mesfunc6.miz
    
    begin
    
    reserve X for non
    empty  
    set, 
    
Y for
    set, 
    
S for
    SigmaField of X, 
    
F for
    sequence of S, 
    
f,g for
    PartFunc of X, 
    REAL , 
    
A,B for
    Element of S, 
    
r,s for
    Real, 
    
a for
    Real, 
    
n for
    Nat;
    
    theorem :: 
    
    MESFUNC6:1
    
    
    
    
    
    Th1: 
    |.(
    R_EAL f).| 
    = ( 
    R_EAL ( 
    abs f)) 
    
    proof
    
      
    
    A1: 
    
      now
    
        let x be
    Element of X; 
    
        assume x
    in ( 
    dom  
    |.(
    R_EAL f).|); 
    
        then (
    |.(
    R_EAL f).| 
    . x) 
    =  
    |.((
    R_EAL f) 
    . x).| by 
    MESFUNC1:def 10;
    
        then (
    |.(
    R_EAL f).| 
    . x) 
    =  
    |.(f
    . x) qua 
    Complex.| by
    EXTREAL1: 12;
    
        then (
    |.(
    R_EAL f).| 
    . x) 
    = ( 
    |.f.|
    . x) by 
    VALUED_1: 18;
    
        hence (
    |.(
    R_EAL f).| 
    . x) 
    = (( 
    R_EAL ( 
    abs f)) 
    . x); 
    
      end;
    
      (
    dom  
    |.(
    R_EAL f).|) 
    = ( 
    dom ( 
    R_EAL f)) by 
    MESFUNC1:def 10
    
      .= (
    dom ( 
    abs f)) by 
    VALUED_1:def 11;
    
      hence thesis by
    A1,
    PARTFUN1: 5;
    
    end;
    
    theorem :: 
    
    MESFUNC6:2
    
    
    
    
    
    Th2: for X be non 
    empty  
    set, S be 
    SigmaField of X, M be 
    sigma_Measure of S, f be 
    PartFunc of X, 
    ExtREAL , r be 
    Real st ( 
    dom f) 
    in S & (for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = r) holds f 
    is_simple_func_in S 
    
    proof
    
      let X be non
    empty  
    set;
    
      let S be
    SigmaField of X; 
    
      let M be
    sigma_Measure of S; 
    
      let f be
    PartFunc of X, 
    ExtREAL ; 
    
      let r be
    Real;
    
      assume that
    
      
    
    A1: ( 
    dom f) 
    in S and 
    
      
    
    A2: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = r; 
    
      reconsider Df = (
    dom f) as 
    Element of S by 
    A1;
    
      
    
      
    
    A3: ex F be 
    Finite_Sep_Sequence of S st (( 
    dom f) 
    = ( 
    union ( 
    rng F)) & for n be 
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom F) & x 
    in (F 
    . n) & y 
    in (F 
    . n) holds (f 
    . x) 
    = (f 
    . y)) 
    
      proof
    
        set F =
    <*Df*>;
    
        
    
        
    
    A4: ( 
    dom F) 
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
        
    
    A5: 
    
        now
    
          let i,j be
    Nat;
    
          assume that
    
          
    
    A6: i 
    in ( 
    dom F) and 
    
          
    
    A7: j 
    in ( 
    dom F) & i 
    <> j; 
    
          i
    = 1 by 
    A4,
    A6,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
          hence (F
    . i) 
    misses (F 
    . j) by 
    A4,
    A7,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
        end;
    
        
    
        
    
    A8: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    = Df 
    
        proof
    
          let n be
    Nat;
    
          assume n
    in ( 
    dom F); 
    
          then n
    = 1 by 
    A4,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
          hence thesis by
    FINSEQ_1: 40;
    
        end;
    
        reconsider F as
    Finite_Sep_Sequence of S by 
    A5,
    MESFUNC3: 4;
    
        take F;
    
        F
    =  
    <*(F
    . 1)*> by 
    FINSEQ_1: 40;
    
        then
    
        
    
    A9: ( 
    rng F) 
    =  
    {(F
    . 1)} by 
    FINSEQ_1: 38;
    
        1
    in ( 
    Seg 1); 
    
        then (F
    . 1) 
    = Df by 
    A4,
    A8;
    
        hence (
    dom f) 
    = ( 
    union ( 
    rng F)) by 
    A9,
    ZFMISC_1: 25;
    
        hereby
    
          let n be
    Nat, x,y be 
    Element of X; 
    
          assume that
    
          
    
    A10: n 
    in ( 
    dom F) and 
    
          
    
    A11: x 
    in (F 
    . n) and 
    
          
    
    A12: y 
    in (F 
    . n); 
    
          
    
          
    
    A13: (F 
    . n) 
    = Df by 
    A8,
    A10;
    
          then (f
    . x) 
    = r by 
    A2,
    A11;
    
          hence (f
    . x) 
    = (f 
    . y) by 
    A2,
    A12,
    A13;
    
        end;
    
      end;
    
      now
    
        let x be
    Element of X; 
    
        
    
        
    
    A14: r 
    in  
    REAL by 
    XREAL_0:def 1;
    
        assume x
    in ( 
    dom f); 
    
        then
    
        
    
    A15: (f 
    . x) 
    = r by 
    A2;
    
        then
    -infty  
    < (f 
    . x) by 
    XXREAL_0: 12,
    A14;
    
        then
    
        
    
    A16: ( 
    -  
    +infty ) 
    < (f 
    . x) by 
    XXREAL_3:def 3;
    
        (f
    . x) 
    <  
    +infty by 
    A15,
    XXREAL_0: 9,
    A14;
    
        hence
    |.(f
    . x).| 
    <  
    +infty by 
    A16,
    EXTREAL1: 22;
    
      end;
    
      then f is
    real-valued by 
    MESFUNC2:def 1;
    
      hence thesis by
    A3,
    MESFUNC2:def 4;
    
    end;
    
    theorem :: 
    
    MESFUNC6:3
    
    for x be
    set holds x 
    in ( 
    less_dom (f,a)) iff x 
    in ( 
    dom f) & ex y be 
    Real st y 
    = (f 
    . x) & y 
    < a 
    
    proof
    
      let x be
    set;
    
      (ex y be
    Real st y 
    = (f 
    . x) & y 
    < a) iff (f 
    . x) 
    < a; 
    
      hence thesis by
    MESFUNC1:def 11;
    
    end;
    
    theorem :: 
    
    MESFUNC6:4
    
    for x be
    set holds x 
    in ( 
    less_eq_dom (f,a)) iff x 
    in ( 
    dom f) & ex y be 
    Real st y 
    = (f 
    . x) & y 
    <= a 
    
    proof
    
      let x be
    set;
    
      (ex y be
    Real st y 
    = (f 
    . x) & y 
    <= a) iff (f 
    . x) 
    <= a; 
    
      hence thesis by
    MESFUNC1:def 12;
    
    end;
    
    theorem :: 
    
    MESFUNC6:5
    
    for x be
    set holds x 
    in ( 
    great_dom (f,r)) iff x 
    in ( 
    dom f) & ex y be 
    Real st y 
    = (f 
    . x) & r 
    < y 
    
    proof
    
      let x be
    set;
    
      (ex y be
    Real st y 
    = (f 
    . x) & r 
    < y) iff r 
    < (f 
    . x); 
    
      hence thesis by
    MESFUNC1:def 13;
    
    end;
    
    theorem :: 
    
    MESFUNC6:6
    
    for x be
    set holds x 
    in ( 
    great_eq_dom (f,r)) iff x 
    in ( 
    dom f) & ex y be 
    Real st y 
    = (f 
    . x) & r 
    <= y 
    
    proof
    
      let x be
    set;
    
      (ex y be
    Real st y 
    = (f 
    . x) & r 
    <= y) iff r 
    <= (f 
    . x); 
    
      hence thesis by
    MESFUNC1:def 14;
    
    end;
    
    theorem :: 
    
    MESFUNC6:7
    
    for x be
    set holds x 
    in ( 
    eq_dom (f,r)) iff x 
    in ( 
    dom f) & ex y be 
    Real st y 
    = (f 
    . x) & r 
    = y 
    
    proof
    
      let x be
    set;
    
      (ex y be
    Real st y 
    = (f 
    . x) & r 
    = y) iff r 
    = (f 
    . x); 
    
      hence thesis by
    MESFUNC1:def 15;
    
    end;
    
    theorem :: 
    
    MESFUNC6:8
    
    (for n holds (F
    . n) 
    = (Y 
    /\ ( 
    great_dom (f,(r 
    - (1 
    / (n 
    + 1))))))) implies (Y 
    /\ ( 
    great_eq_dom (f,r))) 
    = ( 
    meet ( 
    rng F)) 
    
    proof
    
      assume for n holds (F
    . n) 
    = (Y 
    /\ ( 
    great_dom (f,(r 
    - (1 
    / (n 
    + 1)))))); 
    
      then for n be
    Element of 
    NAT holds (F 
    . n) 
    = (Y 
    /\ ( 
    great_dom (( 
    R_EAL f),(r 
    - (1 
    / (n 
    + 1)))))); 
    
      then (Y
    /\ ( 
    great_eq_dom (f,r))) 
    = ( 
    meet ( 
    rng F)) by 
    MESFUNC1: 19;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:9
    
    (for n holds (F
    . n) 
    = (Y 
    /\ ( 
    less_dom (f,(r 
    + (1 
    / (n 
    + 1))))))) implies (Y 
    /\ ( 
    less_eq_dom (f,r))) 
    = ( 
    meet ( 
    rng F)) 
    
    proof
    
      assume for n holds (F
    . n) 
    = (Y 
    /\ ( 
    less_dom (f,(r 
    + (1 
    / (n 
    + 1)))))); 
    
      then for n be
    Element of 
    NAT holds (F 
    . n) 
    = (Y 
    /\ ( 
    less_dom (( 
    R_EAL f),(r 
    + (1 
    / (n 
    + 1)))))); 
    
      then (Y
    /\ ( 
    less_eq_dom (f,r))) 
    = ( 
    meet ( 
    rng F)) by 
    MESFUNC1: 20;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:10
    
    (for n holds (F
    . n) 
    = (Y 
    /\ ( 
    less_eq_dom (f,(r 
    - (1 
    / (n 
    + 1))))))) implies (Y 
    /\ ( 
    less_dom (f,r))) 
    = ( 
    union ( 
    rng F)) 
    
    proof
    
      assume for n holds (F
    . n) 
    = (Y 
    /\ ( 
    less_eq_dom (f,(r 
    - (1 
    / (n 
    + 1)))))); 
    
      then for n be
    Element of 
    NAT holds (F 
    . n) 
    = (Y 
    /\ ( 
    less_eq_dom (( 
    R_EAL f),(r 
    - (1 
    / (n 
    + 1)))))); 
    
      then (Y
    /\ ( 
    less_dom (f,r))) 
    = ( 
    union ( 
    rng F)) by 
    MESFUNC1: 21;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:11
    
    (for n holds (F
    . n) 
    = (Y 
    /\ ( 
    great_eq_dom (f,(r 
    + (1 
    / (n 
    + 1))))))) implies (Y 
    /\ ( 
    great_dom (f,r))) 
    = ( 
    union ( 
    rng F)) 
    
    proof
    
      assume for n holds (F
    . n) 
    = (Y 
    /\ ( 
    great_eq_dom (f,(r 
    + (1 
    / (n 
    + 1)))))); 
    
      then for n be
    Element of 
    NAT holds (F 
    . n) 
    = (Y 
    /\ ( 
    great_eq_dom (( 
    R_EAL f),(r 
    + (1 
    / (n 
    + 1)))))); 
    
      then (Y
    /\ ( 
    great_dom (f,r))) 
    = ( 
    union ( 
    rng F)) by 
    MESFUNC1: 22;
    
      hence thesis;
    
    end;
    
    definition
    
      let X be non
    empty  
    set;
    
      let S be
    SigmaField of X; 
    
      let A be
    Element of S; 
    
      let f be
    PartFunc of X, 
    REAL ; 
    
      :: 
    
    MESFUNC6:def1
    
      attr f is A
    
    -measurable means ( 
    R_EAL f) is A 
    -measurable;
    
    end
    
    theorem :: 
    
    MESFUNC6:12
    
    
    
    
    
    Th12: f is A 
    -measurable iff for r be 
    Real holds (A 
    /\ ( 
    less_dom (f,r))) 
    in S by 
    MESFUNC1:def 16;
    
    theorem :: 
    
    MESFUNC6:13
    
    
    
    
    
    Th13: A 
    c= ( 
    dom f) implies (f is A 
    -measurable iff for r be 
    Real holds (A 
    /\ ( 
    great_eq_dom (f,r))) 
    in S) by 
    MESFUNC1: 27;
    
    theorem :: 
    
    MESFUNC6:14
    
    f is A
    -measurable iff for r be 
    Real holds (A 
    /\ ( 
    less_eq_dom (f,r))) 
    in S by 
    MESFUNC1: 28;
    
    theorem :: 
    
    MESFUNC6:15
    
    A
    c= ( 
    dom f) implies (f is A 
    -measurable iff for r be 
    Real holds (A 
    /\ ( 
    great_dom (f,r))) 
    in S) by 
    MESFUNC1: 29;
    
    theorem :: 
    
    MESFUNC6:16
    
    B
    c= A & f is A 
    -measurable implies f is B 
    -measurable by 
    MESFUNC1: 30;
    
    theorem :: 
    
    MESFUNC6:17
    
    f is A
    -measurable & f is B 
    -measurable implies f is (A 
    \/ B) 
    -measurable by 
    MESFUNC1: 31;
    
    theorem :: 
    
    MESFUNC6:18
    
    f is A
    -measurable & A 
    c= ( 
    dom f) implies ((A 
    /\ ( 
    great_dom (f,r))) 
    /\ ( 
    less_dom (f,s))) 
    in S by 
    MESFUNC1: 32;
    
    theorem :: 
    
    MESFUNC6:19
    
    f is A
    -measurable & g is A 
    -measurable & A 
    c= ( 
    dom g) implies ((A 
    /\ ( 
    less_dom (f,r))) 
    /\ ( 
    great_dom (g,r))) 
    in S by 
    MESFUNC1: 36;
    
    theorem :: 
    
    MESFUNC6:20
    
    
    
    
    
    Th20: ( 
    R_EAL (r 
    (#) f)) 
    = (r 
    (#) ( 
    R_EAL f)) 
    
    proof
    
      (
    dom ( 
    R_EAL (r 
    (#) f))) 
    = ( 
    dom ( 
    R_EAL f)) by 
    VALUED_1:def 5;
    
      then
    
      
    
    A1: ( 
    dom ( 
    R_EAL (r 
    (#) f))) 
    = ( 
    dom (r 
    (#) ( 
    R_EAL f))) by 
    MESFUNC1:def 6;
    
      now
    
        let x be
    object;
    
        reconsider rr = r as
    R_eal by 
    XXREAL_0:def 1;
    
        assume
    
        
    
    A2: x 
    in ( 
    dom ( 
    R_EAL (r 
    (#) f))); 
    
        then ((
    R_EAL (r 
    (#) f)) 
    . x) 
    = (r 
    * (f 
    . x)) by 
    VALUED_1:def 5;
    
        then ((
    R_EAL (r 
    (#) f)) 
    . x) 
    = (rr 
    * (f 
    . x)) by 
    EXTREAL1: 1;
    
        hence ((
    R_EAL (r 
    (#) f)) 
    . x) 
    = ((r 
    (#) ( 
    R_EAL f)) 
    . x) by 
    A1,
    A2,
    MESFUNC1:def 6;
    
      end;
    
      hence thesis by
    A1,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:21
    
    
    
    
    
    Th21: f is A 
    -measurable & A 
    c= ( 
    dom f) implies (r 
    (#) f) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: f is A 
    -measurable and 
    
      
    
    A2: A 
    c= ( 
    dom f); 
    
      (
    R_EAL f) is A 
    -measurable by 
    A1;
    
      then (r
    (#) ( 
    R_EAL f)) is A 
    -measurable by 
    A2,
    MESFUNC1: 37;
    
      then (
    R_EAL (r 
    (#) f)) is A 
    -measurable by 
    Th20;
    
      hence thesis;
    
    end;
    
    begin
    
    reserve X for non
    empty  
    set, 
    
S for
    SigmaField of X, 
    
f,g for
    PartFunc of X, 
    REAL , 
    
A for
    Element of S, 
    
r for
    Real, 
    
p for
    Rational;
    
    theorem :: 
    
    MESFUNC6:22
    
    (
    R_EAL f) is 
    real-valued;
    
    theorem :: 
    
    MESFUNC6:23
    
    
    
    
    
    Th23: ( 
    R_EAL (f 
    + g)) 
    = (( 
    R_EAL f) 
    + ( 
    R_EAL g)) & ( 
    R_EAL (f 
    - g)) 
    = (( 
    R_EAL f) 
    - ( 
    R_EAL g)) & ( 
    dom ( 
    R_EAL (f 
    + g))) 
    = (( 
    dom ( 
    R_EAL f)) 
    /\ ( 
    dom ( 
    R_EAL g))) & ( 
    dom ( 
    R_EAL (f 
    - g))) 
    = (( 
    dom ( 
    R_EAL f)) 
    /\ ( 
    dom ( 
    R_EAL g))) & ( 
    dom ( 
    R_EAL (f 
    + g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom ( 
    R_EAL (f 
    - g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) 
    
    proof
    
      (
    dom (( 
    R_EAL f) 
    - ( 
    R_EAL g))) 
    = (( 
    dom ( 
    R_EAL f)) 
    /\ ( 
    dom ( 
    R_EAL g))) by 
    MESFUNC2: 2;
    
      then
    
      
    
    A1: ( 
    dom (( 
    R_EAL f) 
    - ( 
    R_EAL g))) 
    = ( 
    dom (f 
    - g)) by 
    VALUED_1: 12;
    
      
    
    A2: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A3: x 
    in ( 
    dom (( 
    R_EAL f) 
    - ( 
    R_EAL g))); 
    
        
    
        then (((
    R_EAL f) 
    - ( 
    R_EAL g)) 
    . x) 
    = ((( 
    R_EAL f) 
    . x) 
    - (( 
    R_EAL g) 
    . x)) by 
    MESFUNC1:def 4
    
        .= ((f
    . x) 
    - (g 
    . x)) by 
    SUPINF_2: 3;
    
        hence (((
    R_EAL f) 
    - ( 
    R_EAL g)) 
    . x) 
    = ((f 
    - g) 
    . x) by 
    A1,
    A3,
    VALUED_1: 13;
    
      end;
    
      (
    dom (( 
    R_EAL f) 
    + ( 
    R_EAL g))) 
    = (( 
    dom ( 
    R_EAL f)) 
    /\ ( 
    dom ( 
    R_EAL g))) by 
    MESFUNC2: 2;
    
      then
    
      
    
    A4: ( 
    dom (( 
    R_EAL f) 
    + ( 
    R_EAL g))) 
    = ( 
    dom (f 
    + g)) by 
    VALUED_1:def 1;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom (( 
    R_EAL f) 
    + ( 
    R_EAL g))); 
    
        
    
        then (((
    R_EAL f) 
    + ( 
    R_EAL g)) 
    . x) 
    = ((( 
    R_EAL f) 
    . x) 
    + (( 
    R_EAL g) 
    . x)) by 
    MESFUNC1:def 3
    
        .= ((f
    . x) 
    + (g 
    . x)) by 
    SUPINF_2: 1;
    
        hence (((
    R_EAL f) 
    + ( 
    R_EAL g)) 
    . x) 
    = ((f 
    + g) 
    . x) by 
    A4,
    A5,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    A4,
    A1,
    A2,
    FUNCT_1: 2,
    MESFUNC2: 2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:24
    
    for F be
    Function of 
    RAT , S st (for p holds (F 
    . p) 
    = ((A 
    /\ ( 
    less_dom (f,p))) 
    /\ (A 
    /\ ( 
    less_dom (g,(r 
    - p)))))) holds (A 
    /\ ( 
    less_dom ((f 
    + g),r))) 
    = ( 
    union ( 
    rng F)) 
    
    proof
    
      let F be
    Function of 
    RAT , S; 
    
      assume for p holds (F
    . p) 
    = ((A 
    /\ ( 
    less_dom (f,p))) 
    /\ (A 
    /\ ( 
    less_dom (g,(r 
    - p))))); 
    
      then for p holds (F
    . p) 
    = ((A 
    /\ ( 
    less_dom (( 
    R_EAL f),p))) 
    /\ (A 
    /\ ( 
    less_dom (( 
    R_EAL g),(r 
    - p))))); 
    
      then
    
      
    
