mboolean.miz
begin
reserve x,y for
object,
I for
set,
A,B,X,Y for
ManySortedSet of I;
definition
let I, A;
::
MBOOLEAN:def1
func
bool A ->
ManySortedSet of I means
:
Def1: for i be
object st i
in I holds (it
. i)
= (
bool (A
. i));
existence
proof
deffunc
V(
object) = (
bool (A
. $1));
thus ex X be
ManySortedSet of I st for i be
object st i
in I holds (X
. i)
=
V(i) from
PBOOLE:sch 4;
end;
uniqueness
proof
let X,Y be
ManySortedSet of I such that
A1: for i be
object st i
in I holds (X
. i)
= (
bool (A
. i)) and
A2: for i be
object st i
in I holds (Y
. i)
= (
bool (A
. i));
now
let i be
object;
assume
A3: i
in I;
hence (X
. i)
= (
bool (A
. i)) by
A1
.= (Y
. i) by
A2,
A3;
end;
hence X
= Y;
end;
end
registration
let I, A;
cluster (
bool A) ->
non-empty;
coherence
proof
let i be
object such that
A1: i
in I;
(
bool (A
. i)) is non
empty;
hence thesis by
A1,
Def1;
end;
end
Lm1: for i,I,X be
set holds for M be
ManySortedSet of I st i
in I holds (
dom (M
+* (i
.--> X)))
= I
proof
let i,I,X be
set, M be
ManySortedSet of I such that
A1: i
in I;
thus (
dom (M
+* (i
.--> X)))
= ((
dom M)
\/ (
dom (i
.--> X))) by
FUNCT_4:def 1
.= (I
\/ (
dom (i
.--> X))) by
PARTFUN1:def 2
.= (I
\/
{i})
.= I by
A1,
ZFMISC_1: 40;
end;
Lm2: for i be
set st i
in I holds ((
bool (A
(\/) B))
. i)
= (
bool ((A
. i)
\/ (B
. i)))
proof
let i be
set;
assume
A1: i
in I;
hence ((
bool (A
(\/) B))
. i)
= (
bool ((A
(\/) B)
. i)) by
Def1
.= (
bool ((A
. i)
\/ (B
. i))) by
A1,
PBOOLE:def 4;
end;
Lm3: for i be
set st i
in I holds ((
bool (A
(/\) B))
. i)
= (
bool ((A
. i)
/\ (B
. i)))
proof
let i be
set;
assume
A1: i
in I;
hence ((
bool (A
(/\) B))
. i)
= (
bool ((A
(/\) B)
. i)) by
Def1
.= (
bool ((A
. i)
/\ (B
. i))) by
A1,
PBOOLE:def 5;
end;
Lm4: for i be
set st i
in I holds ((
bool (A
(\) B))
. i)
= (
bool ((A
. i)
\ (B
. i)))
proof
let i be
set;
assume
A1: i
in I;
hence ((
bool (A
(\) B))
. i)
= (
bool ((A
(\) B)
. i)) by
Def1
.= (
bool ((A
. i)
\ (B
. i))) by
A1,
PBOOLE:def 6;
end;
Lm5: for i be
set st i
in I holds ((
bool (A
(\+\) B))
. i)
= (
bool ((A
. i)
\+\ (B
. i)))
proof
let i be
set;
assume
A1: i
in I;
hence ((
bool (A
(\+\) B))
. i)
= (
bool ((A
(\+\) B)
. i)) by
Def1
.= (
bool ((A
. i)
\+\ (B
. i))) by
A1,
PBOOLE: 4;
end;
theorem ::
MBOOLEAN:1
Th1: X
= (
bool Y) iff for A holds A
in X iff A
c= Y
proof
thus X
= (
bool Y) implies for A holds A
in X iff A
c= Y
proof
assume
A1: X
= (
bool Y);
let A;
thus A
in X implies A
c= Y
proof
assume
A2: A
in X;
let i be
object;
assume
A3: i
in I;
then
A4: (A
. i)
in (X
. i) by
A2;
(X
. i)
= (
bool (Y
. i)) by
A1,
A3,
Def1;
hence thesis by
A4;
end;
assume
A5: A
c= Y;
let i be
object;
assume
A6: i
in I;
then
A7: (A
. i)
c= (Y
. i) by
A5;
(X
. i)
= (
bool (Y
. i)) by
A1,
A6,
Def1;
hence thesis by
A7;
end;
assume
A8: for A holds A
in X iff A
c= Y;
now
let i be
object such that
A9: i
in I;
(
EmptyMS I)
c= Y by
PBOOLE: 43;
then
A10: (
EmptyMS I)
in X by
A8;
for A9 be
set holds A9
in (X
. i) iff A9
c= (Y
. i)
proof
let A9 be
set;
A11: (
dom (i
.--> A9))
=
{i};
(
dom ((
EmptyMS I)
+* (i
.--> A9)))
= I by
A9,
Lm1;
then
reconsider K = ((
EmptyMS I)
+* (i
.--> A9)) as
ManySortedSet of I by
PARTFUN1:def 2,
RELAT_1:def 18;
i
in
{i} by
TARSKI:def 1;
then
A12: (K
. i)
= ((i
.--> A9)
. i) by
A11,
FUNCT_4: 13
.= A9 by
FUNCOP_1: 72;
thus A9
in (X
. i) implies A9
c= (Y
. i)
proof
assume
A13: A9
in (X
. i);
K
