setfam_1.miz



    begin

    reserve X,Y,Z,Z1,Z2,D for set,

x,y for object;

    definition

      let X;

      :: SETFAM_1:def1

      func meet X -> set means

      : Def1: for x be object holds x in it iff for Y holds Y in X implies x in Y if X <> {}

      otherwise it = {} ;

      existence

      proof

        thus X <> {} implies ex Z1 st for x be object holds x in Z1 iff for Z st Z in X holds x in Z

        proof

          defpred X[ object] means for Z st Z in X holds $1 in Z;

          assume

           A1: X <> {} ;

          consider Y such that

           A2: for x be object holds x in Y iff x in ( union X) & X[x] from XBOOLE_0:sch 1;

          take Y;

          for x be object holds (for Z st Z in X holds x in Z) implies x in Y

          proof

            set y = the Element of X;

            let x be object such that

             A3: for Z st Z in X holds x in Z;

            x in y by A1, A3;

            then x in ( union X) by A1, TARSKI:def 4;

            hence thesis by A2, A3;

          end;

          hence thesis by A2;

        end;

        thus thesis;

      end;

      uniqueness

      proof

        let Z1, Z2;

        now

          assume that X <> {} and

           A4: for x be object holds x in Z1 iff for Y holds Y in X implies x in Y and

           A5: for x be object holds x in Z2 iff for Y holds Y in X implies x in Y;

          now

            let x be object;

            x in Z1 iff for Y holds Y in X implies x in Y by A4;

            hence x in Z1 iff x in Z2 by A5;

          end;

          hence Z1 = Z2 by TARSKI: 2;

        end;

        hence thesis;

      end;

      consistency ;

    end

    theorem :: SETFAM_1:1

    ( meet {} ) = {} by Def1;

    theorem :: SETFAM_1:2

    

     Th2: ( meet X) c= ( union X)

    proof

       A1:

      now

        assume

         A2: X <> {} ;

        now

          set y = the Element of X;

          let x be object;

          assume x in ( meet X);

          then x in y by A2, Def1;

          hence x in ( union X) by A2, TARSKI:def 4;

        end;

        hence thesis;

      end;

      X = {} implies thesis by Def1;

      hence thesis by A1;

    end;

    theorem :: SETFAM_1:3

    

     Th3: Z in X implies ( meet X) c= Z by Def1;

    theorem :: SETFAM_1:4

     {} in X implies ( meet X) = {} by Th3, XBOOLE_1: 3;

    theorem :: SETFAM_1:5

    X <> {} & (for Z1 st Z1 in X holds Z c= Z1) implies Z c= ( meet X)

    proof

      assume that

       A1: X <> {} and

       A2: for Z1 st Z1 in X holds Z c= Z1;

      thus Z c= ( meet X)

      proof

        let x be object such that

         A3: x in Z;

        for Y st Y in X holds x in Y

        proof

          let Y;

          assume Y in X;

          then Z c= Y by A2;

          hence thesis by A3;

        end;

        hence thesis by A1, Def1;

      end;

    end;

    theorem :: SETFAM_1:6

    

     Th6: X <> {} & X c= Y implies ( meet Y) c= ( meet X)

    proof

      assume that

       A1: X <> {} and

       A2: X c= Y;

      let x be object;

      assume x in ( meet Y);

      then for Z st Z in X holds x in Z by A2, Def1;

      hence thesis by A1, Def1;

    end;

    theorem :: SETFAM_1:7

    X in Y & X c= Z implies ( meet Y) c= Z

    proof

      assume that

       A1: X in Y and

       A2: X c= Z;

      ( meet Y) c= X by A1, Th3;

      hence thesis by A2;

    end;

    theorem :: SETFAM_1:8

    X in Y & X misses Z implies ( meet Y) misses Z by Th3, XBOOLE_1: 63;

    theorem :: SETFAM_1:9

    X <> {} & Y <> {} implies ( meet (X \/ Y)) = (( meet X) /\ ( meet Y))

    proof

      assume that

       A1: X <> {} and

       A2: Y <> {} ;

      

       A3: (( meet X) /\ ( meet Y)) c= ( meet (X \/ Y))

      proof

        let x be object;

        assume x in (( meet X) /\ ( meet Y));

        then

         A4: x in ( meet X) & x in ( meet Y) by XBOOLE_0:def 4;

        now

          let Z;

          assume Z in (X \/ Y);

          then Z in X or Z in Y by XBOOLE_0:def 3;

          hence x in Z by A4, Def1;

        end;

        hence thesis by A1, Def1;

      end;

      ( meet (X \/ Y)) c= ( meet X) & ( meet (X \/ Y)) c= ( meet Y) by A1, A2, Th6, XBOOLE_1: 7;

      then ( meet (X \/ Y)) c= (( meet X) /\ ( meet Y)) by XBOOLE_1: 19;

      hence thesis by A3;

    end;

    theorem :: SETFAM_1:10

    ( meet {X}) = X

    proof

      

       A1: X c= ( meet {X})

      proof

        let y be object;

        assume y in X;

        then for Z st Z in {X} holds y in Z by TARSKI:def 1;

        hence thesis by Def1;

      end;

      X in {X} by TARSKI:def 1;

      then ( meet {X}) c= X by Th3;

      hence thesis by A1;

    end;

    theorem :: SETFAM_1:11

    ( meet {X, Y}) = (X /\ Y)

    proof

      

       A1: X in {X, Y} & Y in {X, Y} by TARSKI:def 2;

      for x be object holds x in ( meet {X, Y}) iff x in X & x in Y

      proof

        let x be object;

        thus x in ( meet {X, Y}) implies x in X & x in Y by A1, Def1;

        assume x in X & x in Y;

        then for Z holds Z in {X, Y} implies x in Z by TARSKI:def 2;

        hence thesis by Def1;

      end;

      hence thesis by XBOOLE_0:def 4;

    end;

    reserve SFX,SFY,SFZ for set;

    definition

      let SFX, SFY;

      :: SETFAM_1:def2

      pred SFX is_finer_than SFY means for X st X in SFX holds ex Y st Y in SFY & X c= Y;

      reflexivity ;