    A1: (A 
    /\ ( 
    less_dom ((( 
    R_EAL f) 
    + ( 
    R_EAL g)),r))) 
    = ( 
    union ( 
    rng F)) by 
    MESFUNC2: 3;
    
      ((
    R_EAL f) 
    + ( 
    R_EAL g)) 
    = ( 
    R_EAL (f 
    + g)) by 
    Th23;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:25
    
    f is A
    -measurable & g is A 
    -measurable implies ex F be 
    Function of 
    RAT , S st for p be 
    Rational holds (F 
    . p) 
    = ((A 
    /\ ( 
    less_dom (f,p))) 
    /\ (A 
    /\ ( 
    less_dom (g,(r 
    - p))))) by 
    MESFUNC2: 6;
    
    theorem :: 
    
    MESFUNC6:26
    
    
    
    
    
    Th26: f is A 
    -measurable & g is A 
    -measurable implies (f 
    + g) is A 
    -measurable
    
    proof
    
      assume f is A
    -measurable & g is A 
    -measurable;
    
      then (
    R_EAL f) is A 
    -measurable & ( 
    R_EAL g) is A 
    -measurable;
    
      then ((
    R_EAL f) 
    + ( 
    R_EAL g)) is A 
    -measurable by 
    MESFUNC2: 7;
    
      then (
    R_EAL (f 
    + g)) is A 
    -measurable by 
    Th23;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:27
    
    ((
    R_EAL f) 
    - ( 
    R_EAL g)) 
    = (( 
    R_EAL f) 
    + ( 
    R_EAL ( 
    - g))) 
    
    proof
    
      ((
    R_EAL f) 
    - ( 
    R_EAL g)) 
    = ( 
    R_EAL (f 
    - g)) by 
    Th23
    
      .= (
    R_EAL (f 
    + ( 
    - g))); 
    
      hence thesis by
    Th23;
    
    end;
    
    theorem :: 
    
    MESFUNC6:28
    
    
    
    
    
    Th28: ( 
    - ( 
    R_EAL f)) 
    = ( 
    R_EAL (( 
    - 1) 
    (#) f)) & ( 
    - ( 
    R_EAL f)) 
    = ( 
    R_EAL ( 
    - f)) 
    
    proof
    
      (
    - ( 
    R_EAL f)) 
    = (( 
    - 1) 
    (#) ( 
    R_EAL f)) by 
    MESFUNC2: 9;
    
      hence thesis by
    Th20;
    
    end;
    
    theorem :: 
    
    MESFUNC6:29
    
    f is A
    -measurable & g is A 
    -measurable & A 
    c= ( 
    dom g) implies (f 
    - g) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: f is A 
    -measurable and 
    
      
    
    A2: g is A 
    -measurable and 
    
      
    
    A3: A 
    c= ( 
    dom g); 
    
      (
    R_EAL g) is A 
    -measurable by 
    A2;
    
      then ((
    - 1) 
    (#) ( 
    R_EAL g)) is A 
    -measurable by 
    A3,
    MESFUNC1: 37;
    
      then (
    - ( 
    R_EAL g)) is A 
    -measurable by 
    MESFUNC2: 9;
    
      then
    
      
    
    A4: ( 
    R_EAL ( 
    - g)) is A 
    -measurable by 
    Th28;
    
      (
    R_EAL f) is A 
    -measurable by 
    A1;
    
      then ((
    R_EAL f) 
    + ( 
    R_EAL ( 
    - g))) is A 
    -measurable by 
    A4,
    MESFUNC2: 7;
    
      then (
    R_EAL (f 
    - g)) is A 
    -measurable by 
    Th23;
    
      hence thesis;
    
    end;
    
    begin
    
    reserve X for non
    empty  
    set, 
    
f,g for
    PartFunc of X, 
    REAL , 
    
r for
    Real;
    
    theorem :: 
    
    MESFUNC6:30
    
    
    
    
    
    Th30: ( 
    max+ ( 
    R_EAL f)) 
    = ( 
    max+ f) & ( 
    max- ( 
    R_EAL f)) 
    = ( 
    max- f) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    max+ ( 
    R_EAL f))) 
    = ( 
    dom ( 
    R_EAL f)) by 
    MESFUNC2:def 2
    
      .= (
    dom ( 
    max+ f)) by 
    RFUNCT_3:def 10;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    dom ( 
    max+ ( 
    R_EAL f))); 
    
        then ((
    max+ ( 
    R_EAL f)) 
    . x) 
    = ( 
    max+ (f 
    . x)) by 
    MESFUNC2:def 2;
    
        hence ((
    max+ ( 
    R_EAL f)) 
    . x) 
    = (( 
    max+ f) 
    . x) by 
    A1,
    A2,
    RFUNCT_3:def 10;
    
      end;
    
      hence (
    max+ ( 
    R_EAL f)) 
    = ( 
    max+ f) by 
    A1,
    FUNCT_1: 2;
    
      
    
      
    
    A3: ( 
    dom ( 
    max- ( 
    R_EAL f))) 
    = ( 
    dom ( 
    R_EAL f)) by 
    MESFUNC2:def 3
    
      .= (
    dom ( 
    max- f)) by 
    RFUNCT_3:def 11;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    dom ( 
    max- ( 
    R_EAL f))); 
    
        ((
    max- ( 
    R_EAL f)) 
    . x) 
    = ( 
    max (( 
    - (( 
    R_EAL f) 
    . x)), 
    0. )) by 
    MESFUNC2:def 3,
    A4;
    
        then ((
    max- ( 
    R_EAL f)) 
    . x) 
    = ( 
    max- (f 
    . x)) by 
    SUPINF_2: 2;
    
        hence ((
    max- ( 
    R_EAL f)) 
    . x) 
    = (( 
    max- f) 
    . x) by 
    A3,
    A4,
    RFUNCT_3:def 11;
    
      end;
    
      hence thesis by
    A3,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:31
    
    for x be
    Element of X holds 
    0  
    <= (( 
    max+ f) 
    . x) 
    
    proof
    
      let x be
    Element of X; 
    
      
    0.  
    <= (( 
    max+ ( 
    R_EAL f)) 
    . x) by 
    MESFUNC2: 12;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:32
    
    for x be
    Element of X holds 
    0  
    <= (( 
    max- f) 
    . x) 
    
    proof
    
      let x be
    Element of X; 
    
      
    0.  
    <= (( 
    max- ( 
    R_EAL f)) 
    . x) by 
    MESFUNC2: 13;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:33
    
    (
    max- f) 
    = ( 
    max+ ( 
    - f)) 
    
    proof
    
      (
    max- f) 
    = ( 
    max- ( 
    R_EAL f)) by 
    Th30;
    
      then (
    max- f) 
    = ( 
    max+ ( 
    - ( 
    R_EAL f))) by 
    MESFUNC2: 14;
    
      then (
    max- f) 
    = ( 
    max+ ( 
    R_EAL ( 
    - f))) by 
    Th28;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:34
    
    for x be
    set st x 
    in ( 
    dom f) & 
    0  
    < (( 
    max+ f) 
    . x) holds (( 
    max- f) 
    . x) 
    =  
    0  
    
    proof
    
      let x be
    set;
    
      assume that
    
      
    
    A1: x 
    in ( 
    dom f) and 
    
      
    
    A2: 
    0  
    < (( 
    max+ f) 
    . x); 
    
      
    0.  
    < (( 
    max+ ( 
    R_EAL f)) 
    . x) by 
    A2,
    Th30;
    
      then ((
    max- ( 
    R_EAL f)) 
    . x) 
    =  
    0. by 
    A1,
    MESFUNC2: 15;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:35
    
    for x be
    set st x 
    in ( 
    dom f) & 
    0  
    < (( 
    max- f) 
    . x) holds (( 
    max+ f) 
    . x) 
    =  
    0  
    
    proof
    
      let x be
    set;
    
      assume that
    
      
    
    A1: x 
    in ( 
    dom f) and 
    
      
    
    A2: 
    0  
    < (( 
    max- f) 
    . x); 
    
      
    0.  
    < (( 
    max- ( 
    R_EAL f)) 
    . x) by 
    A2,
    Th30;
    
      then ((
    max+ ( 
    R_EAL f)) 
    . x) 
    =  
    0. by 
    A1,
    MESFUNC2: 16;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:36
    
    (
    dom f) 
    = ( 
    dom (( 
    max+ f) 
    - ( 
    max- f))) & ( 
    dom f) 
    = ( 
    dom (( 
    max+ f) 
    + ( 
    max- f))) 
    
    proof
    
      (
    dom f) 
    = ( 
    dom (( 
    max+ ( 
    R_EAL f)) 
    - ( 
    max- ( 
    R_EAL f)))) by 
    MESFUNC2: 17;
    
      then (
    dom f) 
    = ( 
    dom (( 
    R_EAL ( 
    max+ f)) 
    - ( 
    max- ( 
    R_EAL f)))) by 
    Th30;
    
      then (
    dom f) 
    = ( 
    dom (( 
    R_EAL ( 
    max+ f)) 
    - ( 
    R_EAL ( 
    max- f)))) by 
    Th30;
    
      then (
    dom f) 
    = ( 
    dom ( 
    R_EAL (( 
    max+ f) 
    - ( 
    max- f)))) by 
    Th23;
    
      hence (
    dom f) 
    = ( 
    dom (( 
    max+ f) 
    - ( 
    max- f))); 
    
      (
    dom f) 
    = ( 
    dom (( 
    max+ ( 
    R_EAL f)) 
    + ( 
    max- ( 
    R_EAL f)))) by 
    MESFUNC2: 17;
    
      then (
    dom f) 
    = ( 
    dom (( 
    R_EAL ( 
    max+ f)) 
    + ( 
    max- ( 
    R_EAL f)))) by 
    Th30;
    
      then (
    dom f) 
    = ( 
    dom (( 
    R_EAL ( 
    max+ f)) 
    + ( 
    R_EAL ( 
    max- f)))) by 
    Th30;
    
      then (
    dom f) 
    = ( 
    dom ( 
    R_EAL (( 
    max+ f) 
    + ( 
    max- f)))) by 
    Th23;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:37
    
    for x be
    set st x 
    in ( 
    dom f) holds ((( 
    max+ f) 
    . x) 
    = (f 
    . x) or (( 
    max+ f) 
    . x) 
    =  
    0 ) & ((( 
    max- f) 
    . x) 
    = ( 
    - (f 
    . x)) or (( 
    max- f) 
    . x) 
    =  
    0 ) 
    
    proof
    
      let x be
    set;
    
      assume
    
      
    
    A1: x 
    in ( 
    dom f); 
    
      then ((
    max+ ( 
    R_EAL f)) 
    . x) 
    = (( 
    R_EAL f) 
    . x) or (( 
    max+ ( 
    R_EAL f)) 
    . x) 
    =  
    0. by 
    MESFUNC2: 18;
    
      hence ((
    max+ f) 
    . x) 
    = (f 
    . x) or (( 
    max+ f) 
    . x) 
    =  
    0 by 
    Th30;
    
      ((
    max- ( 
    R_EAL f)) 
    . x) 
    = ( 
    - (( 
    R_EAL f) 
    . x)) or (( 
    max- ( 
    R_EAL f)) 
    . x) 
    =  
    0. by 
    A1,
    MESFUNC2: 18;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:38
    
    for x be
    set st x 
    in ( 
    dom f) & (( 
    max+ f) 
    . x) 
    = (f 
    . x) holds (( 
    max- f) 
    . x) 
    =  
    0  
    
    proof
    
      let x be
    set;
    
      assume that
    
      
    
    A1: x 
    in ( 
    dom f) and 
    
      
    
    A2: (( 
    max+ f) 
    . x) 
    = (f 
    . x); 
    
      (f
    . x) 
    = (( 
    max+ ( 
    R_EAL f)) 
    . x) by 
    A2,
    Th30;
    
      then ((
    max- ( 
    R_EAL f)) 
    . x) 
    =  
    0. by 
    A1,
    MESFUNC2: 19;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:39
    
    for x be
    set st x 
    in ( 
    dom f) & (( 
    max+ f) 
    . x) 
    =  
    0 holds (( 
    max- f) 
    . x) 
    = ( 
    - (f 
    . x)) 
    
    proof
    
      let x be
    set;
    
      assume that
    
      
    
    A1: x 
    in ( 
    dom f) and 
    
      
    
    A2: (( 
    max+ f) 
    . x) 
    =  
    0 ; 
    
      
    0  
    = (( 
    max+ ( 
    R_EAL f)) 
    . x) by 
    A2,
    Th30;
    
      then ((
    max- ( 
    R_EAL f)) 
    . x) 
    = ( 
    - (( 
    R_EAL f) 
    . x)) by 
    A1,
    MESFUNC2: 20;
    
      then ((
    max- f) 
    . x) 
    = ( 
    - (( 
    R_EAL f) 
    . x)) by 
    Th30;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:40
    
    for x be
    set st x 
    in ( 
    dom f) & (( 
    max- f) 
    . x) 
    = ( 
    - (f 
    . x)) holds (( 
    max+ f) 
    . x) 
    =  
    0  
    
    proof
    
      let x be
    set;
    
      assume that
    
      
    
    A1: x 
    in ( 
    dom f) and 
    
      
    
    A2: (( 
    max- f) 
    . x) 
    = ( 
    - (f 
    . x)); 
    
      (
    - (f 
    . x)) 
    = (( 
    max- ( 
    R_EAL f)) 
    . x) by 
    A2,
    Th30;
    
      then (
    - (( 
    R_EAL f) 
    . x)) 
    = (( 
    max- ( 
    R_EAL f)) 
    . x); 
    
      then ((
    max+ ( 
    R_EAL f)) 
    . x) 
    =  
    0. by 
    A1,
    MESFUNC2: 21;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:41
    
    for x be
    set st x 
    in ( 
    dom f) & (( 
    max- f) 
    . x) 
    =  
    0 holds (( 
    max+ f) 
    . x) 
    = (f 
    . x) 
    
    proof
    
      let x be
    set;
    
      assume that
    
      
    
    A1: x 
    in ( 
    dom f) and 
    
      
    
    A2: (( 
    max- f) 
    . x) 
    =  
    0 ; 
    
      
    0  
    = (( 
    max- ( 
    R_EAL f)) 
    . x) by 
    A2,
    Th30;
    
      then ((
    max+ ( 
    R_EAL f)) 
    . x) 
    = (( 
    R_EAL f) 
    . x) by 
    A1,
    MESFUNC2: 22;
    
      hence thesis by
    Th30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:42
    
    f
    = (( 
    max+ f) 
    - ( 
    max- f)) 
    
    proof
    
      f
    = (( 
    max+ ( 
    R_EAL f)) 
    - ( 
    max- ( 
    R_EAL f))) by 
    MESFUNC2: 23;
    
      then f
    = (( 
    R_EAL ( 
    max+ f)) 
    - ( 
    max- ( 
    R_EAL f))) by 
    Th30;
    
      then f
    = (( 
    R_EAL ( 
    max+ f)) 
    - ( 
    R_EAL ( 
    max- f))) by 
    Th30;
    
      then f
    = ( 
    R_EAL (( 
    max+ f) 
    - ( 
    max- f))) by 
    Th23;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:43
    
    
    
    
    
    Th43: 
    |.r qua
    Complex.|
    =  
    |.r.|
    
    proof
    
      reconsider rr = r as
    Real;
    
      per cases ;
    
        suppose
    
        
    
    A1: 
    0  
    <= r; 
    
        then
    |.r.|
    = r by 
    EXTREAL1:def 1;
    
        hence thesis by
    A1,
    ABSVALUE:def 1;
    
      end;
    
        suppose
    
        
    
    A2: r 
    <  
    0 ; 
    
        then
    |.r.|
    = ( 
    - r qua 
    ExtReal) by
    EXTREAL1:def 1;
    
        then
    |.rr.|
    = ( 
    - rr); 
    
        hence thesis by
    A2,
    ABSVALUE:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    MESFUNC6:44
    
    
    
    
    
    Th44: ( 
    R_EAL ( 
    abs f)) 
    =  
    |.(
    R_EAL f).| 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    R_EAL ( 
    abs f))) 
    = ( 
    dom f) by 
    VALUED_1:def 11
    
      .= (
    dom  
    |.(
    R_EAL f).|) by 
    MESFUNC1:def 10;
    
      now
    
        let x be
    object;
    
        reconsider fx = (f
    . x) as 
    Real;
    
        ((
    R_EAL ( 
    abs f)) 
    . x) 
    =  
    |.fx qua
    Complex.| by
    VALUED_1: 18;
    
        then
    
        
    
    A2: (( 
    R_EAL ( 
    abs f)) 
    . x) 
    =  
    |.(f
    . x).| by 
    Th43;
    
        assume x
    in ( 
    dom ( 
    R_EAL ( 
    abs f))); 
    
        hence ((
    R_EAL ( 
    abs f)) 
    . x) 
    = ( 
    |.(
    R_EAL f).| 
    . x) by 
    A1,
    A2,
    MESFUNC1:def 10;
    
      end;
    
      hence thesis by
    A1,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:45
    
    (
    abs f) 
    = (( 
    max+ f) 
    + ( 
    max- f)) 
    
    proof
    
      (
    abs f) 
    = ( 
    R_EAL ( 
    abs f)); 
    
      then (
    abs f) 
    =  
    |.(
    R_EAL f).| by 
    Th44;
    
      then (
    abs f) 
    = (( 
    max+ ( 
    R_EAL f)) 
    + ( 
    max- ( 
    R_EAL f))) by 
    MESFUNC2: 24;
    
      then (
    abs f) 
    = (( 
    R_EAL ( 
    max+ f)) 
    + ( 
    max- ( 
    R_EAL f))) by 
    Th30;
    
      then (
    abs f) 
    = (( 
    R_EAL ( 
    max+ f)) 
    + ( 
    R_EAL ( 
    max- f))) by 
    Th30;
    
      then (
    abs f) 
    = ( 
    R_EAL (( 
    max+ f) 
    + ( 
    max- f))) by 
    Th23;
    
      hence thesis;
    
    end;
    
    begin
    
    reserve X for non
    empty  
    set, 
    
S for
    SigmaField of X, 
    
f,g for
    PartFunc of X, 
    REAL , 
    
A for
    Element of S; 
    
    theorem :: 
    
    MESFUNC6:46
    
    
    
    
    
    Th46: f is A 
    -measurable implies ( 
    max+ f) is A 
    -measurable
    
    proof
    
      assume f is A
    -measurable;
    
      then (
    R_EAL f) is A 
    -measurable;
    
      then (
    max+ ( 
    R_EAL f)) is A 
    -measurable by 
    MESFUNC2: 25;
    
      then (
    R_EAL ( 
    max+ f)) is A 
    -measurable by 
    Th30;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:47
    
    
    
    
    
    Th47: f is A 
    -measurable & A 
    c= ( 
    dom f) implies ( 
    max- f) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: f is A 
    -measurable and 
    
      
    
    A2: A 
    c= ( 
    dom f); 
    
      (
    R_EAL f) is A 
    -measurable by 
    A1;
    
      then (
    max- ( 
    R_EAL f)) is A 
    -measurable by 
    A2,
    MESFUNC2: 26;
    
      then (
    R_EAL ( 
    max- f)) is A 
    -measurable by 
    Th30;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:48
    
    f is A
    -measurable & A 
    c= ( 
    dom f) implies ( 
    abs f) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: f is A 
    -measurable and 
    
      
    
    A2: A 
    c= ( 
    dom f); 
    
