cqc_lang.miz
    
    begin
    
    reserve A for
    QC-alphabet;
    
    reserve i,j,k for
    Nat;
    
    
    
    
    
    Lm1: for x be 
    bound_QC-variable of A holds not x 
    in ( 
    fixed_QC-variables A) 
    
    proof
    
      let x be
    bound_QC-variable of A; 
    
      x
    in ( 
    bound_QC-variables A); 
    
      then x
    in  
    [:
    {4}, (
    QC-symbols A):] by 
    QC_LANG1:def 4;
    
      then
    
      consider x1,x2 be
    object such that 
    
      
    
    A1: x1 
    in  
    {4} and x2
    in ( 
    QC-symbols A) and 
    
      
    
    A2: x 
    =  
    [x1, x2] by
    ZFMISC_1:def 2;
    
      
    
      
    
    A3: x1 
    = 4 by 
    A1,
    TARSKI:def 1;
    
      assume x
    in ( 
    fixed_QC-variables A); 
    
      then x
    in  
    [:
    {5}, (
    QC-symbols A):] by 
    QC_LANG1:def 5;
    
      then
    
      consider c1,c2 be
    object such that 
    
      
    
    A4: c1 
    in  
    {5} and c2
    in ( 
    QC-symbols A) and 
    
      
    
    A5: x 
    =  
    [c1, c2] by
    ZFMISC_1:def 2;
    
      c1
    = 5 by 
    A4,
    TARSKI:def 1;
    
      hence contradiction by
    A2,
    A5,
    A3,
    XTUPLE_0: 1;
    
    end;
    
    theorem :: 
    
    CQC_LANG:1
    
    
    
    
    
    Th1: for x be 
    set holds x 
    in ( 
    QC-variables A) iff x 
    in ( 
    fixed_QC-variables A) or x 
    in ( 
    free_QC-variables A) or x 
    in ( 
    bound_QC-variables A) 
    
    proof
    
      let x be
    set;
    
      thus x
    in ( 
    QC-variables A) implies x 
    in ( 
    fixed_QC-variables A) or x 
    in ( 
    free_QC-variables A) or x 
    in ( 
    bound_QC-variables A) 
    
      proof
    
        assume x
    in ( 
    QC-variables A); 
    
        then x
    in ( 
    [:
    {6},
    NAT :] 
    \/  
    [:
    {4, 5}, (
    QC-symbols A):]) by 
    QC_LANG1:def 3;
    
        then x
    in  
    [:
    {6},
    NAT :] or x 
    in  
    [:
    {4, 5}, (
    QC-symbols A):] by 
    XBOOLE_0:def 3;
    
        then
    
        consider x1,x2 be
    object such that 
    
        
    
    A1: (x1 
    in  
    {6} & x2
    in  
    NAT & x 
    =  
    [x1, x2]) or (x1
    in  
    {4, 5} & x2
    in ( 
    QC-symbols A) & x 
    =  
    [x1, x2]) by
    ZFMISC_1:def 2;
    
        (x1
    in  
    {6} & x2
    in  
    NAT & x 
    =  
    [x1, x2]) or ((x1
    = 4 or x1 
    = 5) & x2 
    in ( 
    QC-symbols A) & x 
    =  
    [x1, x2]) by
    A1,
    TARSKI:def 2;
    
        then ((x1
    in  
    {4} & x2
    in ( 
    QC-symbols A)) or (x1 
    in  
    {5} & x2
    in ( 
    QC-symbols A)) or (x1 
    in  
    {6} & x2
    in  
    NAT )) & x 
    =  
    [x1, x2] by
    TARSKI:def 1;
    
        then x
    in  
    [:
    {4}, (
    QC-symbols A):] or x 
    in  
    [:
    {5}, (
    QC-symbols A):] or x 
    in  
    [:
    {6},
    NAT :] by 
    ZFMISC_1:def 2;
    
        hence thesis by
    QC_LANG1:def 4,
    QC_LANG1:def 5,
    QC_LANG1:def 6;
    
      end;
    
      thus thesis;
    
    end;
    
    definition
    
      let A;
    
      mode
    
    Substitution of A is 
    PartFunc of ( 
    free_QC-variables A), ( 
    QC-variables A); 
    
    end
    
    reserve f for
    Substitution of A; 
    
    definition
    
      let A;
    
      let l be
    FinSequence of ( 
    QC-variables A); 
    
      let f;
    
      :: 
    
    CQC_LANG:def1
    
      func
    
    Subst (l,f) -> 
    FinSequence of ( 
    QC-variables A) means 
    
      :
    
    Def1: ( 
    len it ) 
    = ( 
    len l) & for k st 1 
    <= k & k 
    <= ( 
    len l) holds ((l 
    . k) 
    in ( 
    dom f) implies (it 
    . k) 
    = (f 
    . (l 
    . k))) & ( not (l 
    . k) 
    in ( 
    dom f) implies (it 
    . k) 
    = (l 
    . k)); 
    
      existence
    
      proof
    
        defpred
    
    P[
    set, 
    object] means ((l
    . $1) 
    in ( 
    dom f) implies $2 
    = (f 
    . (l 
    . $1))) & ( not (l 
    . $1) 
    in ( 
    dom f) implies $2 
    = (l 
    . $1)); 
    
        
    
        
    
    A1: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len l)) holds ex y be 
    object st 
    P[k, y]
    
        proof
    
          let k be
    Nat;
    
          assume k
    in ( 
    Seg ( 
    len l)); 
    
          (l
    . k) 
    in ( 
    dom f) implies thesis; 
    
          hence thesis;
    
        end;
    
        consider s be
    FinSequence such that 
    
        
    
    A2: ( 
    dom s) 
    = ( 
    Seg ( 
    len l)) and 
    
        
    
    A3: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len l)) holds 
    P[k, (s
    . k)] from 
    FINSEQ_1:sch 1(
    A1);
    
        (
    rng s) 
    c= ( 
    QC-variables A) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng s); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A4: x 
    in ( 
    dom s) and 
    
          
    
    A5: (s 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider x as
    Nat by 
    A4;
    
          
    
    A6: 
    
          now
    
            per cases ;
    
              case (l
    . x) 
    in ( 
    dom f); 
    
              hence (s
    . x) 
    = (f 
    . (l 
    . x)) & (f 
    . (l 
    . x)) 
    in ( 
    QC-variables A) by 
    A2,
    A3,
    A4,
    PARTFUN1: 4;
    
            end;
    
              case not (l
    . x) 
    in ( 
    dom f); 
    
              hence (s
    . x) 
    = (l 
    . x) by 
    A2,
    A3,
    A4;
    
            end;
    
          end;
    
          (
    dom l) 
    = ( 
    Seg ( 
    len l)) by 
    FINSEQ_1:def 3;
    
          hence thesis by
    A2,
    A4,
    A5,
    A6,
    FINSEQ_2: 11;
    
        end;
    
        then
    
        reconsider s as
    FinSequence of ( 
    QC-variables A) by 
    FINSEQ_1:def 4;
    
        take s;
    
        thus (
    len s) 
    = ( 
    len l) by 
    A2,
    FINSEQ_1:def 3;
    
        let k;
    
        assume 1
    <= k & k 
    <= ( 
    len l); 
    
        then k
    in ( 
    dom l) by 
    FINSEQ_3: 25;
    
        then k
    in ( 
    Seg ( 
    len l)) by 
    FINSEQ_1:def 3;
    
        hence thesis by
    A3;
    
      end;
    
      uniqueness
    
      proof
    
        let l1,l2 be
    FinSequence of ( 
    QC-variables A) such that 
    
        
    
    A7: ( 
    len l1) 
    = ( 
    len l) and 
    
        
    
    A8: for k st 1 
    <= k & k 
    <= ( 
    len l) holds ((l 
    . k) 
    in ( 
    dom f) implies (l1 
    . k) 
    = (f 
    . (l 
    . k))) & ( not (l 
    . k) 
    in ( 
    dom f) implies (l1 
    . k) 
    = (l 
    . k)) and 
    
        
    
    A9: ( 
    len l2) 
    = ( 
    len l) and 
    
        
    
    A10: for k st 1 
    <= k & k 
    <= ( 
    len l) holds ((l 
    . k) 
    in ( 
    dom f) implies (l2 
    . k) 
    = (f 
    . (l 
    . k))) & ( not (l 
    . k) 
    in ( 
    dom f) implies (l2 
    . k) 
    = (l 
    . k)); 
    
        now
    
          let k be
    Nat;
    
          assume
    
          
    
    A11: 1 
    <= k & k 
    <= ( 
    len l); 
    
          
    
          
    
    A12: not (l 
    . k) 
    in ( 
    dom f) implies (l1 
    . k) 
    = (l 
    . k) by 
    A8,
    A11;
    
          (l
    . k) 
    in ( 
    dom f) implies (l1 
    . k) 
    = (f 
    . (l 
    . k)) by 
    A8,
    A11;
    
          hence (l1
    . k) 
    = (l2 
    . k) by 
    A10,
    A11,
    A12;
    
        end;
    
        hence thesis by
    A7,
    A9,
    FINSEQ_1: 14;
    
      end;
    
    end
    
    registration
    
      let A, k;
    
      let l be
    QC-variable_list of k, A; 
    
      let f;
    
      cluster ( 
    Subst (l,f)) -> k 
    -element;
    
      coherence
    
      proof
    
        (
    len ( 
    Subst (l,f))) 
    = ( 
    len l) & ( 
    len l) 
    = k by 
    Def1,
    CARD_1:def 7;
    
        hence thesis by
    CARD_1:def 7;
    
      end;
    
    end
    
    theorem :: 
    
