mesfun13.miz
begin
reserve X for
set;
theorem ::
MESFUN13:1
Th15: for A be
Subset of X, f be X
-defined
Relation holds (f
| (A
` ))
= (f
| ((
dom f)
\ A))
proof
let A be
Subset of X, f be X
-defined
Relation;
(f
| (A
` ))
= ((f
| (
dom f))
| (A
` ))
.= (f
| ((
dom f)
/\ (A
` ))) by
RELAT_1: 71
.= (f
| ((
dom f)
/\ (X
\ A))) by
SUBSET_1:def 4
.= (f
| (((
dom f)
/\ X)
\ A)) by
XBOOLE_1: 49;
hence (f
| (A
` ))
= (f
| ((
dom f)
\ A)) by
XBOOLE_1: 28;
end;
theorem ::
MESFUN13:2
Th10: for f be
PartFunc of X,
ExtREAL holds (
great_eq_dom (f,
+infty ))
= (
eq_dom (f,
+infty ))
proof
let f be
PartFunc of X,
ExtREAL ;
now
let x be
object;
assume x
in (
great_eq_dom (f,
+infty ));
then
A1: x
in (
dom f) &
+infty
<= (f
. x) by
MESFUNC1:def 14;
then (f
. x)
=
+infty by
XXREAL_0: 4;
hence x
in (
eq_dom (f,
+infty )) by
A1,
MESFUNC1:def 15;
end;
then
A2: (
great_eq_dom (f,
+infty ))
c= (
eq_dom (f,
+infty ));
now
let x be
object;
assume x
in (
eq_dom (f,
+infty ));
then x
in (
dom f) &
+infty
= (f
. x) by
MESFUNC1:def 15;
hence x
in (
great_eq_dom (f,
+infty )) by
MESFUNC1:def 14;
end;
then (
eq_dom (f,
+infty ))
c= (
great_eq_dom (f,
+infty ));
hence (
great_eq_dom (f,
+infty ))
= (
eq_dom (f,
+infty )) by
A2;
end;
theorem ::
MESFUN13:3
for f be
PartFunc of X,
ExtREAL holds (
less_eq_dom (f,
-infty ))
= (
eq_dom (f,
-infty ))
proof
let f be
PartFunc of X,
ExtREAL ;
now
let x be
object;
assume x
in (
less_eq_dom (f,
-infty ));
then
A1: x
in (
dom f) &
-infty
>= (f
. x) by
MESFUNC1:def 12;
then (f
. x)
=
-infty by
XXREAL_0: 6;
hence x
in (
eq_dom (f,
-infty )) by
A1,
MESFUNC1:def 15;
end;
then
A2: (
less_eq_dom (f,
-infty ))
c= (
eq_dom (f,
-infty ));
now
let x be
object;
assume x
in (
eq_dom (f,
-infty ));
then x
in (
dom f) &
-infty
= (f
. x) by
MESFUNC1:def 15;
hence x
in (
less_eq_dom (f,
-infty )) by
MESFUNC1:def 12;
end;
then (
eq_dom (f,
-infty ))
c= (
less_eq_dom (f,
-infty ));
hence (
less_eq_dom (f,
-infty ))
= (
eq_dom (f,
-infty )) by
A2;
end;
theorem ::
MESFUN13:4
for f be
PartFunc of X,
ExtREAL , er be
ExtReal holds (
great_eq_dom (f,er))
misses (
less_dom (f,er))
proof
let f be
PartFunc of X,
ExtREAL , er be
ExtReal;
now
let x be
object;
assume x
in ((
great_eq_dom (f,er))
/\ (
less_dom (f,er)));
then x
in (
great_eq_dom (f,er)) & x
in (
less_dom (f,er)) by
XBOOLE_0:def 4;
then (f
. x)
>= er & (f
. x)
< er by
MESFUNC1:def 11,
MESFUNC1:def 14;
hence contradiction;
end;
hence thesis by
XBOOLE_0:def 1;
end;
theorem ::
MESFUN13:5
for f be
PartFunc of X,
ExtREAL holds (
dom f)
= (((
eq_dom (f,
-infty ))
\/ ((
great_dom (f,
-infty ))
/\ (
less_dom (f,
+infty ))))
\/ (
eq_dom (f,
+infty )))
proof
let f be
PartFunc of X,
ExtREAL ;
set A1 = (
eq_dom (f,
-infty )), A2 = ((
great_dom (f,
-infty ))
/\ (
less_dom (f,
+infty ))), A3 = (
eq_dom (f,
+infty ));
now
let x be
object;
assume
A1: x
in (
dom f);
per cases by
XXREAL_0: 14;
suppose (f
. x)
in
REAL ;
then (f
. x)
>
-infty & (f
. x)
<
+infty by
XXREAL_0: 9,
XXREAL_0: 12;
then x
in (
great_dom (f,
-infty )) & x
in (
less_dom (f,
+infty )) by
A1,
MESFUNC1:def 11,
MESFUNC1:def 13;
then
A2: x
in A2 by
XBOOLE_0:def 4;
A2
c= (A1
\/ A2) & (A1
\/ A2)
c= ((A1
\/ A2)
\/ A3) by
XBOOLE_1: 7;
hence x
in ((A1
\/ A2)
\/ A3) by
A2;
end;
suppose (f
. x)
=
+infty ;
then
A3: x
in A3 by
A1,
MESFUNC1:def 15;
A3
c= ((A1
\/ A2)
\/ A3) by
XBOOLE_1: 7;
hence x
in ((A1
\/ A2)
\/ A3) by
A3;
end;
suppose (f
. x)
=
-infty ;
then
A4: x
in A1 by
A1,
MESFUNC1:def 15;
A1
c= (A1
\/ A2) & (A1
\/ A2)
c= ((A1
\/ A2)
\/ A3) by
XBOOLE_1: 7;
hence x
in ((A1
\/ A2)
\/ A3) by
A4;
end;
end;
then
A5: (
dom f)
c= ((A1
\/ A2)
\/ A3);
now
let x be
object;
assume x
in ((A1
\/ A2)
\/ A3);
then
A6: x
in (A1
\/ A2) or x
in A3 by
XBOOLE_0:def 3;
per cases by
A6,
XBOOLE_0:def 3;
suppose x
in A1;
hence x
in (
dom f) by
MESFUNC1:def 15;
end;
suppose x
in A2;
then x
in (
great_dom (f,
-infty )) by
XBOOLE_0:def 4;
hence x
in (
dom f) by
MESFUNC1:def 13;
end;
suppose x
in A3;
hence x
in (
dom f) by
MESFUNC1:def 15;
end;
end;
then ((A1
\/ A2)
\/ A3)
c= (
dom f);
hence thesis by
A5;
end;
reserve X,X1,X2 for non
empty
set;
theorem ::
MESFUN13:6
Th29: for f be
PartFunc of X,
ExtREAL , x be
Element of X holds ((
max+ f)
. x)
<= (
|.f.|
. x) & ((
max- f)
. x)
<= (
|.f.|
. x)
proof
let f be
PartFunc of X,
ExtREAL , x be
Element of X;
A1: (
- (f
. x))
<= (
- (
-
|.(f
. x).|)) by
XXREAL_3: 38,
EXTREAL1: 20;
(((
max+ f)
. x)
= (f
. x) or ((
max+ f)
. x)
=
0 ) & (((
max- f)
. x)
= (
- (f
. x)) or ((
max- f)
. x)
=
0 ) by
MESFUNC2: 18;
then
A2: ((
max+ f)
. x)
<=
|.(f
. x).| & ((
max- f)
. x)
<=
|.(f
. x).| by
A1,
EXTREAL1: 14,
EXTREAL1: 20;
per cases ;
suppose x
in (
dom
|.f.|);
hence ((
max+ f)
. x)
<= (
|.f.|
. x) & ((
max- f)
. x)
<= (
|.f.|
. x) by
A2,
MESFUNC1:def 10;
end;
suppose
A3: not x
in (
dom
|.f.|);
then not x
in (
dom f) by
MESFUNC1:def 10;
then (f
. x)
=
0 & (
|.f.|
. x)
=
0 by
A3,
FUNCT_1:def 2;
hence ((
max+ f)
. x)
<= (
|.f.|
. x) & ((
max- f)
. x)
<= (
|.f.|
. x) by
A1,
MESFUNC2: 18;
end;
end;
theorem ::
MESFUN13:7
Th27: for f be
PartFunc of
[:X1, X2:],
ExtREAL , x be
Element of X1, y be
Element of X2 holds (
ProjPMap1 (
|.f.|,x))
=
|.(
ProjPMap1 (f,x)).| & (
ProjPMap2 (
|.f.|,y))
=
|.(
ProjPMap2 (f,y)).|
proof
let f be
PartFunc of
[:X1, X2:],
ExtREAL , x be
Element of X1, y be
Element of X2;
A1:
|.f.|
= ((
max+ f)
+ (
max- f)) by
MESFUNC2: 24;
then (
ProjPMap1 (
|.f.|,x))
= ((
ProjPMap1 ((
max+ f),x))
+ (
ProjPMap1 ((
max- f),x))) by
MESFUN12: 44
.= ((
max+ (
ProjPMap1 (f,x)))
+ (
ProjPMap1 ((
max- f),x))) by
MESFUN12: 45
.= ((
max+ (
ProjPMap1 (f,x)))
+ (
max- (
ProjPMap1 (f,x)))) by
MESFUN12: 45;
hence (
ProjPMap1 (
|.f.|,x))
=
|.(
ProjPMap1 (f,x)).| by
MESFUNC2: 24;
(
ProjPMap2 (
|.f.|,y))
= ((
ProjPMap2 ((
max+ f),y))
+ (
ProjPMap2 ((
max- f),y))) by
A1,
MESFUN12: 44
.= ((
max+ (
ProjPMap2 (f,y)))
+ (
ProjPMap2 ((
max- f),y))) by
MESFUN12: 46
.= ((
max+ (
ProjPMap2 (f,y)))
+ (
max- (
ProjPMap2 (f,y)))) by
MESFUN12: 46;
hence (
ProjPMap2 (
|.f.|,y))
=
|.(
ProjPMap2 (f,y)).| by
MESFUNC2: 24;
end;
begin
reserve S for
SigmaField of X;
reserve S1 for
SigmaField of X1;
reserve S2 for
SigmaField of X2;
reserve M for
sigma_Measure of S;
reserve M1 for
sigma_Measure of S1;
reserve M2 for
sigma_Measure of S2;
registration
let X be non
empty
set, S be
SigmaField of X, E be
Element of S;
cluster E
-measurable for
PartFunc of X,
ExtREAL ;
existence
proof
reconsider f = (
chi (E,X)) as
PartFunc of X,
ExtREAL ;
take f;
thus f is E
-measurable by
MESFUNC2: 29;
end;
end
theorem ::
MESFUN13:8
Th9: for E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL st (
dom f)
= E holds (
eq_dom (f,
+infty ))
in S & (
eq_dom (f,
-infty ))
in S
proof
let E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL ;
assume
A1: (
dom f)
= E;
then
A2: (
eq_dom (f,
+infty ))
c= E & (
eq_dom (f,
-infty ))
c= E by
MESFUNC1:def 15;
(E
/\ (
eq_dom (f,
+infty )))
in S & (E
/\ (
eq_dom (f,
-infty )))
in S by
A1,
MESFUNC1: 33,
MESFUNC1: 34;
hence thesis by
A2,
XBOOLE_1: 28;
end;
theorem ::
MESFUN13:9
Th1: for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & (
dom f)
= E holds (
Integral (M1,(
Integral2 (M2,
|.f.|))))
= (
Integral ((
Prod_Measure (M1,M2)),
|.f.|)) & (
Integral (M2,(
Integral1 (M1,
|.f.|))))
= (
Integral ((
Prod_Measure (M1,M2)),
|.f.|))
proof
let E be
Element of (
sigma (
measurable_rectangles (S1,S2))), f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: (
dom f)
= E;
E
= (
dom
|.f.|) &
|.f.| is E
-measurable by
A3,
MESFUNC1:def 10,
MESFUNC2: 27;
hence thesis by
A1,
A2,
MESFUN12: 84;
end;
Lm1: for f be
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) holds (
Integral (M1,(
Integral2 (M2,
|.f.|))))
<
+infty & (
Integral (M2,(
Integral1 (M1,
|.f.|))))
<
+infty
proof
let f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2));
consider E be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A4: E
= (
dom f) & f is E
-measurable by
A3,
MESFUNC5:def 17;
A5:
|.f.|
is_integrable_on (
Prod_Measure (M1,M2)) by
A3,
A4,
MESFUNC5: 100;
E
= (
dom
|.f.|) by
A4,
MESFUNC1:def 10;
then (
Integral ((
Prod_Measure (M1,M2)),
|.f.|))
= (
integral+ ((
Prod_Measure (M1,M2)),
|.f.|)) by
A4,
MESFUNC2: 27,
MESFUNC5: 88
.= (
integral+ ((
Prod_Measure (M1,M2)),(
max+
|.f.|))) by
MESFUN11: 31;
then (
Integral ((
Prod_Measure (M1,M2)),
|.f.|))
<
+infty by
A5,
MESFUNC5:def 17;
hence thesis by
A1,
A2,
A4,
Th1;
end;
Lm2: for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & E
= (
dom f) & ((
Integral (M2,(
Integral1 (M1,
|.f.|))))
<
+infty or (
Integral (M1,(
Integral2 (M2,
|.f.|))))
<
+infty ) holds f
is_integrable_on (
Prod_Measure (M1,M2))
proof
let E be
Element of (
sigma (
measurable_rectangles (S1,S2))), f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: E
= (
dom f);
set M = (
Prod_Measure (M1,M2));
A5: E
= (
dom
|.f.|) by
A3,
MESFUNC1:def 10;
then
A6: E
= (
dom (
max-
|.f.|)) by
MESFUNC2:def 3;
A7:
|.f.| is E
-measurable by
A3,
MESFUNC2: 27;
assume (
Integral (M2,(
Integral1 (M1,
|.f.|))))
<
+infty or (
Integral (M1,(
Integral2 (M2,
|.f.|))))
<
+infty ;
then (
Integral (M,
|.f.|))
<
+infty by
A1,
A2,
A5,
A7,
MESFUN12: 84;
then (
integral+ (M,
|.f.|))
<
+infty by
A3,
A5,
MESFUNC2: 27,
MESFUNC5: 88;
then
A8: (
integral+ (M,(
max+
|.f.|)))
<
+infty by
MESFUN11: 31;
now
let z be
Element of
[:X1, X2:];
assume z
in (
dom (
max-
|.f.|));
((
max+
|.f.|)
. z)
= (
|.f.|
. z) by
MESFUN11: 31;
hence ((
max-
|.f.|)
. z)
=
0 by
MESFUNC2: 19;
end;
then (
integral+ (M,(
max-
|.f.|)))
=
0 by
A5,
A6,
A7,
MESFUNC2: 26,
MESFUNC5: 87;
then
|.f.|
is_integrable_on M by
A3,
A5,
A8,
MESFUNC2: 27,
MESFUNC5:def 17;
hence f
is_integrable_on M by
A3,
MESFUNC5: 100;
end;
theorem ::
MESFUN13:10
for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & E
= (
dom f) holds f
is_integrable_on (
Prod_Measure (M1,M2)) iff (
Integral (M2,(
Integral1 (M1,
|.f.|))))
<
+infty by
Lm1,
Lm2;
theorem ::
MESFUN13:11
for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & E
= (
dom f) holds f
is_integrable_on (
Prod_Measure (M1,M2)) iff (
Integral (M1,(
Integral2 (M2,
|.f.|))))
<
+infty by
Lm1,
Lm2;
theorem ::
MESFUN13:12
Th4: for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), U be
Element of S1, f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL st M2 is
sigma_finite & E
= (
dom f) holds (
Integral2 (M2,
|.f.|)) is U
-measurable
proof
let E be
Element of (
sigma (
measurable_rectangles (S1,S2))), U be
Element of S1, f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M2 is
sigma_finite and
A2: E
= (
dom f);
A3: E
= (
dom
|.f.|) by
A2,
MESFUNC1:def 10;
|.f.| is E
-measurable by
A2,
MESFUNC2: 27;
hence (
Integral2 (M2,
|.f.|)) is U
-measurable by
A1,
A3,
MESFUN12: 60;
end;
theorem ::
MESFUN13:13
Th5: for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), V be
Element of S2, f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & E
= (
dom f) holds (
Integral1 (M1,
|.f.|)) is V
-measurable
proof
let E be
Element of (
sigma (
measurable_rectangles (S1,S2))), V be
Element of S2, f be E
-measurable
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: E
= (
dom f);
A3: E
= (
dom
|.f.|) by
A2,
MESFUNC1:def 10;
|.f.| is E
-measurable by
A2,
MESFUNC2: 27;
hence (
Integral1 (M1,
|.f.|)) is V
-measurable by
A1,
A3,
MESFUN12: 59;
end;
theorem ::
MESFUN13:14
for f be
PartFunc of
[:X1, X2:],
ExtREAL st M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) holds (
Integral (M1,(
max+ (
Integral2 (M2,
|.f.|)))))
= (
Integral (M1,(
Integral2 (M2,
|.f.|)))) & (
Integral (M1,(
max- (
Integral2 (M2,
|.f.|)))))
=
0
proof
let f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M2 is
sigma_finite and
A2: f
is_integrable_on (
Prod_Measure (M1,M2));
consider A be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A3: A
= (
dom f) & f is A
-measurable by
A2,
MESFUNC5:def 17;
reconsider SX1 = X1 as
Element of S1 by
MEASURE1: 7;
A4: (
Integral2 (M2,
|.f.|)) is SX1
-measurable by
A1,
A3,
Th4;
A
= (
dom
|.f.|) &
|.f.| is A
-measurable by
A3,
MESFUNC1:def 10,
MESFUNC2: 27;
then
A5: (
Integral2 (M2,
|.f.|)) is
nonnegative by
MESFUN12: 66;
hence (
Integral (M1,(
max+ (
Integral2 (M2,
|.f.|)))))
= (
Integral (M1,(
Integral2 (M2,
|.f.|)))) by
MESFUN11: 31;
SX1
= (
dom (
Integral2 (M2,
|.f.|))) by
FUNCT_2:def 1;
hence (
Integral (M1,(
max- (
Integral2 (M2,
|.f.|)))))
=
0 by
A4,
A5,
MESFUN11: 53;
end;
theorem ::
MESFUN13:15
for f be
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) holds (
Integral (M2,(
max+ (
Integral1 (M1,
|.f.|)))))
= (
Integral (M2,(
Integral1 (M1,
|.f.|)))) & (
Integral (M2,(
max- (
Integral1 (M1,
|.f.|)))))
=
0
proof
let f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: f
is_integrable_on (
Prod_Measure (M1,M2));
consider E be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A3: E
= (
dom f) & f is E
-measurable by
A2,
MESFUNC5:def 17;
reconsider SX2 = X2 as
Element of S2 by
MEASURE1: 7;
A4: (
Integral1 (M1,
|.f.|)) is SX2
-measurable by
A1,
A3,
Th5;
E
= (
dom
|.f.|) &
|.f.| is E
-measurable by
A3,
MESFUNC1:def 10,
MESFUNC2: 27;
then
A5: (
Integral1 (M1,
|.f.|)) is
nonnegative by
MESFUN12: 66;
hence (
Integral (M2,(
max+ (
Integral1 (M1,
|.f.|)))))
= (
Integral (M2,(
Integral1 (M1,
|.f.|)))) by