      (
    R_EAL f) is A 
    -measurable by 
    A1;
    
      then
    |.(
    R_EAL f).| is A 
    -measurable by 
    A2,
    MESFUNC2: 27;
    
      then (
    R_EAL ( 
    abs f)) is A 
    -measurable by 
    Th44;
    
      hence thesis;
    
    end;
    
    begin
    
    reserve X for non
    empty  
    set, 
    
Y for
    set, 
    
S for
    SigmaField of X, 
    
f,g,h for
    PartFunc of X, 
    REAL , 
    
A for
    Element of S, 
    
r for
    Real;
    
    definition
    
      let X, S, f;
    
      :: 
    
    MESFUNC6:def2
    
      pred f
    
    is_simple_func_in S means ex F be 
    Finite_Sep_Sequence of S st (( 
    dom f) 
    = ( 
    union ( 
    rng F)) & for n be 
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom F) & x 
    in (F 
    . n) & y 
    in (F 
    . n) holds (f 
    . x) 
    = (f 
    . y)); 
    
    end
    
    theorem :: 
    
    MESFUNC6:49
    
    
    
    
    
    Th49: f 
    is_simple_func_in S iff ( 
    R_EAL f) 
    is_simple_func_in S by 
    MESFUNC2:def 4;
    
    theorem :: 
    
    MESFUNC6:50
    
    f
    is_simple_func_in S implies f is A 
    -measurable by 
    Th49,
    MESFUNC2: 34;
    
    theorem :: 
    
    MESFUNC6:51
    
    
    
    
    
    Th51: for X be 
    set, f be 
    PartFunc of X, 
    REAL holds f is 
    nonnegative iff for x be 
    object holds 
    0  
    <= (f 
    . x) 
    
    proof
    
      let X be
    set, f be 
    PartFunc of X, 
    REAL ; 
    
      hereby
    
        assume f is
    nonnegative;
    
        then
    
        
    
    A1: ( 
    rng f) is 
    nonnegative;
    
        hereby
    
          let x be
    object;
    
          now
    
            assume x
    in ( 
    dom f); 
    
            then
    
            
    
    A2: (f 
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
            thus
    0  
    <= (f 
    . x) by 
    A1,
    A2;
    
          end;
    
          hence
    0  
    <= (f 
    . x) by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      assume
    
      
    
    A3: for x be 
    object holds 
    0  
    <= (f 
    . x); 
    
      let y be
    ExtReal;
    
      assume y
    in ( 
    rng f); 
    
      then ex x be
    object st x 
    in ( 
    dom f) & y 
    = (f 
    . x) by 
    FUNCT_1:def 3;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    MESFUNC6:52
    
    
    
    
    
    Th52: for X be 
    set, f be 
    PartFunc of X, 
    REAL st for x be 
    object st x 
    in ( 
    dom f) holds 
    0  
    <= (f 
    . x) holds f is 
    nonnegative
    
    proof
    
      let X be
    set, f be 
    PartFunc of X, 
    REAL such that 
    
      
    
    A1: for x be 
    object st x 
    in ( 
    dom f) holds 
    0  
    <= (f 
    . x); 
    
      let y be
    ExtReal;
    
      assume y
    in ( 
    rng f); 
    
      then ex x be
    object st x 
    in ( 
    dom f) & y 
    = (f 
    . x) by 
    FUNCT_1:def 3;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:53
    
    for X be
    set, f be 
    PartFunc of X, 
    REAL holds f is 
    nonpositive iff for x be 
    set holds (f 
    . x) 
    <=  
    0  
    
    proof
    
      let X be
    set, f be 
    PartFunc of X, 
    REAL ; 
    
      hereby
    
        assume f is
    nonpositive;
    
        then
    
        
    
    A1: ( 
    rng f) is 
    nonpositive;
    
        hereby
    
          let x be
    set;
    
          now
    
            assume x
    in ( 
    dom f); 
    
            then
    
            
    
    A2: (f 
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
            thus (f
    . x) 
    <=  
    0 by 
    A1,
    A2;
    
          end;
    
          hence (f
    . x) 
    <=  
    0 by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      assume
    
      
    
    A3: for x be 
    set holds (f 
    . x) 
    <=  
    0 ; 
    
      let y be
    R_eal;
    
      assume y
    in ( 
    rng f); 
    
      then ex x be
    object st x 
    in ( 
    dom f) & y 
    = (f 
    . x) by 
    FUNCT_1:def 3;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    MESFUNC6:54
    
    
    
    
    
    Th54: (for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    <=  
    0 ) implies f is 
    nonpositive
    
    proof
    
      assume
    
      
    
    A1: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    <=  
    0 ; 
    
      let y be
    R_eal;
    
      assume y
    in ( 
    rng f); 
    
      then ex x be
    object st x 
    in ( 
    dom f) & y 
    = (f 
    . x) by 
    FUNCT_1:def 3;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:55
    
    f is
    nonnegative implies (f 
    | Y) is 
    nonnegative
    
    proof
    
      assume f is
    nonnegative;
    
      then
    
      
    
    A1: ( 
    rng f) is 
    nonnegative;
    
      now
    
        let y be
    ExtReal;
    
        assume y
    in ( 
    rng (f 
    | Y)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A2: x 
    in ( 
    dom (f 
    | Y)) and 
    
        
    
    A3: ((f 
    | Y) 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        x
    in (( 
    dom f) 
    /\ Y) by 
    A2,
    RELAT_1: 61;
    
        then
    
        
    
    A4: x 
    in ( 
    dom f) by 
    XBOOLE_0:def 4;
    
        ((f
    | Y) 
    . x) 
    = (f 
    . x) by 
    A2,
    FUNCT_1: 47;
    
        then ((f
    | Y) 
    . x) 
    in ( 
    rng f) by 
    A4,
    FUNCT_1: 3;
    
        hence
    0.  
    <= y by 
    A1,
    A3;
    
      end;
    
      then (
    rng (f 
    | Y)) is 
    nonnegative;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:56
    
    
    
    
    
    Th56: f is 
    nonnegative & g is 
    nonnegative implies (f 
    + g) is 
    nonnegative
    
    proof
    
      assume that
    
      
    
    A1: f is 
    nonnegative and 
    
      
    
    A2: g is 
    nonnegative;
    
      for x be
    object st x 
    in ( 
    dom (f 
    + g)) holds 
    0  
    <= ((f 
    + g) 
    . x) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A3: x 
    in ( 
    dom (f 
    + g)); 
    
        
    0  
    <= (f 
    . x) by 
    A1,
    Th51;
    
        then
    
        
    
    A4: (g 
    . x) 
    <= ((f 
    . x) 
    + (g 
    . x)) by 
    XREAL_1: 31;
    
        
    0  
    <= (g 
    . x) by 
    A2,
    Th51;
    
        hence thesis by
    A3,
    A4,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    Th52;
    
    end;
    
    theorem :: 
    
    MESFUNC6:57
    
    f is
    nonnegative implies ( 
    0  
    <= r implies (r 
    (#) f) is 
    nonnegative) & (r
    <=  
    0 implies (r 
    (#) f) is 
    nonpositive)
    
    proof
    
      assume
    
      
    
    A1: f is 
    nonnegative;
    
      hereby
    
        assume
    
        
    
    A2: 
    0  
    <= r; 
    
        now
    
          let x be
    object such that 
    
          
    
    A3: x 
    in ( 
    dom (r 
    (#) f)); 
    
          
    0  
    <= (f 
    . x) by 
    A1,
    Th51;
    
          then (
    0  
    * r) 
    <= (r 
    * (f 
    . x)) by 
    A2;
    
          hence
    0  
    <= ((r 
    (#) f) 
    . x) by 
    A3,
    VALUED_1:def 5;
    
        end;
    
        hence (r
    (#) f) is 
    nonnegative by 
    Th52;
    
      end;
    
      assume
    
      
    
    A4: r 
    <=  
    0 ; 
    
      now
    
        let x be
    object such that 
    
        
    
    A5: x 
    in ( 
    dom (r 
    (#) f)); 
    
        
    0  
    <= (f 
    . x) by 
    A1,
    Th51;
    
        then (r
    * (f 
    . x)) 
    <= (r 
    *  
    0 ) by 
    A4;
    
        hence ((r
    (#) f) 
    . x) 
    <=  
    0 by 
    A5,
    VALUED_1:def 5;
    
      end;
    
      hence thesis by
    Th54;
    
    end;
    
    theorem :: 
    
    MESFUNC6:58
    
    
    
    
    
    Th58: (for x be 
    set st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (g 
    . x) 
    <= (f 
    . x)) implies (f 
    - g) is 
    nonnegative
    
    proof
    
      assume
    
      
    
    A1: for x be 
    set st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (g 
    . x) 
    <= (f 
    . x); 
    
      now
    
        let x be
    object such that 
    
        
    
    A2: x 
    in ( 
    dom (f 
    - g)); 
    
        (
    dom (f 
    - g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1: 12;
    
        then
    0  
    <= ((f 
    . x) 
    - (g 
    . x)) by 
    A1,
    A2,
    XREAL_1: 48;
    
        hence
    0  
    <= ((f 
    - g) 
    . x) by 
    A2,
    VALUED_1: 13;
    
      end;
    
      hence thesis by
    Th52;
    
    end;
    
    theorem :: 
    
    MESFUNC6:59
    
    f is
    nonnegative & g is 
    nonnegative & h is 
    nonnegative implies ((f 
    + g) 
    + h) is 
    nonnegative
    
    proof
    
      assume that
    
      
    
    A1: f is 
    nonnegative & g is 
    nonnegative and 
    
      
    
    A2: h is 
    nonnegative;
    
      (f
    + g) is 
    nonnegative by 
    A1,
    Th56;
    
      hence thesis by
    A2,
    Th56;
    
    end;
    
    theorem :: 
    
    MESFUNC6:60
    
    
    
    
    
    Th60: for x be 
    object st x 
    in ( 
    dom ((f 
    + g) 
    + h)) holds (((f 
    + g) 
    + h) 
    . x) 
    = (((f 
    . x) 
    + (g 
    . x)) 
    + (h 
    . x)) 
    
    proof
    
      let x be
    object;
    
      assume
    
      
    
    A1: x 
    in ( 
    dom ((f 
    + g) 
    + h)); 
    
      (
    dom ((f 
    + g) 
    + h)) 
    = (( 
    dom (f 
    + g)) 
    /\ ( 
    dom h)) by 
    VALUED_1:def 1;
    
      then x
    in ( 
    dom (f 
    + g)) by 
    A1,
    XBOOLE_0:def 4;
    
      then (((f
    . x) 
    + (g 
    . x)) 
    + (h 
    . x)) 
    = (((f 
    + g) 
    . x) 
    + (h 
    . x)) by 
    VALUED_1:def 1;
    
      hence thesis by
    A1,
    VALUED_1:def 1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:61
    
    (
    max+ f) is 
    nonnegative & ( 
    max- f) is 
    nonnegative
    
    proof
    
      for x be
    object st x 
    in ( 
    dom ( 
    max+ f)) holds 
    0  
    <= (( 
    max+ f) 
    . x) by 
    RFUNCT_3: 37;
    
      hence (
    max+ f) is 
    nonnegative by 
    Th52;
    
      for x be
    object st x 
    in ( 
    dom ( 
    max- f)) holds 
    0  
    <= (( 
    max- f) 
    . x) by 
    RFUNCT_3: 40;
    
      hence thesis by
    Th52;
    
    end;
    
    theorem :: 
    
    MESFUNC6:62
    
    
    
    
    
    Th62: ( 
    dom (( 
    max+ (f 
    + g)) 
    + ( 
    max- f))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (( 
    max- (f 
    + g)) 
    + ( 
    max+ f))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & (( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) is 
    nonnegative & (( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) is 
    nonnegative
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    max- f)) 
    = ( 
    dom f) & ( 
    dom (( 
    max+ (f 
    + g)) 
    + ( 
    max- f))) 
    = (( 
    dom ( 
    max+ (f 
    + g))) 
    /\ ( 
    dom ( 
    max- f))) by 
    RFUNCT_3:def 11,
    VALUED_1:def 1;
    
      
    
      
    
    A2: ( 
    dom ( 
    max+ f)) 
    = ( 
    dom f) & ( 
    dom (( 
    max- (f 
    + g)) 
    + ( 
    max+ f))) 
    = (( 
    dom ( 
    max- (f 
    + g))) 
    /\ ( 
    dom ( 
    max+ f))) by 
    RFUNCT_3:def 10,
    VALUED_1:def 1;
    
      
    
      
    
    A3: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
      then
    
      
    
    A4: ( 
    dom ( 
    max- (f 
    + g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    RFUNCT_3:def 11;
    
      (
    dom ( 
    max+ (f 
    + g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    A3,
    RFUNCT_3:def 10;
    
      then
    
      
    
    A5: ( 
    dom (( 
    max+ (f 
    + g)) 
    + ( 
    max- f))) 
    = (( 
    dom g) 
    /\ (( 
    dom f) 
    /\ ( 
    dom f))) by 
    A1,
    XBOOLE_1: 16;
    
      hence (
    dom (( 
    max+ (f 
    + g)) 
    + ( 
    max- f))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (( 
    max- (f 
    + g)) 
    + ( 
    max+ f))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    A4,
    A2,
    XBOOLE_1: 16;
    
      (
    dom ( 
    max- g)) 
    = ( 
    dom g) by 
    RFUNCT_3:def 11;
    
      
    
      then (
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = ((( 
    dom f) 
    /\ ( 
    dom g)) 
    /\ ( 
    dom g)) by 
    A5,
    VALUED_1:def 1
    
      .= ((
    dom f) 
    /\ (( 
    dom g) 
    /\ ( 
    dom g))) by 
    XBOOLE_1: 16;
    
      hence (
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)); 
    
      (
    dom ( 
    max+ g)) 
    = ( 
    dom g) & ( 
    dom (( 
    max- (f 
    + g)) 
    + ( 
    max+ f))) 
    = (( 
    dom g) 
    /\ (( 
    dom f) 
    /\ ( 
    dom f))) by 
    A4,
    A2,
    RFUNCT_3:def 10,
    XBOOLE_1: 16;
    
      then (
    dom ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g))) 
    = ((( 
    dom f) 
    /\ ( 
    dom g)) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
      then (
    dom ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g))) 
    = (( 
    dom f) 
    /\ (( 
    dom g) 
    /\ ( 
    dom g))) by 
    XBOOLE_1: 16;
    
      hence (
    dom ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)); 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A6: x 
    in ( 
    dom (( 
    max+ (f 
    + g)) 
    + ( 
    max- f))); 
    
        then
    0  
    <= (( 
    max+ (f 
    + g)) 
    . x) & 
    0  
    <= (( 
    max- f) 
    . x) by 
    RFUNCT_3: 37,
    RFUNCT_3: 40;
    
        then (
    0  
    +  
    0 ) 
    <= ((( 
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)); 
    
        hence
    0  
    <= ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    . x) by 
    A6,
    VALUED_1:def 1;
    
      end;
    
      hence ((
    max+ (f 
    + g)) 
    + ( 
    max- f)) is 
    nonnegative by 
    Th52;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom (( 
    max- (f 
    + g)) 
    + ( 
    max+ f))); 
    
        then
    0  
    <= (( 
    max- (f 
    + g)) 
    . x) & 
    0  
    <= (( 
    max+ f) 
    . x) by 
    RFUNCT_3: 37,
    RFUNCT_3: 40;
    
        then (
    0  
    +  
    0 ) 
    <= ((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)); 
    
        hence
    0  
    <= ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    . x) by 
    A7,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    Th52;
    
    end;
    
    theorem :: 
    
    MESFUNC6:63
    
    (((
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g)) 
    = ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    max+ (f 
    + g))) 
    = ( 
    dom (f 
    + g)) by 
    RFUNCT_3:def 10;
    
      
    
      
    
    A2: ( 
    dom ( 
    max+ g)) 
    = ( 
    dom g) by 
    RFUNCT_3:def 10;
    
      
    
      
    
    A3: ( 
    dom ( 
    max+ f)) 
    = ( 
    dom f) by 
    RFUNCT_3:def 10;
    
      
    
      
    
    A4: ( 
    dom ( 
    max- f)) 
    = ( 
    dom f) by 
    RFUNCT_3:def 11;
    
      
    
      
    
    A5: ( 
    dom ( 
    max- g)) 
    = ( 
    dom g) by 
    RFUNCT_3:def 11;
    
      
    
      
    
    A6: ( 
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = (( 
    dom (( 
    max+ (f 
    + g)) 
    + ( 
    max- f))) 
    /\ ( 
    dom ( 
    max- g))) by 
    VALUED_1:def 1
    
      .= (((
    dom (f 
    + g)) 
    /\ ( 
    dom f)) 
    /\ ( 
    dom g)) by 
    A1,
    A4,
    A5,
    VALUED_1:def 1;
    
      then
    
      
    
    A7: ( 
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = (( 
    dom (f 
    + g)) 
    /\ (( 
    dom f) 
    /\ ( 
    dom g))) by 
    XBOOLE_1: 16;
    
      
    
      
    
    A8: ( 
    dom ( 
    max- (f 
    + g))) 
    = ( 
    dom (f 
    + g)) by 
    RFUNCT_3:def 11;
    
      
    
      
    
    A9: for x be 
    object st x 
    in ( 
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) holds (((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g)) 
    . x) 
    = (((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A10: x 
    in ( 
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))); 
    
        then
    
        
    
    A11: x 
    in ( 
    dom g) by 
    A6,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A12: (( 
    max+ g) 
    . x) 
    = ( 
    max+ (g 
    . x)) by 
    A2,
    RFUNCT_3:def 10;
    
        
    
        
    
    A13: (( 
    max- g) 
    . x) 
    = ( 
    max- (g 
    . x)) by 
    A5,
    A11,
    RFUNCT_3:def 11;
    
        
    
        
    
    A14: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
        
    
        then
    
        
    
    A15: (( 
    max+ (f 
    + g)) 
    . x) 
    = ( 
    max+ ((f 
    + g) 
    . x)) by 
    A1,
    A7,
    A10,
    RFUNCT_3:def 10
    
        .= (
    max (((f 
    . x) 
    + (g 
    . x)), 
    0 )) by 
    A7,
    A10,
    A14,
    VALUED_1:def 1;
    
        
    
        
    
    A16: x 
    in ( 
    dom f) by 
    A7,
    A10,
    A14,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A17: (( 
    max+ f) 
    . x) 
    = ( 
    max+ (f 
    . x)) by 
    A3,
    RFUNCT_3:def 10;
    
        
    
        
    
    A18: (( 
    max- (f 
    + g)) 
    . x) 
    = ( 
    max- ((f 
    + g) 
    . x)) by 
    A8,
    A7,
    A10,
    A14,
    RFUNCT_3:def 11
    
        .= (
    max (( 
    - ((f 
    . x) 
    + (g 
    . x))), 
    0 )) by 
    A7,
    A10,
    A14,
    VALUED_1:def 1;
    
        
    
        
    
    A19: (( 
    max- f) 
    . x) 
    = ( 
    max- (f 
    . x)) by 
    A4,
    A16,
    RFUNCT_3:def 11;
    
        
    
    A20: 
    
        now
    
          assume
    
          
    
    A21: 
    0  
    <= (f 
    . x); 
    
          then
    
          
    
    A22: (( 
    max- f) 
    . x) 
    =  
    0 by 
    A19,
    XXREAL_0:def 10;
    
          
    
    A23: 
    
          now
    
            assume
    
            
    
    A24: (g 
    . x) 
    <  
    0 ; 
    
            then
    
            
    
    A25: (( 
    max- g) 
    . x) 
    = ( 
    - (g 
    . x)) by 
    A13,
    XXREAL_0:def 10;
    
            
    
            
    
    A26: (( 
    max+ g) 
    . x) 
    =  
    0 by 
    A12,
    A24,
    XXREAL_0:def 10;
    
            
    
    A27: 
    
            now
    
              assume
    
              
    