in X
proof
let j be
object such that
A14: j
in I;
now
per cases ;
case j
= i;
hence thesis by
A12,
A13;
end;
case j
<> i;
then not j
in (
dom (i
.--> A9)) by
TARSKI:def 1;
then (K
. j)
= ((
EmptyMS I)
. j) by
FUNCT_4: 11;
hence thesis by
A10,
A14;
end;
end;
hence thesis;
end;
then K
c= Y by
A8;
hence thesis by
A9,
A12;
end;
assume
A15: A9
c= (Y
. i);
K
c= Y
proof
let j be
object such that
A16: j
in I;
now
per cases ;
case j
= i;
hence thesis by
A12,
A15;
end;
case j
<> i;
then not j
in (
dom (i
.--> A9)) by
TARSKI:def 1;
then
A17: (K
. j)
= ((
EmptyMS I)
. j) by
FUNCT_4: 11;
(
EmptyMS I)
c= Y by
PBOOLE: 43;
hence thesis by
A16,
A17;
end;
end;
hence thesis;
end;
then K
in X by
A8;
hence thesis by
A9,
A12;
end;
then (X
. i)
= (
bool (Y
. i)) by
ZFMISC_1:def 1;
hence (X
. i)
= ((
bool Y)
. i) by
A9,
Def1;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:2
(
bool (
EmptyMS I))
= (I
-->
{
{} })
proof
now
let i be
object;
assume
A1: i
in I;
then ((
bool (
EmptyMS I))
. i)
= (
bool ((
EmptyMS I)
. i)) by
Def1
.= (
bool
{} ) by
PBOOLE: 5
.=
{
{} } by
ZFMISC_1: 1;
hence ((
bool (
EmptyMS I))
. i)
= ((I
-->
{
{} })
. i) by
A1,
FUNCOP_1: 7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:3
for x be
set holds (
bool (I
--> x))
= (I
--> (
bool x))
proof
let x be
set;
now
let i be
object;
assume
A1: i
in I;
hence ((
bool (I
--> x))
. i)
= (
bool ((I
--> x)
. i)) by
Def1
.= (
bool x) by
A1,
FUNCOP_1: 7
.= ((I
--> (
bool x))
. i) by
A1,
FUNCOP_1: 7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:4
(
bool (I
-->
{x}))
= (I
-->
{
{} ,
{x}})
proof
now
let i be
object;
assume
A1: i
in I;
hence ((
bool (I
-->
{x}))
. i)
= (
bool ((I
-->
{x})
. i)) by
Def1
.= (
bool
{x}) by
A1,
FUNCOP_1: 7
.=
{
{} ,
{x}} by
ZFMISC_1: 24
.= ((I
-->
{
{} ,
{x}})
. i) by
A1,
FUNCOP_1: 7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:5
(
EmptyMS I)
c= A
proof
let i be
object;
assume i
in I;
((
EmptyMS I)
. i)
=
{} by
PBOOLE: 5;
hence thesis by
XBOOLE_1: 2;
end;
theorem ::
MBOOLEAN:6
A
c= B implies (
bool A)
c= (
bool B)
proof
assume
A1: A
c= B;
let i be
object;
assume
A2: i
in I;
then
A3: (A
. i)
c= (B
. i) by
A1;
((
bool A)
. i)
= (
bool (A
. i)) & ((
bool B)
. i)
= (
bool (B
. i)) by
A2,
Def1;
hence thesis by
A3,
ZFMISC_1: 67;
end;
theorem ::
MBOOLEAN:7
((
bool A)
(\/) (
bool B))
c= (
bool (A
(\/) B))
proof
let i be
object;
assume
A1: i
in I;
then
A2: ((
bool (A
(\/) B))
. i)
= (
bool ((A
. i)
\/ (B
. i))) by
Lm2;
(((
bool A)
(\/) (
bool B))
. i)
= (((
bool A)
. i)
\/ ((
bool B)
. i)) by
A1,
PBOOLE:def 4
.= ((
bool (A
. i))
\/ ((
bool B)
. i)) by
A1,
Def1
.= ((
bool (A
. i))
\/ (
bool (B
. i))) by
A1,
Def1;
hence thesis by
A2,
ZFMISC_1: 69;
end;
theorem ::
MBOOLEAN:8
((
bool A)
(\/) (
bool B))
= (
bool (A
(\/) B)) implies for i be
set st i
in I holds ((A
. i),(B
. i))
are_c=-comparable
proof
assume
A1: ((
bool A)
(\/) (
bool B))
= (
bool (A
(\/) B));
let i be
set such that
A2: i
in I;
(
bool ((A
. i)
\/ (B
. i)))
= (((
bool A)
(\/) (
bool B))
. i) by
A1,
A2,
Lm2
.= (((
bool A)
. i)
\/ ((
bool B)
. i)) by
A2,
PBOOLE:def 4
.= (((
bool A)
. i)
\/ (
bool (B
. i))) by
A2,
Def1
.= ((
bool (A
. i))
\/ (
bool (B
. i))) by
A2,
Def1;
hence thesis by
ZFMISC_1: 70;
end;
theorem ::
MBOOLEAN:9
(
bool (A
(/\) B))
= ((
bool A)
(/\) (
bool B))
proof
now
let i be
object;
assume
A1: i
in I;
hence ((
bool (A
(/\) B))
. i)
= (
bool ((A
. i)