    CQC_LANG:2
    
    
    
    
    
    Th2: for x be 
    bound_QC-variable of A, a be 
    free_QC-variable of A holds (a 
    .--> x) is 
    Substitution of A 
    
    proof
    
      let x be
    bound_QC-variable of A; 
    
      let a be
    free_QC-variable of A; 
    
      set f = (a
    .--> x); 
    
      (
    rng f) 
    =  
    {x} by
    FUNCOP_1: 8;
    
      then
    
      
    
    A1: ( 
    rng f) 
    c= ( 
    QC-variables A) by 
    ZFMISC_1: 31;
    
      (
    dom f) 
    c= ( 
    free_QC-variables A) by 
    ZFMISC_1: 31;
    
      hence thesis by
    A1,
    RELSET_1: 4;
    
    end;
    
    definition
    
      let A;
    
      let a be
    free_QC-variable of A, x be 
    bound_QC-variable of A; 
    
      :: original:
    .-->
    
      redefine
    
      func a
    
    .--> x -> 
    Substitution of A ; 
    
      coherence by
    Th2;
    
    end
    
    theorem :: 
    
    CQC_LANG:3
    
    
    
    
    
    Th3: for x be 
    bound_QC-variable of A, a be 
    free_QC-variable of A, l,ll be 
    FinSequence of ( 
    QC-variables A) holds f 
    = (a 
    .--> x) & ll 
    = ( 
    Subst (l,f)) & 1 
    <= k & k 
    <= ( 
    len l) implies ((l 
    . k) 
    = a implies (ll 
    . k) 
    = x) & ((l 
    . k) 
    <> a implies (ll 
    . k) 
    = (l 
    . k)) 
    
    proof
    
      let x be
    bound_QC-variable of A, a be 
    free_QC-variable of A, l,ll be 
    FinSequence of ( 
    QC-variables A); 
    
      set f9 = (a
    .--> x); 
    
      assume
    
      
    
    A1: f 
    = (a 
    .--> x) & ll 
    = ( 
    Subst (l,f)) & 1 
    <= k & k 
    <= ( 
    len l); 
    
      thus (l
    . k) 
    = a implies (ll 
    . k) 
    = x 
    
      proof
    
        
    
        
    
    A2: (f9 
    . a) 
    = x by 
    FUNCOP_1: 72;
    
        assume
    
        
    
    A3: (l 
    . k) 
    = a; 
    
        then (l
    . k) 
    in  
    {a} by
    TARSKI:def 1;
    
        then (l
    . k) 
    in ( 
    dom f9); 
    
        hence thesis by
    A1,
    A3,
    A2,
    Def1;
    
      end;
    
      assume (l
    . k) 
    <> a; 
    
      then not (l
    . k) 
    in  
    {a} by
    TARSKI:def 1;
    
      then not (l
    . k) 
    in ( 
    dom f9); 
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    definition
    
      let A;
    
      :: 
    
    CQC_LANG:def2
    
      func
    
    CQC-WFF (A) -> 
    Subset of ( 
    QC-WFF A) equals { s where s be 
    QC-formula of A : ( 
    Fixed s) 
    =  
    {} & ( 
    Free s) 
    =  
    {} }; 
    
      coherence
    
      proof
    
        set F = { s where s be
    QC-formula of A : ( 
    Fixed s) 
    =  
    {} & ( 
    Free s) 
    =  
    {} }; 
    
        F
    c= ( 
    QC-WFF A) 
    
        proof
    
          let x be
    object;
    
          assume x
    in F; 
    
          then ex s be
    QC-formula of A st s 
    = x & ( 
    Fixed s) 
    =  
    {} & ( 
    Free s) 
    =  
    {} ; 
    
          hence thesis;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let A;
    
      cluster ( 
    CQC-WFF A) -> non 
    empty;
    
      coherence
    
      proof
    
        (
    Fixed ( 
    VERUM A)) 
    =  
    {} & ( 
    Free ( 
    VERUM A)) 
    =  
    {} by 
    QC_LANG3: 53,
    QC_LANG3: 63;
    
        then (
    VERUM A) 
    in { s where s be 
    QC-formula of A : ( 
    Fixed s) 
    =  
    {} & ( 
    Free s) 
    =  
    {} }; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CQC_LANG:4
    
    
    
    
    
    Th4: for p be 
    Element of ( 
    QC-WFF A) holds p is 
    Element of ( 
    CQC-WFF A) iff ( 
    Fixed p) 
    =  
    {} & ( 
    Free p) 
    =  
    {}  
    
    proof
    
      let p be
    Element of ( 
    QC-WFF A); 
    
      thus p is
    Element of ( 
    CQC-WFF A) implies ( 
    Fixed p) 
    =  
    {} & ( 
    Free p) 
    =  
    {}  
    
      proof
    
        assume p is
    Element of ( 
    CQC-WFF A); 
    
        then p
    in ( 
    CQC-WFF A); 
    
        then ex s be
    QC-formula of A st s 
    = p & ( 
    Fixed s) 
    =  
    {} & ( 
    Free s) 
    =  
    {} ; 
    
        hence thesis;
    
      end;
    
      assume (
    Fixed p) 
    =  
    {} & ( 
    Free p) 
    =  
    {} ; 
    
      then p
    in ( 
    CQC-WFF A); 
    
      hence thesis;
    
    end;
    
    registration
    
      let A;
    
      let k be
    Nat;
    
      cluster ( 
    bound_QC-variables A) 
    -valued for 
    QC-variable_list of k, A; 
    
      existence
    
      proof
    
        set null =
    0 ; 
    
        reconsider null as
    QC-symbol of A by 
    QC_LANG1: 3;
    
        set l = (k
    |-> ( 
    x. null)); 
    
        (
    rng l) 
    c= ( 
    QC-variables A) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng l); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom l) and 
    
          
    
    A3: (l 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          y
    = ( 
    x. null) by 
    A2,
    A3,
    FINSEQ_2: 57;
    
          hence thesis;
    
        end;
    
        then
    
        reconsider l as
    QC-variable_list of k, A by 
    FINSEQ_1:def 4;
    
        take l;
    
        let x be
    object;
    
        assume x
    in ( 
    rng l); 
    
        then
    
        consider i be
    object such that 
    
        
    
    A4: i 
    in ( 
    dom l) and 
    
        
    
    A5: x 
    = (l 
    . i) by 
    FUNCT_1:def 3;
    
        reconsider i as
    Nat by 
    A4;
    
        (l
    . i) 
    = ( 
    x. null) by 
    A4,
    FINSEQ_2: 57;
    
        hence thesis by
    A5;
    
      end;
    
    end
    
    definition
    
      let A;
    
      let k be
    Nat;
    
      mode
    
    CQC-variable_list of k,A is ( 
    bound_QC-variables A) 
    -valued  
    QC-variable_list of k, A; 
    
    end
    
    theorem :: 
    
    CQC_LANG:5
    
    
    
    
    
    Th5: for l be 
    QC-variable_list of k, A holds l is 
    CQC-variable_list of k, A iff { (l 
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    free_QC-variables A) } 
    =  
    {} & { (l 
    . j) : 1 
    <= j & j 
    <= ( 
    len l) & (l 
    . j) 
    in ( 
    fixed_QC-variables A) } 
    =  
    {}  
    
    proof
    
      let l be
    QC-variable_list of k, A; 
    
      set FR = { (l
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    free_QC-variables A) }; 
    
      set FI = { (l
    . j) : 1 
    <= j & j 
    <= ( 
    len l) & (l 
    . j) 
    in ( 
    fixed_QC-variables A) }; 
    
      thus l is
    CQC-variable_list of k, A implies FR 
    =  
    {} & FI 
    =  
    {}  
    
      proof
    
        assume l is
    CQC-variable_list of k, A; 
    
        then
    
        reconsider l as
    CQC-variable_list of k, A; 
    
        now
    
          set x = the
    Element of FR; 
    
          assume FR
    <>  
    {} ; 
    
          then x
    in FR; 
    
          then
    
          consider i such that x
    = (l 
    . i) and 
    
          
    
    A1: 1 
    <= i & i 
    <= ( 
    len l) and 
    
          
    
    A2: (l 
    . i) 
    in ( 
    free_QC-variables A); 
    
          i
    in ( 
    dom l) by 
    A1,
    FINSEQ_3: 25;
    
          then (
    rng l) 
    c= ( 
    bound_QC-variables A) & (l 
    . i) 
    in ( 
    rng l) by 
    FUNCT_1:def 3,
    RELAT_1:def 19;
    
          hence contradiction by
    A2,
    QC_LANG3: 34;
    
        end;
    
        hence FR
    =  
    {} ; 
    
        now
    
          set x = the
    Element of FI; 
    
          assume FI
    <>  
    {} ; 
    
          then x
    in FI; 
    
          then
    
          consider i such that x
    = (l 
    . i) and 
    
          
    
    A3: 1 
    <= i & i 
    <= ( 
    len l) and 
    
          
    
    A4: (l 
    . i) 
    in ( 
    fixed_QC-variables A); 
    
          i
    in ( 
    dom l) by 
    A3,
    FINSEQ_3: 25;
    
          then (
    rng l) 
    c= ( 
    bound_QC-variables A) & (l 
    . i) 
    in ( 
    rng l) by 
    FUNCT_1:def 3,
    RELAT_1:def 19;
    
          hence contradiction by
    A4,
    QC_LANG3: 33;
    
        end;
    
        hence thesis;
    
      end;
    
      assume that
    
      
    
    A5: FR 
    =  
    {} and 
    
      
    
    A6: FI 
    =  
    {} ; 
    
      l is (
    bound_QC-variables A) 
    -valued
    
      proof
    
        let x be
    object;
    
