ordinal7.miz
begin
theorem ::
ORDINAL7:1
Th1: for X be
set holds (X
/\ (
succ X))
= X
proof
let X be
set;
for x be
object holds x
in X & x
in (
succ X) iff x
in X by
XBOOLE_0:def 3;
hence thesis by
XBOOLE_0:def 4;
end;
registration
let A be
increasing
Ordinal-Sequence, a be
Ordinal;
cluster (A
| a) ->
increasing;
coherence
proof
now
let c,d be
Ordinal;
assume
A1: c
in d & d
in (
dom (A
| a));
then
A2: ((A
| a)
. d)
= (A
. d) & ((A
| a)
. c)
= (A
. c) by
FUNCT_1: 47,
ORDINAL1: 10;
d
in (
dom A) by
A1,
RELAT_1: 57;
hence ((A
| a)
. c)
in ((A
| a)
. d) by
A1,
A2,
ORDINAL2:def 12;
end;
hence thesis by
ORDINAL2:def 12;
end;
end
Lm1: (
succ
0 )
= 1;
Lm2: (
succ (
succ
0 ))
= 2;
theorem ::
ORDINAL7:2
Th2: for a be
Ordinal holds (a
+^ a)
= (2
*^ a)
proof
let a be
Ordinal;
consider fi be
Ordinal-Sequence such that
A1: (2
*^ a)
= (
last fi) & (
dom fi)
= (
succ 2) & (fi
.
0 )
=
0 and
A2: for c be
Ordinal st (
succ c)
in (
succ 2) holds (fi
. (
succ c))
= ((fi
. c)
+^ a) and for c be
Ordinal st c
in (
succ 2) & c
<>
0 & c is
limit_ordinal holds (fi
. c)
= (
union (
sup (fi
| c))) by
ORDINAL2:def 15;
(
succ
0 )
in (
succ (
succ
0 )) & (
succ (
succ
0 ))
in (
succ 2) by
ORDINAL1: 6;
then
A3: (
succ
0 )
in (
succ 2) & (
succ (
succ
0 ))
in (
succ 2) by
ORDINAL1: 10;
(2
*^ a)
= (fi
. 2) by
A1,
ORDINAL2: 6
.= ((fi
. (
succ
0 ))
+^ a) by
A2,
A3
.= (((fi
.
0 )
+^ a)
+^ a) by
A2,
A3
.= (a
+^ a) by
A1,
ORDINAL2: 30;
hence thesis;
end;
theorem ::
ORDINAL7:3
for a,b be
Ordinal st 1
in a & a
in b holds (b
+^ a)
in (a
*^ b)
proof
let a,b be
Ordinal;
assume
A1: 1
in a & a
in b;
then
A2: (2
*^ b)
c= (a
*^ b) by
Lm2,
ORDINAL1: 21,
ORDINAL2: 41;
(b
+^ a)
in (b
+^ b) by
A1,
ORDINAL2: 32;
then (b
+^ a)
in (2
*^ b) by
Th2;
hence thesis by
A2;
end;
theorem ::
ORDINAL7:4
Th4: for a be
Ordinal holds (a
*^ a)
= (
exp (a,2))
proof
let a be
Ordinal;
consider fi be
Ordinal-Sequence such that
A1: (
exp (a,2))
= (
last fi) & (
dom fi)
= (
succ 2) & (fi
.
0 )
= 1 and
A2: for c be
Ordinal st (
succ c)
in (
succ 2) holds (fi
. (
succ c))
= (a
*^ (fi
. c)) and for c be
Ordinal st c
in (
succ 2) & c
<>
0 & c is
limit_ordinal holds (fi
. c)
= (
lim (fi
| c)) by
ORDINAL2:def 16;
(
succ
0 )
in (
succ (
succ
0 )) & (
succ (
succ
0 ))
in (
succ 2) by
ORDINAL1: 6;
then
A3: (
succ
0 )
in (
succ 2) & (
succ (
succ
0 ))
in (
succ 2) by
ORDINAL1: 10;
(
exp (a,2))
= (fi
. 2) by
A1,
ORDINAL2: 6
.= (a
*^ (fi
. (
succ
0 ))) by
A2,
A3
.= (a
*^ (a
*^ (fi
.
0 ))) by
A2,
A3
.= (a
*^ a) by
A1,
ORDINAL2: 39;
hence thesis;
end;
theorem ::
ORDINAL7:5
for a,b be
Ordinal st 1
in a & a
in b holds (a
*^ b)
in (
exp (b,a))
proof
let a,b be
Ordinal;
assume
A1: 1
in a & a
in b;
then
A3: (
exp (b,2))
c= (
exp (b,a)) by
Lm2,
ORDINAL1: 21,
ORDINAL4: 27;
(a
*^ b)
in (b
*^ b) by
A1,
ORDINAL2: 40;
then (a
*^ b)
in (
exp (b,2)) by
Th4;
hence thesis by
A3;
end;
theorem ::
ORDINAL7:6
for a,b be
Ordinal st 1
in a & a
in b holds (
exp (b,a))
in (b
|^|^ a)
proof
let a,b be
Ordinal;
assume
A1: 1
in a & a
in b;
then
A2: 1
in b by
ORDINAL1: 10;
then
0
c< b by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in b by
ORDINAL1: 11;
then
A3: (b
|^|^ 2)
c= (b
|^|^ a) by
A1,
Lm2,
ORDINAL1: 21,
ORDINAL5: 21;
(
exp (b,a))
in (
exp (b,b)) by
A1,
A2,
ORDINAL4: 24;
then (
exp (b,a))
in (b
|^|^ 2) by
ORDINAL5: 18;
hence thesis by
A3;
end;
registration
cluster
infinite for
Ordinal-Sequence;
existence
proof
take (
omega
-->
omega );
(
dom (
omega
-->
omega ))
=
omega ;
hence thesis;
end;
end
Th9: for A,B be
Sequence holds (
rng (A
^ B))
= ((
rng A)
\/ (
rng B)) by
ORDINAL4: 2;
theorem ::
ORDINAL7:7
Th10: for A,B be
Sequence st (A
^ B) is
Ordinal-yielding holds A is
Ordinal-yielding & B is
Ordinal-yielding
proof
let A,B be
Sequence;
assume (A
^ B) is
Ordinal-yielding;
then
consider c be
Ordinal such that
A1: (
rng (A
^ B))
c= c by
ORDINAL2:def 4;
(
rng A)
c= (
rng (A
^ B)) by
ORDINAL4: 39;
hence A is
Ordinal-yielding by
A1,
XBOOLE_1: 1,
ORDINAL2:def 4;
(
rng B)
c= (
rng (A
^ B)) by
ORDINAL4: 40;
hence B is
Ordinal-yielding by
A1,
XBOOLE_1: 1,
ORDINAL2:def 4;
end;
Th13: for D be
set, p be
FinSequence of D, n be
Nat holds (n
+ 1)
in (
dom p) iff n
in (
dom (
FS2XFS p)) by
AFINSQ_1: 94;
Th15: for D be
set, p be
FinSequence of D holds (
rng p)
= (
rng (
FS2XFS p)) by
AFINSQ_1: 96;
Th19: for D be
set, p be
one-to-one
XFinSequence of D, n be
Nat holds (
rng (p
| n))
misses (
rng (p
/^ n)) by
AFINSQ_2: 87;
theorem ::
ORDINAL7:8
Th21: for a,b be
Ordinal st a
in b holds (b
-exponent a)
=
0
proof
let a,b be
Ordinal;
assume
A1: a
in b;
per cases ;
suppose
0
in a;
then
0
= (b
-exponent (a
*^ (
exp (b,
0 )))) by
A1,
ORDINAL5: 58
.= (b
-exponent (a
*^ 1)) by
ORDINAL2: 43
.= (b
-exponent a) by
ORDINAL2: 39;
hence thesis;
end;
suppose not
0
in a;
hence thesis by
ORDINAL5:def 10;
end;
end;
theorem ::
ORDINAL7:9
Th22: for a,b,c be
Ordinal st a
c= c holds (b
-exponent a)
c= (b
-exponent c)
proof
let a,b,c be
Ordinal;
assume
A1: a
c= c;
per cases ;
suppose
A2: 1
in b &
0
in a &
0
in c;
then (
exp (b,(b
-exponent a)))
c= a by
ORDINAL5:def 10;
then (
exp (b,(b
-exponent a)))
c= c by
A1,
XBOOLE_1: 1;
hence thesis by
A2,
ORDINAL5:def 10;
end;
suppose not 1
in b;
then (b
-exponent a)
=
0 & (b
-exponent c)
=
0 by
ORDINAL5:def 10;
hence thesis;
end;
suppose not
0
in a or not
0
in c;
then not
0
in a by
A1;
then (b
-exponent a)
=
{} by
ORDINAL5:def 10;
hence thesis;
end;
end;
theorem ::
ORDINAL7:10
Th23: for a,b,c be
Ordinal st
0
in a & 1
in b & a
in (
exp (b,c)) holds (b
-exponent a)
in c
proof
let a,b,c be
Ordinal;
assume that
A1:
0
in a and
A2: 1
in b and
A3: a
in (
exp (b,c));
(
exp (b,c))
= (1
*^ (
exp (b,c))) &
0
in 1 by
CARD_1: 49,
TARSKI:def 1,
ORDINAL2: 39;
then (b
-exponent (
exp (b,c)))
= c by
A2,
ORDINAL5: 58;
then
A4: (b
-exponent a)
c= c by
A3,
Th22,
ORDINAL1:def 2;
(b
-exponent a)
<> c
proof
assume
A5: (b
-exponent a)
= c;
(
exp (b,(b
-exponent a)))
c= a by
A2,
A1,
ORDINAL5:def 10;
hence contradiction by
A3,
A5,
ORDINAL1: 5;
end;
hence thesis by
A4,
XBOOLE_0:def 8,
ORDINAL1: 11;
end;
registration
cluster
decreasing ->
one-to-one for
Ordinal-Sequence;
coherence
proof
let A be
Ordinal-Sequence;
assume
A1: A is
decreasing;
now
let x1,x2 be
object;
assume
A2: x1
in (
dom A) & x2
in (
dom A) & (A
. x1)
= (A
. x2);
then
reconsider a1 = x1, a2 = x2 as
Ordinal;
per cases by
ORDINAL1: 14;
suppose a1
in a2;
then (A
. a2)
in (A
. a1) by
A1,
A2,
ORDINAL5:def 1;
hence x1
= x2 by
A2;
end;
suppose a1
= a2;
hence x1
= x2;
end;
suppose a2
in a1;
then (A
. a1)
in (A
. a2) by
A1,
A2,
ORDINAL5:def 1;
hence x1
= x2 by
A2;
end;
end;
hence thesis by
FUNCT_1:def 4;
end;
end
registration
let A be
decreasing
Sequence, a be
Ordinal;
cluster (A
| a) ->
decreasing;
coherence
proof
now
let b,c be
Ordinal;
assume
A1: b
in c & c
in (
dom (A
| a));
then
A2: ((A
| a)
. b)
= (A
. b) & ((A
| a)
. c)
= (A
. c) by
FUNCT_1: 47,
ORDINAL1: 10;
c
in (
dom A) by
A1,
RELAT_1: 57;
hence ((A
| a)
. c)
in ((A
| a)
. b) by
A1,
A2,
ORDINAL5:def 1;
end;
hence thesis by
ORDINAL5:def 1;
end;
end
registration
let A be
non-decreasing
Sequence, a be
Ordinal;
cluster (A
| a) ->
non-decreasing;
coherence
proof
now
let b,c be
Ordinal;
assume
A1: b
in c & c
in (
dom (A
| a));
then
A2: ((A
| a)
. b)
= (A
. b) & ((A
| a)
. c)
= (A
. c) by
ORDINAL1: 10,
FUNCT_1: 47;
c
in (
dom A) by
A1,
RELAT_1: 57;
hence ((A
| a)
. b)
c= ((A
| a)
. c) by
A1,
A2,
ORDINAL5:def 2;
end;
hence thesis by
ORDINAL5:def 2;
end;
end
registration
let A be
non-increasing
Sequence, a be
Ordinal;
cluster (A
| a) ->
non-increasing;
coherence
proof
now
let b,c be
Ordinal;
assume
A1: b
in c & c
in (
dom (A
| a));
then
A2: ((A
| a)
. b)
= (A
. b) & ((A
| a)
. c)
= (A
. c) by
ORDINAL1: 10,
FUNCT_1: 47;
c
in (
dom A) by
A1,
RELAT_1: 57;
hence ((A
| a)
. c)
c= ((A
| a)
. b) by
A1,
A2,
ORDINAL5:def 3;
end;
hence thesis by
ORDINAL5:def 3;
end;
end
theorem ::
ORDINAL7:11
Th24: for A,B be
finite
Ordinal-Sequence holds (
Sum^ (A
^ B))
= ((
Sum^ A)
+^ (
Sum^ B))
proof
defpred
P[
Nat] means for A,B be
finite
Ordinal-Sequence st (
dom B)
= $1 holds (
Sum^ (A
^ B))
= ((
Sum^ A)
+^ (
Sum^ B));
A1:
P[
0 ]
proof
let A,B be
finite
Ordinal-Sequence;
assume (
dom B)
=
0 ;
then B
=
{} ;
hence (
Sum^ (A
^ B))
= ((
Sum^ A)
+^ (
Sum^ B)) by
ORDINAL2: 27,
ORDINAL5: 52;
end;
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A3:
P[n];
let A,B be
finite
Ordinal-Sequence;
assume
A4: (
dom B)
= (n
+ 1);
then B
<>
{} ;
then
consider C be
XFinSequence, a be
object such that
A5: B
= (C
^
<%a%>) by
AFINSQ_1: 40;
consider b be
Ordinal such that
A6: (
rng B)
c= b by
ORDINAL2:def 4;
(
rng C)
c= (
rng B) by
A5,
AFINSQ_1: 24;
then
reconsider C as
finite
Ordinal-Sequence by
A6,
XBOOLE_1: 1,
ORDINAL2:def 4;
(
rng
<%a%>)
c= (
rng B) by
A5,
AFINSQ_1: 25;
then
{a}
c= (
rng B) by
AFINSQ_1: 33;
then a
in (
rng B) by
ZFMISC_1: 31;
then
reconsider a as
Ordinal;
A7: ((
dom C)
+ 1)
= ((
len C)
+ (
len
<%a%>)) by
AFINSQ_1: 34
.= (n
+ 1) by
A4,
A5,
AFINSQ_1: 17;
thus (
Sum^ (A
^ B))
= (
Sum^ ((A
^ C)
^
<%a%>)) by
A5,
AFINSQ_1: 27
.= ((
Sum^ (A
^ C))
+^ a) by
ORDINAL5: 54
.= (((
Sum^ A)
+^ (
Sum^ C))
+^ a) by
A3,
A7
.= ((
Sum^ A)
+^ ((
Sum^ C)
+^ a)) by
ORDINAL3: 30
.= ((
Sum^ A)
+^ (
Sum^ B)) by
A5,
ORDINAL5: 54;
end;
A8: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
let A,B be
finite
Ordinal-Sequence;
(
dom B) is
Nat;
hence thesis by
A8;
end;
theorem ::
ORDINAL7:12
Th25: for a,b be
Ordinal holds (
Sum^
<%a, b%>)
= (a
+^ b)
proof
let a,b be
Ordinal;
thus (
Sum^
<%a, b%>)
= (
Sum^ (
<%a%>
^
<%b%>)) by
AFINSQ_1:def 5
.= ((
Sum^
<%a%>)
+^ (
Sum^
<%b%>)) by
Th24
.= ((
Sum^
<%a%>)
+^ b) by
ORDINAL5: 53
.= (a
+^ b) by
ORDINAL5: 53;
end;
registration
let A be non
empty
non-empty
finite
Ordinal-Sequence;
cluster (
Sum^ A) -> non
empty;
coherence
proof
0
c< (
dom A) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A1:
0
in (
dom A) by
ORDINAL1: 11;
(A
.
0 )
c= (
Sum^ A) by
ORDINAL5: 56;
hence thesis by
A1;
end;
let B be
finite
Ordinal-Sequence;
cluster (
Sum^ (A
^ B)) -> non
empty;
coherence
proof
(
Sum^ (A
^ B))
= ((
Sum^ A)
+^ (
Sum^ B)) by
Th24;
hence thesis;
end;
cluster (
Sum^ (B
^ A)) -> non
empty;
coherence
proof
(
Sum^ (B
^ A))
= ((
Sum^ B)
+^ (
Sum^ A)) by
Th24;
hence thesis;
end;
end
theorem ::
ORDINAL7:13
Th26: for a be
Ordinal, n be
Nat holds (
Sum^ (n
--> a))
= (n
*^ a)
proof
let a be
Ordinal, n be
Nat;
consider fi be
Ordinal-Sequence such that
A1: (
Sum^ (n
--> a))
= (
last fi) & (
dom fi)
= (
succ (
dom (n
--> a))) & (fi
.
0 )
=
0 and
A2: for k be
Nat st k
in (
dom (n
--> a)) holds (fi
. (k
+ 1))
= ((fi
. k)
+^ ((n
--> a)
. k)) by
ORDINAL5:def 8;
A4:
now
let C be
Ordinal;
assume (
succ C)
in (
succ n);
then
A5: C
in n by
ORDINAL3: 3;
n
in
omega by
ORDINAL1:def 12;
then C
in
omega by
A5,
ORDINAL1: 10;
then
reconsider k = C as
Nat;
A6: k
in (
dom (n
--> a)) by
A5;
thus (fi
. (
succ C))
= (fi
. (
succ (
Segm C)))
.= (fi
. (
Segm (k
+ 1))) by
NAT_1: 38
.= ((fi
. k)
+^ ((n
--> a)
. k)) by
A2,
A6
.= ((fi
. C)
+^ a) by
A5,
FUNCOP_1: 7;
end;
now
let C be
Ordinal;
assume
A7: C
in (
succ n) & C
<>
0 & C is
limit_ordinal;
(
succ n)
in
omega by
ORDINAL1:def 12;
then C
in
omega by
A7,
ORDINAL1: 10;
hence (fi
. C)
= (
union (
sup (fi
| C))) by
A7;
end;
hence thesis by
A1,
A4,
ORDINAL2:def 15;
end;
Lm5: for n be
Nat holds (
succ n)
= (n
+ 1)
proof
let n be
Nat;
thus (
succ n)
= (
succ (
Segm n))
.= (
Segm (n
+ 1)) by
NAT_1: 38
.= (n
+ 1);
end;
theorem ::
ORDINAL7:14
Th27: for A be
finite
Ordinal-Sequence, a be
Ordinal holds (
Sum^ (A
| a))
c= (
Sum^ A)
proof
let A be
finite
Ordinal-Sequence, a be
Ordinal;
per cases ;
suppose (
dom A)
c= a;
hence thesis by
RELAT_1: 68;
end;
suppose
A1: a
c= (
dom A);
then
reconsider a as
finite
Ordinal;
consider f1 be
Ordinal-Sequence such that
A2: (
Sum^ (A
| a))
= (
last f1) & (
dom f1)
= (
succ (
dom (A
| a))) & (f1
.
0 )
=
0 and
A3: for n be
Nat st n
in (
dom (A
| a)) holds (f1
. (n
+ 1))
= ((f1
. n)
+^ ((A
| a)
. n)) by
ORDINAL5:def 8;
consider f2 be
Ordinal-Sequence such that
A4: (
Sum^ A)
= (
last f2) & (
dom f2)
= (
succ (
dom A)) & (f2
.
0 )
=
0 and
A5: for n be
Nat st n
in (
dom A) holds (f2
. (n
+ 1))
= ((f2
. n)
+^ (A
. n)) by
ORDINAL5:def 8;
defpred
P[
Nat] means $1
in (
dom f1) implies (f1
. $1)
= (f2
. $1);
A6:
P[
0 ] by
A2,
A4;
A7: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A8:
P[n];
assume (n
+ 1)
in (
dom f1);
then
A9: (
succ n)
in (
dom f1) by
Lm5;
n
in (
succ n) by
ORDINAL1: 6;
then
A10: (f1
. n)
= (f2
. n) by
A8,
A9,
ORDINAL1: 10;
A11: n
in (
dom (A
| a)) by
A2,
A9,
ORDINAL3: 3;
then
A12: n
in (
dom A) by
RELAT_1: 57;
thus (f1
. (n
+ 1))
= ((f1
. n)
+^ ((A
| a)
. n)) by
A3,
A11
.= ((f2
. n)
+^ (A
. n)) by
A10,
A11,
FUNCT_1: 47
.= (f2
. (n
+ 1)) by
A5,
A12;
end;
A13: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A6,
A7);
A14: (
last f1)
= (f1
. (
dom (A
| a))) & (
last f2)
= (f2
. (
dom A)) by
A2,
A4,
ORDINAL2: 6;
then
A15: (
last f1)
= (f2
. (
dom (A
| a))) by
A2,
A13,
ORDINAL1: 6
.= (f2
. a) by
A1,
RELAT_1: 62;
(
Segm a)
c= (
Segm (
dom A)) by
A1;
then
consider k be
Nat such that
A16: (
dom A)
= (a
+ k) by
NAT_1: 10,
NAT_1: 39;
defpred
Q[
Nat] means (a
+ $1)
<= (
dom A) implies (f2
. a)
c= (f2
. (a
+ $1));
A17:
Q[
0 ];
A18: for n be
Nat st
Q[n] holds
Q[(n
+ 1)]
proof
let n be
Nat;
assume
A19:
Q[n];
assume
A20: (a
+ (n
+ 1))
<= (
dom A);
then ((a
+ n)
+ 1)
< ((
dom A)
+ 1) by
NAT_1: 13;
then
A21: (f2
. a)
c= (f2
. (a
+ n)) by
A19,
XREAL_1: 6;
(
Segm (a
+ (n
+ 1)))
c= (
Segm (
dom A)) by
A20,
NAT_1: 39;
then ((a
+ n)
+ 1)
c= (
dom A);
then (
succ (a
+ n))
c= (
dom A) by
Lm5;
then (f2
. ((a
+ n)
+ 1))
= ((f2
. (a
+ n))
+^ (A
. (a
+ n))) by
A5,
ORDINAL1: 21;
then (f2
. (a
+ n))
c= (f2
. ((a
+ n)
+ 1)) by
ORDINAL3: 24;
hence thesis by
A21,
XBOOLE_1: 1;
end;
for n be
Nat holds
Q[n] from
NAT_1:sch 2(
A17,
A18);
hence thesis by
A2,
A4,
A14,
A15,
A16;
end;
end;
theorem ::
ORDINAL7:15
Th28: for A,B be
finite
Ordinal-Sequence st (
dom A)
c= (
dom B) & for a be
object st a
in (
dom A) holds (A
. a)
c= (B
. a) holds (
Sum^ A)
c= (
Sum^ B)
proof
let A,B be
finite
Ordinal-Sequence;
assume that
A1: (
dom A)
c= (
dom B) and
A2: for a be
object st a
in (
dom A) holds (A
. a)
c= (B
. a);
set a = (
dom A);
consider f1 be
Ordinal-Sequence such that
A3: (
Sum^ A)
= (
last f1) & (
dom f1)
= (
succ (
dom A)) & (f1
.
0 )
=
0 and
A4: for n be
Nat st n
in (
dom A) holds (f1
. (n
+ 1))
= ((f1
. n)
+^ (A
. n)) by
ORDINAL5:def 8;
consider f2 be
Ordinal-Sequence such that
A5: (
Sum^ (B
| a))
= (
last f2) & (
dom f2)
= (
succ (
dom (B
| a))) & (f2
.
0 )
=
0 and
A6: for n be
Nat st n
in (
dom (B
| a)) holds (f2
. (n
+ 1))
= ((f2
. n)
+^ ((B
| a)
. n)) by
ORDINAL5:def 8;
defpred
P[
Nat] means $1
in (
succ a) implies (f1
. $1)
c= (f2
. $1);
A7:
P[
0 ] by
A3;
A8: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A9:
P[n];
assume (n
+ 1)
in (
succ a);
then
A10: (
succ n)
in (
succ a) by
Lm5;
then
A11: n
in a by
ORDINAL3: 3;
n
in (
succ n) by
ORDINAL1: 6;
then
A12: (f1
. n)
c= (f2
. n) by
A9,
A10,
ORDINAL1: 10;
A13: (f1
. (n
+ 1))
= ((f1
. n)
+^ (A
. n)) by
A4,
A10,
ORDINAL3: 3;
A14: n
in (
dom (B
| a)) by
A1,
A11,
RELAT_1: 62;
then
A15: (f2
. (n
+ 1))
= ((f2
. n)
+^ ((B
| a)
. n)) by
A6
.= ((f2
. n)
+^ (B
. n)) by
A14,
FUNCT_1: 47;
(A
. n)
c= (B
. n) by
A2,
A10,
ORDINAL3: 3;
hence thesis by
A12,
A13,
A15,
ORDINAL3: 18;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A8);
then (f1
. a)
c= (f2
. a) by
ORDINAL1: 6;
then (
last f1)
c= (f2
. a) by
A3,
ORDINAL2: 6;
then (
last f1)
c= (f2
. (
dom (B
| a))) by
A1,
RELAT_1: 62;
then
A17: (
Sum^ A)
c= (
Sum^ (B
| a)) by
A3,
A5,
ORDINAL2: 6;
(
Sum^ (B
| a))
c= (
Sum^ B) by
Th27;
hence thesis by
A17,
XBOOLE_1: 1;
end;
theorem ::
ORDINAL7:16
Th29: for A be
Cantor-normal-form
Ordinal-Sequence st A
<>
{} holds ex B be
Cantor-normal-form
Ordinal-Sequence, a be
Cantor-component
Ordinal st A
= (B
^
<%a%>)
proof
let A be
Cantor-normal-form
Ordinal-Sequence;
assume A
<>
{} ;
then
consider B be
XFinSequence, a be
object such that
A1: A
= (B
^
<%a%>) by
AFINSQ_1: 40;
reconsider B as
finite
Ordinal-Sequence by
A1,
Th10;
<%a%> is
Ordinal-Sequence by
A1,
Th10;
then
consider c be
Ordinal such that
A2: (
rng
<%a%>)
c= c by
ORDINAL2:def 4;
{a}
c= c by
A2,
AFINSQ_1: 33;
then a
in c by
ZFMISC_1: 31;
then
reconsider a as
Ordinal;
(
len A)
= ((
len B)
+ (
len
<%a%>)) by
A1,
AFINSQ_1: 17
.= (
Segm ((
len B)
+ 1)) by
AFINSQ_1: 34
.= (
succ (
Segm (
len B))) by
NAT_1: 38
.= (
succ (
len B));
then (
len B)
in (
len A) by
ORDINAL1: 6;
then (A
. (
len B)) is
Cantor-component by
ORDINAL5:def 11;
then
reconsider a as
Cantor-component
Ordinal by
A1,
AFINSQ_1: 36;
(
dom B)
c= ((
dom B)
+^ (
dom
<%a%>)) by
ORDINAL3: 24;
then
A3: (
dom B)
c= (
dom A) by
A1,
ORDINAL4:def 1;
A4:
now
let b be
Ordinal;
assume
A5: b
in (
dom B);
then (A
. b)
= (B
. b) by
A1,
ORDINAL4:def 1;
hence (B
. b) is
Cantor-component by
A3,
A5,
ORDINAL5:def 11;
end;
now
let b,c be
Ordinal;
assume
A6: b
in c & c
in (
dom B);
then b
in (
dom B) & c
in (
dom B) by
ORDINAL1: 10;
then (A
. b)
= (B
. b) & (A
. c)
= (B
. c) by
A1,
ORDINAL4:def 1;
hence (
omega
-exponent (B
. c))
in (
omega
-exponent (B
. b)) by
A3,
A6,
ORDINAL5:def 11;
end;
then
reconsider B as
Cantor-normal-form
Ordinal-Sequence by
A4,
ORDINAL5:def 11;
take B, a;
thus thesis by
A1;
end;
registration
let A be
Cantor-normal-form
Ordinal-Sequence, n be
Nat;
cluster (A
| n) ->
Cantor-normal-form;
coherence
proof
A1:
now
let a be
Ordinal;
assume a
in (
dom (A
| n));
then a
in (
dom A) & ((A
| n)
. a)
= (A
. a) by
RELAT_1: 57,
FUNCT_1: 47;
hence ((A
| n)
. a) is
Cantor-component by
ORDINAL5:def 11;
end;
now
let a,b be
Ordinal;
assume
A2: a
in b & b
in (
dom (A
| n));
then
A3: a
in (
dom (A
| n)) & b
in (
dom A) by
ORDINAL1: 10,
RELAT_1: 57;
then ((A
| n)
. a)
= (A
. a) & ((A
| n)
. b)
= (A
. b) by
A2,
FUNCT_1: 47;
hence (
omega
-exponent ((A
| n)
. b))
in (
omega
-exponent ((A
| n)
. a)) by
A2,
A3,
ORDINAL5:def 11;
end;
hence thesis by
A1,
ORDINAL5:def 11;
end;
end
registration
let A be
Cantor-normal-form
Ordinal-Sequence, n be
Nat;
cluster (A
/^ n) ->
Cantor-normal-form;
coherence
proof
per cases ;
suppose n
>= (
len A);
hence thesis by
AFINSQ_2: 6;
end;
suppose
A1: n
< (
len A);
A2:
now
let a be
Ordinal;
assume a
in (
dom (A
/^ n));
then ((A
/^ n)
. a)
in (
rng (A
/^ n)) by
FUNCT_1: 3;
then ((A
/^ n)
. a)
in (
rng A) by
AFINSQ_2: 9,
TARSKI:def 3;
then
consider b be
object such that
A3: b
in (
dom A) & (A
. b)
= ((A
/^ n)
. a) by
FUNCT_1:def 3;
thus ((A
/^ n)
. a) is
Cantor-component by
A3,
ORDINAL5:def 11;
end;
now
let a,b be
Ordinal;
assume
A4: a
in b & b
in (
dom (A
/^ n));
then
A5: a
in (
dom (A
/^ n)) by
ORDINAL1: 10;
then
reconsider m = a, k = b as
Nat by
A4;
((A
/^ n)
. a)
= (A
. (m
+ n)) & ((A
/^ n)
. b)
= (A
. (k
+ n)) by
A4,
A5,
AFINSQ_2:def 2;
then
A6: ((A
/^ n)
. a)
= (A
. (a
+^ n)) & ((A
/^ n)
. b)
= (A
. (b
+^ n)) by
CARD_2: 36;
A7: (((
dom A)
- n)
+ n)
= ((
len (A
/^ n))
+ n) by
A1,
AFINSQ_2: 7
.= ((
len (A
/^ n))
+^ n) by
CARD_2: 36;
m
in (
Segm k) by
A4;
then (m
+ n)
< (k
+ n) by
NAT_1: 44,
XREAL_1: 6;
then (m
+ n)
in (
Segm (k
+ n)) by
NAT_1: 44;
then (m
+ n)
in (b
+^ n) by
CARD_2: 36;
then
A8: (a
+^ n)
in (b
+^ n) by
CARD_2: 36;
k
in (
Segm (
dom (A
/^ n))) by
A4;
then (k
+ n)
< ((
dom (A
/^ n))
+ n) by
NAT_1: 44,
XREAL_1: 6;
then (k
+ n)
in (
Segm ((
dom (A
/^ n))
+ n)) by
NAT_1: 44;
then (b
+^ n)
in ((
dom (A
/^ n))
+ n) by
CARD_2: 36;
then (b
+^ n)
in (
dom A) by
A7,
CARD_2: 36;
hence (
omega
-exponent ((A
/^ n)
. b))
in (
omega
-exponent ((A
/^ n)
. a)) by
A6,
A8,
ORDINAL5:def 11;
end;
hence thesis by
A2,
ORDINAL5:def 11;
end;
end;
end
registration
cluster
natural-valued ->
Ordinal-yielding for
Sequence;
coherence
proof
let F be
Sequence;
assume F is
natural-valued;
then (
rng F)
c=
NAT by
VALUED_0:def 6;
hence thesis by
ORDINAL2:def 4;
end;
end
registration
cluster
limit_ordinal ->
zero for
Nat;
coherence ;
cluster non
limit_ordinal for
Ordinal;
existence
proof
take the non
zero
Nat;
thus thesis;
end;
end
registration
let n,m be
Nat;
identify
max (n,m) with n
\/ m;
correctness
proof
per cases by
ORDINAL1: 14;
suppose
A1: n
in m;
then
A2: (n
\/ m)
= m by
ORDINAL1:def 2,
XBOOLE_1: 12;
n
in (
Segm m) by
A1;
hence thesis by
A2,
NAT_1: 44,
XXREAL_0:def 10;
end;
suppose n
= m;
hence thesis;
end;
suppose
A3: m
in n;
then
A4: (n
\/ m)
= n by
ORDINAL1:def 2,
XBOOLE_1: 12;
m
in (
Segm n) by
A3;
hence thesis by
A4,
NAT_1: 44,
XXREAL_0:def 10;
end;
end;
identify
min (n,m) with n
/\ m;
correctness
proof
per cases by
ORDINAL1: 14;
suppose
A5: n
in m;
then
A6: (n
/\ m)
= n by
ORDINAL1:def 2,
XBOOLE_1: 28;
n
in (
Segm m) by
A5;
hence thesis by
A6,
NAT_1: 44,
XXREAL_0:def 9;
end;
suppose n
= m;
hence thesis;
end;
suppose
A7: m
in n;
then
A8: (n
/\ m)
= m by
ORDINAL1:def 2,
XBOOLE_1: 28;
m
in (
Segm n) by
A7;
hence thesis by
A8,
NAT_1: 44,
XXREAL_0:def 9;
end;
end;
end
begin
theorem ::
ORDINAL7:17
Th30: for a,b be
Ordinal holds (a
+^ b)
= b iff (
omega
*^ a)
c= b
proof
let a,b be
Ordinal;
hereby
assume
A1: (a
+^ b)
= b;
defpred
P[
Nat] means (($1
*^ a)
+^ b)
= b;
(
0
*^ a)
=
0 by
ORDINAL2: 35;
then
A2:
P[
0 ] by
ORDINAL2: 30;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
P[n];
thus (((n
+ 1)
*^ a)
+^ b)
= (((
succ n)
*^ a)
+^ b) by
Lm5
.= (((n
*^ a)
+^ a)
+^ b) by
ORDINAL2: 36
.= b by
A1,
A4,
ORDINAL3: 30;
end;
A5: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
per cases ;
suppose a
=
{} ;
then (
omega
*^ a)
=
{} by
ORDINAL2: 38;
hence (
omega
*^ a)
c= b;
end;
suppose
A6: a
<>
{} ;
reconsider fi = (
id
omega ) as
Ordinal-Sequence;
A7: (
sup fi)
= (
sup (
rng fi)) by
ORDINAL2:def 5
.=
omega by
ORDINAL2: 18;
set psi = (fi
*^ a);
A8: (
dom fi)
= (
dom psi) by
ORDINAL3:def 4;
for A,B be
Ordinal st A
in (
dom fi) & B
= (fi
. A) holds (psi
. A)
= (B
*^ a) by
ORDINAL3:def 4;
then
A9: (
sup psi)
= (
omega
*^ a) by
A6,
A7,
A8,
ORDINAL3: 42;
now
let A be
Ordinal;
assume A
in (
rng psi);
then
consider n be
object such that
A10: n
in (
dom psi) & (psi
. n)
= A by
FUNCT_1:def 3;
reconsider n as
Nat by
A8,
A10;
A
= ((fi
. n)
*^ a) by
A8,
A10,
ORDINAL3:def 4
.= (n
*^ a) by
A8,
A10,
FUNCT_1: 18;
then
A11: (A
+^ b)
= b by
A5;
then
A12: A
c= b by
ORDINAL3: 24;
A
<> b
proof
assume A
= b;
then (2
*^ b)
= (A
+^ b) by
Th2
.= (1
*^ b) by
A11,
ORDINAL2: 39;
hence contradiction by
A1,
A6,
ORDINAL3: 33;
end;
hence A
in b by
A12,
XBOOLE_0:def 8,
ORDINAL1: 11;
end;
then (
sup (
rng psi))
c= b by
ORDINAL2: 20;
hence (
omega
*^ a)
c= b by
A9,
ORDINAL2:def 5;
end;
end;
assume (
omega
*^ a)
c= b;
then
consider c be
Ordinal such that
A13: b
= ((
omega
*^ a)
+^ c) by
ORDINAL3: 27;
thus (a
+^ b)
= ((1
*^ a)
+^ ((
omega
*^ a)
+^ c)) by
A13,
ORDINAL2: 39
.= (((1
*^ a)
+^ (
omega
*^ a))
+^ c) by
ORDINAL3: 30
.= (((1
+^
omega )
*^ a)
+^ c) by
ORDINAL3: 46
.= b by
A13,
CARD_2: 74;
end;
theorem ::
ORDINAL7:18
Th31: for A be non
empty
Cantor-normal-form
Ordinal-Sequence, a be
object st a
in (
dom A) holds (
omega
-exponent (
last A))
c= (
omega
-exponent (A
. a))
proof
let A be non
empty
Cantor-normal-form
Ordinal-Sequence, a be
object;
assume
A1: a
in (
dom A);
consider A0 be
Cantor-normal-form
Ordinal-Sequence, a0 be
Cantor-component
Ordinal such that
A2: A
= (A0
^
<%a0%>) by
Th29;
per cases by
A1,
A2,
AFINSQ_1: 20;
suppose
A3: a
in (
dom A0);
0
in 1 by
CARD_1: 49,
TARSKI:def 1;
then
0
in (
dom
<%a0%>) by
AFINSQ_1: 33;
then ((
len A0)
+
0 )
in (
dom A) by
A2,
AFINSQ_1: 23;
then (
omega
-exponent (A
. (
len A0)))
in (
omega
-exponent (A
. a)) by
A3,
ORDINAL5:def 11;
then (
omega
-exponent a0)
in (
omega
-exponent (A
. a)) by
A2,
AFINSQ_1: 36;
then (
omega
-exponent (
last A))
in (
omega
-exponent (A
. a)) by
A2,
AFINSQ_1: 92;
hence thesis by
ORDINAL1:def 2;
end;
suppose ex n be
Nat st n
in (
dom
<%a0%>) & a
= ((
len A0)
+ n);
then
consider n be
Nat such that
A4: n
in (
dom
<%a0%>) & a
= ((
len A0)
+ n);
n
in (
Segm 1) by
A4,
AFINSQ_1: 33;
then n
=
0 by
CARD_1: 49,
TARSKI:def 1;
then (A
. a)
= a0 by
A2,
A4,
AFINSQ_1: 36
.= (
last A) by
A2,
AFINSQ_1: 92;
hence thesis;
end;
end;
theorem ::
ORDINAL7:19
Th32: for A be non
empty
Cantor-normal-form
Ordinal-Sequence, a be
object st a
in (
dom A) holds (
omega
-exponent (A
. a))
c= (
omega
-exponent (A
.
0 ))
proof
let A be non
empty
Cantor-normal-form
Ordinal-Sequence, a be
object;
assume
A1: a
in (
dom A);
consider a0 be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A2: A
= (
<%a0%>
^ A0) by
ORDINAL5: 67;
per cases by
A1,
A2,
AFINSQ_1: 20;
suppose a
in (
dom
<%a0%>);
then a
in (
Segm 1) by
AFINSQ_1: 33;
hence thesis by
CARD_1: 49,
TARSKI:def 1;
end;
suppose ex n be
Nat st n
in (
dom A0) & a
= ((
len
<%a0%>)
+ n);
then
consider n be
Nat such that
A3: n
in (
dom A0) & a
= ((
len
<%a0%>)
+ n);
reconsider n1 = a as
Nat by
A3;
n1
= (n
+ 1) by
A3,
AFINSQ_1: 34;
then
0
in (
Segm n1) by
NAT_1: 44;
then
A4:
0
in n1;
n1
in (
dom A) by
A2,
A3,
AFINSQ_1: 23;
hence thesis by
A4,
ORDINAL5:def 11,
ORDINAL1:def 2;
end;
end;
theorem ::
ORDINAL7:20
Th33: for A,B be non
empty
Cantor-normal-form
Ordinal-Sequence st (
omega
-exponent (B
.
0 ))
in (
omega
-exponent (
last A)) holds (A
^ B) is
Cantor-normal-form
proof
let A,B be non
empty
Cantor-normal-form
Ordinal-Sequence;
assume
A1: (
omega
-exponent (B
.
0 ))
in (
omega
-exponent (
last A));
A2:
now
let a be
Ordinal;
assume a
in (
dom (A
^ B));
per cases by
AFINSQ_1: 20;
suppose
A3: a
in (
dom A);
then (A
. a)
= ((A
^ B)
. a) by
AFINSQ_1:def 3;
hence ((A
^ B)
. a) is
Cantor-component by
A3,
ORDINAL5:def 11;
end;
suppose ex n be
Nat st n
in (
dom B) & a
= ((
len A)
+ n);
then
consider n be
Nat such that
A4: n
in (
dom B) & a
= ((
len A)
+ n);
(B
. n)
= ((A
^ B)
. a) by
A4,
AFINSQ_1:def 3;
hence ((A
^ B)
. a) is
Cantor-component by
A4,
ORDINAL5:def 11;
end;
end;
for a,b be
Ordinal st a
in b & b
in (
dom (A
^ B)) holds (
omega
-exponent ((A
^ B)
. b))
in (
omega
-exponent ((A
^ B)
. a))
proof
let a,b be
Ordinal;
assume
A5: a
in b & b
in (
dom (A
^ B));
per cases by
AFINSQ_1: 20;
suppose
A6: b
in (
dom A);
then
A7: ((A
^ B)
. b)
= (A
. b) & a
in (
dom A) by
A5,
ORDINAL1: 10,
AFINSQ_1:def 3;
then ((A
^ B)
. a)
= (A
. a) by
AFINSQ_1:def 3;
hence thesis by
A5,
A6,
A7,
ORDINAL5:def 11;
end;
suppose ex n be
Nat st n
in (
dom B) & b
= ((
len A)
+ n);
then
consider n be
Nat such that
A8: n
in (
dom B) & b
= ((
len A)
+ n);
a
in (
dom (A
^ B)) by
A5,
ORDINAL1: 10;
per cases by
AFINSQ_1: 20;
suppose
A9: a
in (
dom A);
then (
omega
-exponent (
last A))
c= (
omega
-exponent (A
. a)) by
Th31;
then
A10: (
omega
-exponent (B
.
0 ))
in (
omega
-exponent (A
. a)) by
A1;
(
omega
-exponent (B
. n))
c= (
omega
-exponent (B
.