/\ (B
. i))) by
Lm3
.= ((
bool (A
. i))
/\ (
bool (B
. i))) by
ZFMISC_1: 71
.= ((
bool (A
. i))
/\ ((
bool B)
. i)) by
A1,
Def1
.= (((
bool A)
. i)
/\ ((
bool B)
. i)) by
A1,
Def1
.= (((
bool A)
(/\) (
bool B))
. i) by
A1,
PBOOLE:def 5;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:10
(
bool (A
(\) B))
c= ((I
-->
{
{} })
(\/) ((
bool A)
(\) (
bool B)))
proof
let i be
object;
assume
A1: i
in I;
then
A2: ((
bool (A
(\) B))
. i)
= (
bool ((A
. i)
\ (B
. i))) by
Lm4;
(((I
-->
{
{} })
(\/) ((
bool A)
(\) (
bool B)))
. i)
= (((I
-->
{
{} })
. i)
\/ (((
bool A)
(\) (
bool B))
. i)) by
A1,
PBOOLE:def 4
.= (
{
{} }
\/ (((
bool A)
(\) (
bool B))
. i)) by
A1,
FUNCOP_1: 7
.= (
{
{} }
\/ (((
bool A)
. i)
\ ((
bool B)
. i))) by
A1,
PBOOLE:def 6
.= (
{
{} }
\/ ((
bool (A
. i))
\ ((
bool B)
. i))) by
A1,
Def1
.= (
{
{} }
\/ ((
bool (A
. i))
\ (
bool (B
. i)))) by
A1,
Def1;
hence thesis by
A2,
ZFMISC_1: 72;
end;
theorem ::
MBOOLEAN:11
X
c= (A
(\) B) iff X
c= A & X
misses B
proof
thus X
c= (A
(\) B) implies X
c= A & X
misses B
proof
assume X
c= (A
(\) B);
then
A1: X
in (
bool (A
(\) B)) by
Th1;
thus X
c= A
proof
let i be
object;
assume
A2: i
in I;
then (X
. i)
in ((
bool (A
(\) B))
. i) by
A1;
then (X
. i)
in (
bool ((A
. i)
\ (B
. i))) by
A2,
Lm4;
hence thesis by
XBOOLE_1: 106;
end;
let i be
object;
assume
A3: i
in I;
then (X
. i)
in ((
bool (A
(\) B))
. i) by
A1;
then (X
. i)
in (
bool ((A
. i)
\ (B
. i))) by
A3,
Lm4;
hence thesis by
XBOOLE_1: 106;
end;
assume
A4: X
c= A & X
misses B;
let i be
object;
assume
A5: i
in I;
then (X
. i)
c= (A
. i) & (X
. i)
misses (B
. i) by
A4;
then (X
. i)
c= ((A
. i)
\ (B
. i)) by
XBOOLE_1: 86;
hence thesis by
A5,
PBOOLE:def 6;
end;
theorem ::
MBOOLEAN:12
((
bool (A
(\) B))
(\/) (
bool (B
(\) A)))
c= (
bool (A
(\+\) B))
proof
let i be
object;
assume
A1: i
in I;
then
A2: ((
bool (A
(\+\) B))
. i)
= (
bool ((A
. i)
\+\ (B
. i))) by
Lm5;
(((
bool (A
(\) B))
(\/) (
bool (B
(\) A)))
. i)
= (((
bool (A
(\) B))
. i)
\/ ((
bool (B
(\) A))
. i)) by
A1,
PBOOLE:def 4
.= ((
bool ((A
. i)
\ (B
. i)))
\/ ((
bool (B
(\) A))
. i)) by
A1,
Lm4
.= ((
bool ((A
. i)
\ (B
. i)))
\/ (
bool ((B
. i)
\ (A
. i)))) by
A1,
Lm4;
hence thesis by
A2,
ZFMISC_1: 73;
end;
theorem ::
MBOOLEAN:13
X
c= (A
(\+\) B) iff X
c= (A
(\/) B) & X
misses (A
(/\) B)
proof
thus X
c= (A
(\+\) B) implies X
c= (A
(\/) B) & X
misses (A
(/\) B)
proof
assume X
c= (A
(\+\) B);
then
A1: X
in (
bool (A
(\+\) B)) by
Th1;
thus X
c= (A
(\/) B)
proof
let i be
object;
assume
A2: i
in I;
then (X
. i)
in ((
bool (A
(\+\) B))
. i) by
A1;
then (X
. i)
in (
bool ((A
. i)
\+\ (B
. i))) by
A2,
Lm5;
then (X
. i)
c= ((A
. i)
\/ (B
. i)) by
XBOOLE_1: 107;
hence thesis by
A2,
PBOOLE:def 4;
end;
let i be
object;
assume
A3: i
in I;
then (X
. i)
in ((
bool (A
(\+\) B))
. i) by
A1;
then (X
. i)
in (
bool ((A
. i)
\+\ (B
. i))) by
A3,
Lm5;
then (X
. i)
misses ((A
. i)
/\ (B
. i)) by
XBOOLE_1: 107;
hence thesis by
A3,
PBOOLE:def 5;
end;
assume that
A4: X
c= (A
(\/) B) and
A5: X
misses (A
(/\) B);
let i be
object;
assume
A6: i
in I;
then (X
. i)
misses ((A
(/\) B)
. i) by
A5;
then
A7: (X
. i)
misses ((A
. i)
/\ (B
. i)) by
A6,
PBOOLE:def 5;
(X
. i)
c= ((A
(\/) B)
. i) by
A4,
A6;
then (X
. i)
c= ((A
. i)
\/ (B
. i)) by
A6,
PBOOLE:def 4;
then (X
. i)
c= ((A
. i)
\+\ (B
. i)) by
A7,
XBOOLE_1: 107;
hence thesis by
A6,
PBOOLE: 4;
end;
theorem ::
MBOOLEAN:14
X