    A28: ((f 
    . x) 
    + (g 
    . x)) 
    <  
    0 ; 
    
              then ((
    max- (f 
    + g)) 
    . x) 
    = ( 
    - ((f 
    . x) 
    + (g 
    . x))) by 
    A18,
    XXREAL_0:def 10;
    
              then ((((
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) 
    = ((( 
    - ((f 
    . x) 
    + (g 
    . x) qua 
    Real))
    + (f 
    . x)) 
    +  
    0 ) by 
    A17,
    A21,
    A26,
    XXREAL_0:def 10;
    
              hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A15,
    A22,
    A25,
    A28,
    XXREAL_0:def 10;
    
            end;
    
            now
    
              assume
    0  
    <= ((f 
    . x) 
    + (g 
    . x)); 
    
              then ((
    max- (f 
    + g)) 
    . x) 
    =  
    0 & (((( 
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = ((((f 
    . x) 
    + (g 
    . x) qua 
    Real)
    +  
    0 ) 
    + ( 
    - (g 
    . x) qua 
    Real)) by
    A15,
    A18,
    A22,
    A25,
    XXREAL_0:def 10;
    
              hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A17,
    A21,
    A26,
    XXREAL_0:def 10;
    
            end;
    
            hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A27;
    
          end;
    
          now
    
            assume
    
            
    
    A29: 
    0  
    <= (g 
    . x); 
    
            then ((
    max- g) 
    . x) 
    =  
    0 by 
    A13,
    XXREAL_0:def 10;
    
            then
    
            
    
    A30: (((( 
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A15,
    A21,
    A22,
    A29,
    XXREAL_0:def 10;
    
            ((
    max- (f 
    + g)) 
    . x) 
    =  
    0 & (( 
    max+ g) 
    . x) 
    = (g 
    . x) by 
    A18,
    A12,
    A21,
    A29,
    XXREAL_0:def 10;
    
            hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A17,
    A21,
    A30,
    XXREAL_0:def 10;
    
          end;
    
          hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A23;
    
        end;
    
        
    
    A31: 
    
        now
    
          assume
    
          
    
    A32: (f 
    . x) 
    <  
    0 ; 
    
          then
    
          
    
    A33: (( 
    max- f) 
    . x) 
    = ( 
    - (f 
    . x)) by 
    A19,
    XXREAL_0:def 10;
    
          
    
    A34: 
    
          now
    
            assume
    
            
    
    A35: 
    0  
    <= (g 
    . x); 
    
            then
    
            
    
    A36: (( 
    max- g) 
    . x) 
    =  
    0 by 
    A13,
    XXREAL_0:def 10;
    
            
    
            
    
    A37: (( 
    max+ g) 
    . x) 
    = (g 
    . x) by 
    A12,
    A35,
    XXREAL_0:def 10;
    
            
    
    A38: 
    
            now
    
              assume
    
              
    
    A39: ((f 
    . x) 
    + (g 
    . x)) 
    <  
    0 ; 
    
              then ((
    max- (f 
    + g)) 
    . x) 
    = ( 
    - ((f 
    . x) 
    + (g 
    . x))) by 
    A18,
    XXREAL_0:def 10;
    
              
    
              then ((((
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) 
    = ((( 
    - ((f 
    . x) 
    + (g 
    . x) qua 
    Real))
    +  
    0 ) 
    + (g 
    . x)) by 
    A17,
    A32,
    A37,
    XXREAL_0:def 10
    
              .= ((
    - (f 
    . x)) 
    + (( 
    - (g 
    . x)) 
    + (g 
    . x))); 
    
              hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A15,
    A33,
    A36,
    A39,
    XXREAL_0:def 10;
    
            end;
    
            now
    
              assume
    0  
    <= ((f 
    . x) 
    + (g 
    . x)); 
    
              then ((
    max- (f 
    + g)) 
    . x) 
    =  
    0 & (((( 
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = ((((f 
    . x) 
    + (g 
    . x) qua 
    Real)
    + ( 
    - (f 
    . x) qua 
    Real))
    +  
    0 ) by 
    A15,
    A18,
    A33,
    A36,
    XXREAL_0:def 10;
    
              hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A17,
    A32,
    A37,
    XXREAL_0:def 10;
    
            end;
    
            hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A38;
    
          end;
    
          now
    
            assume
    
            
    
    A40: (g 
    . x) 
    <  
    0 ; 
    
            then ((
    max- (f 
    + g)) 
    . x) 
    = ( 
    - ((f 
    . x) 
    + (g 
    . x))) & (( 
    max+ g) 
    . x) 
    =  
    0 by 
    A18,
    A12,
    A32,
    XXREAL_0:def 10;
    
            then
    
            
    
    A41: (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) 
    = ((( 
    - ((f 
    . x) 
    + (g 
    . x) qua 
    Real))
    +  
    0 ) 
    +  
    0 ) by 
    A17,
    A32,
    XXREAL_0:def 10;
    
            ((
    max- g) 
    . x) 
    = ( 
    - (g 
    . x)) by 
    A13,
    A40,
    XXREAL_0:def 10;
    
            then ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (( 
    0  
    + ( 
    - (f 
    . x) qua 
    Real))
    + ( 
    - (g 
    . x) qua 
    Real)) by
    A15,
    A32,
    A33,
    A40,
    XXREAL_0:def 10;
    
            hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A41;
    
          end;
    
          hence ((((
    max+ (f 
    + g)) 
    . x) 
    + (( 
    max- f) 
    . x)) 
    + (( 
    max- g) 
    . x)) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    A34;
    
        end;
    
        x
    in (( 
    dom f) 
    /\ ( 
    dom g)) by 
    A10,
    Th62;
    
        then x
    in ( 
    dom ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g))) by 
    Th62;
    
        then ((((
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g)) 
    . x) 
    = (((( 
    max- (f 
    + g)) 
    . x) 
    + (( 
    max+ f) 
    . x)) 
    + (( 
    max+ g) 
    . x)) by 
    Th60;
    
        hence thesis by
    A10,
    A20,
    A31,
    Th60;
    
      end;
    
      (
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Th62;
    
      then (
    dom ((( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) 
    + ( 
    max- g))) 
    = ( 
    dom ((( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) 
    + ( 
    max+ g))) by 
    Th62;
    
      hence thesis by
    A9,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:64
    
    
    0  
    <= r implies ( 
    max+ (r 
    (#) f)) 
    = (r 
    (#) ( 
    max+ f)) & ( 
    max- (r 
    (#) f)) 
    = (r 
    (#) ( 
    max- f)) 
    
    proof
    
      assume
    
      
    
    A1: 
    0  
    <= r; 
    
      
    
      
    
    A2: ( 
    dom ( 
    max+ (r 
    (#) f))) 
    = ( 
    dom (r 
    (#) f)) by 
    RFUNCT_3:def 10
    
      .= (
    dom f) by 
    VALUED_1:def 5
    
      .= (
    dom ( 
    max+ f)) by 
    RFUNCT_3:def 10
    
      .= (
    dom (r 
    (#) ( 
    max+ f))) by 
    VALUED_1:def 5;
    
      reconsider rr = r as
    Real;
    
      for x be
    Element of X st x 
    in ( 
    dom ( 
    max+ (r 
    (#) f))) holds (( 
    max+ (r 
    (#) f)) 
    . x) 
    = ((r 
    (#) ( 
    max+ f)) 
    . x) 
    
      proof
    
        let x be
    Element of X; 
    
        assume
    
        
    
    A3: x 
    in ( 
    dom ( 
    max+ (r 
    (#) f))); 
    
        then
    
        
    
    A4: x 
    in ( 
    dom (r 
    (#) f)) by 
    RFUNCT_3:def 10;
    
        then x
    in ( 
    dom f) by 
    VALUED_1:def 5;
    
        then
    
        
    
    A5: x 
    in ( 
    dom ( 
    max+ f)) by 
    RFUNCT_3:def 10;
    
        
    
        
    
    A6: (( 
    max+ (r 
    (#) f)) 
    . x) 
    = ( 
    max+ ((r 
    (#) f) 
    . x)) by 
    A3,
    RFUNCT_3:def 10
    
        .= (
    max ((r 
    * (f 
    . x)), 
    0 )) by 
    A4,
    VALUED_1:def 5;
    
        ((r
    (#) ( 
    max+ f)) 
    . x) 
    = (r 
    * (( 
    max+ f) 
    . x)) by 
    A2,
    A3,
    VALUED_1:def 5
    
        .= (rr
    * ( 
    max+ (f 
    . x))) by 
    A5,
    RFUNCT_3:def 10
    
        .= (
    max ((rr 
    * (f 
    . x)),(rr 
    *  
    0 ))) by 
    A1,
    FUZZY_2: 41;
    
        hence thesis by
    A6;
    
      end;
    
      hence (
    max+ (r 
    (#) f)) 
    = (r 
    (#) ( 
    max+ f)) by 
    A2,
    PARTFUN1: 5;
    
      
    
      
    
    A7: ( 
    dom ( 
    max- (r 
    (#) f))) 
    = ( 
    dom (r 
    (#) f)) by 
    RFUNCT_3:def 11
    
      .= (
    dom f) by 
    VALUED_1:def 5
    
      .= (
    dom ( 
    max- f)) by 
    RFUNCT_3:def 11
    
      .= (
    dom (r 
    (#) ( 
    max- f))) by 
    VALUED_1:def 5;
    
      for x be
    Element of X st x 
    in ( 
    dom ( 
    max- (r 
    (#) f))) holds (( 
    max- (r 
    (#) f)) 
    . x) 
    = ((r 
    (#) ( 
    max- f)) 
    . x) 
    
      proof
    
        let x be
    Element of X; 
    
        assume
    
        
    
    A8: x 
    in ( 
    dom ( 
    max- (r 
    (#) f))); 
    
        then
    
        
    
    A9: x 
    in ( 
    dom (r 
    (#) f)) by 
    RFUNCT_3:def 11;
    
        then x
    in ( 
    dom f) by 
    VALUED_1:def 5;
    
        then
    
        
    
    A10: x 
    in ( 
    dom ( 
    max- f)) by 
    RFUNCT_3:def 11;
    
        
    
        
    
    A11: (( 
    max- (r 
    (#) f)) 
    . x) 
    = ( 
    max- ((r 
    (#) f) 
    . x)) by 
    A8,
    RFUNCT_3:def 11
    
        .= (
    max (( 
    - (r 
    * (f 
    . x))), 
    0 )) by 
    A9,
    VALUED_1:def 5;
    
        ((r
    (#) ( 
    max- f)) 
    . x) 
    = (r 
    * (( 
    max- f) 
    . x)) by 
    A7,
    A8,
    VALUED_1:def 5
    
        .= (rr
    * ( 
    max- (f 
    . x))) by 
    A10,
    RFUNCT_3:def 11
    
        .= (
    max ((rr 
    * ( 
    - (f 
    . x) qua 
    Real) qua
    Real),(rr
    *  
    0 ))) by 
    A1,
    FUZZY_2: 41
    
        .= (
    max (( 
    - (r 
    * (f 
    . x))),(r 
    *  
    0 ))); 
    
        hence thesis by
    A11;
    
      end;
    
      hence thesis by
    A7,
    PARTFUN1: 5;
    
    end;
    
    theorem :: 
    
    MESFUNC6:65
    
    
    0  
    <= r implies ( 
    max+ (( 
    - r) 
    (#) f)) 
    = (r 
    (#) ( 
    max- f)) & ( 
    max- (( 
    - r) 
    (#) f)) 
    = (r 
    (#) ( 
    max+ f)) 
    
    proof
    
      assume
    
      
    
    A1: 
    0  
    <= r; 
    
      
    
      
    
    A2: ( 
    dom ( 
    max+ (( 
    - r) 
    (#) f))) 
    = ( 
    dom (( 
    - r) 
    (#) f)) by 
    RFUNCT_3:def 10;
    
      then (
    dom ( 
    max+ (( 
    - r) 
    (#) f))) 
    = ( 
    dom f) by 
    VALUED_1:def 5;
    
      then
    
      
    
    A3: ( 
    dom ( 
    max+ (( 
    - r) 
    (#) f))) 
    = ( 
    dom ( 
    max- f)) by 
    RFUNCT_3:def 11;
    
      then
    
      
    
    A4: ( 
    dom ( 
    max+ (( 
    - r) 
    (#) f))) 
    = ( 
    dom (r 
    (#) ( 
    max- f))) by 
    VALUED_1:def 5;
    
      reconsider rr = r as
    Real;
    
      for x be
    Element of X st x 
    in ( 
    dom ( 
    max+ (( 
    - r) 
    (#) f))) holds (( 
    max+ (( 
    - r) 
    (#) f)) 
    . x) 
    = ((r 
    (#) ( 
    max- f)) 
    . x) 
    
      proof
    
        let x be
    Element of X; 
    
        assume
    
        
    
    A5: x 
    in ( 
    dom ( 
    max+ (( 
    - r) 
    (#) f))); 
    
        
    
        then
    
        
    
    A6: (( 
    max+ (( 
    - r) 
    (#) f)) 
    . x) 
    = ( 
    max+ ((( 
    - r) 
    (#) f) 
    . x)) by 
    RFUNCT_3:def 10
    
        .= (
    max ((( 
    - r) 
    * (f 
    . x)), 
    0 )) by 
    A2,
    A5,
    VALUED_1:def 5;
    
        ((r
    (#) ( 
    max- f)) 
    . x) 
    = (r 
    * (( 
    max- f) 
    . x)) by 
    A4,
    A5,
    VALUED_1:def 5
    
        .= (rr
    * ( 
    max- (f 
    . x))) by 
    A3,
    A5,
    RFUNCT_3:def 11
    
        .= (
    max ((rr 
    * ( 
    - (f 
    . x) qua 
    Real) qua
    Real),(rr
    *  
    0 ))) by 
    A1,
    FUZZY_2: 41;
    
        hence thesis by
    A6;
    
      end;
    
      hence (
    max+ (( 
    - r) 
    (#) f)) 
    = (r 
    (#) ( 
    max- f)) by 
    A4,
    PARTFUN1: 5;
    
      
    
      
    
    A7: ( 
    dom ( 
    max- (( 
    - r) 
    (#) f))) 
    = ( 
    dom (( 
    - r) 
    (#) f)) by 
    RFUNCT_3:def 11;
    
      then (
    dom ( 
    max- (( 
    - r) 
    (#) f))) 
    = ( 
    dom f) by 
    VALUED_1:def 5;
    
      then
    
      
    
    A8: ( 
    dom ( 
    max- (( 
    - r) 
    (#) f))) 
    = ( 
    dom ( 
    max+ f)) by 
    RFUNCT_3:def 10;
    
      then
    
      
    
    A9: ( 
    dom ( 
    max- (( 
    - r) 
    (#) f))) 
    = ( 
    dom (r 
    (#) ( 
    max+ f))) by 
    VALUED_1:def 5;
    
      for x be
    Element of X st x 
    in ( 
    dom ( 
    max- (( 
    - r) 
    (#) f))) holds (( 
    max- (( 
    - r) 
    (#) f)) 
    . x) 
    = ((r 
    (#) ( 
    max+ f)) 
    . x) 
    
      proof
    
        let x be
    Element of X; 
    
        assume
    
        
    
    A10: x 
    in ( 
    dom ( 
    max- (( 
    - r) 
    (#) f))); 
    
        
    
        then
    
        
    
    A11: (( 
    max- (( 
    - r) 
    (#) f)) 
    . x) 
    = ( 
    max- ((( 
    - r) 
    (#) f) 
    . x)) by 
    RFUNCT_3:def 11
    
        .= (
    max (( 
    - (( 
    - r) 
    * (f 
    . x))), 
    0 )) by 
    A7,
    A10,
    VALUED_1:def 5;
    
        ((r
    (#) ( 
    max+ f)) 
    . x) 
    = (r 
    * (( 
    max+ f) 
    . x)) by 
    A9,
    A10,
    VALUED_1:def 5
    
        .= (rr
    * ( 
    max+ (f 
    . x))) by 
    A8,
    A10,
    RFUNCT_3:def 10
    
        .= (
    max ((rr 
    * (f 
    . x)),(rr 
    *  
    0 ))) by 
    A1,
    FUZZY_2: 41;
    
        hence thesis by
    A11;
    
      end;
    
      hence thesis by
    A9,
    PARTFUN1: 5;
    
    end;
    
    theorem :: 
    
    MESFUNC6:66
    
    (
    max+ (f 
    | Y)) 
    = (( 
    max+ f) 
    | Y) & ( 
    max- (f 
    | Y)) 
    = (( 
    max- f) 
    | Y) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    max+ (f 
    | Y))) 
    = ( 
    dom (f 
    | Y)) by 
    RFUNCT_3:def 10
    
      .= ((
    dom f) 
    /\ Y) by 
    RELAT_1: 61
    
      .= ((
    dom ( 
    max+ f)) 
    /\ Y) by 
    RFUNCT_3:def 10
    
      .= (
    dom (( 
    max+ f) 
    | Y)) by 
    RELAT_1: 61;
    
      for x be
    Element of X st x 
    in ( 
    dom ( 
    max+ (f 
    | Y))) holds (( 
    max+ (f 
    | Y)) 
    . x) 
    = ((( 
    max+ f) 
    | Y) 
    . x) 
    
      proof
    
        let x be
    Element of X; 
    
        assume
    
        
    
    A2: x 
    in ( 
    dom ( 
    max+ (f 
    | Y))); 
    
        then
    
        
    
    A3: x 
    in (( 
    dom ( 
    max+ f)) 
    /\ Y) by 
    A1,
    RELAT_1: 61;
    
        then
    
        
    
    A4: x 
    in Y by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A5: x 
    in ( 
    dom ( 
    max+ f)) by 
    A3,
    XBOOLE_0:def 4;
    
        
    
        
    
    A6: (( 
    max+ (f 
    | Y)) 
    . x) 
    = ( 
    max+ ((f 
    | Y) 
    . x)) by 
    A2,
    RFUNCT_3:def 10
    
        .= (
    max ((f 
    . x), 
    0 )) by 
    A4,
    FUNCT_1: 49;
    
        (((
    max+ f) 
    | Y) 
    . x) 
    = (( 
    max+ f) 
    . x) by 
    A1,
    A2,
    FUNCT_1: 47
    
        .= (
    max+ (f 
    . x)) by 
    A5,
    RFUNCT_3:def 10;
    
        hence thesis by
    A6;
    
      end;
    
      hence (
    max+ (f 
    | Y)) 
    = (( 
    max+ f) 
    | Y) by 
    A1,
    PARTFUN1: 5;
    
      
    
      
    
    A7: ( 
    dom ( 
    max- (f 
    | Y))) 
    = ( 
    dom (f 
    | Y)) by 
    RFUNCT_3:def 11
    
      .= ((
    dom f) 
    /\ Y) by 
    RELAT_1: 61
    
      .= ((
    dom ( 
    max- f)) 
    /\ Y) by 
    RFUNCT_3:def 11
    
      .= (
    dom (( 
    max- f) 
    | Y)) by 
    RELAT_1: 61;
    
      for x be
    Element of X st x 
    in ( 
    dom ( 
    max- (f 
    | Y))) holds (( 
    max- (f 
    | Y)) 
    . x) 
    = ((( 
    max- f) 
    | Y) 
    . x) 
    
      proof
    
        let x be
    Element of X; 
    
        assume
    
        
    
    A8: x 
    in ( 
    dom ( 
    max- (f 
    | Y))); 
    
        then
    
        
    
    A9: x 
    in (( 
    dom ( 
    max- f)) 
    /\ Y) by 
    A7,
    RELAT_1: 61;
    
        then
    
        
    
    A10: x 
    in Y by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A11: x 
    in ( 
    dom ( 
    max- f)) by 
    A9,
    XBOOLE_0:def 4;
    
        
    
        
    
    A12: (( 
    max- (f 
    | Y)) 
    . x) 
    = ( 
    max- ((f 
    | Y) 
    . x)) by 
    A8,
    RFUNCT_3:def 11
    
        .= (
    max (( 
    - (f 
    . x)), 
    0 )) by 
    A10,
    FUNCT_1: 49;
    