0 )) by
A8,
Th32;
then (
omega
-exponent (B
. n))
in (
omega
-exponent (A
. a)) by
A10,
ORDINAL1: 12;
then (
omega
-exponent ((A
^ B)
. b))
in (
omega
-exponent (A
. a)) by
A8,
AFINSQ_1:def 3;
hence thesis by
A9,
AFINSQ_1:def 3;
end;
suppose ex m be
Nat st m
in (
dom B) & a
= ((
len A)
+ m);
then
consider m be
Nat such that
A11: m
in (
dom B) & a
= ((
len A)
+ m);
m
in n
proof
assume not m
in n;
then ((
len A)
+^ n)
c= ((
len A)
+^ m) by
ORDINAL1: 16,
ORDINAL2: 33;
then b
c= ((
len A)
+^ m) by
A8,
CARD_2: 36;
then b
c= a by
A11,
CARD_2: 36;
then a
in a by
A5;
hence contradiction;
end;
then (
omega
-exponent (B
. n))
in (
omega
-exponent (B
. m)) by
A8,
ORDINAL5:def 11;
then (
omega
-exponent ((A
^ B)
. b))
in (
omega
-exponent (B
. m)) by
A8,
AFINSQ_1:def 3;
hence thesis by
A11,
AFINSQ_1:def 3;
end;
end;
end;
hence thesis by
A2,
ORDINAL5:def 11;
end;
Lm6: for A be
decreasing
Ordinal-Sequence, n be
Nat st (
len A)
= (n
+ 1) holds (
rng (A
| n))
= ((
rng A)
\
{(A
. n)})
proof
let A be
decreasing
Ordinal-Sequence, n be
Nat;
assume
A1: (
len A)
= (n
+ 1);
not (A
. n)
in (
rng (A
| n))
proof
assume (A
. n)
in (
rng (A
| n));
then
consider x be
object such that
A2: x
in (
dom (A
| n)) & ((A
| n)
. x)
= (A
. n) by
FUNCT_1:def 3;
A3: (A
. x)
= (A
. n) by
A2,
FUNCT_1: 47;
A4: x
in (
dom A) & x
in n by
A2,
RELAT_1: 57;
(n
+
0 )
< (n
+ 1) by
XREAL_1: 8;
then n
in (
dom A) by
A1,
AFINSQ_1: 86;
then n
in n by
A3,
A4,
FUNCT_1:def 4;
hence contradiction;
end;
then
A5: (
rng (A
| n))
c= ((
rng A)
\
{(A
. n)}) by
RELAT_1: 70,
ZFMISC_1: 34;
now
let y be
object;
assume y
in ((
rng A)
\
{(A
. n)});
then
A6: y
in (
rng A) & y
<> (A
. n) by
ZFMISC_1: 56;
then
consider x be
object such that
A7: x
in (
dom A) & (A
. x)
= y by
FUNCT_1:def 3;
(
dom A)
= (
succ n) by
A1,
Lm5;
then x
in n by
A6,
A7,
ORDINAL1: 8;
hence y
in (
rng (A
| n)) by
A7,
FUNCT_1: 50;
end;
then ((
rng A)
\
{(A
. n)})
c= (
rng (A
| n)) by
TARSKI:def 3;
hence thesis by
A5,
XBOOLE_0:def 10;
end;
Lm7: for A,B be
decreasing
Ordinal-Sequence, n be
Nat st (
len A)
= (n
+ 1) & (
rng A)
= (
rng B) holds (A
. n)
= (B
. n)
proof
let A,B be
decreasing
Ordinal-Sequence, n be
Nat;
assume
A1: (
len A)
= (n
+ 1) & (
rng A)
= (
rng B);
A2: (
dom A)
= (
card (
dom A))
.= (
card (
rng B)) by
A1,
CARD_1: 70
.= (
card (
dom B)) by
CARD_1: 70
.= (
dom B);
n
in (
succ n) by
ORDINAL1: 6;
then
A3: n
in (n
+ 1) by
Lm5;
then (A
. n)
in (
rng B) by
A1,
FUNCT_1: 3;
then
consider m be
object such that
A4: m
in (
dom B) & (B
. m)
= (A
. n) by
FUNCT_1:def 3;
(B
. n)
in (
rng A) by
A1,
A2,
A3,
FUNCT_1: 3;
then
consider k be
object such that
A5: k
in (
dom A) & (A
. k)
= (B
. n) by
FUNCT_1:def 3;
reconsider m, k as
Nat by
A4,
A5;
per cases by
ORDINAL1: 14;
suppose m
in k;
then
A6: (A
. k)
in (A
. m) & (B
. k)
in (B
. m) by
A2,
A5,
ORDINAL5:def 1;
k
in (
succ n) by
A1,
A5,
Lm5;
per cases by
ORDINAL1: 8;
suppose k
in n;
then (A
. n)
in (A
. k) & (B
. n)
in (B
. k) by
A1,
A2,
A3,
ORDINAL5:def 1;
hence thesis by
A4,
A5,
A6,
ORDINAL1: 10;
end;
suppose k
= n;
hence thesis by
A5;
end;
end;
suppose
A7: m
= k;
k
in (
succ n) by
A1,
A5,
Lm5;
per cases by
ORDINAL1: 8;
suppose k
in n;
then (A
. n)
in (A
. k) & (B
. n)
in (B
. k) by
A1,
A2,
A3,
ORDINAL5:def 1;
hence thesis by
A4,
A5,
A7;
end;
suppose k
= n;
hence thesis by
A4,
A7;
end;
end;
suppose k
in m;
then
A8: (A
. m)
in (A
. k) & (B
. m)
in (B
. k) by
A2,
A4,
ORDINAL5:def 1;
m
in (
succ n) by
A1,
A2,
A4,
Lm5;
per cases by
ORDINAL1: 8;
suppose m
in n;
then (A
. n)
in (A
. m) & (B
. n)
in (B
. m) by
A1,
A2,
A3,
ORDINAL5:def 1;
hence thesis by
A4,
A5,
A8,
ORDINAL1: 10;
end;
suppose m
= n;
hence thesis by
A4;
end;
end;
end;
theorem ::
ORDINAL7:21
Th34: for A,B be
decreasing
Ordinal-Sequence st (
rng A)
= (
rng B) holds A
= B
proof
defpred
P[
Nat] means for A,B be
decreasing
Ordinal-Sequence st (
len A)
= $1 & (
rng A)
= (
rng B) holds A
= B;
A1:
P[
0 ]
proof
let A,B be
decreasing
Ordinal-Sequence;
assume
A2: (
len A)
=
0 & (
rng A)
= (
rng B);
then A is
empty;
hence thesis by
A2;
end;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
P[n];
let A,B be
decreasing
Ordinal-Sequence;
assume
A5: (
len A)
= (n
+ 1) & (
rng A)
= (
rng B);
(
dom A)
= (
card (
dom A))
.= (
card (
rng B)) by
A5,
CARD_1: 70
.= (
card (
dom B)) by
CARD_1: 70
.= (
dom B);
then
A6: (
len B)
= (n
+ 1) by
A5;
set A0 = (A
| n), B0 = (B
| n);
(
rng A0)
= ((
rng A)
\
{(A
. n)}) & (
rng B0)
= ((
rng B)
\
{(B
. n)}) by
A5,
A6,
Lm6;
then
A7: (
rng A0)
= (
rng B0) by
A5,
Lm7;
A8: (
len A0)
= ((
dom A)
/\ n) by
RELAT_1: 61
.= ((
succ n)
/\ n) by
A5,
Lm5
.= n by
Th1;
thus A
= (A0
^
<%(A
. n)%>) by
A5,
AFINSQ_1: 56
.= (B0
^
<%(A
. n)%>) by
A4,
A7,
A8
.= (B0
^
<%(B
. n)%>) by
A5,
Lm7
.= B by
A6,
AFINSQ_1: 56;
end;
A9: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A3);
let A,B be
decreasing
Ordinal-Sequence;
assume
A10: (
rng A)
= (
rng B);
(
len A) is
Nat;
hence thesis by
A9,
A10;
end;
registration
let a be
Ordinal;
cluster (
exp (
omega ,a)) ->
Cantor-component;
coherence
proof
0
in (
Segm 1) by
CARD_1: 49,
TARSKI:def 1;
then (1
*^ (
exp (
omega ,a))) is
Cantor-component by
ORDINAL5:def 9;
hence thesis by
ORDINAL2: 39;
end;
let n be non
zero
Nat;
cluster (n
*^ (
exp (
omega ,a))) ->
Cantor-component;
coherence
proof
0
in (
Segm n) by
ORDINAL3: 8;
hence thesis by
ORDINAL5:def 9;
end;
end
registration
cluster non
zero ->
Cantor-component for
Nat;
coherence
proof
let n be
Nat;
assume
A1: n is non
zero;
n
= (n
*^ 1) by
ORDINAL2: 39
.= (n
*^ (
exp (
omega qua
Ordinal,
0 ))) by
ORDINAL2: 43;
hence thesis by
A1;
end;
end
registration
let c be
Cantor-component
Ordinal;
cluster
<%c%> ->
Cantor-normal-form;
coherence
proof
A1:
now
let a be
Ordinal;
assume a
in (
dom
<%c%>);
then a
in (
Segm 1) by
AFINSQ_1: 33;
then a
=
0 by
CARD_1: 49,
TARSKI:def 1;
hence (
<%c%>
. a) is
Cantor-component;
end;
now
let a,b be
Ordinal;
assume
A2: a
in b & b
in (
dom
<%c%>);
then b
in (
Segm 1) by
AFINSQ_1: 33;
hence (
omega
-exponent (
<%c%>
. b))
in (
omega
-exponent (
<%c%>
. a)) by
A2,
CARD_1: 49,
TARSKI:def 1;
end;
hence thesis by
A1,
ORDINAL5:def 11;
end;
end
theorem ::
ORDINAL7:22
Th35: for c,d be
Cantor-component
Ordinal st (
omega
-exponent d)
in (
omega
-exponent c) holds
<%c, d%> is
Cantor-normal-form
proof
let c,d be
Cantor-component
Ordinal;
assume (
omega
-exponent d)
in (
omega
-exponent c);
then (
omega
-exponent (
<%d%>
.
0 ))
in (
omega
-exponent (
last (
{}
^
<%c%>))) by
AFINSQ_1: 92;
then (
<%c%>
^
<%d%>) is
Cantor-normal-form by
Th33;
hence thesis by
AFINSQ_1:def 5;
end;
Lm8: for a be non
empty
Ordinal, n,m be non
zero
Nat holds
<%(n
*^ (
exp (
omega ,a))), m%> is
Cantor-normal-form
proof
let a be non
empty
Ordinal, n,m be non
zero
Nat;
0
c< n by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in n & n
in
omega by
ORDINAL1: 11,
ORDINAL1:def 12;
then
A1: (
omega
-exponent (n
*^ (
exp (
omega ,a))))
= a by
ORDINAL5: 58;
A2: (
omega
-exponent m)
=
0 by
Th21,
ORDINAL1:def 12;
0
c< a by
XBOOLE_1: 2,
XBOOLE_0:def 8;
hence thesis by
A1,
A2,
Th35,
ORDINAL1: 11;
end;
registration
let a be non
empty
Ordinal, m be non
zero
Nat;
cluster
<%(
exp (
omega ,a)), m%> ->
Cantor-normal-form;
coherence
proof
(1
*^ (
exp (
omega ,a)))
= (
exp (
omega ,a)) by
ORDINAL2: 39;
hence thesis by
Lm8;
end;
let n be non
zero
Nat;
cluster
<%(n
*^ (
exp (
omega ,a))), m%> ->
Cantor-normal-form;
coherence by
Lm8;
end
theorem ::
ORDINAL7:23
for c,d,e be
Cantor-component
Ordinal st (
omega
-exponent d)
in (
omega
-exponent c) & (
omega
-exponent e)
in (
omega
-exponent d) holds
<%c, d, e%> is
Cantor-normal-form
proof
let c,d,e be
Cantor-component
Ordinal;
assume that
A1: (
omega
-exponent d)
in (
omega
-exponent c) and
A2: (
omega
-exponent e)
in (
omega
-exponent d);
A3:
<%d, e%> is
Cantor-normal-form by
A2,
Th35;
(
omega
-exponent (
<%d, e%>
.
0 ))
in (
omega
-exponent (
last (
{}
^
<%c%>))) by
A1,
AFINSQ_1: 92;
then (
<%c%>
^
<%d, e%>) is
Cantor-normal-form by
A3,
Th33;
hence thesis by
AFINSQ_1: 37;
end;
theorem ::
ORDINAL7:24
Th37: for A be non
empty
Cantor-normal-form
Ordinal-Sequence holds for b be
Ordinal, n be non
zero
Nat st b
in (
omega
-exponent (
last A)) holds (A
^
<%(n
*^ (
exp (
omega ,b)))%>) is
Cantor-normal-form
proof
let A be non
empty
Cantor-normal-form
Ordinal-Sequence;
let b be
Ordinal, n be non
zero
Nat;
assume
A1: b
in (
omega
-exponent (
last A));
0
c< n by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in n & n
in
omega by
ORDINAL1: 11,
ORDINAL1:def 12;
then (
omega
-exponent (
<%(n
*^ (
exp (
omega ,b)))%>
.
0 ))
in (
omega
-exponent (
last A)) by
A1,
ORDINAL5: 58;
hence thesis by
Th33;
end;
theorem ::
ORDINAL7:25
for A be non
empty
Cantor-normal-form
Ordinal-Sequence holds for b be
Ordinal, n be non
zero
Nat st (
omega
-exponent (
last A))
<>
0 holds (A
^
<%n%>) is
Cantor-normal-form
proof
let A be non
empty
Cantor-normal-form
Ordinal-Sequence;
let b be
Ordinal, n be non
zero
Nat;
assume (
omega
-exponent (
last A))
<>
0 ;
then
0
c< (
omega
-exponent (
last A)) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A1:
0
in (
omega
-exponent (
last A)) by
ORDINAL1: 11;
(A
^
<%(n
*^ (
exp (
omega ,
0 qua
Ordinal)))%>)
= (A
^
<%(n
*^ 1)%>) by
ORDINAL2: 43
.= (A
^
<%n%>) by
ORDINAL2: 39;
hence thesis by
A1,
Th37;
end;
theorem ::
ORDINAL7:26
Th39: for A be non
empty
Cantor-normal-form
Ordinal-Sequence holds for b be
Ordinal, n be non
zero
Nat st (
omega
-exponent (A
.
0 ))
in b holds (
<%(n
*^ (
exp (
omega ,b)))%>
^ A) is
Cantor-normal-form
proof
let A be non
empty
Cantor-normal-form
Ordinal-Sequence;
let b be
Ordinal, n be non
zero
Nat;
assume
A1: (
omega
-exponent (A
.
0 ))
in b;
0
c< n by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in n & n
in
omega by
ORDINAL1: 11,
ORDINAL1:def 12;
then (
omega
-exponent (A
.
0 ))
in (
omega
-exponent (n
*^ (
exp (
omega ,b)))) by
A1,
ORDINAL5: 58;
then (
omega
-exponent (A
.
0 ))
in (
omega
-exponent (
last (
{}
^
<%(n
*^ (
exp (
omega ,b)))%>))) by
AFINSQ_1: 92;
hence thesis by
Th33;
end;
theorem ::
ORDINAL7:27
Th40: for a1,a2,b be
Ordinal st a1
in (
exp (
omega ,b)) & a2
in (
exp (
omega ,b)) holds (a1
+^ a2)
in (
exp (
omega ,b))
proof
let a1,a2,b be
Ordinal;
assume
A1: a1
in (
exp (
omega ,b)) & a2
in (
exp (
omega ,b));
per cases ;
suppose
A2:
0
in a1 &
0
in a2;
set d1 = (
omega
-exponent a1), d2 = (
omega
-exponent a2);
consider n1 be
Nat, c1 be
Ordinal such that
A3: a1
= ((n1
*^ (
exp (
omega ,d1)))
+^ c1) &
0
in (
Segm n1) & c1
in (
exp (
omega ,d1)) by
A2,
ORDINAL5: 62;
consider n2 be
Nat, c2 be
Ordinal such that
A4: a2
= ((n2
*^ (
exp (
omega ,d2)))
+^ c2) &
0
in (
Segm n2) & c2
in (
exp (
omega ,d2)) by
A2,
ORDINAL5: 62;
A5: d1
in b
proof
assume not d1
in b;
then
A6: (
exp (
omega ,b))
c= (
exp (
omega ,d1)) by
ORDINAL1: 16,
ORDINAL4: 27;
1
c= n1 by
ORDINAL1: 21,
Lm1,
A3;
then (1
*^ (
exp (
omega ,b)))
c= (n1
*^ (
exp (
omega ,d1))) by
A6,
ORDINAL3: 20;
then
A7: (
exp (
omega ,b))
c= (n1
*^ (
exp (
omega ,d1))) by
ORDINAL2: 39;
0
c= c1;
then ((
exp (
omega ,b))
+^
0 )
c= a1 by
A3,
A7,
ORDINAL3: 18;
then (
exp (
omega ,b))
c= a1 by
ORDINAL2: 27;
hence contradiction by
A1,
ORDINAL1: 5;
end;
A8: d2
in b
proof
assume not d2
in b;
then
A9: (
exp (
omega ,b))
c= (
exp (
omega ,d2)) by
ORDINAL1: 16,
ORDINAL4: 27;
1
c= n2 by
ORDINAL1: 21,
Lm1,
A4;
then (1
*^ (
exp (
omega ,b)))
c= (n2
*^ (
exp (
omega ,d2))) by
A9,
ORDINAL3: 20;
then
A10: (
exp (
omega ,b))
c= (n2
*^ (
exp (
omega ,d2))) by
ORDINAL2: 39;
0
c= c2;
then ((
exp (
omega ,b))
+^
0 )
c= a2 by
A4,
A10,
ORDINAL3: 18;
then (
exp (
omega ,b))
c= a2 by
ORDINAL2: 27;
hence contradiction by
A1,
ORDINAL1: 5;
end;
a1
in ((n1
*^ (
exp (
omega ,d1)))
+^ (
exp (
omega ,d1))) by
A3,
ORDINAL2: 32;
then
A11: a1
in ((
succ n1)
*^ (
exp (
omega ,d1))) by
ORDINAL2: 36;
a2
in ((n2
*^ (
exp (
omega ,d2)))
+^ (
exp (
omega ,d2))) by
A4,
ORDINAL2: 32;
then
A12: a2
in ((
succ n2)
*^ (
exp (
omega ,d2))) by
ORDINAL2: 36;
per cases by
ORDINAL1: 16;
suppose d1
c= d2;
then (
exp (
omega ,d1))
c= (
exp (
omega ,d2)) by
ORDINAL4: 27;
then ((
succ n1)
*^ (
exp (
omega ,d1)))
c= ((
succ n1)
*^ (
exp (
omega ,d2))) by
ORDINAL2: 42;
then (a1
+^ a2)
in (((
succ n1)
*^ (
exp (
omega ,d2)))
+^ ((
succ n2)
*^ (
exp (
omega ,d2)))) by
A11,
A12,
ORDINAL3: 17;
then
A13: (a1
+^ a2)
in (((
succ n1)
+^ (
succ n2))
*^ (
exp (
omega ,d2))) by
ORDINAL3: 46;
(((
succ n1)
+^ (
succ n2))
*^ (
exp (
omega ,d2)))
in (
exp (
omega ,b)) by
A8,
ORDINAL5: 7;
hence thesis by
A13,
ORDINAL1: 10;
end;
suppose d2
in d1;
then (
exp (
omega ,d2))
c= (
exp (
omega ,d1)) by
ORDINAL1:def 2,
ORDINAL4: 27;
then ((
succ n2)
*^ (
exp (
omega ,d2)))
c= ((
succ n2)
*^ (
exp (
omega ,d1))) by
ORDINAL2: 42;
then (a1
+^ a2)
in (((
succ n1)
*^ (
exp (
omega ,d1)))
+^ ((
succ n2)
*^ (
exp (
omega ,d1)))) by
A11,
A12,
ORDINAL3: 17;
then
A14: (a1
+^ a2)
in (((
succ n1)
+^ (
succ n2))
*^ (
exp (
omega ,d1))) by
ORDINAL3: 46;
(((
succ n1)
+^ (
succ n2))
*^ (
exp (
omega ,d1)))
in (
exp (
omega ,b)) by
A5,
ORDINAL5: 7;
hence thesis by
A14,
ORDINAL1: 10;
end;
end;
suppose not
0
in a1;
then a1
=
0 by
ORDINAL1: 16,
XBOOLE_1: 3;
hence thesis by
A1,
ORDINAL2: 30;
end;
suppose not
0
in a2;
then a2
=
0 by
ORDINAL1: 16,
XBOOLE_1: 3;
hence thesis by
A1,
ORDINAL2: 27;
end;
end;
theorem ::
ORDINAL7:28
Th41: for A be
finite
Ordinal-Sequence, b be
Ordinal st for a be
Ordinal st a
in (
dom A) holds (A
. a)
in (
exp (
omega ,b)) holds (
Sum^ A)
in (
exp (
omega ,b))
proof
defpred
P[
Nat] means for A be
finite
Ordinal-Sequence, b be
Ordinal st (
dom A)
= $1 & for a be
Ordinal st a
in (
dom A) holds (A
. a)
in (
exp (
omega ,b)) holds (
Sum^ A)
in (
exp (
omega ,b));
A1:
P[
0 ]
proof
let A be
finite
Ordinal-Sequence, b be
Ordinal;
assume that
A2: (
dom A)
=
0 and for a be
Ordinal st a
in (
dom A) holds (A
. a)
in (
exp (
omega ,b));
A
=
{} by
A2;
then (
Sum^ A)
in 1 by
ORDINAL5: 52,
CARD_1: 49,
TARSKI:def 1;
then
A3: (
Sum^ A)
in (
exp (
omega ,
0 qua
Ordinal)) by
ORDINAL2: 43;
per cases ;
suppose
0
in b;
then (
exp (
omega ,
0 qua
Ordinal))
in (
exp (
omega ,b)) by
ORDINAL4: 24;
hence thesis by
A3,
ORDINAL1: 10;
end;
suppose not
0
in b;
hence thesis by
A3,
ORDINAL1: 16,
XBOOLE_1: 3;
end;
end;
A4: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A5:
P[n];
let A be
finite
Ordinal-Sequence, b be
Ordinal;
assume that
A6: (
dom A)
= (n
+ 1) and
A7: for a be
Ordinal st a
in (
dom A) holds (A
. a)
in (
exp (
omega ,b));
A
<>
{} by
A6;
then
consider A0 be
XFinSequence, a0 be
object such that
A8: A
= (A0
^
<%a0%>) by
AFINSQ_1: 40;
consider c be
Ordinal such that
A9: (
rng A)
c= c by
ORDINAL2:def 4;
(
rng A0)
c= (
rng A) by
A8,
AFINSQ_1: 24;
then
reconsider A0 as
finite
Ordinal-Sequence by
A9,
XBOOLE_1: 1,
ORDINAL2:def 4;
(
rng
<%a0%>)
c= (
rng A) by
A8,
AFINSQ_1: 25;
then
{a0}
c= (
rng A) by
AFINSQ_1: 33;
then a0
in (
rng A) by
ZFMISC_1: 31;
then
reconsider a0 as
Ordinal;
A10: ((
len A0)
+ 1)
= (n
+ 1) by
A6,
A8,
AFINSQ_1: 75;
now
let a be
Ordinal;
assume
A11: a
in (
dom A0);
then
A12: (A0
. a)
= (A
. a) by
A8,
AFINSQ_1:def 3;
(
dom A0)
c= (
dom A) by
A8,
AFINSQ_1: 21;
hence (A0
. a)
in (
exp (
omega ,b)) by
A7,
A11,
A12;
end;
then
A13: (
Sum^ A0)
in (
exp (
omega ,b)) by
A5,
A10;
(n
+
0 )
< (n
+ 1) by
XREAL_1: 8;
then (A
. n)
in (
exp (
omega ,b)) by
A7,
AFINSQ_1: 86,
A6;
then
A14: a0
in (
exp (
omega ,b)) by
A8,
A10,
AFINSQ_1: 36;
(
Sum^ A)
= ((
Sum^ A0)
+^ a0) by
A8,
ORDINAL5: 54;
hence thesis by
A13,
A14,
Th40;
end;
A15: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A4);
let A be
finite
Ordinal-Sequence, b be
Ordinal;
thus thesis by
A15;
end;
theorem ::
ORDINAL7:29
Th42: for a,b be
Ordinal, n be
Nat st a
in (
exp (
omega ,b)) holds (n
*^ a)
in (
exp (
omega ,b))
proof
let a,b be
Ordinal, n be
Nat;
assume a
in (
exp (
omega ,b));
then for c be
Ordinal st c
in (
dom (n
--> a)) holds ((n
--> a)
. c)
in (
exp (
omega ,b)) by
FUNCOP_1: 7;
then (
Sum^ (n
--> a))
in (
exp (
omega ,b)) by
Th41;
hence thesis by
Th26;
end;
theorem ::
ORDINAL7:30
Th43: for A be
finite
Ordinal-Sequence, a be
Ordinal st (
<%a%>
^ A) is
Cantor-normal-form holds (
Sum^ A)
in (
exp (
omega ,(
omega
-exponent a)))
proof
let A be
finite
Ordinal-Sequence, a be
Ordinal;
assume (
<%a%>
^ A) is
Cantor-normal-form;
then
reconsider B = (
<%a%>
^ A) as
Cantor-normal-form
Ordinal-Sequence;
now
let c be
Ordinal;
assume
A1: c
in (
dom A);
then
reconsider n = c as
Nat;
((
len
<%a%>)
+ n)
in (
dom B) by
A1,
AFINSQ_1: 23;
then
A2: (n
+ 1)
in (
dom B) by
AFINSQ_1: 34;
(B
. ((
len
<%a%>)
+ n))
= (A
. n) by
A1,
AFINSQ_1:def 3;
then
A3: (A
. n)
= (B
. (n
+ 1)) by
AFINSQ_1: 34;
0
in (
Segm (n
+ 1)) by
NAT_1: 44;
then (
omega
-exponent (B
. (n
+ 1)))
in (
omega
-exponent (B
.
0 )) by
A2,
ORDINAL5:def 11;
then (
exp (
omega ,(
omega
-exponent (A
. n))))
in (
exp (
omega ,(
omega
-exponent (B
.
0 )))) by
A3,
ORDINAL4: 24;
then
A4: (
exp (
omega ,(
omega
-exponent (A
. n))))
in (
exp (
omega ,(
omega
-exponent a))) by
AFINSQ_1: 35;
(B
. (n
+ 1)) is
Cantor-component by
A2,
ORDINAL5:def 11;
then
consider b be
Ordinal, m be
Nat such that
A5:
0
in (
Segm m) & (A
. n)
= (m
*^ (
exp (
omega ,b))) by
A3,
ORDINAL5:def 9;
0
in m & m
in
omega by
A5,
ORDINAL1:def 12;
then (
omega
-exponent (A
. n))
= b by
A5,
ORDINAL5: 58;
hence (A
. c)
in (
exp (
omega ,(
omega
-exponent a))) by
A4,
A5,
Th42;
end;
hence (
Sum^ A)
in (
exp (
omega ,(
omega
-exponent a))) by
Th41;
end;
theorem ::
ORDINAL7:31
Th44: for A be
Cantor-normal-form
Ordinal-Sequence holds (
omega
-exponent (
Sum^ A))
= (
omega
-exponent (A
.
0 ))
proof
defpred
P[
Nat] means for A be
Cantor-normal-form
Ordinal-Sequence st (
len A)
= $1 holds (
omega
-exponent (
Sum^ A))
= (
omega
-exponent (A
.
0 ));
A1:
P[
0 ]
proof
let A be
Cantor-normal-form
Ordinal-Sequence;
assume (
len A)
=
0 ;
then A
=
{} ;
hence (
omega
-exponent (
Sum^ A))
= (
omega
-exponent (A
.
0 )) by
ORDINAL5: 52;
end;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
P[n];
let A be
Cantor-normal-form
Ordinal-Sequence;
assume
A5: (
len A)
= (n
+ 1);
then A
<>
{} ;
then
consider c be
Cantor-component
Ordinal, B be
Cantor-normal-form
Ordinal-Sequence such that
A6: A
= (
<%c%>
^ B) by
ORDINAL5: 67;
per cases ;
suppose
A7: B
=
{} ;
(
Sum^ A)
= (c
+^ (
Sum^ B)) by
A6,
ORDINAL5: 55
.= (A
.
0 ) by
A6,
A7,
ORDINAL5: 52,
ORDINAL2: 27;
hence thesis;
end;
suppose
A8: B
<>
{} ;
then
{}
c< (
dom B) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A9:
0
in (
dom B) by
ORDINAL1: 11;
(n
+ 1)
= ((
len
<%c%>)
+ (
len B)) by
A5,
A6,
AFINSQ_1: 17
.= ((
len B)
+ 1) by
AFINSQ_1: 34;
then
A10: (
omega
-exponent (
Sum^ B))
= (
omega
-exponent (B
.
0 )) by
A4;
(A
. ((
len
<%c%>)
+
0 ))
= (B
.
0 ) by
A6,
A9,
AFINSQ_1:def 3;
then
A11: (A
. 1)
= (B
.
0 ) by
AFINSQ_1: 34;
((
len
<%c%>)
+
0 )
in (
dom A) by
A6,
A9,
AFINSQ_1: 23;
then
A12: 1
in (
dom A) by
AFINSQ_1: 34;
0
in 1 by
CARD_1: 49,
TARSKI:def 1;
then
A13: (
omega
-exponent (
Sum^ B))
in (
omega
-exponent (A
.
0 )) by
A10,
A11,
A12,
ORDINAL5:def 11;
A14: (
omega
-exponent (A
.
0 ))
c= (
omega
-exponent (
Sum^ A)) by
Th22,
ORDINAL5: 56;
consider d be
Ordinal, m be
Nat such that
A15:
0
in (
Segm m) & c
= (m
*^ (
exp (
omega ,d))) by
ORDINAL5:def 9;
0
in m & m
in
omega by
A15,
ORDINAL1:def 12;
then (
omega
-exponent c)
= d by
A15,
ORDINAL5: 58;
then
A16: (
omega
-exponent (A
.
0 ))
= d by
A6,
AFINSQ_1: 35;
assume (
omega
-exponent (
Sum^ A))
<> (
omega
-exponent (A
.
0 ));
then (
omega
-exponent (A
.
0 ))
in (
omega
-exponent (
Sum^ A)) by
A14,
XBOOLE_0:def 8,
ORDINAL1: 11;
then
A17: (
exp (
omega ,d))
in (
exp (
omega ,(
omega
-exponent (
Sum^ A)))) by
A16,
ORDINAL4: 24;
then
A18: c
in (
exp (
omega ,(
omega
-exponent (
Sum^ A)))) by
A15,
Th42;
set e = (
omega
-exponent (
Sum^ B));
A19:
0
in (
Sum^ B)
proof
assume not
0
in (
Sum^ B);
then (
Sum^ B)
c=
0 by
ORDINAL1: 16;
hence contradiction by
A8;
end;
A20: (
Sum^ B)
in (
exp (
omega ,(
succ e)))
proof
assume not (
Sum^ B)
in (
exp (
omega ,(
succ e)));
then (
exp (
omega ,(
succ e)))
c= (
Sum^ B) by
ORDINAL1: 16;
then (
succ e)
c= e by
A19,
ORDINAL5:def 10;
hence contradiction by
ORDINAL1: 5,
ORDINAL1: 6;
end;
(
exp (
omega ,(
succ e)))
c= (
exp (
omega ,d)) by
A13,
A16,
ORDINAL1: 21,
ORDINAL4: 27;
then (
Sum^ B)
in (
exp (
omega ,(
omega
-exponent (
Sum^ A)))) by
A17,
A20,
ORDINAL1: 10;
then (c
+^ (
Sum^ B))
in (
exp (
omega ,(
omega
-exponent (
Sum^ A)))) by
A18,
Th40;
then
A22: (
Sum^ A)
in (
exp (
omega ,(
omega
-exponent (
Sum^ A)))) by
A6,
ORDINAL5: 55;
(
Sum^ B)
c= (c
+^ (
Sum^ B)) by
ORDINAL3: 24;
then (
Sum^ B)
c= (
Sum^ A) by
A6,
ORDINAL5: 55;
then (
exp (
omega ,(
omega
-exponent (
Sum^ A))))
c= (
Sum^ A) by
A19,
ORDINAL5:def 10;
then (
Sum^ A)
in (
Sum^ A) by
A22;
hence contradiction;
end;
end;
A23: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A3);
let A be
Cantor-normal-form
Ordinal-Sequence;
(
len A) is
Nat;
hence thesis by
A23;
end;
theorem ::
ORDINAL7:32
Th45: for A,B be
Cantor-normal-form
Ordinal-Sequence st (
Sum^ A)
= (
Sum^ B) holds A
= B
proof
defpred
P[
Nat] means for A,B be
Cantor-normal-form
Ordinal-Sequence st ((
dom A)
\/ (
dom B))
= $1 & (
Sum^ A)
= (
Sum^ B) holds A
= B;
A1:
P[
0 ]
proof
let A,B be
Cantor-normal-form
Ordinal-Sequence;
assume ((
dom A)
\/ (
dom B))
=
0 & (
Sum^ A)
= (
Sum^ B);
then A is
empty & B is
empty;
hence thesis;
end;
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A3:
P[n];
let A,B be
Cantor-normal-form
Ordinal-Sequence;
assume
A4: ((
dom A)
\/ (
dom B))
= (n
+ 1) & (
Sum^ A)
= (
Sum^ B);
(
dom A)
<>
{}
proof
assume
A5: (
dom A)
=
{} ;
then A is
empty;
then B
=
{} by
A4,
ORDINAL5: 52;
hence contradiction by
A4,
A5;
end;
then
A6: A
<>
{} ;
(
dom B)
<>
{}
proof
assume (
dom B)
=
{} ;
then B is
empty;
hence contradiction by
A4,
A6,
ORDINAL5: 52;
end;
then B
<>
{} ;
then
consider b be
Cantor-component
Ordinal, B0 be
Cantor-normal-form
Ordinal-Sequence such that
A7: B
= (
<%b%>
^ B0) by
ORDINAL5: 67;
consider a be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A8: A
= (
<%a%>
^ A0) by
A6,
ORDINAL5: 67;
A9: (a
+^ (
Sum^ A0))
= (
Sum^ B) by
A4,
A8,
ORDINAL5: 55
.= (b
+^ (
Sum^ B0)) by
A7,
ORDINAL5: 55;
A10: a
= b
proof
A11: (A
.
0 )
= a & (B
.
0 )
= b by
A7,
A8,
AFINSQ_1: 35;
then
A12: (
omega
-exponent a)
= (
omega
-exponent (
Sum^ B)) by
A4,
Th44
.= (
omega
-exponent b) by
A11,
Th44;
consider d1 be
Ordinal, n1 be
Nat such that
A13:
0
in (
Segm n1) & a
= (n1
*^ (
exp (
omega ,d1))) by
ORDINAL5:def 9;
consider d2 be
Ordinal, n2 be
Nat such that
A14:
0
in (
Segm n2) & b
= (n2
*^ (
exp (
omega ,d2))) by
ORDINAL5:def 9;
0
in n1 & n1
in
omega by
A13,
ORDINAL1:def 12;
then
A15: (
omega
-exponent a)
= d1 by
A13,
ORDINAL5: 58;
0
in n2 & n2
in
omega by
A14,
ORDINAL1:def 12;
then
A16: (
omega
-exponent b)
= d2 by
A14,
ORDINAL5: 58;
then
A17: d1
= d2 by
A12,
A15;
assume a
<> b;
per cases by
ORDINAL1: 14;
suppose
A18: a
in b;
then (a
+^ (
Sum^ A0))
= ((a
+^ (b
-^ a))
+^ (
Sum^ B0)) by
A9,
ORDINAL3: 51
.= (a
+^ ((b
-^ a)
+^ (
Sum^ B0))) by
ORDINAL3: 30;
then
A19: (
Sum^ A0)
= ((b
-^ a)
+^ (
Sum^ B0)) by
ORDINAL3: 21;
A20: n1
in n2 by
A13,
A14,
A17,
A18,
ORDINAL3: 34;
A21: (b
-^ a)
= ((n2
-^ n1)
*^ (
exp (
omega ,d1))) by
A13,
A14,
A17,
ORDINAL3: 63;
0
in (n2
-^ n1) & (n2
-^ n1)
in
omega by
A20,
ORDINAL3: 55,
ORDINAL1:def 12;
then
A22: (
omega
-exponent (b
-^ a))
= d1 by
A21,
ORDINAL5: 58;
A23: (b
-^ a)
c= ((b
-^ a)
+^ (
Sum^ B0)) by
ORDINAL3: 24;
then
A24: d1
c= (
omega
-exponent (
Sum^ A0)) by
A19,
A22,
Th22;
0
in (b
-^ a) by
A18,
ORDINAL3: 55;
then
A25:
0
in (
Sum^ A0) by
A19,
A23;
(
Sum^ A0)
in (
exp (
omega ,(
omega
-exponent a))) by
A8,
Th43;
hence contradiction by
A15,
A24,
A25,
Th23,
ORDINAL1: 5;
end;
suppose
A26: b
in a;
then (b
+^ (
Sum^ B0))
= ((b
+^ (a
-^ b))
+^ (
Sum^ A0)) by
A9,
ORDINAL3: 51
.= (b
+^ ((a
-^ b)
+^ (
Sum^ A0))) by
ORDINAL3: 30;
then
A27: (
Sum^ B0)
= ((a
-^ b)
+^ (
Sum^ A0)) by
ORDINAL3: 21;
A28: n2
in n1 by
A13,
A14,
A17,
A26,
ORDINAL3: 34;
A29: (a
-^ b)
= ((n1
-^ n2)
*^ (
exp (
omega ,d1))) by
A13,
A14,
A17,
ORDINAL3: 63;
0
in (n1
-^ n2) & (n1
-^ n2)
in
omega by
A28,
ORDINAL3: 55,
ORDINAL1:def 12;
then
A30: (
omega
-exponent (a
-^ b))
= d1 by
A29,
ORDINAL5: 58;
A31: (a
-^ b)
c= ((a
-^ b)
+^ (
Sum^ A0)) by
ORDINAL3: 24;
then
A32: d1
c= (
omega
-exponent (
Sum^ B0)) by
A27,
A30,
Th22;
0
in (a
-^ b) by
A26,
ORDINAL3: 55;
then
A33:
0
in (
Sum^ B0) by
A27,
A31;
(
Sum^ B0)
in (
exp (
omega ,(
omega
-exponent b))) by
A7,
Th43;
hence contradiction by
A16,
A17,
A32,
A33,
Th23,
ORDINAL1: 5;
end;
end;
then
A34: (
Sum^ A0)
= (
Sum^ B0) by
A9,
ORDINAL3: 21;
((
dom A0)
\/ (
dom B0))
= (((
max ((
len A0),(
len B0)))
+ 1)
- 1)
.= ((
max (((
len A0)
+ 1),((
len B0)
+ 1)))
- 1) by
FUZZY_2: 42
.= ((
max (((
len A0)
+ (
len
<%a%>)),((
len B0)
+ 1)))
- 1) by
AFINSQ_1: 34
.= ((
max (((
len A0)
+ (
len
<%a%>)),((
len B0)
+ (
len
<%b%>))))
- 1) by
AFINSQ_1: 34
.= ((
max ((
len A),((
len B0)
+ (
len
<%b%>))))
- 1) by
A8,
AFINSQ_1: 17
.= ((
max ((
len A),(
len B)))
- 1) by
A7,
AFINSQ_1: 17
.= n by
A4;
hence thesis by
A3,
A7,
A8,
A10,
A34;
end;
A35: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
let A,B be
Cantor-normal-form
Ordinal-Sequence;
assume
A36: (
Sum^ A)
= (
Sum^ B);
((
dom A)
\/ (
dom B)) is
natural;
hence thesis by
A35,
A36;
end;
definition
let A be
Ordinal-Sequence, b be
Ordinal;
::
ORDINAL7:def1
func b
-exponent A ->
Ordinal-Sequence means
:
Def1: (
dom it )
= (
dom A) & for a be
object st a
in (
dom A) holds (it
. a)
= (b
-exponent (A
. a));
existence
proof
deffunc
F(
object) = (b
-exponent (A
. $1));
consider f be
Function such that
A1: (
dom f)
= (
dom A) & for a be
object st a
in (
dom A) holds (f
. a)
=
F(a) from
FUNCT_1:sch 3;
reconsider f as
Sequence by
A1,
ORDINAL1: 31;
now
reconsider c = (
sup (
rng f)) as
Ordinal;
take c;
now
let y be
object;
assume
A2: y
in (
rng f);
then
consider x be
object such that
A3: x
in (
dom f) & (f
. x)
= y by
FUNCT_1:def 3;
(f
. x)
= (b
-exponent (A
. x)) by
A1,
A3;
hence y
in (
sup (
rng f)) by
A2,
A3,
ORDINAL2: 19;
end;
hence (
rng f)
c= (
sup (
rng f)) by
TARSKI:def 3;
end;
then
reconsider f as
Ordinal-Sequence by
ORDINAL2:def 4;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Ordinal-Sequence;
assume that
A4: (
dom f1)
= (
dom A) and
A5: for a be
object st a
in (
dom A) holds (f1
. a)
= (b
-exponent (A
. a)) and
A6: (
dom f2)
= (
dom A) and
A7: for a be
object st a
in (
dom A) holds (f2
. a)
= (b
-exponent (A
. a));
now
let a be
object;
assume
A8: a
in (
dom f1);
hence (f1
. a)
= (b
-exponent (A
. a)) by
A4,
A5
.= (f2
. a) by
A4,
A7,
A8;
end;
hence thesis by
A4,
A6,
FUNCT_1: 2;
end;
end
registration
let A be
empty
Ordinal-Sequence, b be
Ordinal;
cluster (b
-exponent A) ->
empty;
coherence
proof
(
dom A)
= (
dom (b
-exponent A)) by
Def1;
hence thesis;
end;
end
registration
let A be non
empty
Ordinal-Sequence, b be
Ordinal;
cluster (b
-exponent A) -> non
empty;
coherence
proof
(
dom A)
= (
dom (b
-exponent A)) by
Def1;
hence thesis;
end;
end
registration
let A be
finite
Ordinal-Sequence, b be
Ordinal;
cluster (b
-exponent A) ->
finite;
coherence
proof
(
dom A)
= (
dom (b
-exponent A)) by
Def1;
hence thesis by
FINSET_1: 10;
end;
end
registration
let A be
infinite
Ordinal-Sequence, b be
Ordinal;
cluster (b
-exponent A) ->
infinite;
coherence
proof
(
dom A)
= (
dom (b
-exponent A)) by
Def1;
hence thesis by
FINSET_1: 10;
end;
end
theorem ::
ORDINAL7:33
Th46: for a,b be
Ordinal holds (b
-exponent
<%a%>)
=
<%(b
-exponent a)%>
proof
let a,b be
Ordinal;
A1: (
dom (b
-exponent
<%a%>))
= (
dom
<%a%>) by
Def1
.= 1 by
AFINSQ_1:def 4;
0
in 1 by
TARSKI:def 1,
CARD_1: 49;
then
0
in (
dom
<%a%>) by
AFINSQ_1:def 4;
then ((b
-exponent
<%a%>)
.
0 )
= (b
-exponent (
<%a%>
.