      :: SETFAM_1:def3

      pred SFY is_coarser_than SFX means for Y st Y in SFY holds ex X st X in SFX & X c= Y;

      reflexivity ;

    end

    theorem :: SETFAM_1:12

    SFX c= SFY implies SFX is_finer_than SFY;

    theorem :: SETFAM_1:13

    SFX is_finer_than SFY implies ( union SFX) c= ( union SFY)

    proof

      assume

       A1: for X st X in SFX holds ex Y st Y in SFY & X c= Y;

      thus ( union SFX) c= ( union SFY)

      proof

        let x be object;

        assume x in ( union SFX);

        then

        consider Y such that

         A2: x in Y and

         A3: Y in SFX by TARSKI:def 4;

        ex Z st Z in SFY & Y c= Z by A1, A3;

        hence thesis by A2, TARSKI:def 4;

      end;

    end;

    theorem :: SETFAM_1:14

    SFY <> {} & SFY is_coarser_than SFX implies ( meet SFX) c= ( meet SFY)

    proof

      assume that

       A1: SFY <> {} and

       A2: for Z2 st Z2 in SFY holds ex Z1 st Z1 in SFX & Z1 c= Z2;

      ( meet SFX) c= ( meet SFY)

      proof

        let x be object such that

         A3: x in ( meet SFX);

        for Z st Z in SFY holds x in Z

        proof

          let Z;

          assume Z in SFY;

          then

          consider Z1 such that

           A4: Z1 in SFX and

           A5: Z1 c= Z by A2;

          x in Z1 by A3, A4, Def1;

          hence thesis by A5;

        end;

        hence thesis by A1, Def1;

      end;

      hence thesis;

    end;

    theorem :: SETFAM_1:15

     {} is_finer_than SFX;

    theorem :: SETFAM_1:16

    SFX is_finer_than {} implies SFX = {}

    proof

      assume

       A1: for X st X in SFX holds ex Y st Y in {} & X c= Y;

      set x = the Element of SFX;

      assume not thesis;

      then ex Y st Y in {} & x c= Y by A1;

      hence contradiction;

    end;

    theorem :: SETFAM_1:17

    SFX is_finer_than SFY & SFY is_finer_than SFZ implies SFX is_finer_than SFZ

    proof

      assume that

       A1: for X st X in SFX holds ex Y st Y in SFY & X c= Y and

       A2: for X st X in SFY holds ex Y st Y in SFZ & X c= Y;

      let X;

      assume X in SFX;

      then

      consider Y such that

       A3: Y in SFY and

       A4: X c= Y by A1;

      consider Z such that

       A5: Z in SFZ & Y c= Z by A2, A3;

      take Z;

      thus thesis by A4, A5;

    end;

    theorem :: SETFAM_1:18

    SFX is_finer_than {Y} implies for X st X in SFX holds X c= Y

    proof

      assume

       A1: for X st X in SFX holds ex Z st Z in {Y} & X c= Z;

      let X;

      assume X in SFX;

      then ex Z st Z in {Y} & X c= Z by A1;

      hence thesis by TARSKI:def 1;

    end;

    theorem :: SETFAM_1:19

    SFX is_finer_than {X, Y} implies for Z st Z in SFX holds Z c= X or Z c= Y

    proof

      assume

       A1: for Z1 st Z1 in SFX holds ex Z2 st Z2 in {X, Y} & Z1 c= Z2;

      let Z;

      assume Z in SFX;

      then

      consider Z2 such that

       A2: Z2 in {X, Y} and

       A3: Z c= Z2 by A1;

       {X, Y} = ( {X} \/ {Y}) by ENUMSET1: 1;

      then Z2 in {X} or Z2 in {Y} by A2, XBOOLE_0:def 3;

      hence thesis by A3, TARSKI:def 1;

    end;

    definition

      let SFX, SFY;

      :: SETFAM_1:def4

      func UNION (SFX,SFY) -> set means

      : Def4: Z in it iff ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y);

      existence

      proof

        defpred X[ set] means ex Z be set st $1 = Z & ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y);

        consider XX be set such that

         A1: for x be set holds x in XX iff x in ( bool (( union SFX) \/ ( union SFY))) & X[x] from XFAMILY:sch 1;

        take XX;

        for Z holds Z in XX iff ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y)

        proof

          let Z;

           A2:

          now

            given X, Y such that

             A3: X in SFX & Y in SFY and

             A4: Z = (X \/ Y);

            X c= ( union SFX) & Y c= ( union SFY) by A3, ZFMISC_1: 74;

            then Z c= (( union SFX) \/ ( union SFY)) by A4, XBOOLE_1: 13;

            hence Z in XX by A1, A3, A4;

          end;

          now

            assume Z in XX;

            then ex Z1 st Z = Z1 & ex X, Y st X in SFX & Y in SFY & Z1 = (X \/ Y) by A1;

            hence ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y);

          end;

          hence thesis by A2;

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let Z1,Z2 be set;

        assume that

         A5: for Z holds Z in Z1 iff ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y) and

         A6: for Z holds Z in Z2 iff ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y);

        now

          let Z be object;

          Z in Z1 iff ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y) by A5;

          hence Z in Z1 iff Z in Z2 by A6;

        end;

        hence thesis by TARSKI: 2;

      end;

      commutativity

      proof

        let SFZ, SFX, SFY;

        assume

         A7: for Z holds Z in SFZ iff ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y);

        let Z;

        hereby

          assume Z in SFZ;

          then ex X, Y st X in SFX & Y in SFY & Z = (X \/ Y) by A7;

          hence ex Y, X st Y in SFY & X in SFX & Z = (Y \/ X);

        end;

        thus thesis by A7;

      end;

      :: SETFAM_1:def5

      func INTERSECTION (SFX,SFY) -> set means

      : Def5: Z in it iff ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y);

      existence

      proof

        defpred X[ set] means ex Z be set st $1 = Z & ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y);

        consider XX be set such that

         A8: for x be set holds x in XX iff x in ( bool (( union SFX) /\ ( union SFY))) & X[x] from XFAMILY:sch 1;

        take XX;

        for Z holds Z in XX iff ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y)

        proof

          let Z;

           A9:

          now

            given X, Y such that

             A10: X in SFX & Y in SFY and

             A11: Z = (X /\ Y);