c= A or Y
c= A implies (X
(/\) Y)
c= A
proof
assume
A1: X
c= A or Y
c= A;
per cases by
A1;
suppose
A2: X
c= A;
let i be
object;
assume
A3: i
in I;
then (X
. i)
c= (A
. i) by
A2;
then ((X
. i)
/\ (Y
. i))
c= (A
. i) by
XBOOLE_1: 108;
hence thesis by
A3,
PBOOLE:def 5;
end;
suppose
A4: Y
c= A;
let i be
object;
assume
A5: i
in I;
then (Y
. i)
c= (A
. i) by
A4;
then ((X
. i)
/\ (Y
. i))
c= (A
. i) by
XBOOLE_1: 108;
hence thesis by
A5,
PBOOLE:def 5;
end;
end;
theorem ::
MBOOLEAN:15
X
c= A implies (X
(\) Y)
c= A
proof
assume
A1: X
c= A;
let i be
object;
assume
A2: i
in I;
then (X
. i)
c= (A
. i) by
A1;
then ((X
. i)
\ (Y
. i))
c= (A
. i) by
XBOOLE_1: 109;
hence thesis by
A2,
PBOOLE:def 6;
end;
theorem ::
MBOOLEAN:16
X
c= A & Y
c= A implies (X
(\+\) Y)
c= A
proof
assume
A1: X
c= A & Y
c= A;
let i be
object;
assume
A2: i
in I;
then (X
. i)
c= (A
. i) & (Y
. i)
c= (A
. i) by
A1;
then ((X
. i)
\+\ (Y
. i))
c= (A
. i) by
XBOOLE_1: 110;
then ((X
. i)
\+\ (Y
. i))
in (
bool (A
. i));
then ((X
(\+\) Y)
. i)
in (
bool (A
. i)) by
A2,
PBOOLE: 4;
hence thesis;
end;
theorem ::
MBOOLEAN:17
[|X, Y|]
c= (
bool (
bool (X
(\/) Y)))
proof
let i be
object;
assume
A1: i
in I;
then
A2: (
[|X, Y|]
. i)
=
[:(X
. i), (Y
. i):] by
PBOOLE:def 16;
((
bool (
bool (X
(\/) Y)))
. i)
= (
bool ((
bool (X
(\/) Y))
. i)) by
A1,
Def1
.= (
bool (
bool ((X
. i)
\/ (Y
. i)))) by
A1,
Lm2;
hence thesis by
A2,
ZFMISC_1: 86;
end;
theorem ::
MBOOLEAN:18
X
c= A iff X
in (
bool A)
proof
thus X
c= A implies X
in (
bool A)
proof
assume
A1: X
c= A;
let i be
object;
assume
A2: i
in I;
then (X
. i)
c= (A
. i) by
A1;
then (X
. i)
in (
bool (A
. i));
hence thesis by
A2,
Def1;
end;
assume
A3: X
in (
bool A);
let i be
object;
assume
A4: i
in I;
then (X
. i)
in ((
bool A)
. i) by
A3;
then (X
. i)
in (
bool (A
. i)) by
A4,
Def1;
hence thesis;
end;
theorem ::
MBOOLEAN:19
(
(Funcs) (A,B))
c= (
bool
[|A, B|])
proof
let i be
object;
assume
A1: i
in I;
then
A2: ((
(Funcs) (A,B))
. i)
= (
Funcs ((A
. i),(B
. i))) by
PBOOLE:def 17;
((
bool
[|A, B|])
. i)
= (
bool (
[|A, B|]
. i)) by
A1,
Def1
.= (
bool
[:(A
. i), (B
. i):]) by
A1,
PBOOLE:def 16;
hence thesis by
A2,
FRAENKEL: 2;
end;
begin
definition
let I, A;
::
MBOOLEAN:def2
func
union A ->
ManySortedSet of I means
:
Def2: for i be
object st i
in I holds (it
. i)
= (
union (A
. i));
existence
proof
deffunc
V(
object) = (
union (A
. $1));
thus ex X be
ManySortedSet of I st for i be
object st i
in I holds (X
. i)
=
V(i) from
PBOOLE:sch 4;
end;
uniqueness
proof
let X,Y be
ManySortedSet of I such that
A1: for i be
object st i
in I holds (X
. i)
= (
union (A
. i)) and
A2: for i be
object st i
in I holds (Y
. i)
= (
union (A
. i));
now
let i be
object;
assume
A3: i
in I;
hence (X
. i)
= (
union (A
. i)) by
A1
.= (Y
. i) by
A2,
A3;
end;
hence X
= Y;
end;
end
registration
let I;
cluster (
union (
EmptyMS I)) ->
empty-yielding;
coherence
proof
let i be
object;
A1: (
union ((
EmptyMS I)
. i)) is
empty by
PBOOLE: 5,
ZFMISC_1: 2;
assume i
in I;
hence thesis by
A1,
Def2;
end;
end
Lm6: for i be
set st i
in I holds ((
union (A
(\/) B))
. i)
= (
union ((A
. i)
\/ (B
. i)))
proof
let i be
set;
assume
A1: i
in I;
hence ((
union (A
(\/) B))
. i)
= (
union ((A
(\/) B)
. i)) by
Def2
.= (
union ((A
. i)
\/ (B
. i))) by
A1,
PBOOLE:def 4;
end;
Lm7: for i be
set st i
in I holds ((
union (A
(/\) B))
. i)
= (
union ((A
. i)
/\ (B
. i)))
proof