        (((
    max- f) 
    | Y) 
    . x) 
    = (( 
    max- f) 
    . x) by 
    A7,
    A8,
    FUNCT_1: 47
    
        .= (
    max- (f 
    . x)) by 
    A11,
    RFUNCT_3:def 11;
    
        hence thesis by
    A12;
    
      end;
    
      hence thesis by
    A7,
    PARTFUN1: 5;
    
    end;
    
    theorem :: 
    
    MESFUNC6:67
    
    Y
    c= ( 
    dom (f 
    + g)) implies ( 
    dom ((f 
    + g) 
    | Y)) 
    = Y & ( 
    dom ((f 
    | Y) 
    + (g 
    | Y))) 
    = Y & ((f 
    + g) 
    | Y) 
    = ((f 
    | Y) 
    + (g 
    | Y)) 
    
    proof
    
      assume
    
      
    
    A1: Y 
    c= ( 
    dom (f 
    + g)); 
    
      ((
    dom (f 
    | Y)) 
    /\ ( 
    dom (g 
    | Y))) 
    = ((( 
    dom f) 
    /\ Y) 
    /\ ( 
    dom (g 
    | Y))) by 
    RELAT_1: 61
    
      .= (((
    dom f) 
    /\ Y) 
    /\ (( 
    dom g) 
    /\ Y)) by 
    RELAT_1: 61
    
      .= ((((
    dom f) 
    /\ Y) 
    /\ ( 
    dom g)) 
    /\ Y) by 
    XBOOLE_1: 16
    
      .= ((((
    dom f) 
    /\ ( 
    dom g)) 
    /\ Y) 
    /\ Y) by 
    XBOOLE_1: 16
    
      .= (((
    dom f) 
    /\ ( 
    dom g)) 
    /\ (Y 
    /\ Y)) by 
    XBOOLE_1: 16;
    
      
    
      then
    
      
    
    A2: ( 
    dom ((f 
    | Y) 
    + (g 
    | Y))) 
    = ((( 
    dom f) 
    /\ ( 
    dom g)) 
    /\ Y) by 
    VALUED_1:def 1
    
      .= ((
    dom (f 
    + g)) 
    /\ Y) by 
    VALUED_1:def 1
    
      .= Y by
    A1,
    XBOOLE_1: 28;
    
      
    
      
    
    A3: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
      (
    dom (g 
    | Y)) 
    = (( 
    dom g) 
    /\ Y) by 
    RELAT_1: 61;
    
      then
    
      
    
    A4: ( 
    dom (g 
    | Y)) 
    = Y by 
    A1,
    A3,
    XBOOLE_1: 18,
    XBOOLE_1: 28;
    
      
    
      
    
    A5: ( 
    dom ((f 
    + g) 
    | Y)) 
    = (( 
    dom (f 
    + g)) 
    /\ Y) by 
    RELAT_1: 61;
    
      then
    
      
    
    A6: ( 
    dom ((f 
    + g) 
    | Y)) 
    = Y by 
    A1,
    XBOOLE_1: 28;
    
      (
    dom (f 
    | Y)) 
    = (( 
    dom f) 
    /\ Y) by 
    RELAT_1: 61;
    
      then
    
      
    
    A7: ( 
    dom (f 
    | Y)) 
    = Y by 
    A1,
    A3,
    XBOOLE_1: 18,
    XBOOLE_1: 28;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A8: x 
    in ( 
    dom ((f 
    + g) 
    | Y)); 
    
        
    
        hence (((f
    + g) 
    | Y) 
    . x) 
    = ((f 
    + g) 
    . x) by 
    FUNCT_1: 47
    
        .= ((f
    . x) 
    + (g 
    . x)) by 
    A1,
    A6,
    A8,
    VALUED_1:def 1
    
        .= (((f
    | Y) 
    . x) 
    + (g 
    . x)) by 
    A6,
    A7,
    A8,
    FUNCT_1: 47
    
        .= (((f
    | Y) 
    . x) 
    + ((g 
    | Y) 
    . x)) by 
    A6,
    A4,
    A8,
    FUNCT_1: 47
    
        .= (((f
    | Y) 
    + (g 
    | Y)) 
    . x) by 
    A6,
    A2,
    A8,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A2,
    FUNCT_1: 2,
    XBOOLE_1: 28;
    
    end;
    
    theorem :: 
    
    MESFUNC6:68
    
    (
    eq_dom (f,r)) 
    = (f 
    "  
    {r})
    
    proof
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A1: x 
    in (f 
    "  
    {r});
    
        then (f
    . x) 
    in  
    {r} by
    FUNCT_1:def 7;
    
        then
    
        
    
    A2: (( 
    R_EAL f) 
    . x) 
    = r by 
    TARSKI:def 1;
    
        x
    in ( 
    dom f) by 
    A1,
    FUNCT_1:def 7;
    
        hence x
    in ( 
    eq_dom (f,r)) by 
    A2,
    MESFUNC1:def 15;
    
      end;
    
      then
    
      
    
    A3: (f 
    "  
    {r})
    c= ( 
    eq_dom (f,r)); 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    eq_dom (f,r)); 
    
        then r
    = (f 
    . x) by 
    MESFUNC1:def 15;
    
        then
    
        
    
    A5: (f 
    . x) 
    in  
    {r} by
    TARSKI:def 1;
    
        x
    in ( 
    dom f) by 
    A4,
    MESFUNC1:def 15;
    
        hence x
    in (f 
    "  
    {r}) by
    A5,
    FUNCT_1:def 7;
    
      end;
    
      then (
    eq_dom (f,r)) 
    c= (f 
    "  
    {r});
    
      hence thesis by
    A3;
    
    end;
    
    begin
    
    reserve X for non
    empty  
    set, 
    
S for
    SigmaField of X, 
    
f,g for
    PartFunc of X, 
    REAL , 
    
A,B for
    Element of S, 
    
r,s for
    Real;
    
    theorem :: 
    
    MESFUNC6:69
    
    f is A
    -measurable & A 
    c= ( 
    dom f) implies ((A 
    /\ ( 
    great_eq_dom (f,r))) 
    /\ ( 
    less_dom (f,s))) 
    in S 
    
    proof
    
      assume that
    
      
    
    A1: f is A 
    -measurable and 
    
      
    
    A2: A 
    c= ( 
    dom f); 
    
      (
    R_EAL f) is A 
    -measurable by 
    A1;
    
      then
    
      
    
    A3: (A 
    /\ ( 
    less_dom (( 
    R_EAL f),s))) 
    in S by 
    MESFUNC1:def 16;
    
      
    
      
    
    A4: ((A 
    /\ ( 
    great_eq_dom (f,r))) 
    /\ (A 
    /\ ( 
    less_dom (f,s)))) 
    = (((A 
    /\ ( 
    great_eq_dom (f,r))) 
    /\ A) 
    /\ ( 
    less_dom (f,s))) by 
    XBOOLE_1: 16
    
      .= (((
    great_eq_dom (f,r)) 
    /\ (A 
    /\ A)) 
    /\ ( 
    less_dom (f,s))) by 
    XBOOLE_1: 16;
    
      (A
    /\ ( 
    great_eq_dom (f,r))) 
    in S by 
    A1,
    A2,
    Th13;
    
      hence thesis by
    A3,
    A4,
    FINSUB_1:def 2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:70
    
    
    
    
    
    Th70: f 
    is_simple_func_in S implies (f 
    | A) 
    is_simple_func_in S 
    
    proof
    
      assume f
    is_simple_func_in S; 
    
      then
    
      consider F be
    Finite_Sep_Sequence of S such that 
    
      
    
    A1: ( 
    dom f) 
    = ( 
    union ( 
    rng F)) and 
    
      
    
    A2: for n be 
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom F) & x 
    in (F 
    . n) & y 
    in (F 
    . n) holds (f 
    . x) 
    = (f 
    . y); 
    
      deffunc
    
    FA(
    Nat) = ((F
    . $1) 
    /\ A); 
    
      consider G be
    FinSequence such that 
    
      
    
    A3: ( 
    len G) 
    = ( 
    len F) & for n be 
    Nat st n 
    in ( 
    dom G) holds (G 
    . n) 
    =  
    FA(n) from
    FINSEQ_1:sch 2;
    
      
    
      
    
    A4: ( 
    rng G) 
    c= S 
    
      proof
    
        let P be
    object;
    
        assume P
    in ( 
    rng G); 
    
        then
    
        consider k be
    object such that 
    
        
    
    A5: k 
    in ( 
    dom G) and 
    
        
    
    A6: P 
    = (G 
    . k) by 
    FUNCT_1:def 3;
    
        reconsider k as
    Element of 
    NAT by 
    A5;
    
        k
    in ( 
    Seg ( 
    len F)) by 
    A3,
    A5,
    FINSEQ_1:def 3;
    
        then k
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A7: (F 
    . k) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
        (G
    . k) 
    = ((F 
    . k) 
    /\ A) by 
    A3,
    A5;
    
        hence thesis by
    A6,
    A7,
    FINSUB_1:def 2;
    
      end;
    
      
    
      
    
    A8: ( 
    dom G) 
    = ( 
    Seg ( 
    len F)) by 
    A3,
    FINSEQ_1:def 3;
    
      reconsider G as
    FinSequence of S by 
    A4,
    FINSEQ_1:def 4;
    
      for i,j be
    Nat st i 
    in ( 
    dom G) & j 
    in ( 
    dom G) & i 
    <> j holds (G 
    . i) 
    misses (G 
    . j) 
    
      proof
    
        let i,j be
    Nat;
    
        assume that
    
        
    
    A9: i 
    in ( 
    dom G) and 
    
        
    
    A10: j 
    in ( 
    dom G) and 
    
        
    
    A11: i 
    <> j; 
    
        j
    in ( 
    Seg ( 
    len F)) by 
    A3,
    A10,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A12: j 
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        i
    in ( 
    Seg ( 
    len F)) by 
    A3,
    A9,
    FINSEQ_1:def 3;
    
        then i
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A13: (F 
    . i) 
    misses (F 
    . j) by 
    A11,
    A12,
    MESFUNC3: 4;
    
        (G
    . i) 
    = ((F 
    . i) 
    /\ A) & (G 
    . j) 
    = ((F 
    . j) 
    /\ A) by 
    A3,
    A9,
    A10;
    
        
    
        then ((G
    . i) 
    /\ (G 
    . j)) 
    = ((((F 
    . i) 
    /\ A) 
    /\ (F 
    . j)) 
    /\ A) by 
    XBOOLE_1: 16
    
        .= ((((F
    . i) 
    /\ (F 
    . j)) 
    /\ A) 
    /\ A) by 
    XBOOLE_1: 16
    
        .= ((
    {}  
    /\ A) 
    /\ A) by 
    A13;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider G as
    Finite_Sep_Sequence of S by 
    MESFUNC3: 4;
    
      for v be
    object st v 
    in ( 
    union ( 
    rng G)) holds v 
    in ( 
    dom (f 
    | A)) 
    
      proof
    
        let v be
    object;
    
        assume v
    in ( 
    union ( 
    rng G)); 
    
        then
    
        consider W be
    set such that 
    
        
    
    A14: v 
    in W and 
    
        
    
    A15: W 
    in ( 
    rng G) by 
    TARSKI:def 4;
    
        consider k be
    object such that 
    
        
    
    A16: k 
    in ( 
    dom G) and 
    
        
    
    A17: W 
    = (G 
    . k) by 
    A15,
    FUNCT_1:def 3;
    
        reconsider k as
    Element of 
    NAT by 
    A16;
    
        k
    in ( 
    Seg ( 
    len F)) by 
    A3,
    A16,
    FINSEQ_1:def 3;
    
        then k
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A18: (F 
    . k) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
        
    
        
    
    A19: (G 
    . k) 
    = ((F 
    . k) 
    /\ A) by 
    A3,
    A16;
    
        then v
    in (F 
    . k) by 
    A14,
    A17,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A20: v 
    in ( 
    union ( 
    rng F)) by 
    A18,
    TARSKI:def 4;
    
        v
    in A by 
    A14,
    A17,
    A19,
    XBOOLE_0:def 4;
    
        then v
    in (( 
    dom f) 
    /\ A) by 
    A1,
    A20,
    XBOOLE_0:def 4;
    
        hence thesis by
    RELAT_1: 61;
    
      end;
    
      then
    
      
    
    A21: ( 
    union ( 
    rng G)) 
    c= ( 
    dom (f 
    | A)); 
    
      for v be
    object st v 
    in ( 
    dom (f 
    | A)) holds v 
    in ( 
    union ( 
    rng G)) 
    
      proof
    
        let v be
    object;
    
        assume v
    in ( 
    dom (f 
    | A)); 
    
        then
    
        
    
    A22: v 
    in (( 
    dom f) 
    /\ A) by 
    RELAT_1: 61;
    
        then
    
        
    
    A23: v 
    in A by 
    XBOOLE_0:def 4;
    
        v
    in ( 
    dom f) by 
    A22,
    XBOOLE_0:def 4;
    
        then
    
        consider W be
    set such that 
    
        
    
    A24: v 
    in W and 
    
        
    
    A25: W 
    in ( 
    rng F) by 
    A1,
    TARSKI:def 4;
    
        consider k be
    object such that 
    
        
    
    A26: k 
    in ( 
    dom F) and 
    
        
    
    A27: W 
    = (F 
    . k) by 
    A25,
    FUNCT_1:def 3;
    
        reconsider k as
    Element of 
    NAT by 
    A26;
    
        
    
        
    
    A28: k 
    in ( 
    Seg ( 
    len F)) by 
    A26,
    FINSEQ_1:def 3;
    
        then k
    in ( 
    dom G) by 
    A3,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A29: (G 
    . k) 
    in ( 
    rng G) by 
    FUNCT_1: 3;
    
        (G
    . k) 
    = ((F 
    . k) 
    /\ A) by 
    A3,
    A8,
    A28;
    
        then v
    in (G 
    . k) by 
    A23,
    A24,
    A27,
    XBOOLE_0:def 4;
    
        hence thesis by
    A29,
    TARSKI:def 4;
    
      end;
    
      then (
    dom (f 
    | A)) 
    c= ( 
    union ( 
    rng G)); 
    
      then
    
      
    
    A30: ( 
    dom (f 
    | A)) 
    = ( 
    union ( 
    rng G)) by 
    A21;
    
      for n be
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom G) & x 
    in (G 
    . n) & y 
    in (G 
    . n) holds ((f 
    | A) 
    . x) 
    = ((f 
    | A) 
    . y) 
    
      proof
    
        let n be
    Nat;
    
        let x,y be
    Element of X; 
    
        assume that
    
        
    
    A31: n 
    in ( 
    dom G) and 
    
        
    
    A32: x 
    in (G 
    . n) and 
    
        
    
    A33: y 
    in (G 
    . n); 
    
        n
    in ( 
    Seg ( 
    len F)) by 
    A3,
    A31,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A34: n 
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        (G
    . n) 
    = ((F 
    . n) 
    /\ A) by 
    A3,
    A31;
    
        then x
    in (F 
    . n) & y 
    in (F 
    . n) by 
    A32,
    A33,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A35: (f 
    . x) 
    = (f 
    . y) by 
    A2,
    A34;
    
        
    
        
    
    A36: (G 
    . n) 
    in ( 
    rng G) by 
    A31,
    FUNCT_1: 3;
    
        then x
    in ( 
    dom (f 
    | A)) by 
    A30,
    A32,
    TARSKI:def 4;
    
        then
    
        
    
    A37: ((f 
    | A) 
    . x) 
    = (f 
    . y) by 
    A35,
    FUNCT_1: 47;
    
        y
    in ( 
    dom (f 
    | A)) by 
    A30,
    A33,
    A36,
    TARSKI:def 4;
    
        hence thesis by
    A37,
    FUNCT_1: 47;
    
      end;
    
      hence thesis by
    A30;
    
    end;
    
    theorem :: 
    
    MESFUNC6:71
    
    
    
    
    
    Th71: f 
    is_simple_func_in S implies ( 
    dom f) is 
    Element of S by 
    MESFUNC2: 31;
    
    
    
    
    
    Lm1: for X be non 
    empty  
    set, S be 
    SigmaField of X, M be 
    sigma_Measure of S, f,g be 
    PartFunc of X, 
    REAL st f 
    is_simple_func_in S & ( 
    dom f) 
    <>  
    {} & g 
    is_simple_func_in S & ( 
    dom g) 
    = ( 
    dom f) holds (f 
    + g) 
    is_simple_func_in S & ( 
    dom (f 
    + g)) 
    <>  
    {}  
    
    proof
    
      let X be non
    empty  
    set, S be 
    SigmaField of X, M be 
    sigma_Measure of S, f,g be 
    PartFunc of X, 
    REAL such that 
    
      
    
    A1: f 
    is_simple_func_in S and 
    
      
    
    A2: ( 
    dom f) 
    <>  
    {} and 
    
      
    
    A3: g 
    is_simple_func_in S and 
    
      
    
    A4: ( 
    dom g) 
    = ( 
    dom f); 
    
      (
    R_EAL f) 
    is_simple_func_in S by 
    A1,
    Th49;
    
      then
    
      consider F be
    Finite_Sep_Sequence of S, a be 
    FinSequence of 
    ExtREAL such that 
    
      
    
    A5: (F,a) 
    are_Re-presentation_of ( 
    R_EAL f) by 
    MESFUNC3: 12;
    
      set la = (
    len F); 
    
      
    
      
    
    A6: ( 
    dom f) 
    = ( 
    union ( 
    rng F)) by 
    A5,
    MESFUNC3:def 1;
    
      (
    R_EAL g) 
    is_simple_func_in S by 
    A3,
    Th49;
    
      then
    
      consider G be
    Finite_Sep_Sequence of S, b be 
    FinSequence of 
    ExtREAL such that 
    
      
    
    A7: (G,b) 
    are_Re-presentation_of ( 
    R_EAL g) by 
    MESFUNC3: 12;
    
      set lb = (
    len G); 
    
      
    
      
    
    A8: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
      deffunc
    
    FG1(
    Nat) = ((F
    . ((($1 
    -' 1) 
    div lb) 
    + 1)) 
    /\ (G 
    . ((($1 
    -' 1) 
    mod lb) 
    + 1))); 
    
      consider FG be
    FinSequence such that 
    
      
    
    A9: ( 
    len FG) 
    = (la 
    * lb) and 
    
      
    
    A10: for k be 
    Nat st k 
    in ( 
    dom FG) holds (FG 
    . k) 
    =  
    FG1(k) from
    FINSEQ_1:sch 2;
    
      
    
      
    
    A11: ( 
    dom FG) 
    = ( 
    Seg (la 
    * lb)) by 
    A9,
    FINSEQ_1:def 3;
    
      now
    
        reconsider la9 = la, lb9 = lb as
    Nat;
    
        let k be
    Nat;
    
        set i = (((k
    -' 1) 
    div lb) 
    + 1); 
    
        set j = (((k
    -' 1) 
    mod lb) 
    + 1); 
    
        assume
    
        
    
    A12: k 
    in ( 
    dom FG); 
    
        then
    
        
    
    A13: k 
    in ( 
    Seg (la 
    * lb)) by 
    A9,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A14: k 
    <= (la 
    * lb) by 
    FINSEQ_1: 1;
    
        then (k
    -' 1) 
    <= ((la 
    * lb) 
    -' 1) by 
    NAT_D: 42;
    
        then
    
        
    
    A15: ((k 
    -' 1) 
    div lb) 
    <= (((la 
    * lb) 
    -' 1) 
    div lb) by 
    NAT_2: 24;
    
        1
    <= k by 
    A13,
    FINSEQ_1: 1;
    
        then
    
        
    
    A16: lb9 
    divides (la9 
    * lb9) & 1 
    <= (la 
    * lb) by 
    A14,
    NAT_D:def 3,
    XXREAL_0: 2;
    
        
    
        
    