0 )) by
Def1
.= (b
-exponent a);
hence thesis by
A1,
AFINSQ_1:def 4;
end;
theorem ::
ORDINAL7:34
Th47: for A,B be
Ordinal-Sequence, b be
Ordinal holds (b
-exponent (A
^ B))
= ((b
-exponent A)
^ (b
-exponent B))
proof
let A,B be
Ordinal-Sequence, b be
Ordinal;
A1: (
dom (b
-exponent (A
^ B)))
= (
dom (A
^ B)) by
Def1
.= ((
dom A)
+^ (
dom B)) by
ORDINAL4:def 1
.= ((
dom A)
+^ (
dom (b
-exponent B))) by
Def1
.= ((
dom (b
-exponent A))
+^ (
dom (b
-exponent B))) by
Def1
.= (
dom ((b
-exponent A)
^ (b
-exponent B))) by
ORDINAL4:def 1;
now
let x be
object;
assume x
in (
dom (b
-exponent (A
^ B)));
then
A2: x
in (
dom (A
^ B)) by
Def1;
then
A3: ((b
-exponent (A
^ B))
. x)
= (b
-exponent ((A
^ B)
. x)) by
Def1;
reconsider c = x as
Ordinal by
A2;
c
in (
dom A) or ((
dom A)
c= c & (c
-^ (
dom A))
in (
dom B))
proof
assume not c
in (
dom A);
hence
A4: (
dom A)
c= c by
ORDINAL1: 16;
c
in ((
dom A)
+^ (
dom B)) by
A2,
ORDINAL4:def 1;
then (c
-^ (
dom A))
in (((
dom A)
+^ (
dom B))
-^ (
dom A)) by
A4,
ORDINAL3: 53;
hence thesis by
ORDINAL3: 52;
end;
per cases ;
suppose
A5: c
in (
dom A);
then
A6: c
in (
dom (b
-exponent A)) by
Def1;
((A
^ B)
. x)
= (A
. x) by
A5,
ORDINAL4:def 1;
hence ((b
-exponent (A
^ B))
. x)
= ((b
-exponent A)
. x) by
A3,
A5,
Def1
.= (((b
-exponent A)
^ (b
-exponent B))
. x) by
A6,
ORDINAL4:def 1;
end;
suppose
A7: (
dom A)
c= c & (c
-^ (
dom A))
in (
dom B);
then
A8: (c
-^ (
dom A))
in (
dom (b
-exponent B)) by
Def1;
((A
^ B)
. x)
= ((A
^ B)
. ((
dom A)
+^ (c
-^ (
dom A)))) by
A7,
ORDINAL3:def 5
.= (B
. (c
-^ (
dom A))) by
A7,
ORDINAL4:def 1;
hence ((b
-exponent (A
^ B))
. x)
= ((b
-exponent B)
. (c
-^ (
dom A))) by
A3,
A7,
Def1
.= (((b
-exponent A)
^ (b
-exponent B))
. ((
dom (b
-exponent A))
+^ (c
-^ (
dom A)))) by
A8,
ORDINAL4:def 1
.= (((b
-exponent A)
^ (b
-exponent B))
. ((
dom A)
+^ (c
-^ (
dom A)))) by
Def1
.= (((b
-exponent A)
^ (b
-exponent B))
. x) by
A7,
ORDINAL3:def 5;
end;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
ORDINAL7:35
Th48: for A be
Ordinal-Sequence, b,c be
Ordinal holds (b
-exponent (A
| c))
= ((b
-exponent A)
| c)
proof
let A be
Ordinal-Sequence, b,c be
Ordinal;
A1: (
dom (b
-exponent (A
| c)))
= (
dom (A
| c)) by
Def1
.= ((
dom A)
/\ c) by
RELAT_1: 61
.= ((
dom (b
-exponent A))
/\ c) by
Def1
.= (
dom ((b
-exponent A)
| c)) by
RELAT_1: 61;
now
let x be
object;
assume
A2: x
in (
dom (b
-exponent (A
| c)));
then
A3: x
in (
dom (A
| c)) by
Def1;
then
A4: x
in (
dom A) by
RELAT_1: 57;
thus ((b
-exponent (A
| c))
. x)
= (b
-exponent ((A
| c)
. x)) by
A3,
Def1
.= (b
-exponent (A
. x)) by
A3,
FUNCT_1: 47
.= ((b
-exponent A)
. x) by
A4,
Def1
.= (((b
-exponent A)
| c)
. x) by
A1,
A2,
FUNCT_1: 47;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
ORDINAL7:36
Th49: for A be
finite
Ordinal-Sequence, b be
Ordinal, n be
Nat holds (b
-exponent (A
/^ n))
= ((b
-exponent A)
/^ n)
proof
let A be
finite
Ordinal-Sequence, b be
Ordinal, n be
Nat;
A1: (
dom (b
-exponent (A
/^ n)))
= (
len (A
/^ n)) by
Def1
.= ((
len A)
-' n) by
AFINSQ_2:def 2
.= ((
len (b
-exponent A))
-' n) by
Def1
.= (
dom ((b
-exponent A)
/^ n)) by
AFINSQ_2:def 2;
now
let k be
Nat;
assume
A2: k
in (
dom (b
-exponent (A
/^ n)));
then
A3: k
in (
dom (A
/^ n)) by
Def1;
A4: (b
-exponent (A
. (k
+ n)))
= ((b
-exponent A)
. (k
+ n))
proof
per cases ;
suppose (k
+ n)
in (
dom A);
hence thesis by
Def1;
end;
suppose
A5: not (k
+ n)
in (
dom A);
then (A
. (k
+ n))
=
{} by
FUNCT_1:def 2;
then
A6: (b
-exponent (A
. (k
+ n)))
=
{} by
ORDINAL5:def 10;
not (k
+ n)
in (
dom (b
-exponent A)) by
A5,
Def1;
hence thesis by
A6,
FUNCT_1:def 2;
end;
end;
thus ((b
-exponent (A
/^ n))
. k)
= (b
-exponent ((A
/^ n)
. k)) by
A3,
Def1
.= (b
-exponent (A
. (k
+ n))) by
A3,
AFINSQ_2:def 2
.= (((b
-exponent A)
/^ n)
. k) by
A1,
A2,
A4,
AFINSQ_2:def 2;
end;
hence thesis by
A1,
AFINSQ_1: 8;
end;
registration
let A be
Cantor-normal-form
Ordinal-Sequence;
cluster (
omega
-exponent A) ->
decreasing;
coherence
proof
now
let a,b be
Ordinal;
assume
A1: a
in b & b
in (
dom (
omega
-exponent A));
then
A2: b
in (
dom A) by
Def1;
then ((
omega
-exponent A)
. a)
= (
omega
-exponent (A
. a)) & ((
omega
-exponent A)
. b)
= (
omega
-exponent (A
. b)) by
A1,
Def1,
ORDINAL1: 10;
hence ((
omega
-exponent A)
. b)
in ((
omega
-exponent A)
. a) by
A1,
A2,
ORDINAL5:def 11;
end;
hence thesis by
ORDINAL5:def 1;
end;
end
theorem ::
ORDINAL7:37
for A,B be
Ordinal-Sequence st (A
^ B) is
Cantor-normal-form holds (
rng (
omega
-exponent A))
misses (
rng (
omega
-exponent B))
proof
let A,B be
Ordinal-Sequence;
assume
A1: (A
^ B) is
Cantor-normal-form;
((
rng (
omega
-exponent A))
/\ (
rng (
omega
-exponent B)))
=
{}
proof
assume ((
rng (
omega
-exponent A))
/\ (
rng (
omega
-exponent B)))
<>
{} ;
then
consider y be
object such that
A2: y
in ((
rng (
omega
-exponent A))
/\ (
rng (
omega
-exponent B))) by
XBOOLE_0:def 1;
A3: y
in (
rng (
omega
-exponent A)) & y
in (
rng (
omega
-exponent B)) by
A2,
XBOOLE_0:def 4;
then
consider x1 be
object such that
A4: x1
in (
dom (
omega
-exponent A)) & ((
omega
-exponent A)
. x1)
= y by
FUNCT_1:def 3;
consider x2 be
object such that
A5: x2
in (
dom (
omega
-exponent B)) & ((
omega
-exponent B)
. x2)
= y by
A3,
FUNCT_1:def 3;
reconsider x1, x2 as
Ordinal by
A4,
A5;
A6: x1
in (
dom A) by
A4,
Def1;
then
A7: (A
. x1)
= ((A
^ B)
. x1) by
ORDINAL4:def 1;
A8: x2
in (
dom B) by
A5,
Def1;
then
A9: (B
. x2)
= ((A
^ B)
. ((
dom A)
+^ x2)) by
ORDINAL4:def 1;
(
dom A)
c= ((
dom A)
+^ x2) by
ORDINAL3: 24;
then
A10: x1
in ((
dom A)
+^ x2) by
A6;
((
dom A)
+^ x2)
in ((
dom A)
+^ (
dom B)) by
A8,
ORDINAL2: 32;
then ((
dom A)
+^ x2)
in (
dom (A
^ B)) by
ORDINAL4:def 1;
then (
omega
-exponent ((A
^ B)
. ((
dom A)
+^ x2)))
in (
omega
-exponent ((A
^ B)
. x1)) by
A1,
A10,
ORDINAL5:def 11;
then ((
omega
-exponent B)
. x2)
in (
omega
-exponent (A
. x1)) by
A7,
A8,
A9,
Def1;
then ((
omega
-exponent B)
. x2)
in ((
omega
-exponent A)
. x1) by
A6,
Def1;
hence contradiction by
A4,
A5;
end;
hence thesis by
XBOOLE_0:def 7;
end;
theorem ::
ORDINAL7:38
Th51: for A be
Cantor-normal-form
Ordinal-Sequence holds
0
in (
rng (
omega
-exponent A)) iff A
<>
{} & (
omega
-exponent (
last A))
=
0
proof
let A be
Cantor-normal-form
Ordinal-Sequence;
hereby
assume
0
in (
rng (
omega
-exponent A));
then
consider x be
object such that
A1: x
in (
dom (
omega
-exponent A)) & ((
omega
-exponent A)
. x)
=
0 by
FUNCT_1:def 3;
thus
A2: A
<>
{} by
A1;
A3: x
in (
dom A) by
A1,
Def1;
then (
omega
-exponent (
last A))
c= (
omega
-exponent (A
. x)) by
A2,
Th31;
then (
omega
-exponent (
last A))
c=
0 by
A1,
A3,
Def1;
hence (
omega
-exponent (
last A))
=
0 ;
end;
assume
A4: A
<>
{} & (
omega
-exponent (
last A))
=
0 ;
then
consider A0 be
Cantor-normal-form
Ordinal-Sequence, a0 be
Cantor-component
Ordinal such that
A5: A
= (A0
^
<%a0%>) by
Th29;
0
in 1 by
CARD_1: 49,
TARSKI:def 1;
then
0
in (
dom
<%a0%>) by
AFINSQ_1: 33;
then
A6: ((
len A0)
+
0 )
in (
dom A) by
A5,
AFINSQ_1: 23;
then
A7: (
len A0)
in (
dom (
omega
-exponent A)) by
Def1;
0
= (
omega
-exponent a0) by
A4,
A5,
AFINSQ_1: 92
.= (
omega
-exponent (A
. (
len A0))) by
A5,
AFINSQ_1: 36
.= ((
omega
-exponent A)
. (
len A0)) by
A6,
Def1;
hence thesis by
A7,
FUNCT_1: 3;
end;
definition
let a,b be
Ordinal;
::
ORDINAL7:def2
func b
-leading_coeff a ->
Ordinal equals (a
div^ (
exp (b,(b
-exponent a))));
coherence ;
end
theorem ::
ORDINAL7:39
Th52: for a be
Ordinal holds (
0
-leading_coeff a)
= a
proof
let a be
Ordinal;
thus (
0
-leading_coeff a)
= (a
div^ (
exp (
0 qua
Ordinal,
0 ))) by
ORDINAL5:def 10
.= (a
div^ 1) by
ORDINAL2: 43
.= a by
ORDINAL3: 71;
end;
theorem ::
ORDINAL7:40
Th53: for a be
Ordinal holds (1
-leading_coeff a)
= a
proof
let a be
Ordinal;
not 1
in 1;
hence (1
-leading_coeff a)
= (a
div^ (
exp (1 qua
Ordinal,
0 ))) by
ORDINAL5:def 10
.= (a
div^ 1) by
ORDINAL2: 43
.= a by
ORDINAL3: 71;
end;
theorem ::
ORDINAL7:41
for b be
Ordinal holds (b
-leading_coeff
0 )
=
0 by
ORDINAL3: 70;
theorem ::
ORDINAL7:42
Th55: for a,b be
Ordinal st a
in b holds (b
-leading_coeff a)
= a
proof
let a,b be
Ordinal;
assume
A1: a
in b;
per cases ;
suppose
0
in a;
thus (b
-leading_coeff a)
= (a
div^ (
exp (b,
0 ))) by
A1,
Th21
.= (a
div^ 1) by
ORDINAL2: 43
.= a by
ORDINAL3: 71;
end;
suppose not
0
in a;
then a
=
0 or a
in
0 by
ORDINAL1: 14;
hence thesis by
ORDINAL3: 70;
end;
end;
theorem ::
ORDINAL7:43
for b be
Ordinal holds (b
-leading_coeff 1)
= 1
proof
let b be
Ordinal;
per cases by
ORDINAL1: 14;
suppose 1
in b;
hence thesis by
Th55;
end;
suppose 1
= b;
hence thesis by
Th53;
end;
suppose b
in 1;
then b
=
0 by
TARSKI:def 1,
CARD_1: 49;
hence thesis by
Th52;
end;
end;
theorem ::
ORDINAL7:44
Th57: for a,b,c be
Ordinal st c
in b holds (b
-leading_coeff (c
*^ (
exp (b,a))))
= c
proof
let a,b,c be
Ordinal;
assume
A1: c
in b;
per cases ;
suppose
A2:
0
in c;
A3:
0
in (
exp (b,a)) by
A1,
ORDINAL1: 14;
thus (b
-leading_coeff (c
*^ (
exp (b,a))))
= ((c
*^ (
exp (b,a)))
div^ (
exp (b,a))) by
A1,
A2,
ORDINAL5: 58
.= (((c
*^ (
exp (b,a)))
+^
0 )
div^ (
exp (b,a))) by
ORDINAL2: 27
.= c by
A3,
ORDINAL3: 66;
end;
suppose not
0
in c;
then
A4: c
=
0 by
ORDINAL1: 14;
hence (b
-leading_coeff (c
*^ (
exp (b,a))))
= (b
-leading_coeff
0 ) by
ORDINAL2: 35
.= c by
A4,
ORDINAL3: 70;
end;
end;
theorem ::
ORDINAL7:45
for a,b be
Ordinal st 1
in b holds (b
-leading_coeff (
exp (b,a)))
= 1
proof
let a,b be
Ordinal;
assume
A1: 1
in b;
thus (b
-leading_coeff (
exp (b,a)))
= (b
-leading_coeff (1
*^ (
exp (b,a)))) by
ORDINAL2: 39
.= 1 by
A1,
Th57;
end;
registration
let c be
Cantor-component
Ordinal;
cluster (
omega
-leading_coeff c) ->
natural non
empty;
coherence
proof
consider b be
Ordinal, n be
Nat such that
A1:
0
in (
Segm n) & c
= (n
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
thus thesis by
A1,
Th57,
ORDINAL1:def 12;
end;
end
theorem ::
ORDINAL7:46
Th59: for c be
Cantor-component
Ordinal holds c
= ((
omega
-leading_coeff c)
*^ (
exp (
omega ,(
omega
-exponent c))))
proof
let c be
Cantor-component
Ordinal;
consider b be
Ordinal, n be
Nat such that
A1:
0
in (
Segm n) & c
= (n
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
A2: (
omega
-leading_coeff c)
= n by
A1,
Th57,
ORDINAL1:def 12;
0
in n & n
in
omega by
A1,
ORDINAL1:def 12;
hence thesis by
A1,
A2,
ORDINAL5: 58;
end;
definition
let A be
Ordinal-Sequence, b be
Ordinal;
::
ORDINAL7:def3
func b
-leading_coeff A ->
Ordinal-Sequence means
:
Def3: (
dom it )
= (
dom A) & for a be
object st a
in (
dom A) holds (it
. a)
= (b
-leading_coeff (A
. a));
existence
proof
deffunc
F(
object) = (b
-leading_coeff (A
. $1));
consider f be
Function such that
A1: (
dom f)
= (
dom A) & for a be
object st a
in (
dom A) holds (f
. a)
=
F(a) from
FUNCT_1:sch 3;
reconsider f as
Sequence by
A1,
ORDINAL1: 31;
now
reconsider c = (
sup (
rng f)) as
Ordinal;
take c;
now
let y be
object;
assume
A2: y
in (
rng f);
then
consider x be
object such that
A3: x
in (
dom f) & (f
. x)
= y by
FUNCT_1:def 3;
(f
. x)
= (b
-leading_coeff (A
. x)) by
A1,
A3;
hence y
in (
sup (
rng f)) by
A2,
A3,
ORDINAL2: 19;
end;
hence (
rng f)
c= (
sup (
rng f)) by
TARSKI:def 3;
end;
then
reconsider f as
Ordinal-Sequence by
ORDINAL2:def 4;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Ordinal-Sequence;
assume that
A4: (
dom f1)
= (
dom A) and
A5: for a be
object st a
in (
dom A) holds (f1
. a)
= (b
-leading_coeff (A
. a)) and
A6: (
dom f2)
= (
dom A) and
A7: for a be
object st a
in (
dom A) holds (f2
. a)
= (b
-leading_coeff (A
. a));
now
let a be
object;
assume
A8: a
in (
dom f1);
hence (f1
. a)
= (b
-leading_coeff (A
. a)) by
A4,
A5
.= (f2
. a) by
A4,
A7,
A8;
end;
hence thesis by
A4,
A6,
FUNCT_1: 2;
end;
end
registration
let A be
empty
Ordinal-Sequence, b be
Ordinal;
cluster (b
-leading_coeff A) ->
empty;
coherence
proof
(
dom A)
= (
dom (b
-leading_coeff A)) by
Def3;
hence thesis;
end;
end
registration
let A be non
empty
Ordinal-Sequence, b be
Ordinal;
cluster (b
-leading_coeff A) -> non
empty;
coherence
proof
(
dom A)
= (
dom (b
-leading_coeff A)) by
Def3;
hence thesis;
end;
end
registration
let A be
finite
Ordinal-Sequence, b be
Ordinal;
cluster (b
-leading_coeff A) ->
finite;
coherence
proof
(
dom A)
= (
dom (b
-leading_coeff A)) by
Def3;
hence thesis by
FINSET_1: 10;
end;
end
registration
let A be
infinite
Ordinal-Sequence, b be
Ordinal;
cluster (b
-leading_coeff A) ->
infinite;
coherence
proof
(
dom A)
= (
dom (b
-leading_coeff A)) by
Def3;
hence thesis by
FINSET_1: 10;
end;
end
theorem ::
ORDINAL7:47
Th60: for a,b be
Ordinal holds (b
-leading_coeff
<%a%>)
=
<%(b
-leading_coeff a)%>
proof
let a,b be
Ordinal;
A1: (
dom (b
-leading_coeff
<%a%>))
= (
dom
<%a%>) by
Def3
.= 1 by
AFINSQ_1:def 4;
0
in 1 by
TARSKI:def 1,
CARD_1: 49;
then
0
in (
dom
<%a%>) by
AFINSQ_1:def 4;
then ((b
-leading_coeff
<%a%>)
.
0 )
= (b
-leading_coeff (
<%a%>
.
0 )) by
Def3
.= (b
-leading_coeff a);
hence thesis by
A1,
AFINSQ_1:def 4;
end;
theorem ::
ORDINAL7:48
for A,B be
Ordinal-Sequence, b be
Ordinal holds (b
-leading_coeff (A
^ B))
= ((b
-leading_coeff A)
^ (b
-leading_coeff B))
proof
let A,B be
Ordinal-Sequence, b be
Ordinal;
A1: (
dom (b
-leading_coeff (A
^ B)))
= (
dom (A
^ B)) by
Def3
.= ((
dom A)
+^ (
dom B)) by
ORDINAL4:def 1
.= ((
dom A)
+^ (
dom (b
-leading_coeff B))) by
Def3
.= ((
dom (b
-leading_coeff A))
+^ (
dom (b
-leading_coeff B))) by
Def3
.= (
dom ((b
-leading_coeff A)
^ (b
-leading_coeff B))) by
ORDINAL4:def 1;
now
let x be
object;
assume x
in (
dom (b
-leading_coeff (A
^ B)));
then
A2: x
in (
dom (A
^ B)) by
Def3;
then
A3: ((b
-leading_coeff (A
^ B))
. x)
= (b
-leading_coeff ((A
^ B)
. x)) by
Def3;
reconsider c = x as
Ordinal by
A2;
c
in (
dom A) or ((
dom A)
c= c & (c
-^ (
dom A))
in (
dom B))
proof
assume not c
in (
dom A);
hence
A4: (
dom A)
c= c by
ORDINAL1: 16;
c
in ((
dom A)
+^ (
dom B)) by
A2,
ORDINAL4:def 1;
then (c
-^ (
dom A))
in (((
dom A)
+^ (
dom B))
-^ (
dom A)) by
A4,
ORDINAL3: 53;
hence thesis by
ORDINAL3: 52;
end;
per cases ;
suppose
A5: c
in (
dom A);
then
A6: c
in (
dom (b
-leading_coeff A)) by
Def3;
((A
^ B)
. x)
= (A
. x) by
A5,
ORDINAL4:def 1;
hence ((b
-leading_coeff (A
^ B))
. x)
= ((b
-leading_coeff A)
. x) by
A3,
A5,
Def3
.= (((b
-leading_coeff A)
^ (b
-leading_coeff B))
. x) by
A6,
ORDINAL4:def 1;
end;
suppose
A7: (
dom A)
c= c & (c
-^ (
dom A))
in (
dom B);
then
A8: (c
-^ (
dom A))
in (
dom (b
-leading_coeff B)) by
Def3;
((A
^ B)
. x)
= ((A
^ B)
. ((
dom A)
+^ (c
-^ (
dom A)))) by
A7,
ORDINAL3:def 5
.= (B
. (c
-^ (
dom A))) by
A7,
ORDINAL4:def 1;
hence ((b
-leading_coeff (A
^ B))
. x)
= ((b
-leading_coeff B)
. (c
-^ (
dom A))) by
A3,
A7,
Def3
.= (((b
-leading_coeff A)
^ (b
-leading_coeff B))
. ((
dom (b
-leading_coeff A))
+^ (c
-^ (
dom A)))) by
A8,
ORDINAL4:def 1
.= (((b
-leading_coeff A)
^ (b
-leading_coeff B))
. ((
dom A)
+^ (c
-^ (
dom A)))) by
Def3
.= (((b
-leading_coeff A)
^ (b
-leading_coeff B))
. x) by
A7,
ORDINAL3:def 5;
end;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
ORDINAL7:49
for A be
Ordinal-Sequence, b,c be
Ordinal holds (b
-leading_coeff (A
| c))
= ((b
-leading_coeff A)
| c)
proof
let A be
Ordinal-Sequence, b,c be
Ordinal;
A1: (
dom (b
-leading_coeff (A
| c)))
= (
dom (A
| c)) by
Def3
.= ((
dom A)
/\ c) by
RELAT_1: 61
.= ((
dom (b
-leading_coeff A))
/\ c) by
Def3
.= (
dom ((b
-leading_coeff A)
| c)) by
RELAT_1: 61;
now
let x be
object;
assume
A2: x
in (
dom (b
-leading_coeff (A
| c)));
then
A3: x
in (
dom (A
| c)) by
Def3;
then
A4: x
in (
dom A) by
RELAT_1: 57;
thus ((b
-leading_coeff (A
| c))
. x)
= (b
-leading_coeff ((A
| c)
. x)) by
A3,
Def3
.= (b
-leading_coeff (A
. x)) by
A3,
FUNCT_1: 47
.= ((b
-leading_coeff A)
. x) by
A4,
Def3
.= (((b
-leading_coeff A)
| c)
. x) by
A1,
A2,
FUNCT_1: 47;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
ORDINAL7:50
for A be
finite
Ordinal-Sequence, b be
Ordinal, n be
Nat holds (b
-leading_coeff (A
/^ n))
= ((b
-leading_coeff A)
/^ n)
proof
let A be
finite
Ordinal-Sequence, b be
Ordinal, n be
Nat;
A1: (
dom (b
-leading_coeff (A
/^ n)))
= (
len (A
/^ n)) by
Def3
.= ((
len A)
-' n) by
AFINSQ_2:def 2
.= ((
len (b
-leading_coeff A))
-' n) by
Def3
.= (
dom ((b
-leading_coeff A)
/^ n)) by
AFINSQ_2:def 2;
now
let k be
Nat;
assume
A2: k
in (
dom (b
-leading_coeff (A
/^ n)));
then
A3: k
in (
dom (A
/^ n)) by
Def3;
A4: (b
-leading_coeff (A
. (k
+ n)))
= ((b
-leading_coeff A)
. (k
+ n))
proof
per cases ;
suppose (k
+ n)
in (
dom A);
hence thesis by
Def3;
end;
suppose
A5: not (k
+ n)
in (
dom A);
then (A
. (k
+ n))
=
{} by
FUNCT_1:def 2;
then
A6: (b
-leading_coeff (A
. (k
+ n)))
=
{} by
ORDINAL3: 70;
not (k
+ n)
in (
dom (b
-leading_coeff A)) by
A5,
Def3;
hence thesis by
A6,
FUNCT_1:def 2;
end;
end;
thus ((b
-leading_coeff (A
/^ n))
. k)
= (b
-leading_coeff ((A
/^ n)
. k)) by
A3,
Def3
.= (b
-leading_coeff (A
. (k
+ n))) by
A3,
AFINSQ_2:def 2
.= (((b
-leading_coeff A)
/^ n)
. k) by
A1,
A2,
A4,
AFINSQ_2:def 2;
end;
hence thesis by
A1,
AFINSQ_1: 8;
end;
registration
let A be
Cantor-normal-form
Ordinal-Sequence, a be
object;
cluster ((
omega
-leading_coeff A)
. a) ->
natural;
coherence
proof
per cases ;
suppose
A1: a
in (
dom A);
then
A2: ((
omega
-leading_coeff A)
. a)
= (
omega
-leading_coeff (A
. a)) by
Def3;
(A
. a) is
Cantor-component by
A1,
ORDINAL5:def 11;
hence thesis by
A2;
end;
suppose not a
in (
dom A);
then not a
in (
dom (
omega
-leading_coeff A)) by
Def3;
hence thesis by
FUNCT_1:def 2;
end;
end;
end
registration
let A be
Cantor-normal-form
Ordinal-Sequence;
cluster (
omega
-leading_coeff A) ->
natural-valued
non-empty;
coherence
proof
now
let y be
object;
assume y
in (
rng (
omega
-leading_coeff A));
then
consider x be
object such that
A1: x
in (
dom (
omega
-leading_coeff A)) & ((
omega
-leading_coeff A)
. x)
= y by
FUNCT_1:def 3;
thus y
in
NAT by
A1,
ORDINAL1:def 12;
end;
hence (
omega
-leading_coeff A) is
natural-valued by
TARSKI:def 3,
VALUED_0:def 6;
now
let x be
object;
assume x
in (
dom (
omega
-leading_coeff A));
then
A2: x
in (
dom A) by
Def3;
then
A3: (A
. x) is
Cantor-component by
ORDINAL5:def 11;
((
omega
-leading_coeff A)
. x)
= (
omega
-leading_coeff (A
. x)) by
A2,
Def3;
hence ((
omega
-leading_coeff A)
. x) is non
empty by
A3;
end;
hence thesis by
FUNCT_1:def 9;
end;
end
theorem ::
ORDINAL7:51
Th64: for A be
Cantor-normal-form
Ordinal-Sequence, a be
object st a
in (
dom A) holds (A
. a)
= ((
omega
-leading_coeff (A
. a))
*^ (
exp (
omega ,(
omega
-exponent (A
. a)))))
proof
let A be
Cantor-normal-form
Ordinal-Sequence, a be
object;
assume a
in (
dom A);
then (A
. a) is
Cantor-component by
ORDINAL5:def 11;
hence thesis by
Th59;
end;
theorem ::
ORDINAL7:52
Th65: for A be
Cantor-normal-form
Ordinal-Sequence, a be
object st a
in (
dom A) holds (A
. a)
= (((
omega
-leading_coeff A)
. a)
*^ (
exp (
omega ,((
omega
-exponent A)
. a))))
proof
let A be
Cantor-normal-form
Ordinal-Sequence, a be
object;
assume
A1: a
in (
dom A);
hence (A
. a)
= ((
omega
-leading_coeff (A
. a))
*^ (
exp (
omega ,(
omega
-exponent (A
. a))))) by
Th64
.= (((
omega
-leading_coeff A)
. a)
*^ (
exp (
omega ,(
omega
-exponent (A
. a))))) by
A1,
Def3
.= (((
omega
-leading_coeff A)
. a)
*^ (
exp (
omega ,((
omega
-exponent A)
. a)))) by
A1,
Def1;
end;
theorem ::
ORDINAL7:53
Th66: for A be
decreasing
Ordinal-Sequence holds for B be
natural-valued
non-empty
Ordinal-Sequence st (
dom A)
= (
dom B) holds ex C be
Cantor-normal-form
Ordinal-Sequence st (
omega
-exponent C)
= A & (
omega
-leading_coeff C)
= B
proof
let A be
decreasing
Ordinal-Sequence;
let B be
natural-valued
non-empty
Ordinal-Sequence;
assume
A1: (
dom A)
= (
dom B);
deffunc
F(
Ordinal) = ((B
. $1)
*^ (
exp (
omega ,(A
. $1))));
consider C be
Ordinal-Sequence such that
A2: (
dom C)
= (
dom A) & for a be
Ordinal st a
in (
dom A) holds (C
. a)
=
F(a) from
ORDINAL2:sch 3;
A3:
now
let a be
Ordinal;
assume
A4: a
in (
dom C);
then
A5: (C
. a)
= ((B
. a)
*^ (
exp (
omega ,(A
. a)))) by
A2;
(B
. a)
<>
{} by
A1,
A2,
A4,
FUNCT_1:def 9;
hence (C
. a) is
Cantor-component by
A5;
end;
now
let a,b be
Ordinal;
assume
A6: a
in b & b
in (
dom C);
then
A7: (C
. a)
= ((B
. a)
*^ (
exp (
omega ,(A
. a)))) & (C
. b)
= ((B
. b)
*^ (
exp (
omega ,(A
. b)))) by
A2,
ORDINAL1: 10;
XA: (
rng B)
c=
NAT by
VALUED_0:def 6;
X0: b
in (
dom B) by
A6,
A1,
A2;
then b
c= (
dom B) by
ORDINAL1:def 2;
then
xy: (B
. b)
in (
rng B) & (B
. a)
in (
rng B) by
A6,
X0,
FUNCT_1: 3;
(B
. a)
<>
{} & (B
. b)
<>
{} by
A1,
A2,
A6,
ORDINAL1: 10,
FUNCT_1:def 9;
then
0
c< (B
. a) &
0
c< (B
. b) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in (B
. a) &
0
in (B
. b) by
ORDINAL1: 11;
then (
omega
-exponent (C
. b))
= (A
. b) & (
omega
-exponent (C
. a))
= (A
. a) by
A7,
ORDINAL5: 58,
XA,
xy;
hence (
omega
-exponent (C
. b))
in (
omega
-exponent (C
. a)) by
A2,
A6,
ORDINAL5:def 1;
end;
then
reconsider C as
Cantor-normal-form
Ordinal-Sequence by
A3,
ORDINAL5:def 11;
take C;
A9: (
dom (
omega
-exponent C))
= (
dom A) by
A2,
Def1;
now
let a be
object;
assume a
in (
dom (
omega
-exponent C));
then
A10: a
in (
dom C) by
Def1;
then
A11: (C
. a)
= ((B
. a)
*^ (
exp (
omega ,(A
. a)))) by
A2;
(B
. a)
<>
{} by
A1,
A2,
A10,
FUNCT_1:def 9;
then
0
c< (B
. a) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A12:
0
in (B
. a) by
ORDINAL1: 11;
Sa: (B
. a)
in (
rng B) by
FUNCT_1: 3,
A10,
A1,
A2;
(
rng B)
c=
NAT by
VALUED_0:def 6;
then (
omega
-exponent (C
. a))
= (A
. a) by
A11,
A12,
ORDINAL5: 58,
Sa;
hence ((
omega
-exponent C)
. a)
= (A
. a) by
A10,
Def1;
end;
hence (
omega
-exponent C)
= A by
A9,
FUNCT_1: 2;
A13: (
dom (
omega
-leading_coeff C))
= (
dom B) by
A1,
A2,
Def3;
now
let a be
object;
assume a
in (
dom (
omega
-leading_coeff C));
then
A14: a
in (
dom C) by
Def3;
then (C
. a)
= ((B
. a)
*^ (
exp (
omega ,(A
. a)))) by
A2;
then (
omega
-leading_coeff (C
. a))
= (B
. a) by
Th57,
ORDINAL1:def 12;
hence ((
omega
-leading_coeff C)
. a)
= (B
. a) by
A14,
Def3;
end;
hence (
omega
-leading_coeff C)
= B by
A13,
FUNCT_1: 2;
end;
theorem ::
ORDINAL7:54
Th67: for A,B be
Cantor-normal-form
Ordinal-Sequence st (
omega
-exponent A)
= (
omega
-exponent B) & (
omega
-leading_coeff A)
= (
omega
-leading_coeff B) holds A
= B
proof
let A,B be
Cantor-normal-form
Ordinal-Sequence;
assume that
A1: (
omega
-exponent A)
= (
omega
-exponent B) and
A2: (
omega
-leading_coeff A)
= (
omega
-leading_coeff B);
A3: (
dom A)
= (
dom (
omega
-exponent A)) by
Def1
.= (
dom B) by
A1,
Def1;
now
let a be
object;
assume
A4: a
in (
dom A);
hence (A
. a)
= (((
omega
-leading_coeff A)
. a)
*^ (
exp (
omega ,((
omega
-exponent A)
. a)))) by
Th65
.= (B
. a) by
A1,
A2,
A3,
A4,
Th65;
end;
hence thesis by
A3,
FUNCT_1: 2;
end;
definition
let a be
Ordinal;
::
ORDINAL7:def4
func
CantorNF a ->
Cantor-normal-form
Ordinal-Sequence means
:
Def4: (
Sum^ it )
= a;
existence by
ORDINAL5: 69;
uniqueness by
Th45;
end
registration
let a be
Ordinal;
reduce (
Sum^ (
CantorNF a)) to a;
correctness by
Def4;
end
registration
let A be
Cantor-normal-form
Ordinal-Sequence;
reduce (
CantorNF (
Sum^ A)) to A;
correctness by
Def4;
end
theorem ::
ORDINAL7:55
(
CantorNF
{} )
=
{} by
ORDINAL5: 52;
registration
let a be
empty
Ordinal;
cluster (
CantorNF a) ->
empty;
coherence by
ORDINAL5: 52;
end
registration
let a be non
empty
Ordinal;
cluster (
CantorNF a) -> non
empty;
coherence by
ORDINAL5: 52;
end
theorem ::
ORDINAL7:56
Th69: for a be
Ordinal, n be non
zero
Nat holds (
CantorNF (n
*^ (
exp (
omega ,a))))
=
<%(n
*^ (
exp (
omega ,a)))%>
proof
let a be
Ordinal, n be non
zero
Nat;
(
Sum^
<%(n
*^ (
exp (
omega ,a)))%>)
= (n
*^ (
exp (
omega ,a))) by
ORDINAL5: 53;
hence thesis;
end;
theorem ::
ORDINAL7:57
Th70: for a be
Cantor-component
Ordinal holds (
CantorNF a)
=
<%a%>
proof
let a be
Cantor-component
Ordinal;
(
Sum^
<%a%>)
= a by
ORDINAL5: 53;
hence thesis;
end;
theorem ::
ORDINAL7:58
Th71: for n be non
zero
Nat holds (
CantorNF n)
=
<%n%>
proof
let n be non
zero
Nat;
(
Sum^
<%n%>)
= n by
ORDINAL5: 53;
hence thesis;
end;
theorem ::
ORDINAL7:59
for a be non
empty
Ordinal, n,m be non
zero
Nat holds (
CantorNF ((n
*^ (
exp (
omega ,a)))
+^ m))
=
<%(n
*^ (
exp (
omega ,a))), m%>
proof
let a be non
empty
Ordinal, n,m be non
zero
Nat;
(
Sum^
<%(n
*^ (
exp (
omega ,a))), m%>)
= ((n
*^ (
exp (
omega ,a)))
+^ m) by
Th25;
hence thesis;
end;
theorem ::
ORDINAL7:60
Th73: for a be non
empty
Ordinal, b be
Ordinal, n be non
zero
Nat st b
in (
omega
-exponent (
last (
CantorNF a))) holds (
CantorNF (a
+^ (n
*^ (
exp (
omega ,b)))))
= ((
CantorNF a)
^
<%(n
*^ (
exp (
omega ,b)))%>)
proof
let a be non
empty
Ordinal, b be
Ordinal, n be non
zero
Nat;
assume
A1: b
in (
omega
-exponent (
last (
CantorNF a)));
set A = (
CantorNF a), B =
<%(n
*^ (
exp (
omega ,b)))%>;
A2: ((
CantorNF a)
^
<%(n
*^ (
exp (
omega ,b)))%>) is
Cantor-normal-form by
A1,
Th37;
(
Sum^ (A
^ B))
= ((
Sum^ A)
+^ (n
*^ (
exp (
omega ,b)))) by
ORDINAL5: 54
.= (a
+^ (n
*^ (
exp (
omega ,b))));
hence thesis by
A2;
end;
theorem ::
ORDINAL7:61
for a be non
empty
Ordinal, n be non
zero
Nat st (
omega
-exponent (
last (
CantorNF a)))
<>
0 holds (
CantorNF (a
+^ n))
= ((
CantorNF a)
^
<%n%>)
proof
let a be non
empty
Ordinal, n be non
zero
Nat;
assume (
omega
-exponent (
last (
CantorNF a)))
<>
0 ;
then
0
c< (
omega
-exponent (
last (
CantorNF a))) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A1:
0
in (
omega
-exponent (
last (
CantorNF a))) by
ORDINAL1: 11;
thus (
CantorNF (a
+^ n))
= (
CantorNF (a
+^ (n
*^ 1))) by
ORDINAL2: 39
.= (
CantorNF (a
+^ (n
*^ (
exp (
omega ,
0 qua
Ordinal))))) by
ORDINAL2: 43
.= ((
CantorNF a)
^
<%(n
*^ (
exp (
omega ,
0 qua
Ordinal)))%>) by
A1,
Th73
.= ((
CantorNF a)
^
<%(n
*^ 1)%>) by
ORDINAL2: 43
.= ((
CantorNF a)
^
<%n%>) by
ORDINAL2: 39;
end;
theorem ::
ORDINAL7:62
for a be non
empty
Ordinal, b be
Ordinal, n be non
zero
Nat st (
omega
-exponent ((
CantorNF a)
.
0 ))
in b holds (
CantorNF ((n
*^ (
exp (
omega ,b)))
+^ a))
= (
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a))
proof
let a be non
empty
Ordinal, b be
Ordinal, n be non
zero
Nat;
assume (
omega
-exponent ((
CantorNF a)
.