let i be
set;
assume
A1: i
in I;
hence ((
union (A
(/\) B))
. i)
= (
union ((A
(/\) B)
. i)) by
Def2
.= (
union ((A
. i)
/\ (B
. i))) by
A1,
PBOOLE:def 5;
end;
theorem ::
MBOOLEAN:20
A
in (
union X) iff ex Y st A
in Y & Y
in X
proof
thus A
in (
union X) implies ex Y st A
in Y & Y
in X
proof
defpred
P[
object,
object] means ex B be
set st B
= $2 & (A
. $1)
in B & $2
in (X
. $1);
assume
A1: A
in (
union X);
A2: for i be
object st i
in I holds ex Y be
object st
P[i, Y]
proof
let i be
object;
assume
A3: i
in I;
then (A
. i)
in ((
union X)
. i) by
A1;
then (A
. i)
in (
union (X
. i)) by
A3,
Def2;
then
consider B be
set such that
A4: (A
. i)
in B & B
in (X
. i) by
TARSKI:def 4;
take B;
thus thesis by
A4;
end;
consider K be
ManySortedSet of I such that
A5: for i be
object st i
in I holds
P[i, (K
. i)] from
PBOOLE:sch 3(
A2);
take K;
thus A
in K
proof
let i be
object;
assume i
in I;
then
P[i, (K
. i)] by
A5;
hence thesis;
end;
thus K
in X
proof
let i be
object;
assume i
in I;
then
P[i, (K
. i)] by
A5;
hence thesis;
end;
end;
given Y such that
A6: A
in Y & Y
in X;
let i be
object;
assume
A7: i
in I;
then (A
. i)
in (Y
. i) & (Y
. i)
in (X
. i) by
A6;
then (A
. i)
in (
union (X
. i)) by
TARSKI:def 4;
hence thesis by
A7,
Def2;
end;
theorem ::
MBOOLEAN:21
(
union (
EmptyMS I))
= (
EmptyMS I)
proof
now
let i be
object;
assume i
in I;
hence ((
union (
EmptyMS I))
. i)
= (
union ((
EmptyMS I)
. i)) by
Def2
.=
{} by
PBOOLE: 5,
ZFMISC_1: 2
.= ((
EmptyMS I)
. i) by
PBOOLE: 5;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:22
for x be
set holds (
union (I
--> x))
= (I
--> (
union x))
proof
let x be
set;
now
let i be
object;
assume
A1: i
in I;
hence ((
union (I
--> x))
. i)
= (
union ((I
--> x)
. i)) by
Def2
.= (
union x) by
A1,
FUNCOP_1: 7
.= ((I
--> (
union x))
. i) by
A1,
FUNCOP_1: 7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:23
(
union (I
-->
{x}))
= (I
--> x)
proof
now
let i be
object;
assume
A1: i
in I;
hence ((
union (I
-->
{x}))
. i)
= (
union ((I
-->
{x})
. i)) by
Def2
.= (
union
{x}) by
A1,
FUNCOP_1: 7
.= x by
ZFMISC_1: 25
.= ((I
--> x)
. i) by
A1,
FUNCOP_1: 7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:24
(
union (I
-->
{
{x},
{y}}))
= (I
-->
{x, y})
proof
now
let i be
object;
assume
A1: i
in I;
hence ((
union (I
-->
{
{x},
{y}}))
. i)
= (
union ((I
-->
{
{x},
{y}})
. i)) by
Def2
.= (
union
{
{x},
{y}}) by
A1,
FUNCOP_1: 7
.=
{x, y} by
ZFMISC_1: 26
.= ((I
-->
{x, y})
. i) by
A1,
FUNCOP_1: 7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:25
X
in A implies X
c= (
union A)
proof
assume
A1: X
in A;
let i be
object;
assume
A2: i
in I;
then (X
. i)
in (A
. i) by
A1;
then (X
. i)
c= (
union (A
. i)) by
ZFMISC_1: 74;
hence thesis by
A2,
Def2;
end;
theorem ::
MBOOLEAN:26
A
c= B implies (
union A)
c= (
union B)
proof
assume
A1: A
c= B;
let i be
object;
assume
A2: i
in I;
then (A
. i)
c= (B
. i) by
A1;
then (
union (A
. i))
c= (
union (B
. i)) by
ZFMISC_1: 77;
then ((
union A)
. i)
c= (
union (B
. i)) by
A2,
Def2;
hence thesis by
A2,
Def2;
end;
theorem ::
MBOOLEAN:27
(
union (A
(\/) B))
= ((
union A)
(\/) (
union B))
proof
now
let i be
object;
assume
A1: i
in I;
hence ((
union (A
(\/) B))
. i)
= (
union ((A
. i)
\/ (B
. i))) by
Lm6
.= ((
union (A
. i))
\/ (
union (B
. i))) by
ZFMISC_1: 78
.= (((
union A)
. i)
\/ (
union (B
. i))) by
A1,
Def2
.= (((
union A)
. i)
\/ ((
union B)
. i)) by