MESFUN11: 31;
SX2
= (
dom (
Integral1 (M1,
|.f.|))) by
FUNCT_2:def 1;
hence (
Integral (M2,(
max- (
Integral1 (M1,
|.f.|)))))
=
0 by
A4,
A5,
MESFUN11: 53;
end;
::$Notion-Name
theorem ::
MESFUN13:16
Th14: for E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL , er be
ExtReal st (
dom f)
= E & f is
nonnegative & er
>=
0 holds (er
* (M
. (
great_eq_dom (f,er))))
<= (
Integral (M,f))
proof
let E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL , er be
ExtReal;
assume that
A1: (
dom f)
= E and
A2: f is
nonnegative and
A3: er
>=
0 ;
A4: (
great_eq_dom (f,er))
c= E by
A1,
MESFUNC1:def 14;
A5: (
great_eq_dom (f,
+infty ))
= (
eq_dom (f,
+infty )) by
Th10;
er
in
REAL or er
=
+infty by
A3,
XXREAL_0: 14;
then (E
/\ (
great_eq_dom (f,er))) is
Element of S by
A1,
A5,
MESFUNC1: 27,
MESFUNC1: 33;
then
reconsider Er = (
great_eq_dom (f,er)) as
Element of S by
A4,
XBOOLE_1: 28;
(
dom (
chi (er,Er,X)))
= X by
FUNCT_2:def 1;
then
A6: Er
= (
dom (f
| Er)) & Er
= (
dom ((
chi (er,Er,X))
| Er)) by
A1,
A4,
RELAT_1: 62;
f is Er
-measurable & Er
= (Er
/\ (
dom f)) by
A1,
A4,
XBOOLE_1: 28,
MESFUNC1: 30;
then
A7: (f
| Er) is Er
-measurable by
MESFUNC5: 42;
A8: (f
| Er) is
nonnegative by
A2,
MESFUNC5: 15;
A9: ((
chi (er,Er,X))
| Er) is Er
-measurable by
MESFUN12: 15;
(
chi (er,Er,X)) is
nonnegative by
A3,
MESFUN12: 17;
then
A10: ((
chi (er,Er,X))
| Er) is
nonnegative by
MESFUNC5: 15;
for x be
Element of X st x
in (
dom ((
chi (er,Er,X))
| Er)) holds (((
chi (er,Er,X))
| Er)
. x)
<= ((f
| Er)
. x)
proof
let x be
Element of X;
assume
A11: x
in (
dom ((
chi (er,Er,X))
| Er));
then (((
chi (er,Er,X))
| Er)
. x)
= ((
chi (er,Er,X))
. x) by
FUNCT_1: 47;
then
A12: (((
chi (er,Er,X))
| Er)
. x)
= er by
A6,
A11,
MESFUN12:def 1;
A13: ((f
| Er)
. x)
= (f
. x) by
A6,
A11,
FUNCT_1: 47;
x
in (
great_eq_dom (f,er)) by
A11,
RELAT_1: 57;
hence (((
chi (er,Er,X))
| Er)
. x)
<= ((f
| Er)
. x) by
A12,
A13,
MESFUNC1:def 14;
end;
then (
integral+ (M,((
chi (er,Er,X))
| Er)))
<= (
integral+ (M,(f
| Er))) by
A6,
A7,
A8,
A9,
A10,
MESFUNC5: 85;
then (
Integral (M,((
chi (er,Er,X))
| Er)))
<= (
integral+ (M,(f
| Er))) by
A6,
A10,
MESFUNC5: 88,
MESFUN12: 15;
then
A14: (er
* (M
. Er))
<= (
integral+ (M,(f
| Er))) by
MESFUN12: 50;
(
integral+ (M,(f
| Er)))
<= (
integral+ (M,(f
| E))) by
A1,
A2,
A4,
MESFUNC5: 83;
then (
integral+ (M,(f
| Er)))
<= (
Integral (M,f)) by
A1,
A2,
MESFUNC5: 88;
hence (er
* (M
. (
great_eq_dom (f,er))))
<= (
Integral (M,f)) by
A14,
XXREAL_0: 2;
end;
begin
theorem ::
MESFUN13:17
Th21: for f,g be
PartFunc of X,
ExtREAL st f
is_integrable_on M & g
is_integrable_on M holds (
Integral (M,(f
+ g)))
= ((
Integral (M,(f
| ((
dom f)
/\ (
dom g)))))
+ (
Integral (M,(g
| ((
dom f)
/\ (
dom g)))))) & (
Integral (M,(f
- g)))
= ((
Integral (M,(f
| ((
dom f)
/\ (
dom g)))))
- (
Integral (M,(g
| ((
dom f)
/\ (
dom g))))))
proof
let f,g be
PartFunc of X,
ExtREAL ;
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
consider E be
Element of S such that
A3: E
= ((
dom f)
/\ (
dom g)) & (
Integral (M,(f
+ g)))
= ((
Integral (M,(f
| E)))
+ (
Integral (M,(g
| E)))) by
A1,
A2,
MESFUNC5: 109;
thus (
Integral (M,(f
+ g)))
= ((
Integral (M,(f
| ((
dom f)
/\ (
dom g)))))
+ (
Integral (M,(g
| ((
dom f)
/\ (
dom g)))))) by
A3;
ex E0 be
Element of S st E0
= (
dom g) & g is E0
-measurable by
A2,
MESFUNC5:def 17;
then
A4: g is E
-measurable by
A3,
XBOOLE_1: 17,
MESFUNC1: 30;
ex E be
Element of S st E
= ((
dom f)
/\ (
dom g)) & (
Integral (M,(f
- g)))
= ((
Integral (M,(f
| E)))
+ (
Integral (M,((
- g)
| E)))) by
A1,
A2,
MESFUN10: 13;
then (
Integral (M,(f
- g)))
= ((
Integral (M,(f
| E)))
+ (
- (
Integral (M,(g
| E))))) by
A3,
A4,
XBOOLE_1: 17,
MESFUN11: 55;
hence (
Integral (M,(f
- g)))
= ((
Integral (M,(f
| ((
dom f)
/\ (
dom g)))))
- (
Integral (M,(g
| ((
dom f)
/\ (
dom g)))))) by
A3,
XXREAL_3:def 4;
end;
theorem ::
MESFUN13:18
for f be
PartFunc of X,
ExtREAL holds f
is_integrable_on M iff (
max+ f)
is_integrable_on M & (
max- f)
is_integrable_on M
proof
let f be
PartFunc of X,
ExtREAL ;
hereby
assume
A1: f
is_integrable_on M;
then
consider E be
Element of S such that
A2: E
= (
dom f) & f is E
-measurable by
MESFUNC5:def 17;
A3: (
integral+ (M,(
max+ f)))
<
+infty & (
integral+ (M,(
max- f)))
<
+infty by
A1,
MESFUNC5:def 17;
A4: E
= (
dom (
max+ f)) & E
= (
dom (
max- f)) by
A2,
MESFUNC2:def 2,
MESFUNC2:def 3;
A5: (
max+ f) is E
-measurable & (
max- f) is E
-measurable by
A2,
MESFUN11: 10;
A6: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
then
A7: (
integral+ (M,(
max+ (
max+ f))))
<
+infty & (
integral+ (M,(
max+ (
max- f))))
<
+infty by
A3,
MESFUN11: 31;
(
integral+ (M,(
max- (
max+ f))))
<
+infty & (
integral+ (M,(
max- (
max- f))))
<
+infty by
A4,
A5,
A6,
MESFUN11: 53;
hence (
max+ f)
is_integrable_on M & (
max- f)
is_integrable_on M by
A4,
A5,
A7,
MESFUNC5:def 17;
end;
assume that
A8: (
max+ f)
is_integrable_on M and
A9: (
max- f)
is_integrable_on M;
consider E1 be
Element of S such that
A10: E1
= (
dom (
max+ f)) & (
max+ f) is E1
-measurable by
A8,
MESFUNC5:def 17;
consider E2 be
Element of S such that
A11: E2
= (
dom (
max- f)) & (
max- f) is E2
-measurable by
A9,
MESFUNC5:def 17;
A12: E1
= (
dom f) by
A10,
MESFUNC2:def 2;
then E1
= E2 by
A11,
MESFUNC2:def 3;
then
A13: f is E1
-measurable by
A10,
A11,
A12,
MESFUN11: 10;
(
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
then (
max+ (
max+ f))
= (
max+ f) & (
max+ (
max- f))
= (
max- f) by
MESFUN11: 31;
then (
integral+ (M,(
max+ f)))
<
+infty & (
integral+ (M,(
max- f)))
<
+infty by
A8,
A9,
MESFUNC5:def 17;
hence f
is_integrable_on M by
A12,
A13,
MESFUNC5:def 17;
end;
theorem ::
MESFUN13:19
for A,B be
Element of S, f be
PartFunc of X,
ExtREAL st B
c= A & (f
| A) is B
-measurable holds f is B
-measurable
proof
let A,B be
Element of S, f be
PartFunc of X,
ExtREAL ;
assume that
A1: B
c= A and
A2: (f
| A) is B
-measurable;
let r be
Real;
now
let x be
object;
assume x
in (B
/\ (
less_dom ((f
| A),r)));
then
A3: x
in B & x
in (
less_dom ((f
| A),r)) by
XBOOLE_0:def 4;
then x
in (
dom (f
| A)) & ((f
| A)
. x)
< r by
MESFUNC1:def 11;
then x
in (
dom f) & (f
. x)
< r by
RELAT_1: 57,
FUNCT_1: 47;
then x
in (
less_dom (f,r)) by
MESFUNC1:def 11;
hence x
in (B
/\ (
less_dom (f,r))) by
A3,
XBOOLE_0:def 4;
end;
then
A4: (B
/\ (
less_dom ((f
| A),r)))
c= (B
/\ (
less_dom (f,r)));
now
let x be
object;
assume x
in (B
/\ (
less_dom (f,r)));
then
A5: x
in B & x
in (
less_dom (f,r)) by
XBOOLE_0:def 4;
then x
in (
dom f) & (f
. x)
< r by
MESFUNC1:def 11;
then x
in (
dom (f
| A)) & ((f
| A)
. x)
< r by
A1,
A5,
RELAT_1: 57,
FUNCT_1: 49;
then x
in (
less_dom ((f
| A),r)) by
MESFUNC1:def 11;
hence x
in (B
/\ (
less_dom ((f
| A),r))) by
A5,
XBOOLE_0:def 4;
end;
then (B
/\ (
less_dom (f,r)))
c= (B
/\ (
less_dom ((f
| A),r)));
then (B
/\ (
less_dom ((f
| A),r)))
= (B
/\ (
less_dom (f,r))) by
A4;
hence (B
/\ (
less_dom (f,r)))
in S by
A2;
end;
definition
let X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f be
PartFunc of X,
ExtREAL ;
::
MESFUN13:def1
pred f
is_a.e.integrable_on M means ex A be
Element of S st (M
. A)
=
0 & A
c= (
dom f) & (f
| (A
` ))
is_integrable_on M;
end
theorem ::
MESFUN13:20
Th16: for f be
PartFunc of X,
ExtREAL st f
is_a.e.integrable_on M holds (
dom f)
in S
proof
let f be
PartFunc of X,
ExtREAL ;
assume f
is_a.e.integrable_on M;
then
consider A be
Element of S such that
A1: (M
. A)
=
0 & A
c= (
dom f) & (f
| (A
` ))
is_integrable_on M;
consider B be
Element of S such that
A2: B
= (
dom (f
| (A
` ))) & (f
| (A
` )) is B
-measurable by
A1,
MESFUNC5:def 17;
(
dom (f
| (A
` )))
= ((
dom f)
/\ (A
` )) by
RELAT_1: 61
.= ((
dom f)
/\ (X
\ A)) by
SUBSET_1:def 4
.= (((
dom f)
/\ X)
\ A) by
XBOOLE_1: 49
.= ((
dom f)
\ A) by
XBOOLE_1: 28;
then (
dom f)
= (A
\/ B) by
A1,
A2,
XBOOLE_1: 45;
hence (
dom f)
in S;
end;
theorem ::
MESFUN13:21
for f be
PartFunc of X,
ExtREAL st f
is_integrable_on M holds f
is_a.e.integrable_on M
proof
let f be
PartFunc of X,
ExtREAL ;
assume
A1: f
is_integrable_on M;
reconsider A =
{} , XX = X as
Element of S by
MEASURE1: 7;
A2: (M
. A)
=
0 & A
c= (
dom f) & (f
| ((
dom f)
\ A))
is_integrable_on M by
A1,
VALUED_0:def 19;
then (f
| (A
` ))
is_integrable_on M by
Th15;
hence thesis by
A2;
end;
definition
let X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f be
PartFunc of X,
ExtREAL ;
::
MESFUN13:def2
pred f
is_a.e.finite M means ex A be
Element of S st (M
. A)
=
0 & A
c= (
dom f) & (f
| (A
` )) is
PartFunc of X,
REAL ;
end
theorem ::
MESFUN13:22
for E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL st (
dom f)
= E holds f
is_a.e.finite M iff (M
. ((
eq_dom (f,
+infty ))
\/ (
eq_dom (f,
-infty ))))
=
0
proof
let E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL ;
assume (
dom f)
= E;
then
reconsider E01 = (
eq_dom (f,
+infty )), E02 = (
eq_dom (f,
-infty )) as
Element of S by
Th9;
A1: E01
c= (
dom f) & E02
c= (
dom f) by
MESFUNC1:def 15;
hereby
assume f
is_a.e.finite M;
then
consider A be
Element of S such that
A2: (M
. A)
=
0 & A
c= (
dom f) & (f
| (A
` )) is
PartFunc of X,
REAL ;
now
assume ex x be
object st x
in (E01
\/ E02) & not x
in A;
then
consider x be
object such that
A3: x
in (E01
\/ E02) & not x
in A;
x
in E01 or x
in E02 by
A3,
XBOOLE_0:def 3;
then
A4: x
in (
dom f) & ((f
. x)
=
+infty or (f
. x)
=
-infty ) by
MESFUNC1:def 15;
x
in (X
\ A) by
A3,
XBOOLE_0:def 5;
then
A5: x
in (A
` ) by
SUBSET_1:def 4;
then x
in (
dom (f
| (A
` ))) by
A4,
RELAT_1: 57;
then ((f
| (A
` ))
. x)
in
REAL by
A2,
PARTFUN1: 4;
hence contradiction by
A4,
A5,
FUNCT_1: 49;
end;
then (E01
\/ E02)
c= A;
then (M
. (E01
\/ E02))
<=
0 by
A2,
MEASURE1: 8;
hence (M
. ((
eq_dom (f,
+infty ))
\/ (
eq_dom (f,
-infty ))))
=
0 by
MEASURE1:def 2;
end;
assume
A6: (M
. ((
eq_dom (f,
+infty ))
\/ (
eq_dom (f,
-infty ))))
=
0 ;
now
let y be
object;
assume y
in (
rng (f
| ((E01
\/ E02)
` )));
then
consider x be
object such that
A7: x
in (
dom (f
| ((E01
\/ E02)
` ))) & ((f
| ((E01
\/ E02)
` ))
. x)
= y by
FUNCT_1:def 3;
(
dom (f
| ((E01
\/ E02)
` )))
c= ((E01
\/ E02)
` ) by
RELAT_1: 58;
then x
in ((E01
\/ E02)
` ) by
A7;
then x
in (X
\ (E01
\/ E02)) by
SUBSET_1:def 4;
then not x
in (E01
\/ E02) by
XBOOLE_0:def 5;
then
A8: not x
in E01 & not x
in E02 by
XBOOLE_0:def 3;
(
dom (f
| ((E01
\/ E02)
` )))
c= (
dom f) by
RELAT_1: 60;
then (f
. x)
<>
+infty & (f
. x)
<>
-infty by
A7,
A8,
MESFUNC1:def 15;
then (f
. x)
in
REAL by
XXREAL_0: 14;
hence y
in
REAL by
A7,
FUNCT_1: 47;
end;
then (
rng (f
| ((E01
\/ E02)
` )))
c=
REAL ;
then (f
| ((E01
\/ E02)
` )) is
PartFunc of X,
REAL by
RELSET_1: 6;
hence f
is_a.e.finite M by
A1,
A6,
XBOOLE_1: 8;
end;
theorem ::
MESFUN13:23
Th19: for f be
PartFunc of X,
ExtREAL st f
is_integrable_on M holds (M
. (
eq_dom (f,
+infty )))
=
0 & (M
. (
eq_dom (f,
-infty )))
=
0 & f
is_a.e.finite M & for r be
Real st r
>
0 holds (M
. (
great_eq_dom (
|.f.|,r)))
<
+infty
proof
let f be
PartFunc of X,
ExtREAL ;
assume
A2: f
is_integrable_on M;
consider E be
Element of S such that
A3: E
= (
dom f) & f is E
-measurable by
A2,
MESFUNC5:def 17;
(
eq_dom (f,
+infty ))
c= E by
A3,
MESFUNC1:def 15;
then (
eq_dom (f,
+infty ))
= (E
/\ (
eq_dom (f,
+infty ))) by
XBOOLE_1: 28;
then
reconsider E0 = (
eq_dom (f,
+infty )) as
Element of S by
A3,
MESFUNC1: 33;
(
eq_dom (f,
-infty ))
c= E by
A3,
MESFUNC1:def 15;
then (
eq_dom (f,
-infty ))
= (E
/\ (
eq_dom (f,
-infty ))) by
XBOOLE_1: 28;
then
reconsider E1 = (
eq_dom (f,
-infty )) as
Element of S by
A3,
MESFUNC1: 34;
A4: E0
c= E & E1
c= E by
A3,
MESFUNC1:def 15;
then
A5: E0
= (E
/\ E0) & E1
= (E
/\ E1) & (E0
\/ E1)
c= E by
XBOOLE_1: 8,
XBOOLE_1: 28;
A6: (
dom (
max+ f))
= E & (
dom (
max- f))
= E & (
dom
|.f.|)
= E by
A3,
MESFUNC1:def 10,
MESFUNC2:def 2,
MESFUNC2:def 3;
then
A7: (
dom (f
| E0))
= E0 & (
dom ((
max+ f)
| E0))
= E0 & (
dom (f
| E1))
= E1 & (
dom ((
max- f)
| E1))
= E1 by
A3,
A4,
RELAT_1: 62;
A8: (
max+ f) is E
-measurable & (
max- f) is E
-measurable &
|.f.| is E
-measurable by
A3,
MESFUNC2: 25,
MESFUNC2: 26,
MESFUNC2: 27;
then
A9: (
max+ f) is E0
-measurable & (
max- f) is E1
-measurable by
A4,
MESFUNC1: 30;
A10: ((
max+ f)
| E0) is
nonnegative & ((
max- f)
| E1) is
nonnegative by
MESFUNC5: 15,
MESFUN11: 5;
A11: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
then (
integral+ (M,((
max+ f)
| E0)))
<= (
integral+ (M,((
max+ f)
| E))) by
A3,
A4,
A6,
MESFUNC2: 25,
MESFUNC5: 83;
then (
integral+ (M,((
max+ f)
| E0)))
<
+infty by
A2,
A6,
MESFUNC5:def 17,
XXREAL_0: 2;
then
A12: (
Integral (M,((
max+ f)
| E0)))
<
+infty by
A5,
A6,
A7,
A9,
A10,
MESFUNC5: 42,
MESFUNC5: 88;
A13:
now
let x be
Element of X;
assume
A14: x
in (
dom (f
| E0));
then x
in E0 by
RELAT_1: 57;
then x
in (
dom f) & (f
. x)
=
+infty by
MESFUNC1:def 15;
hence ((f
| E0)
. x)
=
+infty by
A14,
FUNCT_1: 47;
end;
now
let x be
Element of X;
assume
A15: x
in (
dom (f
| E0));
then
A16: ((f
| E0)
. x)
=
+infty by
A13;
then
A17: x
in (
dom f) & (f
. x)
=
+infty by
A15,
RELAT_1: 57,
FUNCT_1: 47;
then x
in (
dom (
max+ f)) by
MESFUNC2:def 2;
then ((
max+ f)
. x)
= (
max (
+infty ,
0 )) by
A17,
MESFUNC2:def 2;
then ((
max+ f)
. x)
=
+infty by
XXREAL_0:def 10;
hence ((f
| E0)
. x)
= (((
max+ f)
| E0)
. x) by