0 ))
in b;
then
A1: (
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a)) is
Cantor-normal-form by
Th39;
set A =
<%(n
*^ (
exp (
omega ,b)))%>, B = (
CantorNF a);
(
Sum^ (A
^ B))
= ((n
*^ (
exp (
omega ,b)))
+^ (
Sum^ B)) by
ORDINAL5: 55
.= ((n
*^ (
exp (
omega ,b)))
+^ a);
hence thesis by
A1;
end;
begin
definition
let a,b be
Ordinal;
::
ORDINAL7:def5
func a
(+) b ->
Ordinal means
:
Def5: ex C be
Cantor-normal-form
Ordinal-Sequence st it
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng (
omega
-exponent (
CantorNF a)))
\/ (
rng (
omega
-exponent (
CantorNF b)))) & for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng (
omega
-exponent (
CantorNF a)))
\ (
rng (
omega
-exponent (
CantorNF b)))) implies (
omega
-leading_coeff (C
. d))
= ((
omega
-leading_coeff (
CantorNF a))
. (((
omega
-exponent (
CantorNF a))
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng (
omega
-exponent (
CantorNF b)))
\ (
rng (
omega
-exponent (
CantorNF a)))) implies (
omega
-leading_coeff (C
. d))
= ((
omega
-leading_coeff (
CantorNF b))
. (((
omega
-exponent (
CantorNF b))
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng (
omega
-exponent (
CantorNF a)))
/\ (
rng (
omega
-exponent (
CantorNF b)))) implies (
omega
-leading_coeff (C
. d))
= (((
omega
-leading_coeff (
CantorNF a))
. (((
omega
-exponent (
CantorNF a))
" )
. (
omega
-exponent (C
. d))))
+ ((
omega
-leading_coeff (
CantorNF b))
. (((
omega
-exponent (
CantorNF b))
" )
. (
omega
-exponent (C
. d))))));
existence
proof
set R = ((
rng (
omega
-exponent (
CantorNF a)))
\/ (
rng (
omega
-exponent (
CantorNF b))));
set c = (
sup R);
set RS =
RelStr (# c, (
RelIncl c) #);
for x be
object holds x
in R implies x
in the
carrier of RS by
ORDINAL2: 19;
then
reconsider R as
finite
Subset of RS by
TARSKI:def 3;
now
let x,y be
object;
assume
A1: x
in R & y
in R & x
<> y;
then
reconsider A = x, B = y as
Ordinal;
A
c= B or B
c= A;
hence
[x, y]
in the
InternalRel of RS or
[y, x]
in the
InternalRel of RS by
A1,
WELLORD2:def 1;
end;
then
consider e0 be
FinSequence of RS such that
A2: e0 is R
-desc_ordering by
RELAT_2:def 6,
ORDERS_5: 78;
set e = (
FS2XFS e0);
A3: (
rng e)
= (
rng e0) by
Th15
.= R by
A2,
ORDERS_5:def 26;
reconsider e as
Ordinal-Sequence;
now
let a,b be
Ordinal;
assume
A4: a
in b & b
in (
dom e);
then
A5: a
in (
dom e) by
ORDINAL1: 10;
(
dom e)
in
omega by
CARD_1: 61;
then a
in
omega & b
in
omega by
A4,
A5,
ORDINAL1: 10;
then
reconsider n = a, m = b as
Nat;
(
card (
Segm n))
in (
card (
Segm m)) by
A4;
then
A6: (n
+ 1)
< (m
+ 1) by
NAT_1: 41,
XREAL_1: 8;
A7: (n
+ 1)
in (
dom e0) & (m
+ 1)
in (
dom e0) by
A4,
A5,
Th13;
then (e0
/. (m
+ 1))
< (e0
/. (n
+ 1)) by
A2,
A6,
ORDERS_5:def 22;
then
A8:
[(e0
/. (m
+ 1)), (e0
/. (n
+ 1))]
in the
InternalRel of RS & (e0
/. (m
+ 1))
<> (e0
/. (n
+ 1)) by
ORDERS_2:def 5,
ORDERS_2:def 6;
A9: (e0
/. (m
+ 1))
= (e0
. (m
+ 1)) & (e0
/. (n
+ 1))
= (e0
. (n
+ 1)) by
A7,
PARTFUN1:def 6;
(e0
. (m
+ 1))
in (
rng e0) & (e0
. (n
+ 1))
in (
rng e0) by
A7,
FUNCT_1: 3;
then (e0
. (m
+ 1))
in R & (e0
. (n
+ 1))
in R by
A2,
ORDERS_5:def 26;
then (e0
. (m
+ 1))
c= (e0
. (n
+ 1)) by
A8,
A9,
WELLORD2:def 1;
then
A10: (e0
. (m
+ 1))
c< (e0
. (n
+ 1)) by
A8,
A9,
XBOOLE_0:def 8;
(n
+ 1)
<= (
len e0) & (m
+ 1)
<= (
len e0) by
A7,
FINSEQ_3: 25;
then ((n
+ 1)
- 1)
< ((
len e0)
-
0 ) & ((m
+ 1)
- 1)
< ((
len e0)
-
0 ) by
XREAL_1: 15;
then (e
. n)
= (e0
. (n
+ 1)) & (e
. m)
= (e0
. (m
+ 1)) by
AFINSQ_1:def 8;
hence (e
. b)
in (e
. a) by
A10,
ORDINAL1: 11;
end;
then
reconsider e as
decreasing
Ordinal-Sequence by
ORDINAL5:def 1;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
defpred
P[
object,
object] means ((e
. $1)
in ((
rng E1)
\ (
rng E2)) implies $2
= (L1
. ((E1
" )
. (e
. $1)))) & ((e
. $1)
in ((
rng E2)
\ (
rng E1)) implies $2
= (L2
. ((E2
" )
. (e
. $1)))) & ((e
. $1)
in ((
rng E1)
/\ (
rng E2)) implies $2
= ((L1
. ((E1
" )
. (e
. $1)))
+ (L2
. ((E2
" )
. (e
. $1)))));
A11:
now
let x,y1,y2 be
object;
assume
A12: x
in (
dom e) &
P[x, y1] &
P[x, y2];
then (e
. x)
in R by
A3,
FUNCT_1: 3;
per cases by
XBOOLE_0:def 3;
suppose (e
. x)
in (
rng E1) & not (e
. x)
in (
rng E2);
hence y1
= y2 by
A12,
XBOOLE_0:def 5;
end;
suppose (e
. x)
in (
rng E2) & not (e
. x)
in (
rng E1);
hence y1
= y2 by
A12,
XBOOLE_0:def 5;
end;
suppose (e
. x)
in (
rng E1) & (e
. x)
in (
rng E2);
hence y1
= y2 by
A12,
XBOOLE_0:def 4;
end;
end;
A13: for x be
object st x
in (
dom e) holds ex y be
object st
P[x, y]
proof
let x be
object;
assume x
in (
dom e);
then (e
. x)
in R by
A3,
FUNCT_1: 3;
per cases by
XBOOLE_0:def 3;
suppose
A14: (e
. x)
in (
rng E1) & not (e
. x)
in (
rng E2);
take (L1
. ((E1
" )
. (e
. x)));
thus thesis by
A14,
XBOOLE_0:def 4;
end;
suppose
A15: (e
. x)
in (
rng E2) & not (e
. x)
in (
rng E1);
take (L2
. ((E2
" )
. (e
. x)));
thus thesis by
A15,
XBOOLE_0:def 4;
end;
suppose
A16: (e
. x)
in (
rng E1) & (e
. x)
in (
rng E2);
take ((L1
. ((E1
" )
. (e
. x)))
+ (L2
. ((E2
" )
. (e
. x))));
thus thesis by
A16,
XBOOLE_0:def 5;
end;
end;
consider f be
Function such that
A17: (
dom f)
= (
dom e) and
A18: for x be
object st x
in (
dom e) holds
P[x, (f
. x)] from
FUNCT_1:sch 2(
A11,
A13);
reconsider f as
Sequence by
A17,
ORDINAL1: 31;
now
let y be
object;
assume y
in (
rng f);
then
consider x be
object such that
A19: x
in (
dom f) & (f
. x)
= y by
FUNCT_1:def 3;
(e
. x)
in (
rng e) by
A17,
A19,
FUNCT_1: 3;
per cases by
A3,
XBOOLE_0:def 3;
suppose (e
. x)
in (
rng E1) & not (e
. x)
in (
rng E2);
then (e
. x)
in ((
rng E1)
\ (
rng E2)) by
XBOOLE_0:def 5;
then (f
. x)
= (L1
. ((E1
" )
. (e
. x))) by
A17,
A18,
A19;
hence y
in
NAT by
A19,
ORDINAL1:def 12;
end;
suppose (e
. x)
in (
rng E2) & not (e
. x)
in (
rng E1);
then (e
. x)
in ((
rng E2)
\ (
rng E1)) by
XBOOLE_0:def 5;
then (f
. x)
= (L2
. ((E2
" )
. (e
. x))) by
A17,
A18,
A19;
hence y
in
NAT by
A19,
ORDINAL1:def 12;
end;
suppose (e
. x)
in (
rng E1) & (e
. x)
in (
rng E2);
then (e
. x)
in ((
rng E1)
/\ (
rng E2)) by
XBOOLE_0:def 4;
then (f
. x)
= ((L1
. ((E1
" )
. (e
. x)))
+ (L2
. ((E2
" )
. (e
. x)))) by
A17,
A18,
A19;
hence y
in
NAT by
A19,
ORDINAL1:def 12;
end;
end;
then f is
natural-valued by
TARSKI:def 3,
VALUED_0:def 6;
then
reconsider f as
natural-valued
Ordinal-Sequence;
now
let x be
object;
assume
A20: x
in (
dom f);
A21: (e
. x)
in (
rng E1) implies ((E1
" )
. (e
. x))
in (
dom L1)
proof
assume (e
. x)
in (
rng E1);
then (e
. x)
in (
dom (E1
" )) by
FUNCT_1: 33;
then ((E1
" )
. (e
. x))
in (
rng (E1
" )) by
FUNCT_1: 3;
then ((E1
" )
. (e
. x))
in (
dom E1) by
FUNCT_1: 33;
then ((E1
" )
. (e
. x))
in (
dom (
CantorNF a)) by
Def1;
hence ((E1
" )
. (e
. x))
in (
dom L1) by
Def3;
end;
A22: (e
. x)
in (
rng E2) implies ((E2
" )
. (e
. x))
in (
dom L2)
proof
assume (e
. x)
in (
rng E2);
then (e
. x)
in (
dom (E2
" )) by
FUNCT_1: 33;
then ((E2
" )
. (e
. x))
in (
rng (E2
" )) by
FUNCT_1: 3;
then ((E2
" )
. (e
. x))
in (
dom E2) by
FUNCT_1: 33;
then ((E2
" )
. (e
. x))
in (
dom (
CantorNF b)) by
Def1;
hence ((E2
" )
. (e
. x))
in (
dom L2) by
Def3;
end;
(e
. x)
in (
rng e) by
A17,
A20,
FUNCT_1: 3;
per cases by
A3,
XBOOLE_0:def 3;
suppose
A23: (e
. x)
in (
rng E1) & not (e
. x)
in (
rng E2);
then (e
. x)
in ((
rng E1)
\ (
rng E2)) by
XBOOLE_0:def 5;
then (f
. x)
= (L1
. ((E1
" )
. (e
. x))) by
A17,
A18,
A20;
hence (f
. x) is non
empty by
A21,
A23,
FUNCT_1:def 9;
end;
suppose
A24: (e
. x)
in (
rng E2) & not (e
. x)
in (
rng E1);
then (e
. x)
in ((
rng E2)
\ (
rng E1)) by
XBOOLE_0:def 5;
then (f
. x)
= (L2
. ((E2
" )
. (e
. x))) by
A17,
A18,
A20;
hence (f
. x) is non
empty by
A22,
A24,
FUNCT_1:def 9;
end;
suppose
A25: (e
. x)
in (
rng E1) & (e
. x)
in (
rng E2);
then (e
. x)
in ((
rng E1)
/\ (
rng E2)) by
XBOOLE_0:def 4;
then
A26: (f
. x)
= ((L1
. ((E1
" )
. (e
. x)))
+ (L2
. ((E2
" )
. (e
. x)))) by
A17,
A18,
A20;
(L1
. ((E1
" )
. (e
. x)))
<>
{} & (L2
. ((E2
" )
. (e
. x)))
<>
{} by
A21,
A22,
A25,
FUNCT_1:def 9;
hence (f
. x) is non
empty by
A26;
end;
end;
then
reconsider f as
natural-valued
non-empty
Ordinal-Sequence by
FUNCT_1:def 9;
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A27: (
omega
-exponent C)
= e & (
omega
-leading_coeff C)
= f by
A17,
Th66;
take (
Sum^ C), C;
thus (
Sum^ C)
= (
Sum^ C);
thus (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) by
A3,
A27;
let d be
object;
assume
A28: d
in (
dom C);
hereby
assume (
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2));
then
A29: (e
. d)
in ((
rng E1)
\ (
rng E2)) by
A27,
A28,
Def1;
d
in (
dom (
omega
-exponent C)) by
A28,
Def1;
then (f
. d)
= (L1
. ((E1
" )
. (e
. d))) by
A18,
A27,
A29
.= (L1
. ((E1
" )
. (
omega
-exponent (C
. d)))) by
A27,
A28,
Def1;
hence (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d)))) by
A27,
A28,
Def3;
end;
hereby
assume (
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1));
then
A30: (e
. d)
in ((
rng E2)
\ (
rng E1)) by
A27,
A28,
Def1;
d
in (
dom (
omega
-exponent C)) by
A28,
Def1;
then (f
. d)
= (L2
. ((E2
" )
. (e
. d))) by
A18,
A27,
A30
.= (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))) by
A27,
A28,
Def1;
hence (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))) by
A27,
A28,
Def3;
end;
assume (
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2));
then
A31: (e
. d)
in ((
rng E1)
/\ (
rng E2)) by
A27,
A28,
Def1;
d
in (
dom (
omega
-exponent C)) by
A28,
Def1;
then (f
. d)
= ((L1
. ((E1
" )
. (e
. d)))
+ (L2
. ((E2
" )
. (e
. d)))) by
A18,
A27,
A31
.= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (e
. d)))) by
A27,
A28,
Def1
.= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) by
A27,
A28,
Def1;
hence (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) by
A27,
A28,
Def3;
end;
uniqueness
proof
let s1,s2 be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
assume that
A32: ex C be
Cantor-normal-form
Ordinal-Sequence st s1
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) & for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) and
A33: ex C be
Cantor-normal-form
Ordinal-Sequence st s2
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) & for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))));
consider C1 be
Cantor-normal-form
Ordinal-Sequence such that
A34: s1
= (
Sum^ C1) and
A35: (
rng (
omega
-exponent C1))
= ((
rng E1)
\/ (
rng E2)) and
A36: for d be
object st d
in (
dom C1) holds ((
omega
-exponent (C1
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C1
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C1
. d))))) & ((
omega
-exponent (C1
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C1
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C1
. d))))) & ((
omega
-exponent (C1
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C1
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C1
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C1
. d)))))) by
A32;
consider C2 be
Cantor-normal-form
Ordinal-Sequence such that
A37: s2
= (
Sum^ C2) and
A38: (
rng (
omega
-exponent C2))
= ((
rng E1)
\/ (
rng E2)) and
A39: for d be
object st d
in (
dom C2) holds ((
omega
-exponent (C2
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C2
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C2
. d))))) & ((
omega
-exponent (C2
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C2
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C2
. d))))) & ((
omega
-exponent (C2
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C2
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C2
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C2
. d)))))) by
A33;
A40: (
dom C1)
= (
card (
dom (
omega
-exponent C1))) by
Def1
.= (
card (
rng (
omega
-exponent C2))) by
A35,
A38,
CARD_1: 70
.= (
card (
dom (
omega
-exponent C2))) by
CARD_1: 70
.= (
dom C2) by
Def1;
for x be
object st x
in (
dom C1) holds (C1
. x)
= (C2
. x)
proof
let x be
object;
set e1 = (
omega
-exponent (C1
. x)), e2 = (
omega
-exponent (C2
. x));
assume
A41: x
in (
dom C1);
then
A42: e1
= ((
omega
-exponent C1)
. x) by
Def1
.= ((
omega
-exponent C2)
. x) by
A35,
A38,
Th34
.= e2 by
A40,
A41,
Def1;
x
in (
dom (
omega
-exponent C1)) by
A41,
Def1;
then ((
omega
-exponent C1)
. x)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then
A43: e1
in ((
rng E1)
\/ (
rng E2)) by
A35,
A41,
Def1;
A44: (
omega
-leading_coeff (C1
. x))
= (
omega
-leading_coeff (C2
. x))
proof
per cases by
A43,
XBOOLE_0:def 3;
suppose e1
in (
rng E1) & not e1
in (
rng E2);
then
A45: e1
in ((
rng E1)
\ (
rng E2)) by
XBOOLE_0:def 5;
hence (
omega
-leading_coeff (C1
. x))
= (L1
. ((E1
" )
. e2)) by
A36,
A41,
A42
.= (
omega
-leading_coeff (C2
. x)) by
A39,
A40,
A41,
A42,
A45;
end;
suppose e1
in (
rng E2) & not e1
in (
rng E1);
then
A46: e1
in ((
rng E2)
\ (
rng E1)) by
XBOOLE_0:def 5;
hence (
omega
-leading_coeff (C1
. x))
= (L2
. ((E2
" )
. e2)) by
A36,
A41,
A42
.= (
omega
-leading_coeff (C2
. x)) by
A39,
A40,
A41,
A42,
A46;
end;
suppose e1
in (
rng E1) & e1
in (
rng E2);
then
A47: e1
in ((
rng E1)
/\ (
rng E2)) by
XBOOLE_0:def 4;
hence (
omega
-leading_coeff (C1
. x))
= ((L1
. ((E1
" )
. e2))
+ (L2
. ((E2
" )
. e2))) by
A36,
A41,
A42
.= (
omega
-leading_coeff (C2
. x)) by
A39,
A40,
A41,
A42,
A47;
end;
end;
thus (C1
. x)
= ((
omega
-leading_coeff (C1
. x))
*^ (
exp (
omega ,e1))) by
A41,
Th64
.= (C2
. x) by
A40,
A41,
A42,
A44,
Th64;
end;
hence s1
= s2 by
A34,
A37,
A40,
FUNCT_1: 2;
end;
commutativity
proof
let s,a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
given C be
Cantor-normal-form
Ordinal-Sequence such that
A48: s
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A49: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))));
take C;
thus s
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E2)
\/ (
rng E1)) by
A48;
thus thesis by
A49;
end;
end
theorem ::
ORDINAL7:63
Th76: for a,b be
Ordinal holds (
rng (
omega
-exponent (
CantorNF (a
(+) b))))
= ((
rng (
omega
-exponent (
CantorNF a)))
\/ (
rng (
omega
-exponent (
CantorNF b))))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A1: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
thus thesis by
A1;
end;
theorem ::
ORDINAL7:64
Th77: for a,b be
Ordinal holds (
dom (
CantorNF a))
c= (
dom (
CantorNF (a
(+) b)))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set C0 = (
CantorNF (a
(+) b));
A1: (
dom (
CantorNF a))
= (
card (
dom E1)) by
Def1
.= (
card (
rng E1)) by
CARD_1: 70;
(
card (
rng E1))
c= (
card ((
rng E1)
\/ (
rng E2))) by
XBOOLE_1: 7,
CARD_1: 11;
then (
card (
rng E1))
c= (
card (
rng (
omega
-exponent C0))) by
Th76;
then (
dom (
CantorNF a))
c= (
card (
dom (
omega
-exponent C0))) by
A1,
CARD_1: 70;
hence (
dom (
CantorNF a))
c= (
dom C0) by
Def1;
end;
theorem ::
ORDINAL7:65
Th78: for a,b be
Ordinal, d be
object st d
in (
dom (
CantorNF (a
(+) b))) & (
omega
-exponent ((
CantorNF (a
(+) b))
. d))
in ((
rng (
omega
-exponent (
CantorNF a)))
\ (
rng (
omega
-exponent (
CantorNF b)))) holds (
omega
-leading_coeff ((
CantorNF (a
(+) b))
. d))
= ((
omega
-leading_coeff (
CantorNF a))
. (((
omega
-exponent (
CantorNF a))
" )
. (
omega
-exponent ((
CantorNF (a
(+) b))
. d))))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A1: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A2: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
let d be
object;
assume d
in (
dom (
CantorNF (a
(+) b))) & (
omega
-exponent ((
CantorNF (a
(+) b))
. d))
in ((
rng (
omega
-exponent (
CantorNF a)))
\ (
rng (
omega
-exponent (
CantorNF b))));
hence thesis by
A1,
A2;
end;
theorem ::
ORDINAL7:66
Th79: for a,b be
Ordinal, d be
object st d
in (
dom (
CantorNF (a
(+) b))) & (
omega
-exponent ((
CantorNF (a
(+) b))
. d))
in ((
rng (
omega
-exponent (
CantorNF b)))
\ (
rng (
omega
-exponent (
CantorNF a)))) holds (
omega
-leading_coeff ((
CantorNF (a
(+) b))
. d))
= ((
omega
-leading_coeff (
CantorNF b))
. (((
omega
-exponent (
CantorNF b))
" )
. (
omega
-exponent ((
CantorNF (a
(+) b))
. d)))) by
Th78;
theorem ::
ORDINAL7:67
Th80: for a,b be
Ordinal, d be
object st d
in (
dom (
CantorNF (a
(+) b))) & (
omega
-exponent ((
CantorNF (a
(+) b))
. d))
in ((
rng (
omega
-exponent (
CantorNF a)))
/\ (
rng (
omega
-exponent (
CantorNF b)))) holds (
omega
-leading_coeff ((
CantorNF (a
(+) b))
. d))
= (((
omega
-leading_coeff (
CantorNF a))
. (((
omega
-exponent (
CantorNF a))
" )
. (
omega
-exponent ((
CantorNF (a
(+) b))
. d))))
+ ((
omega
-leading_coeff (
CantorNF b))
. (((
omega
-exponent (
CantorNF b))
" )
. (
omega
-exponent ((
CantorNF (a
(+) b))
. d)))))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A1: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A2: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
let d be
object;
assume d
in (
dom (
CantorNF (a
(+) b))) & (
omega
-exponent ((
CantorNF (a
(+) b))
. d))
in ((
rng (
omega
-exponent (
CantorNF a)))
/\ (
rng (
omega
-exponent (
CantorNF b))));
hence thesis by
A1,
A2;
end;
theorem ::
ORDINAL7:68
Th81: for a,b,c be
Ordinal holds ((a
(+) b)
(+) c)
= (a
(+) (b
(+) c))
proof
let a,b,c be
Ordinal;
set s4 = (a
(+) b), s5 = (b
(+) c), s6 = (s4
(+) c), s7 = (a
(+) s5);
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set E3 = (
omega
-exponent (
CantorNF c)), E4 = (
omega
-exponent (
CantorNF s4));
set E5 = (
omega
-exponent (
CantorNF s5));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
set L3 = (
omega
-leading_coeff (
CantorNF c));
set L4 = (
omega
-leading_coeff (
CantorNF s4));
set L5 = (
omega
-leading_coeff (
CantorNF s5));
consider C4 be
Cantor-normal-form
Ordinal-Sequence such that
A1: s4
= (
Sum^ C4) & (
rng (
omega
-exponent C4))
= ((
rng E1)
\/ (
rng E2)) and
A2: for d be
object st d
in (
dom C4) holds ((
omega
-exponent (C4
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C4
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C4
. d))))) & ((
omega
-exponent (C4
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C4
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C4
. d))))) & ((
omega
-exponent (C4
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C4
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C4
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C4
. d)))))) by
Def5;
consider C5 be
Cantor-normal-form
Ordinal-Sequence such that
A3: s5
= (
Sum^ C5) & (
rng (
omega
-exponent C5))
= ((
rng E2)
\/ (
rng E3)) and
A4: for d be
object st d
in (
dom C5) holds ((
omega
-exponent (C5
. d))
in ((
rng E2)
\ (
rng E3)) implies (
omega
-leading_coeff (C5
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C5
. d))))) & ((
omega
-exponent (C5
. d))
in ((
rng E3)
\ (
rng E2)) implies (
omega
-leading_coeff (C5
. d))
= (L3
. ((E3
" )
. (
omega
-exponent (C5
. d))))) & ((
omega
-exponent (C5
. d))
in ((
rng E2)
/\ (
rng E3)) implies (
omega
-leading_coeff (C5
. d))
= ((L2
. ((E2
" )
. (
omega
-exponent (C5
. d))))
+ (L3
. ((E3
" )
. (
omega
-exponent (C5
. d)))))) by
Def5;
consider C6 be
Cantor-normal-form
Ordinal-Sequence such that
A5: s6
= (
Sum^ C6) & (
rng (
omega
-exponent C6))
= ((
rng E4)
\/ (
rng E3)) and
A6: for d be
object st d
in (
dom C6) holds ((
omega
-exponent (C6
. d))
in ((
rng E4)
\ (
rng E3)) implies (
omega
-leading_coeff (C6
. d))
= (L4
. ((E4
" )
. (
omega
-exponent (C6
. d))))) & ((
omega
-exponent (C6
. d))
in ((
rng E3)
\ (
rng E4)) implies (
omega
-leading_coeff (C6
. d))
= (L3
. ((E3
" )
. (
omega
-exponent (C6
. d))))) & ((
omega
-exponent (C6
. d))
in ((
rng E4)
/\ (
rng E3)) implies (
omega
-leading_coeff (C6
. d))
= ((L4
. ((E4
" )
. (
omega
-exponent (C6
. d))))
+ (L3
. ((E3
" )
. (
omega
-exponent (C6
. d)))))) by
Def5;
consider C7 be
Cantor-normal-form
Ordinal-Sequence such that
A7: s7
= (
Sum^ C7) & (
rng (
omega
-exponent C7))
= ((
rng E1)
\/ (
rng E5)) and
A8: for d be
object st d
in (
dom C7) holds ((
omega
-exponent (C7
. d))
in ((
rng E1)
\ (
rng E5)) implies (
omega
-leading_coeff (C7
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C7
. d))))) & ((
omega
-exponent (C7
. d))
in ((
rng E5)
\ (
rng E1)) implies (
omega
-leading_coeff (C7
. d))
= (L5
. ((E5
" )
. (
omega
-exponent (C7
. d))))) & ((
omega
-exponent (C7
. d))
in ((
rng E1)
/\ (
rng E5)) implies (
omega
-leading_coeff (C7
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C7
. d))))
+ (L5
. ((E5
" )
. (
omega
-exponent (C7
. d)))))) by
Def5;
A9: (
rng E4)
= ((
rng E1)
\/ (
rng E2)) by
A1;
A10: (
rng E5)
= ((
rng E2)
\/ (
rng E3)) by
A3;
A11: (
omega
-exponent C6)
= (
omega
-exponent C7) by
A1,
A3,
A5,
A7,
Th34,
XBOOLE_1: 4;
A12: (
dom C6)
= (
dom (
omega
-exponent C6)) by
Def1
.= (
dom C7) by
A11,
Def1;
for x be
object st x
in (
dom C6) holds (C6
. x)
= (C7
. x)
proof
let x be
object;
assume
A13: x
in (
dom C6);
then
A14: x
in (
dom (
omega
-exponent C6)) & x
in (
dom C7) by
A12,
Def1;
A15: (
rng E1)
c= (
rng E4) & (
rng E2)
c= (
rng E4) & (
rng E2)
c= (
rng E5) & (
rng E3)
c= (
rng E5) by
A1,
A3,
XBOOLE_1: 7;
set e = (
omega
-exponent (C6
. x));
set x1 = ((E4
" )
. (
omega
-exponent (C6
. x))), y1 = ((E3
" )
. (
omega
-exponent (C6
. x)));
set x2 = ((E1
" )
. (
omega
-exponent (C7
. x))), y2 = ((E5
" )
. (
omega
-exponent (C7
. x)));
A16: e
= ((
omega
-exponent C6)
. x) by
A13,
Def1;
then
A17: e
= (
omega
-exponent (C7
. x)) by
A11,
A14,
Def1;
A18: (
omega
-exponent (C6
. x))
in (
rng E4) implies x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x))
proof
assume
A19: (
omega
-exponent (C6
. x))
in (
rng E4);
then (
omega
-exponent (C6
. x))
in (
dom (E4
" )) by
FUNCT_1: 33;
then x1
in (
rng (E4
" )) by
FUNCT_1: 3;
then x1
in (
dom E4) by
FUNCT_1: 33;
hence x1
in (
dom C4) by
A1,
Def1;
hence (
omega
-exponent (C4
. x1))
= (E4
. x1) by
A1,
Def1
.= (
omega
-exponent (C6
. x)) by
A19,
FUNCT_1: 35;
end;
A20: (
omega
-exponent (C7
. x))
in (
rng E5) implies y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x))
proof
assume
A21: (
omega
-exponent (C7
. x))
in (
rng E5);
then (
omega
-exponent (C7
. x))
in (
dom (E5
" )) by
FUNCT_1: 33;
then y2
in (
rng (E5
" )) by
FUNCT_1: 3;
then y2
in (
dom E5) by
FUNCT_1: 33;
hence y2
in (
dom C5) by
A3,
Def1;
hence (
omega
-exponent (C5
. y2))
= (E5
. y2) by
A3,
Def1
.= (
omega
-exponent (C7
. x)) by
A21,
FUNCT_1: 35;
end;
e
in (
rng (
omega
-exponent C6)) by
A14,
A16,
FUNCT_1: 3;
then e
in ((
rng E1)
\/ (
rng E2)) or e
in (
rng E3) by
A1,
A5,
XBOOLE_0:def 3;
per cases by
XBOOLE_0:def 3;
suppose
A22: e
in (
rng E1) & e
in (
rng E2) & e
in (
rng E3);
then
A23: e
in ((
rng E1)
/\ (
rng E2)) & e
in ((
rng E2)
/\ (
rng E3)) by
XBOOLE_0:def 4;
A24: e
in (
rng E4) & e
in (
rng E5) by
A15,
A22;
then
A25: e
in ((
rng E4)
/\ (
rng E3)) & e
in ((
rng E1)
/\ (
rng E5)) by
A22,
XBOOLE_0:def 4;
A26: x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x)) by
A18,
A24;
then
A27: (L4
. x1)
= (
omega
-leading_coeff (C4
. x1)) by
A1,
Def3
.= ((L1
. ((E1
" )
. e))
+ (L2
. ((E2
" )
. e))) by
A2,
A23,
A26;
A28: y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x)) by
A17,
A20,
A24;
then
A29: (L5
. y2)
= (
omega
-leading_coeff (C5
. y2)) by
A3,
Def3
.= ((L2
. ((E2
" )
. (
omega
-exponent (C7
. x))))
+ (L3
. ((E3
" )
. (
omega
-exponent (C7
. x))))) by
A4,
A17,
A23,
A28;
(
omega
-leading_coeff (C6
. x))
= ((L4
. x1)
+ (L3
. y1)) by
A6,
A13,
A25
.= ((L1
. ((E1
" )
. e))
+ (L5
. y2)) by
A17,
A27,
A29
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A25;
hence (C6
. x)
= ((
omega
-leading_coeff (C7
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
Th64;
end;
suppose
A31: e
in (
rng E1) & e
in (
rng E2) & not e
in (
rng E3);
then
A32: e
in ((
rng E1)
/\ (
rng E2)) & e
in ((
rng E2)
\ (
rng E3)) by
XBOOLE_0:def 4,
XBOOLE_0:def 5;
A33: e
in (
rng E4) & e
in (
rng E5) by
A15,
A31;
then
A34: e
in ((
rng E4)
\ (
rng E3)) & e
in ((
rng E1)
/\ (
rng E5)) by
A31,
XBOOLE_0:def 4,
XBOOLE_0:def 5;
A35: x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x)) by
A18,
A33;
then
A36: (L4
. x1)
= (
omega
-leading_coeff (C4
. x1)) by
A1,
Def3
.= ((L1
. ((E1
" )
. e))
+ (L2
. ((E2
" )
. e))) by
A2,
A32,
A35;
A37: y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x)) by
A17,
A20,
A33;
then
A38: (L5
. y2)
= (
omega
-leading_coeff (C5
. y2)) by
A3,
Def3
.= (L2
. ((E2
" )
. (
omega
-exponent (C7
. x)))) by
A4,
A17,
A32,
A37;
(
omega
-leading_coeff (C6
. x))
= (L4
. x1) by
A6,
A13,
A34
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A34,
A36,
A38;
hence (C6
. x)
= ((
omega
-leading_coeff (C7
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
Th64;
end;
suppose
A40: e
in (
rng E1) & not e
in (
rng E2) & e
in (
rng E3);
then
A41: e
in ((
rng E1)
\ (
rng E2)) & e
in ((
rng E3)
\ (
rng E2)) by
XBOOLE_0:def 5;
A42: e
in (
rng E4) & e
in (
rng E5) by
A15,
A40;
then
A43: e
in ((
rng E4)
/\ (
rng E3)) & e
in ((
rng E1)
/\ (
rng E5)) by
A40,
XBOOLE_0:def 4;
A44: x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x)) by
A18,
A42;
then
A45: (L4
. x1)
= (
omega
-leading_coeff (C4
. x1)) by
A1,
Def3
.= (L1
. ((E1
" )
. e)) by
A2,
A41,
A44;
A46: y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x)) by
A17,
A20,
A42;
then
A47: (L5
. y2)
= (
omega
-leading_coeff (C5
. y2)) by
A3,
Def3
.= (L3
. ((E3
" )
. (
omega
-exponent (C7
. x)))) by
A4,
A17,
A41,
A46;
(
omega
-leading_coeff (C6
. x))
= ((L4
. x1)
+ (L3
. y1)) by
A6,
A13,
A43
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A43,
A45,
A47;
hence (C6
. x)
= ((
omega
-leading_coeff (C7
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
Th64;
end;
suppose
A49: not e
in (
rng E1) & e
in (
rng E2) & e
in (
rng E3);
then
A50: e
in ((
rng E2)
\ (
rng E1)) & e
in ((
rng E2)
/\ (
rng E3)) by
XBOOLE_0:def 4,
XBOOLE_0:def 5;
A51: e
in (
rng E4) & e
in (
rng E5) by
A15,
A49;
then
A52: e
in ((
rng E4)
/\ (
rng E3)) & e
in ((
rng E5)
\ (
rng E1)) by
A49,
XBOOLE_0:def 4,
XBOOLE_0:def 5;
A53: x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x)) by
A18,
A51;
then
A54: (L4
. x1)
= (
omega
-leading_coeff (C4
. x1)) by
A1,
Def3
.= (L2
. ((E2
" )
. e)) by
A2,
A50,
A53;
A55: y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x)) by
A17,
A20,
A51;
then
A56: (L5
. y2)
= (
omega
-leading_coeff (C5
. y2)) by
A3,
Def3
.= ((L2
. ((E2
" )
. (
omega
-exponent (C7
. x))))
+ (L3
. ((E3
" )
. (
omega
-exponent (C7
. x))))) by
A4,
A17,
A50,
A55;
A57: (
omega
-leading_coeff (C6
. x))
= ((L2
. ((E2
" )
. e))
+ (L3
. y1)) by
A6,
A13,
A52,
A54
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A52,
A56;
thus (C6
. x)
= ((
omega
-leading_coeff (C6
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
A57,
Th64;
end;
suppose
A58: e
in (
rng E1) & not e
in (
rng E2) & not e
in (
rng E3);
then
A59: e
in ((
rng E1)
\ (
rng E2)) & not e
in ((
rng E2)
\/ (
rng E3)) by
XBOOLE_0:def 3,
XBOOLE_0:def 5;
then
A60: e
in (
rng E4) & not e
in (
rng E5) by
A10,
A15,
TARSKI:def 3;
then
A61: e
in ((
rng E4)
\ (
rng E3)) & e
in ((
rng E1)
\ (
rng E5)) by
A58,
XBOOLE_0:def 5;
A62: x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x)) by
A18,
A60;
then
A63: (L4
. x1)
= (
omega
-leading_coeff (C4
. x1)) by
A1,
Def3
.= (L1
. ((E1
" )
. e)) by
A2,
A59,
A62;
(
omega
-leading_coeff (C6
. x))
= (L4
. x1) by
A6,
A13,
A61
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A61,
A63;
hence (C6
. x)
= ((
omega
-leading_coeff (C7
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
Th64;
end;
suppose
A65: not e
in (
rng E1) & e
in (
rng E2) & not e
in (
rng E3);
then
A66: e
in ((
rng E2)
\ (
rng E1)) & e
in ((
rng E2)
\ (
rng E3)) by
XBOOLE_0:def 5;
A67: e
in (
rng E4) & e
in (
rng E5) by
A15,
A65;
then
A68: e
in ((
rng E4)
\ (
rng E3)) & e
in ((
rng E5)
\ (
rng E1)) by
A65,
XBOOLE_0:def 5;
A69: x1
in (
dom C4) & (
omega
-exponent (C4
. x1))
= (
omega
-exponent (C6
. x)) by
A18,
A67;
then
A70: (L4
. x1)
= (
omega
-leading_coeff (C4
. x1)) by
A1,
Def3
.= (L2
. ((E2
" )
. e)) by
A2,
A66,
A69;
A71: y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x)) by
A17,
A20,
A67;
then
A72: (L5
. y2)
= (
omega
-leading_coeff (C5
. y2)) by
A3,
Def3
.= (L2
. ((E2
" )
. (
omega
-exponent (C7
. x)))) by
A4,
A17,
A66,
A71;
(
omega
-leading_coeff (C6
. x))
= (L2
. ((E2
" )
. e)) by
A6,
A13,
A68,
A70
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A68,
A72;
hence (C6
. x)
= ((
omega
-leading_coeff (C7
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
Th64;
end;
suppose
A74: not e
in (
rng E1) & not e
in (
rng E2) & e
in (
rng E3);
then
A75: not e
in ((
rng E1)
\/ (
rng E2)) & e
in ((
rng E3)
\ (
rng E2)) by
XBOOLE_0:def 3,
XBOOLE_0:def 5;
then
A76: not e
in (
rng E4) & e
in (
rng E5) by
A9,
A15,
TARSKI:def 3;
then
A77: e
in ((
rng E3)
\ (
rng E4)) & e
in ((
rng E5)
\ (
rng E1)) by
A74,
XBOOLE_0:def 5;
A78: y2
in (
dom C5) & (
omega
-exponent (C5
. y2))
= (
omega
-exponent (C7
. x)) by
A17,
A20,
A76;
then
A79: (L5
. y2)
= (
omega
-leading_coeff (C5
. y2)) by
A3,
Def3
.= (L3
. ((E3
" )
. (
omega
-exponent (C7
. x)))) by
A4,
A17,
A75,
A78;
(
omega
-leading_coeff (C6
. x))
= (L3
. y1) by
A6,
A13,
A77
.= (
omega
-leading_coeff (C7
. x)) by
A8,
A14,
A17,
A77,
A79;
hence (C6
. x)
= ((
omega
-leading_coeff (C7
. x))
*^ (
exp (
omega ,e))) by
A13,
Th64
.= (C7
. x) by
A14,
A17,
Th64;
end;
end;
hence thesis by
A5,
A7,
A12,
FUNCT_1: 2;
end;
theorem ::
ORDINAL7:69
Th82: for a be
Ordinal holds (a
(+)
0 )
= a
proof
let a be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF
0 ));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF
0 ));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A1: (a
(+)
0 )
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A2: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
A3: (
rng E2) is
empty;
then
A4: (
rng (
omega
-exponent C))
= (
rng E1) by
A1;
A5: (
dom C)
= (
card (
dom (
omega
-exponent C))) by
Def1
.= (
card (
rng (
omega
-exponent C))) by
CARD_1: 70
.= (
card (
dom E1)) by
A4,
CARD_1: 70
.= (
dom (
CantorNF a)) by
Def1;
for x be
object st x
in (
dom C) holds (C
. x)
= ((
CantorNF a)
. x)
proof
let x be
object;
A6: (
omega
-exponent C)
= E1 by
A4,
Th34;
assume
A7: x
in (
dom C);
then
A8: x
in (
dom (
omega
-exponent C)) by
Def1;
then ((
omega
-exponent C)
. x)
in (
rng E1) by
A4,
FUNCT_1: 3;
then (
omega
-exponent (C
. x))
in ((
rng E1)
\ (
rng E2)) by
A3,
A7,
Def1;
then
A9: (
omega
-leading_coeff (C
. x))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. x)))) by
A2,
A7
.= (L1
. ((E1
" )
. ((
omega
-exponent C)
. x))) by
A7,
Def1
.= (L1
. x) by
A6,
A8,
FUNCT_1: 34;
A10: x
in (
dom (
CantorNF a)) by
A6,
A8,
Def1;
thus (C
. x)
= ((L1
. x)
*^ (
exp (
omega ,(
omega
-exponent (C
. x))))) by
A7,
A9,
Th64
.= ((L1
. x)
*^ (
exp (
omega ,(E1
. x)))) by
A6,
A7,
Def1
.= ((L1
. x)
*^ (
exp (
omega ,(
omega
-exponent ((
CantorNF a)
. x))))) by
A10,
Def1
.= ((
omega
-leading_coeff ((
CantorNF a)
. x))
*^ (
exp (
omega ,(
omega
-exponent ((
CantorNF a)
. x))))) by
A10,
Def3
.= ((
CantorNF a)
. x) by
A10,
Th64;
end;
then C
= (
CantorNF a) by
A5,
FUNCT_1: 2;
hence thesis by
A1;
end;
theorem ::
ORDINAL7:70
Th83: for a,b be
Ordinal, n be
Nat st (
omega
-exponent a)
c= b holds ((n
*^ (
exp (
omega ,b)))
(+) a)
= ((n
*^ (
exp (
omega ,b)))
+^ a)
proof
let a,b be
Ordinal, n be
Nat;
set E1 = (
omega
-exponent (
CantorNF (n
*^ (
exp (
omega ,b)))));
set E2 = (
omega
-exponent (
CantorNF a));
set L1 = (
omega
-leading_coeff (
CantorNF (n
*^ (
exp (
omega ,b)))));
set L2 = (
omega
-leading_coeff (
CantorNF a));
assume (
omega
-exponent a)
c= b;
then (
omega
-exponent (
Sum^ (
CantorNF a)))
c= b;
then
A1: (
omega
-exponent ((
CantorNF a)
.
0 ))
c= b by
Th44;
A2: (E2
.
0 )
c= b
proof
per cases ;
suppose
0
in (
dom (
CantorNF a));
hence thesis by
A1,
Def1;
end;
suppose not
0
in (
dom (
CantorNF a));
then not
0
in (
dom E2) by
Def1;
then (E2
.
0 )
=
{} by
FUNCT_1:def 2;
hence thesis;
end;
end;
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A3: ((n
*^ (
exp (
omega ,b)))
(+) a)
= (
Sum^ C) and
A4: (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A5: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
per cases ;
suppose
A6: a
=
0 ;
hence ((n
*^ (
exp (
omega ,b)))
(+) a)
= (n
*^ (
exp (
omega ,b))) by
Th82
.= ((n
*^ (
exp (
omega ,b)))
+^ a) by
A6,
ORDINAL2: 27;
end;
suppose
A7: n is
zero;
hence ((n
*^ (
exp (
omega ,b)))
(+) a)
= (
0
(+) a) by
ORDINAL2: 35
.= a by
Th82
.= (
0
+^ a) by
ORDINAL2: 30
.= ((n
*^ (
exp (
omega ,b)))
+^ a) by
A7,
ORDINAL2: 35;
end;
suppose
A8: n is non
zero & a
<>
0 & (E2
.
0 )
= b;
then
consider a0 be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A9: (
CantorNF a)
= (
<%a0%>
^ A0) by
ORDINAL5: 67;
0
c< n by
A8,
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A10:
0
in n & n
in
omega by
ORDINAL1: 11,
ORDINAL1:def 12;
A11: E1
= (
omega
-exponent
<%(n
*^ (
exp (
omega ,b)))%>) by
A8,
Th69
.=
<%(
omega
-exponent (n
*^ (
exp (
omega ,b))))%> by
Th46
.=
<%b%> by
A10,
ORDINAL5: 58;
then
A12: (
rng E1)
=
{b} by
AFINSQ_1: 33;
0
c< (
dom (
CantorNF a)) by
A8,
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A13:
0
in (
dom (
CantorNF a)) by
ORDINAL1: 11;
then
A14:
0
in (
dom E2) by
Def1;
then (
rng E1)
c= (
rng E2) by
A8,
A12,
FUNCT_1: 3,
ZFMISC_1: 31;
then
A15: (
omega
-exponent C)
= E2 by
A4,
Th34,
XBOOLE_1: 12;
A16: (
dom C)
= (
card (
dom (
omega
-exponent C))) by
Def1
.= (
len (
<%a0%>
^ A0)) by
A15,
A9,
Def1
.= ((
len
<%a0%>)
+ (
len A0)) by
AFINSQ_1: 17
.= (1
+ (
len A0)) by
AFINSQ_1: 34
.= ((
len
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>)
+ (
len A0)) by
AFINSQ_1: 34
.= (
dom (
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>
^ A0)) by
AFINSQ_1: 17;
for x be
object st x
in (
dom C) holds (C
. x)
= ((
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>
^ A0)
. x)
proof
let x be
object;
assume
A17: x
in (
dom C);
A18: (
dom C)
= (
dom E2) by
Def1,
A15;
per cases ;
suppose
A19: (
omega
-exponent (C
. x))
= b;
then b
= (E2
. x) by
A15,
A17,
Def1;
then
A20: x
=
0 by
A8,
A14,
A17,
A18,
FUNCT_1:def 4;
A21: (
omega
-exponent (C
. x))
in (
rng E2) by
A8,
A14,
A19,
FUNCT_1: 3;
(
omega
-exponent (C
. x))
in (
rng E1) by
A12,
A19,
TARSKI:def 1;
then
A22: (
omega
-exponent (C
. x))
in ((
rng E1)
/\ (
rng E2)) by
A21,
XBOOLE_0:def 4;
A23: (E1
.
0 )
= b by
A11;
(
dom E1)
= 1 by
A11,
AFINSQ_1: 34;
then
A24:
0
in (
dom E1) by
CARD_1: 49,
TARSKI:def 1;
A25: (
omega
-leading_coeff (C
. x))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. x))))
+ (L2
. ((E2
" )
. b))) by
A5,
A17,
A19,
A22
.= ((L1
.
0 )
+ (L2
. ((E2
" )
. b))) by
A19,
A23,
A24,
FUNCT_1: 34
.= ((L1
.
0 )
+ (L2
.
0 )) by
A8,
A14,
FUNCT_1: 34
.= ((L1
.
0 )
+^ (L2
.
0 )) by
CARD_2: 36;
A26: (L1
.
0 )
= ((
omega
-leading_coeff
<%(n
*^ (
exp (
omega ,b)))%>)
.
0 ) by
A8,
Th69
.= (
<%(
omega
-leading_coeff (n
*^ (
exp (
omega ,b))))%>
.
0 ) by
Th60
.= n by
Th57,
ORDINAL1:def 12;
thus (C
. x)
= (((L1
.
0 )
+^ (L2
.
0 ))
*^ (
exp (
omega ,(
omega
-exponent (C
. x))))) by
A17,
A25,
Th64
.= (((L1
.
0 )
*^ (
exp (
omega ,b)))
+^ ((L2
.
0 )
*^ (
exp (
omega ,(E2
.
0 ))))) by
A8,
A19,
ORDINAL3: 46
.= ((n
*^ (
exp (
omega ,b)))
+^ ((
CantorNF a)
.
0 )) by
A13,
A26,
Th65
.= ((n
*^ (
exp (
omega ,b)))
+^ a0) by
A9,
AFINSQ_1: 35
.= ((
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>
^ A0)
. x) by
A20,
AFINSQ_1: 35;
end;
suppose
A27: (
omega
-exponent (C
. x))
<> b;
then
A28: not (
omega
-exponent (C
. x))
in (
rng E1) by
A12,
TARSKI:def 1;
x
in (
dom (
omega
-exponent C)) by
A17,
Def1;
then ((
omega
-exponent C)
. x)
in (
rng (
omega
-exponent C)) by
FUNCT_1: 3;
then (
omega
-exponent (C
. x))
in ((
rng E1)
\/ (
rng E2)) by
A4,
A17,
Def1;
then (
omega
-exponent (C
. x))
in (
rng E1) or (
omega
-exponent (C
. x))
in (
rng E2) by
XBOOLE_0:def 3;
then (
omega
-exponent (C
. x))
in ((
rng E2)
\ (
rng E1)) by
A28,
XBOOLE_0:def 5;
then
A29: (
omega
-leading_coeff (C
. x))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. x)))) by
A5,
A17
.= (L2
. ((E2
" )
. ((
omega
-exponent C)
. x))) by
A17,
Def1
.= (L2
. x) by
A15,
A17,
A18,
FUNCT_1: 34;
((
omega
-exponent C)
. x)
<> b by
A17,
A27,
Def1;
then not x
in 1 by
A8,
A15,
CARD_1: 49,
TARSKI:def 1;
then not x
in (
len
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>) by
AFINSQ_1: 34;
then
consider m be
Nat such that
A30: m
in (
dom A0) & x
= ((
len
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>)
+ m) by
A16,
A17,
AFINSQ_1: 20;
A31: x
= (1
+ m) by
A30,
AFINSQ_1: 34
.= ((
len
<%a0%>)
+ m) by
AFINSQ_1: 34;
A32: x
in (
dom (
CantorNF a)) by
A17,
A18,
Def1;
thus (C
. x)
= ((L2
. x)
*^ (
exp (
omega ,(
omega
-exponent (C
. x))))) by
A17,
A29,
Th64
.= ((L2
. x)
*^ (
exp (
omega ,((
omega
-exponent C)
. x)))) by
A17,
Def1
.= ((
CantorNF a)
. x) by
A15,
A32,
Th65
.= (A0
. m) by
A9,
A30,
A31,
AFINSQ_1:def 3
.= ((
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>
^ A0)
. x) by
A30,
AFINSQ_1:def 3;
end;
end;
then C
= (
<%((n
*^ (
exp (
omega ,b)))
+^ a0)%>
^ A0) by
A16,
FUNCT_1: 2;
hence ((n
*^ (
exp (
omega ,b)))
(+) a)
= (((n
*^ (
exp (
omega ,b)))
+^ a0)
+^ (
Sum^ A0)) by
A3,
ORDINAL5: 55
.= ((n
*^ (
exp (
omega ,b)))
+^ (a0
+^ (
Sum^ A0))) by
ORDINAL3: 30
.= ((n
*^ (
exp (
omega ,b)))
+^ (
Sum^ (
<%a0%>
^ A0))) by
ORDINAL5: 55
.= ((n
*^ (
exp (
omega ,b)))
+^ a) by
A9;
end;
suppose
A33: n is non
zero & a
<>
0 & (E2
.
