F
'or' G) by
Th66;
(
'not' F)
is_proper_subformula_of ((
'not' F)
'&' (
'not' G)) & (
'not' G)
is_proper_subformula_of ((
'not' F)
'&' (
'not' G)) by
Th69;
hence
A2: (
'not' F)
is_proper_subformula_of (F
'or' G) & (
'not' G)
is_proper_subformula_of (F
'or' G) by
A1,
Th56;
G
is_proper_subformula_of (
'not' G) & F
is_proper_subformula_of (
'not' F) by
Th66;
hence thesis by
A2,
Th56;
end;
theorem ::
QC_LANG2:75
H is
atomic implies not F
is_proper_subformula_of H by
Th65;
theorem ::
QC_LANG2:76
H is
negative implies (
the_argument_of H)
is_proper_subformula_of H
proof
assume H is
negative;
then (
the_argument_of H)
is_immediate_constituent_of H by
Th48;
hence thesis by
Th53;
end;
theorem ::
QC_LANG2:77
H is
conjunctive implies (
the_left_argument_of H)
is_proper_subformula_of H & (
the_right_argument_of H)
is_proper_subformula_of H
proof
assume H is
conjunctive;
then (
the_left_argument_of H)
is_immediate_constituent_of H & (
the_right_argument_of H)
is_immediate_constituent_of H by
Th49;
hence thesis by
Th53;
end;
theorem ::
QC_LANG2:78
H is
universal implies (
the_scope_of H)
is_proper_subformula_of H
proof
assume H is
universal;
then (
the_scope_of H)
is_immediate_constituent_of H by
Th50;
hence thesis by
Th53;
end;
theorem ::
QC_LANG2:79
Th79: H
is_subformula_of (
VERUM A) iff H
= (
VERUM A) by
Def21,
Th64;
theorem ::
QC_LANG2:80
Th80: H
is_subformula_of (P
! V) iff H
= (P
! V)
proof
thus H
is_subformula_of (P
! V) implies H
= (P
! V)
proof
assume
A1: H
is_subformula_of (P
! V);
assume H
<> (P
! V);
then H
is_proper_subformula_of (P
! V) by
A1;
then ex F st F
is_immediate_constituent_of (P
! V) by
Th55;
hence contradiction by
Th42;
end;
thus thesis;
end;
theorem ::
QC_LANG2:81
Th81: H
is_subformula_of (
FALSUM A) iff H
= (
FALSUM A) or H
= (
VERUM A)
proof
thus H
is_subformula_of (
FALSUM A) implies H
= (
FALSUM A) or H
= (
VERUM A)
proof
assume H
is_subformula_of (
FALSUM A) & H
<> (
FALSUM A);
then H
is_proper_subformula_of (
FALSUM A);
then H
is_subformula_of (
VERUM A) by
Th66;
hence thesis by
Th79;
end;
(
VERUM A)
is_immediate_constituent_of (
FALSUM A);
then (
VERUM A)
is_proper_subformula_of (
FALSUM A) by
Th53;
hence thesis;
end;
definition
let A be
QC-alphabet;
let H be
Element of (
QC-WFF A);
::
QC_LANG2:def22
func
Subformulae H ->
set means
:
Def22: for a be
object holds a
in it iff ex F be
Element of (
QC-WFF A) st F
= a & F
is_subformula_of H;
existence
proof
defpred
P[
object] means ex F be
Element of (
QC-WFF A) st F
= $1 & F
is_subformula_of H;
consider X be
set such that
A1: for a be
object holds a
in X iff a
in (
QC-WFF A) &
P[a] from
XBOOLE_0:sch 1;
take X;
let a be
object;
thus a
in X implies ex F be
Element of (
QC-WFF A) st F
= a & F
is_subformula_of H by
A1;
given F be
Element of (
QC-WFF A) such that
A2: F
= a & F
is_subformula_of H;
thus thesis by
A1,
A2;
end;
uniqueness
proof
defpred
P[
object] means ex F be
Element of (
QC-WFF A) st F
= $1 & F
is_subformula_of H;
let X,Y be
set such that
A3: for a be
object holds a
in X iff
P[a] and
A4: for a be
object holds a
in Y iff
P[a];
thus thesis from
XBOOLE_0:sch 2(
A3,
A4);
end;
end
theorem ::
QC_LANG2:82
Th82: G
in (
Subformulae H) implies G
is_subformula_of H
proof
assume G
in (
Subformulae H);
then ex F st F
= G & F
is_subformula_of H by
Def22;
hence thesis;
end;