            X c= ( union SFX) & Y c= ( union SFY) by A10, ZFMISC_1: 74;

            then Z c= (( union SFX) /\ ( union SFY)) by A11, XBOOLE_1: 27;

            hence Z in XX by A8, A10, A11;

          end;

          now

            assume Z in XX;

            then ex Z1 st Z = Z1 & ex X, Y st X in SFX & Y in SFY & Z1 = (X /\ Y) by A8;

            hence ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y);

          end;

          hence thesis by A9;

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let Z1,Z2 be set;

        assume that

         A12: for Z holds Z in Z1 iff ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y) and

         A13: for Z holds Z in Z2 iff ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y);

        now

          let Z be object;

          Z in Z1 iff ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y) by A12;

          hence Z in Z1 iff Z in Z2 by A13;

        end;

        hence thesis by TARSKI: 2;

      end;

      commutativity

      proof

        let SFZ, SFX, SFY;

        assume

         A14: for Z holds Z in SFZ iff ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y);

        let Z;

        hereby

          assume Z in SFZ;

          then ex X, Y st X in SFX & Y in SFY & Z = (X /\ Y) by A14;

          hence ex Y, X st Y in SFY & X in SFX & Z = (Y /\ X);

        end;

        thus thesis by A14;

      end;

      :: SETFAM_1:def6

      func DIFFERENCE (SFX,SFY) -> set means

      : Def6: Z in it iff ex X, Y st X in SFX & Y in SFY & Z = (X \ Y);

      existence

      proof

        defpred X[ set] means ex Z be set st $1 = Z & ex X, Y st X in SFX & Y in SFY & Z = (X \ Y);

        consider XX be set such that

         A15: for x be set holds x in XX iff x in ( bool ( union SFX)) & X[x] from XFAMILY:sch 1;

        take XX;

        for Z holds Z in XX iff ex X, Y st X in SFX & Y in SFY & Z = (X \ Y)

        proof

          let Z;

           A16:

          now

            given X, Y such that

             A17: X in SFX and

             A18: Y in SFY and

             A19: Z = (X \ Y);

            X c= ( union SFX) by A17, ZFMISC_1: 74;

            then Z c= ( union SFX) by A19;

            hence Z in XX by A15, A17, A18, A19;

          end;

          now

            assume Z in XX;

            then ex Z1 st Z = Z1 & ex X, Y st X in SFX & Y in SFY & Z1 = (X \ Y) by A15;

            hence ex X, Y st X in SFX & Y in SFY & Z = (X \ Y);

          end;

          hence thesis by A16;

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let Z1,Z2 be set;

        assume that

         A20: for Z holds Z in Z1 iff ex X, Y st X in SFX & Y in SFY & Z = (X \ Y) and

         A21: for Z holds Z in Z2 iff ex X, Y st X in SFX & Y in SFY & Z = (X \ Y);

        now

          let Z be object;

          Z in Z1 iff ex X, Y st X in SFX & Y in SFY & Z = (X \ Y) by A20;

          hence Z in Z1 iff Z in Z2 by A21;

        end;

        hence thesis by TARSKI: 2;

      end;

    end

    theorem :: SETFAM_1:20

    SFX is_finer_than ( UNION (SFX,SFX))

    proof

      let X such that

       A1: X in SFX;

      take X;

      X = (X \/ X);

      hence thesis by A1, Def4;

    end;

    theorem :: SETFAM_1:21

    ( INTERSECTION (SFX,SFX)) is_finer_than SFX

    proof

      let X;

      assume X in ( INTERSECTION (SFX,SFX));

      then

      consider Z1, Z2 such that

       A1: Z1 in SFX and Z2 in SFX and

       A2: X = (Z1 /\ Z2) by Def5;

      take Z1;

      thus thesis by A1, A2, XBOOLE_1: 17;

    end;

    theorem :: SETFAM_1:22

    ( DIFFERENCE (SFX,SFX)) is_finer_than SFX

    proof

      let X;

      assume X in ( DIFFERENCE (SFX,SFX));

      then

      consider Z1, Z2 such that

       A1: Z1 in SFX and Z2 in SFX and

       A2: X = (Z1 \ Z2) by Def6;

      take Z1;

      thus thesis by A1, A2;

    end;

    theorem :: SETFAM_1:23

    SFX meets SFY implies (( meet SFX) /\ ( meet SFY)) = ( meet ( INTERSECTION (SFX,SFY)))

    proof

      set y = the Element of (SFX /\ SFY);

      assume

       A1: (SFX /\ SFY) <> {} ;

      then

       A2: SFY <> {} ;

      

       A3: y in SFX by A1, XBOOLE_0:def 4;

      

       A4: y in SFY by A1, XBOOLE_0:def 4;

      

       A5: SFX <> {} by A1;

      

       A6: ( meet ( INTERSECTION (SFX,SFY))) c= (( meet SFX) /\ ( meet SFY))

      proof

        let x be object such that

         A7: x in ( meet ( INTERSECTION (SFX,SFY)));

        for Z st Z in SFY holds x in Z

        proof

          let Z;

          assume Z in SFY;

          then (y /\ Z) in ( INTERSECTION (SFX,SFY)) by A3, Def5;

          then x in (y /\ Z) by A7, Def1;

          hence thesis by XBOOLE_0:def 4;

        end;

        then

         A8: x in ( meet SFY) by A2, Def1;

        for Z st Z in SFX holds x in Z

        proof

          let Z;

          assume Z in SFX;

          then (Z /\ y) in ( INTERSECTION (SFX,SFY)) by A4, Def5;

          then x in (Z /\ y) by A7, Def1;

          hence thesis by XBOOLE_0:def 4;

        end;

        then x in ( meet SFX) by A5, Def1;

        hence thesis by A8, XBOOLE_0:def 4;

      end;

      

       A9: (y /\ y) in ( INTERSECTION (SFX,SFY)) by A3, A4, Def5;