0 )
<> b;
then
A34: (E2
.
0 )
in b by
A2,
XBOOLE_0:def 8,
ORDINAL1: 11;
0
c< n by
A33,
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A35:
0
in n & n
in
omega by
ORDINAL1: 11,
ORDINAL1:def 12;
A36: E1
= (
omega
-exponent
<%(n
*^ (
exp (
omega ,b)))%>) by
A33,
Th69
.=
<%(
omega
-exponent (n
*^ (
exp (
omega ,b))))%> by
Th46
.=
<%b%> by
A35,
ORDINAL5: 58;
then
A37: (
rng E1)
=
{b} by
AFINSQ_1: 33;
((
rng E1)
/\ (
rng E2))
=
{}
proof
assume ((
rng E1)
/\ (
rng E2))
<>
{} ;
then
consider y be
object such that
A38: y
in ((
rng E1)
/\ (
rng E2)) by
XBOOLE_0:def 1;
A39: y
in (
rng E1) & y
in (
rng E2) by
A38,
XBOOLE_0:def 4;
then y
= b by
A37,
TARSKI:def 1;
then
consider x be
object such that
A40: x
in (
dom E2) & (E2
. x)
= b by
A39,
FUNCT_1:def 3;
reconsider x as
Ordinal by
A40;
x
<>
0 by
A34,
A40;
then
0
c< x by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A41:
0
in x by
ORDINAL1: 11;
A42: x
in (
dom (
CantorNF a)) by
A40,
Def1;
then (
omega
-exponent ((
CantorNF a)
. x))
in (
omega
-exponent ((
CantorNF a)
.
0 )) by
A41,
ORDINAL5:def 11;
then b
in (
omega
-exponent ((
CantorNF a)
.
0 )) by
A40,
A42,
Def1;
hence contradiction by
A34,
A41,
A42,
Def1,
ORDINAL1: 10;
end;
then
A43: (
rng E1)
misses (
rng E2) by
XBOOLE_0:def 7;
A44: (
dom C)
= (
card (
dom (
omega
-exponent C))) by
Def1
.= (
card (
rng (
omega
-exponent C))) by
CARD_1: 70
.= ((
card (
rng E1))
+` (
card (
rng E2))) by
A4,
A43,
CARD_2: 35
.= ((
card (
dom E1))
+` (
card (
rng E2))) by
CARD_1: 70
.= ((
dom E1)
+` (
card (
dom E2))) by
CARD_1: 70
.= ((
len E1)
+ (
dom (
CantorNF a))) by
Def1
.= (1
+ (
dom (
CantorNF a))) by
A36,
AFINSQ_1: 34
.= ((
len
<%(n
*^ (
exp (
omega ,b)))%>)
+ (
len (
CantorNF a))) by
AFINSQ_1: 34
.= (
dom (
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a))) by
AFINSQ_1: 17;
for x be
object st x
in (
dom C) holds (C
. x)
= ((
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a))
. x)
proof
let x be
object;
assume
A45: x
in (
dom C);
for c,d be
Ordinal st c
in d & d
in (
dom (E1
^ E2)) holds ((E1
^ E2)
. d)
in ((E1
^ E2)
. c)
proof
let c,d be
Ordinal;
assume
A46: c
in d & d
in (
dom (E1
^ E2));
then
A47: c
in (
dom (E1
^ E2)) by
ORDINAL1: 10;
then
reconsider m1 = c, m2 = d as
Nat by
A46;
per cases by
A47,
AFINSQ_1: 20;
suppose
A48: m1
in (
dom E1);
then m1
in 1 by
A36,
AFINSQ_1: 34;
then
A49: m1
=
0 by
CARD_1: 49,
TARSKI:def 1;
A50: ((E1
^ E2)
. m1)
= (E1
. m1) by
A48,
AFINSQ_1:def 3
.= b by
A36,
A49;
not m2
in (
dom E1)
proof
assume m2
in (
dom E1);
then m2
in 1 by
A36,
AFINSQ_1: 34;
hence contradiction by
A46,
CARD_1: 49,
TARSKI:def 1;
end;
then
consider k2 be
Nat such that
A51: k2
in (
dom E2) & m2
= ((
len E1)
+ k2) by
A46,
AFINSQ_1: 20;
A52: ((E1
^ E2)
. m2)
= (E2
. k2) by
A51,
AFINSQ_1:def 3;
per cases ;
suppose k2
=
0 ;
hence thesis by
A34,
A50,
A52;
end;
suppose k2
<>
0 ;
then
0
c< k2 by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in k2 by
ORDINAL1: 11;
then (E2
. k2)
in (E2
.
0 ) by
A51,
ORDINAL5:def 1;
hence thesis by
A34,
A50,
A52,
ORDINAL1: 10;
end;
end;
suppose ex k1 be
Nat st k1
in (
dom E2) & m1
= ((
len E1)
+ k1);
then
consider k1 be
Nat such that
A53: k1
in (
dom E2) & m1
= ((
len E1)
+ k1);
A54: ((E1
^ E2)
. m1)
= (E2
. k1) by
A53,
AFINSQ_1:def 3;
not m2
in (
dom E1)
proof
assume m2
in (
dom E1);
then
A55: m2
in 1 by
A36,
AFINSQ_1: 34;
per cases ;
suppose k1
=
0 ;
hence contradiction by
A46,
A36,
A53,
A55,
AFINSQ_1: 34;
end;
suppose k1
<>
0 ;
then (
len E1)
< ((
len E1)
+ k1) by
NAT_1: 16;
then 1
< m1 by
A36,
A53,
AFINSQ_1: 34;
then 1
in (
Segm m1) by
NAT_1: 44;
hence contradiction by
A46,
A55,
ORDINAL1: 10;
end;
end;
then
consider k2 be
Nat such that
A56: k2
in (
dom E2) & m2
= ((
len E1)
+ k2) by
A46,
AFINSQ_1: 20;
A57: ((E1
^ E2)
. m2)
= (E2
. k2) by
A56,
AFINSQ_1:def 3;
m1
in (
Segm m2) by
A46;
then (((
len E1)
+ k1)
- (
len E1))
< (((
len E1)
+ k2)
- (
len E1)) by
A53,
A56,
NAT_1: 44,
XREAL_1: 14;
then k1
in (
Segm k2) by
NAT_1: 44;
hence thesis by
A54,
A56,
A57,
ORDINAL5:def 1;
end;
end;
then
A58: (E1
^ E2) is
decreasing by
ORDINAL5:def 1;
(
rng (E1
^ E2))
= (
rng (
omega
-exponent C)) by
A4,
AFINSQ_1: 26;
then
A59: (
omega
-exponent C)
= (E1
^ E2) by
A58,
Th34;
per cases ;
suppose
A60: x
=
0 ;
A61: (
omega
-exponent (C
. x))
= ((
omega
-exponent C)
. x) by
A45,
Def1
.= b by
A36,
A59,
A60,
AFINSQ_1: 35;
then (
omega
-exponent (C
. x))
in (
rng E1) by
A37,
TARSKI:def 1;
then
A62: (
omega
-exponent (C
. x))
in ((
rng E1)
\ (
rng E2)) by
A43,
XBOOLE_1: 83;
A63: (E1
.
0 )
= b by
A36;
(
dom E1)
= 1 by
A36,
AFINSQ_1: 34;
then
A64:
0
in (
dom E1) by
CARD_1: 49,
TARSKI:def 1;
(
omega
-leading_coeff (C
. x))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. x)))) by
A5,
A45,
A62
.= (L1
.
0 ) by
A61,
A63,
A64,
FUNCT_1: 34
.= ((
omega
-leading_coeff
<%(n
*^ (
exp (
omega ,b)))%>)
.
0 ) by
A33,
Th69
.= (
<%(
omega
-leading_coeff (n
*^ (
exp (
omega ,b))))%>
.
0 ) by
Th60
.= n by
Th57,
ORDINAL1:def 12;
hence (C
. x)
= (n
*^ (
exp (
omega ,b))) by
A45,
A61,
Th64
.= ((
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a))
. x) by
A60,
AFINSQ_1: 35;
end;
suppose
A66: x
<>
0 ;
then not x
in 1 by
CARD_1: 49,
TARSKI:def 1;
then
A67: not x
in (
len E1) by
A36,
AFINSQ_1: 34;
A68: x
in (
dom (
omega
-exponent C)) by
A45,
Def1;
then
consider k be
Nat such that
A69: k
in (
dom E2) & x
= ((
len E1)
+ k) by
A59,
A67,
AFINSQ_1: 20;
(
omega
-exponent (C
. x))
<> b
proof
0
in 1 by
CARD_1: 49,
TARSKI:def 1;
then
A70:
0
in (
dom E1) by
A36,
AFINSQ_1: 34;
assume (
omega
-exponent (C
. x))
= b;
then
A71: ((
omega
-exponent C)
. x)
= (E1
.
0 ) by
A36,
A45,
Def1
.= ((
omega
-exponent C)
.
0 ) by
A59,
A70,
AFINSQ_1:def 3;
0
in (
dom (
omega
-exponent C)) by
A59,
A70,
TARSKI:def 3,
AFINSQ_1: 21;
hence contradiction by
A66,
A68,
A71,
FUNCT_1:def 4;
end;
then
A72: not (
omega
-exponent (C
. x))
in (
rng E1) by
A37,
TARSKI:def 1;
A73: k
in (
dom (
CantorNF a)) by
A69,
Def1;
A74: x
= (1
+ k) by
A36,
A69,
AFINSQ_1: 34
.= ((
len
<%(n
*^ (
exp (
omega ,b)))%>)
+ k) by
AFINSQ_1: 34;
x
in (
dom (
omega
-exponent C)) by
A45,
Def1;
then ((
omega
-exponent C)
. x)
in (
rng (
omega
-exponent C)) by
FUNCT_1: 3;
then (
omega
-exponent (C
. x))
in ((
rng E1)
\/ (
rng E2)) by
A4,
A45,
Def1;
then (
omega
-exponent (C
. x))
in (
rng E2) by
A72,
XBOOLE_0:def 3;
then (
omega
-exponent (C
. x))
in ((
rng E2)
\ (
rng E1)) by
A72,
XBOOLE_0:def 5;
then (
omega
-leading_coeff (C
. x))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. x)))) by
A5,
A45
.= (L2
. ((E2
" )
. ((
omega
-exponent C)
. x))) by
A45,
Def1
.= (L2
. ((E2
" )
. (E2
. k))) by
A59,
A69,
AFINSQ_1:def 3
.= (L2
. k) by
A69,
FUNCT_1: 34;
hence (C
. x)
= ((L2
. k)
*^ (
exp (
omega ,(
omega
-exponent (C
. x))))) by
A45,
Th64
.= ((L2
. k)
*^ (
exp (
omega ,((
omega
-exponent C)
. x)))) by
A45,
Def1
.= ((L2
. k)
*^ (
exp (
omega ,(E2
. k)))) by
A59,
A69,
AFINSQ_1:def 3
.= ((
CantorNF a)
. k) by
A73,
Th65
.= ((
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a))
. x) by
A73,
A74,
AFINSQ_1:def 3;
end;
end;
hence ((n
*^ (
exp (
omega ,b)))
(+) a)
= (
Sum^ (
<%(n
*^ (
exp (
omega ,b)))%>
^ (
CantorNF a))) by
A3,
A44,
FUNCT_1: 2
.= ((n
*^ (
exp (
omega ,b)))
+^ (
Sum^ (
CantorNF a))) by
ORDINAL5: 55
.= ((n
*^ (
exp (
omega ,b)))
+^ a);
end;
end;
theorem ::
ORDINAL7:71
Th84: for A,B be
finite
Ordinal-Sequence st (A
^ B) is
Cantor-normal-form holds ((
Sum^ A)
(+) (
Sum^ B))
= ((
Sum^ A)
+^ (
Sum^ B))
proof
defpred
P[
Nat] means for A,B be
finite
Ordinal-Sequence st (
len A)
= $1 & (A
^ B) is
Cantor-normal-form holds ((
Sum^ A)
(+) (
Sum^ B))
= ((
Sum^ A)
+^ (
Sum^ B));
A1:
P[
0 ]
proof
let A,B be
finite
Ordinal-Sequence;
assume (
len A)
=
0 & (A
^ B) is
Cantor-normal-form;
then A is
empty;
then
A2: (
Sum^ A)
=
0 by
ORDINAL5: 52;
hence ((
Sum^ A)
(+) (
Sum^ B))
= (
Sum^ B) by
Th82
.= ((
Sum^ A)
+^ (
Sum^ B)) by
A2,
ORDINAL2: 30;
end;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
P[n];
let A,B be
finite
Ordinal-Sequence;
assume
A5: (
len A)
= (n
+ 1) & (A
^ B) is
Cantor-normal-form;
then
A6: A
<>
{} & A is
Cantor-normal-form by
ORDINAL5: 66;
then
consider a0 be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A7: A
= (
<%a0%>
^ A0) by
ORDINAL5: 67;
A8: (
<%a0%>
^ (A0
^ B)) is
Cantor-normal-form by
A5,
A7,
AFINSQ_1: 27;
then
A9: (A0
^ B) is
Cantor-normal-form by
ORDINAL5: 66;
(n
+ 1)
= ((
len
<%a0%>)
+ (
len A0)) by
A5,
A7,
AFINSQ_1: 17
.= (1
+ (
len A0)) by
AFINSQ_1: 34;
then
A10: ((
Sum^ A0)
(+) (
Sum^ B))
= ((
Sum^ A0)
+^ (
Sum^ B)) by
A4,
A9;
consider b be
Ordinal, m be
Nat such that
A11:
0
in (
Segm m) & a0
= (m
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
reconsider m as non
zero
Nat by
A11;
0
in m & m
in
omega by
A11,
ORDINAL1:def 12;
then
A12: (
omega
-exponent a0)
= b by
A11,
ORDINAL5: 58;
A13: (
omega
-exponent (
Sum^ A0))
c= b
proof
per cases ;
suppose
A14:
0
in (
Sum^ A0);
(
Sum^ A0)
in (
exp (
omega ,(
omega
-exponent a0))) by
A6,
A7,
Th43;
hence thesis by
A12,
A14,
Th23,
ORDINAL1:def 2;
end;
suppose not
0
in (
Sum^ A0);
then (
omega
-exponent (
Sum^ A0))
=
0 by
ORDINAL5:def 10;
hence thesis;
end;
end;
A15: (
omega
-exponent ((
Sum^ A0)
(+) (
Sum^ B)))
c= b
proof
A16: ((
Sum^ A0)
(+) (
Sum^ B))
= (
Sum^ (A0
^ B)) by
A10,
Th24;
per cases ;
suppose
A17:
0
in (
Sum^ (A0
^ B));
(
Sum^ (A0
^ B))
in (
exp (
omega ,(
omega
-exponent a0))) by
A8,
Th43;
hence thesis by
A12,
A16,
A17,
Th23,
ORDINAL1:def 2;
end;
suppose not
0
in (
Sum^ (A0
^ B));
then (
omega
-exponent (
Sum^ (A0
^ B)))
=
0 by
ORDINAL5:def 10;
hence thesis by
A16;
end;
end;
thus ((
Sum^ A)
(+) (
Sum^ B))
= ((a0
+^ (
Sum^ A0))
(+) (
Sum^ B)) by
A7,
ORDINAL5: 55
.= ((a0
(+) (
Sum^ A0))
(+) (
Sum^ B)) by
A11,
A13,
Th83
.= (a0
(+) ((
Sum^ A0)
(+) (
Sum^ B))) by
Th81
.= (a0
+^ ((
Sum^ A0)
(+) (
Sum^ B))) by
A11,
A15,
Th83
.= ((a0
+^ (
Sum^ A0))
+^ (
Sum^ B)) by
A10,
ORDINAL3: 30
.= ((
Sum^ A)
+^ (
Sum^ B)) by
A7,
ORDINAL5: 55;
end;
A18: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A3);
let A,B be
finite
Ordinal-Sequence;
assume
A19: (A
^ B) is
Cantor-normal-form;
(
len A) is
Nat;
hence thesis by
A18,
A19;
end;
theorem ::
ORDINAL7:72
Th85: for a,b be
Ordinal st a
<>
0 implies (
omega
-exponent b)
in (
omega
-exponent (
last (
CantorNF a))) holds (a
(+) b)
= (a
+^ b)
proof
let a,b be
Ordinal;
assume
A1: a
<>
0 implies (
omega
-exponent b)
in (
omega
-exponent (
last (
CantorNF a)));
per cases ;
suppose a
=
0 ;
then (a
(+) b)
= b & (a
+^ b)
= b by
Th82,
ORDINAL2: 30;
hence thesis;
end;
suppose b
=
0 ;
then (a
(+) b)
= a & (a
+^ b)
= a by
Th82,
ORDINAL2: 27;
hence thesis;
end;
suppose
A2: a
<>
0 & b
<>
0 ;
then (
omega
-exponent (
Sum^ (
CantorNF b)))
in (
omega
-exponent (
last (
CantorNF a))) by
A1;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (
omega
-exponent (
last (
CantorNF a))) by
Th44;
then
A3: ((
CantorNF a)
^ (
CantorNF b)) is
Cantor-normal-form by
A2,
Th33;
thus (a
(+) b)
= ((
Sum^ (
CantorNF a))
(+) (
Sum^ (
CantorNF b)))
.= (a
+^ b) by
A3,
Th84;
end;
end;
theorem ::
ORDINAL7:73
Th86: for a,b be
Ordinal, n be
Nat st a
<>
0 implies b
c= (
omega
-exponent (
last (
CantorNF a))) holds (a
(+) (n
*^ (
exp (
omega ,b))))
= (a
+^ (n
*^ (
exp (
omega ,b))))
proof
let a,b be
Ordinal, n be
Nat;
set c = (n
*^ (
exp (
omega ,b)));
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF c));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF c));
assume
A1: a
<>
0 implies b
c= (
omega
-exponent (
last (
CantorNF a)));
per cases ;
suppose
A2: a
=
0 ;
hence (a
(+) (n
*^ (
exp (
omega ,b))))
= (n
*^ (
exp (
omega ,b))) by
Th82
.= (a
+^ (n
*^ (
exp (
omega ,b)))) by
A2,
ORDINAL2: 30;
end;
suppose not
0
in n;
then
A3: n
=
0 by
ORDINAL1: 16,
XBOOLE_1: 3;
hence (a
(+) (n
*^ (
exp (
omega ,b))))
= (a
(+)
0 ) by
ORDINAL2: 35
.= a by
Th82
.= (a
+^
0 ) by
ORDINAL2: 27
.= (a
+^ (n
*^ (
exp (
omega ,b)))) by
A3,
ORDINAL2: 35;
end;
suppose
A4: a
<>
0 &
0
in n;
then
consider A0 be
Cantor-normal-form
Ordinal-Sequence, a0 be
Cantor-component
Ordinal such that
A5: (
CantorNF a)
= (A0
^
<%a0%>) by
Th29;
A6: (
last (
CantorNF a))
= a0 by
A5,
AFINSQ_1: 92;
consider c be
Ordinal, m be
Nat such that
A7:
0
in (
Segm m) & a0
= (m
*^ (
exp (
omega ,c))) by
ORDINAL5:def 9;
0
in m & m
in
omega by
A7,
ORDINAL1:def 12;
then
A8: (
omega
-exponent a0)
= c by
A7,
ORDINAL5: 58;
n
in
omega by
ORDINAL1:def 12;
then
A9: (
omega
-exponent (n
*^ (
exp (
omega ,b))))
= b by
A4,
ORDINAL5: 58;
then
A10: (a0
(+) (n
*^ (
exp (
omega ,b))))
= (a0
+^ (n
*^ (
exp (
omega ,b)))) by
A1,
A4,
A6,
A7,
A8,
Th83;
A11: (a
(+) (n
*^ (
exp (
omega ,b))))
= ((
Sum^ (
CantorNF a))
(+) (n
*^ (
exp (
omega ,b))))
.= (((
Sum^ A0)
+^ (
Sum^
<%a0%>))
(+) (n
*^ (
exp (
omega ,b)))) by
A5,
Th24
.= (((
Sum^ A0)
(+) (
Sum^
<%a0%>))
(+) (n
*^ (
exp (
omega ,b)))) by
A5,
Th84
.= ((
Sum^ A0)
(+) ((
Sum^
<%a0%>)
(+) (n
*^ (
exp (
omega ,b))))) by
Th81
.= ((
Sum^ A0)
(+) (a0
+^ (n
*^ (
exp (
omega ,b))))) by
A10,
ORDINAL5: 53;
set A = (
CantorNF a);
per cases ;
suppose
A12: b
= c;
set B = (A0
^
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>);
B is
Cantor-normal-form
proof
A13: (a0
+^ (n
*^ (
exp (
omega ,b))))
= ((m
+^ n)
*^ (
exp (
omega ,c))) by
A7,
A12,
ORDINAL3: 46
.= ((m
+ n)
*^ (
exp (
omega ,c))) by
CARD_2: 36;
A14:
0
< m by
A7,
NAT_1: 44;
A15:
now
let d be
Ordinal;
assume d
in (
dom B);
per cases by
AFINSQ_1: 20;
suppose
A16: d
in (
dom A0);
then
A17: (B
. d)
= (A0
. d) & (A0
. d)
= (A
. d) by
A5,
ORDINAL4:def 1;
d
in ((
dom A0)
+^ (
dom
<%a0%>)) by
A16,
ORDINAL3: 24,
TARSKI:def 3;
then d
in (
dom A) by
A5,
ORDINAL4:def 1;
hence (B
. d) is
Cantor-component by
A17,
ORDINAL5:def 11;
end;
suppose ex k be
Nat st k
in (
dom
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>) & d
= ((
len A0)
+ k);
then
consider k be
Nat such that
A18: k
in (
dom
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>) & d
= ((
len A0)
+ k);
k
in (
Segm 1) by
A18,
AFINSQ_1: 33;
then
A19: k
=
0 by
NAT_1: 44,
NAT_1: 14;
(B
. d)
= (
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>
. k) by
A18,
AFINSQ_1:def 3
.= ((m
+ n)
*^ (
exp (
omega ,c))) by
A13,
A19;
hence (B
. d) is
Cantor-component by
A14;
end;
end;
now
let d,e be
Ordinal;
assume
A20: d
in e & e
in (
dom B);
per cases by
AFINSQ_1: 20;
suppose
A21: e
in (
dom A0);
then
A22: (B
. e)
= (A0
. e) & (A0
. e)
= (A
. e) by
A5,
ORDINAL4:def 1;
e
in ((
dom A0)
+^ (
dom
<%a0%>)) by
A21,
ORDINAL3: 24,
TARSKI:def 3;
then e
in (
dom A) by
A5,
ORDINAL4:def 1;
then
A23: (
omega
-exponent (B
. e))
in (
omega
-exponent (A
. d)) by
A20,
A22,
ORDINAL5:def 11;
d
in (
dom A0) by
A20,
A21,
ORDINAL1: 10;
then (B
. d)
= (A0
. d) & (A0
. d)
= (A
. d) by
A5,
ORDINAL4:def 1;
hence (
omega
-exponent (B
. e))
in (
omega
-exponent (B
. d)) by
A23;
end;
suppose ex k be
Nat st k
in (
dom
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>) & e
= ((
len A0)
+ k);
then
consider k be
Nat such that
A24: k
in (
dom
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>) & e
= ((
len A0)
+ k);
A25: k
in (
Segm 1) by
A24,
AFINSQ_1: 33;
then
A26: k
=
0 by
NAT_1: 44,
NAT_1: 14;
A27: (B
. e)
= (
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>
. k) by
A24,
AFINSQ_1:def 3
.= ((m
+ n)
*^ (
exp (
omega ,c))) by
A13,
A26;
0
c< (m
+ n) by
A14,
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in (m
+ n) & (m
+ n)
in
omega by
ORDINAL1: 11,
ORDINAL1:def 12;
then
A28: (
omega
-exponent (B
. e))
= c by
A27,
ORDINAL5: 58;
A29: (A
. d)
= (A0
. d) & (B
. d)
= (A0
. d) by
A5,
A20,
A24,
A26,
ORDINAL4:def 1;
k
in (
dom
<%a0%>) by
A25,
AFINSQ_1: 33;
then
A30: e
in (
dom A) by
A5,
A24,
AFINSQ_1: 23;
(
omega
-exponent (A
. e))
= (
omega
-exponent (B
. e)) by
A5,
A8,
A24,
A26,
A28,
AFINSQ_1: 36;
hence (
omega
-exponent (B
. e))
in (
omega
-exponent (B
. d)) by
A20,
A29,
A30,
ORDINAL5:def 11;
end;
end;
hence thesis by
A15,
ORDINAL5:def 11;
end;
then ((
Sum^ A0)
(+) (
Sum^
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>))
= ((
Sum^ A0)
+^ (
Sum^
<%(a0
+^ (n
*^ (
exp (
omega ,b))))%>)) by
Th84
.= ((
Sum^ A0)
+^ (a0
+^ (n
*^ (
exp (
omega ,b))))) by
ORDINAL5: 53
.= (((
Sum^ A0)
+^ a0)
+^ (n
*^ (
exp (
omega ,b)))) by
ORDINAL3: 30
.= ((
Sum^ (A0
^
<%a0%>))
+^ (n
*^ (
exp (
omega ,b)))) by
ORDINAL5: 54
.= (a
+^ (n
*^ (
exp (
omega ,b)))) by
A5;
hence thesis by
A11,
ORDINAL5: 53;
end;
suppose
A31: b
<> c;
set B = (A0
^
<%a0, (n
*^ (
exp (
omega ,b)))%>);
B is
Cantor-normal-form
proof
A32:
now
let d be
Ordinal;
assume d
in (
dom B);
per cases by
AFINSQ_1: 20;
suppose
A33: d
in (
dom A0);
then
A34: (B
. d)
= (A0
. d) & (A0
. d)
= (A
. d) by
A5,
ORDINAL4:def 1;
d
in ((
dom A0)
+^ (
dom
<%a0%>)) by
A33,
ORDINAL3: 24,
TARSKI:def 3;
then d
in (
dom A) by
A5,
ORDINAL4:def 1;
hence (B
. d) is
Cantor-component by
A34,
ORDINAL5:def 11;
end;
suppose ex k be
Nat st k
in (
dom
<%a0, (n
*^ (
exp (
omega ,b)))%>) & d
= ((
len A0)
+ k);
then
consider k be
Nat such that
A35: k
in (
dom
<%a0, (n
*^ (
exp (
omega ,b)))%>) & d
= ((
len A0)
+ k);
k
in (
Segm 2) by
AFINSQ_1: 38,
A35;
per cases by
NAT_1: 44,
NAT_1: 23;
suppose
A36: k
=
0 ;
(B
. d)
= (
<%a0, (n
*^ (
exp (
omega ,b)))%>
. k) by
A35,
AFINSQ_1:def 3
.= a0 by
A36;
hence (B
. d) is
Cantor-component;
end;
suppose
A37: k
= 1;
A38: (B
. d)
= (
<%a0, (n
*^ (
exp (
omega ,b)))%>
. k) by
A35,
AFINSQ_1:def 3
.= (n
*^ (
exp (
omega ,b))) by
A37;
0
<> n by
A4;
hence (B
. d) is
Cantor-component by
A38;
end;
end;
end;
now
let d,e be
Ordinal;
A39: b
in c by
A1,
A4,
A6,
A8,
A31,
XBOOLE_0:def 8,
ORDINAL1: 11;
assume
A40: d
in e & e
in (
dom B);
per cases by
AFINSQ_1: 20;
suppose
A41: e
in (
dom A0);
then
A42: (B
. e)
= (A0
. e) & (A0
. e)
= (A
. e) by
A5,
ORDINAL4:def 1;
e
in ((
dom A0)
+^ (
dom
<%a0%>)) by
A41,
ORDINAL3: 24,
TARSKI:def 3;
then e
in (
dom A) by
A5,
ORDINAL4:def 1;
then
A43: (
omega
-exponent (B
. e))
in (
omega
-exponent (A
. d)) by
A40,
A42,
ORDINAL5:def 11;
d
in (
dom A0) by
A40,
A41,
ORDINAL1: 10;
then (B
. d)
= (A0
. d) & (A0
. d)
= (A
. d) by
A5,
ORDINAL4:def 1;
hence (
omega
-exponent (B
. e))
in (
omega
-exponent (B
. d)) by
A43;
end;
suppose ex k2 be
Nat st k2
in (
dom
<%a0, (n
*^ (
exp (
omega ,b)))%>) & e
= ((
len A0)
+ k2);
then
consider k2 be
Nat such that
A44: k2
in (
dom
<%a0, (n
*^ (
exp (
omega ,b)))%>) & e
= ((
len A0)
+ k2);
k2
in (
Segm 2) by
AFINSQ_1: 38,
A44;
then
A45: k2
< 2 by
NAT_1: 44;
d
in (
dom B) by
A40,
ORDINAL1: 10;
per cases by
AFINSQ_1: 20;
suppose
A46: d
in (
dom A0);
then
A47: (B
. d)
= (A0
. d) & (A0
. d)
= (A
. d) by
A5,
ORDINAL4:def 1;
0
in (
Segm 1) by
NAT_1: 44;
then
0
in (
dom
<%a0%>) by
AFINSQ_1: 33;
then ((
len A0)
+
0 )
in (
dom A) by
A5,
AFINSQ_1: 23;
then (
omega
-exponent (A
. (
len A0)))
in (
omega
-exponent (A
. d)) by
A46,
ORDINAL5:def 11;
then
A48: c
in (
omega
-exponent (B
. d)) by
A5,
A8,
A47,
AFINSQ_1: 36;
per cases by
A45,
NAT_1: 23;
suppose
A49: k2
=
0 ;
(B
. e)
= (
<%a0, (n
*^ (
exp (
omega ,b)))%>
. k2) by
A44,
AFINSQ_1:def 3
.= a0 by
A49;
hence (
omega
-exponent (B
. e))
in (
omega
-exponent (B
. d)) by
A8,
A48;
end;
suppose
A50: k2
= 1;
(B
. e)
= (
<%a0, (n
*^ (
exp (
omega ,b)))%>
. k2) by
A44,
AFINSQ_1:def 3
.= (n
*^ (
exp (
omega ,b))) by
A50;
hence (
omega
-exponent (B
. e))
in (
omega
-exponent (B
. d)) by
A9,
A39,
A48,
ORDINAL1: 10;
end;
end;
suppose ex k1 be
Nat st k1
in (
dom
<%a0, (n
*^ (
exp (
omega ,b)))%>) & d
= ((
len A0)
+ k1);
then
consider k1 be
Nat such that
A51: k1
in (
dom
<%a0, (n
*^ (
exp (
omega ,b)))%>) & d
= ((
len A0)
+ k1);
k1
in (
Segm 2) by
AFINSQ_1: 38,
A51;
then
A52: k1
< 2 by
NAT_1: 44;
A53: k1
=
0 & k2
= 1
proof
per cases by
A45,
A52,
NAT_1: 23;
suppose k1
=
0 & k2
=
0 ;
hence thesis by
A40,
A44,
A51;
end;
suppose k1
=
0 & k2
= 1;
hence thesis;
end;
suppose
A54: k1
= 1 & k2
=
0 ;
reconsider e, d as
finite
Ordinal by
A44,
A51;
e
< d by
A44,
A51,
A54,
XREAL_1: 8;
then e
in (
Segm d) by
NAT_1: 44;
hence thesis by
A40;
end;
suppose k1
= 1 & k2
= 1;
hence thesis by
A40,
A44,
A51;
end;
end;
(B
. d)
= (
<%a0, (n
*^ (
exp (
omega ,b)))%>
. k1) by
A51,
AFINSQ_1:def 3
.= a0 by
A53;
then
A55: (
omega
-exponent (B
. d))
= c by
A8;
(B
. e)
= (
<%a0, (n
*^ (
exp (
omega ,b)))%>
. k2) by
A44,
AFINSQ_1:def 3
.= (n
*^ (
exp (
omega ,b))) by
A53;
hence (
omega
-exponent (B
. e))
in (
omega
-exponent (B
. d)) by
A9,
A39,
A55;
end;
end;
end;
hence thesis by
A32,
ORDINAL5:def 11;
end;
then ((
Sum^ A0)
(+) (
Sum^
<%a0, (n
*^ (
exp (
omega ,b)))%>))
= ((
Sum^ A0)
+^ (
Sum^
<%a0, (n
*^ (
exp (
omega ,b)))%>)) by
Th84
.= ((
Sum^ A0)
+^ (a0
+^ (n
*^ (
exp (
omega ,b))))) by
Th25
.= (((
Sum^ A0)
+^ a0)
+^ (n
*^ (
exp (
omega ,b)))) by
ORDINAL3: 30
.= ((
Sum^ (A0
^
<%a0%>))
+^ (n
*^ (
exp (
omega ,b)))) by
ORDINAL5: 54
.= (a
+^ (n
*^ (
exp (
omega ,b)))) by
A5;
hence thesis by
A11,
Th25;
end;
end;
end;
theorem ::
ORDINAL7:74
for a be
Ordinal, n,m be
Nat holds ((n
*^ (
exp (
omega ,a)))
(+) (m
*^ (
exp (
omega ,a))))
= ((n
+ m)
*^ (
exp (
omega ,a)))
proof
let a be
Ordinal, n,m be
Nat;
per cases ;
suppose
A1: n
=
0 ;
hence ((n
*^ (
exp (
omega ,a)))
(+) (m
*^ (
exp (
omega ,a))))
= (
0
(+) (m
*^ (
exp (
omega ,a)))) by
ORDINAL2: 35
.= ((n
+ m)
*^ (
exp (
omega ,a))) by
A1,
Th82;
end;
suppose
A2: n
<>
0 ;
then
A3:
0
in n & n
in
omega by
XBOOLE_1: 61,
ORDINAL1: 11,
ORDINAL1:def 12;
(
omega
-exponent (
last (
CantorNF (n
*^ (
exp (
omega ,a))))))
= (
omega
-exponent (
last (
{}
^
<%(n
*^ (
exp (
omega ,a)))%>))) by
A2,
Th69
.= (
omega
-exponent (n
*^ (
exp (
omega ,a)))) by
AFINSQ_1: 92
.= a by
A3,
ORDINAL5: 58;
hence ((n
*^ (
exp (
omega ,a)))
(+) (m
*^ (
exp (
omega ,a))))
= ((n
*^ (
exp (
omega ,a)))
+^ (m
*^ (
exp (
omega ,a)))) by
Th86
.= ((n
+^ m)
*^ (
exp (
omega ,a))) by
ORDINAL3: 46
.= ((n
+ m)
*^ (
exp (
omega ,a))) by
CARD_2: 36;
end;
end;
theorem ::
ORDINAL7:75
Th88: for a be
Ordinal, n be
Nat holds (a
(+) n)
= (a
+^ n)
proof
let a be
Ordinal, n be
Nat;
A1:
0
c= (
omega
-exponent (
last (
CantorNF a)));
thus (a
(+) n)
= (a
(+) (n
*^ 1)) by
ORDINAL2: 39
.= (a
(+) (n
*^ (
exp (
omega ,
0 qua
Ordinal)))) by
ORDINAL2: 43
.= (a
+^ (n
*^ (
exp (
omega ,
0 qua
Ordinal)))) by
A1,
Th86
.= (a
+^ (n
*^ 1)) by
ORDINAL2: 43
.= (a
+^ n) by
ORDINAL2: 39;
end;
theorem ::
ORDINAL7:76
Th89: for n,m be
Nat holds (n
(+) m)
= (n
+ m)
proof
let n,m be
Nat;
thus (n
(+) m)
= (n
+^ m) by
Th88
.= (n
+ m) by
CARD_2: 36;
end;
registration
let n,m be
Nat;
identify n
+ m with n
(+) m;
correctness by
Th89;
end
theorem ::
ORDINAL7:77
Th90: for a be
Ordinal holds (a
(+) 1)
= (
succ a)
proof
let a be
Ordinal;
thus (a
(+) 1)
= (a
+^ 1) by
Th88
.= (
succ a) by
ORDINAL2: 31;
end;
theorem ::
ORDINAL7:78
for a,b be
Ordinal holds (a
(+) (
succ b))
= (
succ (a
(+) b))
proof
let a,b be
Ordinal;
thus (a
(+) (
succ b))
= (a
(+) (b
(+) 1)) by
Th90
.= ((a
(+) b)
(+) 1) by
Th81
.= (
succ (a
(+) b)) by
Th90;
end;
registration
let a be
empty
Ordinal;
cluster (a
(+) a) ->
empty;
coherence ;
end
registration
let a be non
empty
Ordinal, b be
Ordinal;
cluster (a
(+) b) -> non
empty;
coherence
proof
assume
A1: (a
(+) b) is
empty;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A2: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
C is
empty by
A1,
A2;
hence contradiction by
A2;
end;
end
theorem ::
ORDINAL7:79
Th92: for a be
Ordinal holds a is
limit_ordinal iff not
0
in (
rng (
omega
-exponent (
CantorNF a)))
proof
let a be
Ordinal;
per cases ;
suppose a
=
0 ;
hence thesis by
ORDINAL2: 4;
end;
suppose a
<>
0 ;
then
consider A0 be
Cantor-normal-form
Ordinal-Sequence, a0 be
Cantor-component
Ordinal such that
A2: (
CantorNF a)
= (A0
^
<%a0%>) by
Th29;
hereby
assume
A3: a is
limit_ordinal;
(
omega
-exponent (
last (
CantorNF a)))
<>
0
proof
assume (
omega
-exponent (
last (
CantorNF a)))
=
0 ;
then (
omega
-exponent a0)
=
0 by
A2,
AFINSQ_1: 92;
then a0
= ((
omega
-leading_coeff a0)
*^ (
exp (
omega ,
0 qua
Ordinal))) by
Th59
.= ((
omega
-leading_coeff a0)
*^ 1) by
ORDINAL2: 43
.= (
omega
-leading_coeff a0) by
ORDINAL2: 39;
then
A6: (
Sum^ (
CantorNF a))
= ((
Sum^ A0)
+^ (
omega
-leading_coeff a0)) by
A2,
ORDINAL5: 54;
then
A7: (
Sum^ A0)
c= a by
ORDINAL3: 24;
(
Sum^ A0)
<> a
proof
assume (
Sum^ A0)
= a;
then ((
Sum^ A0)
+^
0 )
= ((
Sum^ A0)
+^ (
omega
-leading_coeff a0)) by
A6,
ORDINAL2: 27;
hence contradiction by
ORDINAL3: 21;
end;
then (
Sum^ A0)
in a by
A7,
XBOOLE_0:def 8,
ORDINAL1: 11;
then ((
Sum^ A0)
+^ (
omega
-leading_coeff a0))
in a by
A3,
CARD_2: 70;
hence contradiction by
A6;
end;
hence not
0
in (
rng (
omega
-exponent (
CantorNF a))) by
Th51;
end;
assume
A8: not
0
in (
rng (
omega
-exponent (
CantorNF a)));
now
let b be
Ordinal;
assume b
in a;
then
A9: (
succ b)
in (
succ a) by
ORDINAL3: 3;
not (
succ b)
= a
proof
assume (
succ b)
= a;
then
A10: a
= (b
(+) 1) by
Th90;
set E1 = (
omega
-exponent (
CantorNF b)), E2 = (
omega
-exponent (
CantorNF 1));
set L1 = (
omega
-leading_coeff (
CantorNF b));
set L2 = (
omega
-leading_coeff (
CantorNF 1));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A11: (b
(+) 1)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
E2
= (
omega
-exponent
<%1%>) by
Th71
.=
<%(
omega
-exponent 1)%> by
Th46
.=
<%
0 %> by
Th21;
then (
rng E2)
=
{
0 } by
AFINSQ_1: 33;
then
0
in (
rng E2) by
TARSKI:def 1;
hence contradiction by
A8,
A10,
A11,
XBOOLE_1: 7,
TARSKI:def 3;
end;
hence (
succ b)
in a by
A9,
ORDINAL1: 8;
end;
hence thesis by
ORDINAL1: 28;
end;
end;
registration
let a,b be
limit_ordinal
Ordinal;
cluster (a
(+) b) ->
limit_ordinal;
coherence
proof
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
A1: (
rng (
omega
-exponent (
CantorNF (a
(+) b))))
= ((
rng E1)
\/ (
rng E2)) by
Th76;
not
0
in (
rng E1) & not
0
in (
rng E2) by
Th92;
then not
0
in (
rng (
omega
-exponent (
CantorNF (a
(+) b)))) by
A1,
XBOOLE_0:def 3;
hence thesis by
Th92;
end;
end
registration
let a be
Ordinal, b be non
limit_ordinal
Ordinal;
cluster (a
(+) b) -> non
limit_ordinal;
coherence
proof
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
A1: (
rng (
omega
-exponent (
CantorNF (a
(+) b))))
= ((
rng E1)
\/ (
rng E2)) by
Th76;
0
in (
rng E2) by
Th92;
then
0
in (
rng (
omega
-exponent (
CantorNF (a
(+) b)))) by
A1,
XBOOLE_1: 7,
TARSKI:def 3;
hence thesis by
Th92;
end;
end
theorem ::
ORDINAL7:80
for a,b be
Ordinal, n be non
zero
Nat st (n
*^ (
exp (
omega ,b)))
c= a & a
in ((n
+ 1)
*^ (
exp (
omega ,b))) holds ((
CantorNF a)
.
0 )
= (n
*^ (
exp (
omega ,b)))
proof
let a,b be
Ordinal, n be non
zero
Nat;
assume
A1: (n
*^ (
exp (
omega ,b)))
c= a & a
in ((n
+ 1)
*^ (
exp (
omega ,b)));
then
A2: a
<>
{} ;
then
consider a0 be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A3: (
CantorNF a)
= (
<%a0%>
^ A0) by
ORDINAL5: 67;
A4:
0
in n by
XBOOLE_1: 61,
ORDINAL1: 11;
n
in (
succ n) by
ORDINAL1: 6;
then
0
in (
succ n) by
A4,
ORDINAL1: 10;
then
A5:
0
in (n
+ 1) by
Lm5;
n
in
omega & (n
+ 1)
in
omega by
ORDINAL1:def 12;
then
A7: (
omega
-exponent (n
*^ (
exp (
omega ,b))))
= b by
A4,
ORDINAL5: 58;
(
omega
-exponent ((n
+ 1)
*^ (
exp (
omega ,b))))
= b by
A5,
ORDINAL5: 58;
then b
c= (
omega
-exponent a) & (
omega
-exponent a)
c= b by
A7,
A1,
Th22,
ORDINAL1:def 2;
then
A9: b
= (
omega
-exponent (
Sum^ (
CantorNF a))) by
XBOOLE_0:def 10
.= (
omega
-exponent ((
CantorNF a)
.
0 )) by
Th44;
0
in (
dom (
CantorNF a)) by
A2,
XBOOLE_1: 61,
ORDINAL1: 11;
then
A10: ((
CantorNF a)
.
0 ) is
Cantor-component by
ORDINAL5:def 11;
then
reconsider m = (
omega
-leading_coeff ((
CantorNF a)
.
0 )) as
Nat;
A11: ((
CantorNF a)
.
0 )
= (m
*^ (
exp (
omega ,b))) by
A9,
A10,
Th59;
A12: ((
CantorNF a)
.