        
    
        
    
    A7: ( 
    rng l) 
    c= ( 
    QC-variables A) by 
    FINSEQ_1:def 4;
    
        assume x
    in ( 
    rng l); 
    
        then
    
        consider i be
    object such that 
    
        
    
    A8: i 
    in ( 
    dom l) and 
    
        
    
    A9: (l 
    . i) 
    = x by 
    FUNCT_1:def 3;
    
        reconsider i as
    Nat by 
    A8;
    
        
    
        
    
    A10: 1 
    <= i & i 
    <= ( 
    len l) by 
    A8,
    FINSEQ_3: 25;
    
        
    
    A11: 
    
        now
    
          assume x
    in ( 
    fixed_QC-variables A); 
    
          then x
    in FI by 
    A9,
    A10;
    
          hence contradiction by
    A6;
    
        end;
    
        
    
    A12: 
    
        now
    
          assume x
    in ( 
    free_QC-variables A); 
    
          then x
    in FR by 
    A9,
    A10;
    
          hence contradiction by
    A5;
    
        end;
    
        (l
    . i) 
    in ( 
    rng l) by 
    A8,
    FUNCT_1:def 3;
    
        hence thesis by
    A9,
    A7,
    A11,
    A12,
    Th1;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CQC_LANG:6
    
    
    
    
    
    Th6: ( 
    VERUM A) is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      (
    Fixed ( 
    VERUM A)) 
    =  
    {} & ( 
    Free ( 
    VERUM A)) 
    =  
    {} by 
    QC_LANG3: 53,
    QC_LANG3: 63;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    CQC_LANG:7
    
    
    
    
    
    Th7: for P be 
    QC-pred_symbol of k, A holds for l be 
    QC-variable_list of k, A holds (P 
    ! l) is 
    Element of ( 
    CQC-WFF A) iff { (l 
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    free_QC-variables A) } 
    =  
    {} & { (l 
    . j) : 1 
    <= j & j 
    <= ( 
    len l) & (l 
    . j) 
    in ( 
    fixed_QC-variables A) } 
    =  
    {}  
    
    proof
    
      let P be
    QC-pred_symbol of k, A; 
    
      let l be
    QC-variable_list of k, A; 
    
      
    
      
    
    A1: ( 
    Free (P 
    ! l)) 
    = { (l 
    . j) : 1 
    <= j & j 
    <= ( 
    len l) & (l 
    . j) 
    in ( 
    free_QC-variables A) } by 
    QC_LANG3: 54;
    
      (
    Fixed (P 
    ! l)) 
    = { (l 
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    fixed_QC-variables A) } by 
    QC_LANG3: 64;
    
      hence thesis by
    A1,
    Th4;
    
    end;
    
    definition
    
      let k, A;
    
      let P be
    QC-pred_symbol of k, A; 
    
      let l be
    CQC-variable_list of k, A; 
    
      :: original:
    !
    
      redefine
    
      func P
    
    ! l -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence
    
      proof
    
        
    
        
    
    A1: { (l 
    . j) : 1 
    <= j & j 
    <= ( 
    len l) & (l 
    . j) 
    in ( 
    fixed_QC-variables A) } 
    =  
    {} by 
    Th5;
    
        { (l
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    free_QC-variables A) } 
    =  
    {} by 
    Th5;
    
        hence thesis by
    A1,
    Th7;
    
      end;
    
    end
    
    theorem :: 
    
    CQC_LANG:8
    
    
    
    
    
    Th8: for p be 
    Element of ( 
    QC-WFF A) holds ( 
    'not' p) is 
    Element of ( 
    CQC-WFF A) iff p is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let p be
    Element of ( 
    QC-WFF A); 
    
      thus (
    'not' p) is 
    Element of ( 
    CQC-WFF A) implies p is 
    Element of ( 
    CQC-WFF A) 
    
      proof
    
        assume
    
        
    
    A1: ( 
    'not' p) is 
    Element of ( 
    CQC-WFF A); 
    
        then (
    Free ( 
    'not' p)) 
    =  
    {} by 
    Th4;
    
        then
    
        
    
    A2: ( 
    Free p) 
    =  
    {} by 
    QC_LANG3: 55;
    
        (
    Fixed ( 
    'not' p)) 
    =  
    {} by 
    A1,
    Th4;
    
        then (
    Fixed p) 
    =  
    {} by 
    QC_LANG3: 65;
    
        hence thesis by
    A2,
    Th4;
    
      end;
    
      assume p is
    Element of ( 
    CQC-WFF A); 
    
      then
    
      reconsider r = p as
    Element of ( 
    CQC-WFF A); 
    
      (
    Fixed r) 
    =  
    {} by 
    Th4;
    
      then
    
      
    
    A3: ( 
    Fixed ( 
    'not' r)) 
    =  
    {} by 
    QC_LANG3: 65;
    
      (
    Free r) 
    =  
    {} by 
    Th4;
    
      then (
    Free ( 
    'not' r)) 
    =  
    {} by 
    QC_LANG3: 55;
    
      hence thesis by
    A3,
    Th4;
    
    end;
    
    theorem :: 
    
    CQC_LANG:9
    
    
    
    
    
    Th9: for p,q be 
    Element of ( 
    QC-WFF A) holds (p 
    '&' q) is 
    Element of ( 
    CQC-WFF A) iff p is 
    Element of ( 
    CQC-WFF A) & q is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let p,q be
    Element of ( 
    QC-WFF A); 
    
      thus (p
    '&' q) is 
    Element of ( 
    CQC-WFF A) implies p is 
    Element of ( 
    CQC-WFF A) & q is 
    Element of ( 
    CQC-WFF A) 
    
      proof
    
        assume
    
        
    
    A1: (p 
    '&' q) is 
    Element of ( 
    CQC-WFF A); 
    
        then (
    Fixed (p 
    '&' q)) 
    =  
    {} by 
    Th4;
    
        then
    
        
    
    A2: (( 
    Fixed p) 
    \/ ( 
    Fixed q)) 
    =  
    {} by 
    QC_LANG3: 67;
    
        then
    
        
    
    A3: ( 
    Fixed p) 
    =  
    {} ; 
    
        (
    Free (p 
    '&' q)) 
    =  
    {} by 
    A1,
    Th4;
    
        then
    
        
    
    A4: (( 
    Free p) 
    \/ ( 
    Free q)) 
    =  
    {} by 
    QC_LANG3: 57;
    
        then (
    Free p) 
    =  
    {} ; 
    
        hence thesis by
    A4,
    A2,
    A3,
    Th4;
    
      end;
    
      assume p is
    Element of ( 
    CQC-WFF A) & q is 
    Element of ( 
    CQC-WFF A); 
    
      then
    
      reconsider r = p, s = q as
    Element of ( 
    CQC-WFF A); 
    
      (
    Fixed r) 
    =  
    {} by 
    Th4;
    
      then ((
    Fixed r) 
    \/ ( 
    Fixed s)) 
    =  
    {} by 
    Th4;
    
      then
    
      
    
    A5: ( 
    Fixed (r 
    '&' s)) 
    =  
    {} by 
    QC_LANG3: 67;
    
      (
    Free r) 
    =  
    {} by 
    Th4;
    
      then ((
    Free r) 
    \/ ( 
    Free s)) 
    =  
    {} by 
    Th4;
    
      then (
    Free (r 
    '&' s)) 
    =  
    {} by 
    QC_LANG3: 57;
    
      hence thesis by
    A5,
    Th4;
    
    end;
    
    definition
    
      let A;
    
      :: original:
    VERUM
    
      redefine
    
      func
    
    VERUM (A) -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th6;
    
      let r be
    Element of ( 
    CQC-WFF A); 
    
      :: original:
    'not'
    
      redefine
    
      func
    
    'not' r -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th8;
    
      let s be
    Element of ( 
    CQC-WFF A); 
    
      :: original:
    '&'
    
      redefine
    
      func r
    
    '&' s -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th9;
    
    end
    
    theorem :: 
    
    CQC_LANG:10
    
    
    
    
    
    Th10: for r,s be 
    Element of ( 
    CQC-WFF A) holds (r 
    => s) is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let r,s be
    Element of ( 
    CQC-WFF A); 
    
      (r
    => s) 
    = ( 
    'not' (r 
    '&' ( 
    'not' s))) by 
    QC_LANG2:def 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CQC_LANG:11
    
    
    
    
    
    Th11: for r,s be 
    Element of ( 
    CQC-WFF A) holds (r 
    'or' s) is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let r,s be
    Element of ( 
    CQC-WFF A); 
    
      (r
    'or' s) 
    = ( 
    'not' (( 
    'not' r) 
    '&' ( 
    'not' s))) by 
    QC_LANG2:def 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CQC_LANG:12
    
    
    
    
    
    Th12: for r,s be 
    Element of ( 
    CQC-WFF A) holds (r 
    <=> s) is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let r,s be
    Element of ( 
    CQC-WFF A); 
    
      (r
    <=> s) 
    = ((r 
    => s) 
    '&' (s 
    => r)) by 
    QC_LANG2:def 4
    
      .= ((
    'not' (r 
    '&' ( 
    'not' s))) 
    '&' (s 
    => r)) by 
    QC_LANG2:def 2
    
      .= ((
    'not' (r 
    '&' ( 
    'not' s))) 
    '&' ( 
    'not' (s 
    '&' ( 
    'not' r)))) by 
    QC_LANG2:def 2;
    
      hence thesis;
    
    end;
    
    definition
    
      let A;
    
      let r,s be
    Element of ( 
    CQC-WFF A); 
    