theorem ::
QC_LANG2:83
Th83: F
is_subformula_of H implies (
Subformulae F)
c= (
Subformulae H)
proof
assume
A1: F
is_subformula_of H;
let a be
object;
assume a
in (
Subformulae F);
then
consider F1 be
Element of (
QC-WFF A) such that
A2: F1
= a and
A3: F1
is_subformula_of F by
Def22;
F1
is_subformula_of H by
A1,
A3,
Th57;
hence thesis by
A2,
Def22;
end;
theorem ::
QC_LANG2:84
G
in (
Subformulae H) implies (
Subformulae G)
c= (
Subformulae H) by
Th82,
Th83;
theorem ::
QC_LANG2:85
Th85: (
Subformulae (
VERUM A))
=
{(
VERUM A)}
proof
thus (
Subformulae (
VERUM A))
c=
{(
VERUM A)}
proof
let a be
object;
assume a
in (
Subformulae (
VERUM A));
then
consider F be
Element of (
QC-WFF A) such that
A1: F
= a and
A2: F
is_subformula_of (
VERUM A) by
Def22;
F
= (
VERUM A) by
A2,
Th79;
hence thesis by
A1,
TARSKI:def 1;
end;
let a be
object;
assume a
in
{(
VERUM A)};
then a
= (
VERUM A) by
TARSKI:def 1;
hence thesis by
Def22;
end;
theorem ::
QC_LANG2:86
Th86: (
Subformulae (P
! V))
=
{(P
! V)}
proof
thus (
Subformulae (P
! V))
c=
{(P
! V)}
proof
let a be
object;
assume a
in (
Subformulae (P
! V));
then
consider F such that
A1: F
= a and
A2: F
is_subformula_of (P
! V) by
Def22;
F
= (P
! V) by
A2,
Th80;
hence thesis by
A1,
TARSKI:def 1;
end;
let a be
object;
assume a
in
{(P
! V)};
then a
= (P
! V) by
TARSKI:def 1;
hence thesis by
Def22;
end;
theorem ::
QC_LANG2:87
(
Subformulae (
FALSUM A))
=
{(
VERUM A), (
FALSUM A)}
proof
thus (
Subformulae (
FALSUM A))
c=
{(
VERUM A), (
FALSUM A)}
proof
let a be
object;
assume a
in (
Subformulae (
FALSUM A));
then ex F st F
= a & F
is_subformula_of (
FALSUM A) by
Def22;
then a
= (
FALSUM A) or a
= (
VERUM A) by
Th81;
hence thesis by
TARSKI:def 2;
end;
let a be
object;
assume
A1: a
in
{(
VERUM A), (
FALSUM A)};
then
A2: a
= (
VERUM A) or a
= (
FALSUM A) by
TARSKI:def 2;
reconsider a as
Element of (
QC-WFF A) by
A1,
TARSKI:def 2;
a
is_subformula_of (
FALSUM A) by
A2,
Th81;
hence thesis by
Def22;
end;
theorem ::
QC_LANG2:88
Th88: (
Subformulae (
'not' H))
= ((
Subformulae H)
\/
{(
'not' H)})
proof
thus (
Subformulae (
'not' H))
c= ((
Subformulae H)
\/
{(
'not' H)})
proof
let a be
object;
assume a
in (
Subformulae (
'not' H));
then
consider F such that
A1: F
= a and
A2: F
is_subformula_of (
'not' H) by
Def22;
now
assume F
<> (
'not' H);
then F
is_proper_subformula_of (
'not' H) by
A2;
then F
is_subformula_of H by
Th66;
hence a
in (
Subformulae H) by
A1,
Def22;
end;
then a
in (
Subformulae H) or a
in
{(
'not' H)} by
A1,
TARSKI:def 1;
hence thesis by
XBOOLE_0:def 3;
end;
let a be
object such that
A3: a
in ((
Subformulae H)
\/
{(
'not' H)});
A4:
now
assume a
in (
Subformulae H);
then
consider F such that
A5: F
= a and
A6: F
is_subformula_of H by
Def22;
H
is_immediate_constituent_of (
'not' H);
then H
is_proper_subformula_of (
'not' H) by
Th53;
then H
is_subformula_of (
'not' H);
then F
is_subformula_of (
'not' H) by
A6,
Th57;
hence thesis by
A5,
Def22;
end;
now
assume a
in
{(
'not' H)};
then a
= (
'not' H) by
TARSKI:def 1;
hence thesis by
Def22;
end;
hence thesis by
A3,
A4,
XBOOLE_0:def 3;
end;
theorem ::
QC_LANG2:89
Th89: (
Subformulae (H
'&' F))
= (((
Subformulae H)
\/ (
Subformulae F))
\/
{(H
'&' F)})
proof
thus (
Subformulae (H
'&' F))
c= (((
Subformulae H)
\/ (
Subformulae F))
\/
{(H
'&' F)})
proof
let a be
object;
assume a