      (( meet SFX) /\ ( meet SFY)) c= ( meet ( INTERSECTION (SFX,SFY)))

      proof

        let x be object;

        assume x in (( meet SFX) /\ ( meet SFY));

        then

         A10: x in ( meet SFX) & x in ( meet SFY) by XBOOLE_0:def 4;

        for Z st Z in ( INTERSECTION (SFX,SFY)) holds x in Z

        proof

          let Z;

          assume Z in ( INTERSECTION (SFX,SFY));

          then

          consider Z1, Z2 such that

           A11: Z1 in SFX & Z2 in SFY and

           A12: Z = (Z1 /\ Z2) by Def5;

          x in Z1 & x in Z2 by A10, A11, Def1;

          hence thesis by A12, XBOOLE_0:def 4;

        end;

        hence thesis by A9, Def1;

      end;

      hence thesis by A6;

    end;

    theorem :: SETFAM_1:24

    SFY <> {} implies (X \/ ( meet SFY)) = ( meet ( UNION ( {X},SFY)))

    proof

      assume

       A1: SFY <> {} ;

      set y = the Element of SFY;

      X in {X} by TARSKI:def 1;

      then

       A2: (X \/ y) in ( UNION ( {X},SFY)) by A1, Def4;

      

       A3: (X \/ ( meet SFY)) c= ( meet ( UNION ( {X},SFY)))

      proof

        let x be object;

        assume x in (X \/ ( meet SFY));

        then

         A4: x in X or x in ( meet SFY) by XBOOLE_0:def 3;

        for Z st Z in ( UNION ( {X},SFY)) holds x in Z

        proof

          let Z;

          assume Z in ( UNION ( {X},SFY));

          then

          consider Z1, Z2 such that

           A5: Z1 in {X} & Z2 in SFY and

           A6: Z = (Z1 \/ Z2) by Def4;

          x in Z1 or x in Z2 by A4, A5, Def1, TARSKI:def 1;

          hence thesis by A6, XBOOLE_0:def 3;

        end;

        hence thesis by A2, Def1;

      end;

      ( meet ( UNION ( {X},SFY))) c= (X \/ ( meet SFY))

      proof

        let x be object;

        assume

         A7: x in ( meet ( UNION ( {X},SFY)));

        assume

         A8: not x in (X \/ ( meet SFY));

        then

         A9: not x in X by XBOOLE_0:def 3;

         not x in ( meet SFY) by A8, XBOOLE_0:def 3;

        then

        consider Z such that

         A10: Z in SFY and

         A11: not x in Z by A1, Def1;

        X in {X} by TARSKI:def 1;

        then (X \/ Z) in ( UNION ( {X},SFY)) by A10, Def4;

        then x in (X \/ Z) by A7, Def1;

        hence contradiction by A9, A11, XBOOLE_0:def 3;

      end;

      hence thesis by A3;

    end;

    theorem :: SETFAM_1:25

    (X /\ ( union SFY)) = ( union ( INTERSECTION ( {X},SFY)))

    proof

      

       A1: ( union ( INTERSECTION ( {X},SFY))) c= (X /\ ( union SFY))

      proof

        let x be object;

        assume x in ( union ( INTERSECTION ( {X},SFY)));

        then

        consider Z such that

         A2: x in Z and

         A3: Z in ( INTERSECTION ( {X},SFY)) by TARSKI:def 4;

        consider X1,X2 be set such that

         A4: X1 in {X} and

         A5: X2 in SFY and

         A6: Z = (X1 /\ X2) by A3, Def5;

        x in X2 by A2, A6, XBOOLE_0:def 4;

        then

         A7: x in ( union SFY) by A5, TARSKI:def 4;

        X1 = X by A4, TARSKI:def 1;

        then x in X by A2, A6, XBOOLE_0:def 4;

        hence thesis by A7, XBOOLE_0:def 4;

      end;

      (X /\ ( union SFY)) c= ( union ( INTERSECTION ( {X},SFY)))

      proof

        let x be object;

        assume

         A8: x in (X /\ ( union SFY));

        then x in ( union SFY) by XBOOLE_0:def 4;

        then

        consider Y such that

         A9: x in Y and

         A10: Y in SFY by TARSKI:def 4;

        x in X by A8, XBOOLE_0:def 4;

        then

         A11: x in (X /\ Y) by A9, XBOOLE_0:def 4;

        X in {X} by TARSKI:def 1;

        then (X /\ Y) in ( INTERSECTION ( {X},SFY)) by A10, Def5;

        hence thesis by A11, TARSKI:def 4;

      end;

      hence thesis by A1;

    end;

    theorem :: SETFAM_1:26

    SFY <> {} implies (X \ ( union SFY)) = ( meet ( DIFFERENCE ( {X},SFY)))

    proof

      set y = the Element of SFY;

      

       A1: X in {X} by TARSKI:def 1;

      assume SFY <> {} ;

      then

       A2: (X \ y) in ( DIFFERENCE ( {X},SFY)) by A1, Def6;

      

       A3: ( meet ( DIFFERENCE ( {X},SFY))) c= (X \ ( union SFY))

      proof

        let x be object;

        assume

         A4: x in ( meet ( DIFFERENCE ( {X},SFY)));

        for Z st Z in SFY holds not x in Z

        proof

          let Z;

          assume Z in SFY;

          then (X \ Z) in ( DIFFERENCE ( {X},SFY)) by A1, Def6;

          then x in (X \ Z) by A4, Def1;

          hence thesis by XBOOLE_0:def 5;

        end;

        then for Z st x in Z holds not Z in SFY;

        then

         A5: not x in ( union SFY) by TARSKI:def 4;

        x in (X \ y) by A2, A4, Def1;

        hence thesis by A5, XBOOLE_0:def 5;

      end;

      (X \ ( union SFY)) c= ( meet ( DIFFERENCE ( {X},SFY)))

      proof

        let x be object;

        assume x in (X \ ( union SFY));

        then

         A6: x in X & not x in ( union SFY) by XBOOLE_0:def 5;

        for Z st Z in ( DIFFERENCE ( {X},SFY)) holds x in Z

        proof

          let Z;

          assume Z in ( DIFFERENCE ( {X},SFY));

          then

          consider Z1, Z2 such that

           A7: Z1 in {X} & Z2 in SFY and

           A8: Z = (Z1 \ Z2) by Def6;

          x in Z1 & not x in Z2 by A6, A7, TARSKI:def 1, TARSKI:def 4;

          hence thesis by A8, XBOOLE_0:def 5;

        end;

        hence thesis by A2, Def1;

      end;

      hence thesis by A3;

    end;

    theorem :: SETFAM_1:27

    SFY <> {} implies (X \ ( meet SFY)) = ( union ( DIFFERENCE ( {X},SFY)))

    proof

      