A7,
A15,
A16,
FUNCT_1: 47;
end;
then
A18: (
Integral (M,(f
| E0)))
<
+infty by
A7,
A12,
PARTFUN1: 5;
(
dom (
chi (
+infty ,E0,X)))
= X by
FUNCT_2:def 1;
then
A19: (
dom ((
chi (
+infty ,E0,X))
| E0))
= E0 by
RELAT_1: 62;
now
let x be
Element of X;
assume
A20: x
in (
dom (f
| E0));
then
A21: x
in E0 by
RELAT_1: 57;
then (((
chi (
+infty ,E0,X))
| E0)
. x)
= ((
chi (
+infty ,E0,X))
. x) by
FUNCT_1: 49;
then (((
chi (
+infty ,E0,X))
| E0)
. x)
=
+infty by
A21,
MESFUN12:def 1;
hence ((f
| E0)
. x)
= (((
chi (
+infty ,E0,X))
| E0)
. x) by
A13,
A20;
end;
then (f
| E0)
= ((
chi (
+infty ,E0,X))
| E0) by
A3,
A4,
A19,
RELAT_1: 62,
PARTFUN1: 5;
then
A22: (
Integral (M,(f
| E0)))
= (
+infty
* (M
. E0)) by
MESFUN12: 50;
A23:
now
assume (M
. E0)
<>
0 ;
then (M
. E0)
>
0 by
SUPINF_2: 51;
hence contradiction by
A18,
A22,
XXREAL_3:def 5;
end;
hence (M
. (
eq_dom (f,
+infty )))
=
0 ;
A24: (
Integral (M,(
- ((
max- f)
| E1))))
= (
- (
Integral (M,((
max- f)
| E1)))) by
A5,
A6,
A7,
A9,
MESFUNC5: 42,
MESFUN11: 52;
(
integral+ (M,((
max- f)
| E1)))
<= (
integral+ (M,((
max- f)
| E))) by
A3,
A4,
A6,
A11,
MESFUNC2: 26,
MESFUNC5: 83;
then (
integral+ (M,((
max- f)
| E1)))
<
+infty by
A2,
A6,
MESFUNC5:def 17,
XXREAL_0: 2;
then (
Integral (M,((
max- f)
| E1)))
<
+infty by
A5,
A6,
A7,
A9,
A10,
MESFUNC5: 42,
MESFUNC5: 88;
then
A25: (
Integral (M,(
- ((
max- f)
| E1))))
>
-infty by
A24,
XXREAL_3: 6,
XXREAL_3: 38;
A26:
now
let x be
Element of X;
assume
d7: x
in (
dom (f
| E1));
then x
in E1 by
RELAT_1: 57;
then x
in (
dom f) & (f
. x)
=
-infty by
MESFUNC1:def 15;
hence ((f
| E1)
. x)
=
-infty by
d7,
FUNCT_1: 47;
end;
A27: (
dom (
- ((
max- f)
| E1)))
= E1 by
A7,
MESFUNC1:def 7;
now
let x be
Element of X;
assume
A28: x
in (
dom (f
| E1));
then x
in E1 by
RELAT_1: 57;
then
A29: x
in (
dom f) & (f
. x)
=
-infty by
MESFUNC1:def 15;
then
A30: ((f
| E1)
. x)
= (
-
+infty ) by
A28,
FUNCT_1: 47,
XXREAL_3: 6;
x
in (
dom (
max- f)) by
A29,
MESFUNC2:def 3;
then ((
max- f)
. x)
= (
max ((
-
-infty ),
0 )) by
A29,
MESFUNC2:def 3;
then ((
max- f)
. x)
=
+infty by
XXREAL_0:def 10,
XXREAL_3: 5;
then ((f
| E1)
. x)
= (
- (((
max- f)
| E1)
. x)) by
A7,
A28,
A30,
FUNCT_1: 47;
hence ((f
| E1)
. x)
= ((
- ((
max- f)
| E1))
. x) by
A7,
A27,
A28,
MESFUNC1:def 7;
end;
then
A31: (
Integral (M,(f
| E1)))
>
-infty by
A3,
A4,
A25,
A27,
RELAT_1: 62,
PARTFUN1: 5;
(
dom (
chi (
-infty ,E1,X)))
= X by
FUNCT_2:def 1;
then
A32: (
dom ((
chi (
-infty ,E1,X))
| E1))
= E1 by
RELAT_1: 62;
now
let x be
Element of X;
assume
A33: x
in (
dom (f
| E1));
then
A34: x
in E1 by
RELAT_1: 57;
then (((
chi (
-infty ,E1,X))
| E1)
. x)
= ((
chi (
-infty ,E1,X))
. x) by
FUNCT_1: 49;
then (((
chi (
-infty ,E1,X))
| E1)
. x)
=
-infty by
A34,
MESFUN12:def 1;
hence ((f
| E1)
. x)
= (((
chi (
-infty ,E1,X))
| E1)
. x) by
A26,
A33;
end;
then (f
| E1)
= ((
chi (
-infty ,E1,X))
| E1) by
A3,
A4,
A32,
RELAT_1: 62,
PARTFUN1: 5;
then
A35: (
Integral (M,(f
| E1)))
= (
-infty
* (M
. E1)) by
MESFUN12: 50;
A36:
now
assume (M
. E1)
<>
0 ;
then (M
. E1)
>
0 by
SUPINF_2: 51;
hence contradiction by
A31,
A35,
XXREAL_3:def 5;
end;
hence (M
. (
eq_dom (f,
-infty )))
=
0 ;
set E2 = (E0
\/ E1);
(M
. E2)
<= ((M
. E0)
+ (M
. E1)) by
MEASURE1: 33;
then (M
. E2)
<=
0 & (M
. E2)
>=
0 by
A23,
A36,
SUPINF_2: 51;
then
A37: (M
. E2)
=
0 ;
now
let r be
ExtReal;
assume r
in (
rng (f
| (E2
` )));
then
consider x be
object such that
A38: x
in (
dom (f
| (E2
` ))) & r
= ((f
| (E2
` ))
. x) by
FUNCT_1:def 3;
A39: x
in (
dom f) & x
in (E2
` ) by
A38,
RELAT_1: 57;
then x
in (X
\ E2) by
SUBSET_1:def 4;
then x
in X & not x
in E2 by
XBOOLE_0:def 5;
then not x
in E0 & not x
in E1 by
XBOOLE_0:def 3;
then (f
. x)
<>
+infty & (f
. x)
<>
-infty by
A39,
MESFUNC1:def 15;
then r
<>
+infty & r
<>
-infty by
A38,
FUNCT_1: 47;
hence r
in
REAL by
XXREAL_0: 14;
end;
then (
rng (f
| (E2
` )))
c=
REAL ;
then (f
| (E2
` )) is
PartFunc of X,
REAL by
RELSET_1: 6;
hence f
is_a.e.finite M by
A3,
A4,
A37,
XBOOLE_1: 8;
|.f.|
is_integrable_on M by
A2,
A3,
MESFUNC5: 100;
then
A40: (
Integral (M,
|.f.|))
<
+infty by
MESFUNC5: 96;
thus for r be
Real st r
>
0 holds (M
. (
great_eq_dom (
|.f.|,r)))
<
+infty
proof
let r be
Real;
assume
A41: r
>
0 ;
then (r
* (M
. (
great_eq_dom (
|.f.|,r))))
<= (
Integral (M,
|.f.|)) by
A6,
A8,
Th14;
then (r
* (M
. (
great_eq_dom (
|.f.|,r))))
<
+infty by
A40,
XXREAL_0: 2;
then ((r
* (M
. (
great_eq_dom (
|.f.|,r))))
/ r)
< (
+infty
/ r) by
A41,
XXREAL_3: 80;
then (M
. (
great_eq_dom (
|.f.|,r)))
< (
+infty
/ r) by
A41,
XXREAL_3: 88;
hence (M
. (
great_eq_dom (
|.f.|,r)))
<
+infty by
A41,
XXREAL_3: 83;
end;
end;
theorem ::
MESFUN13:24
Th20: for f be
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) holds (
Integral1 (M1,(
max+ f)))
is_integrable_on M2 & (
Integral2 (M2,(
max+ f)))
is_integrable_on M1 & (
Integral1 (M1,(
max- f)))
is_integrable_on M2 & (
Integral2 (M2,(
max- f)))
is_integrable_on M1 & (
Integral1 (M1,
|.f.|))
is_integrable_on M2 & (
Integral2 (M2,
|.f.|))
is_integrable_on M1
proof
let f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2));
reconsider XX1 = X1 as
Element of S1 by
MEASURE1: 7;
reconsider XX2 = X2 as
Element of S2 by
MEASURE1: 7;
set PM = (
Prod_Measure (M1,M2));
consider E be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A4: E
= (
dom f) & f is E
-measurable by
A3,
MESFUNC5:def 17;
A5: (
max+ f) is E
-measurable & (
max- f) is E
-measurable &
|.f.| is E
-measurable by
A4,
MESFUNC2: 27,
MESFUN11: 10;
A6: (
dom (
max+ f))
= E & (
dom (
max- f))
= E & (
dom
|.f.|)
= E by
A4,
MESFUNC1:def 10,
MESFUNC2:def 2,
MESFUNC2:def 3;
A7: (
max+ f) is
nonnegative & (
max- f) is
nonnegative &
|.f.| is
nonnegative by
MESFUN11: 5;
then
A8: (
Integral1 (M1,(
max+ f))) is
nonnegative & (
Integral2 (M2,(
max+ f))) is
nonnegative & (
Integral1 (M1,(
max- f))) is
nonnegative & (
Integral2 (M2,(
max- f))) is
nonnegative & (
Integral1 (M1,
|.f.|)) is
nonnegative & (
Integral2 (M2,
|.f.|)) is
nonnegative by
A5,
A6,
MESFUN12: 66;
A9: (
Integral1 (M1,(
max+ f))) is XX2
-measurable & (
Integral1 (M1,(
max- f))) is XX2
-measurable & (
Integral1 (M1,
|.f.|)) is XX2
-measurable & (
Integral2 (M2,(
max+ f))) is XX1
-measurable & (
Integral2 (M2,(
max- f))) is XX1
-measurable & (
Integral2 (M2,
|.f.|)) is XX1
-measurable by
A1,
A2,
A5,
A6,
MESFUN11: 5,
MESFUN12: 59,
MESFUN12: 60;
A10: (
dom (
Integral1 (M1,(
max+ f))))
= XX2 & (
dom (
Integral2 (M2,(
max+ f))))
= XX1 & (
dom (
Integral1 (M1,(
max- f))))
= XX2 & (
dom (
Integral2 (M2,(
max- f))))
= XX1 & (
dom (
Integral1 (M1,
|.f.|)))
= XX2 & (
dom (
Integral2 (M2,
|.f.|)))
= XX1 by
FUNCT_2:def 1;
(
integral+ (PM,(
max+ f)))
= (
Integral (PM,(
max+ f))) & (
integral+ (PM,(
max- f)))
= (
Integral (PM,(
max- f))) by
A5,
A6,
MESFUN11: 5,
MESFUNC5: 88;
then (
integral+ (PM,(
max+ f)))
= (
Integral (M2,(
Integral1 (M1,(
max+ f))))) & (
integral+ (PM,(
max+ f)))
= (
Integral (M1,(
Integral2 (M2,(
max+ f))))) & (
integral+ (PM,(
max- f)))
= (
Integral (M2,(
Integral1 (M1,(
max- f))))) & (
integral+ (PM,(
max- f)))
= (
Integral (M1,(
Integral2 (M2,(
max- f))))) by
A1,
A2,
A5,
A6,
A7,
MESFUN12: 84;
then
A11: (
Integral (M2,(
Integral1 (M1,(
max+ f)))))
<
+infty & (
Integral (M1,(
Integral2 (M2,(
max+ f)))))
<
+infty & (
Integral (M2,(
Integral1 (M1,(
max- f)))))
<
+infty & (
Integral (M1,(
Integral2 (M2,(
max- f)))))
<
+infty by
A3,
MESFUNC5:def 17;
(
Integral1 (M1,(
max+ f)))
= (
max+ (
Integral1 (M1,(
max+ f)))) & (
Integral2 (M2,(
max+ f)))
= (
max+ (
Integral2 (M2,(
max+ f)))) & (
Integral1 (M1,(
max- f)))
= (
max+ (
Integral1 (M1,(
max- f)))) & (
Integral2 (M2,(
max- f)))
= (
max+ (
Integral2 (M2,(
max- f)))) by
A8,
MESFUN11: 31;
then
A12: (
integral+ (M2,(
max+ (
Integral1 (M1,(
max+ f))))))
<
+infty & (
integral+ (M1,(
max+ (
Integral2 (M2,(
max+ f))))))
<
+infty & (
integral+ (M2,(
max+ (
Integral1 (M1,(
max- f))))))
<
+infty & (
integral+ (M1,(
max+ (
Integral2 (M2,(
max- f))))))
<
+infty by
A8,
A9,
A10,
A11,
MESFUNC5: 88;
(
integral+ (M2,(
max- (
Integral1 (M1,(
max+ f))))))
=
0 & (
integral+ (M1,(
max- (
Integral2 (M2,(
max+ f))))))
=
0 & (
integral+ (M2,(
max- (
Integral1 (M1,(
max- f))))))
=
0 & (
integral+ (M1,(
max- (
Integral2 (M2,(
max- f))))))
=
0 by
A8,
A9,
A10,
MESFUN11: 53;
hence (
Integral1 (M1,(
max+ f)))
is_integrable_on M2 & (
Integral2 (M2,(
max+ f)))
is_integrable_on M1 & (
Integral1 (M1,(
max- f)))
is_integrable_on M2 & (
Integral2 (M2,(
max- f)))
is_integrable_on M1 by
A9,
A10,
A12,
MESFUNC5:def 17;
A13:
|.f.|
is_integrable_on (
Prod_Measure (M1,M2)) by
A3,
A4,
MESFUNC5: 100;
(
max+
|.f.|)
=
|.f.| by
MESFUN11: 31;
then (
integral+ (PM,(
max+
|.f.|)))
= (
Integral (PM,
|.f.|)) by
A6,
A4,
MESFUNC2: 27,
MESFUNC5: 88;
then (
integral+ (PM,(
max+
|.f.|)))
= (
Integral (M2,(
Integral1 (M1,
|.f.|)))) & (
integral+ (PM,(
max+
|.f.|)))
= (
Integral (M1,(
Integral2 (M2,
|.f.|)))) by
A1,
A2,
A5,
A6,
MESFUN12: 84;
then
A15: (
Integral (M2,(
Integral1 (M1,
|.f.|))))
<
+infty & (
Integral (M1,(
Integral2 (M2,
|.f.|))))
<
+infty by
A13,
MESFUNC5:def 17;
(
Integral1 (M1,
|.f.|))
= (
max+ (
Integral1 (M1,
|.f.|))) & (
Integral2 (M2,
|.f.|))
= (
max+ (
Integral2 (M2,
|.f.|))) by
A8,
MESFUN11: 31;
then
A16: (
integral+ (M2,(
max+ (
Integral1 (M1,
|.f.|)))))
<
+infty & (
integral+ (M1,(
max+ (
Integral2 (M2,
|.f.|)))))
<
+infty by
A8,
A9,
A10,
A15,
MESFUNC5: 88;
(
integral+ (M2,(
max- (
Integral1 (M1,
|.f.|)))))
=
0 & (
integral+ (M1,(
max- (
Integral2 (M2,
|.f.|)))))
=
0 by
A8,
A9,
A10,
MESFUN11: 53;
hence (
Integral1 (M1,
|.f.|))
is_integrable_on M2 & (
Integral2 (M2,
|.f.|))
is_integrable_on M1 by
A9,
A10,
A16,
MESFUNC5:def 17;
end;
theorem ::
MESFUN13:25
for E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL st (
dom f)
c= E & f
is_a.e.integrable_on M holds f
is_integrable_on M
proof
let E be
Element of S, f be E
-measurable
PartFunc of X,
ExtREAL ;
assume that
A1: (
dom f)
c= E and
A2: f
is_a.e.integrable_on M;
reconsider E1 = (
dom f) as
Element of S by
A2,
Th16;
consider A be
Element of S such that
A3: (M
. A)
=
0 & A
c= (
dom f) & (f
| (A
` ))
is_integrable_on M by
A2;
A4: (f
| (A
` ))
= (f
| ((
dom f)
\ A)) by
Th15;
then
A5: (
dom (f
| (A
` )))
= ((
dom f)
/\ ((
dom f)
\ A)) by
RELAT_1: 61;
then
A6: (
dom (f
| (A
` )))
= ((E1
/\ E1)
\ A) by
XBOOLE_1: 49
.= (E1
\ A);
then
A7: (
dom (
max+ (f
| (A
` ))))
= (E1
\ A) & (
dom (
max- (f
| (A
` ))))
= (E1
\ A) by
MESFUNC2:def 2,
MESFUNC2:def 3;
A8: f is E1
-measurable by
A1,
MESFUNC1: 30;
then f is (E1
\ A)
-measurable by
XBOOLE_1: 36,
MESFUNC1: 30;
then (f
| (A
` )) is (E1
\ A)
-measurable by
A4,
A5,
A6,
MESFUNC5: 42;
then
A9: (
max+ (f
| (A
` ))) is (E1
\ A)
-measurable & (
max- (f
| (A
` ))) is (E1
\ A)
-measurable by
A6,
MESFUNC2: 25,
MESFUNC2: 26;
A10: E1
= (
dom (
max+ f)) & E1
= (
dom (
max- f)) by
MESFUNC2:def 2,
MESFUNC2:def 3;
A11: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
(
Integral (M,((
max+ f)
| ((
dom f)
\ A))))
= (
Integral (M,(
max+ f))) & (
Integral (M,((
max- f)
| ((
dom f)
\ A))))
= (
Integral (M,(
max- f))) by
A3,
A8,
A10,
MESFUNC2: 25,
MESFUNC2: 26,
MESFUNC5: 95;
then (
Integral (M,(
max+ (f
| (A
` )))))
= (
Integral (M,(
max+ f))) & (
Integral (M,(
max- (f
| (A
` )))))
= (
Integral (M,(
max- f))) by
A4,
MESFUNC5: 28;
then (
integral+ (M,(
max+ (f
| (A
` )))))
= (
Integral (M,(
max+ f))) & (
integral+ (M,(
max- (f
| (A
` )))))
= (
Integral (M,(
max- f))) by
A7,
A9,
MESFUNC5: 88,
MESFUN11: 5;
then
A12: (
integral+ (M,(
max+ (f
| (A
` )))))
= (
integral+ (M,(
max+ f))) & (
integral+ (M,(
max- (f
| (A
` )))))
= (
integral+ (M,(
max- f))) by
A8,
A10,
A11,
MESFUNC2: 25,
MESFUNC2: 26,
MESFUNC5: 88;
(
integral+ (M,(
max+ (f
| (A
` )))))
<
+infty & (
integral+ (M,(
max- (f
| (A
` )))))
<
+infty by
A3,
MESFUNC5:def 17;
hence f
is_integrable_on M by
A8,
A12,
MESFUNC5:def 17;
end;
theorem ::
MESFUN13:26
Th23: for A be
Element of S, f be
PartFunc of X,
ExtREAL st (M
. A)
=
0 & A
c= (
dom f) & (f
| (A
` ))
is_integrable_on M holds ex g be
PartFunc of X,
ExtREAL st (
dom g)
= (
dom f) & (f
| (A
` ))
= (g
| (A
` )) & g
is_integrable_on M & (
Integral (M,(f
| (A
` ))))
= (
Integral (M,g))
proof
let A be
Element of S, f be
PartFunc of X,
ExtREAL ;
assume that
A2: (M
. A)
=
0 and
A1: A
c= (
dom f) and
A3: (f
| (A
` ))
is_integrable_on M;
consider B be
Element of S such that
A4: B
= (
dom (f
| (A
` ))) & (f
| (A
` )) is B
-measurable by
A3,
MESFUNC5:def 17;
A5: (f
| (A
` ))
= (f
| ((
dom f)
\ A)) by
Th15;
then
A6: B
= ((
dom f)
/\ ((
dom f)
\ A)) by
A4,
RELAT_1: 61
.= (((
dom f)
/\ (
dom f))
\ A) by
XBOOLE_1: 49
.= ((
dom f)
\ A);
then
A7: (
dom f)
= (A
\/ B) by
A1,
XBOOLE_1: 45;
A8: (ex E be
Element of S st E
= (
dom (f
| B)) & (f
| B) is E
-measurable) & (
integral+ (M,(
max+ (f
| B))))
<
+infty & (
integral+ (M,(
max- (f
| B))))
<
+infty by
A3,
A5,
A6,
MESFUNC5:def 17;
defpred
C[
object] means $1
in A;
deffunc
F(
object) =
+infty ;
deffunc
G(
object) = (f
. $1);
consider g be
Function such that
A9: (
dom g)
= (
dom f) & for x be
object st x
in (
dom f) holds (
C[x] implies (g
. x)
=
F(x)) & ( not
C[x] implies (g
. x)
=
G(x)) from
PARTFUN1:sch 1;
now
let y be
object;
assume y
in (
rng g);
then
consider x be
object such that
A10: x
in (