in (
Subformulae (H
'&' F));
then
consider G such that
A1: G
= a and
A2: G
is_subformula_of (H
'&' F) by
Def22;
now
assume G
<> (H
'&' F);
then G
is_proper_subformula_of (H
'&' F) by
A2;
then G
is_subformula_of H or G
is_subformula_of F by
Th69;
then a
in (
Subformulae H) or a
in (
Subformulae F) by
A1,
Def22;
hence a
in ((
Subformulae H)
\/ (
Subformulae F)) by
XBOOLE_0:def 3;
end;
then a
in ((
Subformulae H)
\/ (
Subformulae F)) or a
in
{(H
'&' F)} by
A1,
TARSKI:def 1;
hence thesis by
XBOOLE_0:def 3;
end;
let a be
object such that
A3: a
in (((
Subformulae H)
\/ (
Subformulae F))
\/
{(H
'&' F)});
A4:
now
assume a
in
{(H
'&' F)};
then a
= (H
'&' F) by
TARSKI:def 1;
hence thesis by
Def22;
end;
A5:
now
assume a
in (
Subformulae F);
then
consider G such that
A6: G
= a and
A7: G
is_subformula_of F by
Def22;
F
is_immediate_constituent_of (H
'&' F);
then F
is_proper_subformula_of (H
'&' F) by
Th53;
then F
is_subformula_of (H
'&' F);
then G
is_subformula_of (H
'&' F) by
A7,
Th57;
hence thesis by
A6,
Def22;
end;
A8:
now
assume a
in (
Subformulae H);
then
consider G such that
A9: G
= a and
A10: G
is_subformula_of H by
Def22;
H
is_immediate_constituent_of (H
'&' F);
then H
is_proper_subformula_of (H
'&' F) by
Th53;
then H
is_subformula_of (H
'&' F);
then G
is_subformula_of (H
'&' F) by
A10,
Th57;
hence thesis by
A9,
Def22;
end;
a
in ((
Subformulae H)
\/ (
Subformulae F)) implies a
in (
Subformulae H) or a
in (
Subformulae F) by
XBOOLE_0:def 3;
hence thesis by
A3,
A8,
A5,
A4,
XBOOLE_0:def 3;
end;
theorem ::
QC_LANG2:90
Th90: (
Subformulae (
All (x,H)))
= ((
Subformulae H)
\/
{(
All (x,H))})
proof
thus (
Subformulae (
All (x,H)))
c= ((
Subformulae H)
\/
{(
All (x,H))})
proof
let a be
object;
assume a
in (
Subformulae (
All (x,H)));
then
consider F such that
A1: F
= a and
A2: F
is_subformula_of (
All (x,H)) by
Def22;
now
assume F
<> (
All (x,H));
then F
is_proper_subformula_of (
All (x,H)) by
A2;
then F
is_subformula_of H by
Th71;
hence a
in (
Subformulae H) by
A1,
Def22;
end;
then a
in (
Subformulae H) or a
in
{(
All (x,H))} by
A1,
TARSKI:def 1;
hence thesis by
XBOOLE_0:def 3;
end;
let a be
object such that
A3: a
in ((
Subformulae H)
\/
{(
All (x,H))});
A4:
now
assume a
in (
Subformulae H);
then
consider F such that
A5: F
= a and
A6: F
is_subformula_of H by
Def22;
H
is_immediate_constituent_of (
All (x,H));
then H
is_proper_subformula_of (
All (x,H)) by
Th53;
then H
is_subformula_of (
All (x,H));
then F
is_subformula_of (
All (x,H)) by
A6,
Th57;
hence thesis by
A5,
Def22;
end;
now
assume a
in
{(
All (x,H))};
then a
= (
All (x,H)) by
TARSKI:def 1;
hence thesis by
Def22;
end;
hence thesis by
A3,
A4,
XBOOLE_0:def 3;
end;
theorem ::
QC_LANG2:91
Th91: (
Subformulae (F
=> G))
= (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)})
proof
thus (
Subformulae (F
=> G))
= ((
Subformulae (F
'&' (
'not' G)))
\/
{(F
=> G)}) by
Th88
.= ((((
Subformulae F)
\/ (
Subformulae (
'not' G)))
\/
{(F
'&' (
'not' G))})
\/
{(F
=> G)}) by
Th89
.= ((((
Subformulae F)
\/ ((
Subformulae G)
\/
{(
'not' G)}))
\/
{(F
'&' (
'not' G))})
\/
{(F
=> G)}) by
Th88
.= (((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G)})
\/
{(F
'&' (
'not' G))})
\/
{(F
=> G)}) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G)})
\/ (
{(F
'&' (
'not' G))}
\/
{(F
=> G)})) by
XBOOLE_1: 4
.= (((