A1,
Def2
.= (((
union A)
(\/) (
union B))
. i) by
A1,
PBOOLE:def 4;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:28
(
union (A
(/\) B))
c= ((
union A)
(/\) (
union B))
proof
let i be
object;
assume
A1: i
in I;
then
A2: ((
union (A
(/\) B))
. i)
= (
union ((A
. i)
/\ (B
. i))) by
Lm7;
(((
union A)
(/\) (
union B))
. i)
= (((
union A)
. i)
/\ ((
union B)
. i)) by
A1,
PBOOLE:def 5
.= ((
union (A
. i))
/\ ((
union B)
. i)) by
A1,
Def2
.= ((
union (A
. i))
/\ (
union (B
. i))) by
A1,
Def2;
hence thesis by
A2,
ZFMISC_1: 79;
end;
theorem ::
MBOOLEAN:29
(
union (
bool A))
= A
proof
now
let i be
object;
assume
A1: i
in I;
hence ((
union (
bool A))
. i)
= (
union ((
bool A)
. i)) by
Def2
.= (
union (
bool (A
. i))) by
A1,
Def1
.= (A
. i) by
ZFMISC_1: 81;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:30
A
c= (
bool (
union A))
proof
let i be
object;
assume
A1: i
in I;
then ((
bool (
union A))
. i)
= (
bool ((
union A)
. i)) by
Def1
.= (
bool (
union (A
. i))) by
A1,
Def2;
hence thesis by
ZFMISC_1: 82;
end;
theorem ::
MBOOLEAN:31
(
union Y)
c= A & X
in Y implies X
c= A
proof
assume that
A1: (
union Y)
c= A and
A2: X
in Y;
let i be
object;
assume
A3: i
in I;
then ((
union Y)
. i)
c= (A
. i) by
A1;
then
A4: (
union (Y
. i))
c= (A
. i) by
A3,
Def2;
(X
. i)
in (Y
. i) by
A2,
A3;
hence thesis by
A4,
SETFAM_1: 41;
end;
theorem ::
MBOOLEAN:32
for Z be
ManySortedSet of I holds for A be
non-empty
ManySortedSet of I holds (for X be
ManySortedSet of I st X
in A holds X
c= Z) implies (
union A)
c= Z
proof
let Z be
ManySortedSet of I, A be
non-empty
ManySortedSet of I;
assume
A1: for X be
ManySortedSet of I st X
in A holds X
c= Z;
let i be
object such that
A2: i
in I;
for X9 be
set st X9
in (A
. i) holds X9
c= (Z
. i)
proof
consider M be
ManySortedSet of I such that
A3: M
in A by
PBOOLE: 134;
let X9 be
set such that
A4: X9
in (A
. i);
(
dom (M
+* (i
.--> X9)))
= I by
A2,
Lm1;
then
reconsider K = (M
+* (i
.--> X9)) as
ManySortedSet of I by
PARTFUN1:def 2,
RELAT_1:def 18;
A5: (
dom (i
.--> X9))
=
{i};
i
in
{i} by
TARSKI:def 1;
then
A6: (K
. i)
= ((i
.--> X9)
. i) by
A5,
FUNCT_4: 13
.= X9 by
FUNCOP_1: 72;
K
in A
proof
let j be
object such that
A7: j
in I;
now
per cases ;
case j
= i;
hence thesis by
A4,
A6;
end;
case j
<> i;
then not j
in (
dom (i
.--> X9)) by
TARSKI:def 1;
then (K
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A3,
A7;
end;
end;
hence thesis;
end;
then K
c= Z by
A1;
hence thesis by
A2,
A6;
end;
then (
union (A
. i))
c= (Z
. i) by
ZFMISC_1: 76;
hence thesis by
A2,
Def2;
end;
theorem ::
MBOOLEAN:33
for B be
ManySortedSet of I holds for A be
non-empty
ManySortedSet of I st for X be
ManySortedSet of I st X
in A holds (X
(/\) B)
= (
EmptyMS I) holds ((
union A)
(/\) B)
= (
EmptyMS I)
proof
let B be
ManySortedSet of I, A be
non-empty
ManySortedSet of I;
assume
A1: for X be
ManySortedSet of I st X
in A holds (X
(/\) B)
= (
EmptyMS I);
now
let i be
object such that
A2: i
in I;
for X9 be
set st X9
in (A
. i) holds X9
misses (B
. i)
proof
consider M be
ManySortedSet of I such that
A3: M
in A by
PBOOLE: 134;
let X9 be
set such that
A4: X9
in (A
. i);
(
dom (M
+* (i
.--> X9)))
= I by
A2,
Lm1;
then
reconsider K = (M
+* (i
.--> X9)) as
ManySortedSet of I by
PARTFUN1:def 2,
RELAT_1:def 18;
A5: (
dom (i
.--> X9))
=
{i};
i
in
{i} by
TARSKI:def 1;
then
A6: (K
. i)
= ((i
.--> X9)
. i) by
A5,
FUNCT_4: 13
.= X9 by