      :: original:
    =>
    
      redefine
    
      func r
    
    => s -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th10;
    
      :: original:
    'or'
    
      redefine
    
      func r
    
    'or' s -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th11;
    
      :: original:
    <=>
    
      redefine
    
      func r
    
    <=> s -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th12;
    
    end
    
    theorem :: 
    
    CQC_LANG:13
    
    
    
    
    
    Th13: for x be 
    bound_QC-variable of A, p be 
    Element of ( 
    QC-WFF A) holds ( 
    All (x,p)) is 
    Element of ( 
    CQC-WFF A) iff p is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let x be
    bound_QC-variable of A, p be 
    Element of ( 
    QC-WFF A); 
    
      thus (
    All (x,p)) is 
    Element of ( 
    CQC-WFF A) implies p is 
    Element of ( 
    CQC-WFF A) 
    
      proof
    
        assume
    
        
    
    A1: ( 
    All (x,p)) is 
    Element of ( 
    CQC-WFF A); 
    
        then (
    Fixed ( 
    All (x,p))) 
    =  
    {} by 
    Th4;
    
        then
    
        
    
    A2: ( 
    Fixed p) 
    =  
    {} by 
    QC_LANG3: 68;
    
        (
    Free ( 
    All (x,p))) 
    =  
    {} by 
    A1,
    Th4;
    
        then (
    Free p) 
    =  
    {} by 
    QC_LANG3: 58;
    
        hence thesis by
    A2,
    Th4;
    
      end;
    
      assume
    
      
    
    A3: p is 
    Element of ( 
    CQC-WFF A); 
    
      then (
    Fixed p) 
    =  
    {} by 
    Th4;
    
      then
    
      
    
    A4: ( 
    Fixed ( 
    All (x,p))) 
    =  
    {} by 
    QC_LANG3: 68;
    
      (
    Free p) 
    =  
    {} by 
    A3,
    Th4;
    
      then (
    Free ( 
    All (x,p))) 
    =  
    {} by 
    QC_LANG3: 58;
    
      hence thesis by
    A4,
    Th4;
    
    end;
    
    definition
    
      let A;
    
      let x be
    bound_QC-variable of A, r be 
    Element of ( 
    CQC-WFF A); 
    
      :: original:
    All
    
      redefine
    
      func
    
    All (x,r) -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th13;
    
    end
    
    theorem :: 
    
    CQC_LANG:14
    
    
    
    
    
    Th14: for x be 
    bound_QC-variable of A, r be 
    Element of ( 
    CQC-WFF A) holds ( 
    Ex (x,r)) is 
    Element of ( 
    CQC-WFF A) 
    
    proof
    
      let x be
    bound_QC-variable of A, r be 
    Element of ( 
    CQC-WFF A); 
    
      (
    Ex (x,r)) 
    = ( 
    'not' ( 
    All (x,( 
    'not' r)))) by 
    QC_LANG2:def 5;
    
      hence thesis;
    
    end;
    
    definition
    
      let A;
    
      let x be
    bound_QC-variable of A, r be 
    Element of ( 
    CQC-WFF A); 
    
      :: original:
    Ex
    
      redefine
    
      func
    
    Ex (x,r) -> 
    Element of ( 
    CQC-WFF A) ; 
    
      coherence by
    Th14;
    
    end
    
    scheme :: 
    
    CQC_LANG:sch1
    
    CQCInd { A() ->
    QC-alphabet , P[ 
    set] } :
    
for r be 
    Element of ( 
    CQC-WFF A()) holds P[r] 
    
      provided
    
      
    
    A1: for r,s be 
    Element of ( 
    CQC-WFF A()) holds for x be 
    bound_QC-variable of A() holds for k holds for l be 
    CQC-variable_list of k, A() holds for P be 
    QC-pred_symbol of k, A() holds P[( 
    VERUM A())] & P[(P 
    ! l)] & (P[r] implies P[( 
    'not' r)]) & (P[r] & P[s] implies P[(r 
    '&' s)]) & (P[r] implies P[( 
    All (x,r))]); 
    
      defpred
    
    Prop[
    Element of ( 
    QC-WFF A())] means $1 is 
    Element of ( 
    CQC-WFF A()) implies P[$1]; 
    
      
    
      
    
    A2: for p be 
    Element of ( 
    QC-WFF A()) st 
    Prop[p] holds
    Prop[(
    'not' p)] 
    
      proof
    
        let p be
    Element of ( 
    QC-WFF A()); 
    
        assume
    
        
    
    A3: 
    Prop[p];
    
        assume (
    'not' p) is 
    Element of ( 
    CQC-WFF A()); 
    
        then p is
    Element of ( 
    CQC-WFF A()) by 
    Th8;
    
        hence thesis by
    A1,
    A3;
    
      end;
    
      
    
      
    
    A4: for p,q be 
    Element of ( 
    QC-WFF A()) st 
    Prop[p] &
    Prop[q] holds
    Prop[(p
    '&' q)] 
    
      proof
    
        let p,q be
    Element of ( 
    QC-WFF A()); 
    
        assume
    
        
    
    A5: 
    Prop[p] &
    Prop[q];
    
        assume (p
    '&' q) is 
    Element of ( 
    CQC-WFF A()); 
    
        then p is
    Element of ( 
    CQC-WFF A()) & q is 
    Element of ( 
    CQC-WFF A()) by 
    Th9;
    
        hence thesis by
    A1,
    A5;
    
      end;
    
      
    
      
    
    A6: for k be 
    Nat, P be 
    QC-pred_symbol of k, A(), l be 
    QC-variable_list of k, A() holds 
    Prop[(P
    ! l)] 
    
      proof
    
        let k be
    Nat, P be 
    QC-pred_symbol of k, A(), l be 
    QC-variable_list of k, A(); 
    
        assume
    
        
    
    A7: (P 
    ! l) is 
    Element of ( 
    CQC-WFF A()); 
    
        reconsider k as
    Nat;
    
        reconsider l as
    QC-variable_list of k, A(); 
    
        
    
        
    
    A8: { (l 
    . j) : 1 
    <= j & j 
    <= ( 
    len l) & (l 
    . j) 
    in ( 
    fixed_QC-variables A()) } 
    =  
    {} by 
    Th7,
    A7;
    
        { (l
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    free_QC-variables A()) } 
    =  
    {} by 
    A7,
    Th7;
    
        then l is
    CQC-variable_list of k, A() by 
    A8,
    Th5;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A9: for x be 
    bound_QC-variable of A(), p be 
    Element of ( 
    QC-WFF A()) st 
    Prop[p] holds
    Prop[(
    All (x,p))] 
    
      proof
    
        let x be
    bound_QC-variable of A(), p be 
    Element of ( 
    QC-WFF A()); 
    
        assume
    
        
    
    A10: 
    Prop[p];
    
        assume (
    All (x,p)) is 
    Element of ( 
    CQC-WFF A()); 
    
        then p is
    Element of ( 
    CQC-WFF A()) by 
    Th13;
    
        hence thesis by
    A1,
    A10;
    
      end;
    
      
    
      
    
    A11: 
    Prop[(
    VERUM A())] by 
    A1;
    
      for p be
    Element of ( 
    QC-WFF A()) holds 
    Prop[p] from
    QC_LANG1:sch 1(
    A6,
    A11,
    A2,
    A4,
    A9);
    
      hence thesis;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch2
    
    CQCFuncEx { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() } : 
    
ex F be 
    Function of ( 
    CQC-WFF Al()), D() st (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      deffunc
    
    q(
    Element of ( 
    QC-WFF Al()), 
    Element of D()) = Q(bound_in,$2); 
    
      deffunc
    
    a(
    Element of ( 
    QC-WFF Al())) = A(the_arity_of,the_pred_symbol_of,the_arguments_of); 
    
      consider F be
    Function of ( 
    QC-WFF Al()), D() such that 
    
      
    
    A1: (F 
    . ( 
    VERUM Al())) 
    = V() & for p be 
    Element of ( 
    QC-WFF Al()) holds (p is 
    atomic implies (F 
    . p) 
    =  
    a(p)) & (p is
    negative implies (F 
    . p) 
    = N(.)) & (p is 
    conjunctive implies (F 
    . p) 
    = C(.,.)) & (p is 
    universal implies (F 
    . p) 
    =  
    q(p,.)) from
    QC_LANG1:sch 3;
    
      reconsider G = (F
    | ( 
    CQC-WFF Al())) as 
    Function of ( 
    CQC-WFF Al()), D() by 
    FUNCT_2: 32;
    
      take G;
    
      thus (G
    . ( 
    VERUM Al())) 
    = V() by 
    A1,
    FUNCT_1: 49;
    
      let r,s be
    Element of ( 
    CQC-WFF Al()); 
    
      let x be
    bound_QC-variable of Al(); 
    
      let k;
    
      let l be
    CQC-variable_list of k, Al(); 
    
      let P be
    QC-pred_symbol of k, Al(); 
    
      
    
      
    
    A2: ( 
    the_arity_of P) 
    = k by 
    QC_LANG1: 11;
    
      
    
      
    
    A3: (P 
    ! l) is 
    atomic by 
    QC_LANG1:def 18;
    
      then
    
      
    
    A4: ( 
    the_arguments_of (P 
    ! l)) 
    = l & ( 
    the_pred_symbol_of (P 
    ! l)) 
    = P by 
    QC_LANG1:def 22,
    QC_LANG1:def 23;
    
      
    
      thus (G
    . (P 
    ! l)) 
    = (F 
    . (P 
    ! l)) by 
    FUNCT_1: 49
    
      .= A(k,P,l) by
    A1,
    A3,
    A4,
    A2;
    
      set r9 = (G
    . r), s9 = (G 
    . s); 
    