Subformulae F)
\/ (
Subformulae G))
\/ (
{(
'not' G)}
\/ (
{(F
'&' (
'not' G))}
\/
{(F
=> G)}))) by
XBOOLE_1: 4
.= (((
Subformulae F)
\/ (
Subformulae G))
\/ (
{(
'not' G)}
\/
{(F
'&' (
'not' G)), (F
=> G)})) by
ENUMSET1: 1
.= (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)}) by
ENUMSET1: 2;
end;
theorem ::
QC_LANG2:92
(
Subformulae (F
'or' G))
= (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (
'not' F), ((
'not' F)
'&' (
'not' G)), (F
'or' G)})
proof
thus (
Subformulae (F
'or' G))
= ((
Subformulae ((
'not' F)
'&' (
'not' G)))
\/
{(F
'or' G)}) by
Th88
.= ((((
Subformulae (
'not' F))
\/ (
Subformulae (
'not' G)))
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
Th89
.= ((((
Subformulae (
'not' F))
\/ ((
Subformulae G)
\/
{(
'not' G)}))
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
Th88
.= (((((
Subformulae F)
\/
{(
'not' F)})
\/ ((
Subformulae G)
\/
{(
'not' G)}))
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
Th88
.= ((((
Subformulae F)
\/ (((
Subformulae G)
\/
{(
'not' G)})
\/
{(
'not' F)}))
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ ((
Subformulae G)
\/ (
{(
'not' G)}
\/
{(
'not' F)})))
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ ((
Subformulae G)
\/
{(
'not' G), (
'not' F)}))
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
ENUMSET1: 1
.= (((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (
'not' F)})
\/
{((
'not' F)
'&' (
'not' G))})
\/
{(F
'or' G)}) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (
'not' F)})
\/ (
{((
'not' F)
'&' (
'not' G))}
\/
{(F
'or' G)})) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (
'not' F)})
\/
{((
'not' F)
'&' (
'not' G)), (F
'or' G)}) by
ENUMSET1: 1
.= (((
Subformulae F)
\/ (
Subformulae G))
\/ (
{(
'not' G), (
'not' F)}
\/
{((
'not' F)
'&' (
'not' G)), (F
'or' G)})) by
XBOOLE_1: 4
.= (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (
'not' F), ((
'not' F)
'&' (
'not' G)), (F
'or' G)}) by
ENUMSET1: 5;
end;
theorem ::
QC_LANG2:93
(
Subformulae (F
<=> G))
= (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G), (
'not' F), (G
'&' (
'not' F)), (G
=> F), (F
<=> G)})
proof
thus (
Subformulae (F
<=> G))
= (((
Subformulae (F
=> G))
\/ (
Subformulae (G
=> F)))
\/
{(F
<=> G)}) by
Th89
.= (((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)})
\/ (
Subformulae (G
=> F)))
\/
{(F
<=> G)}) by
Th91
.= (((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)})
\/ (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' F), (G
'&' (
'not' F)), (G
=> F)}))
\/
{(F
<=> G)}) by
Th91
.= ((((
Subformulae F)
\/ (
Subformulae G))
\/ ((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)})
\/
{(
'not' F), (G
'&' (
'not' F)), (G
=> F)}))
\/
{(F
<=> G)}) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ (
Subformulae G))
\/ (((
Subformulae F)
\/ (
Subformulae G))
\/ (
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)}
\/
{(
'not' F), (G
'&' (
'not' F)), (G
=> F)})))
\/
{(F
<=> G)}) by
XBOOLE_1: 4
.= (((((
Subformulae F)
\/ (
Subformulae G))
\/ ((
Subformulae F)
\/ (
Subformulae G)))
\/ (
{(
'not' G), (F
'&' (
'not' G)), (F
=> G)}
\/
{(
'not' F), (G
'&' (
'not' F)), (G
=> F)}))
\/
{(F
<=> G)}) by
XBOOLE_1: 4
.= ((((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G), (
'not' F), (G
'&' (
'not' F)), (G
=> F)})
\/
{(F
<=> G)}) by
ENUMSET1: 13