FUNCOP_1: 72;
K
in A
proof
let j be
object such that
A7: j
in I;
now
per cases ;
case j
= i;
hence thesis by
A4,
A6;
end;
case j
<> i;
then not j
in (
dom (i
.--> X9)) by
TARSKI:def 1;
then (K
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A3,
A7;
end;
end;
hence thesis;
end;
then (K
(/\) B)
= (
EmptyMS I) by
A1;
then ((K
. i)
/\ (B
. i))
= ((
EmptyMS I)
. i) by
A2,
PBOOLE:def 5;
then (X9
/\ (B
. i))
=
{} by
A6,
PBOOLE: 5;
hence thesis by
XBOOLE_0:def 7;
end;
then (
union (A
. i))
misses (B
. i) by
ZFMISC_1: 80;
then ((
union (A
. i))
/\ (B
. i))
=
{} by
XBOOLE_0:def 7;
then (((
union A)
. i)
/\ (B
. i))
=
{} by
A2,
Def2;
then (((
union A)
(/\) B)
. i)
=
{} by
A2,
PBOOLE:def 5;
hence (((
union A)
(/\) B)
. i)
= ((
EmptyMS I)
. i) by
PBOOLE: 5;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:34
for A,B be
ManySortedSet of I st (A
(\/) B) is
non-empty & for X,Y be
ManySortedSet of I st X
<> Y & X
in (A
(\/) B) & Y
in (A
(\/) B) holds (X
(/\) Y)
= (
EmptyMS I) holds (
union (A
(/\) B))
= ((
union A)
(/\) (
union B))
proof
let A,B be
ManySortedSet of I such that
A1: (A
(\/) B) is
non-empty;
assume
A2: for X,Y be
ManySortedSet of I st X
<> Y & X
in (A
(\/) B) & Y
in (A
(\/) B) holds (X
(/\) Y)
= (
EmptyMS I);
now
let i be
object such that
A3: i
in I;
for X9,Y9 be
set st X9
<> Y9 & X9
in ((A
. i)
\/ (B
. i)) & Y9
in ((A
. i)
\/ (B
. i)) holds X9
misses Y9
proof
consider M be
ManySortedSet of I such that
A4: M
in (A
(\/) B) by
A1,
PBOOLE: 134;
A5: i
in
{i} by
TARSKI:def 1;
let X9,Y9 be
set such that
A6: X9
<> Y9 and
A7: X9
in ((A
. i)
\/ (B
. i)) and
A8: Y9
in ((A
. i)
\/ (B
. i));
(
dom (M
+* (i
.--> X9)))
= I & (
dom (M
+* (i
.--> Y9)))
= I by
A3,
Lm1;
then
reconsider Kx = (M
+* (i
.--> X9)), Ky = (M
+* (i
.--> Y9)) as
ManySortedSet of I by
PARTFUN1:def 2,
RELAT_1:def 18;
(
dom (i
.--> Y9))
=
{i};
then
A10: (Ky
. i)
= ((i
.--> Y9)
. i) by
A5,
FUNCT_4: 13
.= Y9 by
FUNCOP_1: 72;
A11: Ky
in (A
(\/) B)
proof
let j be
object such that
A12: j
in I;
now
per cases ;
suppose j
= i;
hence thesis by
A8,
A10,
A12,
PBOOLE:def 4;
end;
suppose j
<> i;
then not j
in (
dom (i
.--> Y9)) by
TARSKI:def 1;
then (Ky
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A4,
A12;
end;
end;
hence thesis;
end;
(
dom (i
.--> X9))
=
{i};
then
A14: (Kx
. i)
= ((i
.--> X9)
. i) by
A5,
FUNCT_4: 13
.= X9 by
FUNCOP_1: 72;
Kx
in (A
(\/) B)
proof
let j be
object such that
A15: j
in I;
now
per cases ;
case j
= i;
hence thesis by
A7,
A14,
A15,
PBOOLE:def 4;
end;
case j
<> i;
then not j
in (
dom (i
.--> X9)) by
TARSKI:def 1;
then (Kx
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A4,
A15;
end;
end;
hence thesis;
end;
then (Kx
(/\) Ky)
= (
EmptyMS I) by
A2,
A6,
A14,
A10,
A11;
then ((Kx
(/\) Ky)
. i)
=
{} by
PBOOLE: 5;
then (X9
/\ Y9)
=
{} by
A3,
A14,
A10,
PBOOLE:def 5;
hence thesis by
XBOOLE_0:def 7;
end;
then (
union ((A
. i)
/\ (B
. i)))
= ((
union (A
. i))
/\ (
union (B
. i))) by
ZFMISC_1: 83;
then (
union ((A
. i)
/\ (B
. i)))
= (((
union A)
. i)
/\ (
union (B
. i))) by
A3,
Def2;
then (
union ((A
. i)
/\ (B
. i)))
= (((
union A)
. i)
/\ ((
union B)
. i)) by
A3,
Def2;
then (
union ((A
. i)
/\ (B
. i)))
= (((
union A)
(/\) (
union B))
. i) by
A3,
PBOOLE:def 5;
hence ((
union (A
(/\) B))
. i)
= (((
union A)
(/\) (
union B))
. i) by
A3,
Lm7;
end;
hence thesis;
end;
theorem ::
MBOOLEAN:35
for A,X be
ManySortedSet of I holds for B be