dom g) & y
= (g
. x) by
FUNCT_1:def 3;
per cases ;
suppose x
in A;
then (g
. x)
=
+infty by
A9,
A10;
hence y
in
ExtREAL by
A10,
XXREAL_0:def 1;
end;
suppose not x
in A;
then (g
. x)
= (f
. x) by
A9,
A10;
then (g
. x)
in (
rng f) by
A9,
A10,
FUNCT_1: 3;
hence y
in
ExtREAL by
A10;
end;
end;
then (
rng g)
c=
ExtREAL ;
then
reconsider g as
PartFunc of X,
ExtREAL by
A9,
RELSET_1: 4;
take g;
thus (
dom g)
= (
dom f) by
A9;
(
dom (f
| (A
` )))
= ((
dom f)
/\ (A
` )) by
RELAT_1: 61;
then
A11: (
dom (f
| (A
` )))
= (
dom (g
| (A
` ))) by
A9,
RELAT_1: 61;
now
let x be
Element of X;
assume x
in (
dom (f
| (A
` )));
then
A12: x
in (
dom f) & x
in (A
` ) by
RELAT_1: 57;
then x
in (X
\ A) by
SUBSET_1:def 4;
then
A13: not x
in A by
XBOOLE_0:def 5;
((f
| (A
` ))
. x)
= (f
. x) by
A12,
FUNCT_1: 49;
then ((f
| (A
` ))
. x)
= (g
. x) by
A9,
A12,
A13;
hence ((f
| (A
` ))
. x)
= ((g
| (A
` ))
. x) by
A12,
FUNCT_1: 49;
end;
hence
A14: (f
| (A
` ))
= (g
| (A
` )) by
A11,
PARTFUN1: 5;
A15: (A
` )
= (X
\ A) by
SUBSET_1:def 4;
then (f
| B)
= ((g
| (A
` ))
| B) by
A6,
A14,
XBOOLE_1: 33,
RELAT_1: 74;
then (f
| B)
= (g
| B) by
A6,
A15,
XBOOLE_1: 33,
RELAT_1: 74;
then
A16: ((
max+ g)
| B)
= (
max+ (f
| B)) & ((
max- g)
| B)
= (
max- (f
| B)) by
MESFUNC5: 28;
A17: for r be
Real holds ((A
\/ B)
/\ (
less_dom (g,r)))
in S
proof
let r be
Real;
now
let x be
object;
assume x
in ((A
\/ B)
/\ (
less_dom (g,r)));
then
A18: x
in (
dom f) & x
in (
less_dom (g,r)) by
A7,
XBOOLE_0:def 4;
then
A19: x
in (
dom g) & (g
. x)
< r by
MESFUNC1:def 11;
A20:
now
assume x
in A;
then (g
. x)
=
+infty by
A9,
A18;
hence contradiction by
A19,
XXREAL_0: 3;
end;
then
A21: x
in B by
A7,
A18,
XBOOLE_0:def 3;
(g
. x)
= (f
. x) by
A9,
A18,
A20;
then ((f
| B)
. x)
< r by
A19,
A21,
FUNCT_1: 49;
then x
in (
less_dom ((f
| B),r)) by
A4,
A5,
A6,
A21,
MESFUNC1:def 11;
hence x
in (B
/\ (
less_dom ((f
| B),r))) by
A21,
XBOOLE_0:def 4;
end;
then
A22: ((A
\/ B)
/\ (
less_dom (g,r)))
c= (B
/\ (
less_dom ((f
| B),r)));
now
let x be
object;
assume x
in (B
/\ (
less_dom ((f
| B),r)));
then
A23: x
in B & x
in (
less_dom ((f
| B),r)) by
XBOOLE_0:def 4;
then
A24: x
in (
dom (f
| B)) & ((f
| B)
. x)
< r by
MESFUNC1:def 11;
A25: x
in (
dom f) & not x
in A by
A23,
A6,
XBOOLE_0:def 5;
then (g
. x)
= (f
. x) by
A9;
then (g
. x)
< r by
A24,
FUNCT_1: 47;
then x
in (
less_dom (g,r)) by
A9,
A25,
MESFUNC1:def 11;
hence x
in ((A
\/ B)
/\ (
less_dom (g,r))) by
A7,
A25,
XBOOLE_0:def 4;
end;
then (B
/\ (
less_dom ((f
| B),r)))
c= ((A
\/ B)
/\ (
less_dom (g,r)));
then ((A
\/ B)
/\ (
less_dom (g,r)))
= (B
/\ (
less_dom ((f
| B),r))) by
A22;
hence ((A
\/ B)
/\ (
less_dom (g,r)))
in S by
A4,
A5,
A6;
end;
then
A26: (
max+ g) is (A
\/ B)
-measurable & (
max- g) is (A
\/ B)
-measurable by
A7,
A9,
MESFUNC1:def 16,
MESFUNC2: 25,
MESFUNC2: 26;
A27: ((
max+ g)
| B) is
nonnegative & ((
max- g)
| B) is
nonnegative by
MESFUNC5: 15,
MESFUN11: 5;
A28: (
dom (
max+ g))
= (A
\/ B) & (
dom (
max- g))
= (A
\/ B) by
A7,
A9,
MESFUNC2:def 2,
MESFUNC2:def 3;
A29: B
= ((A
\/ B)
/\ B) by
XBOOLE_1: 7,
XBOOLE_1: 28;
then
A30: (
dom ((
max+ g)
| B))
= B & (
dom ((
max- g)
| B))
= B by
A28,
RELAT_1: 61;
A31: (
max+ g) is B
-measurable & (
max- g) is B
-measurable by
A26,
XBOOLE_1: 7,
MESFUNC1: 30;
(
Integral (M,((
max+ g)
| B)))
= (
Integral (M,(
max+ g))) & (
Integral (M,((
max- g)
| B)))
= (
Integral (M,(
max- g))) by
A2,
A6,
A7,
A26,
A28,
MESFUNC5: 95;
then (
integral+ (M,((
max+ g)
| B)))
= (
Integral (M,(
max+ g))) & (
integral+ (M,((
max- g)
| B)))
= (
Integral (M,(
max- g))) by
A27,
A28,
A29,
A30,
A31,
MESFUNC5: 42,
MESFUNC5: 88;
then (
integral+ (M,(
max+ g)))
<
+infty & (
integral+ (M,(
max- g)))
<
+infty by
A8,
A16,
A26,
A28,
MESFUNC5: 88,
MESFUN11: 5;
hence g
is_integrable_on M by
A7,
A9,
A17,
MESFUNC5:def 17,
MESFUNC1:def 16;
f
is_a.e.integrable_on M by
A1,
A2,
A3;
then
reconsider E = (
dom f) as
Element of S by
Th16;
(
Integral (M,(f
| (A
` ))))
= (
Integral (M,(g
| ((
dom g)
\ A)))) by
A14,
Th15;
hence (
Integral (M,(f
| (A
` ))))
= (
Integral (M,g)) by
A2,
A7,
A9,
A17,
MESFUNC5: 95,
MESFUNC1:def 16;
end;
theorem ::
MESFUN13:27
for f be
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) holds (
Integral ((
Prod_Measure (M1,M2)),f))
= ((
Integral (M2,(
Integral1 (M1,(
max+ f)))))
- (
Integral (M2,(
Integral1 (M1,(
max- f)))))) & (
Integral ((
Prod_Measure (M1,M2)),f))
= ((
Integral (M1,(
Integral2 (M2,(
max+ f)))))
- (
Integral (M1,(
Integral2 (M2,(
max- f))))))
proof
let f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2));
set M = (
Prod_Measure (M1,M2));
consider E be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A4: E
= (
dom f) & f is E
-measurable by
A3,
MESFUNC5:def 17;
A5: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
A6: (
dom (
max+ f))
= E & (
dom (
max- f))
= E by
A4,
MESFUNC2:def 2,
MESFUNC2:def 3;
(
max+ f) is E
-measurable & (
max- f) is E
-measurable by
A4,
MESFUNC2: 25,
MESFUNC2: 26;
then
A7: (
Integral (M,(
max+ f)))
= (
Integral (M2,(
Integral1 (M1,(
max+ f))))) & (
Integral (M,(
max- f)))
= (
Integral (M2,(
Integral1 (M1,(
max- f))))) & (
Integral (M,(
max+ f)))
= (
Integral (M1,(
Integral2 (M2,(
max+ f))))) & (
Integral (M,(
max- f)))
= (
Integral (M1,(
Integral2 (M2,(
max- f))))) by
A1,
A2,
A5,
A6,
MESFUN12: 84;
(
integral+ (M,(
max+ f)))
= (
Integral (M,(
max+ f))) & (
integral+ (M,(
max- f)))
= (
Integral (M,(
max- f))) by
A4,
A5,
A6,
MESFUNC2: 25,
MESFUNC2: 26,
MESFUNC5: 88;
hence thesis by
A7,
MESFUNC5:def 16;
end;
theorem ::
MESFUN13:28
for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), y be
Element of X2 holds ((M1
. (
Measurable-Y-section (E,y)))
<>
0 implies ((
Integral1 (M1,(
Xchi (E,
[:X1, X2:]))))
. y)
=
+infty ) & ((M1
. (
Measurable-Y-section (E,y)))
=
0 implies ((
Integral1 (M1,(
Xchi (E,
[:X1, X2:]))))
. y)
=
0 )
proof
let E be
Element of (
sigma (
measurable_rectangles (S1,S2))), y be
Element of X2;
(
ProjPMap2 ((
Xchi (E,
[:X1, X2:])),y))
= (
Xchi ((
Y-section (E,y)),X1)) by
MESFUN12: 35;
then
A1: ((
Integral1 (M1,(
Xchi (E,
[:X1, X2:]))))
. y)
= (
Integral (M1,(
Xchi ((
Y-section (E,y)),X1)))) by
MESFUN12:def 7;
A2: (
Measurable-Y-section (E,y))
= (
Y-section (E,y)) by
MEASUR11:def 7;
hence (M1
. (
Measurable-Y-section (E,y)))
<>
0 implies ((
Integral1 (M1,(
Xchi (E,
[:X1, X2:]))))
. y)
=
+infty by
A1,
MEASUR10: 33;
assume (M1
. (
Measurable-Y-section (E,y)))
=
0 ;
hence thesis by
A1,
A2,
MEASUR10: 33;
end;
theorem ::
MESFUN13:29
for E be
Element of (
sigma (
measurable_rectangles (S1,S2))), x be
Element of X1 holds ((M2
. (
Measurable-X-section (E,x)))
<>
0 implies ((
Integral2 (M2,(
Xchi (E,
[:X1, X2:]))))
. x)
=
+infty ) & ((M2
. (
Measurable-X-section (E,x)))
=
0 implies ((
Integral2 (M2,(
Xchi (E,
[:X1, X2:]))))
. x)
=
0 )
proof
let E be
Element of (
sigma (
measurable_rectangles (S1,S2))), x be
Element of X1;
(
ProjPMap1 ((
Xchi (E,
[:X1, X2:])),x))
= (
Xchi ((
X-section (E,x)),X2)) by
MESFUN12: 35;
then
A1: ((
Integral2 (M2,(
Xchi (E,
[:X1, X2:]))))
. x)
= (
Integral (M2,(
Xchi ((
X-section (E,x)),X2)))) by
MESFUN12:def 8;
A2: (
Measurable-X-section (E,x))
= (
X-section (E,x)) by
MEASUR11:def 6;
hence (M2
. (
Measurable-X-section (E,x)))
<>
0 implies ((
Integral2 (M2,(
Xchi (E,
[:X1, X2:]))))
. x)
=
+infty by
A1,
MEASUR10: 33;
assume (M2
. (
Measurable-X-section (E,x)))
=
0 ;
hence thesis by
A1,
A2,
MEASUR10: 33;
end;
::$Notion-Name
theorem ::
MESFUN13:30
for X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL , SX1 be
Element of S1 st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) & X1
= SX1 holds ex U be
Element of S1 st (M1
. U)
=
0 & (for x be
Element of X1 st x
in (U
` ) holds (
ProjPMap1 (f,x))
is_integrable_on M2) & ((
Integral2 (M2,
|.f.|))
| (U
` )) is
PartFunc of X1,
REAL & (
Integral2 (M2,f)) is (SX1
\ U)
-measurable & ((
Integral2 (M2,f))
| (U
` ))
is_integrable_on M1 & ((
Integral2 (M2,f))
| (U
` ))
in (
L1_Functions M1) & (ex g be
Function of X1,
ExtREAL st g
is_integrable_on M1 & (g
| (U
` ))
= ((
Integral2 (M2,f))
| (U
` )) & (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M1,g)))
proof
let X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL , SX1 be
Element of S1;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2)) and
A4: X1
= SX1;
consider A be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A5: A
= (
dom f) & f is A
-measurable by
A3,
MESFUNC5:def 17;
A6: A
= (
dom
|.f.|) & A
= (
dom (
max+ f)) & A
= (
dom (
max- f)) by
A5,
MESFUNC1:def 10,
MESFUNC2:def 2,
MESFUNC2:def 3;
A7:
|.f.| is A
-measurable & (
max+ f) is A
-measurable & (
max- f) is A
-measurable by
A5,
MESFUNC2: 25,
MESFUNC2: 26,
MESFUNC2: 27;
A8: (
Integral2 (M2,
|.f.|))
is_integrable_on M1 & (
Integral2 (M2,(
max+ f)))
is_integrable_on M1 & (
Integral2 (M2,(
max- f)))
is_integrable_on M1 by
A1,
A2,
A3,
Th20;
A9: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
(
Integral2 (M2,
|.f.|))
is_a.e.finite M1 by
A8,
Th19;
then
consider U be
Element of S1 such that
A10: (M1
. U)
=
0 & ((
Integral2 (M2,
|.f.|))
| (U
` )) is
PartFunc of X1,
REAL ;
A11: (U
` )
= (SX1
\ U) by
A4,
SUBSET_1:def 4;
then
A12: ((
Integral2 (M2,
|.f.|))
| (U
` ))
is_integrable_on M1 & ((
Integral2 (M2,(
max+ f)))
| (U
` ))
is_integrable_on M1 & ((
Integral2 (M2,(
max- f)))
| (U
` ))
is_integrable_on M1 by
A8,
MESFUNC5: 97;
A13: (
dom (
Integral2 (M2,f)))
= X1 & (
dom (
Integral2 (M2,(
max+ f))))
= X1 & (
dom (
Integral2 (M2,(
max- f))))
= X1 & (
dom (
Integral2 (M2,
|.f.|)))
= X1 by
FUNCT_2:def 1;
take U;
thus (M1
. U)
=
0 by
A10;
thus
A14: for x be
Element of X1 st x
in (U
` ) holds (
ProjPMap1 (f,x))
is_integrable_on M2
proof
let x be
Element of X1;
assume
A15: x
in (U
` );
then
A16: x
in (
dom ((
Integral2 (M2,
|.f.|))
| (U
` ))) by
A13,
RELAT_1: 57;
(
X-section (A,x))
= (
Measurable-X-section (A,x)) by
MEASUR11:def 6;
then
A17: (
dom (
ProjPMap1 (
|.f.|,x)))
= (
Measurable-X-section (A,x)) & (
dom (
ProjPMap1 (f,x)))
= (
Measurable-X-section (A,x)) by
A5,
A6,
MESFUN12:def 3;
A18: (
ProjPMap1 (
|.f.|,x)) is (
Measurable-X-section (A,x))
-measurable & (
ProjPMap1 (f,x)) is (
Measurable-X-section (A,x))
-measurable by
A5,
A6,
A7,
MESFUN12: 47;
A19: (
ProjPMap1 (
|.f.|,x))
=
|.(
ProjPMap1 (f,x)).| by
Th27;
then (
integral+ (M2,(
max+ (
ProjPMap1 (
|.f.|,x)))))
= (
integral+ (M2,(
ProjPMap1 (
|.f.|,x)))) by
MESFUN11: 31
.= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
A6,
A7,
A17,
A19,
MESFUN12: 47,
MESFUNC5: 88
.= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8
.= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A15,
FUNCT_1: 49;
then
A20: (
integral+ (M2,(
max+ (
ProjPMap1 (
|.f.|,x)))))
<
+infty by
A10,
A16,
PARTFUN1: 4,
XXREAL_0: 9;
(
integral+ (M2,(
max- (
ProjPMap1 (
|.f.|,x)))))
<
+infty by
A17,
A18,
A19,
MESFUN11: 53;
then
|.(
ProjPMap1 (f,x)).|
is_integrable_on M2 by
A6,
A7,
A17,
A19,
A20,
MESFUN12: 47,
MESFUNC5:def 17;
hence (
ProjPMap1 (f,x))
is_integrable_on M2 by
A17,
A18,
MESFUNC5: 100;
end;
thus ((
Integral2 (M2,
|.f.|))
| (U
` )) is
PartFunc of X1,
REAL by
A10;
set G1 = ((
Integral2 (M2,(
max+ f)))
| (U
` ));
set G2 = ((
Integral2 (M2,(
max- f)))
| (U
` ));
reconsider G = (G1
- G2) as
PartFunc of X1,
ExtREAL ;
A21: (
dom G1)
= (U
` ) & (
dom G2)
= (U
` ) by
A13,
RELAT_1: 62;
A22:
now
let x be
object;
per cases ;
suppose
A23: x
in (
dom G1);
then
reconsider x1 = x as
Element of X1;
A24: (G1
. x)
= ((
Integral2 (M2,(
max+ f)))
. x) by
A21,
A23,
FUNCT_1: 49
.= (
Integral (M2,(
ProjPMap1 ((
max+ f),x1)))) by
MESFUN12:def 8
.= (
Integral (M2,(
max+ (
ProjPMap1 (f,x1))))) by
MESFUN12: 45;
A25: (
ProjPMap1 (f,x1))
is_integrable_on M2 by
A14,
A21,
A23;
then
consider B be
Element of S2 such that
A26: B
= (
dom (
ProjPMap1 (f,x1))) & (
ProjPMap1 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
A27: B
= (
dom (
max+ (
ProjPMap1 (f,x1)))) & (
max+ (
ProjPMap1 (f,x1))) is B
-measurable by
A26,
MESFUNC2:def 2,
MESFUN11: 10;
(
integral+ (M2,(
max+ (
ProjPMap1 (f,x1)))))
<
+infty by
A25,
MESFUNC5:def 17;
hence (G1
. x)
<
+infty by
A24,
A27,
MESFUNC5: 88,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
<
+infty by
FUNCT_1:def 2;
end;
end;
now
let x be
object;
per cases ;
suppose
A28: x
in (
dom G1);
then
reconsider x1 = x as
Element of X1;
A29: (G1
. x)
= ((
Integral2 (M2,(
max+ f)))
. x) by
A21,
A28,
FUNCT_1: 49
.= (
Integral (M2,(
ProjPMap1 ((
max+ f),x1)))) by
MESFUN12:def 8
.= (
Integral (M2,(
max+ (
ProjPMap1 (f,x1))))) by
MESFUN12: 45;
(
ProjPMap1 (f,x1))
is_integrable_on M2 by
A14,
A21,
A28;
then
consider B be
Element of S2 such that
A30: B
= (
dom (
ProjPMap1 (f,x1))) & (
ProjPMap1 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max+ (
ProjPMap1 (f,x1)))) & (
max+ (
ProjPMap1 (f,x1))) is B
-measurable by
A30,
MESFUNC2:def 2,
MESFUN11: 10;
hence (G1
. x)
>
-infty by
A29,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then
A31: G1 is
without-infty
without+infty by
A22,
MESFUNC5:def 5,
MESFUNC5:def 6;
then
A32: (
dom G)
= ((
dom G1)
/\ (
dom G2)) by
MESFUN11: 23;
A33: ex A1 be
Element of S1 st A1
= (
dom G1) & G1 is A1
-measurable by
A12,
MESFUNC5:def 17;
A34: ex A2 be
Element of S1 st A2
= (
dom G2) & G2 is A2
-measurable by
A12,
MESFUNC5:def 17;
now
let x be