    A17: lb 
    <>  
    0 by 
    A13,
    A14,
    FINSEQ_1: 1;
    
        then lb
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
        then (((la9
    * lb9) 
    -' 1) 
    div lb9) 
    = (((la9 
    * lb9) 
    div lb9) 
    - 1) by 
    A16,
    NAT_2: 15;
    
        then (((k
    -' 1) 
    div lb) 
    + 1) 
    <= ((la 
    * lb) 
    div lb) by 
    A15,
    XREAL_1: 19;
    
        then i
    >= ( 
    0  
    + 1) & i 
    <= la by 
    A17,
    NAT_D: 18,
    XREAL_1: 6;
    
        then i
    in ( 
    Seg la); 
    
        then i
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A18: (F 
    . i) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
        ((k
    -' 1) 
    mod lb) 
    < lb by 
    A17,
    NAT_D: 1;
    
        then j
    >= ( 
    0  
    + 1) & j 
    <= lb by 
    NAT_1: 13;
    
        then j
    in ( 
    dom G) by 
    FINSEQ_3: 25;
    
        then (G
    . j) 
    in ( 
    rng G) by 
    FUNCT_1: 3;
    
        then ((F
    . i) 
    /\ (G 
    . j)) 
    in S by 
    A18,
    MEASURE1: 34;
    
        hence (FG
    . k) 
    in S by 
    A10,
    A12;
    
      end;
    
      then
    
      reconsider FG as
    FinSequence of S by 
    FINSEQ_2: 12;
    
      for k,l be
    Nat st k 
    in ( 
    dom FG) & l 
    in ( 
    dom FG) & k 
    <> l holds (FG 
    . k) 
    misses (FG 
    . l) 
    
      proof
    
        reconsider la9 = la, lb9 = lb as
    Nat;
    
        let k,l be
    Nat;
    
        assume that
    
        
    
    A19: k 
    in ( 
    dom FG) and 
    
        
    
    A20: l 
    in ( 
    dom FG) and 
    
        
    
    A21: k 
    <> l; 
    
        set j = (((k
    -' 1) 
    mod lb) 
    + 1); 
    
        set i = (((k
    -' 1) 
    div lb) 
    + 1); 
    
        
    
        
    
    A22: (FG 
    . k) 
    = ((F 
    . i) 
    /\ (G 
    . j)) by 
    A10,
    A19;
    
        set m = (((l
    -' 1) 
    mod lb) 
    + 1); 
    
        set n = (((l
    -' 1) 
    div lb) 
    + 1); 
    
        
    
        
    
    A23: k 
    in ( 
    Seg (la 
    * lb)) by 
    A9,
    A19,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A24: 1 
    <= k by 
    FINSEQ_1: 1;
    
        then
    
        
    
    A25: lb 
    <>  
    0 by 
    A23,
    FINSEQ_1: 1;
    
        then ((k
    -' 1) 
    mod lb) 
    < lb by 
    NAT_D: 1;
    
        then j
    >= ( 
    0  
    + 1) & j 
    <= lb by 
    NAT_1: 13;
    
        then
    
        
    
    A26: j 
    in ( 
    dom G) by 
    FINSEQ_3: 25;
    
        
    
        
    
    A27: k 
    <= (la 
    * lb) by 
    A23,
    FINSEQ_1: 1;
    
        then
    
        
    
    A28: lb9 
    divides (la9 
    * lb9) & 1 
    <= (la 
    * lb) by 
    A24,
    NAT_D:def 3,
    XXREAL_0: 2;
    
        lb
    >= ( 
    0  
    + 1) by 
    A25,
    NAT_1: 13;
    
        then
    
        
    
    A29: (((la9 
    * lb9) 
    -' 1) 
    div lb9) 
    = (((la9 
    * lb9) 
    div lb9) 
    - 1) by 
    A28,
    NAT_2: 15;
    
        
    
        
    
    A30: l 
    in ( 
    Seg (la 
    * lb)) by 
    A9,
    A20,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A31: 1 
    <= l by 
    FINSEQ_1: 1;
    
        
    
    A32: 
    
        now
    
          ((l
    -' 1) 
    + 1) 
    = ((((n 
    - 1) 
    * lb) 
    + (m 
    - 1)) 
    + 1) by 
    A25,
    NAT_D: 2;
    
          then
    
          
    
    A33: ((l 
    - 1) 
    + 1) 
    = (((n 
    - 1) 
    * lb) 
    + m) by 
    A31,
    XREAL_1: 233;
    
          ((k
    -' 1) 
    + 1) 
    = ((((i 
    - 1) 
    * lb) 
    + (j 
    - 1)) 
    + 1) by 
    A25,
    NAT_D: 2;
    
          then
    
          
    
    A34: ((k 
    - 1) 
    + 1) 
    = (((i 
    - 1) 
    * lb) 
    + j) by 
    A24,
    XREAL_1: 233;
    
          assume i
    = n & j 
    = m; 
    
          hence contradiction by
    A21,
    A34,
    A33;
    
        end;
    
        (k
    -' 1) 
    <= ((la 
    * lb) 
    -' 1) by 
    A27,
    NAT_D: 42;
    
        then ((k
    -' 1) 
    div lb) 
    <= (((la 
    * lb) 
    div lb) 
    - 1) by 
    A29,
    NAT_2: 24;
    
        then (((k
    -' 1) 
    div lb) 
    + 1) 
    <= ((la 
    * lb) 
    div lb) by 
    XREAL_1: 19;
    
        then i
    >= ( 
    0  
    + 1) & i 
    <= la by 
    A25,
    NAT_D: 18,
    XREAL_1: 6;
    
        then i
    in ( 
    Seg la); 
    
        then
    
        
    
    A35: i 
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        ((l
    -' 1) 
    mod lb) 
    < lb by 
    A25,
    NAT_D: 1;
    
        then m
    >= ( 
    0  
    + 1) & m 
    <= lb by 
    NAT_1: 13;
    
        then
    
        
    
    A36: m 
    in ( 
    dom G) by 
    FINSEQ_3: 25;
    
        l
    <= (la 
    * lb) by 
    A30,
    FINSEQ_1: 1;
    
        then (l
    -' 1) 
    <= ((la 
    * lb) 
    -' 1) by 
    NAT_D: 42;
    
        then ((l
    -' 1) 
    div lb) 
    <= (((la 
    * lb) 
    div lb) 
    - 1) by 
    A29,
    NAT_2: 24;
    
        then (((l
    -' 1) 
    div lb) 
    + 1) 
    <= ((la 
    * lb) 
    div lb) by 
    XREAL_1: 19;
    
        then n
    >= ( 
    0  
    + 1) & n 
    <= la by 
    A25,
    NAT_D: 18,
    XREAL_1: 6;
    
        then n
    in ( 
    Seg la); 
    
        then
    
        
    
    A37: n 
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        per cases by
    A32;
    
          suppose
    
          
    
    A38: i 
    <> n; 
    
          ((FG
    . k) 
    /\ (FG 
    . l)) 
    = (((F 
    . i) 
    /\ (G 
    . j)) 
    /\ ((F 
    . n) 
    /\ (G 
    . m))) by 
    A10,
    A20,
    A22;
    
          then ((FG
    . k) 
    /\ (FG 
    . l)) 
    = ((F 
    . i) 
    /\ ((G 
    . j) 
    /\ ((F 
    . n) 
    /\ (G 
    . m)))) by 
    XBOOLE_1: 16;
    
          then ((FG
    . k) 
    /\ (FG 
    . l)) 
    = ((F 
    . i) 
    /\ ((F 
    . n) 
    /\ ((G 
    . j) 
    /\ (G 
    . m)))) by 
    XBOOLE_1: 16;
    
          then
    
          
    
    A39: ((FG 
    . k) 
    /\ (FG 
    . l)) 
    = (((F 
    . i) 
    /\ (F 
    . n)) 
    /\ ((G 
    . j) 
    /\ (G 
    . m))) by 
    XBOOLE_1: 16;
    
          (F
    . i) 
    misses (F 
    . n) by 
    A35,
    A37,
    A38,
    MESFUNC3: 4;
    
          then ((FG
    . k) 
    /\ (FG 
    . l)) 
    = ( 
    {}  
    /\ ((G 
    . j) 
    /\ (G 
    . m))) by 
    A39;
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    A40: j 
    <> m; 
    
          ((FG
    . k) 
    /\ (FG 
    . l)) 
    = (((F 
    . i) 
    /\ (G 
    . j)) 
    /\ ((F 
    . n) 
    /\ (G 
    . m))) by 
    A10,
    A20,
    A22;
    
          then ((FG
    . k) 
    /\ (FG 
    . l)) 
    = ((F 
    . i) 
    /\ ((G 
    . j) 
    /\ ((F 
    . n) 
    /\ (G 
    . m)))) by 
    XBOOLE_1: 16;
    
          then ((FG
    . k) 
    /\ (FG 
    . l)) 
    = ((F 
    . i) 
    /\ ((F 
    . n) 
    /\ ((G 
    . j) 
    /\ (G 
    . m)))) by 
    XBOOLE_1: 16;
    
          then
    
          
    
    A41: ((FG 
    . k) 
    /\ (FG 
    . l)) 
    = (((F 
    . i) 
    /\ (F 
    . n)) 
    /\ ((G 
    . j) 
    /\ (G 
    . m))) by 
    XBOOLE_1: 16;
    
          (G
    . j) 
    misses (G 
    . m) by 
    A26,
    A36,
    A40,
    MESFUNC3: 4;
    
          then ((FG
    . k) 
    /\ (FG 
    . l)) 
    = (((F 
    . i) 
    /\ (F 
    . n)) 
    /\  
    {} ) by 
    A41;
    
          hence thesis;
    
        end;
    
      end;
    
      then
    
      reconsider FG as
    Finite_Sep_Sequence of S by 
    MESFUNC3: 4;
    
      
    
      
    
    A42: ( 
    dom g) 
    = ( 
    union ( 
    rng G)) by 
    A7,
    MESFUNC3:def 1;
    
      
    
      
    
    A43: ( 
    dom f) 
    = ( 
    union ( 
    rng FG)) 
    
      proof
    
        now
    
          let z be
    object;
    
          assume
    
          
    
    A44: z 
    in ( 
    dom f); 
    
          then
    
          consider Y be
    set such that 
    
          
    
    A45: z 
    in Y and 
    
          
    
    A46: Y 
    in ( 
    rng F) by 
    A6,
    TARSKI:def 4;
    
          consider i be
    Nat such that 
    
          
    
    A47: i 
    in ( 
    dom F) and 
    
          
    
    A48: Y 
    = (F 
    . i) by 
    A46,
    FINSEQ_2: 10;
    
          
    
          
    
    A49: i 
    in ( 
    Seg ( 
    len F)) by 
    A47,
    FINSEQ_1:def 3;
    
          then 1
    <= i by 
    FINSEQ_1: 1;
    
          then
    
          consider i9 be
    Nat such that 
    
          
    
    A50: i 
    = (1 
    + i9 qua 
    Complex) by
    NAT_1: 10;
    
          consider Z be
    set such that 
    
          
    
    A51: z 
    in Z and 
    
          
    
    A52: Z 
    in ( 
    rng G) by 
    A4,
    A42,
    A44,
    TARSKI:def 4;
    
          consider j be
    Nat such that 
    
          
    
    A53: j 
    in ( 
    dom G) and 
    
          
    
    A54: Z 
    = (G 
    . j) by 
    A52,
    FINSEQ_2: 10;
    
          
    
          
    
    A55: j 
    in ( 
    Seg ( 
    len G)) by 
    A53,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A56: 1 
    <= j by 
    FINSEQ_1: 1;
    
          then
    
          consider j9 be
    Nat such that 
    
          
    
    A57: j 
    = (1 
    + j9 qua 
    Complex) by
    NAT_1: 10;
    
          
    
          
    
    A58: j 
    <= lb by 
    A55,
    FINSEQ_1: 1;
    
          then
    
          
    
    A59: j9 
    < lb by 
    A57,
    NAT_1: 13;
    
          reconsider k = (((i
    - 1) 
    * lb) 
    + j) as 
    Nat by 
    A50;
    
          
    
          
    
    A60: k 
    >= ( 
    0  
    + j) by 
    A50,
    XREAL_1: 6;
    
          
    
          then
    
          
    
    A61: (k 
    -' 1) 
    = (k 
    - 1) by 
    A56,
    XREAL_1: 233,
    XXREAL_0: 2
    
          .= ((i9
    * lb) 
    + j9) by 
    A50,
    A57;
    
          then
    
          
    
    A62: i 
    = (((k 
    -' 1) 
    div lb) 
    + 1) by 
    A50,
    A59,
    NAT_D:def 1;
    
          i
    <= la by 
    A49,
    FINSEQ_1: 1;
    
          then (i
    - 1) 
    <= (la 
    - 1) by 
    XREAL_1: 9;
    
          then ((i
    - 1) 
    * lb) 
    <= ((la 
    - 1) 
    * lb) by 
    XREAL_1: 64;
    
          then
    
          
    
    A63: k 
    <= (((la 
    - 1) 
    * lb) 
    + j) by 
    XREAL_1: 6;
    
          (((la
    - 1) 
    * lb) 
    + j) 
    <= (((la 
    - 1) 
    * lb) 
    + lb) by 
    A58,
    XREAL_1: 6;
    
          then
    
          
    
    A64: k 
    <= (la 
    * lb) by 
    A63,
    XXREAL_0: 2;
    
          k
    >= 1 by 
    A56,
    A60,
    XXREAL_0: 2;
    
          then
    
          
    
    A65: k 
    in ( 
    Seg (la 
    * lb)) by 
    A64;
    
          then k
    in ( 
    dom FG) by 
    A9,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A66: (FG 
    . k) 
    in ( 
    rng FG) by 
    FUNCT_1:def 3;
    
          
    
          
    
    A67: j 
    = (((k 
    -' 1) 
    mod lb) 
    + 1) by 
    A57,
    A61,
    A59,
    NAT_D:def 2;
    
          z
    in ((F 
    . i) 
    /\ (G 
    . j)) by 
    A45,
    A48,
    A51,
    A54,
    XBOOLE_0:def 4;
    
          then z
    in (FG 
    . k) by 
    A10,
    A11,
    A62,
    A67,
    A65;
    
          hence z
    in ( 
    union ( 
    rng FG)) by 
    A66,
    TARSKI:def 4;
    
        end;
    
        hence (
    dom f) 
    c= ( 
    union ( 
    rng FG)); 
    
        reconsider la9 = la, lb9 = lb as
    Nat;
    
        let z be
    object;
    
        assume z
    in ( 
    union ( 
    rng FG)); 
    
        then
    
        consider Y be
    set such that 
    
        
    
    A68: z 
    in Y and 
    
        
    
    A69: Y 
    in ( 
    rng FG) by 
    TARSKI:def 4;
    
        consider k be
    Nat such that 
    
        
    
    A70: k 
    in ( 
    dom FG) and 
    
        
    
    A71: Y 
    = (FG 
    . k) by 
    A69,
    FINSEQ_2: 10;
    
        set j = (((k
    -' 1) 
    mod lb) 
    + 1); 
    
        set i = (((k
    -' 1) 
    div lb) 
    + 1); 
    
        
    
        
    
    A72: k 
    in ( 
    Seg ( 
    len FG)) by 
    A70,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A73: k 
    <= (la 
    * lb) by 
    A9,
    FINSEQ_1: 1;
    
        then
    
        
    
    A74: lb 
    <>  
    0 by 
    A72,
    FINSEQ_1: 1;
    
        then
    
        
    
    A75: lb 
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
        1
    <= k by 
    A72,
    FINSEQ_1: 1;
    
        then lb9
    divides (la9 
    * lb9) & 1 
    <= (la 
    * lb) by 
    A73,
    NAT_D:def 3,
    XXREAL_0: 2;
    
        then
    
        
    
    A76: (((la9 
    * lb9) 
    -' 1) 
    div lb9) 
    = (((la9 
    * lb9) 
    div lb9) 
    - 1) by 
    A75,
    NAT_2: 15;
    
        (k
    -' 1) 
    <= ((la 
    * lb) 
    -' 1) by 
    A73,
    NAT_D: 42;
    
        then ((k
    -' 1) 
    div lb) 
    <= (((la 
    * lb) 
    div lb) 
    - 1) by 
    A76,
    NAT_2: 24;
    
        then
    
        
    
    A77: i 
    <= ((la 
    * lb) 
    div lb) by 
    XREAL_1: 19;
    
        i
    >= ( 
    0  
    + 1) & ((la 
    * lb) 
    div lb) 
    = la by 
    A74,
    NAT_D: 18,
    XREAL_1: 6;
    
        then i
    in ( 
    Seg la) by 
    A77;
    
        then i
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A78: (F 
    . i) 
    in ( 
    rng F) by 
    FUNCT_1:def 3;
    
        (FG
    . k) 
    = ((F 
    . i) 
    /\ (G 
    . j)) by 
    A10,
    A70;
    
        then z
    in (F 
    . i) by 
    A68,
    A71,
    XBOOLE_0:def 4;
    
        hence thesis by
    A6,
    A78,
    TARSKI:def 4;
    
      end;
    
      for k be
    Nat, x,y be 
    Element of X st k 
    in ( 
    dom FG) & x 
    in (FG 
    . k) & y 
    in (FG 
    . k) holds ((f 
    + g) 
    . x) 
    = ((f 
    + g) 
    . y) 
    
      proof
    
        reconsider la9 = la, lb9 = lb as
    Nat;
    
        let k be
    Nat;
    
        let x,y be
    Element of X; 
    
        assume that
    
        
    
    A79: k 
    in ( 
    dom FG) and 
    
        
    
    A80: x 
    in (FG 
    . k) and 
    
        
    
    A81: y 
    in (FG 
    . k); 
    
        set i = (((k
    -' 1) 
    div lb) 
    + 1); 
    
        set j = (((k
    -' 1) 
    mod lb) 
    + 1); 
    
        
    
        
    
    A82: k 
    in ( 
    Seg ( 
    len FG)) by 
    A79,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A83: k 
    <= (la 
    * lb) by 
    A9,
    FINSEQ_1: 1;
    
        then
    
        
    
    A84: (k 
    -' 1) 
    <= ((la 
    * lb) 
    -' 1) by 
    NAT_D: 42;
    
        
    
        
    
    A85: lb 
    <>  
    0 by 
    A82,
    A83,
    FINSEQ_1: 1;
    
        then ((k
    -' 1) 
    mod lb) 
    < lb by 
    NAT_D: 1;
    
        then j
    >= ( 
    0  
    + 1) & j 
    <= lb by 
    NAT_1: 13;
    
        then j
    in ( 
    Seg lb); 
    
        then
    
        
    
    A86: j 
    in ( 
    dom G) by 
    FINSEQ_1:def 3;
    
        1
    <= k by 
    A82,
    FINSEQ_1: 1;
    
        then
    
        
    
    A87: lb9 
    divides (la9 
    * lb9) & 1 
    <= (la 
    * lb) by 
    A83,
    NAT_D:def 3,
    XXREAL_0: 2;
    
        lb
    >= ( 
    0  
    + 1) by 
    A85,
    NAT_1: 13;
    
        then (((la9
    * lb9) 
    -' 1) 
    div lb9) 
    = (((la9 
    * lb9) 
    div lb9) 
    - 1) by 
    A87,
    NAT_2: 15;
    
        then ((k
    -' 1) 
    div lb) 
    <= (((la 
    * lb) 
    div lb) 
    - 1) by 
    A84,
    NAT_2: 24;
    
        then (((k
    -' 1) 
    div lb) 
    + 1) 
    <= ((la 
    * lb) 
    div lb) by 
    XREAL_1: 19;
    
        then i
    >= ( 
    0  
    + 1) & i 
    <= la by 
    A85,
    NAT_D: 18,
    XREAL_1: 6;
    
        then i
    in ( 
    Seg la); 
    
        then
    
        
    