       A1: X in {X} by TARSKI:def 1;

      

       A2: ( union ( DIFFERENCE ( {X},SFY))) c= (X \ ( meet SFY))

      proof

        let x be object;

        assume x in ( union ( DIFFERENCE ( {X},SFY)));

        then

        consider Z such that

         A3: x in Z and

         A4: Z in ( DIFFERENCE ( {X},SFY)) by TARSKI:def 4;

        consider Z1, Z2 such that

         A5: Z1 in {X} and

         A6: Z2 in SFY and

         A7: Z = (Z1 \ Z2) by A4, Def6;

         not x in Z2 by A3, A7, XBOOLE_0:def 5;

        then

         A8: not x in ( meet SFY) by A6, Def1;

        Z1 = X by A5, TARSKI:def 1;

        hence thesis by A3, A7, A8, XBOOLE_0:def 5;

      end;

      assume

       A9: SFY <> {} ;

      (X \ ( meet SFY)) c= ( union ( DIFFERENCE ( {X},SFY)))

      proof

        let x be object;

        assume

         A10: x in (X \ ( meet SFY));

        then not x in ( meet SFY) by XBOOLE_0:def 5;

        then

        consider Z such that

         A11: Z in SFY and

         A12: not x in Z by A9, Def1;

        

         A13: x in (X \ Z) by A10, A12, XBOOLE_0:def 5;

        (X \ Z) in ( DIFFERENCE ( {X},SFY)) by A1, A11, Def6;

        hence thesis by A13, TARSKI:def 4;

      end;

      hence thesis by A2;

    end;

    theorem :: SETFAM_1:28

    ( union ( INTERSECTION (SFX,SFY))) = (( union SFX) /\ ( union SFY))

    proof

      thus ( union ( INTERSECTION (SFX,SFY))) c= (( union SFX) /\ ( union SFY))

      proof

        let x be object;

        assume x in ( union ( INTERSECTION (SFX,SFY)));

        then

        consider Z such that

         A1: x in Z and

         A2: Z in ( INTERSECTION (SFX,SFY)) by TARSKI:def 4;

        consider X, Y such that

         A3: X in SFX and

         A4: Y in SFY and

         A5: Z = (X /\ Y) by A2, Def5;

        x in Y by A1, A5, XBOOLE_0:def 4;

        then

         A6: x in ( union SFY) by A4, TARSKI:def 4;

        x in X by A1, A5, XBOOLE_0:def 4;

        then x in ( union SFX) by A3, TARSKI:def 4;

        hence thesis by A6, XBOOLE_0:def 4;

      end;

      let x be object;

      assume

       A7: x in (( union SFX) /\ ( union SFY));

      then x in ( union SFX) by XBOOLE_0:def 4;

      then

      consider X0 be set such that

       A8: x in X0 & X0 in SFX by TARSKI:def 4;

      x in ( union SFY) by A7, XBOOLE_0:def 4;

      then

      consider Y0 be set such that

       A9: x in Y0 & Y0 in SFY by TARSKI:def 4;

      (X0 /\ Y0) in ( INTERSECTION (SFX,SFY)) & x in (X0 /\ Y0) by A8, A9, Def5, XBOOLE_0:def 4;

      hence thesis by TARSKI:def 4;

    end;

    theorem :: SETFAM_1:29

    SFX <> {} & SFY <> {} implies (( meet SFX) \/ ( meet SFY)) c= ( meet ( UNION (SFX,SFY)))

    proof

      set y = the Element of SFX;

      set z = the Element of SFY;

      assume SFX <> {} & SFY <> {} ;

      then

       A1: (y \/ z) in ( UNION (SFX,SFY)) by Def4;

      let x be object;

      assume x in (( meet SFX) \/ ( meet SFY));

      then

       A2: x in ( meet SFX) or x in ( meet SFY) by XBOOLE_0:def 3;

      for Z st Z in ( UNION (SFX,SFY)) holds x in Z

      proof

        let Z;

        assume Z in ( UNION (SFX,SFY));

        then

        consider X, Y such that

         A3: X in SFX & Y in SFY and

         A4: Z = (X \/ Y) by Def4;

        x in X or x in Y by A2, A3, Def1;

        hence thesis by A4, XBOOLE_0:def 3;

      end;

      hence thesis by A1, Def1;

    end;

    theorem :: SETFAM_1:30

    ( meet ( DIFFERENCE (SFX,SFY))) c= (( meet SFX) \ ( meet SFY))

    proof

      per cases ;

        suppose

         A1: SFX = {} or SFY = {} ;

        now

          assume ( DIFFERENCE (SFX,SFY)) <> {} ;

          then

          consider e be object such that

           A2: e in ( DIFFERENCE (SFX,SFY)) by XBOOLE_0:def 1;

          ex X, Y st X in SFX & Y in SFY & e = (X \ Y) by A2, Def6;

          hence contradiction by A1;

        end;

        then ( meet ( DIFFERENCE (SFX,SFY))) = {} by Def1;

        hence thesis;

      end;

        suppose

         A3: SFX <> {} & SFY <> {} ;

        set z = the Element of SFX;

        set y = the Element of SFY;

        let x be object such that

         A4: x in ( meet ( DIFFERENCE (SFX,SFY)));

        for Z st Z in SFX holds x in Z

        proof

          let Z;

          assume Z in SFX;

          then (Z \ y) in ( DIFFERENCE (SFX,SFY)) by A3, Def6;

          then x in (Z \ y) by A4, Def1;

          hence thesis;

        end;

        then

         A5: x in ( meet SFX) by A3, Def1;

        (z \ y) in ( DIFFERENCE (SFX,SFY)) by A3, Def6;

        then x in (z \ y) by A4, Def1;

        then not x in y by XBOOLE_0:def 5;

        then not x in ( meet SFY) by A3, Def1;

        hence thesis by A5, XBOOLE_0:def 5;

      end;

    end;

    definition

      let D be set;

      mode Subset-Family of D is Subset of ( bool D);

    end

    reserve F,G for Subset-Family of D;

    reserve P for Subset of D;

    definition

      let D, F;