object;
per cases ;
suppose
A35: x
in (
dom G2);
then
reconsider x1 = x as
Element of X1;
A36: (G2
. x)
= ((
Integral2 (M2,(
max- f)))
. x) by
A21,
A35,
FUNCT_1: 49
.= (
Integral (M2,(
ProjPMap1 ((
max- f),x1)))) by
MESFUN12:def 8
.= (
Integral (M2,(
max- (
ProjPMap1 (f,x1))))) by
MESFUN12: 45;
(
ProjPMap1 (f,x1))
is_integrable_on M2 by
A14,
A21,
A35;
then
consider B be
Element of S2 such that
A37: B
= (
dom (
ProjPMap1 (f,x1))) & (
ProjPMap1 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max- (
ProjPMap1 (f,x1)))) & (
max- (
ProjPMap1 (f,x1))) is B
-measurable by
A37,
MESFUNC2:def 3,
MESFUN11: 10;
hence (G2
. x)
>
-infty by
A36,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G2);
hence (G2
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then G2 is
without-infty by
MESFUNC5:def 5;
then
A38: G is (SX1
\ U)
-measurable by
A11,
A21,
A31,
A32,
A33,
A34,
MEASUR11: 66;
A39: (
dom ((
Integral2 (M2,f))
| (U
` )))
= (U
` ) & (
dom (G
| (U
` )))
= (U
` ) & (
dom ((
Integral2 (M2,
|.f.|))
| (U
` )))
= (U
` ) by
A13,
A21,
A32,
RELAT_1: 62;
then
A40: (U
` )
= (
dom (
max+ ((
Integral2 (M2,f))
| (U
` )))) & (U
` )
= (
dom (
max- ((
Integral2 (M2,f))
| (U
` )))) by
MESFUNC2:def 2,
MESFUNC2:def 3;
A41:
now
let x be
Element of X1;
assume
A42: x
in (
dom ((
Integral2 (M2,f))
| (U
` )));
then
A43: x
in (U
` ) by
A13,
RELAT_1: 62;
then
A44: (((
Integral2 (M2,f))
| (U
` ))
. x)
= ((
Integral2 (M2,f))
. x) by
FUNCT_1: 49
.= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
(
X-section (A,x))
= (
Measurable-X-section (A,x)) by
MEASUR11:def 6;
then
B17: (
dom (
ProjPMap1 (
|.f.|,x)))
= (
Measurable-X-section (A,x)) & (
dom (
ProjPMap1 (f,x)))
= (
Measurable-X-section (A,x)) by
A5,
A6,
MESFUN12:def 3;
x
in (
dom G) by
A21,
A32,
A42,
RELAT_1: 57;
then ((G
| (U
` ))
. x)
= ((G1
. x)
- (G2
. x)) by
A21,
A32,
MESFUNC1:def 4
.= (((
Integral2 (M2,(
max+ f)))
. x)
- (G2
. x)) by
A43,
FUNCT_1: 49
.= (((
Integral2 (M2,(
max+ f)))
. x)
- ((
Integral2 (M2,(
max- f)))
. x)) by
A43,
FUNCT_1: 49
.= ((
Integral (M2,(
ProjPMap1 ((
max+ f),x))))
- ((
Integral2 (M2,(
max- f)))
. x)) by
MESFUN12:def 8
.= ((
Integral (M2,(
ProjPMap1 ((
max+ f),x))))
- (
Integral (M2,(
ProjPMap1 ((
max- f),x))))) by
MESFUN12:def 8
.= ((
Integral (M2,(
max+ (
ProjPMap1 (f,x)))))
- (
Integral (M2,(
ProjPMap1 ((
max- f),x))))) by
MESFUN12: 45
.= ((
Integral (M2,(
max+ (
ProjPMap1 (f,x)))))
- (
Integral (M2,(
max- (
ProjPMap1 (f,x)))))) by
MESFUN12: 45
.= (
Integral (M2,(
ProjPMap1 (f,x)))) by
A5,
B17,
MESFUN12: 47,
MESFUN11: 54;
hence (((
Integral2 (M2,f))
| (U
` ))
. x)
= ((G
| (U
` ))
. x) by
A44;
end;
hence (
Integral2 (M2,f)) is (SX1
\ U)
-measurable by
A11,
A13,
A21,
A32,
A38,
A39,
PARTFUN1: 5,
MESFUN12: 36;
((
Integral2 (M2,f))
| (U
` )) is (SX1
\ U)
-measurable by
A13,
A21,
A32,
A38,
A41,
RELAT_1: 62,
PARTFUN1: 5;
then
A45: (
max+ ((
Integral2 (M2,f))
| (U
` ))) is (SX1
\ U)
-measurable & (
max- ((
Integral2 (M2,f))
| (U
` ))) is (SX1
\ U)
-measurable by
A11,
A39,
MESFUNC2: 25,
MESFUNC2: 26;
now
let y be
set;
assume y
in (
rng ((
Integral2 (M2,f))
| (U
` )));
then
consider x be
Element of X1 such that
A47: x
in (
dom ((
Integral2 (M2,f))
| (U
` ))) & y
= (((
Integral2 (M2,f))
| (U
` ))
. x) by
PARTFUN1: 3;
A48: x
in (
dom (
Integral2 (M2,f))) & x
in (U
` ) by
A47,
RELAT_1: 57;
then x
in (
dom ((
Integral2 (M2,
|.f.|))
| (U
` ))) by
A13,
RELAT_1: 57;
then
A49: (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x)
<
+infty by
A10,
PARTFUN1: 4,
XXREAL_0: 9;
((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,
|.(
ProjPMap1 (f,x)).|)) by
A14,
A48,
MESFUNC5: 101;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
Th27;
then
|.((
Integral2 (M2,f))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A48,
FUNCT_1: 49;
then
|.(((
Integral2 (M2,f))
| (U
` ))
. x).|
<= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A47,
FUNCT_1: 47;
then
|.(((
Integral2 (M2,f))
| (U
` ))
. x).|
<
+infty by
A49,
XXREAL_0: 2;
hence y
in
REAL by
A47,
EXTREAL1: 41;
end;
then
A50: (
rng ((
Integral2 (M2,f))
| (U
` )))
c=
REAL ;
now
let x be
Element of X1;
assume
A51: x
in (
dom (
max+ ((
Integral2 (M2,f))
| (U
` ))));
then
A52: x
in (
dom (
Integral2 (M2,f))) & x
in (U
` ) by
A13,
A39,
MESFUNC2:def 2;
then
A53: x
in (
dom (
max+ (
Integral2 (M2,f)))) by
MESFUNC2:def 2;
A54: x
in (
dom
|.(
Integral2 (M2,f)).|) by
A52,
MESFUNC1:def 10;
((
max+ ((
Integral2 (M2,f))
| (U
` )))
. x)
= (
max ((((
Integral2 (M2,f))
| (U
` ))
. x),
0 )) by
A51,
MESFUNC2:def 2
.= (
max (((
Integral2 (M2,f))
. x),
0 )) by
A39,
A40,
A51,
FUNCT_1: 47
.= ((
max+ (
Integral2 (M2,f)))
. x) by
A53,
MESFUNC2:def 2;
then ((
max+ ((
Integral2 (M2,f))
| (U
` )))
. x)
<= (
|.(
Integral2 (M2,f)).|
. x) by
Th29;
then ((
max+ ((
Integral2 (M2,f))
| (U
` )))
. x)
<=
|.((
Integral2 (M2,f))
. x).| by
A54,
MESFUNC1:def 10;
then
A55:
|.((
max+ ((
Integral2 (M2,f))
| (U
` )))
. x).|
<=
|.((
Integral2 (M2,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 12;
((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,
|.(
ProjPMap1 (f,x)).|)) by
A14,
A40,
A51,
MESFUNC5: 101;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
Th27;
then
|.((
Integral2 (M2,f))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A40,
A51,
FUNCT_1: 49;
hence
|.((
max+ ((
Integral2 (M2,f))
| (U
` )))
. x).|
<= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A55,
XXREAL_0: 2;
end;
then
A56: (
max+ ((
Integral2 (M2,f))
| (U
` )))
is_integrable_on M1 by
A11,
A12,
A39,
A45,
A40,
MESFUNC5: 102;
now
let x be
Element of X1;
assume
A57: x
in (
dom (
max- ((
Integral2 (M2,f))
| (U
` ))));
then
A58: x
in (
dom (
Integral2 (M2,f))) & x
in (U
` ) by
A13,
A39,
MESFUNC2:def 3;
then
A59: x
in (
dom (
max- (
Integral2 (M2,f)))) by
MESFUNC2:def 3;
A60: x
in (
dom
|.(
Integral2 (M2,f)).|) by
A58,
MESFUNC1:def 10;
((
max- ((
Integral2 (M2,f))
| (U
` )))
. x)
= (
max ((
- (((
Integral2 (M2,f))
| (U
` ))
. x)),
0 )) by
A57,
MESFUNC2:def 3
.= (
max ((
- ((
Integral2 (M2,f))
. x)),
0 )) by
A39,
A40,
A57,
FUNCT_1: 47
.= ((
max- (
Integral2 (M2,f)))
. x) by
A59,
MESFUNC2:def 3;
then ((
max- ((
Integral2 (M2,f))
| (U
` )))
. x)
<= (
|.(
Integral2 (M2,f)).|
. x) by
Th29;
then ((
max- ((
Integral2 (M2,f))
| (U
` )))
. x)
<=
|.((
Integral2 (M2,f))
. x).| by
A60,
MESFUNC1:def 10;
then
A61:
|.((
max- ((
Integral2 (M2,f))
| (U
` )))
. x).|
<=
|.((
Integral2 (M2,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 13;
((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,
|.(
ProjPMap1 (f,x)).|)) by
A14,
A40,
A57,
MESFUNC5: 101;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
Th27;
then
|.((
Integral2 (M2,f))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A40,
A57,
FUNCT_1: 49;
hence
|.((
max- ((
Integral2 (M2,f))
| (U
` )))
. x).|
<= (((
Integral2 (M2,
|.f.|))
| (U
` ))
. x) by
A61,
XXREAL_0: 2;
end;
then (
max- ((
Integral2 (M2,f))
| (U
` )))
is_integrable_on M1 by
A11,
A12,
A39,
A45,
A40,
MESFUNC5: 102;
then ((
max+ ((
Integral2 (M2,f))
| (U
` )))
- (
max- ((
Integral2 (M2,f))
| (U
` ))))
is_integrable_on M1 by
A56,
MESFUN10: 12;
hence
A62: ((
Integral2 (M2,f))
| (U
` ))
is_integrable_on M1 by
MESFUNC2: 23;
reconsider F = ((
Integral2 (M2,f))
| (U
` )) as
PartFunc of X1,
REAL by
A50,
RELSET_1: 6;
(
R_EAL F)
is_integrable_on M1 by
A62,
MESFUNC5:def 7;
then F
is_integrable_on M1 by
MESFUNC6:def 4;
then F
in { f where f be
PartFunc of X1,
REAL : ex ND be
Element of S1 st (M1
. ND)
=
0 & (
dom f)
= (ND
` ) & f
is_integrable_on M1 } by
A10,
A39;
hence ((
Integral2 (M2,f))
| (U
` ))
in (
L1_Functions M1) by
LPSPACE1:def 8;
consider g1 be
PartFunc of X1,
ExtREAL such that
A64: (
dom g1)
= (
dom (
Integral2 (M2,(
max+ f)))) & (g1
| (U
` ))
= ((
Integral2 (M2,(
max+ f)))
| (U
` )) & g1
is_integrable_on M1 & (
Integral (M1,g1))
= (
Integral (M1,((
Integral2 (M2,(
max+ f)))
| (U
` )))) by
A8,
A10,
A11,
A13,
Th23,
MESFUNC5: 97;
consider g2 be
PartFunc of X1,
ExtREAL such that
A65: (
dom g2)
= (
dom (
Integral2 (M2,(
max- f)))) & (g2
| (U
` ))
= ((
Integral2 (M2,(
max- f)))
| (U
` )) & g2
is_integrable_on M1 & (
Integral (M1,g2))
= (
Integral (M1,((
Integral2 (M2,(
max- f)))
| (U
` )))) by
A8,
A10,
A11,
A13,
Th23,
MESFUNC5: 97;
consider g be
PartFunc of X1,
ExtREAL such that
A66: (
dom g)
= (
dom (
Integral2 (M2,f))) & (g
| (U
` ))
= ((
Integral2 (M2,f))
| (U
` )) & g
is_integrable_on M1 & (
Integral (M1,g))
= (
Integral (M1,((
Integral2 (M2,f))
| (U
` )))) by
A10,
A13,
A62,
Th23;
reconsider g as
Function of X1,
ExtREAL by
A13,
A66,
FUNCT_2:def 1;
A67: (
dom (g
| (U
` )))
= ((
dom g)
/\ (U
` )) & (
dom (g1
| (U
` )))
= ((
dom g1)
/\ (U
` )) & (
dom (g2
| (U
` )))
= ((
dom g2)
/\ (U
` )) by
RELAT_1: 61;
now
let x be
Element of X1;
assume
A72: x
in (
dom (g2
| (U
` )));
then
A68: x
in (U
` ) by
RELAT_1: 57;
A69: (
ProjPMap1 (f,x))
is_integrable_on M2 by
A14,
A72,
RELAT_1: 57;
then
consider DP be
Element of S2 such that
A70: DP
= (
dom (
ProjPMap1 (f,x))) & (
ProjPMap1 (f,x)) is DP
-measurable by
MESFUNC5:def 17;
A71: DP
= (
dom (
max- (
ProjPMap1 (f,x)))) & (
max- (
ProjPMap1 (f,x))) is DP
-measurable by
A70,
MESFUNC2:def 3,
MESFUNC2: 26;
A73: (
max- (
ProjPMap1 (f,x))) is
nonnegative by
MESFUN11: 5;
A74: ((g2
| (U
` ))
. x)
= ((
Integral2 (M2,(
max- f)))
. x) by
A65,
A68,
FUNCT_1: 49
.= (
Integral (M2,(
ProjPMap1 ((
max- f),x)))) by
MESFUN12:def 8
.= (
Integral (M2,(
max- (
ProjPMap1 (f,x))))) by
MESFUN12: 45
.= (
integral+ (M2,(
max- (
ProjPMap1 (f,x))))) by
A71,
MESFUNC5: 88,
MESFUN11: 5;
then ((g2
| (U
` ))
. x)
<
+infty by
A69,
MESFUNC5:def 17;
hence
|.((g2
| (U
` ))
. x).|
<
+infty by
A71,
A73,
A74,
MESFUNC5: 79,
EXTREAL1:def 1;
end;
then (g2
| (U
` )) is
real-valued by
MESFUNC2:def 1;
then
A75: (
dom ((g1
| (U
` ))
- (g2
| (U
` ))))
= (((
dom g1)
/\ (U
` ))
/\ ((
dom g2)
/\ (U
` ))) by
A67,
MESFUNC2: 2;
then
A76: (
dom ((g1
| (U
` ))
- (g2
| (U
` ))))
= (
dom (g
| (U
` ))) by
A13,
A64,
A65,
A66,
RELAT_1: 61;
(
dom (g1
| (U
` )))
= (U
` ) & (
dom (g2
| (U
` )))
= (U
` ) by
A13,
A64,
A65,
RELAT_1: 62;
then
A77: (U
` )
= ((
dom (g1
| (U
` )))
/\ (
dom (g2
| (U
` ))));
A78: (g1
| (U
` ))
is_integrable_on M1 & (g2
| (U
` ))
is_integrable_on M1 by
A11,
A64,
A65,
MESFUNC5: 97;
now
let x be
Element of X1;
assume
A79: x
in (
dom (g
| (U
` )));
then
A80: x
in (U
` ) by
RELAT_1: 57;
then
A81: ((g
| (U
` ))
. x)
= ((
Integral2 (M2,f))
. x) by
A66,
FUNCT_1: 49;
(
ProjPMap1 (f,x))
is_integrable_on M2 by
A14,
A79,
RELAT_1: 57;
then
A82: ex A be
Element of S2 st A
= (
dom (
ProjPMap1 (f,x))) & (
ProjPMap1 (f,x)) is A
-measurable by
MESFUNC5:def 17;
((
Integral2 (M2,(
max+ f)))
. x)
= (
Integral (M2,(
ProjPMap1 ((
max+ f),x)))) & ((
Integral2 (M2,(
max- f)))
. x)
= (
Integral (M2,(
ProjPMap1 ((
max- f),x)))) by
MESFUN12:def 8;
then ((
Integral2 (M2,(
max+ f)))
. x)
= (
Integral (M2,(
max+ (
ProjPMap1 (f,x))))) & ((
Integral2 (M2,(
max- f)))
. x)
= (
Integral (M2,(
max- (
ProjPMap1 (f,x))))) by
MESFUN12: 45;
then (((
Integral2 (M2,(
max+ f)))
. x)
- ((
Integral2 (M2,(
max- f)))
. x))
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
A82,
MESFUN11: 54
.= ((
Integral2 (M2,f))
. x) by
MESFUN12:def 8;
then ((g
| (U
` ))
. x)
= ((((
Integral2 (M2,(
max+ f)))
| (U
` ))
. x)
- ((
Integral2 (M2,(
max- f)))
. x)) by
A80,
A81,
FUNCT_1: 49
.= (((g1
| (U
` ))
. x)
- ((g2
| (U
` ))
. x)) by
A64,
A65,
A80,
FUNCT_1: 49;
hence ((g
| (U
` ))
. x)
= (((g1
| (U
` ))
- (g2
| (U
` )))
. x) by
A76,
A79,
MESFUNC1:def 4;
end;
then
A83: (g
| (U
` ))
= ((g1
| (U
` ))
- (g2
| (U
` ))) by
A13,
A64,
A65,
A66,
A75,
RELAT_1: 61,
PARTFUN1: 5;
A84: (
Integral2 (M2,(
max+ f))) is SX1
-measurable & (
Integral2 (M2,(
max- f))) is SX1
-measurable by
A2,
A6,
A7,
MESFUN11: 5,
MESFUN12: 60;
A85: (
Integral ((
Prod_Measure (M1,M2)),(
max+ f)))
= (
Integral (M1,(
Integral2 (M2,(
max+ f))))) by
A1,
A2,
A6,
A7,
A9,
MESFUN12: 84
.= (
Integral (M1,((
Integral2 (M2,(
max+ f)))
| (SX1
\ U)))) by
A4,
A10,
A13,
A84,
MESFUNC5: 95
.= (
Integral (M1,(g1
| (U
` )))) by
A4,
A64,
SUBSET_1:def 4;
A86: (
Integral ((
Prod_Measure (M1,M2)),(
max- f)))
= (
Integral (M1,(
Integral2 (M2,(
max- f))))) by
A1,
A2,
A6,
A7,
A9,
MESFUN12: 84
.= (
Integral (M1,((
Integral2 (M2,(
max- f)))
| (SX1
\ U)))) by
A4,
A10,
A13,
A84,
MESFUNC5: 95
.= (
Integral (M1,(g2
| (U
` )))) by
A4,
A65,
SUBSET_1:def 4;
(
Integral ((
Prod_Measure (M1,M2)),f))
= ((
Integral (M1,((g1
| (U
` ))
| (U
` ))))
- (
Integral (M1,((g2
| (U
` ))
| (U
` ))))) by
A5,
A85,
A86,
MESFUN11: 54;
then (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M1,(g
| (U
` )))) by
A77,
A78,
A83,
Th21;
hence ex g be
Function of X1,
ExtREAL st g
is_integrable_on M1 & (g
| (U
` ))
= ((
Integral2 (M2,f))
| (U
` )) & (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M1,g)) by
A66;
end;
theorem ::
MESFUN13:31
for X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL , SX2 be
Element of S2 st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) & X2
= SX2 holds ex V be
Element of S2 st (M2
. V)
=
0 & (for y be
Element of X2 st y
in (V
` ) holds (
ProjPMap2 (f,y))
is_integrable_on M1) & ((
Integral1 (M1,
|.f.|))
| (V
` )) is
PartFunc of X2,
REAL & (
Integral1 (M1,f)) is (SX2
\ V)
-measurable & ((
Integral1 (M1,f))
| (V
` ))