    A88: i 
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A89: (FG 
    . k) 
    = ((F 
    . (((k 
    -' 1) 
    div lb) 
    + 1)) 
    /\ (G 
    . (((k 
    -' 1) 
    mod lb) 
    + 1))) by 
    A10,
    A79;
    
        then x
    in (G 
    . j) by 
    A80,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A90: (g 
    . x) 
    = (b 
    . j) by 
    A7,
    A86,
    MESFUNC3:def 1;
    
        y
    in (G 
    . j) by 
    A81,
    A89,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A91: (g 
    . y) 
    = (b 
    . j) by 
    A7,
    A86,
    MESFUNC3:def 1;
    
        x
    in (F 
    . i) by 
    A80,
    A89,
    XBOOLE_0:def 4;
    
        then (f
    . x) 
    = (a 
    . i) by 
    A5,
    A88,
    MESFUNC3:def 1;
    
        then
    
        
    
    A92: ((f 
    . x) 
    + (g 
    . x)) 
    = ((a 
    . i) 
    + (b 
    . j)) by 
    A90;
    
        y
    in (F 
    . i) by 
    A81,
    A89,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A93: (f 
    . y) 
    = (a 
    . i) by 
    A5,
    A88,
    MESFUNC3:def 1;
    
        
    
        
    
    A94: (FG 
    . k) 
    in ( 
    rng FG) by 
    A79,
    FUNCT_1:def 3;
    
        then x
    in ( 
    dom (f 
    + g)) by 
    A4,
    A43,
    A8,
    A80,
    TARSKI:def 4;
    
        then ((f
    + g) 
    . x) 
    = ((a 
    . i) 
    + (b 
    . j)) by 
    A92,
    VALUED_1:def 1;
    
        then
    
        
    
    A95: ((f 
    + g) 
    . x) 
    = ((f 
    . y) 
    + (g 
    . y)) by 
    A93,
    A91;
    
        y
    in ( 
    dom (f 
    + g)) by 
    A4,
    A43,
    A8,
    A81,
    A94,
    TARSKI:def 4;
    
        hence thesis by
    A95,
    VALUED_1:def 1;
    
      end;
    
      hence (f
    + g) 
    is_simple_func_in S by 
    A4,
    A43,
    A8;
    
      thus thesis by
    A2,
    A4,
    A8;
    
    end;
    
    theorem :: 
    
    MESFUNC6:72
    
    f
    is_simple_func_in S & g 
    is_simple_func_in S implies (f 
    + g) 
    is_simple_func_in S 
    
    proof
    
      assume
    
      
    
    A1: f 
    is_simple_func_in S & g 
    is_simple_func_in S; 
    
      per cases ;
    
        suppose
    
        
    
    A2: ( 
    dom (f 
    + g)) 
    =  
    {} ; 
    
        ex F be
    Finite_Sep_Sequence of S st (( 
    dom (f 
    + g)) 
    = ( 
    union ( 
    rng F)) & for n be 
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom F) & x 
    in (F 
    . n) & y 
    in (F 
    . n) holds ((f 
    + g) 
    . x) 
    = ((f 
    + g) 
    . y)) 
    
        proof
    
          reconsider EMPTY =
    {} as 
    Element of S by 
    PROB_1: 4;
    
          set F =
    <*EMPTY*>;
    
          
    
          
    
    A3: ( 
    dom F) 
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
          
    
    A4: 
    
          now
    
            let i,j be
    Nat;
    
            assume that
    
            
    
    A5: i 
    in ( 
    dom F) and 
    
            
    
    A6: j 
    in ( 
    dom F) & i 
    <> j; 
    
            i
    = 1 by 
    A3,
    A5,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
            hence (F
    . i) 
    misses (F 
    . j) by 
    A3,
    A6,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
          end;
    
          
    
          
    
    A7: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    = EMPTY 
    
          proof
    
            let n be
    Nat;
    
            assume n
    in ( 
    dom F); 
    
            then n
    = 1 by 
    A3,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
            hence thesis by
    FINSEQ_1: 40;
    
          end;
    
          reconsider F as
    Finite_Sep_Sequence of S by 
    A4,
    MESFUNC3: 4;
    
          take F;
    
          (
    union ( 
    rng F)) 
    = ( 
    union ( 
    bool  
    {} )) by 
    FINSEQ_1: 39,
    ZFMISC_1: 1;
    
          hence (
    dom (f 
    + g)) 
    = ( 
    union ( 
    rng F)) by 
    A2;
    
          thus thesis by
    A7;
    
        end;
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    A8: ( 
    dom (f 
    + g)) 
    <>  
    {} ; 
    
        
    
        
    
    A9: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
        (
    dom f) is 
    Element of S & ( 
    dom g) is 
    Element of S by 
    A1,
    Th71;
    
        then (
    dom (f 
    + g)) 
    in S by 
    A9,
    FINSUB_1:def 2;
    
        then
    
        
    
    A10: (f 
    | ( 
    dom (f 
    + g))) 
    is_simple_func_in S & (g 
    | ( 
    dom (f 
    + g))) 
    is_simple_func_in S by 
    A1,
    Th70;
    
        (
    dom (f 
    | ( 
    dom (f 
    + g)))) 
    = (( 
    dom f) 
    /\ ( 
    dom (f 
    + g))) by 
    RELAT_1: 61;
    
        then
    
        
    
    A11: ( 
    dom (f 
    | ( 
    dom (f 
    + g)))) 
    = ((( 
    dom f) 
    /\ ( 
    dom f)) 
    /\ ( 
    dom g)) by 
    A9,
    XBOOLE_1: 16;
    
        (
    dom (g 
    | ( 
    dom (f 
    + g)))) 
    = (( 
    dom g) 
    /\ ( 
    dom (f 
    + g))) by 
    RELAT_1: 61;
    
        then
    
        
    
    A12: ( 
    dom (g 
    | ( 
    dom (f 
    + g)))) 
    = ((( 
    dom g) 
    /\ ( 
    dom g)) 
    /\ ( 
    dom f)) by 
    A9,
    XBOOLE_1: 16;
    
        then
    
        
    
    A13: ( 
    dom (g 
    | ( 
    dom (f 
    + g)))) 
    = ( 
    dom (f 
    + g)) by 
    VALUED_1:def 1;
    
        
    
        
    
    A14: ( 
    dom ((f 
    | ( 
    dom (f 
    + g))) 
    + (g 
    | ( 
    dom (f 
    + g))))) 
    = (( 
    dom (f 
    | ( 
    dom (f 
    + g)))) 
    /\ ( 
    dom (g 
    | ( 
    dom (f 
    + g))))) by 
    VALUED_1:def 1
    
        .= (
    dom (f 
    + g)) by 
    A11,
    A12,
    VALUED_1:def 1;
    
        
    
        
    
    A15: for x be 
    Element of X st x 
    in ( 
    dom ((f 
    | ( 
    dom (f 
    + g))) 
    + (g 
    | ( 
    dom (f 
    + g))))) holds (((f 
    | ( 
    dom (f 
    + g))) 
    + (g 
    | ( 
    dom (f 
    + g)))) 
    . x) 
    = ((f 
    + g) 
    . x) 
    
        proof
    
          let x be
    Element of X; 
    
          assume
    
          
    
    A16: x 
    in ( 
    dom ((f 
    | ( 
    dom (f 
    + g))) 
    + (g 
    | ( 
    dom (f 
    + g))))); 
    
          
    
          then (((f
    | ( 
    dom (f 
    + g))) 
    + (g 
    | ( 
    dom (f 
    + g)))) 
    . x) 
    = (((f 
    | ( 
    dom (f 
    + g))) 
    . x) 
    + ((g 
    | ( 
    dom (f 
    + g))) 
    . x)) by 
    VALUED_1:def 1
    
          .= ((f
    . x) 
    + ((g 
    | ( 
    dom (f 
    + g))) 
    . x)) by 
    A14,
    A16,
    FUNCT_1: 49
    
          .= ((f
    . x) 
    + (g 
    . x)) by 
    A14,
    A16,
    FUNCT_1: 49;
    
          hence thesis by
    A14,
    A16,
    VALUED_1:def 1;
    
        end;
    
        (
    dom (f 
    | ( 
    dom (f 
    + g)))) 
    = ( 
    dom (f 
    + g)) by 
    A11,
    VALUED_1:def 1;
    
        then ((f
    | ( 
    dom (f 
    + g))) 
    + (g 
    | ( 
    dom (f 
    + g)))) 
    is_simple_func_in S by 
    A8,
    A10,
    A13,
    Lm1;
    
        hence thesis by
    A14,
    A15,
    PARTFUN1: 5;
    
      end;
    
    end;
    
    theorem :: 
    
    MESFUNC6:73
    
    f
    is_simple_func_in S implies (r 
    (#) f) 
    is_simple_func_in S 
    
    proof
    
      set g = (r
    (#) f); 
    
      assume f
    is_simple_func_in S; 
    
      then
    
      consider G be
    Finite_Sep_Sequence of S such that 
    
      
    
    A1: ( 
    dom f) 
    = ( 
    union ( 
    rng G)) and 
    
      
    
    A2: for n be 
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom G) & x 
    in (G 
    . n) & y 
    in (G 
    . n) holds (f 
    . x) 
    = (f 
    . y); 
    
      
    
      
    
    A3: ( 
    dom g) 
    = ( 
    dom f) by 
    VALUED_1:def 5;
    
      now
    
        let n be
    Nat;
    
        let x,y be
    Element of X; 
    
        assume that
    
        
    
    A4: n 
    in ( 
    dom G) and 
    
        
    
    A5: x 
    in (G 
    . n) and 
    
        
    
    A6: y 
    in (G 
    . n); 
    
        
    
        
    
    A7: (G 
    . n) 
    in ( 
    rng G) by 
    A4,
    FUNCT_1: 3;
    
        then y
    in ( 
    dom g) by 
    A3,
    A1,
    A6,
    TARSKI:def 4;
    
        then
    
        
    
    A8: (g 
    . y) 
    = (r 
    * (f 
    . y)) by 
    VALUED_1:def 5;
    
        x
    in ( 
    dom g) by 
    A3,
    A1,
    A5,
    A7,
    TARSKI:def 4;
    
        then (g
    . x) 
    = (r 
    * (f 
    . x)) by 
    VALUED_1:def 5;
    
        hence (g
    . x) 
    = (g 
    . y) by 
    A2,
    A4,
    A5,
    A6,
    A8;
    
      end;
    
      hence thesis by
    A3,
    A1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:74
    
    (for x be
    set st x 
    in ( 
    dom (f 
    - g)) holds (g 
    . x) 
    <= (f 
    . x)) implies (f 
    - g) is 
    nonnegative
    
    proof
    
      
    
      
    
    A1: ( 
    dom (f 
    - g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1: 12;
    
      assume for x be
    set st x 
    in ( 
    dom (f 
    - g)) holds (g 
    . x) 
    <= (f 
    . x); 
    
      hence thesis by
    A1,
    Th58;
    
    end;
    
    theorem :: 
    
    MESFUNC6:75
    
    ex f be
    PartFunc of X, 
    REAL st f 
    is_simple_func_in S & ( 
    dom f) 
    = A & for x be 
    object st x 
    in A holds (f 
    . x) 
    = r 
    
    proof
    
      defpred
    
    P[
    object] means $1
    in A; 
    
      deffunc
    
    F(
    object) = r;
    
      
    
      
    
    A1: for x be 
    object st 
    P[x] holds
    F(x)
    in  
    REAL by 
    XREAL_0:def 1;
    
      consider f be
    PartFunc of X, 
    REAL such that 
    
      
    
    A2: (for x be 
    object holds x 
    in ( 
    dom f) iff x 
    in X & 
    P[x]) & for x be
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    =  
    F(x) from
    PARTFUN1:sch 3(
    A1);
    
      take f;
    
      
    
      
    
    A3: A 
    c= ( 
    dom f) by 
    A2;
    
      
    
      
    
    A4: ( 
    dom f) 
    c= A by 
    A2;
    
      ex F be
    Finite_Sep_Sequence of S st (( 
    dom f) 
    = ( 
    union ( 
    rng F)) & for n be 
    Nat, x,y be 
    Element of X st n 
    in ( 
    dom F) & x 
    in (F 
    . n) & y 
    in (F 
    . n) holds (f 
    . x) 
    = (f 
    . y)) 
    
      proof
    
        set F =
    <*(
    dom f)*>; 
    
        
    
        
    
    A5: ( 
    rng F) 
    =  
    {(
    dom f)} by 
    FINSEQ_1: 38;
    
        then (
    rng F) 
    =  
    {A} by
    A4,
    A3,
    XBOOLE_0:def 10;
    
        then
    
        reconsider F as
    FinSequence of S by 
    FINSEQ_1:def 4;
    
        now
    
          let i,j be
    Nat such that 
    
          
    
    A6: i 
    in ( 
    dom F) and 
    
          
    
    A7: j 
    in ( 
    dom F) & i 
    <> j; 
    
          
    
          
    
    A8: ( 
    dom F) 
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
          then i
    = 1 by 
    A6,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
          hence (F
    . i) 
    misses (F 
    . j) by 
    A7,
    A8,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
        end;
    
        then
    
        reconsider F as
    Finite_Sep_Sequence of S by 
    MESFUNC3: 4;
    
        take F;
    
        thus (
    dom f) 
    = ( 
    union ( 
    rng F)) by 
    A5,
    ZFMISC_1: 25;
    
        hereby
    
          let n be
    Nat;
    
          let x,y be
    Element of X; 
    
          assume that
    
          
    
    A9: n 
    in ( 
    dom F) and 
    
          
    
    A10: x 
    in (F 
    . n) and 
    
          
    
    A11: y 
    in (F 
    . n); 
    
          (
    dom F) 
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
          then
    
          
    
    A12: n 
    = 1 by 
    A9,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
          then x
    in ( 
    dom f) by 
    A10,
    FINSEQ_1: 40;
    
          then
    
          
    
    A13: (f 
    . x) 
    = r by 
    A2;
    
          y
    in ( 
    dom f) by 
    A11,
    A12,
    FINSEQ_1: 40;
    
          hence (f
    . x) 
    = (f 
    . y) by 
    A2,
    A13;
    
        end;
    
      end;
    
      hence f
    is_simple_func_in S; 
    
      thus (
    dom f) 
    = A by 
    A4,
    A3;
    
      thus thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MESFUNC6:76
    
    f is B
    -measurable & A 
    = (( 
    dom f) 
    /\ B) implies (f 
    | B) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: f is B 
    -measurable and 
    
      
    
    A2: A 
    = (( 
    dom f) 
    /\ B); 
    
      
    
      
    
    A3: ( 
    R_EAL f) is B 
    -measurable by 
    A1;
    
      now
    
        let r be
    Real;
    
        now
    
          let x be
    object;
    
          x
    in ( 
    dom (f 
    | B)) & ((f 
    | B) 
    . x) 
    < r iff x 
    in (( 
    dom f) 
    /\ B) & ((f 
    | B) 
    . x) 
    < r by 
    RELAT_1: 61;
    
          then
    
          
    
    A4: x 
    in A & x 
    in ( 
    less_dom ((f 
    | B),r)) iff x 
    in B & x 
    in ( 
    dom f) & ((f 
    | B) 
    . x) 
    < r by 
    A2,
    MESFUNC1:def 11,
    XBOOLE_0:def 4;
    
          x
    in B & x 
    in ( 
    dom f) implies ((f 
    . x) 
    < r iff ((f 
    | B) 
    . x) 
    < r) by 
    FUNCT_1: 49;
    
          then x
    in (A 
    /\ ( 
    less_dom ((f 
    | B),r))) iff x 
    in B & x 
    in ( 
    less_dom (f,r)) by 
    A4,
    MESFUNC1:def 11,
    XBOOLE_0:def 4;
    
          hence x
    in (A 
    /\ ( 
    less_dom ((f 
    | B),r))) iff x 
    in (B 
    /\ ( 
    less_dom (f,r))) by 
    XBOOLE_0:def 4;
    
        end;
    
        then (A
    /\ ( 
    less_dom ((f 
    | B),r))) 
    c= (B 
    /\ ( 
    less_dom (f,r))) & (B 
    /\ ( 
    less_dom (f,r))) 
    c= (A 
    /\ ( 
    less_dom ((f 
    | B),r))); 
    
        then (A
    /\ ( 
    less_dom ((f 
    | B),r))) 
    = (B 
    /\ ( 
    less_dom (f,r))); 
    
        then (A
    /\ ( 
    less_dom ((f 
    | B),r))) 
    in S by 
    A3,
    MESFUNC1:def 16;
    
        hence (A
    /\ ( 
    less_dom ((f 
    | B),r))) 
    in S; 
    
      end;
    
      hence thesis by
    Th12;
    
    end;
    
    theorem :: 
    
    MESFUNC6:77
    
    A
    c= ( 
    dom f) & f is A 
    -measurable & g is A 
    -measurable implies (( 
    max+ (f 
    + g)) 
    + ( 
    max- f)) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: A 
    c= ( 
    dom f) and 
    
      
    
    A2: f is A 
    -measurable and 
    
      
    
    A3: g is A 
    -measurable;
    
      (f
    + g) is A 
    -measurable by 
    A2,
    A3,
    Th26;
    
      then
    
      
    
    A4: ( 
    max+ (f 
    + g)) is A 
    -measurable by 
    Th46;
    
      (
    max- f) is A 
    -measurable by 
    A1,
    A2,
    Th47;
    
      hence thesis by
    A4,
    Th26;
    
    end;
    
    theorem :: 
    
    MESFUNC6:78
    
    A
    c= (( 
    dom f) 
    /\ ( 
    dom g)) & f is A 
    -measurable & g is A 
    -measurable implies (( 
    max- (f 
    + g)) 
    + ( 
    max+ f)) is A 
    -measurable
    
    proof
    
      assume that
    
      
    
    A1: A 
    c= (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
      
    
    A2: f is A 
    -measurable and 
    
      
    
    A3: g is A 
    -measurable;
    
      
    
      
    
    A4: ( 
    max+ f) is A 
    -measurable by 
    A2,
    Th46;
    
      
    
      
    
    A5: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
      (f
    + g) is A 
    -measurable by 
    A2,
    A3,
    Th26;
    
      then (
    max- (f 
    + g)) is A 
    -measurable by 
    A1,
    A5,
    Th47;
    
      hence thesis by
    A4,
    Th26;
    
    end;
    
    theorem :: 
    
    MESFUNC6:79
    
    (
    dom f) 
    in S & ( 
    dom g) 
    in S implies ( 
    dom (f 
    + g)) 
    in S 
    
    proof
    
      assume (
    dom f) 
    in S & ( 
    dom g) 
    in S; 
    
      then
    
      reconsider E1 = (
    dom f), E2 = ( 
    dom g) as 
    Element of S; 
    
      (
    dom (f 
    + g)) 
    = (E1 
    /\ E2) by 
    VALUED_1:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:80
    
    
    
    
    
    Th80: ( 
    dom f) 
    = A implies (f is B 
    -measurable iff f is (A 
    /\ B) 
    -measurable)
    
    proof
    
      assume
    
      
    
    A1: ( 
    dom f) 
    = A; 
    
      
    
    A2: 
    
      now
    
        let r be
    Real;
    
        now
    
          let x be
    object;
    
          x
    in (A 
    /\ ( 
    less_dom (f,r))) iff x 
    in A & x 
    in ( 
    less_dom (f,r)) by 
    XBOOLE_0:def 4;
    
          hence x
    in (A 
    /\ ( 
    less_dom (f,r))) iff x 
    in ( 
    less_dom (f,r)) by 
    A1,
    MESFUNC1:def 11;
    
        end;
    
        then (A
    /\ ( 
    less_dom (f,r))) 
    c= ( 
    less_dom (f,r)) & ( 
    less_dom (f,r)) 
    c= (A 
    /\ ( 
    less_dom (f,r))); 
    
        hence (A
    /\ ( 
    less_dom (f,r))) 
    = ( 
    less_dom (f,r)); 
    
      end;
    
      hereby
    
        assume
    
        
    
    A3: f is B 
    -measurable;
    
        now
    
          let r be
    Real;
    
          ((A
    /\ B) 
    /\ ( 
    less_dom (f,r))) 
    = (B 
    /\ (A 
    /\ ( 
    less_dom (f,r)))) by 
    XBOOLE_1: 16
    