      
    
      
    
    A5: r9 
    = (F 
    . r) by 
    FUNCT_1: 49;
    
      
    
      
    
    A6: (r 
    '&' s) is 
    conjunctive by 
    QC_LANG1:def 20;
    
      then
    
      
    
    A7: ( 
    the_left_argument_of (r 
    '&' s)) 
    = r & ( 
    the_right_argument_of (r 
    '&' s)) 
    = s by 
    QC_LANG1:def 25,
    QC_LANG1:def 26;
    
      
    
      
    
    A8: ( 
    'not' r) is 
    negative by 
    QC_LANG1:def 19;
    
      then
    
      
    
    A9: ( 
    the_argument_of ( 
    'not' r)) 
    = r by 
    QC_LANG1:def 24;
    
      
    
      thus (G
    . ( 
    'not' r)) 
    = (F 
    . ( 
    'not' r)) by 
    FUNCT_1: 49
    
      .= N(r9) by
    A1,
    A5,
    A8,
    A9;
    
      
    
      
    
    A10: s9 
    = (F 
    . s) by 
    FUNCT_1: 49;
    
      
    
      thus (G
    . (r 
    '&' s)) 
    = (F 
    . (r 
    '&' s)) by 
    FUNCT_1: 49
    
      .= C(r9,s9) by
    A1,
    A5,
    A10,
    A6,
    A7;
    
      
    
      
    
    A11: ( 
    All (x,r)) is 
    universal by 
    QC_LANG1:def 21;
    
      then
    
      
    
    A12: ( 
    bound_in ( 
    All (x,r))) 
    = x & ( 
    the_scope_of ( 
    All (x,r))) 
    = r by 
    QC_LANG1:def 27,
    QC_LANG1:def 28;
    
      
    
      thus (G
    . ( 
    All (x,r))) 
    = (F 
    . ( 
    All (x,r))) by 
    FUNCT_1: 49
    
      .= Q(x,r9) by
    A1,
    A5,
    A11,
    A12;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch3
    
    CQCFuncUniq { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , F1() -> 
    Function of ( 
    CQC-WFF Al()), D() , F2() -> 
    Function of ( 
    CQC-WFF Al()), D() , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() } : 
    
F1()
    = F2() 
    
      provided
    
      
    
    A1: (F1() 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F1() 
    . (P 
    ! l)) 
    = A(k,P,l) & (F1() 
    . ( 
    'not' r)) 
    = N(.) & (F1() 
    . (r 
    '&' s)) 
    = C(.,.) & (F1() 
    . ( 
    All (x,r))) 
    = Q(x,.) 
    
       and 
    
      
    
    A2: (F2() 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F2() 
    . (P 
    ! l)) 
    = A(k,P,l) & (F2() 
    . ( 
    'not' r)) 
    = N(.) & (F2() 
    . (r 
    '&' s)) 
    = C(.,.) & (F2() 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      defpred
    
    P[
    set] means (F1()
    . $1) 
    = (F2() 
    . $1); 
    
      
    
      
    
    A3: for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds 
    P[(
    VERUM Al())] & 
    P[(P
    ! l)] & ( 
    P[r] implies
    P[(
    'not' r)]) & ( 
    P[r] &
    P[s] implies
    P[(r
    '&' s)]) & ( 
    P[r] implies
    P[(
    All (x,r))]) 
    
      proof
    
        let r,s be
    Element of ( 
    CQC-WFF Al()); 
    
        let x be
    bound_QC-variable of Al(); 
    
        let k;
    
        let l be
    CQC-variable_list of k, Al(); 
    
        let P be
    QC-pred_symbol of k, Al(); 
    
        thus (F1()
    . ( 
    VERUM Al())) 
    = (F2() 
    . ( 
    VERUM Al())) by 
    A1,
    A2;
    
        (F1()
    . (P 
    ! l)) 
    = A(k,P,l) by 
    A1;
    
        hence (F1()
    . (P 
    ! l)) 
    = (F2() 
    . (P 
    ! l)) by 
    A2;
    
        (F1()
    . ( 
    'not' r)) 
    = N(.) by 
    A1;
    
        hence (F1()
    . r) 
    = (F2() 
    . r) implies (F1() 
    . ( 
    'not' r)) 
    = (F2() 
    . ( 
    'not' r)) by 
    A2;
    
        (F1()
    . (r 
    '&' s)) 
    = C(.,.) by 
    A1;
    
        hence (F1()
    . r) 
    = (F2() 
    . r) & (F1() 
    . s) 
    = (F2() 
    . s) implies (F1() 
    . (r 
    '&' s)) 
    = (F2() 
    . (r 
    '&' s)) by 
    A2;
    
        (F1()
    . ( 
    All (x,r))) 
    = Q(x,.) by 
    A1;
    
        hence thesis by
    A2;
    
      end;
    
      for r be
    Element of ( 
    CQC-WFF Al()) holds 
    P[r] from
    CQCInd(
    A3);
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch4
    
    CQCDefcorrectness { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , p() -> 
    Element of ( 
    CQC-WFF Al()) , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() } : 
    
(ex d be
    Element of D() st ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p()) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.)) & for d1,d2 be 
    Element of D() st (ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d1 
    = (F 
    . p()) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.)) & (ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d2 
    = (F 
    . p()) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.)) holds d1 
    = d2; 
    
      thus ex d be
    Element of D() st ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p()) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) 
    
      proof
    
        consider F be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
        
    
    A1: (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) from 
    CQCFuncEx;
    
        take (F
    . p()), F; 
    
        thus thesis by
    A1;
    
      end;
    
      let d1,d2 be
    Element of D(); 
    
      given F1 be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A2: d1 
    = (F1 
    . p()) and 
    
      
    
    A3: (F1 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F1 
    . (P 
    ! l)) 
    = A(k,P,l) & (F1 
    . ( 
    'not' r)) 
    = N(.) & (F1 
    . (r 
    '&' s)) 
    = C(.,.) & (F1 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      given F2 be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A4: d2 
    = (F2 
    . p()) and 
    
      
    
    A5: (F2 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F2 
    . (P 
    ! l)) 
    = A(k,P,l) & (F2 
    . ( 
    'not' r)) 
    = N(.) & (F2 
    . (r 
    '&' s)) 
    = C(.,.) & (F2 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      F1
    = F2 from 
    CQCFuncUniq(
    A3,
    A5);
    
      hence thesis by
    A2,
    A4;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch5
    
    CQCDefVERUM { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , F( 
    set) ->
    Element of D() , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() } : 
    
F(VERUM)
    = V() 
    
      provided
    
      
    
    A1: for p be 
    Element of ( 
    CQC-WFF Al()), d be 
    Element of D() holds d 
    = F(p) iff ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      ex F be
    Function of ( 
    CQC-WFF Al()), D() st (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) from 
    CQCFuncEx;
    
      hence thesis by
    A1;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch6
    
    CQCDefatomic { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , V() -> 
    Element of D() , F( 
    set) ->
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , k() -> 
    Nat , P() -> 
    QC-pred_symbol of k(), Al() , l() -> 
    CQC-variable_list of k(), Al() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() } : 
    
F(!)
    = A(k,P,l) 
    
      provided
    
      
    
    A1: for p be 
    Element of ( 
    CQC-WFF Al()), d be 
    Element of D() holds d 
    = F(p) iff ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      consider F be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A2: (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) from 
    CQCFuncEx;
    
      A(k,P,l)
    = (F 
    . (P() 
    ! l())) by 
    A2;
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch7
    
    CQCDefnegative { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , F( 
    set) ->
    Element of D() , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , r() -> 
    Element of ( 
    CQC-WFF Al()) , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() } : 
    
F('not')
    = N(F) 
    
      provided
    
      
    
    A1: for p be 
    Element of ( 
    CQC-WFF Al()), d be 
    Element of D() holds d 
    = F(p) iff ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      consider G be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A2: F(r) 
    = (G 
    . r()) and 
    
      
    
    A3: (G 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (G 
    . (P 
    ! l)) 
    = A(k,P,l) & (G 
    . ( 
    'not' r)) 
    = N(.) & (G 
    . (r 
    '&' s)) 
    = C(.,.) & (G 
    . ( 
    All (x,r))) 
    = Q(x,.) by 
    A1;
    
      consider F be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A4: (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) from 
    CQCFuncEx;
    
      
    
      
    
    A5: (F 
    . ( 
    'not' r())) 
    = N(.) by 
    A4;
    
      F
    = G from 
    CQCFuncUniq(
    A4,
    A3);
    
      hence thesis by
    A1,
    A4,
    A5,
    A2;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch8
    
    QCDefconjunctive { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , F( 
    set) ->
    Element of D() , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , r() -> 
    Element of ( 
    CQC-WFF Al()) , s() -> 
    Element of ( 
    CQC-WFF Al()) , Q( 
    set, 
    set) ->
    Element of D() } : 
    
F('&')
    = C(F,F) 
    
      provided
    
      
    
    A1: for p be 
    Element of ( 
    CQC-WFF Al()), d be 
    Element of D() holds d 
    = F(p) iff ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      consider F2 be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A2: F(s) 
    = (F2 
    . s()) and 
    
      
    
    A3: (F2 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F2 
    . (P 
    ! l)) 
    = A(k,P,l) & (F2 
    . ( 
    'not' r)) 
    = N(.) & (F2 
    . (r 
    '&' s)) 
    = C(.,.) & (F2 
    . ( 
    All (x,r))) 
    = Q(x,.) by 
    A1;
    
      consider F1 be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A4: F(r) 
    = (F1 
    . r()) and 
    