0 )
= a0 by
A3,
AFINSQ_1: 35;
m
= n
proof
assume m
<> n;
per cases by
XXREAL_0: 1;
suppose m
< n;
then (m
+ 1)
<= n by
NAT_1: 13;
then (
Segm (m
+ 1))
c= (
Segm n) by
NAT_1: 39;
then ((m
+ 1)
*^ (
exp (
omega ,b)))
c= (n
*^ (
exp (
omega ,b))) by
ORDINAL2: 41;
then ((m
+^ 1)
*^ (
exp (
omega ,b)))
c= (n
*^ (
exp (
omega ,b))) by
CARD_2: 36;
then
A13: ((m
*^ (
exp (
omega ,b)))
+^ (1
*^ (
exp (
omega ,b))))
c= (n
*^ (
exp (
omega ,b))) by
ORDINAL3: 46;
(
Sum^ A0)
in (
exp (
omega ,b)) by
A3,
A9,
A12,
Th43;
then (
Sum^ A0)
in (1
*^ (
exp (
omega ,b))) by
ORDINAL2: 39;
then ((m
*^ (
exp (
omega ,b)))
+^ (
Sum^ A0))
in ((m
*^ (
exp (
omega ,b)))
+^ (1
*^ (
exp (
omega ,b)))) by
ORDINAL2: 32;
then (a0
+^ (
Sum^ A0))
in (n
*^ (
exp (
omega ,b))) by
A11,
A12,
A13;
then (
Sum^ (
CantorNF a))
in (n
*^ (
exp (
omega ,b))) by
A3,
ORDINAL5: 55;
hence contradiction by
A1,
ORDINAL1: 12;
end;
suppose n
< m;
then (n
+ 1)
<= m by
NAT_1: 13;
then (
Segm (n
+ 1))
c= (
Segm m) by
NAT_1: 39;
then
A14: ((n
+ 1)
*^ (
exp (
omega ,b)))
c= ((
CantorNF a)
.
0 ) by
A11,
ORDINAL2: 41;
((
CantorNF a)
.
0 )
c= (
Sum^ (
CantorNF a)) by
ORDINAL5: 56;
then ((n
+ 1)
*^ (
exp (
omega ,b)))
c= (
Sum^ (
CantorNF a)) by
A14,
XBOOLE_1: 1;
hence contradiction by
A1,
ORDINAL1: 12;
end;
end;
hence thesis by
A11;
end;
theorem ::
ORDINAL7:81
for a,b be
Ordinal st (
rng (
omega
-exponent (
CantorNF a)))
= (
rng (
omega
-exponent (
CantorNF b))) holds for c be
Ordinal st c
in (
dom (
CantorNF a)) holds ((
omega
-leading_coeff (
CantorNF (a
(+) b)))
. c)
= (((
omega
-leading_coeff (
CantorNF a))
. c)
+ ((
omega
-leading_coeff (
CantorNF b))
. c))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
assume
A1: (
rng E1)
= (
rng E2);
then
A2: E1
= E2 by
Th34;
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A3: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A4: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
let c be
Ordinal;
assume
A5: c
in (
dom (
CantorNF a));
A6: (
dom (
CantorNF a))
= (
card (
dom E1)) by
Def1
.= (
card (
rng E1)) by
CARD_1: 70
.= (
card (
dom (
omega
-exponent C))) by
A1,
A3,
CARD_1: 70
.= (
dom C) by
Def1;
A7: (
rng (
omega
-exponent C))
= (
rng E1) by
A1,
A3;
then
A8: (
rng (
omega
-exponent C))
= ((
rng E1)
/\ (
rng E2)) by
A1;
c
in (
dom (
omega
-exponent C)) by
A5,
A6,
Def1;
then ((
omega
-exponent C)
. c)
in (
rng (
omega
-exponent C)) by
FUNCT_1: 3;
then
A9: (
omega
-exponent (C
. c))
in ((
rng E1)
/\ (
rng E2)) by
A5,
A6,
A8,
Def1;
A10: (
omega
-exponent C)
= E1 by
A7,
Th34;
A11: c
in (
dom E1) by
A5,
Def1;
thus ((
omega
-leading_coeff (
CantorNF (a
(+) b)))
. c)
= (
omega
-leading_coeff (C
. c)) by
A3,
A5,
A6,
Def3
.= ((L1
. ((E1
" )
. (
omega
-exponent (C
. c))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. c))))) by
A4,
A5,
A6,
A9
.= ((L1
. ((E1
" )
. (E1
. c)))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. c))))) by
A5,
A6,
A10,
Def1
.= ((L1
. ((E1
" )
. (E1
. c)))
+ (L2
. ((E2
" )
. (E2
. c)))) by
A2,
A5,
A6,
A10,
Def1
.= ((L1
. c)
+ (L2
. ((E2
" )
. (E2
. c)))) by
A11,
FUNCT_1: 34
.= ((L1
. c)
+ (L2
. c)) by
A2,
A11,
FUNCT_1: 34;
end;
theorem ::
ORDINAL7:82
Th95: for a,b be
Ordinal holds ((
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
in (
rng (
omega
-exponent (
CantorNF a))) implies (
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
= ((
omega
-exponent (
CantorNF a))
.
0 )) & ((
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
in (
rng (
omega
-exponent (
CantorNF b))) implies (
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
= ((
omega
-exponent (
CantorNF b))
.
0 ))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set C0 = (
CantorNF (a
(+) b));
A2: (
rng (
omega
-exponent C0))
= ((
rng E1)
\/ (
rng E2)) by
Th76;
hereby
assume (
omega
-exponent (C0
.
0 ))
in (
rng E1);
then
consider x be
object such that
A4: x
in (
dom E1) & (E1
. x)
= (
omega
-exponent (C0
.
0 )) by
FUNCT_1:def 3;
reconsider x as
Ordinal by
A4;
x
=
0
proof
assume
A5: x
<>
0 ;
then
0
c< x by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A6:
0
in x by
ORDINAL1: 11;
then
A7:
0
in (
dom E1) by
A4,
ORDINAL1: 10;
then (E1
.
0 )
in (
rng E1) by
FUNCT_1: 3;
then (E1
.
0 )
in (
rng (
omega
-exponent C0)) by
A2,
XBOOLE_1: 7,
TARSKI:def 3;
then
consider y be
object such that
A8: y
in (
dom (
omega
-exponent C0)) & ((
omega
-exponent C0)
. y)
= (E1
.
0 ) by
FUNCT_1:def 3;
reconsider y as
Ordinal by
A8;
A9: y
in (
dom C0) by
A8,
Def1;
then
A10: (
omega
-exponent (C0
. y))
= (E1
.
0 ) by
A8,
Def1;
per cases ;
suppose y
=
0 ;
hence contradiction by
A4,
A5,
A7,
A10,
FUNCT_1:def 4;
end;
suppose y
<>
0 ;
then
0
c< y by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in y by
ORDINAL1: 11;
then
A11: (E1
.
0 )
in (E1
. x) by
A4,
A9,
A10,
ORDINAL5:def 11;
A12: x
in (
dom (
CantorNF a)) by
A4,
Def1;
then (
omega
-exponent ((
CantorNF a)
.
0 ))
in (E1
. x) by
A11,
Def1,
A6,
ORDINAL1: 10;
then (
omega
-exponent ((
CantorNF a)
.
0 ))
in (
omega
-exponent ((
CantorNF a)
. x)) by
A12,
Def1;
hence contradiction by
A6,
A12,
ORDINAL5:def 11;
end;
end;
hence (
omega
-exponent (C0
.
0 ))
= (E1
.
0 ) by
A4;
end;
assume (
omega
-exponent (C0
.
0 ))
in (
rng E2);
then
consider x be
object such that
A14: x
in (
dom E2) & (E2
. x)
= (
omega
-exponent (C0
.
0 )) by
FUNCT_1:def 3;
reconsider x as
Ordinal by
A14;
x
=
0
proof
assume
A15: x
<>
0 ;
then
0
c< x by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A16:
0
in x by
ORDINAL1: 11;
then
A17:
0
in (
dom E2) by
A14,
ORDINAL1: 10;
then (E2
.
0 )
in (
rng E2) by
FUNCT_1: 3;
then (E2
.
0 )
in (
rng (
omega
-exponent C0)) by
A2,
XBOOLE_1: 7,
TARSKI:def 3;
then
consider y be
object such that
A18: y
in (
dom (
omega
-exponent C0)) & ((
omega
-exponent C0)
. y)
= (E2
.
0 ) by
FUNCT_1:def 3;
reconsider y as
Ordinal by
A18;
A19: y
in (
dom C0) by
A18,
Def1;
then
A20: (
omega
-exponent (C0
. y))
= (E2
.
0 ) by
A18,
Def1;
per cases ;
suppose y
=
0 ;
hence contradiction by
A14,
A15,
A17,
A20,
FUNCT_1:def 4;
end;
suppose y
<>
0 ;
then
0
c< y by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in y by
ORDINAL1: 11;
then
A21: (E2
.
0 )
in (E2
. x) by
A14,
A19,
A20,
ORDINAL5:def 11;
A22: x
in (
dom (
CantorNF b)) by
A14,
Def1;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (E2
. x) by
A21,
Def1,
A16,
ORDINAL1: 10;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (
omega
-exponent ((
CantorNF b)
. x)) by
A22,
Def1;
hence contradiction by
A16,
A22,
ORDINAL5:def 11;
end;
end;
hence (
omega
-exponent (C0
.
0 ))
= (E2
.
0 ) by
A14;
end;
theorem ::
ORDINAL7:83
for a,b be
Ordinal holds ((
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
in ((
rng (
omega
-exponent (
CantorNF a)))
\ (
rng (
omega
-exponent (
CantorNF b)))) implies ((
CantorNF (a
(+) b))
.
0 )
= ((
CantorNF a)
.
0 )) & ((
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
in ((
rng (
omega
-exponent (
CantorNF b)))
\ (
rng (
omega
-exponent (
CantorNF a)))) implies ((
CantorNF (a
(+) b))
.
0 )
= ((
CantorNF b)
.
0 )) & ((
omega
-exponent ((
CantorNF (a
(+) b))
.
0 ))
in ((
rng (
omega
-exponent (
CantorNF a)))
/\ (
rng (
omega
-exponent (
CantorNF b)))) implies ((
CantorNF (a
(+) b))
.
0 )
= (((
CantorNF a)
.
0 )
+^ ((
CantorNF b)
.
0 )))
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
set C0 = (
CantorNF (a
(+) b));
per cases ;
suppose
A1: (a
(+) b)
<>
{} ;
then
0
c< (
dom C0) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A2:
0
in (
dom C0) by
ORDINAL1: 11;
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A3: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A4: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
C
<>
{} by
A1,
A3,
ORDINAL5: 52;
then
0
c< (
dom C) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A5:
0
in (
dom C) by
ORDINAL1: 11;
hereby
assume
A6: (
omega
-exponent (C0
.
0 ))
in ((
rng E1)
\ (
rng E2));
then E1
<>
{} ;
then
0
c< (
dom E1) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A7:
0
in (
dom E1) by
ORDINAL1: 11;
A8: (
omega
-leading_coeff (C
.
0 ))
= (L1
. ((E1
" )
. (
omega
-exponent (C
.
0 )))) by
A3,
A4,
A5,
A6
.= (L1
. ((E1
" )
. (E1
.
0 ))) by
A3,
A6,
Th95
.= (L1
.
0 ) by
A7,
FUNCT_1: 34;
A9:
0
in (
dom (
CantorNF a)) by
A7,
Def1;
thus (C0
.
0 )
= ((
omega
-leading_coeff (C0
.
0 ))
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 ))))) by
A2,
Th64
.= ((L1
.
0 )
*^ (
exp (
omega ,(E1
.
0 )))) by
A3,
A6,
A8,
Th95
.= ((
CantorNF a)
.
0 ) by
A9,
Th65;
end;
hereby
assume
A10: (
omega
-exponent (C0
.
0 ))
in ((
rng E2)
\ (
rng E1));
then E2
<>
{} ;
then
0
c< (
dom E2) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A11:
0
in (
dom E2) by
ORDINAL1: 11;
A12: (
omega
-leading_coeff (C
.
0 ))
= (L2
. ((E2
" )
. (
omega
-exponent (C
.
0 )))) by
A3,
A4,
A5,
A10
.= (L2
. ((E2
" )
. (E2
.
0 ))) by
A3,
A10,
Th95
.= (L2
.
0 ) by
A11,
FUNCT_1: 34;
A13:
0
in (
dom (
CantorNF b)) by
A11,
Def1;
thus (C0
.
0 )
= ((
omega
-leading_coeff (C0
.
0 ))
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 ))))) by
A2,
Th64
.= ((L2
.
0 )
*^ (
exp (
omega ,(E2
.
0 )))) by
A3,
A10,
A12,
Th95
.= ((
CantorNF b)
.
0 ) by
A13,
Th65;
end;
assume
A14: (
omega
-exponent (C0
.
0 ))
in ((
rng E1)
/\ (
rng E2));
then
A15: (
omega
-exponent (C0
.
0 ))
in (
rng E1) & (
omega
-exponent (C0
.
0 ))
in (
rng E2) by
XBOOLE_0:def 4;
then E1
<>
{} & E2
<>
{} ;
then
0
c< (
dom E1) &
0
c< (
dom E2) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A16:
0
in (
dom E1) &
0
in (
dom E2) by
ORDINAL1: 11;
A17: (
omega
-leading_coeff (C
.
0 ))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
.
0 ))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
.
0 ))))) by
A3,
A4,
A5,
A14
.= ((L1
. ((E1
" )
. (E1
.
0 )))
+ (L2
. ((E2
" )
. (
omega
-exponent (C0
.
0 ))))) by
A3,
A15,
Th95
.= ((L1
. ((E1
" )
. (E1
.
0 )))
+ (L2
. ((E2
" )
. (E2
.
0 )))) by
A15,
Th95
.= ((L1
.
0 )
+ (L2
. ((E2
" )
. (E2
.
0 )))) by
A16,
FUNCT_1: 34
.= ((L1
.
0 )
+ (L2
.
0 )) by
A16,
FUNCT_1: 34;
A18:
0
in (
dom (
CantorNF a)) &
0
in (
dom (
CantorNF b)) by
A16,
Def1;
thus (C0
.
0 )
= ((
omega
-leading_coeff (C0
.
0 ))
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 ))))) by
A2,
Th64
.= (((L1
.
0 )
+^ (L2
.
0 ))
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 ))))) by
A3,
A17,
CARD_2: 36
.= (((L1
.
0 )
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 )))))
+^ ((L2
.
0 )
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 )))))) by
ORDINAL3: 46
.= (((L1
.
0 )
*^ (
exp (
omega ,(E1
.
0 ))))
+^ ((L2
.
0 )
*^ (
exp (
omega ,(
omega
-exponent (C0
.
0 )))))) by
A15,
Th95
.= (((L1
.
0 )
*^ (
exp (
omega ,(E1
.
0 ))))
+^ ((L2
.
0 )
*^ (
exp (
omega ,(E2
.
0 ))))) by
A15,
Th95
.= (((
CantorNF a)
.
0 )
+^ ((L2
.
0 )
*^ (
exp (
omega ,(E2
.
0 ))))) by
A18,
Th65
.= (((
CantorNF a)
.
0 )
+^ ((
CantorNF b)
.
0 )) by
A18,
Th65;
end;
suppose (a
(+) b)
=
{} ;
then a
=
{} & b
=
{} ;
hence thesis;
end;
end;
theorem ::
ORDINAL7:84
Th97: for a,b be
Ordinal, x be
object holds ((
omega
-exponent (
CantorNF a))
. x)
c= ((
omega
-exponent (
CantorNF (a
(+) b)))
. x)
proof
let a,b be
Ordinal, x be
object;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
set C0 = (
CantorNF (a
(+) b));
assume not (E1
. x)
c= ((
omega
-exponent C0)
. x);
then
A1: ((
omega
-exponent C0)
. x)
in (E1
. x) by
ORDINAL1: 16;
then x
in (
dom E1) by
FUNCT_1:def 2;
then
reconsider x as
Ordinal;
defpred
P[
Ordinal] means ((
omega
-exponent C0)
. $1)
in (E1
. $1);
A2: ex z be
Ordinal st
P[z]
proof
take x;
thus thesis by
A1;
end;
consider y be
Ordinal such that
A3:
P[y] & for z be
Ordinal st
P[z] holds y
c= z from
ORDINAL1:sch 1(
A2);
A4: (
rng (
omega
-exponent C0))
= ((
rng E1)
\/ (
rng E2)) by
Th76;
A5: y
in (
dom E1) by
A3,
FUNCT_1:def 2;
then (E1
. y)
in (
rng E1) by
FUNCT_1: 3;
then (E1
. y)
in (
rng (
omega
-exponent C0)) by
A4,
XBOOLE_1: 7,
TARSKI:def 3;
then
consider z be
object such that
A6: z
in (
dom (
omega
-exponent C0)) & ((
omega
-exponent C0)
. z)
= (E1
. y) by
FUNCT_1:def 3;
reconsider z as
Ordinal by
A6;
A7: z
in (
dom C0) by
A6,
Def1;
A8: z
in y
proof
assume not z
in y;
per cases by
ORDINAL1: 14;
suppose z
= y;
hence contradiction by
A3,
A6;
end;
suppose
A9: y
in z;
then (
omega
-exponent (C0
. z))
in (
omega
-exponent (C0
. y)) by
A7,
ORDINAL5:def 11;
then (E1
. y)
in (
omega
-exponent (C0
. y)) by
A6,
A7,
Def1;
hence contradiction by
A3,
A7,
A9,
Def1,
ORDINAL1: 10;
end;
end;
A10: y
in (
dom (
CantorNF a)) by
A5,
Def1;
then (
omega
-exponent ((
CantorNF a)
. y))
in (
omega
-exponent ((
CantorNF a)
. z)) by
A8,
ORDINAL5:def 11;
then (E1
. y)
in (
omega
-exponent ((
CantorNF a)
. z)) by
A10,
Def1;
then (E1
. y)
in (E1
. z) by
A8,
A10,
Def1,
ORDINAL1: 10;
then y
c= z by
A3,
A6;
then z
in z by
A8;
hence contradiction;
end;
theorem ::
ORDINAL7:85
Th98: for a,b be
Ordinal, x be
object holds ((
CantorNF a)
. x)
c= ((
CantorNF (a
(+) b))
. x)
proof
let a,b be
Ordinal, x be
object;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
set C0 = (
CantorNF (a
(+) b));
consider C be
Cantor-normal-form
Ordinal-Sequence such that
A1: (a
(+) b)
= (
Sum^ C) & (
rng (
omega
-exponent C))
= ((
rng E1)
\/ (
rng E2)) and
A2: for d be
object st d
in (
dom C) holds ((
omega
-exponent (C
. d))
in ((
rng E1)
\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= (L1
. ((E1
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E2)
\ (
rng E1)) implies (
omega
-leading_coeff (C
. d))
= (L2
. ((E2
" )
. (
omega
-exponent (C
. d))))) & ((
omega
-exponent (C
. d))
in ((
rng E1)
/\ (
rng E2)) implies (
omega
-leading_coeff (C
. d))
= ((L1
. ((E1
" )
. (
omega
-exponent (C
. d))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C
. d)))))) by
Def5;
assume not ((
CantorNF a)
. x)
c= (C0
. x);
then
A3: (C0
. x)
in ((
CantorNF a)
. x) by
ORDINAL1: 16;
then
A4: x
in (
dom (
CantorNF a)) by
FUNCT_1:def 2;
then
reconsider x as
Ordinal;
(
dom (
CantorNF a))
c= (
dom (
CantorNF (a
(+) b))) by
Th77;
then
A5: x
in (
dom C0) by
A4;
then
A6: (C0
. x)
= (((
omega
-leading_coeff C0)
. x)
*^ (
exp (
omega ,((
omega
-exponent C0)
. x)))) by
Th65;
A7: ((
CantorNF a)
. x)
= ((L1
. x)
*^ (
exp (
omega ,(E1
. x)))) by
A4,
Th65;
A8: (E1
. x)
= ((
omega
-exponent C0)
. x)
proof
A9: (E1
. x)
c= ((
omega
-exponent C0)
. x) by
Th97;
assume (E1
. x)
<> ((
omega
-exponent C0)
. x);
then (E1
. x)
in ((
omega
-exponent C0)
. x) by
A9,
XBOOLE_0:def 8,
ORDINAL1: 11;
then (
exp (
omega ,(E1
. x)))
in (
exp (
omega ,((
omega
-exponent C0)
. x))) by
ORDINAL4: 24;
then
A10: ((
CantorNF a)
. x)
in (
exp (
omega ,((
omega
-exponent C0)
. x))) by
A7,
Th42;
x
in (
dom (
omega
-leading_coeff C0)) by
A5,
Def3;
then ((
omega
-leading_coeff C0)
. x)
<>
{} by
FUNCT_1:def 9;
then
0
c< ((
omega
-leading_coeff C0)
. x) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in ((
omega
-leading_coeff C0)
. x) by
ORDINAL1: 11;
then (1
*^ (
exp (
omega ,((
omega
-exponent C0)
. x))))
c= (C0
. x) by
A6,
CARD_1: 49,
ZFMISC_1: 31,
ORDINAL2: 41;
then (
exp (
omega ,((
omega
-exponent C0)
. x)))
c= (C0
. x) by
ORDINAL2: 39;
hence contradiction by
A3,
A10;
end;
then ((
omega
-leading_coeff C0)
. x)
in (L1
. x) by
A3,
A6,
A7,
ORDINAL3: 34;
then
A11: (
omega
-leading_coeff (C0
. x))
in (L1
. x) by
A5,
Def3;
A12: x
in (
dom E1) by
A4,
Def1;
then ((
omega
-exponent C0)
. x)
in (
rng E1) by
A8,
FUNCT_1: 3;
then
A13: (
omega
-exponent (C0
. x))
in (
rng E1) by
A5,
Def1;
per cases ;
suppose (
omega
-exponent (C0
. x))
in (
rng E2);
then (
omega
-exponent (C0
. x))
in ((
rng E1)
/\ (
rng E2)) by
A13,
XBOOLE_0:def 4;
then (
omega
-leading_coeff (C0
. x))
= ((L1
. ((E1
" )
. (
omega
-exponent (C0
. x))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C0
. x))))) by
A1,
A2,
A5
.= ((L1
. ((E1
" )
. (E1
. x)))
+ (L2
. ((E2
" )
. (
omega
-exponent (C0
. x))))) by
A5,
A8,
Def1
.= ((L1
. x)
+ (L2
. ((E2
" )
. (
omega
-exponent (C0
. x))))) by
A12,
FUNCT_1: 34;
then (
Segm (L1
. x))
c= (
Segm (
omega
-leading_coeff (C0
. x))) by
NAT_1: 11,
NAT_1: 39;
then (
omega
-leading_coeff (C0
. x))
in (
omega
-leading_coeff (C0
. x)) by
A11;
hence contradiction;
end;
suppose not (
omega
-exponent (C0
. x))
in (
rng E2);
then (
omega
-exponent (C0
. x))
in ((
rng E1)
\ (
rng E2)) by
A13,
XBOOLE_0:def 5;
then (
omega
-leading_coeff (C0
. x))
= (L1
. ((E1
" )
. (
omega
-exponent (C0
. x)))) by
A1,
A2,
A5
.= (L1
. ((E1
" )
. (E1
. x))) by
A5,
A8,
Def1
.= (L1
. x) by
A12,
FUNCT_1: 34;
hence contradiction by
A11;
end;
end;
theorem ::
ORDINAL7:86
Th99: for a,b be
Ordinal holds a
c= (a
(+) b)
proof
let a,b be
Ordinal;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
A1: (
dom (
CantorNF a))
c= (
dom (
CantorNF (a
(+) b))) by
Th77;
for x be
object st x
in (
dom (
CantorNF a)) holds ((
CantorNF a)
. x)
c= ((
CantorNF (a
(+) b))
. x) by
Th98;
then (
Sum^ (
CantorNF a))
c= (
Sum^ (
CantorNF (a
(+) b))) by
A1,
Th28;
hence thesis;
end;
theorem ::
ORDINAL7:87
Th100: for a,b be
Ordinal holds (
omega
-exponent (a
(+) b))
= ((
omega
-exponent a)
\/ (
omega
-exponent b))
proof
let a,b be
Ordinal;
per cases ;
suppose
A1: (a
(+) b)
<>
{} ;
(
omega
-exponent a)
c= (
omega
-exponent (a
(+) b)) & (
omega
-exponent b)
c= (
omega
-exponent (a
(+) b)) by
Th22,
Th99;
then
A2: ((
omega
-exponent a)
\/ (
omega
-exponent b))
c= (
omega
-exponent (a
(+) b)) by
XBOOLE_1: 8;
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set C0 = (
CantorNF (a
(+) b));
0
c< (
dom C0) by
A1,
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
A3:
0
in (
dom C0) by
ORDINAL1: 11;
then
0
in (
dom (
omega
-exponent C0)) by
Def1;
then ((
omega
-exponent C0)
.
0 )
in (
rng (
omega
-exponent C0)) by
FUNCT_1: 3;
then ((
omega
-exponent C0)
.
0 )
in ((
rng E1)
\/ (
rng E2)) by
Th76;
per cases by
XBOOLE_0:def 3;
suppose
A4: ((
omega
-exponent C0)
.
0 )
in (
rng E1);
then (
omega
-exponent (C0
.
0 ))
in (
rng E1) by
A3,
Def1;
then
A5: (
omega
-exponent (C0
.
0 ))
= (E1
.
0 ) by
Th95;
E1
<>
{} by
A4;
then
0
c< (
dom E1) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in (
dom E1) by
ORDINAL1: 11;
then
A6:
0
in (
dom (
CantorNF a)) by
Def1;
(
omega
-exponent (a
(+) b))
= (
omega
-exponent (
Sum^ C0))
.= (
omega
-exponent (C0
.
0 )) by
Th44
.= (
omega
-exponent ((
CantorNF a)
.
0 )) by
A5,
A6,
Def1
.= (
omega
-exponent (
Sum^ (
CantorNF a))) by
Th44
.= (
omega
-exponent a);
then (
omega
-exponent (a
(+) b))
c= ((
omega
-exponent a)
\/ (
omega
-exponent b)) by
XBOOLE_1: 7;
hence thesis by
A2,
XBOOLE_0:def 10;
end;
suppose
A7: ((
omega
-exponent C0)
.
0 )
in (
rng E2);
then (
omega
-exponent (C0
.
0 ))
in (
rng E2) by
A3,
Def1;
then
A8: (
omega
-exponent (C0
.
0 ))
= (E2
.
0 ) by
Th95;
E2
<>
{} by
A7;
then
0
c< (
dom E2) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in (
dom E2) by
ORDINAL1: 11;
then
A9:
0
in (
dom (
CantorNF b)) by
Def1;
(
omega
-exponent (a
(+) b))
= (
omega
-exponent (
Sum^ C0))
.= (
omega
-exponent (C0
.
0 )) by
Th44
.= (
omega
-exponent ((
CantorNF b)
.
0 )) by
A8,
A9,
Def1
.= (
omega
-exponent (
Sum^ (
CantorNF b))) by
Th44
.= (
omega
-exponent b);
then (
omega
-exponent (a
(+) b))
c= ((
omega
-exponent a)
\/ (
omega
-exponent b)) by
XBOOLE_1: 7;
hence thesis by
A2,
XBOOLE_0:def 10;
end;
end;
suppose (a
(+) b)
=
{} ;
then a
=
0 & b
=
0 ;
hence thesis;
end;
end;
theorem ::
ORDINAL7:88
Th101: for a,b,c be
Ordinal st a
in (
exp (
omega ,c)) & b
in (
exp (
omega ,c)) holds (a
(+) b)
in (
exp (
omega ,c))
proof
let a,b,c be
Ordinal;
assume
A1: a
in (
exp (
omega ,c)) & b
in (
exp (
omega ,c));
per cases ;
suppose a
=
0 ;
hence thesis by
A1,
Th82;
end;
suppose b
=
0 ;
hence thesis by
A1,
Th82;
end;
suppose
A2: a
<>
{} & b
<>
{} ;
then
0
c< a &
0
c< b by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in a &
0
in b by
ORDINAL1: 11;
then (
omega
-exponent a)
in c & (
omega
-exponent b)
in c by
A1,
Th23;
then ((
omega
-exponent a)
\/ (
omega
-exponent b))
in c by
ORDINAL3: 12;
then
A3: (
omega
-exponent (a
(+) b))
in c by
Th100;
A4: not c
c= (
omega
-exponent (a
(+) b))
proof
assume c
c= (
omega
-exponent (a
(+) b));
then (
omega
-exponent (a
(+) b))
in (
omega
-exponent (a
(+) b)) by
A3;
hence contradiction;
end;
0
c< (a
(+) b) by
A2,
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in (a
(+) b) by
ORDINAL1: 11;
then not (
exp (
omega ,c))
c= (a
(+) b) by
A4,
ORDINAL5:def 10;
hence thesis by
ORDINAL1: 16;
end;
end;
Lm9: for a be
Ordinal, n be
Nat holds ((n
*^ (
exp (
omega ,a)))
+^ (
exp (
omega ,a)))
= ((n
*^ (
exp (
omega ,a)))
(+) (
exp (
omega ,a)))
proof
let a be
Ordinal, n be
Nat;
A1: (
exp (
omega ,a))
= (1
*^ (
exp (
omega ,a))) by
ORDINAL2: 39;
0
in 1 & 1
in
omega by
CARD_1: 49,
TARSKI:def 1;
then (
omega
-exponent (
exp (
omega ,a)))
= a by
A1,
ORDINAL5: 58;
hence thesis by
Th83;
end;
scheme ::
ORDINAL7:sch1
OrdinalCNFIndA { P[ non
empty
Ordinal] } :
for a be non
empty
Ordinal holds P[a]
provided
A1: for a be
Ordinal, n be non
zero
Nat holds P[(n
*^ (
exp (
omega ,a)))]
and
A2: for a be
Ordinal, b be non
empty
Ordinal, n be non
zero
Nat st P[b] & not a
in (
rng (
omega
-exponent (
CantorNF b))) holds P[(b
(+) (n
*^ (
exp (
omega ,a))))];
defpred
R[
Nat] means for a be non
empty
Ordinal st $1
= (
len (
CantorNF a)) holds P[a];
A3:
R[1]
proof
let a be non
empty
Ordinal;
assume
A4: 1
= (
len (
CantorNF a));
then
0
in (
dom (
CantorNF a)) by
CARD_1: 49,
TARSKI:def 1;
then ((
CantorNF a)
.
0 ) is
Cantor-component by
ORDINAL5:def 11;
then
consider b be
Ordinal, n be
Nat such that
A5:
0
in (
Segm n) & ((
CantorNF a)
.
0 )
= (n
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
A6: n is non
zero by
A5;
(
CantorNF a)
=
<%((
CantorNF a)
.
0 )%> by
A4,
AFINSQ_1: 34;
then (
Sum^ (
CantorNF a))
= (n
*^ (
exp (
omega ,b))) by
A5,
ORDINAL5: 53;
hence thesis by
A1,
A6;
end;
A7: for k be non
zero
Nat st
R[k] holds
R[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A8:
R[k];
let a be non
empty
Ordinal;
assume
A9: (k
+ 1)
= (
len (
CantorNF a));
consider c be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A10: (
CantorNF a)
= (
<%c%>
^ A0) by
ORDINAL5: 67;
consider b be
Ordinal, n be
Nat such that
A11:
0
in (
Segm n) & c
= (n
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
reconsider n as non
zero
Nat by
A11;
(k
+ 1)
= ((
len
<%c%>)
+ (
len A0)) by
A9,
A10,
AFINSQ_1: 17
.= (1
+ (
len A0)) by
AFINSQ_1: 34;
then
A12: (
len A0)
= k;
then A0
<>
{} ;
then
reconsider a0 = (
Sum^ A0) as non
empty
Ordinal;
not b
in (
rng (
omega
-exponent (
CantorNF a0)))
proof
0
in n & n
in
omega by
A11,
ORDINAL1:def 12;
then (
omega
-exponent c)
= b by
A11,
ORDINAL5: 58;
then
A13: (
Sum^ A0)
in (
exp (
omega ,b)) by
A10,
Th43;
A0
<>
{} by
A12;
then
0
c< (
Sum^ A0) by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in (
Sum^ A0) by
ORDINAL1: 11;
then (
omega
-exponent (
Sum^ A0))
in b by
A13,
Th23;
then
A14: (
omega
-exponent (A0
.
0 ))
in b by
Th44;
assume b
in (
rng (
omega
-exponent (
CantorNF a0)));
then
consider x be
object such that
A15: x
in (
dom (
omega
-exponent A0)) & ((
omega
-exponent A0)
. x)
= b by
FUNCT_1:def 3;
reconsider x as
Ordinal by
A15;
A16: x
in (
dom A0) by
A15,
Def1;
then
A17: b
= (
omega
-exponent (A0
. x)) by
A15,
Def1;
per cases ;
suppose x
=
0 ;
hence contradiction by
A14,
A17;
end;
suppose x
<>
0 ;
then
0
c< x by
XBOOLE_1: 2,
XBOOLE_0:def 8;
then
0
in x by
ORDINAL1: 11;
hence contradiction by
A14,
A16,
A17,
ORDINAL5:def 11;
end;
end;
then P[(a0
(+) (n
*^ (
exp (
omega ,b))))] by
A2,
A8,
A12;
then P[((
Sum^
<%c%>)
(+) a0)] by
A11,
ORDINAL5: 53;
then P[((
Sum^
<%c%>)
+^ a0)] by
A10,
Th84;
then P[(c
+^ a0)] by
ORDINAL5: 53;
then P[(
Sum^ (
<%c%>
^ A0))] by
ORDINAL5: 55;
hence thesis by
A10;
end;
A18: for k be non
zero
Nat holds
R[k] from
NAT_1:sch 10(
A3,
A7);
let a be non
empty
Ordinal;
(
len (
CantorNF a)) is non
zero;
hence thesis by
A18;
end;
scheme ::
ORDINAL7:sch2
OrdinalCNFIndB { P[ non
empty
Ordinal] } :
for a be non
empty
Ordinal holds P[a]
provided
A1: for a be
Ordinal holds P[(
exp (
omega ,a))]
and
A2: for a be
Ordinal, n be non
zero
Nat st P[(n
*^ (
exp (
omega ,a)))] holds P[((n
+ 1)
*^ (
exp (
omega ,a)))]
and
A3: for a be
Ordinal, b be non
empty
Ordinal, n be non
zero
Nat st P[b] & not a
in (
rng (
omega
-exponent (
CantorNF b))) holds P[(b
(+) (n
*^ (
exp (
omega ,a))))];
defpred
Q[
Nat] means for a be
Ordinal, n be non
zero
Nat st $1
= n holds P[(n
*^ (
exp (
omega ,a)))];
A4:
Q[1]
proof
let a be
Ordinal, n be non
zero
Nat;
assume 1
= n;
then (n
*^ (
exp (
omega ,a)))
= (
exp (
omega ,a)) by
ORDINAL2: 39;
hence thesis by
A1;
end;
A5: for k be non
zero
Nat st
Q[k] holds
Q[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A6:
Q[k];
let a be
Ordinal, n be non
zero
Nat;
assume
A7: (k
+ 1)
= n;
P[(k
*^ (
exp (
omega ,a)))] by
A6;
hence thesis by
A2,
A7;
end;
for k be non
zero
Nat holds
Q[k] from
NAT_1:sch 10(
A4,
A5);
then
A8: for a be
Ordinal, n be non
zero
Nat holds P[(n
*^ (
exp (
omega ,a)))];
for a be non
empty
Ordinal holds P[a] from
OrdinalCNFIndA(
A8,
A3);
hence thesis;
end;
scheme ::
ORDINAL7:sch3
OrdinalCNFIndC { P[ non
empty
Ordinal] } :
for a be non
empty
Ordinal holds P[a]
provided
A1: for a be
Ordinal holds P[(
exp (
omega ,a))]
and
A2: for a be
Ordinal, b be non
empty
Ordinal st P[b] holds P[(b
(+) (
exp (
omega ,a)))];
defpred
Q[
Nat] means for a be
Ordinal, n be non
zero
Nat st $1
= n holds P[(n
*^ (
exp (
omega ,a)))];
A3:
Q[1]
proof
let a be
Ordinal, n be non
zero
Nat;
assume 1
= n;
then (n
*^ (
exp (
omega ,a)))
= (
exp (
omega ,a)) by
ORDINAL2: 39;
hence thesis by
A1;
end;
A4: for k be non
zero
Nat st
Q[k] holds
Q[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A5:
Q[k];
let a be
Ordinal, n be non
zero
Nat;
assume (k
+ 1)
= n;
then (n
*^ (
exp (
omega ,a)))
= ((
Segm (k
+ 1))
*^ (
exp (
omega ,a)))
.= ((
succ (
Segm k))
*^ (
exp (
omega ,a))) by
NAT_1: 38
.= ((k
*^ (
exp (
omega ,a)))
+^ (
exp (
omega ,a))) by
ORDINAL2: 36
.= ((k
*^ (
exp (
omega ,a)))
(+) (
exp (
omega ,a))) by
Lm9;
hence thesis by
A2,
A5;
end;
A7: for k be non
zero
Nat holds
Q[k] from
NAT_1:sch 10(
A3,
A4);
defpred
R[
Nat] means for a be non
empty
Ordinal st $1
= (
len (
CantorNF a)) holds P[a];
A8:
R[1]
proof
let a be non
empty
Ordinal;
assume
A9: 1
= (
len (
CantorNF a));
then
0
in (
dom (
CantorNF a)) by
CARD_1: 49,
TARSKI:def 1;
then ((
CantorNF a)
.
0 ) is
Cantor-component by
ORDINAL5:def 11;
then
consider b be
Ordinal, n be
Nat such that
A10:
0
in (
Segm n) & ((
CantorNF a)
.
0 )
= (n
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
A11: n is non
zero by
A10;
(
CantorNF a)
=
<%((
CantorNF a)
.
0 )%> by
A9,
AFINSQ_1: 34;
then (
Sum^ (
CantorNF a))
= (n
*^ (
exp (
omega ,b))) by
A10,
ORDINAL5: 53;
hence thesis by
A7,
A11;
end;
defpred
S[
Nat] means for a be
Ordinal, b be non
empty
Ordinal, n be non
zero
Nat st $1
= n & P[b] holds P[(b
(+) (n
*^ (
exp (
omega ,a))))];
A12:
S[1]
proof
let a be
Ordinal, b be non
empty
Ordinal, n be non
zero
Nat;
assume
A13: 1
= n & P[b];
then P[(b
(+) (
exp (
omega ,a)))] by
A2;
hence thesis by
A13,
ORDINAL2: 39;
end;
A14: for k be non
zero
Nat st
S[k] holds
S[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A15:
S[k];
let a be
Ordinal, b be non
empty
Ordinal, n be non
zero
Nat;
assume
A16: (k
+ 1)
= n & P[b];
then P[(b
(+) (k
*^ (
exp (
omega ,a))))] by
A15;
then P[((b
(+) (k
*^ (
exp (
omega ,a))))
(+) (
exp (
omega ,a)))] by
A2;
then P[(b
(+) ((k
*^ (
exp (
omega ,a)))
(+) (
exp (
omega ,a))))] by
Th81;
then P[(b
(+) ((k
*^ (
exp (
omega ,a)))
+^ (
exp (
omega ,a))))] by
Lm9;
then P[(b
(+) ((
succ k)
*^ (
exp (
omega ,a))))] by
ORDINAL2: 36;
hence thesis by
A16,
Lm5;
end;
A17: for k be non
zero
Nat holds
S[k] from
NAT_1:sch 10(
A12,
A14);
A18: for k be non
zero
Nat st
R[k] holds
R[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A19:
R[k];
let a be non
empty
Ordinal;
assume
A20: (k
+ 1)
= (
len (
CantorNF a));
consider c be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A21: (
CantorNF a)
= (
<%c%>
^ A0) by
ORDINAL5: 67;
consider b be
Ordinal, n be
Nat such that
A22:
0
in (
Segm n) & c
= (n
*^ (
exp (
omega ,b))) by
ORDINAL5:def 9;
reconsider n as non
zero
Nat by
A22;
A23: (k
+ 1)
= ((
len
<%c%>)
+ (
len A0)) by
A20,
A21,
AFINSQ_1: 17
.= (1
+ (
len A0)) by
AFINSQ_1: 34;
then A0
<>
{} ;
then
reconsider a0 = (
Sum^ A0) as non
empty
Ordinal;
(
len (
CantorNF a0))
= k by
A23;
then P[(a0
(+) (n
*^ (
exp (
omega ,b))))] by
A17,
A19;
then P[((
Sum^
<%c%>)
(+) a0)] by
A22,
ORDINAL5: 53;
then P[((
Sum^
<%c%>)
+^ a0)] by
A21,
Th84;
then P[(c
+^ a0)] by
ORDINAL5: 53;
then P[(
Sum^ (
<%c%>
^ A0))] by
ORDINAL5: 55;
hence thesis by
A21;
end;
A24: for k be non
zero
Nat holds
R[k] from
NAT_1:sch 10(
A8,
A18);
let a be non
empty
Ordinal;
(
len (
CantorNF a)) is non
zero;
hence thesis by
A24;
end;
theorem ::
ORDINAL7:89
Th102: for a,b be
Ordinal st (
omega
-exponent a)
in (
omega
-exponent b) holds a
in (
exp (
omega ,(
omega
-exponent b)))
proof
defpred
P[ non
empty
Ordinal] means for b be
Ordinal st (
omega
-exponent $1)
in (
omega
-exponent b) holds $1
in (
exp (
omega ,(
omega
-exponent b)));
A1: for c be
Ordinal, n be non
zero
Nat holds
P[(n
*^ (
exp (
omega ,c)))]
proof
let c be
Ordinal, n be non
zero
Nat, b be
Ordinal;
assume
A2: (
omega
-exponent (n
*^ (
exp (
omega ,c))))
in (
omega
-exponent b);
0
in n & n
in
omega by
XBOOLE_1: 61,
ORDINAL1: 11,
ORDINAL1:def 12;
then c
in (
omega
-exponent b) by
A2,
ORDINAL5: 58;
then (
exp (
omega ,c))
in (
exp (
omega ,(
omega
-exponent b))) by
ORDINAL4: 24;
hence thesis by
Th42;
end;
A3: for c be
Ordinal, d be non
empty
Ordinal, n be non
zero
Nat st
P[d] & not c
in (
rng (
omega
-exponent (
CantorNF d))) holds
P[(d
(+) (n
*^ (
exp (
omega ,c))))]
proof
let c be
Ordinal, d be non
empty
Ordinal, n be non
zero
Nat;
assume
A4:
P[d] & not c
in (
rng (
omega
-exponent (
CantorNF d)));
let b be
Ordinal;
assume (
omega
-exponent (d
(+) (n
*^ (
exp (
omega ,c)))))
in (
omega
-exponent b);
then ((
omega
-exponent d)
\/ (
omega
-exponent (n
*^ (
exp (
omega ,c)))))
in (
omega
-exponent b) by
Th100;
then (
omega
-exponent d)
in (
omega
-exponent b) & (
omega
-exponent (n
*^ (
exp (
omega ,c))))
in (
omega
-exponent b) by
XBOOLE_1: 7,
ORDINAL1: 12;
then d
in (
exp (
omega ,(
omega
-exponent b))) & (n
*^ (
exp (
omega ,c)))
in (
exp (
omega ,(
omega
-exponent b))) by
A1,
A4;
hence (d
(+) (n
*^ (
exp (
omega ,c))))
in (
exp (
omega ,(
omega
-exponent b))) by
Th101;
end;
A5: for a be non
empty
Ordinal holds
P[a] from
OrdinalCNFIndA(
A1,
A3);
let a,b be
Ordinal;
per cases ;
suppose a
<>
{} ;
hence thesis by
A5;
end;
suppose
A6: a
=
{} ;
assume (
omega
-exponent a)
in (
omega
-exponent b);
thus thesis by
A6,
XBOOLE_1: 61,
ORDINAL1: 11;
end;
end;
theorem ::
ORDINAL7:90
Th103: for a,b be non
empty
Ordinal holds (
omega
*^ a)
c= b iff (
omega
-exponent a)
in (
omega
-exponent b)
proof
let a,b be non
empty
Ordinal;
A1:
0
in a &
0
in b & 1
in
omega by
XBOOLE_1: 61,
ORDINAL1: 11;
hereby
assume
A2: (
omega
*^ a)
c= b;
(
exp (
omega ,(
omega
-exponent a)))
c= a by
A1,
ORDINAL5:def 10;
then (
omega
*^ (
exp (
omega ,(
omega
-exponent a))))
c= (
omega
*^ a) by
ORDINAL2: 42;
then (
exp (
omega ,(
succ (
omega
-exponent a))))
c= (
omega
*^ a) by
ORDINAL2: 44;
then (
exp (
omega ,(
succ (
omega
-exponent a))))
c= b by
A2,
XBOOLE_1: 1;
then (
succ (
omega
-exponent a))
c= (
omega
-exponent b) by
A1,
ORDINAL5:def 10;
hence (
omega
-exponent a)
in (
omega
-exponent b) by
ORDINAL1: 6,
TARSKI:def 3;
end;
assume (
omega
-exponent a)
in (
omega
-exponent b);
then
A3: a
in (
exp (
omega ,(
omega
-exponent b))) by
Th102;
reconsider fi = (
id
omega ) as
Ordinal-Sequence;
A4: (
sup fi)
= (
sup (
rng fi)) by
ORDINAL2:def 5
.=
omega by
ORDINAL2: 18;
set psi = (fi
*^ a);
A5: (
dom fi)
= (
dom psi) by
ORDINAL3:def 4;
for A,B be
Ordinal st A
in (
dom fi) & B
= (fi
. A) holds (psi
. A)
= (B
*^ a) by
ORDINAL3:def 4;
then
A6: (
sup psi)
= (
omega
*^ a) by
A4,
A5,
ORDINAL3: 42;
now
let A be
Ordinal;
assume A
in (
rng psi);
then
consider n be
object such that
A7: n
in (
dom psi) & (psi
. n)
= A by
FUNCT_1:def 3;
reconsider n as
Nat by
A5,
A7;
A
= ((fi
. n)
*^ a) by
A5,
A7,
ORDINAL3:def 4
.= (n
*^ a) by
A5,
A7,
FUNCT_1: 18;
hence A
in (
exp (
omega ,(
omega
-exponent b))) by
A3,
Th42;
end;
then (
sup (
rng psi))
c= (
exp (
omega ,(
omega
-exponent b))) by
ORDINAL2: 20;
then
A8: (
omega
*^ a)
c= (
exp (
omega ,(
omega
-exponent b))) by
A6,
ORDINAL2:def 5;
0
in b & 1
in
omega by
XBOOLE_1: 61,
ORDINAL1: 11;
then (
exp (
omega ,(
omega
-exponent b)))
c= b by
ORDINAL5:def 10;
hence thesis by
A8,
XBOOLE_1: 1;
end;
theorem ::
ORDINAL7:91
for a,b be
Ordinal st (
omega
-exponent a)
in (
omega
-exponent b) holds (b
-^ a)
= b
proof
let a,b be
Ordinal;
assume
A1: (
omega
-exponent a)
in (
omega
-exponent b);
per cases ;
suppose a
=
0 ;
hence thesis by
ORDINAL3: 56;
end;
suppose
A2: a
<>
0 ;
A3: 1
in
omega &
0
in b by
A1,
ORDINAL5:def 10;
then (
omega
*^ a)
c= b by
A1,
A2,
Th103;
then
A4: (a
+^ b)
= b by
Th30;
A5: a
in (
exp (
omega ,(
omega
-exponent b))) by
A1,
Th102;
(
exp (
omega ,(
omega
-exponent b)))
c= b by
A3,
ORDINAL5:def 10;
then a
c= b by
A5,
ORDINAL1:def 2;
hence thesis by
A4,
ORDINAL3:def 5;
end;
end;
theorem ::
ORDINAL7:92
for a,b be
Ordinal holds (a
+^ b)
c= (a
(+) b)
proof
defpred
P[
Nat] means for a,b be non
empty
Ordinal st (
len (
CantorNF a))
= $1 holds (a
+^ b)
c= (a
(+) b);
A1:
P[1]
proof
let a,b be non
empty
Ordinal;
assume (
len (
CantorNF a))
= 1;
then
A2: (
CantorNF a)
=
<%((
CantorNF a)
.