.= (((
Subformulae F)
\/ (
Subformulae G))
\/ (
{(
'not' G), (F
'&' (
'not' G)), (F
=> G), (
'not' F), (G
'&' (
'not' F)), (G
=> F)}
\/
{(F
<=> G)})) by
XBOOLE_1: 4
.= (((
Subformulae F)
\/ (
Subformulae G))
\/
{(
'not' G), (F
'&' (
'not' G)), (F
=> G), (
'not' F), (G
'&' (
'not' F)), (G
=> F), (F
<=> G)}) by
ENUMSET1: 21;
end;
theorem ::
QC_LANG2:94
H
= (
VERUM A) or H is
atomic iff (
Subformulae H)
=
{H}
proof
H is
atomic implies (
Subformulae H)
=
{H} by
Th86;
hence H
= (
VERUM A) or H is
atomic implies (
Subformulae H)
=
{H} by
Th85;
assume
A1: (
Subformulae H)
=
{H};
A2:
now
assume H
= (
'not' (
the_argument_of H));
then
A3: (
the_argument_of H)
is_immediate_constituent_of H;
then (
the_argument_of H)
is_proper_subformula_of H by
Th53;
then (
the_argument_of H)
is_subformula_of H;
then
A4: (
the_argument_of H)
in (
Subformulae H) by
Def22;
(
len (
@ (
the_argument_of H)))
<> (
len (
@ H)) by
A3,
Th51;
hence contradiction by
A1,
A4,
TARSKI:def 1;
end;
A5:
now
assume H
= ((
the_left_argument_of H)
'&' (
the_right_argument_of H));
then
A6: (
the_left_argument_of H)
is_immediate_constituent_of H;
then (
the_left_argument_of H)
is_proper_subformula_of H by
Th53;
then (
the_left_argument_of H)
is_subformula_of H;
then
A7: (
the_left_argument_of H)
in (
Subformulae H) by
Def22;
(
len (
@ (
the_left_argument_of H)))
<> (
len (
@ H)) by
A6,
Th51;
hence contradiction by
A1,
A7,
TARSKI:def 1;
end;
assume H
<> (
VERUM A) & not H is
atomic;
then H is
negative or H is
conjunctive or H is
universal by
QC_LANG1: 9;
then H
= (
'not' (
the_argument_of H)) or H
= ((
the_left_argument_of H)
'&' (
the_right_argument_of H)) or H
= (
All ((
bound_in H),(
the_scope_of H))) by
Th3,
Th6,
QC_LANG1:def 24;
then
A8: (
the_scope_of H)
is_immediate_constituent_of H by
A2,
A5;
then (
the_scope_of H)
is_proper_subformula_of H by
Th53;
then (
the_scope_of H)
is_subformula_of H;
then
A9: (
the_scope_of H)
in (
Subformulae H) by
Def22;
(
len (
@ (
the_scope_of H)))
<> (
len (
@ H)) by
A8,
Th51;
hence contradiction by
A1,
A9,
TARSKI:def 1;
end;
theorem ::
QC_LANG2:95
H is
negative implies (
Subformulae H)
= ((
Subformulae (
the_argument_of H))
\/
{H})
proof
assume H is
negative;
then H
= (
'not' (
the_argument_of H)) by
QC_LANG1:def 24;
hence thesis by
Th88;
end;
theorem ::
QC_LANG2:96
H is
conjunctive implies (
Subformulae H)
= (((
Subformulae (
the_left_argument_of H))
\/ (
Subformulae (
the_right_argument_of H)))
\/
{H})
proof
assume H is
conjunctive;
then H
= ((
the_left_argument_of H)
'&' (
the_right_argument_of H)) by
Th3;
hence thesis by
Th89;
end;
theorem ::
QC_LANG2:97
H is
universal implies (
Subformulae H)
= ((
Subformulae (
the_scope_of H))
\/
{H})
proof
assume H is
universal;
then H
= (
All ((
bound_in H),(
the_scope_of H))) by
Th6;
hence thesis by
Th90;
end;
theorem ::
QC_LANG2:98
(H
is_immediate_constituent_of G or H
is_proper_subformula_of G or H
is_subformula_of G) & G
in (
Subformulae F) implies H
in (
Subformulae F)
proof
assume that
A1: H
is_immediate_constituent_of G or H
is_proper_subformula_of G or H
is_subformula_of G and
A2: G
in (
Subformulae F);
H
is_proper_subformula_of G or H
is_subformula_of G by
A1,
Th53;
then
A3: H
is_subformula_of G;
G
is_subformula_of F by
A2,
Th82;
then H
is_subformula_of F by
A3,
Th57;
hence thesis by
Def22;
end;