is_integrable_on M2 & ((
Integral1 (M1,f))
| (V
` ))
in (
L1_Functions M2) & (ex g be
Function of X2,
ExtREAL st g
is_integrable_on M2 & (g
| (V
` ))
= ((
Integral1 (M1,f))
| (V
` )) & (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M2,g)))
proof
let X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL , SX2 be
Element of S2;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2)) and
A4: X2
= SX2;
consider A be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A5: A
= (
dom f) & f is A
-measurable by
A3,
MESFUNC5:def 17;
A6: A
= (
dom
|.f.|) & A
= (
dom (
max+ f)) & A
= (
dom (
max- f)) by
A5,
MESFUNC1:def 10,
MESFUNC2:def 2,
MESFUNC2:def 3;
A7:
|.f.| is A
-measurable & (
max+ f) is A
-measurable & (
max- f) is A
-measurable by
A5,
MESFUNC2: 25,
MESFUNC2: 26,
MESFUNC2: 27;
A8: (
Integral1 (M1,
|.f.|))
is_integrable_on M2 & (
Integral1 (M1,(
max+ f)))
is_integrable_on M2 & (
Integral1 (M1,(
max- f)))
is_integrable_on M2 by
A1,
A2,
A3,
Th20;
A9: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
(
Integral1 (M1,
|.f.|))
is_a.e.finite M2 by
A8,
Th19;
then
consider V be
Element of S2 such that
A10: (M2
. V)
=
0 & ((
Integral1 (M1,
|.f.|))
| (V
` )) is
PartFunc of X2,
REAL ;
A11: (V
` )
= (SX2
\ V) by
A4,
SUBSET_1:def 4;
then
A12: ((
Integral1 (M1,
|.f.|))
| (V
` ))
is_integrable_on M2 & ((
Integral1 (M1,(
max+ f)))
| (V
` ))
is_integrable_on M2 & ((
Integral1 (M1,(
max- f)))
| (V
` ))
is_integrable_on M2 by
A8,
MESFUNC5: 97;
A13: (
dom (
Integral1 (M1,f)))
= X2 & (
dom (
Integral1 (M1,(
max+ f))))
= X2 & (
dom (
Integral1 (M1,(
max- f))))
= X2 & (
dom (
Integral1 (M1,
|.f.|)))
= X2 by
FUNCT_2:def 1;
take V;
thus (M2
. V)
=
0 by
A10;
thus
A14: for y be
Element of X2 st y
in (V
` ) holds (
ProjPMap2 (f,y))
is_integrable_on M1
proof
let y be
Element of X2;
assume
A15: y
in (V
` );
then
A16: y
in (
dom ((
Integral1 (M1,
|.f.|))
| (V
` ))) by
A13,
RELAT_1: 57;
(
Y-section (A,y))
= (
Measurable-Y-section (A,y)) by
MEASUR11:def 7;
then
A17: (
dom (
ProjPMap2 (
|.f.|,y)))
= (
Measurable-Y-section (A,y)) & (
dom (
ProjPMap2 (f,y)))
= (
Measurable-Y-section (A,y)) by
A5,
A6,
MESFUN12:def 4;
A18: (
ProjPMap2 (
|.f.|,y)) is (
Measurable-Y-section (A,y))
-measurable & (
ProjPMap2 (f,y)) is (
Measurable-Y-section (A,y))
-measurable by
A5,
A6,
A7,
MESFUN12: 47;
A19: (
ProjPMap2 (
|.f.|,y))
=
|.(
ProjPMap2 (f,y)).| by
Th27;
then (
integral+ (M1,(
max+ (
ProjPMap2 (
|.f.|,y)))))
= (
integral+ (M1,(
ProjPMap2 (
|.f.|,y)))) by
MESFUN11: 31
.= (
Integral (M1,(
ProjPMap2 (
|.f.|,y)))) by
A6,
A7,
A17,
A19,
MESFUN12: 47,
MESFUNC5: 88
.= ((
Integral1 (M1,
|.f.|))
. y) by
MESFUN12:def 7
.= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. y) by
A15,
FUNCT_1: 49;
then
A20: (
integral+ (M1,(
max+ (
ProjPMap2 (
|.f.|,y)))))
<
+infty by
A10,
A16,
PARTFUN1: 4,
XXREAL_0: 9;
(
integral+ (M1,(
max- (
ProjPMap2 (
|.f.|,y)))))
<
+infty by
A17,
A18,
A19,
MESFUN11: 53;
then
|.(
ProjPMap2 (f,y)).|
is_integrable_on M1 by
A6,
A7,
A17,
A19,
A20,
MESFUN12: 47,
MESFUNC5:def 17;
hence (
ProjPMap2 (f,y))
is_integrable_on M1 by
A17,
A18,
MESFUNC5: 100;
end;
thus ((
Integral1 (M1,
|.f.|))
| (V
` )) is
PartFunc of X2,
REAL by
A10;
set G1 = ((
Integral1 (M1,(
max+ f)))
| (V
` ));
set G2 = ((
Integral1 (M1,(
max- f)))
| (V
` ));
reconsider G = (G1
- G2) as
PartFunc of X2,
ExtREAL ;
A21: (
dom G1)
= (V
` ) & (
dom G2)
= (V
` ) by
A13,
RELAT_1: 62;
A22:
now
let x be
object;
per cases ;
suppose
A23: x
in (
dom G1);
then
reconsider x1 = x as
Element of X2;
A24: (G1
. x)
= ((
Integral1 (M1,(
max+ f)))
. x) by
A21,
A23,
FUNCT_1: 49
.= (
Integral (M1,(
ProjPMap2 ((
max+ f),x1)))) by
MESFUN12:def 7
.= (
Integral (M1,(
max+ (
ProjPMap2 (f,x1))))) by
MESFUN12: 46;
A25: (
ProjPMap2 (f,x1))
is_integrable_on M1 by
A14,
A21,
A23;
then
consider B be
Element of S1 such that
A26: B
= (
dom (
ProjPMap2 (f,x1))) & (
ProjPMap2 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
A27: B
= (
dom (
max+ (
ProjPMap2 (f,x1)))) & (
max+ (
ProjPMap2 (f,x1))) is B
-measurable by
A26,
MESFUNC2:def 2,
MESFUN11: 10;
(
integral+ (M1,(
max+ (
ProjPMap2 (f,x1)))))
<
+infty by
A25,
MESFUNC5:def 17;
hence (G1
. x)
<
+infty by
A24,
A27,
MESFUNC5: 88,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
<
+infty by
FUNCT_1:def 2;
end;
end;
now
let x be
object;
per cases ;
suppose
A28: x
in (
dom G1);
then
reconsider x1 = x as
Element of X2;
A29: (G1
. x)
= ((
Integral1 (M1,(
max+ f)))
. x) by
A21,
A28,
FUNCT_1: 49
.= (
Integral (M1,(
ProjPMap2 ((
max+ f),x1)))) by
MESFUN12:def 7
.= (
Integral (M1,(
max+ (
ProjPMap2 (f,x1))))) by
MESFUN12: 46;
(
ProjPMap2 (f,x1))
is_integrable_on M1 by
A14,
A21,
A28;
then
consider B be
Element of S1 such that
A30: B
= (
dom (
ProjPMap2 (f,x1))) & (
ProjPMap2 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max+ (
ProjPMap2 (f,x1)))) & (
max+ (
ProjPMap2 (f,x1))) is B
-measurable by
A30,
MESFUNC2:def 2,
MESFUN11: 10;
hence (G1
. x)
>
-infty by
A29,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then
A31: G1 is
without-infty
without+infty by
A22,
MESFUNC5:def 5,
MESFUNC5:def 6;
then
A32: (
dom G)
= ((
dom G1)
/\ (
dom G2)) by
MESFUN11: 23;
A33: ex A1 be
Element of S2 st A1
= (
dom G1) & G1 is A1
-measurable by
A12,
MESFUNC5:def 17;
A34: ex A2 be
Element of S2 st A2
= (
dom G2) & G2 is A2
-measurable by
A12,
MESFUNC5:def 17;
now
let x be
object;
per cases ;
suppose
A35: x
in (
dom G2);
then
reconsider x1 = x as
Element of X2;
A36: (G2
. x)
= ((
Integral1 (M1,(
max- f)))
. x) by
A21,
A35,
FUNCT_1: 49
.= (
Integral (M1,(
ProjPMap2 ((
max- f),x1)))) by
MESFUN12:def 7
.= (
Integral (M1,(
max- (
ProjPMap2 (f,x1))))) by
MESFUN12: 46;
(
ProjPMap2 (f,x1))
is_integrable_on M1 by
A14,
A21,
A35;
then
consider B be
Element of S1 such that
A37: B
= (
dom (
ProjPMap2 (f,x1))) & (
ProjPMap2 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max- (
ProjPMap2 (f,x1)))) & (
max- (
ProjPMap2 (f,x1))) is B
-measurable by
A37,
MESFUNC2:def 3,
MESFUN11: 10;
hence (G2
. x)
>
-infty by
A36,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G2);
hence (G2
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then G2 is
without-infty by
MESFUNC5:def 5;
then
A38: G is (SX2
\ V)
-measurable by
A11,
A21,
A31,
A32,
A33,
A34,
MEASUR11: 66;
A39: (
dom ((
Integral1 (M1,f))
| (V
` )))
= (V
` ) & (
dom (G
| (V
` )))
= (V
` ) & (
dom ((
Integral1 (M1,
|.f.|))
| (V
` )))
= (V
` ) by
A13,
A21,
A32,
RELAT_1: 62;
then
A40: (V
` )
= (
dom (
max+ ((
Integral1 (M1,f))
| (V
` )))) & (V
` )
= (
dom (
max- ((
Integral1 (M1,f))
| (V
` )))) by
MESFUNC2:def 2,
MESFUNC2:def 3;
A41:
now
let x be
Element of X2;
assume
A42: x
in (
dom ((
Integral1 (M1,f))
| (V
` )));
then
A43: x
in (V
` ) by
A13,
RELAT_1: 62;
then
A44: (((
Integral1 (M1,f))
| (V
` ))
. x)
= ((
Integral1 (M1,f))
. x) by
FUNCT_1: 49
.= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
(
Y-section (A,x))
= (
Measurable-Y-section (A,x)) by
MEASUR11:def 7;
then
B17: (
dom (
ProjPMap2 (
|.f.|,x)))
= (
Measurable-Y-section (A,x)) & (
dom (
ProjPMap2 (f,x)))
= (
Measurable-Y-section (A,x)) by
A5,
A6,
MESFUN12:def 4;
x
in (
dom G) by
A21,
A32,
A42,
RELAT_1: 57;
then ((G
| (V
` ))
. x)
= ((G1
. x)
- (G2
. x)) by
A21,
A32,
MESFUNC1:def 4
.= (((
Integral1 (M1,(
max+ f)))
. x)
- (G2
. x)) by
A43,
FUNCT_1: 49
.= (((
Integral1 (M1,(
max+ f)))
. x)
- ((
Integral1 (M1,(
max- f)))
. x)) by
A43,
FUNCT_1: 49
.= ((
Integral (M1,(
ProjPMap2 ((
max+ f),x))))
- ((
Integral1 (M1,(
max- f)))
. x)) by
MESFUN12:def 7
.= ((
Integral (M1,(
ProjPMap2 ((
max+ f),x))))
- (
Integral (M1,(
ProjPMap2 ((
max- f),x))))) by
MESFUN12:def 7
.= ((
Integral (M1,(
max+ (
ProjPMap2 (f,x)))))
- (
Integral (M1,(
ProjPMap2 ((
max- f),x))))) by
MESFUN12: 46
.= ((
Integral (M1,(
max+ (
ProjPMap2 (f,x)))))
- (
Integral (M1,(
max- (
ProjPMap2 (f,x)))))) by
MESFUN12: 46
.= (
Integral (M1,(
ProjPMap2 (f,x)))) by
A5,
B17,
MESFUN12: 47,
MESFUN11: 54;
hence (((
Integral1 (M1,f))
| (V
` ))
. x)
= ((G
| (V
` ))
. x) by
A44;
end;
hence (
Integral1 (M1,f)) is (SX2
\ V)
-measurable by
A11,
A13,
A21,
A32,
A38,
A39,
PARTFUN1: 5,
MESFUN12: 36;
((
Integral1 (M1,f))
| (V
` )) is (SX2
\ V)
-measurable by
A13,
A21,
A32,
A38,
A41,
RELAT_1: 62,
PARTFUN1: 5;
then
A45: (
max+ ((
Integral1 (M1,f))
| (V
` ))) is (SX2
\ V)
-measurable & (
max- ((
Integral1 (M1,f))
| (V
` ))) is (SX2
\ V)
-measurable by
A11,
A39,
MESFUNC2: 25,
MESFUNC2: 26;
now
let y be
set;
assume y
in (
rng ((
Integral1 (M1,f))
| (V
` )));
then
consider x be
Element of X2 such that
A47: x
in (
dom ((
Integral1 (M1,f))
| (V
` ))) & y
= (((
Integral1 (M1,f))
| (V
` ))
. x) by
PARTFUN1: 3;
A48: x
in (
dom (
Integral1 (M1,f))) & x
in (V
` ) by
A47,
RELAT_1: 57;
then x
in (
dom ((
Integral1 (M1,
|.f.|))
| (V
` ))) by
A13,
RELAT_1: 57;
then
A49: (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x)
<
+infty by
A10,
PARTFUN1: 4,
XXREAL_0: 9;
((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,
|.(
ProjPMap2 (f,x)).|)) by
A14,
A48,
MESFUNC5: 101;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
Th27;
then
|.((
Integral1 (M1,f))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x) by
A48,
FUNCT_1: 49;
then
|.(((
Integral1 (M1,f))
| (V
` ))
. x).|
<= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x) by
A47,
FUNCT_1: 47;
then
|.(((
Integral1 (M1,f))
| (V
` ))
. x).|
<
+infty by
A49,
XXREAL_0: 2;
hence y
in
REAL by
A47,
EXTREAL1: 41;
end;
then
A50: (
rng ((
Integral1 (M1,f))
| (V
` )))
c=
REAL ;
now
let x be
Element of X2;
assume
A51: x
in (
dom (
max+ ((
Integral1 (M1,f))
| (V
` ))));
then
A52: x
in (
dom (
Integral1 (M1,f))) & x
in (V
` ) by
A13,
A39,
MESFUNC2:def 2;
then
A53: x
in (
dom (
max+ (
Integral1 (M1,f)))) by
MESFUNC2:def 2;
A54: x
in (
dom
|.(
Integral1 (M1,f)).|) by
A52,
MESFUNC1:def 10;
((
max+ ((
Integral1 (M1,f))
| (V
` )))
. x)
= (
max ((((
Integral1 (M1,f))
| (V
` ))
. x),
0 )) by
A51,
MESFUNC2:def 2
.= (
max (((
Integral1 (M1,f))
. x),
0 )) by
A39,
A40,
A51,
FUNCT_1: 47
.= ((
max+ (
Integral1 (M1,f)))
. x) by
A53,
MESFUNC2:def 2;
then ((
max+ ((
Integral1 (M1,f))
| (V
` )))
. x)
<= (
|.(
Integral1 (M1,f)).|
. x) by
Th29;
then ((
max+ ((
Integral1 (M1,f))
| (V
` )))
. x)
<=
|.((
Integral1 (M1,f))
. x).| by
A54,
MESFUNC1:def 10;
then
A55:
|.((
max+ ((
Integral1 (M1,f))
| (V
` )))
. x).|
<=
|.((
Integral1 (M1,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 12;
((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,
|.(
ProjPMap2 (f,x)).|)) by
A14,
A40,
A51,
MESFUNC5: 101;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
Th27;
then
|.((
Integral1 (M1,f))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x) by
A40,
A51,
FUNCT_1: 49;
hence
|.((
max+ ((
Integral1 (M1,f))
| (V
` )))
. x).|
<= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x) by
A55,
XXREAL_0: 2;
end;
then
A56: (
max+ ((
Integral1 (M1,f))
| (V
` )))
is_integrable_on M2 by
A11,
A12,
A39,
A45,
A40,
MESFUNC5: 102;
now
let x be
Element of X2;
assume
A57: x
in (
dom (
max- ((
Integral1 (M1,f))
| (V
` ))));
then
A58: x
in (
dom (
Integral1 (M1,f))) & x
in (V
` ) by
A13,
A39,
MESFUNC2:def 3;
then
A59: x
in (
dom (
max- (
Integral1 (M1,f)))) by
MESFUNC2:def 3;
A60: x
in (
dom
|.(
Integral1 (M1,f)).|) by
A58,
MESFUNC1:def 10;
((
max- ((
Integral1 (M1,f))
| (V
` )))
. x)
= (
max ((
- (((
Integral1 (M1,f))
| (V
` ))
. x)),
0 )) by
A57,
MESFUNC2:def 3
.= (
max ((
- ((
Integral1 (M1,f))
. x)),
0 )) by
A39,
A40,
A57,
FUNCT_1: 47
.= ((
max- (
Integral1 (M1,f)))
. x) by
A59,
MESFUNC2:def 3;
then ((
max- ((
Integral1 (M1,f))
| (V
` )))
. x)
<= (
|.(
Integral1 (M1,f)).|
. x) by
Th29;
then ((
max- ((
Integral1 (M1,f))
| (V
` )))
. x)
<=
|.((
Integral1 (M1,f))
. x).| by
A60,
MESFUNC1:def 10;
then
A61:
|.((
max- ((
Integral1 (M1,f))
| (V
` )))
. x).|
<=
|.((
Integral1 (M1,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 13;
((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,
|.(
ProjPMap2 (f,x)).|)) by
A14,
A40,
A57,
MESFUNC5: 101;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
Th27;
then
|.((
Integral1 (M1,f))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x) by
A40,
A57,
FUNCT_1: 49;
hence
|.((
max- ((
Integral1 (M1,f))
| (V
` )))
. x).|
<= (((
Integral1 (M1,
|.f.|))
| (V
` ))
. x) by
A61,
XXREAL_0: 2;
end;
then (
max- ((
Integral1 (M1,f))
| (V
` )))
is_integrable_on M2 by
A11,
A12,
A39,
A45,
A40,
MESFUNC5: 102;
then ((
max+ ((
Integral1 (M1,f))
| (V
` )))
- (
max- ((
Integral1 (M1,f))
| (V
` ))))
is_integrable_on M2 by
A56,
MESFUN10: 12;
hence
A62: ((
Integral1 (M1,f))
| (V
` ))
is_integrable_on M2 by
MESFUNC2: 23;
reconsider F = ((
Integral1 (M1,f))
| (V
` )) as
PartFunc of X2,
REAL by
A50,
RELSET_1: 6;
(
R_EAL F)
is_integrable_on M2 by
A62,
MESFUNC5:def 7;
then F
is_integrable_on M2 by
MESFUNC6:def 4;
then F
in { f where f be
PartFunc of X2,
REAL : ex ND be
Element of S2 st (M2
. ND)
=
0 & (
dom f)
= (ND
` ) & f
is_integrable_on M2 } by
A10,
A39;
hence ((
Integral1 (M1,f))
| (V
` ))
in (
L1_Functions M2) by
LPSPACE1:def 8;
consider g1 be
PartFunc of X2,
ExtREAL such that
A64: (
dom g1)
= (
dom (
Integral1 (M1,(
max+ f)))) & (g1
| (V
` ))
= ((
Integral1 (M1,(
max+ f)))
| (V
` )) & g1
is_integrable_on M2 & (
Integral (M2,g1))
= (
Integral (M2,((
Integral1 (M1,(