      :: original: union

      redefine

      func union F -> Subset of D ;

      coherence

      proof

        ( union F) c= D

        proof

          let x be object;

          assume x in ( union F);

          then ex Z st x in Z & Z in F by TARSKI:def 4;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    definition

      let D, F;

      :: original: meet

      redefine

      func meet F -> Subset of D ;

      coherence

      proof

        ( meet F) c= D

        proof

          

           A1: ( meet F) c= ( union F) by Th2;

          let x be object;

          assume x in ( meet F);

          then x in ( union F) by A1;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    theorem :: SETFAM_1:31

    

     Th31: (for P holds P in F iff P in G) implies F = G

    proof

      assume

       A1: for P holds P in F iff P in G;

      thus F c= G by A1;

      let x be object;

      assume x in G;

      hence thesis by A1;

    end;

    definition

      let D, F;

      :: SETFAM_1:def7

      func COMPLEMENT (F) -> Subset-Family of D means

      : Def7: for P be Subset of D holds P in it iff (P ` ) in F;

      existence

      proof

        defpred X[ Subset of D] means ($1 ` ) in F;

        thus ex G be Subset-Family of D st for P be Subset of D holds P in G iff X[P] from SUBSET_1:sch 3;

      end;

      uniqueness

      proof

        let G,H be Subset-Family of D;

        assume that

         A1: for P holds P in G iff (P ` ) in F and

         A2: for P holds P in H iff (P ` ) in F;

        now

          let P;

          P in G iff (P ` ) in F by A1;

          hence P in G iff P in H by A2;

        end;

        hence thesis by Th31;

      end;

      involutiveness

      proof

        let F, G such that

         A3: for P be Subset of D holds P in F iff (P ` ) in G;

        let P be Subset of D;

        ((P ` ) ` ) = P;

        hence thesis by A3;

      end;

    end

    theorem :: SETFAM_1:32

    

     Th32: F <> {} implies ( COMPLEMENT F) <> {}

    proof

      set X = the Element of F;

      assume

       A1: F <> {} ;

      then

      reconsider X as Subset of D by TARSKI:def 3;

      ((X ` ) ` ) = X;

      hence thesis by A1, Def7;

    end;

    theorem :: SETFAM_1:33

    F <> {} implies (( [#] D) \ ( union F)) = ( meet ( COMPLEMENT F))

    proof

      

       A1: for x st x in D holds (for X st X in F holds not x in X) iff for Y st Y in ( COMPLEMENT F) holds x in Y

      proof

        let x such that

         A2: x in D;

        thus (for X st X in F holds not x in X) implies for Y st Y in ( COMPLEMENT F) holds x in Y

        proof

          assume

           A3: for X st X in F holds not x in X;

          let Y;

          assume

           A4: Y in ( COMPLEMENT F);

          then

          reconsider Y as Subset of D;

          (Y ` ) in F by A4, Def7;

          then not x in (Y ` ) by A3;

          hence thesis by A2, XBOOLE_0:def 5;

        end;

        assume

         A5: for Y st Y in ( COMPLEMENT F) holds x in Y;

        let X;

        assume

         A6: X in F;

        then

        reconsider X as Subset of D;

        ((X ` ) ` ) = X;

        then (X ` ) in ( COMPLEMENT F) by A6, Def7;

        then x in (X ` ) by A5;

        hence thesis by XBOOLE_0:def 5;

      end;

      assume F <> {} ;

      then

       A7: ( COMPLEMENT F) <> {} by Th32;

      

       A8: (( [#] D) \ ( union F)) c= ( meet ( COMPLEMENT F))

      proof

        let x be object;

        assume

         A9: x in (( [#] D) \ ( union F));

        then not x in ( union F) by XBOOLE_0:def 5;

        then for X st X in F holds not x in X by TARSKI:def 4;

        then for Y st Y in ( COMPLEMENT F) holds x in Y by A1, A9;

        hence thesis by A7, Def1;

      end;

      ( meet ( COMPLEMENT F)) c= (( [#] D) \ ( union F))

      proof

        let x be object;

        assume

         A10: x in ( meet ( COMPLEMENT F));

        then for X holds X in ( COMPLEMENT F) implies x in X by Def1;

        then for Y st x in Y holds not Y in F by A1;

        then not x in ( union F) by TARSKI:def 4;

        hence thesis by A10, XBOOLE_0:def 5;

      end;

      hence thesis by A8;

    end;

    theorem :: SETFAM_1:34

    F <> {} implies ( union ( COMPLEMENT F)) = (( [#] D) \ ( meet F))

    proof

      assume

       A1: F <> {} ;

      

       A2: (( [#] D) \ ( meet F)) c= ( union ( COMPLEMENT F))

      proof

        let x be object;

        assume

         A3: x in (( [#] D) \ ( meet F));

        then not x in ( meet F) by XBOOLE_0:def 5;

        then

        consider X such that

         A4: X in F and

         A5: not x in X by A1, Def1;

        reconsider X as Subset of D by A4;

        reconsider XX = (X ` ) as set;

        

         A6: ((X ` ) ` ) = X;

        ex Y st x in Y & Y in ( COMPLEMENT F)

        proof

          take XX;

          thus thesis by A3, A4, A5, A6, Def7, XBOOLE_0:def 5;

        end;

        hence thesis by TARSKI:def 4;

      end;

      ( union ( COMPLEMENT F)) c= (( [#] D) \ ( meet F))

      proof

        let x be object;

        assume

         A7: x in ( union ( COMPLEMENT F));

        then

        consider X such that

         A8: x in X and

         A9: X in ( COMPLEMENT F) by TARSKI:def 4;

        reconsider X as Subset of D by A9;

        reconsider XX = (X ` ) as set;

        ex Y st Y in F & not x in Y

        proof

          take Y = XX;

          thus Y in F by A9, Def7;

          thus thesis by A8, XBOOLE_0:def 5;

        end;

        then not x in ( meet F) by Def1;

        hence thesis by A7, XBOOLE_0:def 5;

      end;

      hence thesis by A2;

    end;

    begin

    theorem :: SETFAM_1:35

    for X be set, F be Subset-Family of X holds for P be Subset of X holds (P ` ) in ( COMPLEMENT F) iff P in F

    proof

      let X be set, F be Subset-Family of X;

      let P be Subset of X;