      
    
    A5: (F1 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F1 
    . (P 
    ! l)) 
    = A(k,P,l) & (F1 
    . ( 
    'not' r)) 
    = N(.) & (F1 
    . (r 
    '&' s)) 
    = C(.,.) & (F1 
    . ( 
    All (x,r))) 
    = Q(x,.) by 
    A1;
    
      consider F be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A6: (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) from 
    CQCFuncEx;
    
      
    
      
    
    A7: (F 
    . (r() 
    '&' s())) 
    = C(.,.) by 
    A6;
    
      
    
      
    
    A8: F 
    = F2 from 
    CQCFuncUniq(
    A6,
    A3);
    
      F
    = F1 from 
    CQCFuncUniq(
    A6,
    A5);
    
      hence thesis by
    A1,
    A6,
    A7,
    A4,
    A2,
    A8;
    
    end;
    
    scheme :: 
    
    CQC_LANG:sch9
    
    QCDefuniversal { Al() ->
    QC-alphabet , D() -> non 
    empty  
    set , F( 
    set) ->
    Element of D() , V() -> 
    Element of D() , A( 
    set, 
    set, 
    set) ->
    Element of D() , N( 
    set) ->
    Element of D() , C( 
    set, 
    set) ->
    Element of D() , Q( 
    set, 
    set) ->
    Element of D() , x() -> 
    bound_QC-variable of Al() , r() -> 
    Element of ( 
    CQC-WFF Al()) } : 
    
F(All)
    = Q(x,F) 
    
      provided
    
      
    
    A1: for p be 
    Element of ( 
    CQC-WFF Al()), d be 
    Element of D() holds d 
    = F(p) iff ex F be 
    Function of ( 
    CQC-WFF Al()), D() st d 
    = (F 
    . p) & (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.); 
    
      consider G be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A2: F(r) 
    = (G 
    . r()) and 
    
      
    
    A3: (G 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (G 
    . (P 
    ! l)) 
    = A(k,P,l) & (G 
    . ( 
    'not' r)) 
    = N(.) & (G 
    . (r 
    '&' s)) 
    = C(.,.) & (G 
    . ( 
    All (x,r))) 
    = Q(x,.) by 
    A1;
    
      consider F be
    Function of ( 
    CQC-WFF Al()), D() such that 
    
      
    
    A4: (F 
    . ( 
    VERUM Al())) 
    = V() & for r,s be 
    Element of ( 
    CQC-WFF Al()) holds for x be 
    bound_QC-variable of Al() holds for k holds for l be 
    CQC-variable_list of k, Al() holds for P be 
    QC-pred_symbol of k, Al() holds (F 
    . (P 
    ! l)) 
    = A(k,P,l) & (F 
    . ( 
    'not' r)) 
    = N(.) & (F 
    . (r 
    '&' s)) 
    = C(.,.) & (F 
    . ( 
    All (x,r))) 
    = Q(x,.) from 
    CQCFuncEx;
    
      
    
      
    
    A5: (F 
    . ( 
    All (x(),r()))) 
    = Q(x,.) by 
    A4;
    
      F
    = G from 
    CQCFuncUniq(
    A4,
    A3);
    
      hence thesis by
    A1,
    A4,
    A5,
    A2;
    
    end;
    
    reserve x,y for
    bound_QC-variable of A; 
    
    reserve a for
    free_QC-variable of A; 
    
    reserve p,q for
    Element of ( 
    QC-WFF A); 
    
    reserve l,l1,l2,ll for
    FinSequence of ( 
    QC-variables A); 
    
    reserve r,s for
    Element of ( 
    CQC-WFF A); 
    
    
    
    
    
    Lm2: for F1,F2 be 
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) st (for q holds (F1 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F1 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F1 
    . q) 
    = ( 
    'not' (F1 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F1 
    . q) 
    = ((F1 
    . ( 
    the_left_argument_of q)) 
    '&' (F1 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F1 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F1 
    . ( 
    the_scope_of q)))))))) & (for q holds (F2 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F2 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F2 
    . q) 
    = ( 
    'not' (F2 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F2 
    . q) 
    = ((F2 
    . ( 
    the_left_argument_of q)) 
    '&' (F2 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F2 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F2 
    . ( 
    the_scope_of q)))))))) holds F1 
    = F2 
    
    proof
    
      deffunc
    
    c(
    Element of ( 
    QC-WFF A), 
    Element of ( 
    QC-WFF A)) = ($1 
    '&' $2); 
    
      deffunc
    
    n(
    Element of ( 
    QC-WFF A)) = ( 
    'not' $1); 
    
      let F1,F2 be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A); 
    
      deffunc
    
    a(
    Element of ( 
    QC-WFF A)) = (( 
    the_pred_symbol_of $1) 
    ! ( 
    Subst (( 
    the_arguments_of $1),((A 
    a.  
    0 ) 
    .--> x)))); 
    
      deffunc
    
    q(
    Element of ( 
    QC-WFF A), 
    Element of ( 
    QC-WFF A)) = ( 
    IFEQ (( 
    bound_in $1),x,$1,( 
    All (( 
    bound_in $1),$2)))); 
    
      assume for q holds (F1
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F1 
    . q) 
    =  
    a(q)) & (q is
    negative implies (F1 
    . q) 
    = ( 
    'not' (F1 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F1 
    . q) 
    = ((F1 
    . ( 
    the_left_argument_of q)) 
    '&' (F1 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F1 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F1 
    . ( 
    the_scope_of q))))))); 
    
      then
    
      
    
    A1: for p be 
    Element of ( 
    QC-WFF A) holds for d1,d2 be 
    Element of ( 
    QC-WFF A) holds (p 
    = ( 
    VERUM A) implies (F1 
    . p) 
    = ( 
    VERUM A)) & (p is 
    atomic implies (F1 
    . p) 
    =  
    a(p)) & (p is
    negative & d1 
    = (F1 
    . ( 
    the_argument_of p)) implies (F1 
    . p) 
    =  
    n(d1)) & (p is
    conjunctive & d1 
    = (F1 
    . ( 
    the_left_argument_of p)) & d2 
    = (F1 
    . ( 
    the_right_argument_of p)) implies (F1 
    . p) 
    =  
    c(d1,d2)) & (p is
    universal & d1 
    = (F1 
    . ( 
    the_scope_of p)) implies (F1 
    . p) 
    =  
    q(p,d1));
    
      assume for q holds (F2
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F2 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F2 
    . q) 
    = ( 
    'not' (F2 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F2 
    . q) 
    = ((F2 
    . ( 
    the_left_argument_of q)) 
    '&' (F2 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F2 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F2 
    . ( 
    the_scope_of q))))))); 
    
      then
    
      
    
    A2: for p be 
    Element of ( 
    QC-WFF A) holds for d1,d2 be 
    Element of ( 
    QC-WFF A) holds (p 
    = ( 
    VERUM A) implies (F2 
    . p) 
    = ( 
    VERUM A)) & (p is 
    atomic implies (F2 
    . p) 
    =  
    a(p)) & (p is
    negative & d1 
    = (F2 
    . ( 
    the_argument_of p)) implies (F2 
    . p) 
    =  
    n(d1)) & (p is
    conjunctive & d1 
    = (F2 
    . ( 
    the_left_argument_of p)) & d2 
    = (F2 
    . ( 
    the_right_argument_of p)) implies (F2 
    . p) 
    =  
    c(d1,d2)) & (p is
    universal & d1 
    = (F2 
    . ( 
    the_scope_of p)) implies (F2 
    . p) 
    =  
    q(p,d1));
    
      thus F1
    = F2 from 
    QC_LANG3:sch 1(
    A1,
    A2);
    
    end;
    
    definition
    
      let A, p, x;
    
      :: 
    
    CQC_LANG:def3
    
      func p
    
    . x -> 
    Element of ( 
    QC-WFF A) means 
    
      :
    
    Def3: ex F be 
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) st it 
    = (F 
    . p) & for q holds (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F 
    . q) 
    = ( 
    'not' (F 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F 
    . q) 
    = ((F 
    . ( 
    the_left_argument_of q)) 
    '&' (F 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F 
    . ( 
    the_scope_of q))))))); 
    
      existence
    
      proof
    
        deffunc
    
    q(
    Element of ( 
    QC-WFF A), 
    Element of ( 
    QC-WFF A)) = ( 
    IFEQ (( 
    bound_in $1),x,$1,( 
    All (( 
    bound_in $1),$2)))); 
    
        deffunc
    
    c(
    Element of ( 
    QC-WFF A), 
    Element of ( 
    QC-WFF A)) = ($1 
    '&' $2); 
    
        deffunc
    
    n(
    Element of ( 
    QC-WFF A)) = ( 
    'not' $1); 
    
        deffunc
    
    a(
    Element of ( 
    QC-WFF A)) = (( 
    the_pred_symbol_of $1) 
    ! ( 
    Subst (( 
    the_arguments_of $1),((A 
    a.  
    0 ) 
    .--> x)))); 
    
        consider F be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
        
    
    A1: (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & for p be 
    Element of ( 
    QC-WFF A) holds (p is 
    atomic implies (F 
    . p) 
    =  
    a(p)) & (p is
    negative implies (F 
    . p) 
    =  
    n(.)) & (p is
    conjunctive implies (F 
    . p) 
    =  
    c(.,.)) & (p is
    universal implies (F 
    . p) 
    =  
    q(p,.)) from
    QC_LANG1:sch 3;
    
        take (F
    . p), F; 
    
        thus (F
    . p) 
    = (F 
    . p); 
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness by
    Lm2;
    
    end
    
    theorem :: 
    
    CQC_LANG:15
    
    
    