max+ f)))
| (V
` )))) by
A8,
A10,
A11,
A13,
Th23,
MESFUNC5: 97;
consider g2 be
PartFunc of X2,
ExtREAL such that
A65: (
dom g2)
= (
dom (
Integral1 (M1,(
max- f)))) & (g2
| (V
` ))
= ((
Integral1 (M1,(
max- f)))
| (V
` )) & g2
is_integrable_on M2 & (
Integral (M2,g2))
= (
Integral (M2,((
Integral1 (M1,(
max- f)))
| (V
` )))) by
A8,
A10,
A11,
A13,
Th23,
MESFUNC5: 97;
consider g be
PartFunc of X2,
ExtREAL such that
A66: (
dom g)
= (
dom (
Integral1 (M1,f))) & (g
| (V
` ))
= ((
Integral1 (M1,f))
| (V
` )) & g
is_integrable_on M2 & (
Integral (M2,g))
= (
Integral (M2,((
Integral1 (M1,f))
| (V
` )))) by
A10,
A13,
A62,
Th23;
reconsider g as
Function of X2,
ExtREAL by
A13,
A66,
FUNCT_2:def 1;
A67: (
dom (g
| (V
` )))
= ((
dom g)
/\ (V
` )) & (
dom (g1
| (V
` )))
= ((
dom g1)
/\ (V
` )) & (
dom (g2
| (V
` )))
= ((
dom g2)
/\ (V
` )) by
RELAT_1: 61;
now
let x be
Element of X2;
assume
A72: x
in (
dom (g2
| (V
` )));
then
A68: x
in (V
` ) by
RELAT_1: 57;
A69: (
ProjPMap2 (f,x))
is_integrable_on M1 by
A14,
A72,
RELAT_1: 57;
then
consider DP be
Element of S1 such that
A70: DP
= (
dom (
ProjPMap2 (f,x))) & (
ProjPMap2 (f,x)) is DP
-measurable by
MESFUNC5:def 17;
A71: DP
= (
dom (
max- (
ProjPMap2 (f,x)))) & (
max- (
ProjPMap2 (f,x))) is DP
-measurable by
A70,
MESFUNC2:def 3,
MESFUNC2: 26;
A73: (
max- (
ProjPMap2 (f,x))) is
nonnegative by
MESFUN11: 5;
A74: ((g2
| (V
` ))
. x)
= ((
Integral1 (M1,(
max- f)))
. x) by
A65,
A68,
FUNCT_1: 49
.= (
Integral (M1,(
ProjPMap2 ((
max- f),x)))) by
MESFUN12:def 7
.= (
Integral (M1,(
max- (
ProjPMap2 (f,x))))) by
MESFUN12: 46
.= (
integral+ (M1,(
max- (
ProjPMap2 (f,x))))) by
A71,
MESFUNC5: 88,
MESFUN11: 5;
then ((g2
| (V
` ))
. x)
<
+infty by
A69,
MESFUNC5:def 17;
hence
|.((g2
| (V
` ))
. x).|
<
+infty by
A71,
A73,
A74,
MESFUNC5: 79,
EXTREAL1:def 1;
end;
then (g2
| (V
` )) is
real-valued by
MESFUNC2:def 1;
then
A75: (
dom ((g1
| (V
` ))
- (g2
| (V
` ))))
= (((
dom g1)
/\ (V
` ))
/\ ((
dom g2)
/\ (V
` ))) by
A67,
MESFUNC2: 2;
then
A76: (
dom ((g1
| (V
` ))
- (g2
| (V
` ))))
= (
dom (g
| (V
` ))) by
A13,
A64,
A65,
A66,
RELAT_1: 61;
(
dom (g1
| (V
` )))
= (V
` ) & (
dom (g2
| (V
` )))
= (V
` ) by
A13,
A64,
A65,
RELAT_1: 62;
then
A77: (V
` )
= ((
dom (g1
| (V
` )))
/\ (
dom (g2
| (V
` ))));
A78: (g1
| (V
` ))
is_integrable_on M2 & (g2
| (V
` ))
is_integrable_on M2 by
A11,
A64,
A65,
MESFUNC5: 97;
now
let x be
Element of X2;
assume
A79: x
in (
dom (g
| (V
` )));
then
A80: x
in (V
` ) by
RELAT_1: 57;
then
A81: ((g
| (V
` ))
. x)
= ((
Integral1 (M1,f))
. x) by
A66,
FUNCT_1: 49;
(
ProjPMap2 (f,x))
is_integrable_on M1 by
A14,
A79,
RELAT_1: 57;
then
A82: ex A be
Element of S1 st A
= (
dom (
ProjPMap2 (f,x))) & (
ProjPMap2 (f,x)) is A
-measurable by
MESFUNC5:def 17;
((
Integral1 (M1,(
max+ f)))
. x)
= (
Integral (M1,(
ProjPMap2 ((
max+ f),x)))) & ((
Integral1 (M1,(
max- f)))
. x)
= (
Integral (M1,(
ProjPMap2 ((
max- f),x)))) by
MESFUN12:def 7;
then ((
Integral1 (M1,(
max+ f)))
. x)
= (
Integral (M1,(
max+ (
ProjPMap2 (f,x))))) & ((
Integral1 (M1,(
max- f)))
. x)
= (
Integral (M1,(
max- (
ProjPMap2 (f,x))))) by
MESFUN12: 46;
then (((
Integral1 (M1,(
max+ f)))
. x)
- ((
Integral1 (M1,(
max- f)))
. x))
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
A82,
MESFUN11: 54
.= ((
Integral1 (M1,f))
. x) by
MESFUN12:def 7;
then ((g
| (V
` ))
. x)
= ((((
Integral1 (M1,(
max+ f)))
| (V
` ))
. x)
- ((
Integral1 (M1,(
max- f)))
. x)) by
A80,
A81,
FUNCT_1: 49
.= (((g1
| (V
` ))
. x)
- ((g2
| (V
` ))
. x)) by
A64,
A65,
A80,
FUNCT_1: 49;
hence ((g
| (V
` ))
. x)
= (((g1
| (V
` ))
- (g2
| (V
` )))
. x) by
A76,
A79,
MESFUNC1:def 4;
end;
then
A83: (g
| (V
` ))
= ((g1
| (V
` ))
- (g2
| (V
` ))) by
A13,
A64,
A65,
A66,
A75,
RELAT_1: 61,
PARTFUN1: 5;
A84: (
Integral1 (M1,(
max+ f))) is SX2
-measurable & (
Integral1 (M1,(
max- f))) is SX2
-measurable by
A1,
A6,
A7,
MESFUN11: 5,
MESFUN12: 59;
A85: (
Integral ((
Prod_Measure (M1,M2)),(
max+ f)))
= (
Integral (M2,(
Integral1 (M1,(
max+ f))))) by
A1,
A2,
A6,
A7,
A9,
MESFUN12: 84
.= (
Integral (M2,((
Integral1 (M1,(
max+ f)))
| (SX2
\ V)))) by
A4,
A10,
A13,
A84,
MESFUNC5: 95
.= (
Integral (M2,(g1
| (V
` )))) by
A4,
A64,
SUBSET_1:def 4;
A86: (
Integral ((
Prod_Measure (M1,M2)),(
max- f)))
= (
Integral (M2,(
Integral1 (M1,(
max- f))))) by
A1,
A2,
A6,
A7,
A9,
MESFUN12: 84
.= (
Integral (M2,((
Integral1 (M1,(
max- f)))
| (SX2
\ V)))) by
A4,
A10,
A13,
A84,
MESFUNC5: 95
.= (
Integral (M2,(g2
| (V
` )))) by
A4,
A65,
SUBSET_1:def 4;
(
Integral ((
Prod_Measure (M1,M2)),f))
= ((
Integral (M2,((g1
| (V
` ))
| (V
` ))))
- (
Integral (M2,((g2
| (V
` ))
| (V
` ))))) by
A5,
A85,
A86,
MESFUN11: 54;
then (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M2,(g
| (V
` )))) by
A77,
A78,
A83,
Th21;
hence thesis by
A66;
end;
theorem ::
MESFUN13:32
for X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) & (for x be
Element of X1 holds ((
Integral2 (M2,
|.f.|))
. x)
<
+infty ) holds (for x be
Element of X1 holds (
ProjPMap1 (f,x))
is_integrable_on M2) & (for U be
Element of S1 holds (
Integral2 (M2,f)) is U
-measurable) & (
Integral2 (M2,f))
is_integrable_on M1 & (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M1,(
Integral2 (M2,f)))) & (
Integral2 (M2,f))
in (
L1_Functions M1)
proof
let X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2)) and
A4: for x be
Element of X1 holds ((
Integral2 (M2,
|.f.|))
. x)
<
+infty ;
reconsider XX1 = X1 as
Element of S1 by
MEASURE1: 7;
consider A be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A5: A
= (
dom f) & f is A
-measurable by
A3,
MESFUNC5:def 17;
A6: A
= (
dom
|.f.|) by
A5,
MESFUNC1:def 10;
A7:
now
let x be
Element of X1;
(
X-section (A,x))
= (
Measurable-X-section (A,x)) by
MEASUR11:def 6;
then
A8: (
dom (
ProjPMap1 (
|.f.|,x)))
= (
Measurable-X-section (A,x)) by
A6,
MESFUN12:def 3;
A9:
|.f.| is A
-measurable by
A5,
MESFUNC2: 27;
then
A10: (
ProjPMap1 (
|.f.|,x)) is (
Measurable-X-section (A,x))
-measurable by
A6,
MESFUN12: 47;
A11: (
ProjPMap1 (
|.f.|,x))
=
|.(
ProjPMap1 (f,x)).| by
Th27;
then (
integral+ (M2,(
max+ (
ProjPMap1 (
|.f.|,x)))))
= (
integral+ (M2,(
ProjPMap1 (
|.f.|,x)))) by
MESFUN11: 31
.= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
A6,
A8,
A9,
A11,
MESFUNC5: 88,
MESFUN12: 47
.= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
then
A12: (
integral+ (M2,(
max+ (
ProjPMap1 (
|.f.|,x)))))
<
+infty by
A4;
(
integral+ (M2,(
max- (
ProjPMap1 (
|.f.|,x)))))
=
0 by
A8,
A10,
A11,
MESFUN11: 53;
then
A13: (
ProjPMap1 (
|.f.|,x))
is_integrable_on M2 by
A6,
A8,
A9,
A12,
MESFUNC5:def 17,
MESFUN12: 47;
A14: (
dom (
ProjPMap1 (f,x)))
= (
Measurable-X-section (A,x)) by
A8,
A11,
MESFUNC1:def 10;
(
ProjPMap1 (f,x)) is (
Measurable-X-section (A,x))
-measurable by
A5,
MESFUN12: 47;
hence (
ProjPMap1 (f,x))
is_integrable_on M2 by
A11,
A13,
A14,
MESFUNC5: 100;
end;
hence for x be
Element of X1 holds (
ProjPMap1 (f,x))
is_integrable_on M2;
set G1 = (
Integral2 (M2,(
max+ f)));
set G2 = (
Integral2 (M2,(
max- f)));
set G = (G1
- G2);
A15: (
dom G1)
= X1 & (
dom G2)
= X1 & (
dom (
Integral2 (M2,f)))
= X1 & (
dom (
Integral2 (M2,
|.f.|)))
= X1 by
FUNCT_2:def 1;
A16:
now
let x be
object;
per cases ;
suppose x
in (
dom G1);
then
reconsider x1 = x as
Element of X1;
(G1
. x)
= (
Integral (M2,(
ProjPMap1 ((
max+ f),x1)))) by
MESFUN12:def 8;
then
A17: (G1
. x)
= (
Integral (M2,(
max+ (
ProjPMap1 (f,x1))))) by
MESFUN12: 45;
A18: (
ProjPMap1 (f,x1))
is_integrable_on M2 by
A7;
then
consider B be
Element of S2 such that
A19: B
= (
dom (
ProjPMap1 (f,x1))) & (
ProjPMap1 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
A20: B
= (
dom (
max+ (
ProjPMap1 (f,x1)))) & (
max+ (
ProjPMap1 (f,x1))) is B
-measurable by
A19,
MESFUNC2:def 2,
MESFUN11: 10;
(
integral+ (M2,(
max+ (
ProjPMap1 (f,x1)))))
<
+infty by
A18,
MESFUNC5:def 17;
hence (G1
. x)
<
+infty by
A17,
A20,
MESFUNC5: 88,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
<
+infty by
FUNCT_1:def 2;
end;
end;
now
let x be
object;
per cases ;
suppose x
in (
dom G1);
then
reconsider x1 = x as
Element of X1;
(G1
. x)
= (
Integral (M2,(
ProjPMap1 ((
max+ f),x1)))) by
MESFUN12:def 8;
then
A21: (G1
. x)
= (
Integral (M2,(
max+ (
ProjPMap1 (f,x1))))) by
MESFUN12: 45;
(
ProjPMap1 (f,x1))
is_integrable_on M2 by
A7;
then
consider B be
Element of S2 such that
A22: B
= (
dom (
ProjPMap1 (f,x1))) & (
ProjPMap1 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max+ (
ProjPMap1 (f,x1)))) & (
max+ (
ProjPMap1 (f,x1))) is B
-measurable by
A22,
MESFUNC2:def 2,
MESFUN11: 10;
hence (G1
. x)
>
-infty by
A21,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then
A23: G1 is
without-infty
without+infty by
A16,
MESFUNC5:def 5,
MESFUNC5:def 6;
then
A24: (
dom G)
= ((
dom G1)
/\ (
dom G2)) by
MESFUN11: 23;
TT: (
Integral2 (M2,(
max+ f)))
is_integrable_on M1 & (
Integral2 (M2,(
max- f)))
is_integrable_on M1 by
A1,
A2,
A3,
Th20;
then
A25: ex A1 be
Element of S1 st A1
= (
dom (
Integral2 (M2,(
max+ f)))) & (
Integral2 (M2,(
max+ f))) is A1
-measurable by
MESFUNC5:def 17;
A26: ex A2 be
Element of S1 st A2
= (
dom (
Integral2 (M2,(
max- f)))) & (
Integral2 (M2,(
max- f))) is A2
-measurable by
TT,
MESFUNC5:def 17;
now
let x be
object;
per cases ;
suppose x
in (
dom G2);
then
reconsider x1 = x as
Element of X1;
(G2
. x)
= (
Integral (M2,(
ProjPMap1 ((
max- f),x1)))) by
MESFUN12:def 8;
then
A27: (G2
. x)
= (
Integral (M2,(
max- (
ProjPMap1 (f,x1))))) by
MESFUN12: 45;
(
ProjPMap1 (f,x1))
is_integrable_on M2 by
A7;
then
consider B be
Element of S2 such that
A28: B
= (
dom (
ProjPMap1 (f,x1))) & (
ProjPMap1 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max- (
ProjPMap1 (f,x1)))) & (
max- (
ProjPMap1 (f,x1))) is B
-measurable by
A28,
MESFUNC2:def 3,
MESFUN11: 10;
hence (G2
. x)
>
-infty by
A27,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G2);
hence (G2
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then G2 is
without-infty by
MESFUNC5:def 5;
then
A29: G is XX1
-measurable by
A15,
A23,
A24,
A25,
A26,
MEASUR11: 66;
now
let x be
Element of X1;
assume x
in (
dom (
Integral2 (M2,f)));
A30: ((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
(
ProjPMap1 (f,x))
is_integrable_on M2 by
A7;
then
B30: ex A be
Element of S2 st A
= (
dom (
ProjPMap1 (f,x))) & (
ProjPMap1 (f,x)) is A
-measurable by
MESFUNC5:def 17;
(G
. x)
= ((G1
. x)
- (G2
. x)) by
A15,
A24,
MESFUNC1:def 4
.= ((
Integral (M2,(
ProjPMap1 ((
max+ f),x))))
- ((
Integral2 (M2,(
max- f)))
. x)) by
MESFUN12:def 8
.= ((
Integral (M2,(
ProjPMap1 ((
max+ f),x))))
- (
Integral (M2,(
ProjPMap1 ((
max- f),x))))) by
MESFUN12:def 8
.= ((
Integral (M2,(
max+ (
ProjPMap1 (f,x)))))
- (
Integral (M2,(
ProjPMap1 ((
max- f),x))))) by
MESFUN12: 45
.= ((
Integral (M2,(
max+ (
ProjPMap1 (f,x)))))
- (
Integral (M2,(
max- (
ProjPMap1 (f,x)))))) by
MESFUN12: 45;
hence (G
. x)
= ((
Integral2 (M2,f))
. x) by
A30,
B30,
MESFUN11: 54;
end;
then
A31: (
Integral2 (M2,f))
= G by
A15,
A24,
PARTFUN1: 5;
hence for U be
Element of S1 holds (
Integral2 (M2,f)) is U
-measurable by
A29,
MESFUNC1: 30;
A32: X1
= (
dom (
max+ (
Integral2 (M2,f)))) & X1
= (
dom (
max- (
Integral2 (M2,f)))) by
A15,
MESFUNC2:def 2,
MESFUNC2:def 3;
A33: (
max+ (
Integral2 (M2,f))) is XX1
-measurable & (
max- (
Integral2 (M2,f))) is XX1
-measurable by
A15,
A29,
A31,
MESFUNC2: 25,
MESFUNC2: 26;
A34: (
Integral2 (M2,
|.f.|))
is_integrable_on M1 by
A1,
A2,
A3,
Th20;
now
let x be
Element of X1;
assume x
in (
dom (
max+ (
Integral2 (M2,f))));
then
A35: x
in (
dom
|.(
Integral2 (M2,f)).|) by
A15,
A32,
MESFUNC1:def 10;
((
max+ (
Integral2 (M2,f)))
. x)
<= (
|.(
Integral2 (M2,f)).|
. x) by
Th29;
then ((
max+ (
Integral2 (M2,f)))
. x)
<=
|.((
Integral2 (M2,f))
. x).| by
A35,
MESFUNC1:def 10;
then
A36:
|.((
max+ (
Integral2 (M2,f)))
. x).|
<=
|.((
Integral2 (M2,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 12;
((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,
|.(
ProjPMap1 (f,x)).|)) by
A7,
MESFUNC5: 101;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
Th27;
then
|.((
Integral2 (M2,f))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
hence
|.((
max+ (
Integral2 (M2,f)))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
A36,
XXREAL_0: 2;
end;
then
A37: (
max+ (
Integral2 (M2,f)))
is_integrable_on M1 by
A15,
A32,
A33,
A34,
MESFUNC5: 102;
now
let x be
Element of X1;
assume x
in (
dom (
max- (
Integral2 (M2,f))));
then
A38: x
in (
dom
|.(
Integral2 (M2,f)).|) by
A15,
A32,
MESFUNC1:def 10;
((
max- (
Integral2 (M2,f)))
. x)
<= (
|.(
Integral2 (M2,f)).|
. x) by
Th29;
then ((
max- (
Integral2 (M2,f)))
. x)
<=
|.((
Integral2 (M2,f))
. x).| by
A38,
MESFUNC1:def 10;
then
A39:
|.((
max- (
Integral2 (M2,f)))
. x).|
<=
|.((
Integral2 (M2,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 13;
((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,
|.(
ProjPMap1 (f,x)).|)) by
A7,
MESFUNC5: 101;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
Th27;
then
|.((
Integral2 (M2,f))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
hence
|.((
max- (
Integral2 (M2,f)))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
A39,
XXREAL_0: 2;
end;
then (
max- (
Integral2 (M2,f)))
is_integrable_on M1 by
A15,
A32,
A33,
A34,
MESFUNC5: 102;