      P = ((P ` ) ` );

      hence thesis by Def7;

    end;

    theorem :: SETFAM_1:36

    

     Th36: for X be set, F,G be Subset-Family of X st ( COMPLEMENT F) c= ( COMPLEMENT G) holds F c= G

    proof

      let X be set, F,G be Subset-Family of X such that

       A1: ( COMPLEMENT F) c= ( COMPLEMENT G);

      let x be object;

      assume

       A2: x in F;

      then

      reconsider A = x as Subset of X;

      A in ( COMPLEMENT ( COMPLEMENT F)) by A2;

      then (A ` ) in ( COMPLEMENT F) by Def7;

      then ((A ` ) ` ) in G by A1, Def7;

      hence thesis;

    end;

    theorem :: SETFAM_1:37

    for X be set, F,G be Subset-Family of X holds ( COMPLEMENT F) c= G iff F c= ( COMPLEMENT G)

    proof

      let X be set, F,G be Subset-Family of X;

      hereby

        assume ( COMPLEMENT F) c= G;

        then ( COMPLEMENT F) c= ( COMPLEMENT ( COMPLEMENT G));

        hence F c= ( COMPLEMENT G) by Th36;

      end;

      assume F c= ( COMPLEMENT G);

      then ( COMPLEMENT ( COMPLEMENT F)) c= ( COMPLEMENT G);

      hence thesis by Th36;

    end;

    theorem :: SETFAM_1:38

    for X be set, F,G be Subset-Family of X st ( COMPLEMENT F) = ( COMPLEMENT G) holds F = G

    proof

      let X be set, F,G be Subset-Family of X;

      assume ( COMPLEMENT F) = ( COMPLEMENT G);

      

      hence F = ( COMPLEMENT ( COMPLEMENT G))

      .= G;

    end;

    theorem :: SETFAM_1:39

    for X be set, F,G be Subset-Family of X holds ( COMPLEMENT (F \/ G)) = (( COMPLEMENT F) \/ ( COMPLEMENT G))

    proof

      let X be set, F,G be Subset-Family of X;

      for P be Subset of X holds P in (( COMPLEMENT F) \/ ( COMPLEMENT G)) iff (P ` ) in (F \/ G)

      proof

        let P be Subset of X;

        P in ( COMPLEMENT F) or P in ( COMPLEMENT G) iff (P ` ) in F or (P ` ) in G by Def7;

        hence thesis by XBOOLE_0:def 3;

      end;

      hence thesis by Def7;

    end;

    theorem :: SETFAM_1:40

    for X be set, F be Subset-Family of X st F = {X} holds ( COMPLEMENT F) = { {} }

    proof

      let X be set, F be Subset-Family of X such that

       A1: F = {X};

       {} c= X;

      then

      reconsider G = { {} } as Subset-Family of X by ZFMISC_1: 31;

      reconsider G as Subset-Family of X;

      for P be Subset of X holds P in G iff (P ` ) in F

      proof

        let P be Subset of X;

        hereby

          assume P in G;

          then P = ( {} X) by TARSKI:def 1;

          hence (P ` ) in F by A1, TARSKI:def 1;

        end;

        assume (P ` ) in F;

        then

         A2: (P ` ) = ( [#] X) by A1, TARSKI:def 1;

        P = ((P ` ) ` )

        .= {} by A2, XBOOLE_1: 37;

        hence thesis by TARSKI:def 1;

      end;

      hence thesis by Def7;

    end;

    registration

      let X be set, F be empty Subset-Family of X;

      cluster ( COMPLEMENT F) -> empty;

      coherence by Def7;

    end

    definition

      let IT be set;

      :: SETFAM_1:def8

      attr IT is with_non-empty_elements means

      : Def8: not {} in IT;

    end

    registration

      cluster non empty with_non-empty_elements for set;

      existence

      proof

        take { { {} }};

        thus { { {} }} is non empty;

        assume {} in { { {} }};

        hence contradiction by TARSKI:def 1;

      end;

    end

    registration

      let A be non empty set;

      cluster {A} -> with_non-empty_elements;

      coherence by TARSKI:def 1;

      let B be non empty set;

      cluster {A, B} -> with_non-empty_elements;

      coherence by TARSKI:def 2;

      let C be non empty set;

      cluster {A, B, C} -> with_non-empty_elements;

      coherence by ENUMSET1:def 1;

      let D be non empty set;

      cluster {A, B, C, D} -> with_non-empty_elements;

      coherence by ENUMSET1:def 2;

      let E be non empty set;

      cluster {A, B, C, D, E} -> with_non-empty_elements;

      coherence by ENUMSET1:def 3;

      let F be non empty set;

      cluster {A, B, C, D, E, F} -> with_non-empty_elements;

      coherence by ENUMSET1:def 4;

      let G be non empty set;

      cluster {A, B, C, D, E, F, G} -> with_non-empty_elements;

      coherence by ENUMSET1:def 5;

      let H be non empty set;

      cluster {A, B, C, D, E, F, G, H} -> with_non-empty_elements;

      coherence by ENUMSET1:def 6;

      let I be non empty set;

      cluster {A, B, C, D, E, F, G, H, I} -> with_non-empty_elements;

      coherence by ENUMSET1:def 7;

      let J be non empty set;

      cluster {A, B, C, D, E, F, G, H, I, J} -> with_non-empty_elements;

      coherence by ENUMSET1:def 8;

    end

    registration

      let A,B be with_non-empty_elements set;

      cluster (A \/ B) -> with_non-empty_elements;

      coherence

      proof

        ( not {} in A) & not {} in B by Def8;

        then not {} in (A \/ B) by XBOOLE_0:def 3;

        hence thesis;

      end;

    end

    theorem :: SETFAM_1:41

    ( union Y) c= Z & X in Y implies X c= Z

    proof

      assume that

       A1: ( union Y) c= Z and

       A2: X in Y;

      thus X c= Z

      proof

        let x be object;

        assume x in X;

        then x in ( union Y) by A2, TARSKI:def 4;

        hence thesis by A1;

      end;

    end;

    theorem :: SETFAM_1:42

    for A,B,X be set holds (X c= ( union (A \/ B)) & for Y be set st Y in B holds Y misses X) implies X c= ( union A)

    proof

      let A,B,X be set;

      assume X c= ( union (A \/ B));

      then X c= (( union (A \/ B)) /\ X) by XBOOLE_1: 19;

      then X c= ((( union A) \/ ( union B)) /\ X) by ZFMISC_1: 78;

      then

       A1: X c= ((( union A) /\ X) \/ (( union B) /\ X)) by XBOOLE_1: 23;

      assume for Y st Y in B holds Y misses X;

      then ( union B) misses X by ZFMISC_1: 80;

      then

       A2: (( union B) /\ X) = {} ;