    
    
    Th15: (( 
    VERUM A) 
    . x) 
    = ( 
    VERUM A) 
    
    proof
    
      ex F be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) st (( 
    VERUM A) 
    . x) 
    = (F 
    . ( 
    VERUM A)) & for q holds (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F 
    . q) 
    = ( 
    'not' (F 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F 
    . q) 
    = ((F 
    . ( 
    the_left_argument_of q)) 
    '&' (F 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CQC_LANG:16
    
    
    
    
    
    Th16: p is 
    atomic implies (p 
    . x) 
    = (( 
    the_pred_symbol_of p) 
    ! ( 
    Subst (( 
    the_arguments_of p),((A 
    a.  
    0 ) 
    .--> x)))) 
    
    proof
    
      ex F be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) st (p 
    . x) 
    = (F 
    . p) & for q holds (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F 
    . q) 
    = ( 
    'not' (F 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F 
    . q) 
    = ((F 
    . ( 
    the_left_argument_of q)) 
    '&' (F 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CQC_LANG:17
    
    
    
    
    
    Th17: for k be 
    Nat holds for P be 
    QC-pred_symbol of k, A holds for l be 
    QC-variable_list of k, A holds ((P 
    ! l) 
    . x) 
    = (P 
    ! ( 
    Subst (l,((A 
    a.  
    0 ) 
    .--> x)))) 
    
    proof
    
      let k be
    Nat;
    
      let P be
    QC-pred_symbol of k, A; 
    
      let l be
    QC-variable_list of k, A; 
    
      reconsider P9 = P as
    QC-pred_symbol of A; 
    
      
    
      
    
    A1: (P 
    ! l) is 
    atomic by 
    QC_LANG1:def 18;
    
      then (
    the_arguments_of (P 
    ! l)) 
    = l & ( 
    the_pred_symbol_of (P 
    ! l)) 
    = P9 by 
    QC_LANG1:def 22,
    QC_LANG1:def 23;
    
      hence thesis by
    A1,
    Th16;
    
    end;
    
    theorem :: 
    
    CQC_LANG:18
    
    
    
    
    
    Th18: p is 
    negative implies (p 
    . x) 
    = ( 
    'not' (( 
    the_argument_of p) 
    . x)) 
    
    proof
    
      consider F be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A1: (p 
    . x) 
    = (F 
    . p) and 
    
      
    
    A2: for q holds (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F 
    . q) 
    = ( 
    'not' (F 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F 
    . q) 
    = ((F 
    . ( 
    the_left_argument_of q)) 
    '&' (F 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      consider G be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A3: (( 
    the_argument_of p) 
    . x) 
    = (G 
    . ( 
    the_argument_of p)) and 
    
      
    
    A4: for q holds (G 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (G 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (G 
    . q) 
    = ( 
    'not' (G 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (G 
    . q) 
    = ((G 
    . ( 
    the_left_argument_of q)) 
    '&' (G 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (G 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(G 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      F
    = G by 
    A2,
    A4,
    Lm2;
    
      hence thesis by
    A1,
    A2,
    A3;
    
    end;
    
    theorem :: 
    
    CQC_LANG:19
    
    
    
    
    
    Th19: (( 
    'not' p) 
    . x) 
    = ( 
    'not' (p 
    . x)) 
    
    proof
    
      set 9p = (
    'not' p); 
    
      
    
      
    
    A1: 9p is 
    negative by 
    QC_LANG1:def 19;
    
      then (
    the_argument_of 9p) 
    = p by 
    QC_LANG1:def 24;
    
      hence thesis by
    A1,
    Th18;
    
    end;
    
    theorem :: 
    
    CQC_LANG:20
    
    
    
    
    
    Th20: p is 
    conjunctive implies (p 
    . x) 
    = ((( 
    the_left_argument_of p) 
    . x) 
    '&' (( 
    the_right_argument_of p) 
    . x)) 
    
    proof
    
      consider F be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A1: (p 
    . x) 
    = (F 
    . p) and 
    
      
    
    A2: for q holds (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F 
    . q) 
    = ( 
    'not' (F 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F 
    . q) 
    = ((F 
    . ( 
    the_left_argument_of q)) 
    '&' (F 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      consider F2 be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A3: (( 
    the_right_argument_of p) 
    . x) 
    = (F2 
    . ( 
    the_right_argument_of p)) and 
    
      
    
    A4: for q holds (F2 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F2 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F2 
    . q) 
    = ( 
    'not' (F2 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F2 
    . q) 
    = ((F2 
    . ( 
    the_left_argument_of q)) 
    '&' (F2 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F2 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F2 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      
    
      
    
    A5: F2 
    = F by 
    A2,
    A4,
    Lm2;
    
      consider F1 be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A6: (( 
    the_left_argument_of p) 
    . x) 
    = (F1 
    . ( 
    the_left_argument_of p)) and 
    
      
    
    A7: for q holds (F1 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F1 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F1 
    . q) 
    = ( 
    'not' (F1 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F1 
    . q) 
    = ((F1 
    . ( 
    the_left_argument_of q)) 
    '&' (F1 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F1 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F1 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      F1
    = F by 
    A2,
    A7,
    Lm2;
    
      hence thesis by
    A1,
    A2,
    A6,
    A3,
    A5;
    
    end;
    
    theorem :: 
    
    CQC_LANG:21
    
    
    
    
    
    Th21: ((p 
    '&' q) 
    . x) 
    = ((p 
    . x) 
    '&' (q 
    . x)) 
    
    proof
    
      set pq = (p
    '&' q); 
    
      
    
      
    
    A1: (p 
    '&' q) is 
    conjunctive by 
    QC_LANG1:def 20;
    
      then (
    the_left_argument_of pq) 
    = p & ( 
    the_right_argument_of pq) 
    = q by 
    QC_LANG1:def 25,
    QC_LANG1:def 26;
    
      hence thesis by
    A1,
    Th20;
    
    end;
    
    
    
    
    
    Lm3: p is 
    universal implies (p 
    . x) 
    = ( 
    IFEQ (( 
    bound_in p),x,p,( 
    All (( 
    bound_in p),(( 
    the_scope_of p) 
    . x))))) 
    
    proof
    
      consider F be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A1: (p 
    . x) 
    = (F 
    . p) and 
    
      
    
    A2: for q holds (F 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (F 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (F 
    . q) 
    = ( 
    'not' (F 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (F 
    . q) 
    = ((F 
    . ( 
    the_left_argument_of q)) 
    '&' (F 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (F 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(F 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      consider G be
    Function of ( 
    QC-WFF A), ( 
    QC-WFF A) such that 
    
      
    
    A3: (( 
    the_scope_of p) 
    . x) 
    = (G 
    . ( 
    the_scope_of p)) and 
    
      
    
    A4: for q holds (G 
    . ( 
    VERUM A)) 
    = ( 
    VERUM A) & (q is 
    atomic implies (G 
    . q) 
    = (( 
    the_pred_symbol_of q) 
    ! ( 
    Subst (( 
    the_arguments_of q),((A 
    a.  
    0 ) 
    .--> x))))) & (q is 
    negative implies (G 
    . q) 
    = ( 
    'not' (G 
    . ( 
    the_argument_of q)))) & (q is 
    conjunctive implies (G 
    . q) 
    = ((G 
    . ( 
    the_left_argument_of q)) 
    '&' (G 
    . ( 
    the_right_argument_of q)))) & (q is 
    universal implies (G 
    . q) 
    = ( 
    IFEQ (( 
    bound_in q),x,q,( 
    All (( 
    bound_in q),(G 
    . ( 
    the_scope_of q))))))) by 
    Def3;
    
      F
    = G by 
    A2,
    A4,
    Lm2;
    
      hence thesis by
    A1,
    A2,
    A3;
    
    end;
    
    theorem :: 
    
    CQC_LANG:22
    
    
    
    
    
    Th22: p is 
    universal & ( 
    bound_in p) 
    = x implies (p 
    . x) 
    = p 
    
    proof
    
      assume p is
    universal;
    
      then (p
    . x) 
    = ( 
    IFEQ (( 
    bound_in p),x,p,( 
    All (( 
    bound_in p),(( 
    the_scope_of p) 
    . x))))) by 
    Lm3;
    
      hence thesis by
    FUNCOP_1:def 8;
    
    end;
    
    theorem :: 
    
    CQC_LANG:23
    
    
    
    
    
    Th23: p is 
    universal & ( 
    bound_in p) 
    <> x implies (p 
    . x) 
    = ( 
    All (( 
    bound_in p),(( 
    the_scope_of p) 
    . x))) 
    
    proof
    
      assume p is
    universal;
    
      then (p
    . x) 
    = ( 
    IFEQ (( 
    bound_in p),x,p,( 
    All (( 
    bound_in p),(( 
    the_scope_of p) 
    . x))))) by 
    Lm3;
    
      hence thesis by
    FUNCOP_1:def 8;
    
    end;
    
    theorem :: 
    
    CQC_LANG:24
    
    
    
    
    
    Th24: (( 
    All (x,p)) 
    . x) 
    = ( 
    All (x,p)) 
    
    proof
    
      set q = (
    All (x,p)); 
    
      
    
      
    
    A1: q is 
    universal by 
    QC_LANG1:def 21;
    
      then (
    bound_in q) 
    = x by 
    QC_LANG1:def 27;
    
      hence thesis by
    A1,
    Th22;
    
    end;
    
    theorem :: 
    
    CQC_LANG:25
    
    
    
    
    
    Th25: x 
    <> y implies (( 
    All (x,p)) 
    . y) 
    = ( 
    All (x,(p 
    . y))) 
    
    proof
    
      set q = (
    All (x,p)); 
    