0 )%> by
AFINSQ_1: 34;
0
in (
dom (
CantorNF a)) by
XBOOLE_1: 61,
ORDINAL1: 11;
then ((
CantorNF a)
.
0 ) is
Cantor-component by
ORDINAL5:def 11;
then
consider c be
Ordinal, m be
Nat such that
A3:
0
in (
Segm m) & ((
CantorNF a)
.
0 )
= (m
*^ (
exp (
omega ,c))) by
ORDINAL5:def 9;
per cases by
ORDINAL1: 16;
suppose
A4: (
omega
-exponent b)
c= c;
(a
+^ b)
= ((
Sum^ (
CantorNF a))
+^ b)
.= (((
CantorNF a)
.
0 )
+^ b) by
A2,
ORDINAL5: 53
.= ((m
*^ (
exp (
omega ,c)))
(+) b) by
A3,
A4,
Th83
.= ((
Sum^ (
CantorNF a))
(+) b) by
A2,
A3,
ORDINAL5: 53
.= (a
(+) b);
hence thesis;
end;
suppose
A5: c
in (
omega
-exponent b);
0
in m & m
in
omega by
A3,
ORDINAL1:def 12;
then (
omega
-exponent ((
CantorNF a)
.
0 ))
in (
omega
-exponent b) by
A3,
A5,
ORDINAL5: 58;
then (
omega
-exponent (
Sum^ (
CantorNF a)))
in (
omega
-exponent b) by
Th44;
then (
omega
*^ a)
c= b by
Th103;
then (a
+^ b)
= b by
Th30;
hence (a
+^ b)
c= (a
(+) b) by
Th99;
end;
end;
A6: for n be non
zero
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be non
zero
Nat;
assume
A7:
P[n];
let a,b be non
empty
Ordinal;
assume
A8: (
len (
CantorNF a))
= (n
+ 1);
consider a0 be
Cantor-component
Ordinal, A0 be
Cantor-normal-form
Ordinal-Sequence such that
A9: (
CantorNF a)
= (
<%a0%>
^ A0) by
ORDINAL5: 67;
A10: (n
+ 1)
= ((
len
<%a0%>)
+ (
len A0)) by
A8,
A9,
AFINSQ_1: 17
.= ((
len (
CantorNF (
Sum^ A0)))
+ 1) by
AFINSQ_1: 34;
then (
CantorNF (
Sum^ A0))
<>
{} ;
then
A11: ((
Sum^ A0)
+^ b)
c= ((
Sum^ A0)
(+) b) by
A7,
A10;
(
CantorNF a0)
=
<%a0%> by
Th70;
then (
len (
CantorNF a0))
= 1 by
AFINSQ_1: 34;
then
A12: (a0
+^ ((
Sum^ A0)
(+) b))
c= (a0
(+) ((
Sum^ A0)
(+) b)) by
A1;
A13: a
= (
Sum^ (
CantorNF a))
.= (a0
+^ (
Sum^ A0)) by
A9,
ORDINAL5: 55
.= ((
Sum^
<%a0%>)
+^ (
Sum^ A0)) by
ORDINAL5: 53
.= ((
Sum^
<%a0%>)
(+) (
Sum^ A0)) by
A9,
Th84
.= (a0
(+) (
Sum^ A0)) by
ORDINAL5: 53;
(a
+^ b)
= ((
Sum^ (
CantorNF a))
+^ b)
.= ((a0
+^ (
Sum^ A0))
+^ b) by
A9,
ORDINAL5: 55
.= (a0
+^ ((
Sum^ A0)
+^ b)) by
ORDINAL3: 30;
then (a
+^ b)
c= (a0
+^ ((
Sum^ A0)
(+) b)) by
A11,
ORDINAL2: 33;
then (a
+^ b)
c= (a0
(+) ((
Sum^ A0)
(+) b)) by
A12,
XBOOLE_1: 1;
hence (a
+^ b)
c= (a
(+) b) by
A13,
Th81;
end;
A14: for n be non
zero
Nat holds
P[n] from
NAT_1:sch 10(
A1,
A6);
let a,b be
Ordinal;
per cases ;
suppose a
=
{} ;
then (a
+^ b)
= b & (a
(+) b)
= b by
Th82,
ORDINAL2: 30;
hence thesis;
end;
suppose b
=
{} ;
then (a
+^ b)
= a & (a
(+) b)
= a by
Th82,
ORDINAL2: 27;
hence thesis;
end;
suppose
A15: a
<>
{} & b
<>
{} ;
then (
len (
CantorNF a)) is non
zero;
hence thesis by
A14,
A15;
end;
end;
theorem ::
ORDINAL7:93
for a,b,c be
Ordinal st (a
(+) b)
= (a
(+) c) holds b
= c
proof
let a,b,c be
Ordinal;
assume
A1: (a
(+) b)
= (a
(+) c);
set C1 = (
CantorNF (a
(+) b)), C2 = (
CantorNF (a
(+) c));
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set E3 = (
omega
-exponent (
CantorNF c)), L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
set L3 = (
omega
-leading_coeff (
CantorNF c));
A2: (
rng E2)
= (
rng E3)
proof
assume (
rng E2)
<> (
rng E3);
per cases by
XBOOLE_0:def 10;
suppose not (
rng E2)
c= (
rng E3);
then
consider y be
object such that
A3: y
in (
rng E2) & not y
in (
rng E3) by
TARSKI:def 3;
y
in ((
rng E1)
\/ (
rng E2)) by
A3,
XBOOLE_0:def 3;
then
A4: y
in (
rng (
omega
-exponent C1)) by
Th76;
then
consider x be
object such that
A5: x
in (
dom (
omega
-exponent C1)) & ((
omega
-exponent C1)
. x)
= y by
FUNCT_1:def 3;
A6: x
in (
dom C1) by
A5,
Def1;
then
A7: y
= (
omega
-exponent (C1
. x)) by
A5,
Def1;
A8: (
omega
-exponent (C1
. x))
in (
rng E1)
proof
assume not (
omega
-exponent (C1
. x))
in (
rng E1);
then not y
in ((
rng E1)
\/ (
rng E3)) by
A3,
A7,
XBOOLE_0:def 3;
hence contradiction by
A1,
A4,
Th76;
end;
then (
omega
-exponent (C1
. x))
in ((
rng E1)
/\ (
rng E2)) by
A3,
A7,
XBOOLE_0:def 4;
then
A9: (
omega
-leading_coeff (C1
. x))
= ((L1
. ((E1
" )
. (
omega
-exponent (C1
. x))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C1
. x))))) by
A6,
Th80;
(
omega
-exponent (C1
. x))
in ((
rng E1)
\ (
rng E3)) by
A3,
A7,
A8,
XBOOLE_0:def 5;
then (
omega
-leading_coeff (C1
. x))
= ((L1
. ((E1
" )
. (
omega
-exponent (C1
. x))))
+
0 ) by
A1,
A6,
Th78;
then
A10:
0
= (L2
. ((E2
" )
. y)) by
A7,
A9;
y
in (
dom (E2
" )) by
A3,
FUNCT_1: 33;
then ((E2
" )
. y)
in (
rng (E2
" )) by
FUNCT_1: 3;
then ((E2
" )
. y)
in (
dom E2) by
FUNCT_1: 33;
then ((E2
" )
. y)
in (
dom (
CantorNF b)) by
Def1;
then ((E2
" )
. y)
in (
dom L2) by
Def3;
hence contradiction by
A10,
FUNCT_1:def 9;
end;
suppose not (
rng E3)
c= (
rng E2);
then
consider y be
object such that
A11: y
in (
rng E3) & not y
in (
rng E2) by
TARSKI:def 3;
y
in ((
rng E1)
\/ (
rng E3)) by
A11,
XBOOLE_0:def 3;
then
A12: y
in (
rng (
omega
-exponent C2)) by
Th76;
then
consider x be
object such that
A13: x
in (
dom (
omega
-exponent C2)) & ((
omega
-exponent C2)
. x)
= y by
FUNCT_1:def 3;
A14: x
in (
dom C2) by
A13,
Def1;
then
A15: y
= (
omega
-exponent (C2
. x)) by
A13,
Def1;
A16: (
omega
-exponent (C2
. x))
in (
rng E1)
proof
assume not (
omega
-exponent (C2
. x))
in (
rng E1);
then not y
in ((
rng E1)
\/ (
rng E2)) by
A11,
A15,
XBOOLE_0:def 3;
hence contradiction by
A1,
A12,
Th76;
end;
then (
omega
-exponent (C2
. x))
in ((
rng E1)
/\ (
rng E3)) by
A11,
A15,
XBOOLE_0:def 4;
then
A17: (
omega
-leading_coeff (C2
. x))
= ((L1
. ((E1
" )
. (
omega
-exponent (C2
. x))))
+ (L3
. ((E3
" )
. (
omega
-exponent (C2
. x))))) by
A14,
Th80;
(
omega
-exponent (C2
. x))
in ((
rng E1)
\ (
rng E2)) by
A11,
A15,
A16,
XBOOLE_0:def 5;
then (
omega
-leading_coeff (C2
. x))
= ((L1
. ((E1
" )
. (
omega
-exponent (C2
. x))))
+
0 ) by
A1,
A14,
Th78;
then
A18:
0
= (L3
. ((E3
" )
. y)) by
A15,
A17;
y
in (
dom (E3
" )) by
A11,
FUNCT_1: 33;
then ((E3
" )
. y)
in (
rng (E3
" )) by
FUNCT_1: 3;
then ((E3
" )
. y)
in (
dom E3) by
FUNCT_1: 33;
then ((E3
" )
. y)
in (
dom (
CantorNF c)) by
Def1;
then ((E3
" )
. y)
in (
dom L3) by
Def3;
hence contradiction by
A18,
FUNCT_1:def 9;
end;
end;
then
A19: E2
= E3 by
Th34;
A20: (
dom L2)
= (
dom (
CantorNF b)) by
Def3
.= (
card (
dom E2)) by
Def1
.= (
card (
rng E2)) by
CARD_1: 70
.= (
card (
dom E3)) by
A2,
CARD_1: 70
.= (
dom (
CantorNF c)) by
Def1
.= (
dom L3) by
Def3;
for x be
object st x
in (
dom L2) holds (L2
. x)
= (L3
. x)
proof
let x be
object;
assume x
in (
dom L2);
then x
in (
dom (
CantorNF b)) by
Def3;
then
A21: x
in (
dom E2) by
Def1;
then
A22: (E2
. x)
in (
rng E2) by
FUNCT_1: 3;
then (E2
. x)
in ((
rng E1)
\/ (
rng E2)) by
XBOOLE_0:def 3;
then (E2
. x)
in (
rng (
omega
-exponent C1)) by
Th76;
then
consider y be
object such that
A23: y
in (
dom (
omega
-exponent C1)) & ((
omega
-exponent C1)
. y)
= (E2
. x) by
FUNCT_1:def 3;
A24: y
in (
dom C1) by
A23,
Def1;
then
A25: (
omega
-exponent (C1
. y))
= (E2
. x) by
A23,
Def1;
per cases ;
suppose (
omega
-exponent (C1
. y))
in (
rng E1);
then
A26: (
omega
-exponent (C1
. y))
in ((
rng E1)
/\ (
rng E2)) by
A22,
A25,
XBOOLE_0:def 4;
then
A27: (
omega
-exponent (C2
. y))
in ((
rng E1)
/\ (
rng E3)) by
A1,
A2;
((L1
. ((E1
" )
. (E2
. x)))
+ (L2
. ((E2
" )
. (E2
. x))))
= (
omega
-leading_coeff (C1
. y)) by
A24,
A25,
A26,
Th80
.= ((L1
. ((E1
" )
. (E2
. x)))
+ (L3
. ((E3
" )
. (E2
. x)))) by
A1,
A24,
A25,
A27,
Th80;
hence (L2
. x)
= (L3
. ((E3
" )
. (E2
. x))) by
A21,
FUNCT_1: 34
.= (L3
. x) by
A19,
A21,
FUNCT_1: 34;
end;
suppose not (
omega
-exponent (C1
. y))
in (
rng E1);
then
A29: (
omega
-exponent (C1
. y))
in ((
rng E2)
\ (
rng E1)) by
A22,
A25,
XBOOLE_0:def 5;
then
A30: (
omega
-exponent (C2
. y))
in ((
rng E3)
\ (
rng E1)) by
A1,
A2;
thus (L2
. x)
= (L2
. ((E2
" )
. (E2
. x))) by
A21,
FUNCT_1: 34
.= (
omega
-leading_coeff (C1
. y)) by
A24,
A25,
A29,
Th79
.= (L3
. ((E3
" )
. (E2
. x))) by
A1,
A24,
A25,
A30,
Th79
.= (L3
. x) by
A19,
A21,
FUNCT_1: 34;
end;
end;
then L2
= L3 by
A20,
FUNCT_1: 2;
then (
Sum^ (
CantorNF b))
= (
Sum^ (
CantorNF c)) by
A19,
Th67;
hence thesis;
end;
Lm10: for A be
Cantor-normal-form
Ordinal-Sequence holds (
omega
-exponent A) is
XFinSequence of (
sup (
omega
-exponent A))
proof
let A be
Cantor-normal-form
Ordinal-Sequence;
now
let y be
object;
assume y
in (
rng (
omega
-exponent A));
then y
in (
sup (
rng (
omega
-exponent A))) by
ORDINAL2: 19;
hence y
in (
sup (
omega
-exponent A)) by
ORDINAL2:def 5;
end;
hence thesis by
TARSKI:def 3,
RELAT_1:def 19;
end;
Lm11: for a be non
empty
Ordinal, b,c be
Ordinal st b
in c & ((
CantorNF b)
.
0 )
<> ((
CantorNF c)
.
0 ) holds (a
(+) b)
in (a
(+) c)
proof
defpred
P[ non
empty
Ordinal] means for a be non
empty
Ordinal, b be
Ordinal st b
in $1 holds (a
(+) b)
in (a
(+) $1);
let a be non
empty
Ordinal, b,d be
Ordinal;
assume
A1: b
in d & ((
CantorNF b)
.
0 )
<> ((
CantorNF d)
.
0 );
then
A2: (
omega
-exponent b)
c= (
omega
-exponent d) by
Th22,
ORDINAL1:def 2;
set c = (
omega
-exponent d);
defpred
Q[
Nat] means $1
in (
dom (
CantorNF a)) & (
omega
-exponent ((
CantorNF a)
. $1))
c= c & for j be
Nat st j
< $1 holds c
in (
omega
-exponent ((
CantorNF a)
. j));
per cases ;
suppose
A3: for i be
Nat holds not
Q[i];
defpred
R[
Nat] means $1
in (
dom (
CantorNF a)) implies c
in (
omega
-exponent ((
CantorNF a)
. $1));
A4: for k be
Nat st for j be
Nat st j
< k holds
R[j] holds
R[k]
proof
let k be
Nat;
assume that
A5: for j be
Nat st j
< k holds
R[j] and
A6: k
in (
dom (
CantorNF a)) and
A7: not c
in (
omega
-exponent ((
CantorNF a)
. k));
A8: (
omega
-exponent ((
CantorNF a)
. k))
c= c by
A7,
ORDINAL1: 16;
for j be
Nat st j
< k holds c
in (
omega
-exponent ((
CantorNF a)
. j))
proof
let j be
Nat;
assume
A9: j
< k;
then j
in (
Segm k) by
NAT_1: 44;
then j
in (
dom (
CantorNF a)) by
A6,
ORDINAL1: 10;
hence thesis by
A5,
A9;
end;
hence contradiction by
A3,
A6,
A8;
end;
A10: for k be
Nat holds
R[k] from
NAT_1:sch 4(
A4);
consider A0 be
Cantor-normal-form
Ordinal-Sequence, a0 be
Cantor-component
Ordinal such that
A11: (
CantorNF a)
= (A0
^
<%a0%>) by
Th29;
(
len (
CantorNF a))
= ((
len A0)
+ (
len
<%a0%>)) by
A11,
AFINSQ_1: 17
.= ((
len A0)
+ 1) by
AFINSQ_1: 34;
then (
len A0)
< (
len (
CantorNF a)) by
NAT_1: 13;
then (
len A0)
in (
Segm (
len (
CantorNF a))) by
NAT_1: 44;
then c
in (
omega
-exponent ((
CantorNF a)
. (
len A0))) by
A10;
then c
in (
omega
-exponent a0) by
A11,
AFINSQ_1: 36;
then
A12: c
in (
omega
-exponent (
last (
CantorNF a))) by
A11,
AFINSQ_1: 92;
then
A13: (a
(+) d)
= (a
+^ d) by
Th85;
(a
(+) b)
= (a
+^ b) by
A2,
A12,
Th85,
ORDINAL1: 12;
hence thesis by
A1,
A13,
ORDINAL2: 32;
end;
suppose ex i be
Nat st
Q[i];
then
consider i be
Nat such that
A14:
Q[i];
set C1 = (
CantorNF (a
(+) b)), C2 = (
CantorNF (a
(+) d));
set A1 = (C1
| i), A2 = (C2
| i), B1 = (C1
/^ i), B2 = (C2
/^ i);
set E1 = (
omega
-exponent (
CantorNF a)), E2 = (
omega
-exponent (
CantorNF b));
set E3 = (
omega
-exponent (
CantorNF d));
set L1 = (
omega
-leading_coeff (
CantorNF a));
set L2 = (
omega
-leading_coeff (
CantorNF b));
set L3 = (
omega
-leading_coeff (
CantorNF d));
A15:
0
in (
dom (
CantorNF d)) by
A1,
XBOOLE_1: 61,
ORDINAL1: 11;
then
A16:
0
in (
dom E3) by
Def1;
then (E3
.
0 )
in (
rng E3) by
FUNCT_1: 3;
then (
omega
-exponent ((
CantorNF d)
.
0 ))
in (
rng E3) by
A15,
Def1;
then
A17: (
omega
-exponent (
Sum^ (
CantorNF d)))
in (
rng E3) by
Th44;
then
A18: c
in ((
rng E1)
\/ (
rng E3)) by
XBOOLE_0:def 3;
then
A19: c
in (
rng (
omega
-exponent C2)) by
Th76;
A20: c
= (
omega
-exponent (
Sum^ (
CantorNF d)))
.= (
omega
-exponent ((
CantorNF d)
.
0 )) by
Th44
.= (E3
.
0 ) by
A15,
Def1;
A21: i
in (
dom E1) by
A14,
Def1;
A22: i
in (
dom C1) & i
in (
dom C2) by
A14,
Th77,
TARSKI:def 3;
(
omega
-exponent C2)
= (
omega
-exponent (A2
^ B2))
.= ((
omega
-exponent A2)
^ (
omega
-exponent B2)) by
Th47
.= (((
omega
-exponent C2)
| i)
^ (
omega
-exponent B2)) by
Th48
.= (((
omega
-exponent C2)
| i)
^ ((
omega
-exponent C2)
/^ i)) by
Th49;
then
A23: (
rng (
omega
-exponent C2))
= ((
rng ((
omega
-exponent C2)
| i))
\/ (
rng ((
omega
-exponent C2)
/^ i))) by
Th9;
(
omega
-exponent C2) is
XFinSequence of (
sup (
omega
-exponent C2)) by
Lm10;
then
A24: (
rng ((
omega
-exponent C2)
| i))
misses (
rng ((
omega
-exponent C2)
/^ i)) by
Th19;
A25: (
rng (
omega
-exponent B2))
= (
rng ((
omega
-exponent C2)
/^ i)) by
Th49
.= ((
rng (
omega
-exponent C2))
\ (
rng ((
omega
-exponent C2)
| i))) by
A23,
A24,
XBOOLE_1: 88
.= (((
rng E1)
\/ (
rng E3))
\ (
rng ((
omega
-exponent C2)
| i))) by
Th76
.= (((
rng E1)
\/ (
rng E3))
\ (
rng (
omega
-exponent A2))) by
Th48;
(
omega
-exponent C1)
= (
omega
-exponent (A1
^ B1))
.= ((
omega
-exponent A1)
^ (
omega
-exponent B1)) by
Th47
.= (((
omega
-exponent C1)
| i)
^ (
omega
-exponent B1)) by
Th48
.= (((
omega
-exponent C1)
| i)
^ ((
omega
-exponent C1)
/^ i)) by
Th49;
then
A26: (
rng (
omega
-exponent C1))
= ((
rng ((
omega
-exponent C1)
| i))
\/ (
rng ((
omega
-exponent C1)
/^ i))) by
Th9;
(
omega
-exponent C1) is
XFinSequence of (
sup (
omega
-exponent C1)) by
Lm10;
then
A27: (
rng ((
omega
-exponent C1)
| i))
misses (
rng ((
omega
-exponent C1)
/^ i)) by
Th19;
A28: (
rng (
omega
-exponent B1))
= (
rng ((
omega
-exponent C1)
/^ i)) by
Th49
.= ((
rng (
omega
-exponent C1))
\ (
rng ((
omega
-exponent C1)
| i))) by
A26,
A27,
XBOOLE_1: 88
.= (((
rng E1)
\/ (
rng E2))
\ (
rng ((
omega
-exponent C1)
| i))) by
Th76
.= (((
rng E1)
\/ (
rng E2))
\ (
rng (
omega
-exponent A1))) by
Th48;
A29: (
dom A1)
= (
dom A2)
proof
A30: i
in (
dom C1) & i
in (
dom C2) by
A14,
Th77,
TARSKI:def 3;
now
let x be
object;
hereby
assume x
in (
dom A1);
then
A31: x
in i by
RELAT_1: 57;
then x
in (
dom C2) by
A30,
ORDINAL1: 10;
hence x
in (
dom A2) by
A31,
RELAT_1: 57;
end;
assume x
in (
dom A2);
then
A32: x
in i by
RELAT_1: 57;
then x
in (
dom C1) by
A30,
ORDINAL1: 10;
hence x
in (
dom A1) by
A32,
RELAT_1: 57;
end;
hence thesis by
TARSKI: 2;
end;
A33: for n be
Nat st n
in (
dom A1) holds (A1
. n)
= ((
CantorNF a)
. n)
proof
defpred
R[
Nat] means $1
in (
dom A1) & (A1
. $1)
<> ((
CantorNF a)
. $1);
assume
A34: ex n be
Nat st
R[n];
consider n be
Nat such that
A35:
R[n] & for m be
Nat st
R[m] holds n
<= m from
NAT_1:sch 5(
A34);
A36: n
in i by
A35,
RELAT_1: 57;
then
A37: n
in (
dom (
CantorNF a)) by
A14,
ORDINAL1: 10;
then
A38: n
in (
dom C1) by
Th77,
TARSKI:def 3;
A39: not (
omega
-exponent (C1
. n))
in (
rng E2)
proof
assume (
omega
-exponent (C1
. n))
in (
rng E2);
then ((
omega
-exponent C1)
. n)
in (
rng E2) by
A38,
Def1;
then
consider m be
object such that
A40: m
in (
dom E2) & (E2
. m)
= ((
omega
-exponent C1)
. n) by
FUNCT_1:def 3;
reconsider m as
Nat by
A40;
n
in (
Segm i) by
A36;
then c
in (
omega
-exponent ((
CantorNF a)
. n)) by
A14,
NAT_1: 44;
then c
in (E1
. n) by
A37,
Def1;
then (
omega
-exponent (
Sum^ (
CantorNF b)))
in (E1
. n) by
A2,
ORDINAL1: 12;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (E1
. n) by
Th44;
then
A42: (
omega
-exponent ((
CantorNF b)
.
0 ))
in (E2
. m) by
A40,
Th97,
TARSKI:def 3;
A43: m
in (
dom (
CantorNF b)) by
A40,
Def1;
then
A44: (
omega
-exponent ((
CantorNF b)
.
0 ))
in (
omega
-exponent ((
CantorNF b)
. m)) by
A42,
Def1;
then not
0
in m by
A43,
ORDINAL5:def 11;
then m
=
0 by
ORDINAL1: 16,
XBOOLE_1: 3;
hence contradiction by
A44;
end;
A45: (
omega
-exponent (C1
. n))
= (E1
. n)
proof
assume (
omega
-exponent (C1
. n))
<> (E1
. n);
then ((
omega
-exponent C1)
. n)
<> (E1
. n) by
A38,
Def1;
then (E1
. n)
c< ((
omega
-exponent C1)
. n) by
Th97,
XBOOLE_0:def 8;
then
A46: (E1
. n)
in ((
omega
-exponent C1)
. n) by
ORDINAL1: 11;
n
in (
dom (
omega
-exponent C1)) by
A38,
Def1;
then ((
omega
-exponent C1)
. n)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then
A47: ((
omega
-exponent C1)
. n)
in ((
rng E1)
\/ (
rng E2)) by
Th76;
not ((
omega
-exponent C1)
. n)
in (
rng E2) by
A38,
A39,
Def1;
then ((
omega
-exponent C1)
. n)
in (
rng E1) by
A47,
XBOOLE_0:def 3;
then
consider m be
object such that
A48: m
in (
dom E1) & (E1
. m)
= ((
omega
-exponent C1)
. n) by
FUNCT_1:def 3;
reconsider m as
Nat by
A48;
A49: m
in n
proof
assume not m
in n;
per cases by
ORDINAL1: 14;
suppose m
= n;
hence contradiction by
A46,
A48;
end;
suppose
A50: n
in m;
A51: m
in (
dom (
CantorNF a)) by
A48,
Def1;
then (
omega
-exponent ((
CantorNF a)
. m))
in (
omega
-exponent ((
CantorNF a)
. n)) by
A50,
ORDINAL5:def 11;
then (E1
. m)
in (
omega
-exponent ((
CantorNF a)
. n)) by
A51,
Def1;
hence contradiction by
A37,
A46,
A48,
Def1;
end;
end;
then
A52: m
in (
Segm n);
A53: m
in (
dom A1) by
A35,
A49,
ORDINAL1: 10;
A54: m
in (
dom (
CantorNF a)) by
A37,
A49,
ORDINAL1: 10;
A55: m
in (
dom C1) by
A38,
A49,
ORDINAL1: 10;
A56: ((
omega
-exponent C1)
. m)
= (
omega
-exponent (C1
. m)) by
A38,
A49,
Def1,
ORDINAL1: 10
.= (
omega
-exponent (A1
. m)) by
A53,
FUNCT_1: 47
.= (
omega
-exponent ((
CantorNF a)
. m)) by
A35,
A52,
A53,
NAT_1: 44
.= (E1
. m) by
A54,
Def1;
(
omega
-exponent (C1
. n))
in (
omega
-exponent (C1
. m)) by
A38,
A49,
ORDINAL5:def 11;
then ((
omega
-exponent C1)
. n)
in (
omega
-exponent (C1
. m)) by
A38,
Def1;
then ((
omega
-exponent C1)
. n)
in ((
omega
-exponent C1)
. m) by
A55,
Def1;
hence contradiction by
A48,
A56;
end;
A57: n
in (
dom E1) by
A37,
Def1;
n
in (
dom E1) by
A37,
Def1;
then (
omega
-exponent (C1
. n))
in (
rng E1) by
A45,
FUNCT_1: 3;
then (
omega
-exponent (C1
. n))
in ((
rng E1)
\ (
rng E2)) by
A39,
XBOOLE_0:def 5;
then
A58: (
omega
-leading_coeff (C1
. n))
= (L1
. ((E1
" )
. (E1
. n))) by
A38,
A45,
Th78
.= (L1
. n) by
A57,
FUNCT_1: 34;
(A1
. n)
= (C1
. n) by
A36,
FUNCT_1: 49
.= ((L1
. n)
*^ (
exp (
omega ,(
omega
-exponent (C1
. n))))) by
A38,
A58,
Th64
.= ((
CantorNF a)
. n) by
A37,
A45,
Th65;
hence contradiction by
A35;
end;
A59: for n be
Nat st n
in (
dom A2) holds (A2
. n)
= ((
CantorNF a)
. n)
proof
defpred
R[
Nat] means $1
in (
dom A2) & (A2
. $1)
<> ((
CantorNF a)
. $1);
assume
A60: ex n be
Nat st
R[n];
consider n be
Nat such that
A61:
R[n] & for m be
Nat st
R[m] holds n
<= m from
NAT_1:sch 5(
A60);
A62: n
in i by
A61,
RELAT_1: 57;
then
A63: n
in (
dom (
CantorNF a)) by
A14,
ORDINAL1: 10;
then
A64: n
in (
dom C2) by
Th77,
TARSKI:def 3;
A65: not (
omega
-exponent (C2
. n))
in (
rng E3)
proof
assume (
omega
-exponent (C2
. n))
in (
rng E3);
then ((
omega
-exponent C2)
. n)
in (
rng E3) by
A64,
Def1;
then
consider m be
object such that
A66: m
in (
dom E3) & (E3
. m)
= ((
omega
-exponent C2)
. n) by
FUNCT_1:def 3;
reconsider m as
Nat by
A66;
n
in (
Segm i) by
A62;
then c
in (
omega
-exponent ((
CantorNF a)
. n)) by
A14,
NAT_1: 44;
then (
omega
-exponent (
Sum^ (
CantorNF d)))
in (E1
. n) by
A63,
Def1;
then (
omega
-exponent ((
CantorNF d)
.
0 ))
in (E1
. n) by
Th44;
then
A67: (
omega
-exponent ((
CantorNF d)
.
0 ))
in (E3
. m) by
A66,
Th97,
TARSKI:def 3;
A68: m
in (
dom (
CantorNF d)) by
A66,
Def1;
then
A69: (
omega
-exponent ((
CantorNF d)
.
0 ))
in (
omega
-exponent ((
CantorNF d)
. m)) by
A67,
Def1;
then not
0
in m by
A68,
ORDINAL5:def 11;
then m
=
0 by
ORDINAL1: 16,
XBOOLE_1: 3;
hence contradiction by
A69;
end;
A70: (
omega
-exponent (C2
. n))
= (E1
. n)
proof
assume (
omega
-exponent (C2
. n))
<> (E1
. n);
then ((
omega
-exponent C2)
. n)
<> (E1
. n) by
A64,
Def1;
then (E1
. n)
c< ((
omega
-exponent C2)
. n) by
Th97,
XBOOLE_0:def 8;
then
A71: (E1
. n)
in ((
omega
-exponent C2)
. n) by
ORDINAL1: 11;
n
in (
dom (
omega
-exponent C2)) by
A64,
Def1;
then ((
omega
-exponent C2)
. n)
in (
rng (
omega
-exponent C2)) by
FUNCT_1: 3;
then
A72: ((
omega
-exponent C2)
. n)
in ((
rng E1)
\/ (
rng E3)) by
Th76;
not ((
omega
-exponent C2)
. n)
in (
rng E3) by
A64,
A65,
Def1;
then ((
omega
-exponent C2)
. n)
in (
rng E1) by
A72,
XBOOLE_0:def 3;
then
consider m be
object such that
A73: m
in (
dom E1) & (E1
. m)
= ((
omega
-exponent C2)
. n) by
FUNCT_1:def 3;
reconsider m as
Nat by
A73;
A74: m
in n
proof
assume not m
in n;
per cases by
ORDINAL1: 14;
suppose m
= n;
hence contradiction by
A71,
A73;
end;
suppose
A75: n
in m;
A76: m
in (
dom (
CantorNF a)) by
A73,
Def1;
then (
omega
-exponent ((
CantorNF a)
. m))
in (
omega
-exponent ((
CantorNF a)
. n)) by
A75,
ORDINAL5:def 11;
then (E1
. m)
in (
omega
-exponent ((
CantorNF a)
. n)) by
A76,
Def1;
hence contradiction by
A63,
A71,
A73,
Def1;
end;
end;
then m
in (
Segm n);
then
A77: m
< n by
NAT_1: 44;
A78: m
in (
dom A2) by
A61,
A74,
ORDINAL1: 10;
A79: m
in (
dom (
CantorNF a)) by
A63,
A74,
ORDINAL1: 10;
A80: m
in (
dom C2) by
A64,
A74,
ORDINAL1: 10;
A81: ((
omega
-exponent C2)
. m)
= (
omega
-exponent (C2
. m)) by
A64,
A74,
Def1,
ORDINAL1: 10
.= (
omega
-exponent (A2
. m)) by
A78,
FUNCT_1: 47
.= (
omega
-exponent ((
CantorNF a)
. m)) by
A61,
A77,
A78
.= (E1
. m) by
A79,
Def1;
(
omega
-exponent (C2
. n))
in (
omega
-exponent (C2
. m)) by
A64,
A74,
ORDINAL5:def 11;
then ((
omega
-exponent C2)
. n)
in (
omega
-exponent (C2
. m)) by
A64,
Def1;
then ((
omega
-exponent C2)
. n)
in ((
omega
-exponent C2)
. m) by
A80,
Def1;
hence contradiction by
A73,
A81;
end;
A82: n
in (
dom E1) by
A63,
Def1;
n
in (
dom E1) by
A63,
Def1;
then (
omega
-exponent (C2
. n))
in (
rng E1) by
A70,
FUNCT_1: 3;
then (
omega
-exponent (C2
. n))
in ((
rng E1)
\ (
rng E3)) by
A65,
XBOOLE_0:def 5;
then
A83: (
omega
-leading_coeff (C2
. n))
= (L1
. ((E1
" )
. (
omega
-exponent (C2
. n)))) by
A64,
Th78
.= (L1
. n) by
A70,
A82,
FUNCT_1: 34;
(A2
. n)
= (C2
. n) by
A62,
FUNCT_1: 49
.= ((L1
. n)
*^ (
exp (
omega ,(
omega
-exponent (C2
. n))))) by
A64,
A83,
Th64
.= ((
CantorNF a)
. n) by
A63,
A70,
Th65;
hence contradiction by
A61;
end;
for x be
object st x
in (
dom A1) holds (A1
. x)
= (A2
. x)
proof
let x be
object;
assume x
in (
dom A1);
then (A1
. x)
= ((
CantorNF a)
. x) & (A2
. x)
= ((
CantorNF a)
. x) by
A29,
A33,
A59;
hence thesis;
end;
then
A85: (
Sum^ A1)
= (
Sum^ A2) by
A29,
FUNCT_1: 2;
A86: (
omega
-exponent (C2
. i))
= c
proof
assume
A87: (
omega
-exponent (C2
. i))
<> c;
A88: not (
omega
-exponent (C2
. i))
in (
rng E3)
proof
not (
omega
-exponent (C2
. i))
in c
proof
assume
A89: (
omega
-exponent (C2
. i))
in c;
consider j be
object such that
A90: j
in (
dom (
omega
-exponent C2)) & ((
omega
-exponent C2)
. j)
= c by
A19,
FUNCT_1:def 3;
reconsider j as
Nat by
A90;
A91: j
in (
dom C2) by
A90,
Def1;
then
A92: (
omega
-exponent (C2
. j))
= c by
A90,
Def1;
per cases by
ORDINAL1: 14;
suppose
A93: j
in i;
then
A94: j
in (
Segm i);
((
CantorNF a)
. j)
= (A2
. j) by
A59,
A91,
A93,
RELAT_1: 57
.= (C2
. j) by
A93,
FUNCT_1: 49;
then
A95: c
= (
omega
-exponent ((
CantorNF a)
. j)) by
A92;
c
in (
omega
-exponent ((
CantorNF a)
. j)) by
A14,
A94,
NAT_1: 44;
hence contradiction by
A95;
end;
suppose j
= i;
hence contradiction by
A89,
A92;
end;
suppose i
in j;
hence contradiction by
A89,
A91,
A92,
ORDINAL5:def 11;
end;
end;
then
A96: c
in (
omega
-exponent (C2
. i)) by
A87,
ORDINAL1: 14;
assume (
omega
-exponent (C2
. i))
in (
rng E3);
then
consider k be
object such that
A97: k
in (
dom E3) & (E3
. k)
= (
omega
-exponent (C2
. i)) by
FUNCT_1:def 3;
reconsider k as
Nat by
A97;
(
omega
-exponent (
Sum^ (
CantorNF d)))
in (E3
. k) by
A96,
A97;
then (
omega
-exponent ((
CantorNF d)
.
0 ))
in (E3
. k) by
Th44;
then
A98: (E3
.