then ((
max+ (
Integral2 (M2,f)))
- (
max- (
Integral2 (M2,f))))
is_integrable_on M1 by
A37,
MESFUN10: 12;
hence
A40: (
Integral2 (M2,f))
is_integrable_on M1 by
MESFUNC2: 23;
A41: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
A42: (
dom (
max+ f))
= A & (
dom (
max- f))
= A by
A5,
MESFUNC2:def 2,
MESFUNC2:def 3;
A43: (
max+ f) is A
-measurable & (
max- f) is A
-measurable by
A5,
MESFUNC2: 25,
MESFUNC2: 26;
then
A44: (
Integral ((
Prod_Measure (M1,M2)),(
max- f)))
= (
Integral (M1,G2)) by
A1,
A2,
A41,
A42,
MESFUN12: 84;
(
Integral ((
Prod_Measure (M1,M2)),f))
= ((
Integral ((
Prod_Measure (M1,M2)),(
max+ f)))
- (
Integral ((
Prod_Measure (M1,M2)),(
max- f)))) by
A5,
MESFUN11: 54
.= ((
Integral (M1,(G1
| XX1)))
- (
Integral (M1,(G2
| XX1)))) by
A1,
A2,
A41,
A42,
A43,
A44,
MESFUN12: 84;
hence (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M1,(
Integral2 (M2,f)))) by
A15,
A24,
A31,
TT,
Th21;
now
let y be
set;
assume y
in (
rng (
Integral2 (M2,f)));
then
consider x be
Element of X1 such that
A45: x
in (
dom (
Integral2 (M2,f))) & y
= ((
Integral2 (M2,f))
. x) by
PARTFUN1: 3;
((
Integral2 (M2,f))
. x)
= (
Integral (M2,(
ProjPMap1 (f,x)))) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,
|.(
ProjPMap1 (f,x)).|)) by
A7,
MESFUNC5: 101;
then
|.((
Integral2 (M2,f))
. x).|
<= (
Integral (M2,(
ProjPMap1 (
|.f.|,x)))) by
Th27;
then
|.((
Integral2 (M2,f))
. x).|
<= ((
Integral2 (M2,
|.f.|))
. x) by
MESFUN12:def 8;
then
|.((
Integral2 (M2,f))
. x).|
<
+infty by
A4,
XXREAL_0: 2;
hence y
in
REAL by
A45,
EXTREAL1: 41;
end;
then (
rng (
Integral2 (M2,f)))
c=
REAL ;
then
reconsider F = (
Integral2 (M2,f)) as
PartFunc of X1,
REAL by
RELSET_1: 6;
reconsider ND =
{} as
Element of S1 by
MEASURE1: 7;
A46: (M1
. ND)
=
0 by
VALUED_0:def 19;
(ND
` )
= (X1
\
{} ) by
SUBSET_1:def 4
.= X1;
then
A47: (
dom F)
= (ND
` ) by
FUNCT_2:def 1;
(
R_EAL F)
is_integrable_on M1 by
A40,
MESFUNC5:def 7;
then F
is_integrable_on M1 by
MESFUNC6:def 4;
then F
in { f where f be
PartFunc of X1,
REAL : ex ND be
Element of S1 st (M1
. ND)
=
0 & (
dom f)
= (ND
` ) & f
is_integrable_on M1 } by
A46,
A47;
hence (
Integral2 (M2,f))
in (
L1_Functions M1) by
LPSPACE1:def 8;
end;
theorem ::
MESFUN13:33
for X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL st M1 is
sigma_finite & M2 is
sigma_finite & f
is_integrable_on (
Prod_Measure (M1,M2)) & (for y be
Element of X2 holds ((
Integral1 (M1,
|.f.|))
. y)
<
+infty ) holds (for y be
Element of X2 holds (
ProjPMap2 (f,y))
is_integrable_on M1) & (for V be
Element of S2 holds (
Integral1 (M1,f)) is V
-measurable) & (
Integral1 (M1,f))
is_integrable_on M2 & (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M2,(
Integral1 (M1,f)))) & (
Integral1 (M1,f))
in (
L1_Functions M2)
proof
let X1,X2 be non
empty
set, S1 be
SigmaField of X1, S2 be
SigmaField of X2, M1 be
sigma_Measure of S1, M2 be
sigma_Measure of S2, f be
PartFunc of
[:X1, X2:],
ExtREAL ;
assume that
A1: M1 is
sigma_finite and
A2: M2 is
sigma_finite and
A3: f
is_integrable_on (
Prod_Measure (M1,M2)) and
A4: for y be
Element of X2 holds ((
Integral1 (M1,
|.f.|))
. y)
<
+infty ;
reconsider XX2 = X2 as
Element of S2 by
MEASURE1: 7;
consider A be
Element of (
sigma (
measurable_rectangles (S1,S2))) such that
A5: A
= (
dom f) & f is A
-measurable by
A3,
MESFUNC5:def 17;
A6: A
= (
dom
|.f.|) by
A5,
MESFUNC1:def 10;
A7:
now
let x be
Element of X2;
(
Y-section (A,x))
= (
Measurable-Y-section (A,x)) by
MEASUR11:def 7;
then
A8: (
dom (
ProjPMap2 (
|.f.|,x)))
= (
Measurable-Y-section (A,x)) by
A6,
MESFUN12:def 4;
A9:
|.f.| is A
-measurable by
A5,
MESFUNC2: 27;
then
A10: (
ProjPMap2 (
|.f.|,x)) is (
Measurable-Y-section (A,x))
-measurable by
A6,
MESFUN12: 47;
A11: (
ProjPMap2 (
|.f.|,x))
=
|.(
ProjPMap2 (f,x)).| by
Th27;
then (
integral+ (M1,(
max+ (
ProjPMap2 (
|.f.|,x)))))
= (
integral+ (M1,(
ProjPMap2 (
|.f.|,x)))) by
MESFUN11: 31
.= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
A6,
A8,
A9,
A11,
MESFUNC5: 88,
MESFUN12: 47
.= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
then
A12: (
integral+ (M1,(
max+ (
ProjPMap2 (
|.f.|,x)))))
<
+infty by
A4;
(
integral+ (M1,(
max- (
ProjPMap2 (
|.f.|,x)))))
=
0 by
A8,
A10,
A11,
MESFUN11: 53;
then
A13: (
ProjPMap2 (
|.f.|,x))
is_integrable_on M1 by
A6,
A8,
A9,
A12,
MESFUNC5:def 17,
MESFUN12: 47;
A14: (
dom (
ProjPMap2 (f,x)))
= (
Measurable-Y-section (A,x)) by
A8,
A11,
MESFUNC1:def 10;
(
ProjPMap2 (f,x)) is (
Measurable-Y-section (A,x))
-measurable by
A5,
MESFUN12: 47;
hence (
ProjPMap2 (f,x))
is_integrable_on M1 by
A11,
A13,
A14,
MESFUNC5: 100;
end;
hence for x be
Element of X2 holds (
ProjPMap2 (f,x))
is_integrable_on M1;
set G1 = (
Integral1 (M1,(
max+ f)));
set G2 = (
Integral1 (M1,(
max- f)));
set G = (G1
- G2);
A15: (
dom G1)
= X2 & (
dom G2)
= X2 & (
dom (
Integral1 (M1,f)))
= X2 & (
dom (
Integral1 (M1,
|.f.|)))
= X2 by
FUNCT_2:def 1;
A16:
now
let x be
object;
per cases ;
suppose x
in (
dom G1);
then
reconsider x1 = x as
Element of X2;
(G1
. x)
= (
Integral (M1,(
ProjPMap2 ((
max+ f),x1)))) by
MESFUN12:def 7;
then
A17: (G1
. x)
= (
Integral (M1,(
max+ (
ProjPMap2 (f,x1))))) by
MESFUN12: 46;
A18: (
ProjPMap2 (f,x1))
is_integrable_on M1 by
A7;
then
consider B be
Element of S1 such that
A19: B
= (
dom (
ProjPMap2 (f,x1))) & (
ProjPMap2 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
A20: B
= (
dom (
max+ (
ProjPMap2 (f,x1)))) & (
max+ (
ProjPMap2 (f,x1))) is B
-measurable by
A19,
MESFUNC2:def 2,
MESFUN11: 10;
(
integral+ (M1,(
max+ (
ProjPMap2 (f,x1)))))
<
+infty by
A18,
MESFUNC5:def 17;
hence (G1
. x)
<
+infty by
A17,
A20,
MESFUNC5: 88,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
<
+infty by
FUNCT_1:def 2;
end;
end;
now
let x be
object;
per cases ;
suppose x
in (
dom G1);
then
reconsider x1 = x as
Element of X2;
(G1
. x)
= (
Integral (M1,(
ProjPMap2 ((
max+ f),x1)))) by
MESFUN12:def 7;
then
A21: (G1
. x)
= (
Integral (M1,(
max+ (
ProjPMap2 (f,x1))))) by
MESFUN12: 46;
(
ProjPMap2 (f,x1))
is_integrable_on M1 by
A7;
then
consider B be
Element of S1 such that
A22: B
= (
dom (
ProjPMap2 (f,x1))) & (
ProjPMap2 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max+ (
ProjPMap2 (f,x1)))) & (
max+ (
ProjPMap2 (f,x1))) is B
-measurable by
A22,
MESFUNC2:def 2,
MESFUN11: 10;
hence (G1
. x)
>
-infty by
A21,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G1);
hence (G1
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then
A23: G1 is
without-infty
without+infty by
A16,
MESFUNC5:def 5,
MESFUNC5:def 6;
then
A24: (
dom G)
= ((
dom G1)
/\ (
dom G2)) by
MESFUN11: 23;
TT: (
Integral1 (M1,(
max+ f)))
is_integrable_on M2 & (
Integral1 (M1,(
max- f)))
is_integrable_on M2 by
A1,
A2,
A3,
Th20;
then
A25: ex A1 be
Element of S2 st A1
= (
dom (
Integral1 (M1,(
max+ f)))) & (
Integral1 (M1,(
max+ f))) is A1
-measurable by
MESFUNC5:def 17;
A26: ex A2 be
Element of S2 st A2
= (
dom (
Integral1 (M1,(
max- f)))) & (
Integral1 (M1,(
max- f))) is A2
-measurable by
TT,
MESFUNC5:def 17;
now
let x be
object;
per cases ;
suppose x
in (
dom G2);
then
reconsider x1 = x as
Element of X2;
(G2
. x)
= (
Integral (M1,(
ProjPMap2 ((
max- f),x1)))) by
MESFUN12:def 7;
then
A27: (G2
. x)
= (
Integral (M1,(
max- (
ProjPMap2 (f,x1))))) by
MESFUN12: 46;
(
ProjPMap2 (f,x1))
is_integrable_on M1 by
A7;
then
consider B be
Element of S1 such that
A28: B
= (
dom (
ProjPMap2 (f,x1))) & (
ProjPMap2 (f,x1)) is B
-measurable by
MESFUNC5:def 17;
B
= (
dom (
max- (
ProjPMap2 (f,x1)))) & (
max- (
ProjPMap2 (f,x1))) is B
-measurable by
A28,
MESFUNC2:def 3,
MESFUN11: 10;
hence (G2
. x)
>
-infty by
A27,
MESFUNC5: 90,
MESFUN11: 5;
end;
suppose not x
in (
dom G2);
hence (G2
. x)
>
-infty by
FUNCT_1:def 2;
end;
end;
then G2 is
without-infty by
MESFUNC5:def 5;
then
A29: G is XX2
-measurable by
A15,
A23,
A24,
A25,
A26,
MEASUR11: 66;
now
let x be
Element of X2;
assume x
in (
dom (
Integral1 (M1,f)));
A30: ((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
(
ProjPMap2 (f,x))
is_integrable_on M1 by
A7;
then
B30: ex A be
Element of S1 st A
= (
dom (
ProjPMap2 (f,x))) & (
ProjPMap2 (f,x)) is A
-measurable by
MESFUNC5:def 17;
(G
. x)
= ((G1
. x)
- (G2
. x)) by
A15,
A24,
MESFUNC1:def 4
.= ((
Integral (M1,(
ProjPMap2 ((
max+ f),x))))
- ((
Integral1 (M1,(
max- f)))
. x)) by
MESFUN12:def 7
.= ((
Integral (M1,(
ProjPMap2 ((
max+ f),x))))
- (
Integral (M1,(
ProjPMap2 ((
max- f),x))))) by
MESFUN12:def 7
.= ((
Integral (M1,(
max+ (
ProjPMap2 (f,x)))))
- (
Integral (M1,(
ProjPMap2 ((
max- f),x))))) by
MESFUN12: 46
.= ((
Integral (M1,(
max+ (
ProjPMap2 (f,x)))))
- (
Integral (M1,(
max- (
ProjPMap2 (f,x)))))) by
MESFUN12: 46;
hence (G
. x)
= ((
Integral1 (M1,f))
. x) by
A30,
B30,
MESFUN11: 54;
end;
then
A31: (
Integral1 (M1,f))
= G by
A15,
A24,
PARTFUN1: 5;
hence for V be
Element of S2 holds (
Integral1 (M1,f)) is V
-measurable by
A29,
MESFUNC1: 30;
A32: X2
= (
dom (
max+ (
Integral1 (M1,f)))) & X2
= (
dom (
max- (
Integral1 (M1,f)))) by
A15,
MESFUNC2:def 2,
MESFUNC2:def 3;
A33: (
max+ (
Integral1 (M1,f))) is XX2
-measurable & (
max- (
Integral1 (M1,f))) is XX2
-measurable by
A15,
A29,
A31,
MESFUNC2: 25,
MESFUNC2: 26;
A34: (
Integral1 (M1,
|.f.|))
is_integrable_on M2 by
A1,
A2,
A3,
Th20;
now
let x be
Element of X2;
assume x
in (
dom (
max+ (
Integral1 (M1,f))));
then
A35: x
in (
dom
|.(
Integral1 (M1,f)).|) by
A15,
A32,
MESFUNC1:def 10;
((
max+ (
Integral1 (M1,f)))
. x)
<= (
|.(
Integral1 (M1,f)).|
. x) by
Th29;
then ((
max+ (
Integral1 (M1,f)))
. x)
<=
|.((
Integral1 (M1,f))
. x).| by
A35,
MESFUNC1:def 10;
then
A36:
|.((
max+ (
Integral1 (M1,f)))
. x).|
<=
|.((
Integral1 (M1,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 12;
((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,
|.(
ProjPMap2 (f,x)).|)) by
A7,
MESFUNC5: 101;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
Th27;
then
|.((
Integral1 (M1,f))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
hence
|.((
max+ (
Integral1 (M1,f)))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
A36,
XXREAL_0: 2;
end;
then
A37: (
max+ (
Integral1 (M1,f)))
is_integrable_on M2 by
A15,
A32,
A33,
A34,
MESFUNC5: 102;
now
let x be
Element of X2;
assume x
in (
dom (
max- (
Integral1 (M1,f))));
then
A38: x
in (
dom
|.(
Integral1 (M1,f)).|) by
A15,
A32,
MESFUNC1:def 10;
((
max- (
Integral1 (M1,f)))
. x)
<= (
|.(
Integral1 (M1,f)).|
. x) by
Th29;
then ((
max- (
Integral1 (M1,f)))
. x)
<=
|.((
Integral1 (M1,f))
. x).| by
A38,
MESFUNC1:def 10;
then
A39:
|.((
max- (
Integral1 (M1,f)))
. x).|
<=
|.((
Integral1 (M1,f))
. x).| by
EXTREAL1: 3,
MESFUNC2: 13;
((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,
|.(
ProjPMap2 (f,x)).|)) by
A7,
MESFUNC5: 101;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
Th27;
then
|.((
Integral1 (M1,f))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
hence
|.((
max- (
Integral1 (M1,f)))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
A39,
XXREAL_0: 2;
end;
then (
max- (
Integral1 (M1,f)))
is_integrable_on M2 by
A15,
A32,
A33,
A34,
MESFUNC5: 102;
then ((
max+ (
Integral1 (M1,f)))
- (
max- (
Integral1 (M1,f))))
is_integrable_on M2 by
A37,
MESFUN10: 12;
hence
A40: (
Integral1 (M1,f))
is_integrable_on M2 by
MESFUNC2: 23;
A41: (
max+ f) is
nonnegative & (
max- f) is
nonnegative by
MESFUN11: 5;
A42: (
dom (
max+ f))
= A & (
dom (
max- f))
= A by
A5,
MESFUNC2:def 2,
MESFUNC2:def 3;
A43: (
max+ f) is A
-measurable & (
max- f) is A
-measurable by
A5,
MESFUNC2: 25,
MESFUNC2: 26;
then
A44: (
Integral ((
Prod_Measure (M1,M2)),(
max- f)))
= (
Integral (M2,G2)) by
A1,
A2,
A41,
A42,
MESFUN12: 84;
(
Integral ((
Prod_Measure (M1,M2)),f))
= ((
Integral ((
Prod_Measure (M1,M2)),(
max+ f)))
- (
Integral ((
Prod_Measure (M1,M2)),(
max- f)))) by
A5,
MESFUN11: 54
.= ((
Integral (M2,(G1
| XX2)))
- (
Integral (M2,(G2
| XX2)))) by
A1,
A2,
A41,
A42,
A43,
A44,
MESFUN12: 84;
hence (
Integral ((
Prod_Measure (M1,M2)),f))
= (
Integral (M2,(
Integral1 (M1,f)))) by
A15,
A24,
A31,
TT,
Th21;
now
let y be
set;
assume y
in (
rng (
Integral1 (M1,f)));
then
consider x be
Element of X2 such that
A45: x
in (
dom (
Integral1 (M1,f))) & y
= ((
Integral1 (M1,f))
. x) by
PARTFUN1: 3;
((
Integral1 (M1,f))
. x)
= (
Integral (M1,(
ProjPMap2 (f,x)))) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,
|.(
ProjPMap2 (f,x)).|)) by
A7,
MESFUNC5: 101;
then
|.((
Integral1 (M1,f))
. x).|
<= (
Integral (M1,(
ProjPMap2 (
|.f.|,x)))) by
Th27;
then
|.((
Integral1 (M1,f))
. x).|
<= ((
Integral1 (M1,
|.f.|))
. x) by
MESFUN12:def 7;
then
|.((
Integral1 (M1,f))
. x).|
<
+infty by
A4,
XXREAL_0: 2;
hence y
in
REAL by
A45,
EXTREAL1: 41;
end;
then (
rng (
Integral1 (M1,f)))
c=
REAL ;
then
reconsider F = (
Integral1 (M1,f)) as
PartFunc of X2,
REAL by
RELSET_1: 6;
reconsider ND =
{} as
Element of S2 by
MEASURE1: 7;
A46: (M2
. ND)
=
0 by
VALUED_0:def 19;
(ND
` )
= (X2
\
{} ) by
SUBSET_1:def 4
.= X2;
then
A47: (
dom F)
= (ND
` ) by
FUNCT_2:def 1;
(
R_EAL F)
is_integrable_on M2 by
A40,
MESFUNC5:def 7;
then F
is_integrable_on M2 by
MESFUNC6:def 4;
then F
in { f where f be
PartFunc of X2,
REAL : ex ND be
Element of S2 st (M2
. ND)
=
0 & (
dom f)
= (ND
` ) & f
is_integrable_on M2 } by
A46,
A47;
hence (
Integral1 (M1,f))
in (
L1_Functions M2) by
LPSPACE1:def 8;
end;