      
    
      
    
    A1: q is 
    universal by 
    QC_LANG1:def 21;
    
      then (
    the_scope_of q) 
    = p & ( 
    bound_in q) 
    = x by 
    QC_LANG1:def 27,
    QC_LANG1:def 28;
    
      hence thesis by
    A1,
    Th23;
    
    end;
    
    theorem :: 
    
    CQC_LANG:26
    
    
    
    
    
    Th26: ( 
    Free p) 
    =  
    {} implies (p 
    . x) 
    = p 
    
    proof
    
      defpred
    
    P[
    Element of ( 
    QC-WFF A)] means ( 
    Free $1) 
    =  
    {} implies ($1 
    . x) 
    = $1; 
    
      
    
      
    
    A1: for p st 
    P[p] holds
    P[(
    'not' p)] by 
    Th19,
    QC_LANG3: 55;
    
      
    
      
    
    A2: for p, q st 
    P[p] &
    P[q] holds
    P[(p
    '&' q)] 
    
      proof
    
        let p, q;
    
        assume
    
        
    
    A3: (( 
    Free p) 
    =  
    {} implies (p 
    . x) 
    = p) & (( 
    Free q) 
    =  
    {} implies (q 
    . x) 
    = q); 
    
        assume (
    Free (p 
    '&' q)) 
    =  
    {} ; 
    
        then ((
    Free p) 
    \/ ( 
    Free q)) 
    =  
    {} by 
    QC_LANG3: 57;
    
        hence thesis by
    A3,
    Th21;
    
      end;
    
      
    
      
    
    A4: for k be 
    Nat holds for P be 
    QC-pred_symbol of k, A, l be 
    QC-variable_list of k, A holds 
    P[(P
    ! l)] 
    
      proof
    
        let k be
    Nat;
    
        let P be
    QC-pred_symbol of k, A, l be 
    QC-variable_list of k, A; 
    
        assume
    
        
    
    A5: ( 
    Free (P 
    ! l)) 
    =  
    {} ; 
    
        
    
    A6: 
    
        now
    
          let j be
    Nat;
    
          assume
    
          
    
    A7: 1 
    <= j & j 
    <= ( 
    len l); 
    
          now
    
            assume (l
    . j) 
    = (A 
    a.  
    0 ); 
    
            then (A
    a.  
    0 ) 
    in { (l 
    . i) where i be 
    Nat : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    free_QC-variables A) } by 
    A7;
    
            hence contradiction by
    A5,
    QC_LANG3: 54;
    
          end;
    
          hence ((
    Subst (l,((A 
    a.  
    0 ) 
    .--> x))) 
    . j) 
    = (l 
    . j) by 
    A7,
    Th3;
    
        end;
    
        (
    len ( 
    Subst (l,((A 
    a.  
    0 ) 
    .--> x)))) 
    = ( 
    len l) by 
    Def1;
    
        then (
    Subst (l,((A 
    a.  
    0 ) 
    .--> x))) 
    = l by 
    A6,
    FINSEQ_1: 14;
    
        hence thesis by
    Th17;
    
      end;
    
      
    
      
    
    A8: for y, p st 
    P[p] holds
    P[(
    All (y,p))] 
    
      proof
    
        let y, p;
    
        assume
    
        
    
    A9: ( 
    Free p) 
    =  
    {} implies (p 
    . x) 
    = p; 
    
        
    
        
    
    A10: x 
    = y implies (( 
    All (y,p)) 
    . x) 
    = ( 
    All (y,p)) by 
    Th24;
    
        assume (
    Free ( 
    All (y,p))) 
    =  
    {} ; 
    
        hence thesis by
    A9,
    A10,
    Th25,
    QC_LANG3: 58;
    
      end;
    
      
    
      
    
    A11: 
    P[(
    VERUM A)] by 
    Th15;
    
      for p holds
    P[p] from
    QC_LANG1:sch 1(
    A4,
    A11,
    A1,
    A2,
    A8);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CQC_LANG:27
    
    (r
    . x) 
    = r 
    
    proof
    
      (
    Free r) 
    =  
    {} by 
    Th4;
    
      hence thesis by
    Th26;
    
    end;
    
    theorem :: 
    
    CQC_LANG:28
    
    (
    Fixed (p 
    . x)) 
    = ( 
    Fixed p) 
    
    proof
    
      defpred
    
    P[
    Element of ( 
    QC-WFF A)] means ( 
    Fixed ($1 
    . x)) 
    = ( 
    Fixed $1); 
    
      
    
      
    
    A1: for p st 
    P[p] holds
    P[(
    'not' p)] 
    
      proof
    
        let p such that
    
        
    
    A2: ( 
    Fixed (p 
    . x)) 
    = ( 
    Fixed p); 
    
        
    
        thus (
    Fixed (( 
    'not' p) 
    . x)) 
    = ( 
    Fixed ( 
    'not' (p 
    . x))) by 
    Th19
    
        .= (
    Fixed p) by 
    A2,
    QC_LANG3: 65
    
        .= (
    Fixed ( 
    'not' p)) by 
    QC_LANG3: 65;
    
      end;
    
      
    
      
    
    A3: for p, q st 
    P[p] &
    P[q] holds
    P[(p
    '&' q)] 
    
      proof
    
        let p, q such that
    
        
    
    A4: ( 
    Fixed (p 
    . x)) 
    = ( 
    Fixed p) & ( 
    Fixed (q 
    . x)) 
    = ( 
    Fixed q); 
    
        
    
        thus (
    Fixed ((p 
    '&' q) 
    . x)) 
    = ( 
    Fixed ((p 
    . x) 
    '&' (q 
    . x))) by 
    Th21
    
        .= ((
    Fixed p) 
    \/ ( 
    Fixed q)) by 
    A4,
    QC_LANG3: 67
    
        .= (
    Fixed (p 
    '&' q)) by 
    QC_LANG3: 67;
    
      end;
    
      
    
      
    
    A5: for k holds for P be 
    QC-pred_symbol of k, A, l be 
    QC-variable_list of k, A holds 
    P[(P
    ! l)] 
    
      proof
    
        let k;
    
        let P be
    QC-pred_symbol of k, A, l be 
    QC-variable_list of k, A; 
    
        set F1 = { (l
    . i) : 1 
    <= i & i 
    <= ( 
    len l) & (l 
    . i) 
    in ( 
    fixed_QC-variables A) }; 
    
        set ll = (
    Subst (l,((A 
    a.  
    0 ) 
    .--> x))); 
    
        set F2 = { (ll
    . i) : 1 
    <= i & i 
    <= ( 
    len ll) & (ll 
    . i) 
    in ( 
    fixed_QC-variables A) }; 
    
        
    
        
    
    A6: ( 
    len l) 
    = ( 
    len ll) by 
    Def1;
    
        now
    
          let y be
    object;
    
          thus y
    in F1 implies y 
    in F2 
    
          proof
    
            assume y
    in F1; 
    
            then
    
            consider i such that
    
            
    
    A7: y 
    = (l 
    . i) and 
    
            
    
    A8: 1 
    <= i & i 
    <= ( 
    len l) and 
    
            
    
    A9: (l 
    . i) 
    in ( 
    fixed_QC-variables A); 
    
            (l
    . i) 
    <> (A 
    a.  
    0 ) by 
    A9,
    QC_LANG3: 32;
    
            then (ll
    . i) 
    = (l 
    . i) by 
    A8,
    Th3;
    
            hence thesis by
    A6,
    A7,
    A8,
    A9;
    
          end;
    
          assume y
    in F2; 
    
          then
    
          consider i such that
    
          
    
    A10: y 
    = (ll 
    . i) and 
    
          
    
    A11: 1 
    <= i & i 
    <= ( 
    len ll) and 
    
          
    
    A12: (ll 
    . i) 
    in ( 
    fixed_QC-variables A); 
    
          now
    
            assume (l
    . i) 
    = (A 
    a.  
    0 ); 
    
            then (ll
    . i) 
    = x by 
    A6,
    A11,
    Th3;
    
            hence contradiction by
    A12,
    Lm1;
    
          end;
    
          then (ll
    . i) 
    = (l 
    . i) by 
    A6,
    A11,
    Th3;
    
          hence y
    in F1 by 
    A6,
    A10,
    A11,
    A12;
    
        end;
    
        then
    
        
    
    A13: F1 
    = F2 by 
    TARSKI: 2;
    
        (
    Fixed (P 
    ! l)) 
    = F1 & ( 
    Fixed (P 
    ! ll)) 
    = F2 by 
    QC_LANG3: 64;
    
        hence thesis by
    A13,
    Th17;
    
      end;
    
      
    
      
    
    A14: for y, p st 
    P[p] holds
    P[(
    All (y,p))] 
    
      proof
    
        let y, p such that
    
        
    
    A15: ( 
    Fixed (p 
    . x)) 
    = ( 
    Fixed p); 
    
        now
    
          assume x
    <> y; 
    
          
    
          hence (
    Fixed (( 
    All (y,p)) 
    . x)) 
    = ( 
    Fixed ( 
    All (y,(p 
    . x)))) by 
    Th25
    
          .= (
    Fixed p) by 
    A15,
    QC_LANG3: 68
    
          .= (
    Fixed ( 
    All (y,p))) by 
    QC_LANG3: 68;
    
        end;
    
        hence thesis by
    Th24;
    
      end;
    
      
    
      
    
    A16: 
    P[(
    VERUM A)] by 
    Th15;
    
      for p holds
    P[p] from
    QC_LANG1:sch 1(
    A5,
    A16,
    A1,
    A3,
    A14);
    
      hence thesis;
    
    end;