          .= (B
    /\ ( 
    less_dom (f,r))) by 
    A2;
    
          hence ((A
    /\ B) 
    /\ ( 
    less_dom (f,r))) 
    in S by 
    A3,
    Th12;
    
        end;
    
        hence f is (A
    /\ B) 
    -measurable by 
    Th12;
    
      end;
    
      assume
    
      
    
    A4: f is (A 
    /\ B) 
    -measurable;
    
      now
    
        let r be
    Real;
    
        ((A
    /\ B) 
    /\ ( 
    less_dom (f,r))) 
    = (B 
    /\ (A 
    /\ ( 
    less_dom (f,r)))) by 
    XBOOLE_1: 16
    
        .= (B
    /\ ( 
    less_dom (f,r))) by 
    A2;
    
        hence (B
    /\ ( 
    less_dom (f,r))) 
    in S by 
    A4,
    Th12;
    
      end;
    
      hence thesis by
    Th12;
    
    end;
    
    theorem :: 
    
    MESFUNC6:81
    
    (ex A be
    Element of S st ( 
    dom f) 
    = A) implies for c be 
    Real, B be 
    Element of S st f is B 
    -measurable holds (c 
    (#) f) is B 
    -measurable
    
    proof
    
      assume ex A be
    Element of S st A 
    = ( 
    dom f); 
    
      then
    
      consider A be
    Element of S such that 
    
      
    
    A1: A 
    = ( 
    dom f); 
    
      let c be
    Real, B be 
    Element of S; 
    
      assume f is B
    -measurable;
    
      then f is (A
    /\ B) 
    -measurable by 
    A1,
    Th80;
    
      then
    
      
    
    A2: (c 
    (#) f) is (A 
    /\ B) 
    -measurable by 
    A1,
    Th21,
    XBOOLE_1: 17;
    
      (
    dom (c 
    (#) f)) 
    = A by 
    A1,
    VALUED_1:def 5;
    
      hence thesis by
    A2,
    Th80;
    
    end;
    
    begin
    
    reserve X for non
    empty  
    set, 
    
S for
    SigmaField of X, 
    
M for
    sigma_Measure of S, 
    
f,g for
    PartFunc of X, 
    REAL , 
    
r for
    Real, 
    
E,A,B for
    Element of S; 
    
    definition
    
      let X be non
    empty  
    set;
    
      let S be
    SigmaField of X; 
    
      let M be
    sigma_Measure of S; 
    
      let f be
    PartFunc of X, 
    REAL ; 
    
      :: 
    
    MESFUNC6:def3
    
      func
    
    Integral (M,f) -> 
    Element of 
    ExtREAL equals ( 
    Integral (M,( 
    R_EAL f))); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    MESFUNC6:82
    
    
    
    
    
    Th82: (ex A be 
    Element of S st A 
    = ( 
    dom f) & f is A 
    -measurable) & f is
    nonnegative implies ( 
    Integral (M,f)) 
    = ( 
    integral+ (M,( 
    R_EAL f))) by 
    MESFUNC5: 88;
    
    theorem :: 
    
    MESFUNC6:83
    
    f
    is_simple_func_in S & f is 
    nonnegative implies ( 
    Integral (M,f)) 
    = ( 
    integral+ (M,( 
    R_EAL f))) & ( 
    Integral (M,f)) 
    = ( 
    integral' (M,( 
    R_EAL f))) 
    
    proof
    
      assume that
    
      
    
    A1: f 
    is_simple_func_in S and 
    
      
    
    A2: f is 
    nonnegative;
    
      
    
      
    
    A3: ( 
    R_EAL f) 
    is_simple_func_in S by 
    A1,
    Th49;
    
      then
    
      reconsider A = (
    dom ( 
    R_EAL f)) as 
    Element of S by 
    MESFUNC5: 37;
    
      (
    R_EAL f) is A 
    -measurable by 
    A3,
    MESFUNC2: 34;
    
      then f is A
    -measurable;
    
      hence (
    Integral (M,f)) 
    = ( 
    integral+ (M,( 
    R_EAL f))) by 
    A2,
    Th82;
    
      hence thesis by
    A2,
    A3,
    MESFUNC5: 77;
    
    end;
    
    theorem :: 
    
    MESFUNC6:84
    
    (ex A be
    Element of S st A 
    = ( 
    dom f) & f is A 
    -measurable) & f is
    nonnegative implies 
    0  
    <= ( 
    Integral (M,f)) by 
    MESFUNC5: 90;
    
    theorem :: 
    
    MESFUNC6:85
    
    (ex E be
    Element of S st E 
    = ( 
    dom f) & f is E 
    -measurable) & f is
    nonnegative & A 
    misses B implies ( 
    Integral (M,(f 
    | (A 
    \/ B)))) 
    = (( 
    Integral (M,(f 
    | A))) 
    + ( 
    Integral (M,(f 
    | B)))) by 
    MESFUNC5: 91;
    
    theorem :: 
    
    MESFUNC6:86
    
    (ex E be
    Element of S st E 
    = ( 
    dom f) & f is E 
    -measurable) & f is
    nonnegative implies 
    0  
    <= ( 
    Integral (M,(f 
    | A))) by 
    MESFUNC5: 92;
    
    theorem :: 
    
    MESFUNC6:87
    
    (ex E be
    Element of S st E 
    = ( 
    dom f) & f is E 
    -measurable) & f is
    nonnegative & A 
    c= B implies ( 
    Integral (M,(f 
    | A))) 
    <= ( 
    Integral (M,(f 
    | B))) by 
    MESFUNC5: 93;
    
    theorem :: 
    
    MESFUNC6:88
    
    (ex E be
    Element of S st E 
    = ( 
    dom f) & f is E 
    -measurable) & (M
    . A) 
    =  
    0 implies ( 
    Integral (M,(f 
    | A))) 
    =  
    0 by 
    MESFUNC5: 94;
    
    theorem :: 
    
    MESFUNC6:89
    
    E
    = ( 
    dom f) & f is E 
    -measurable & (M 
    . A) 
    =  
    0 implies ( 
    Integral (M,(f 
    | (E 
    \ A)))) 
    = ( 
    Integral (M,f)) by 
    MESFUNC5: 95;
    
    definition
    
      let X be non
    empty  
    set;
    
      let S be
    SigmaField of X; 
    
      let M be
    sigma_Measure of S; 
    
      let f be
    PartFunc of X, 
    REAL ; 
    
      :: 
    
    MESFUNC6:def4
    
      pred f
    
    is_integrable_on M means ( 
    R_EAL f) 
    is_integrable_on M; 
    
    end
    
    theorem :: 
    
    MESFUNC6:90
    
    f
    is_integrable_on M implies 
    -infty  
    < ( 
    Integral (M,f)) & ( 
    Integral (M,f)) 
    <  
    +infty by 
    MESFUNC5: 96;
    
    theorem :: 
    
    MESFUNC6:91
    
    f
    is_integrable_on M implies (f 
    | A) 
    is_integrable_on M by 
    MESFUNC5: 97;
    
    theorem :: 
    
    MESFUNC6:92
    
    f
    is_integrable_on M & A 
    misses B implies ( 
    Integral (M,(f 
    | (A 
    \/ B)))) 
    = (( 
    Integral (M,(f 
    | A))) 
    + ( 
    Integral (M,(f 
    | B)))) by 
    MESFUNC5: 98;
    
    theorem :: 
    
    MESFUNC6:93
    
    f
    is_integrable_on M & B 
    = (( 
    dom f) 
    \ A) implies (f 
    | A) 
    is_integrable_on M & ( 
    Integral (M,f)) 
    = (( 
    Integral (M,(f 
    | A))) 
    + ( 
    Integral (M,(f 
    | B)))) by 
    MESFUNC5: 99;
    
    theorem :: 
    
    MESFUNC6:94
    
    (ex A be
    Element of S st A 
    = ( 
    dom f) & f is A 
    -measurable) implies (f
    is_integrable_on M iff ( 
    abs f) 
    is_integrable_on M) 
    
    proof
    
      assume ex A be
    Element of S st A 
    = ( 
    dom f) & f is A 
    -measurable;
    
      then
    
      consider A be
    Element of S such that 
    
      
    
    A1: A 
    = ( 
    dom f) and 
    
      
    
    A2: f is A 
    -measurable;
    
      (
    R_EAL f) is A 
    -measurable by 
    A2;
    
      then (
    R_EAL f) 
    is_integrable_on M iff 
    |.(
    R_EAL f).| 
    is_integrable_on M by 
    A1,
    MESFUNC5: 100;
    
      then f
    is_integrable_on M iff ( 
    R_EAL ( 
    abs f)) 
    is_integrable_on M by 
    Th1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:95
    
    f
    is_integrable_on M implies 
    |.(
    Integral (M,f)).| 
    <= ( 
    Integral (M,( 
    abs f))) 
    
    proof
    
      assume f
    is_integrable_on M; 
    
      then (
    R_EAL f) 
    is_integrable_on M; 
    
      then
    |.(
    Integral (M,f)).| 
    <= ( 
    Integral (M, 
    |.(
    R_EAL f).|)) by 
    MESFUNC5: 101;
    
      hence thesis by
    Th1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:96
    
    (ex A be
    Element of S st A 
    = ( 
    dom f) & f is A 
    -measurable) & (
    dom f) 
    = ( 
    dom g) & g 
    is_integrable_on M & (for x be 
    Element of X st x 
    in ( 
    dom f) holds 
    |.(f
    . x) qua 
    Complex.|
    <= (g 
    . x)) implies f 
    is_integrable_on M & ( 
    Integral (M,( 
    abs f))) 
    <= ( 
    Integral (M,g)) 
    
    proof
    
      assume that
    
      
    
    A1: ex A be 
    Element of S st A 
    = ( 
    dom f) & f is A 
    -measurable and 
    
      
    
    A2: ( 
    dom f) 
    = ( 
    dom g) and 
    
      
    
    A3: g 
    is_integrable_on M and 
    
      
    
    A4: for x be 
    Element of X st x 
    in ( 
    dom f) holds 
    |.(f
    . x) qua 
    Complex.|
    <= (g 
    . x); 
    
      
    
      
    
    A5: ( 
    R_EAL g) 
    is_integrable_on M by 
    A3;
    
      
    
    A6: 
    
      now
    
        let x be
    Element of X; 
    
        
    
        
    
    A7: 
    |.(f
    . x) qua 
    Complex.|
    =  
    |.((
    R_EAL f) 
    . x).| by 
    EXTREAL1: 12;
    
        assume x
    in ( 
    dom ( 
    R_EAL f)); 
    
        hence
    |.((
    R_EAL f) 
    . x).| 
    <= (( 
    R_EAL g) 
    . x) by 
    A4,
    A7;
    
      end;
    
      consider A be
    Element of S such that 
    
      
    
    A8: A 
    = ( 
    dom f) and 
    
      
    
    A9: f is A 
    -measurable by 
    A1;
    
      (
    R_EAL f) is A 
    -measurable by 
    A9;
    
      then (
    R_EAL f) 
    is_integrable_on M & ( 
    Integral (M, 
    |.(
    R_EAL f).|)) 
    <= ( 
    Integral (M,( 
    R_EAL g))) by 
    A2,
    A8,
    A5,
    A6,
    MESFUNC5: 102;
    
      hence thesis by
    Th1;
    
    end;
    
    theorem :: 
    
    MESFUNC6:97
    
    (
    dom f) 
    in S & 
    0  
    <= r & (for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = r) implies ( 
    Integral (M,f)) 
    = (r 
    * (M 
    . ( 
    dom f))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    dom f) 
    in S and 
    
      
    
    A2: 
    0  
    <= r and 
    
      
    
    A3: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = r; 
    
      
    
      
    
    A4: for x be 
    object st x 
    in ( 
    dom ( 
    R_EAL f)) holds 
    0.  
    <= (( 
    R_EAL f) 
    . x) by 
    A2,
    A3;
    
      reconsider A = (
    dom ( 
    R_EAL f)) as 
    Element of S by 
    A1;
    
      
    
      
    
    A5: ( 
    R_EAL f) is A 
    -measurable by 
    A3,
    Th2,
    MESFUNC2: 34;
    
      (r
    * (M 
    . ( 
    dom ( 
    R_EAL f)))) 
    = ( 
    integral' (M,( 
    R_EAL f))) & ( 
    R_EAL f) 
    is_simple_func_in S by 
    A1,
    A2,
    A3,
    Th2,
    MESFUNC5: 104;
    
      then (
    integral+ (M,( 
    R_EAL f))) 
    = (r 
    * (M 
    . ( 
    dom ( 
    R_EAL f)))) by 
    A4,
    MESFUNC5: 77,
    SUPINF_2: 52;
    
      hence thesis by
    A4,
    A5,
    MESFUNC5: 88,
    SUPINF_2: 52;
    
    end;
    
    theorem :: 
    
    MESFUNC6:98
    
    f
    is_integrable_on M & g 
    is_integrable_on M & f is 
    nonnegative & g is 
    nonnegative implies (f 
    + g) 
    is_integrable_on M 
    
    proof
    
      assume that
    
      
    
    A1: f 
    is_integrable_on M & g 
    is_integrable_on M and 
    
      
    
    A2: f is 
    nonnegative & g is 
    nonnegative;
    
      (
    R_EAL f) 
    is_integrable_on M & ( 
    R_EAL g) 
    is_integrable_on M by 
    A1;
    
      then ((
    R_EAL f) 
    + ( 
    R_EAL g)) 
    is_integrable_on M by 
    A2,
    MESFUNC5: 106;
    
      then (
    R_EAL (f 
    + g)) 
    is_integrable_on M by 
    Th23;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:99
    
    f
    is_integrable_on M & g 
    is_integrable_on M implies ( 
    dom (f 
    + g)) 
    in S 
    
    proof
    
      assume f
    is_integrable_on M & g 
    is_integrable_on M; 
    
      then (
    R_EAL f) 
    is_integrable_on M & ( 
    R_EAL g) 
    is_integrable_on M; 
    
      then (
    dom (( 
    R_EAL f) 
    + ( 
    R_EAL g))) 
    in S by 
    MESFUNC5: 107;
    
      then (
    dom ( 
    R_EAL (f 
    + g))) 
    in S by 
    Th23;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:100
    
    f
    is_integrable_on M & g 
    is_integrable_on M implies (f 
    + g) 
    is_integrable_on M 
    
    proof
    
      assume f
    is_integrable_on M & g 
    is_integrable_on M; 
    
      then (
    R_EAL f) 
    is_integrable_on M & ( 
    R_EAL g) 
    is_integrable_on M; 
    
      then ((
    R_EAL f) 
    + ( 
    R_EAL g)) 
    is_integrable_on M by 
    MESFUNC5: 108;
    
      then (
    R_EAL (f 
    + g)) 
    is_integrable_on M by 
    Th23;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MESFUNC6:101
    
    f
    is_integrable_on M & g 
    is_integrable_on M implies ex E be 
    Element of S st E 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    Integral (M,(f 
    + g))) 
    = (( 
    Integral (M,(f 
    | E))) 
    + ( 
    Integral (M,(g 
    | E)))) 
    
    proof
    
      assume f
    is_integrable_on M & g 
    is_integrable_on M; 
    
      then (
    R_EAL f) 
    is_integrable_on M & ( 
    R_EAL g) 
    is_integrable_on M; 
    
      then
    
      consider E be
    Element of S such that 
    
      
    
    A1: E 
    = (( 
    dom ( 
    R_EAL f)) 
    /\ ( 
    dom ( 
    R_EAL g))) & ( 
    Integral (M,(( 
    R_EAL f) 
    + ( 
    R_EAL g)))) 
    = (( 
    Integral (M,(( 
    R_EAL f) 
    | E))) 
    + ( 
    Integral (M,(( 
    R_EAL g) 
    | E)))) by 
    MESFUNC5: 109;
    
      take E;
    
      thus thesis by
    A1,
    Th23;
    
    end;
    
    theorem :: 
    
    MESFUNC6:102
    
    f
    is_integrable_on M implies (r 
    (#) f) 
    is_integrable_on M & ( 
    Integral (M,(r 
    (#) f))) 
    = (r 
    * ( 
    Integral (M,f))) 
    
    proof
    
      assume f
    is_integrable_on M; 
    
      then
    
      
    
    A1: ( 
    R_EAL f) 
    is_integrable_on M; 
    
      then (r
    (#) ( 
    R_EAL f)) 
    is_integrable_on M by 
    MESFUNC5: 110;
    
      then
    
      
    
    A2: ( 
    R_EAL (r 
    (#) f)) 
    is_integrable_on M by 
    Th20;
    
      (
    Integral (M,(r 
    (#) ( 
    R_EAL f)))) 
    = (r 
    * ( 
    Integral (M,( 
    R_EAL f)))) by 
    A1,
    MESFUNC5: 110;
    
      hence thesis by
    A2,
    Th20;
    
    end;
    
    definition
    
      let X be non
    empty  
    set;
    
      let S be
    SigmaField of X; 
    
      let M be
    sigma_Measure of S; 
    
      let f be
    PartFunc of X, 
    REAL ; 
    
      let B be
    Element of S; 
    
      :: 
    
    MESFUNC6:def5
    
      func
    
    Integral_on (M,B,f) -> 
    Element of 
    ExtREAL equals ( 
    Integral (M,(f 
    | B))); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    MESFUNC6:103
    
    f
    is_integrable_on M & g 
    is_integrable_on M & B 
    c= ( 
    dom (f 
    + g)) implies (f 
    + g) 
    is_integrable_on M & ( 
    Integral_on (M,B,(f 
    + g))) 
    = (( 
    Integral_on (M,B,f)) 
    + ( 
    Integral_on (M,B,g))) 
    
    proof
    
      assume that
    
      
    
    A1: f 
    is_integrable_on M & g 
    is_integrable_on M and 
    
      
    
    A2: B 
    c= ( 
    dom (f 
    + g)); 
    
      
    
      
    
    A3: ( 
    dom (f 
    + g)) 
    = ( 
    dom ( 
    R_EAL (f 
    + g))) 
    
      .= (
    dom (( 
    R_EAL f) 
    + ( 
    R_EAL g))) by 
    Th23;
    
      
    
      
    
    A4: ( 
    R_EAL f) 
    is_integrable_on M & ( 
    R_EAL g) 
    is_integrable_on M by 
    A1;
    
      then ((
    R_EAL f) 
    + ( 
    R_EAL g)) 
    is_integrable_on M by 
    A2,
    A3,
    MESFUNC5: 111;
    
      then
    
      
    
    A5: ( 
    R_EAL (f 
    + g)) 
    is_integrable_on M by 
    Th23;
    
      (
    Integral_on (M,B,(( 
    R_EAL f) 
    + ( 
    R_EAL g)))) 
    = (( 
    Integral_on (M,B,( 
    R_EAL f))) 
    + ( 
    Integral_on (M,B,( 
    R_EAL g)))) by 
    A2,
    A4,
    A3,
    MESFUNC5: 111;
    
      hence thesis by
    A5,
    Th23;
    
    end;
    
    theorem :: 
    
    MESFUNC6:104
    
    f
    is_integrable_on M implies (f 
    | B) 
    is_integrable_on M & ( 
    Integral_on (M,B,(r 
    (#) f))) 
    = (r 
    * ( 
    Integral_on (M,B,f))) 
    
    proof
    
      assume f
    is_integrable_on M; 
    
      then
    
      
    
    A1: ( 
    R_EAL f) 
    is_integrable_on M; 
    
      then (
    Integral_on (M,B,(r 
    (#) ( 
    R_EAL f)))) 
    = (r 
    * ( 
    Integral_on (M,B,( 
    R_EAL f)))) by 
    MESFUNC5: 112;
    
      then
    
      
    
    A2: ( 
    Integral_on (M,B,( 
    R_EAL (r 
    (#) f)))) 
    = (r 
    * ( 
    Integral_on (M,B,( 
    R_EAL f)))) by 
    Th20;
    
      (
    R_EAL (f 
    | B)) 
    is_integrable_on M by 
    A1,
    MESFUNC5: 112;
    
      hence thesis by
    A2;
    
    end;