non-empty
ManySortedSet of I holds (X
c= (
union (A
(\/) B)) & for Y be
ManySortedSet of I st Y
in B holds (Y
(/\) X)
= (
EmptyMS I)) implies X
c= (
union A)
proof
let A,X be
ManySortedSet of I, B be
non-empty
ManySortedSet of I;
assume that
A1: X
c= (
union (A
(\/) B)) and
A2: for Y be
ManySortedSet of I st Y
in B holds (Y
(/\) X)
= (
EmptyMS I);
let i be
object;
assume
A3: i
in I;
A4: for Y9 be
set st Y9
in (B
. i) holds Y9
misses (X
. i)
proof
consider M be
ManySortedSet of I such that
A5: M
in B by
PBOOLE: 134;
let Y9 be
set such that
A6: Y9
in (B
. i);
(
dom (M
+* (i
.--> Y9)))
= I by
A3,
Lm1;
then
reconsider K = (M
+* (i
.--> Y9)) as
ManySortedSet of I by
PARTFUN1:def 2,
RELAT_1:def 18;
A7: (
dom (i
.--> Y9))
=
{i};
i
in
{i} by
TARSKI:def 1;
then
A8: (K
. i)
= ((i
.--> Y9)
. i) by
A7,
FUNCT_4: 13
.= Y9 by
FUNCOP_1: 72;
K
in B
proof
let j be
object such that
A9: j
in I;
now
per cases ;
case j
= i;
hence thesis by
A6,
A8;
end;
case j
<> i;
then not j
in (
dom (i
.--> Y9)) by
TARSKI:def 1;
then (K
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A5,
A9;
end;
end;
hence thesis;
end;
then (K
(/\) X)
= (
EmptyMS I) by
A2;
then ((K
(/\) X)
. i)
=
{} by
PBOOLE: 5;
then (Y9
/\ (X
. i))
=
{} by
A3,
A8,
PBOOLE:def 5;
hence thesis by
XBOOLE_0:def 7;
end;
(X
. i)
c= ((
union (A
(\/) B))
. i) by
A1,
A3;
then (X
. i)
c= (
union ((A
. i)
\/ (B
. i))) by
A3,
Lm6;
then (X
. i)
c= (
union (A
. i)) by
A4,
SETFAM_1: 42;
hence thesis by
A3,
Def2;
end;
theorem ::
MBOOLEAN:36
for A be
finite-yielding
non-empty
ManySortedSet of I st (for X,Y be
ManySortedSet of I st X
in A & Y
in A holds X
c= Y or Y
c= X) holds (
union A)
in A
proof
let A be
finite-yielding
non-empty
ManySortedSet of I such that
A1: for X,Y be
ManySortedSet of I st X
in A & Y
in A holds X
c= Y or Y
c= X;
let i be
object;
assume
A2: i
in I;
then i
in (
dom A) by
PARTFUN1:def 2;
then (A
. i)
in (
rng A) by
FUNCT_1: 3;
then
A3: (A
. i) is
finite by
FINSET_1:def 2;
A4: for X9,Y9 be
set st X9
in (A
. i) & Y9
in (A
. i) holds X9
c= Y9 or Y9
c= X9
proof
let X9,Y9 be
set such that
A5: X9
in (A
. i) and
A6: Y9
in (A
. i);
consider M be
ManySortedSet of I such that
A7: M
in A by
PBOOLE: 134;
(
dom (M
+* (i
.--> Y9)))
= I & (
dom (M
+* (i
.--> X9)))
= I by
A2,
Lm1;
then
reconsider K1 = (M
+* (i
.--> X9)), K2 = (M
+* (i
.--> Y9)) as
ManySortedSet of I by
PARTFUN1:def 2,
RELAT_1:def 18;
assume
A8: not X9
c= Y9;
A9: i
in
{i} by
TARSKI:def 1;
(
dom (i
.--> Y9))
=
{i};
then
A11: (K2
. i)
= ((i
.--> Y9)
. i) by
A9,
FUNCT_4: 13
.= Y9 by
FUNCOP_1: 72;
A12: K2
in A
proof
let j be
object such that
A13: j
in I;
per cases ;
suppose j
= i;
hence thesis by
A6,
A11;
end;
suppose j
<> i;
then not j
in (
dom (i
.--> Y9)) by
TARSKI:def 1;
then (K2
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A7,
A13;
end;
end;
(
dom (i
.--> X9))
=
{i};
then
A15: (K1
. i)
= ((i
.--> X9)
. i) by
A9,
FUNCT_4: 13
.= X9 by
FUNCOP_1: 72;
K1
in A
proof
let j be
object such that
A16: j
in I;
per cases ;
suppose j
= i;
hence thesis by
A5,
A15;
end;
suppose j
<> i;
then not j
in (
dom (i
.--> X9)) by
TARSKI:def 1;
then (K1
. j)
= (M
. j) by
FUNCT_4: 11;
hence thesis by
A7,
A16;
end;
end;
then K1
c= K2 or K2
c= K1 by
A1,
A12;
hence thesis by
A2,
A8,
A15,
A11;
end;
(A
. i)
<>
{} by
A2,
PBOOLE:def 13;
then (
union (A
. i))
in (A
. i) by
A3,
A4,
CARD_2: 62;
hence thesis by
A2,
Def2;
end;