      (( union A) /\ X) c= ( union A) by XBOOLE_1: 17;

      hence thesis by A2, A1;

    end;

    definition

      let M be set;

      let B be Subset-Family of M;

      :: SETFAM_1:def9

      func Intersect B -> Subset of M equals

      : Def9: ( meet B) if B <> {}

      otherwise M;

      coherence

      proof

        M c= M;

        hence thesis;

      end;

      consistency ;

    end

    theorem :: SETFAM_1:43

    

     Th43: for X,x be set, R be Subset-Family of X st x in X holds x in ( Intersect R) iff for Y be set st Y in R holds x in Y

    proof

      let X,x be set, R be Subset-Family of X;

      assume

       A1: x in X;

      hereby

        assume

         A2: x in ( Intersect R);

        let Y be set;

        assume

         A3: Y in R;

        then ( Intersect R) = ( meet R) by Def9;

        hence x in Y by A2, A3, Def1;

      end;

      assume

       A4: for Y be set st Y in R holds x in Y;

      per cases ;

        suppose

         A5: R <> {} ;

        then x in ( meet R) by A4, Def1;

        hence thesis by A5, Def9;

      end;

        suppose R = {} ;

        hence thesis by A1, Def9;

      end;

    end;

    theorem :: SETFAM_1:44

    for X be set holds for H,J be Subset-Family of X st H c= J holds ( Intersect J) c= ( Intersect H)

    proof

      let X be set;

      let H,J be Subset-Family of X such that

       A1: H c= J;

      let x be object;

      assume

       A2: x in ( Intersect J);

      then for Y be set st Y in H holds x in Y by A1, Th43;

      hence thesis by A2, Th43;

    end;

    registration

      let X be non empty with_non-empty_elements set;

      cluster -> non empty for Element of X;

      coherence by Def8;

    end

    reserve E for set;

    definition

      let E;

      :: SETFAM_1:def10

      attr E is empty-membered means

      : Def10: not ex x be non empty set st x in E;

    end

    notation

      let E;

      antonym E is with_non-empty_element for E is empty-membered;

    end

    registration

      cluster with_non-empty_element for set;

      existence

      proof

        take { { {} }}, { {} };

        thus thesis by TARSKI:def 1;

      end;

    end

    registration

      cluster with_non-empty_element -> non empty for set;

      coherence ;

    end

    registration

      let X be with_non-empty_element set;

      cluster non empty for Element of X;

      existence

      proof

        ex x be non empty set st x in X by Def10;

        hence thesis;

      end;

    end

    registration

      let D be non empty with_non-empty_elements set;

      cluster ( union D) -> non empty;

      coherence

      proof

        set d = the Element of D;

        d c= ( union D) by ZFMISC_1: 74;

        hence thesis;

      end;

    end

    registration

      cluster non empty with_non-empty_elements -> with_non-empty_element for set;

      coherence ;

    end

    definition

      let X be set;

      :: SETFAM_1:def11

      mode Cover of X -> set means

      : Def11: X c= ( union it );

      existence

      proof

        take {X};

        thus thesis by ZFMISC_1: 25;

      end;

    end

    theorem :: SETFAM_1:45

    for X be set, F be Subset-Family of X holds F is Cover of X iff ( union F) = X by Def11;

    theorem :: SETFAM_1:46

    

     Th46: { {} } is Subset-Family of X

    proof

       {} c= X;

      hence thesis by ZFMISC_1: 31;

    end;

    definition

      let X be set;

      let F be Subset-Family of X;

      :: SETFAM_1:def12

      attr F is with_proper_subsets means

      : Def12: not X in F;

    end

    theorem :: SETFAM_1:47

    for TS be set, F,G be Subset-Family of TS st F is with_proper_subsets & G c= F holds G is with_proper_subsets;

    registration

      let TS be non empty set;

      cluster with_proper_subsets for Subset-Family of TS;

      existence

      proof

        reconsider F = { {} } as Subset-Family of TS by Th46;

        take F;

        assume TS in F;

        hence thesis by TARSKI:def 1;

      end;

    end

    theorem :: SETFAM_1:48

    for TS be non empty set, A,B be with_proper_subsets Subset-Family of TS holds (A \/ B) is with_proper_subsets

    proof

      let TS be non empty set, A,B be with_proper_subsets Subset-Family of TS;

      assume TS in (A \/ B);

      then TS in A or TS in B by XBOOLE_0:def 3;

      hence thesis by Def12;

    end;

    registration

      cluster non trivial -> with_non-empty_element for set;

      coherence

      proof

        let W be set;

        assume W is non trivial;

        then

        consider w1,w2 be object such that

         A1: w1 in W & w2 in W and

         A2: w1 <> w2 by ZFMISC_1:def 10;

        w1 <> {} or w2 <> {} by A2;

        hence thesis by A1;

      end;

    end

    definition

      let X be set;

      :: original: bool

      redefine

      func bool X -> Subset-Family of X ;

      coherence by ZFMISC_1:def 1;

    end

    theorem :: SETFAM_1:49

    for A be non empty set, b be object st A <> {b} holds ex a be Element of A st a <> b

    proof

      let A be non empty set, b be object such that

       A1: A <> {b};

      assume

       A2: for a be Element of A holds a = b;

      now

        set a0 = the Element of A;

        let a be object;

        thus a in A implies a = b by A2;

        assume

         A3: a = b;

        a0 = b by A2;

        hence a in A by A3;

      end;

      hence contradiction by A1, TARSKI:def 1;

    end;