0 )
in (E3
. k) by
A15,
Def1;
per cases ;
suppose k
=
0 ;
hence contradiction by
A98;
end;
suppose
0
< k;
then
0
in (
Segm k) by
NAT_1: 44;
hence contradiction by
A97,
A98,
ORDINAL5:def 1;
end;
end;
(
omega
-exponent (C2
. i))
= (E1
. i)
proof
assume
A100: (
omega
-exponent (C2
. i))
<> (E1
. i);
i
in (
dom (
omega
-exponent C2)) by
A22,
Def1;
then ((
omega
-exponent C2)
. i)
in (
rng (
omega
-exponent C2)) by
FUNCT_1: 3;
then (
omega
-exponent (C2
. i))
in (
rng (
omega
-exponent C2)) by
A22,
Def1;
then (
omega
-exponent (C2
. i))
in ((
rng E1)
\/ (
rng E3)) by
Th76;
then (
omega
-exponent (C2
. i))
in (
rng E1) by
A88,
XBOOLE_0:def 3;
then
consider j be
object such that
A101: j
in (
dom E1) & (E1
. j)
= (
omega
-exponent (C2
. i)) by
FUNCT_1:def 3;
reconsider j as
Nat by
A101;
per cases by
XXREAL_0: 1;
suppose j
< i;
then
A102: j
in (
Segm i) by
NAT_1: 44;
then
A103: j
in (
dom (
CantorNF a)) by
A14,
ORDINAL1: 10;
i
in (
dom C1) & i
in (
dom C2) by
A14,
Th77,
TARSKI:def 3;
then j
in (
dom C1) & j
in (
dom C2) by
A102,
ORDINAL1: 10;
then
A104: j
in (
dom A1) & j
in (
dom A2) by
A102,
RELAT_1: 57;
then
A105: (
omega
-exponent (C2
. j))
= (
omega
-exponent (A2
. j)) by
FUNCT_1: 47
.= (
omega
-exponent ((
CantorNF a)
. j)) by
A59,
A104
.= (
omega
-exponent (C2
. i)) by
A101,
A103,
Def1;
i
in (
dom C2) by
A14,
Th77,
TARSKI:def 3;
then (
omega
-exponent (C2
. i))
in (
omega
-exponent (C2
. j)) by
A102,
ORDINAL5:def 11;
hence contradiction by
A105;
end;
suppose j
= i;
hence contradiction by
A100,
A101;
end;
suppose j
> i;
then i
in (
Segm j) by
NAT_1: 44;
then
A106: i
in j;
A107: j
in (
dom (
CantorNF a)) by
A101,
Def1;
then (
omega
-exponent ((
CantorNF a)
. j))
in (
omega
-exponent ((
CantorNF a)
. i)) by
A106,
ORDINAL5:def 11;
then (E1
. j)
in (
omega
-exponent ((
CantorNF a)
. i)) by
A107,
Def1;
then
A108: (
omega
-exponent (C2
. i))
in (E1
. i) by
A14,
A101,
Def1;
(E1
. i)
in (
rng E1) by
A21,
FUNCT_1: 3;
then
A109: (E1
. i)
in ((
rng E1)
\/ (
rng E3)) by
XBOOLE_1: 7,
TARSKI:def 3;
not (E1
. i)
in (
rng (
omega
-exponent A2))
proof
assume (E1
. i)
in (
rng (
omega
-exponent A2));
then
consider k be
object such that
A110: k
in (
dom (
omega
-exponent A2)) & ((
omega
-exponent A2)
. k)
= (E1
. i) by
FUNCT_1:def 3;
k
in (
dom A2) by
A110,
Def1;
then
A111: k
in i & k
in (
dom C2) by
RELAT_1: 57;
A112: (E1
. i)
= (((
omega
-exponent C2)
| i)
. k) by
A110,
Th48
.= ((
omega
-exponent C2)
. k) by
A111,
FUNCT_1: 49
.= (
omega
-exponent (C2
. k)) by
A111,
Def1;
A113: (
omega
-exponent (C2
. i))
in (
omega
-exponent (C2
. k)) by
A22,
A111,
ORDINAL5:def 11;
(E1
. i)
c= ((
omega
-exponent C2)
. i) by
Th97;
then (E1
. i)
c= (
omega
-exponent (C2
. i)) by
A22,
Def1;
hence contradiction by
A112,
A113,
ORDINAL1: 12;
end;
then (E1
. i)
in (
rng (
omega
-exponent B2)) by
A25,
A109,
XBOOLE_0:def 5;
then
consider k be
object such that
A114: k
in (
dom (
omega
-exponent B2)) & ((
omega
-exponent B2)
. k)
= (E1
. i) by
FUNCT_1:def 3;
reconsider k as
Nat by
A114;
A115: k
in (
dom B2) by
A114,
Def1;
then
A116: (E1
. i)
= (
omega
-exponent (B2
. k)) by
A114,
Def1
.= (
omega
-exponent (C2
. (k
+ i))) by
A115,
AFINSQ_2:def 2;
per cases ;
suppose k
=
0 ;
hence contradiction by
A108,
A116;
end;
suppose
0
< k;
then (
0
+ i)
< (k
+ i) by
XREAL_1: 8;
then i
in (
Segm (k
+ i)) by
NAT_1: 44;
then
A117: i
in (k
+ i);
k
in (
Segm (
len B2)) by
A115;
then k
< (
len B2) by
NAT_1: 44;
then k
< ((
len C2)
-' i) by
AFINSQ_2:def 2;
then
A118: (k
+ i)
< (((
len C2)
-' i)
+ i) by
XREAL_1: 8;
i
in (
Segm (
len C2)) by
A22;
then i
< (
len C2) by
NAT_1: 44;
then (k
+ i)
< (
len C2) by
A118,
XREAL_1: 235;
then (k
+ i)
in (
Segm (
len C2)) by
NAT_1: 44;
hence contradiction by
A108,
A116,
A117,
ORDINAL5:def 11;
end;
end;
end;
then (
omega
-exponent (C2
. i))
c= c by
A14,
Def1;
then
A119: (
omega
-exponent (C2
. i))
in c by
A87,
XBOOLE_0:def 8,
ORDINAL1: 11;
not c
in (
rng (
omega
-exponent A2))
proof
assume c
in (
rng (
omega
-exponent A2));
then
consider m be
object such that
A121: m
in (
dom (
omega
-exponent A2)) & ((
omega
-exponent A2)
. m)
= c by
FUNCT_1:def 3;
reconsider m as
Nat by
A121;
A122: m
in (
dom A2) by
A121,
Def1;
then
A123: m
in (
dom C2) & m
in i by
RELAT_1: 57;
c
= (
omega
-exponent (A2
. m)) by
A121,
A122,
Def1
.= (
omega
-exponent (C2
. m)) by
A122,
FUNCT_1: 47
.= ((
omega
-exponent C2)
. m) by
A123,
Def1;
then (E1
. m)
c= c by
Th97;
then
A125: (
omega
-exponent ((
CantorNF a)
. m))
c= c by
A14,
A123,
Def1,
ORDINAL1: 10;
m
in (
Segm i) by
A123;
then c
in (
omega
-exponent ((
CantorNF a)
. m)) by
A14,
NAT_1: 44;
then c
in c by
A125;
hence contradiction;
end;
then c
in (
rng (
omega
-exponent B2)) by
A18,
A25,
XBOOLE_0:def 5;
then
consider m be
object such that
A126: m
in (
dom (
omega
-exponent B2)) & ((
omega
-exponent B2)
. m)
= c by
FUNCT_1:def 3;
reconsider m as
Nat by
A126;
A127: m
in (
dom B2) by
A126,
Def1;
then
A128: c
= (
omega
-exponent (B2
. m)) by
A126,
Def1
.= (
omega
-exponent (C2
. (m
+ i))) by
A127,
AFINSQ_2:def 2;
per cases ;
suppose m
=
0 ;
hence contradiction by
A119,
A128;
end;
suppose m
>
0 ;
then (
0
+ i)
< (m
+ i) by
XREAL_1: 8;
then i
in (
Segm (m
+ i)) by
NAT_1: 44;
then
A129: i
in (m
+ i);
m
in (
Segm (
len B2)) by
A127;
then m
< (
len B2) by
NAT_1: 44;
then m
< ((
len C2)
-' i) by
AFINSQ_2:def 2;
then
A130: (m
+ i)
< (((
len C2)
-' i)
+ i) by
XREAL_1: 8;
i
in (
Segm (
len C2)) by
A22;
then i
< (
len C2) by
NAT_1: 44;
then (m
+ i)
< (
len C2) by
A130,
XREAL_1: 235;
then (m
+ i)
in (
Segm (
len C2)) by
NAT_1: 44;
hence contradiction by
A119,
A128,
A129,
ORDINAL5:def 11;
end;
end;
A131: (
omega
-exponent b)
= c implies (
omega
-exponent (C1
. i))
= c
proof
assume
A132: (
omega
-exponent b)
= c;
per cases ;
suppose b
<>
{} ;
then
A133:
0
in (
dom (
CantorNF b)) by
XBOOLE_1: 61,
ORDINAL1: 11;
then
0
in (
dom E2) by
Def1;
then (E2
.
0 )
in (
rng E2) by
FUNCT_1: 3;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (
rng E2) by
A133,
Def1;
then (
omega
-exponent (
Sum^ (
CantorNF b)))
in (
rng E2) by
Th44;
then
A134: c
in ((
rng E1)
\/ (
rng E2)) by
A132,
XBOOLE_0:def 3;
then
A135: c
in (
rng (
omega
-exponent C1)) by
Th76;
assume
A136: (
omega
-exponent (C1
. i))
<> c;
A137: not (
omega
-exponent (C1
. i))
in (
rng E2)
proof
not (
omega
-exponent (C1
. i))
in c
proof
assume
A138: (
omega
-exponent (C1
. i))
in c;
consider j be
object such that
A139: j
in (
dom (
omega
-exponent C1)) & ((
omega
-exponent C1)
. j)
= c by
A135,
FUNCT_1:def 3;
reconsider j as
Nat by
A139;
A140: j
in (
dom C1) by
A139,
Def1;
then
A141: (
omega
-exponent (C1
. j))
= c by
A139,
Def1;
per cases by
ORDINAL1: 14;
suppose
A142: j
in i;
then
A143: j
in (
Segm i);
((
CantorNF a)
. j)
= (A1
. j) by
A33,
A140,
A142,
RELAT_1: 57
.= (C1
. j) by
A142,
FUNCT_1: 49;
then
A144: c
= (
omega
-exponent ((
CantorNF a)
. j)) by
A141;
c
in (
omega
-exponent ((
CantorNF a)
. j)) by
A14,
A143,
NAT_1: 44;
hence contradiction by
A144;
end;
suppose j
= i;
hence contradiction by
A138,
A141;
end;
suppose i
in j;
hence contradiction by
A138,
A140,
A141,
ORDINAL5:def 11;
end;
end;
then
A145: c
in (
omega
-exponent (C1
. i)) by
A136,
ORDINAL1: 14;
assume (
omega
-exponent (C1
. i))
in (
rng E2);
then
consider k be
object such that
A146: k
in (
dom E2) & (E2
. k)
= (
omega
-exponent (C1
. i)) by
FUNCT_1:def 3;
reconsider k as
Nat by
A146;
0
in (
dom E2) by
A146,
XBOOLE_1: 61,
ORDINAL1: 11;
then
A147:
0
in (
dom (
CantorNF b)) by
Def1;
(
omega
-exponent (
Sum^ (
CantorNF b)))
in (E2
. k) by
A132,
A145,
A146;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (E2
. k) by
Th44;
then
A148: (E2
.
0 )
in (E2
. k) by
A147,
Def1;
per cases ;
suppose k
=
0 ;
hence contradiction by
A148;
end;
suppose
0
< k;
then
0
in (
Segm k) by
NAT_1: 44;
hence contradiction by
A146,
A148,
ORDINAL5:def 1;
end;
end;
(
omega
-exponent (C1
. i))
= (E1
. i)
proof
assume
A150: (
omega
-exponent (C1
. i))
<> (E1
. i);
i
in (
dom (
omega
-exponent C1)) by
A22,
Def1;
then ((
omega
-exponent C1)
. i)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then (
omega
-exponent (C1
. i))
in (
rng (
omega
-exponent C1)) by
A22,
Def1;
then (
omega
-exponent (C1
. i))
in ((
rng E1)
\/ (
rng E2)) by
Th76;
then (
omega
-exponent (C1
. i))
in (
rng E1) by
A137,
XBOOLE_0:def 3;
then
consider j be
object such that
A151: j
in (
dom E1) & (E1
. j)
= (
omega
-exponent (C1
. i)) by
FUNCT_1:def 3;
reconsider j as
Nat by
A151;
per cases by
XXREAL_0: 1;
suppose j
< i;
then
A152: j
in (
Segm i) by
NAT_1: 44;
then
A153: j
in (
dom (
CantorNF a)) by
A14,
ORDINAL1: 10;
i
in (
dom C2) & i
in (
dom C1) by
A14,
Th77,
TARSKI:def 3;
then j
in (
dom C2) & j
in (
dom C1) by
A152,
ORDINAL1: 10;
then
A154: j
in (
dom A1) & j
in (
dom A2) by
A152,
RELAT_1: 57;
then
A155: (
omega
-exponent (C1
. j))
= (
omega
-exponent (A1
. j)) by
FUNCT_1: 47
.= (
omega
-exponent ((
CantorNF a)
. j)) by
A33,
A154
.= (
omega
-exponent (C1
. i)) by
A151,
A153,
Def1;
i
in (
dom C1) by
A14,
Th77,
TARSKI:def 3;
then (
omega
-exponent (C1
. i))
in (
omega
-exponent (C1
. j)) by
A152,
ORDINAL5:def 11;
hence contradiction by
A155;
end;
suppose j
= i;
hence contradiction by
A150,
A151;
end;
suppose j
> i;
then i
in (
Segm j) by
NAT_1: 44;
then
A156: i
in j;
A157: j
in (
dom (
CantorNF a)) by
A151,
Def1;
then (
omega
-exponent ((
CantorNF a)
. j))
in (
omega
-exponent ((
CantorNF a)
. i)) by
A156,
ORDINAL5:def 11;
then (E1
. j)
in (
omega
-exponent ((
CantorNF a)
. i)) by
A157,
Def1;
then
A158: (
omega
-exponent (C1
. i))
in (E1
. i) by
A14,
A151,
Def1;
(E1
. i)
in (
rng E1) by
A21,
FUNCT_1: 3;
then
A159: (E1
. i)
in ((
rng E1)
\/ (
rng E2)) by
XBOOLE_1: 7,
TARSKI:def 3;
not (E1
. i)
in (
rng (
omega
-exponent A1))
proof
assume (E1
. i)
in (
rng (
omega
-exponent A1));
then
consider k be
object such that
A160: k
in (
dom (
omega
-exponent A1)) & ((
omega
-exponent A1)
. k)
= (E1
. i) by
FUNCT_1:def 3;
k
in (
dom A1) by
A160,
Def1;
then
A161: k
in i & k
in (
dom C1) by
RELAT_1: 57;
A162: (E1
. i)
= (((
omega
-exponent C1)
| i)
. k) by
A160,
Th48
.= ((
omega
-exponent C1)
. k) by
A161,
FUNCT_1: 49
.= (
omega
-exponent (C1
. k)) by
A161,
Def1;
A163: (
omega
-exponent (C1
. i))
in (
omega
-exponent (C1
. k)) by
A22,
A161,
ORDINAL5:def 11;
(E1
. i)
c= ((
omega
-exponent C1)
. i) by
Th97;
then (E1
. i)
c= (
omega
-exponent (C1
. i)) by
A22,
Def1;
hence contradiction by
A162,
A163,
ORDINAL1: 12;
end;
then (E1
. i)
in (
rng (
omega
-exponent B1)) by
A28,
A159,
XBOOLE_0:def 5;
then
consider k be
object such that
A164: k
in (
dom (
omega
-exponent B1)) & ((
omega
-exponent B1)
. k)
= (E1
. i) by
FUNCT_1:def 3;
reconsider k as
Nat by
A164;
A165: k
in (
dom B1) by
A164,
Def1;
then
A166: (E1
. i)
= (
omega
-exponent (B1
. k)) by
A164,
Def1
.= (
omega
-exponent (C1
. (k
+ i))) by
A165,
AFINSQ_2:def 2;
per cases ;
suppose k
=
0 ;
hence contradiction by
A158,
A166;
end;
suppose
0
< k;
then (
0
+ i)
< (k
+ i) by
XREAL_1: 8;
then i
in (
Segm (k
+ i)) by
NAT_1: 44;
then
A167: i
in (k
+ i);
k
in (
Segm (
len B1)) by
A165;
then k
< (
len B1) by
NAT_1: 44;
then k
< ((
len C1)
-' i) by
AFINSQ_2:def 2;
then
A168: (k
+ i)
< (((
len C1)
-' i)
+ i) by
XREAL_1: 8;
i
in (
Segm (
len C1)) by
A22;
then i
< (
len C1) by
NAT_1: 44;
then (k
+ i)
< (
len C1) by
A168,
XREAL_1: 235;
then (k
+ i)
in (
Segm (
len C1)) by
NAT_1: 44;
hence contradiction by
A158,
A166,
A167,
ORDINAL5:def 11;
end;
end;
end;
then (
omega
-exponent (C1
. i))
c= c by
A14,
Def1;
then
A169: (
omega
-exponent (C1
. i))
in c by
ORDINAL1: 11,
A136,
XBOOLE_0:def 8;
not c
in (
rng (
omega
-exponent A1))
proof
assume c
in (
rng (
omega
-exponent A1));
then
consider m be
object such that
A171: m
in (
dom (
omega
-exponent A1)) & ((
omega
-exponent A1)
. m)
= c by
FUNCT_1:def 3;
reconsider m as
Nat by
A171;
A172: m
in (
dom A1) by
A171,
Def1;
then
A173: m
in (
dom C1) & m
in i by
RELAT_1: 57;
c
= (
omega
-exponent (A1
. m)) by
A171,
A172,
Def1
.= (
omega
-exponent (C1
. m)) by
A172,
FUNCT_1: 47
.= ((
omega
-exponent C1)
. m) by
A173,
Def1;
then (E1
. m)
c= c by
Th97;
then
A175: (
omega
-exponent ((
CantorNF a)
. m))
c= c by
Def1,
A14,
A173,
ORDINAL1: 10;
m
in (
Segm i) by
A173;
then c
in (
omega
-exponent ((
CantorNF a)
. m)) by
A14,
NAT_1: 44;
then c
in c by
A175;
hence contradiction;
end;
then c
in (
rng (
omega
-exponent B1)) by
A134,
A28,
XBOOLE_0:def 5;
then
consider m be
object such that
A176: m
in (
dom (
omega
-exponent B1)) & ((
omega
-exponent B1)
. m)
= c by
FUNCT_1:def 3;
reconsider m as
Nat by
A176;
A177: m
in (
dom B1) by
A176,
Def1;
then
A178: c
= (
omega
-exponent (B1
. m)) by
A176,
Def1
.= (
omega
-exponent (C1
. (m
+ i))) by
A177,
AFINSQ_2:def 2;
per cases ;
suppose m
=
0 ;
hence contradiction by
A169,
A178;
end;
suppose m
>
0 ;
then (
0
+ i)
< (m
+ i) by
XREAL_1: 8;
then i
in (
Segm (m
+ i)) by
NAT_1: 44;
then
A179: i
in (m
+ i);
m
in (
Segm (
len B1)) by
A177;
then m
< (
len B1) by
NAT_1: 44;
then m
< ((
len C1)
-' i) by
AFINSQ_2:def 2;
then
A180: (m
+ i)
< (((
len C1)
-' i)
+ i) by
XREAL_1: 8;
i
in (
Segm (
len C1)) by
A22;
then i
< (
len C1) by
NAT_1: 44;
then (m
+ i)
< (
len C1) by
A180,
XREAL_1: 235;
then (m
+ i)
in (
Segm (
len C1)) by
NAT_1: 44;
hence contradiction by
A169,
A178,
A179,
ORDINAL5:def 11;
end;
end;
suppose
A181: b
=
{} ;
then
A182: c
=
0 by
A132,
ORDINAL5:def 10;
assume (
omega
-exponent (C1
. i))
<> c;
hence contradiction by
A14,
A182,
A181,
Th82;
end;
end;
A183: (
Sum^ B1)
in (C2
. i)
proof
per cases by
ORDINAL1: 16;
suppose
A184: B1
<>
{} & c
c= (
omega
-exponent ((
CantorNF a)
. i));
then
consider b0 be
Cantor-component
Ordinal, B0 be
Cantor-normal-form
Ordinal-Sequence such that
A185: B1
= (
<%b0%>
^ B0) by
ORDINAL5: 67;
A186: (
omega
-exponent (C2
. i))
= (
omega
-exponent ((
CantorNF a)
. i)) by
A14,
A86,
A184,
XBOOLE_0:def 10
.= (E1
. i) by
A14,
Def1;
then (
omega
-exponent (C2
. i))
in (
rng E1) by
A21,
FUNCT_1: 3;
then (
omega
-exponent (C2
. i))
in ((
rng E1)
/\ (
rng E3)) by
A17,
A86,
XBOOLE_0:def 4;
then (
omega
-leading_coeff (C2
. i))
= ((L1
. ((E1
" )
. (
omega
-exponent (C2
. i))))
+ (L3
. ((E3
" )
. (
omega
-exponent (C2
. i))))) by
A22,
Th80
.= ((L1
. i)
+ (L3
. ((E3
" )
. c))) by
A21,
A86,
A186,
FUNCT_1: 34
.= ((L1
. i)
+ (L3
.
0 )) by
A16,
A20,
FUNCT_1: 34;
then
A188: (C2
. i)
= (((L1
. i)
+ (L3
.
0 ))
*^ (
exp (
omega ,c))) by
A22,
A86,
Th64
.= (((L1
. i)
+^ (L3
.
0 ))
*^ (
exp (
omega ,c))) by
CARD_2: 36
.= (((L1
. i)
*^ (
exp (
omega ,c)))
+^ ((L3
.
0 )
*^ (
exp (
omega ,c)))) by
ORDINAL3: 46;
0
in (
dom L3) by
A15,
Def3;
then (L3
.
0 )
<>
{} by
FUNCT_1:def 9;
then
A189:
0
in (L3
.
0 ) by
XBOOLE_1: 61,
ORDINAL1: 11;
per cases by
ORDINAL1: 16;
suppose
A190: (
omega
-exponent b)
in c;
c
c= ((
omega
-exponent C1)
. i) by
A86,
A186,
Th97;
then
A191: c
c= (
omega
-exponent (C1
. i)) by
A22,
Def1;
A192: not (
omega
-exponent (C1
. i))
in (
rng E2)
proof
assume (
omega
-exponent (C1
. i))
in (
rng E2);
then
consider j be
object such that
A193: j
in (
dom E2) & (E2
. j)
= (
omega
-exponent (C1
. i)) by
FUNCT_1:def 3;
reconsider j as
Nat by
A193;
A194: j
in (
dom (
CantorNF b)) by
A193,
Def1;
per cases ;
suppose j
=
0 ;
then (
omega
-exponent (C1
. i))
= (
omega
-exponent ((
CantorNF b)
.
0 )) by
A193,
A194,
Def1
.= (
omega
-exponent (
Sum^ (
CantorNF b))) by
Th44
.= (
omega
-exponent b);
hence contradiction by
A190,
A191,
ORDINAL1: 12;
end;
suppose
0
< j;
then
0
in (
Segm j) by
NAT_1: 44;
then (
omega
-exponent ((
CantorNF b)
. j))
in (
omega
-exponent ((
CantorNF b)
.
0 )) by
A194,
ORDINAL5:def 11;
then (
omega
-exponent (C1
. i))
in (
omega
-exponent ((
CantorNF b)
.
0 )) by
A193,
A194,
Def1;
then (
omega
-exponent (C1
. i))
in (
omega
-exponent (
Sum^ (
CantorNF b))) by
Th44;
hence contradiction by
A190,
A191;
end;
end;
i
in (
dom (
omega
-exponent C1)) by
A22,
Def1;
then ((
omega
-exponent C1)
. i)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then (
omega
-exponent (C1
. i))
in (
rng (
omega
-exponent C1)) by
A22,
Def1;
then (
omega
-exponent (C1
. i))
in ((
rng E1)
\/ (
rng E2)) by
Th76;
then
A195: (
omega
-exponent (C1
. i))
in (
rng E1) by
A192,
XBOOLE_0:def 3;
then
consider j be
object such that
A196: j
in (
dom E1) & (E1
. j)
= (
omega
-exponent (C1
. i)) by
FUNCT_1:def 3;
reconsider j as
Nat by
A196;
A197: j
in (
dom (
CantorNF a)) by
A196,
Def1;
A198: i
= j
proof
assume i
<> j;
per cases by
XXREAL_0: 1;
suppose i
< j;
then i
in (
Segm j) by
NAT_1: 44;
then (
omega
-exponent ((
CantorNF a)
. j))
in (
omega
-exponent ((
CantorNF a)
. i)) by
A197,
ORDINAL5:def 11;
then (E1
. j)
in (
omega
-exponent ((
CantorNF a)
. i)) by
A197,
Def1;
then (
omega
-exponent (C1
. i))
in (E1
. i) by
A14,
A196,
Def1;
then ((
omega
-exponent C1)
. i)
in (E1
. i) by
A22,
Def1;
then ((
omega
-exponent C1)
. i)
in ((
omega
-exponent C1)
. i) by
Th97,
TARSKI:def 3;
hence contradiction;
end;
suppose j
< i;
then j
in (
Segm i) by
NAT_1: 44;
then
A199: j
in i;
j
in (
dom C1) by
A197,
Th77,
TARSKI:def 3;
then ((
CantorNF a)
. j)
= (A1
. j) by
A33,
A199,
RELAT_1: 57
.= (C1
. j) by
A199,
FUNCT_1: 49;
then
A200: (
omega
-exponent (C1
. j))
= (
omega
-exponent (C1
. i)) by
A196,
A197,
Def1;
(
omega
-exponent (C1
. i))
in (
omega
-exponent (C1
. j)) by
A22,
A199,
ORDINAL5:def 11;
hence contradiction by
A200;
end;
end;
then
A201: (
omega
-exponent (C1
. i))
= (
omega
-exponent ((
CantorNF a)
. i)) by
A14,
A196,
Def1
.= c by
A14,
A184,
XBOOLE_0:def 10;
(
omega
-exponent (C1
. i))
in ((
rng E1)
\ (
rng E2)) by
A192,
A195,
XBOOLE_0:def 5;
then (
omega
-leading_coeff (C1
. i))
= (L1
. ((E1
" )
. (
omega
-exponent (C1
. i)))) by
A22,
Th78
.= (L1
. i) by
A196,
A198,
FUNCT_1: 34;
then
A202: (C1
. i)
= ((L1
. i)
*^ (
exp (
omega ,c))) by
A22,
A201,
Th64;
A203:
0
in (
dom B1) by
A184,
XBOOLE_1: 61,
ORDINAL1: 11;
A204: b0
= (B1
.
0 ) by
A185,
AFINSQ_1: 35
.= (C1
. (
0
+ i)) by
A203,
AFINSQ_2:def 2;
then (b0
+^ (
Sum^ B0))
in (b0
+^ (
exp (
omega ,c))) by
ORDINAL2: 32,
A185,
A201,
Th43;
then
A205: (
Sum^ B1)
in (((L1
. i)
*^ (
exp (
omega ,c)))
+^ (
exp (
omega ,c))) by
A202,
A185,
A204,
ORDINAL5: 55;
1
c= (L3
.
0 ) by
A189,
CARD_1: 49,
ZFMISC_1: 31;
then (1
*^ (
exp (
omega ,c)))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 41;
then (
exp (
omega ,c))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 39;
then (((L1
. i)
*^ (
exp (
omega ,c)))
+^ (
exp (
omega ,c)))
c= (((L1
. i)
*^ (
exp (
omega ,c)))
+^ ((L3
.
0 )
*^ (
exp (
omega ,c)))) by
ORDINAL2: 33;
hence (
Sum^ B1)
in (C2
. i) by
A188,
A205;
end;
suppose c
c= (
omega
-exponent b);
then
A206: c
= (
omega
-exponent b) by
A2,
XBOOLE_0:def 10;
then
A207: (
omega
-exponent (C1
. i))
= c by
A131;
A208:
0
in (
dom B1) by
A184,
XBOOLE_1: 61,
ORDINAL1: 11;
(
exp (
omega ,(
omega
-exponent b0)))
= (
exp (
omega ,(
omega
-exponent (B1
.
0 )))) by
A185,
AFINSQ_1: 35
.= (
exp (
omega ,(
omega
-exponent (C1
. (
0
+ i))))) by
A208,
AFINSQ_2:def 2
.= (1
*^ (
exp (
omega ,c))) by
A131,
A206,
ORDINAL2: 39;
then
A209: (
Sum^ B0)
in (1
*^ (
exp (
omega ,c))) by
A185,
Th43;
A210: (
omega
-exponent (C1
. i))
= (
omega
-exponent ((
CantorNF a)
. i)) by
A14,
A131,
A184,
A206,
XBOOLE_0:def 10
.= (E1
. i) by
A14,
Def1;
then
A211: (
omega
-exponent (C1
. i))
in (
rng E1) by
A21,
FUNCT_1: 3;
per cases ;
suppose b
<>
{} ;
then
A212:
0
in (
dom (
CantorNF b)) by
XBOOLE_1: 61,
ORDINAL1: 11;
then
A213:
0
in (
dom E2) by
Def1;
then (E2
.
0 )
in (
rng E2) by
FUNCT_1: 3;
then (
omega
-exponent ((
CantorNF b)
.
0 ))
in (
rng E2) by
A212,
Def1;
then (
omega
-exponent (
Sum^ (
CantorNF b)))
in (
rng E2) by
Th44;
then
A214: c
in (
rng E2) by
A206;
A215: c
= (
omega
-exponent (
Sum^ (
CantorNF b))) by
A206
.= (
omega
-exponent ((
CantorNF b)
.
0 )) by
Th44
.= (E2
.
0 ) by
A212,
Def1;
(
omega
-exponent (C1
. i))
in ((
rng E1)
/\ (
rng E2)) by
A131,
A206,
A211,
A214,
XBOOLE_0:def 4;
then (
omega
-leading_coeff (C1
. i))
= ((L1
. ((E1
" )
. (
omega
-exponent (C1
. i))))
+ (L2
. ((E2
" )
. (
omega
-exponent (C1
. i))))) by
A22,
Th80
.= ((L1
. i)
+ (L2
. ((E2
" )
. c))) by
A21,
A131,
A206,
A210,
FUNCT_1: 34
.= ((L1
. i)
+ (L2
.
0 )) by
A213,
A215,
FUNCT_1: 34;
then
A216: (C1
. i)
= (((L1
. i)
+ (L2
.
0 ))
*^ (
exp (
omega ,(
omega
-exponent (C1
. i))))) by
A22,
Th64
.= (((L1
. i)
+^ (L2
.
0 ))
*^ (
exp (
omega ,c))) by
A131,
A206,
CARD_2: 36
.= (((L1
. i)
*^ (
exp (
omega ,c)))
+^ ((L2
.
0 )
*^ (
exp (
omega ,c)))) by
ORDINAL3: 46;
(L2
.
0 )
in (L3
.
0 )
proof
assume not (L2
.
0 )
in (L3
.
0 );
then
A217: (L3
.
0 )
c= (L2
.
0 ) by
ORDINAL1: 16;
then
0
in (
dom L2) by
FUNCT_1:def 2,
A189;
then
A218:
0
in (
dom (
CantorNF b)) by
Def3;
(L3
.
0 )
in (L2
.
0 )
proof
assume not (L3
.
0 )
in (L2
.
0 );
then (L2
.
0 )
c= (L3
.
0 ) by
ORDINAL1: 16;
then (L2
.
0 )
= (L3
.
0 ) by
A217,
XBOOLE_0:def 10;
then ((
CantorNF d)
.
0 )
= ((L2
.
0 )
*^ (
exp (
omega ,c))) by
A15,
A20,
Th65
.= ((
CantorNF b)
.
0 ) by
A215,
A218,
Th65;
hence contradiction by
A1;
end;
then (L3
.
0 )
in (
Segm (L2
.
0 ));
then (L3
.
0 )
< (L2
.
0 ) by
NAT_1: 44;
then ((L3
.
0 )
+ 1)
<= (L2
.
0 ) by
NAT_1: 13;
then (
Segm ((L3
.
0 )
+ 1))
c= (
Segm (L2
.
0 )) by
NAT_1: 39;
then (((L3
.
0 )
+ 1)
*^ (
exp (
omega ,c)))
c= ((L2
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 41;
then (((L3
.
0 )
+ 1)
*^ (
exp (
omega ,c)))
c= ((
CantorNF b)
.
0 ) by
A215,
A218,
Th65;
then (((L3
.
0 )
+^ 1)
*^ (
exp (
omega ,c)))
c= ((
CantorNF b)
.
0 ) by
CARD_2: 36;
then (((L3
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c))))
c= ((
CantorNF b)
.
0 ) by
ORDINAL3: 46;
then
A220: (((
CantorNF d)
.
0 )
+^ (1
*^ (
exp (
omega ,c))))
c= ((
CantorNF b)
.
0 ) by
A15,
A20,
Th65;
consider d0 be
Cantor-component
Ordinal, D0 be
Cantor-normal-form
Ordinal-Sequence such that
A221: (
CantorNF d)
= (
<%d0%>
^ D0) by
A1,
ORDINAL5: 67;
(
exp (
omega ,(
omega
-exponent d0)))
= (
exp (
omega ,(
omega
-exponent ((
CantorNF d)
.
0 )))) by
A221,
AFINSQ_1: 35
.= (
exp (
omega ,(E3
.
0 ))) by
A15,
Def1
.= (1
*^ (
exp (
omega ,c))) by
A20,
ORDINAL2: 39;
then (((
CantorNF d)
.
0 )
+^ (
Sum^ D0))
in (((
CantorNF d)
.
0 )
+^ (1
*^ (
exp (
omega ,c)))) by
A221,
Th43,
ORDINAL2: 32;
then (((
CantorNF d)
.
0 )
+^ (
Sum^ D0))
in ((
CantorNF b)
.
0 ) by
A220;
then (d0
+^ (
Sum^ D0))
in ((
CantorNF b)
.
0 ) by
A221,
AFINSQ_1: 35;
then (
Sum^ (
CantorNF d))
in ((
CantorNF b)
.
0 ) by
A221,
ORDINAL5: 55;
then d
in (
Sum^ (
CantorNF b)) by
ORDINAL5: 56,
TARSKI:def 3;
hence contradiction by
A1;
end;
then (L2
.
0 )
in (
Segm (L3
.
0 ));
then (L2
.
0 )
< (L3
.
0 ) by
NAT_1: 44;
then ((L2
.
0 )
+ 1)
<= (L3
.
0 ) by
NAT_1: 13;
then (
Segm ((L2
.
0 )
+ 1))
c= (
Segm (L3
.
0 )) by
NAT_1: 39;
then (((L2
.
0 )
+ 1)
*^ (
exp (
omega ,c)))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 41;
then (((L2
.
0 )
+^ 1)
*^ (
exp (
omega ,c)))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
CARD_2: 36;
then (((L2
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c))))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL3: 46;
then (((L1
. i)
*^ (
exp (
omega ,c)))
+^ (((L2
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c)))))
c= (C2
. i) by
A188,
ORDINAL2: 33;
then
A222: ((C1
. i)
+^ (1
*^ (
exp (
omega ,c))))
c= (C2
. i) by
A216,
ORDINAL3: 30;
((C1
. i)
+^ (
Sum^ B0))
in ((C1
. i)
+^ (1
*^ (
exp (
omega ,c)))) by
A209,
ORDINAL2: 32;
then ((C1
. (
0
+ i))
+^ (
Sum^ B0))
in (C2
. i) by
A222;
then ((B1
.
0 )
+^ (
Sum^ B0))
in (C2
. i) by
A208,
AFINSQ_2:def 2;
then (b0
+^ (
Sum^ B0))
in (C2
. i) by
A185,
AFINSQ_1: 35;
hence (
Sum^ B1)
in (C2
. i) by
A185,
ORDINAL5: 55;
end;
suppose b
=
{} ;
then
A223: not (
omega
-exponent (C1
. i))
in (
rng E2);
i
in (
dom (
omega
-exponent C1)) by
A22,
Def1;
then ((
omega
-exponent C1)
. i)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then ((
omega
-exponent C1)
. i)
in ((
rng E1)
\/ (
rng E2)) by
Th76;
then (
omega
-exponent (C1
. i))
in ((
rng E1)
\/ (
rng E2)) by
A22,
Def1;
then (
omega
-exponent (C1
. i))
in (
rng E1) or (
omega
-exponent (C1
. i))
in (
rng E2) by
XBOOLE_0:def 3;
then (
omega
-exponent (C1
. i))
in ((
rng E1)
\ (
rng E2)) by
A223,
XBOOLE_0:def 5;
then
A224: (
omega
-leading_coeff (C1
. i))
= (L1
. ((E1
" )
. (
omega
-exponent (C1
. i)))) by
A22,
Th78
.= (L1
. i) by
A21,
A210,
FUNCT_1: 34;
1
c= (L3
.
0 ) by
A189,
ZFMISC_1: 31,
CARD_1: 49;
then (1
*^ (
exp (
omega ,c)))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 41;
then (((L1
. i)
*^ (
exp (
omega ,c)))
+^ (
Sum^ B0))
in (C2
. i) by
A209,
A188,
ORDINAL2: 32;
then ((C1
. (
0
+ i))
+^ (
Sum^ B0))
in (C2
. i) by
A22,
A207,
A224,
Th64;
then ((B1
.
0 )
+^ (
Sum^ B0))
in (C2
. i) by
A208,
AFINSQ_2:def 2;
then (b0
+^ (
Sum^ B0))
in (C2
. i) by
A185,
AFINSQ_1: 35;
hence (
Sum^ B1)
in (C2
. i) by
A185,
ORDINAL5: 55;
end;
end;
end;
suppose
A225: B1
<>
{} & (
omega
-exponent ((
CantorNF a)
. i))
in c;
A226: (C2
. i) is
Cantor-component by
A22,
ORDINAL5:def 11;
per cases by
ORDINAL1: 16;
suppose
A227: (
omega
-exponent b)
in c;
A228: (
omega
-exponent (C1
. i))
in c
proof
assume not (
omega
-exponent (C1
. i))
in c;
then
A229: c
c= (
omega
-exponent (C1
. i)) by
ORDINAL1: 16;
i
in (
dom (
omega
-exponent C1)) by
A22,
Def1;
then ((
omega
-exponent C1)
. i)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then (
omega
-exponent (C1
. i))
in (
rng (
omega
-exponent C1)) by
A22,
Def1;
then (
omega
-exponent (C1
. i))
in ((
rng E1)
\/ (
rng E2)) by
Th76;
per cases by
XBOOLE_0:def 3;
suppose (
omega
-exponent (C1
. i))
in (
rng E1);
then
consider j be
object such that
A230: j
in (
dom E1) & (E1
. j)
= (
omega
-exponent (C1
. i)) by
FUNCT_1:def 3;
reconsider j as
Nat by
A230;
A231: j
in (
dom (
CantorNF a)) by
A230,
Def1;
then
A232: j
in (
dom C1) by
Th77,
TARSKI:def 3;
A233: (
omega
-exponent (C1
. i))
= (
omega
-exponent ((
CantorNF a)
. j)) by
A230,
A231,
Def1;
per cases by
ORDINAL1: 14;
suppose
A234: j
in i;
then ((
CantorNF a)
. j)
= (A1
. j) by
A33,
A232,
RELAT_1: 57
.= (C1
. j) by
A234,
FUNCT_1: 49;
then
A235: (
omega
-exponent (C1
. i))
= (
omega
-exponent (C1
. j)) by
A233;
(
omega
-exponent (C1
. i))
in (
omega
-exponent (C1
. j)) by
A22,
A234,
ORDINAL5:def 11;
hence contradiction by
A235;
end;
suppose j
= i;
hence contradiction by
A225,
A229,
A233,
ORDINAL1: 12;
end;
suppose i
in j;
then (
omega
-exponent ((
CantorNF a)
. j))
in (
omega
-exponent ((
CantorNF a)
. i)) by
A231,
ORDINAL5:def 11;
hence contradiction by
A229,
A233,
A225;
end;
end;
suppose (
omega
-exponent (C1
. i))
in (
rng E2);
then
consider j be
object such that
A236: j
in (
dom E2) & (E2
. j)
= (
omega
-exponent (C1
. i)) by
FUNCT_1:def 3;
reconsider j as
Nat by
A236;
A237: j
in (
dom (
CantorNF b)) by
A236,
Def1;
then
A238: (
omega
-exponent (C1
. i))
= (
omega
-exponent ((
CantorNF b)
. j)) by
A236,
Def1;
per cases ;
suppose j
=
0 ;
then (
omega
-exponent (C1
. i))
= (
omega
-exponent (
Sum^ (
CantorNF b))) by
A238,
Th44
.= (
omega
-exponent b);
hence contradiction by
A227,
A229,
ORDINAL1: 12;
end;
suppose
0
< j;
then
0
in (
Segm j) by
NAT_1: 44;
then (
omega
-exponent (C1
. i))
in (
omega
-exponent ((
CantorNF b)
.
0 )) by
A237,
A238,
ORDINAL5:def 11;
then (
omega
-exponent (C1
. i))
in (
omega
-exponent (
Sum^ (
CantorNF b))) by
Th44;
hence contradiction by
A227,
A229;
end;
end;
end;
now
let j be
Ordinal;
assume
A239: j
in (
dom B1);
then
reconsider m = j as
Nat;
A240: (B1
. j) is
Cantor-component by
A239,
ORDINAL5:def 11;
per cases ;
suppose m
=
0 ;
then (
omega
-exponent (B1
. m))
= (
omega
-exponent (C1
. (
0
+ i))) by
A239,
AFINSQ_2:def 2;
then (
exp (
omega ,(
omega
-exponent (B1
. j))))
in (
exp (
omega ,c)) by
A228,
ORDINAL4: 24;
then ((
omega
-leading_coeff (B1
. j))
*^ (
exp (
omega ,(
omega
-exponent (B1
. j)))))
in (
exp (
omega ,c)) by
A240,
Th42;
hence (B1
. j)
in (
exp (
omega ,c)) by
A240,
Th59;
end;
suppose
0
< m;
then
0
in (
Segm j) by
NAT_1: 44;
then
A242:
0
in j;
0
in (
dom B1) by
A239,
XBOOLE_1: 61,
ORDINAL1: 11;
then (B1
.
0 )
= (C1
. (
0
+ i)) by
AFINSQ_2:def 2;
then (
omega
-exponent (B1
. j))
in (
omega
-exponent (C1
. i)) by
A239,
A242,
ORDINAL5:def 11;
then (
omega
-exponent (B1
. j))
in c by
A228,
ORDINAL1: 10;
then (
exp (
omega ,(
omega
-exponent (B1
. j))))
in (
exp (
omega ,c)) by
ORDINAL4: 24;
then ((
omega
-leading_coeff (B1
. j))
*^ (
exp (
omega ,(
omega
-exponent (B1
. j)))))
in (
exp (
omega ,c)) by
A240,
Th42;
hence (B1
. j)
in (
exp (
omega ,c)) by
A240,
Th59;
end;
end;
then (
Sum^ B1)
in (
exp (
omega ,(
omega
-exponent (C2
. i)))) by
A86,
Th41;
then (
Sum^ B1)
in ((
omega
-leading_coeff (C2
. i))
*^ (
exp (
omega ,(
omega
-exponent (C2
. i))))) by
A226,
ORDINAL3: 32;
hence (
Sum^ B1)
in (C2
. i) by
A226,
Th59;
end;
suppose c
c= (
omega
-exponent b);
then
A243: (
omega
-exponent b)
= c by
A2,
XBOOLE_0:def 10;
then
A244: (
omega
-exponent (C1
. i))
= c by
A131;
A245: not c
in (
rng E1)
proof
assume c
in (
rng E1);
then
consider j be
object such that
A246: j
in (
dom E1) & (E1
. j)
= c by
FUNCT_1:def 3;
reconsider j as
Nat by
A246;
A247: j
in (
dom (
CantorNF a)) by
A246,
Def1;
then
A248: (
omega
-exponent ((
CantorNF a)
. j))
= c by
A246,
Def1;
per cases by
ORDINAL1: 14;
suppose i
in j;
hence contradiction by
A225,
A247,
A248,
ORDINAL5:def 11;
end;
suppose i
= j;
hence contradiction by
A225,
A248;
end;
suppose j
in i;
then j
in (
Segm i);
then c
in (
omega
-exponent ((
CantorNF a)
. j)) by
A14,
NAT_1: 44;
hence contradiction by
A248;
end;
end;
i
in (
dom (
omega
-exponent C1)) by
A22,
Def1;
then ((
omega
-exponent C1)
. i)
in (
rng (
omega
-exponent C1)) by
FUNCT_1: 3;
then (
omega
-exponent (C1
. i))
in (
rng (
omega
-exponent C1)) by
A22,
Def1;
then
A249: (
omega
-exponent (C1
. i))
in ((
rng E1)
\/ (
rng E2)) by
Th76;
then b
<>
{} by
A244,
A245,
XBOOLE_0:def 3;
then
A250:
0
in (
dom (
CantorNF b)) by
XBOOLE_1: 61,
ORDINAL1: 11;
then
A251:
0
in (
dom E2) by
Def1;
A252: c
= (
omega
-exponent (
Sum^ (
CantorNF b))) by
A243
.= (
omega
-exponent ((
CantorNF b)
.
0 )) by
Th44
.= (E2
.
0 ) by
A250,
Def1;
(
omega
-exponent (C1
. i))
in (
rng E1) or (
omega
-exponent (C1
. i))
in (
rng E2) by
A249,
XBOOLE_0:def 3;
then (
omega
-exponent (C1
. i))
in ((
rng E2)
\ (
rng E1)) by
A244,
A245,
XBOOLE_0:def 5;
then
A253: (
omega
-leading_coeff (C1
. i))
= (L2
. ((E2
" )
. (E2
.
0 ))) by
A22,
A244,
A252,
Th79
.= (L2
.
0 ) by
A251,
FUNCT_1: 34;
(
omega
-exponent (C2
. i))
in (
rng E1) or (
omega
-exponent (C2
. i))
in (
rng E3) by
A18,
A86,
XBOOLE_0:def 3;
then (
omega
-exponent (C2
. i))
in ((
rng E3)
\ (
rng E1)) by
A86,
A245,
XBOOLE_0:def 5;
then
A254: (
omega
-leading_coeff (C2
. i))
= (L3
. ((E3
" )
. (E3
.
0 ))) by
A20,
A22,
A86,
Th79
.= (L3
.
0 ) by
A16,
FUNCT_1: 34;
(L2
.
0 )
in (L3
.
0 )
proof
assume not (L2
.
0 )
in (L3
.
0 );
then
A255: (L3
.
0 )
c= (L2
.
0 ) by
ORDINAL1: 16;
(L3
.
0 )
in (L2
.
0 )
proof
assume not (L3
.
0 )
in (L2
.
0 );
then (L2
.
0 )
c= (L3
.
0 ) by
ORDINAL1: 16;
then
A256: (L2
.
0 )
= (L3
.
0 ) by
A255,
XBOOLE_0:def 10;
((
CantorNF b)
.
0 )
= ((L2
.
0 )
*^ (
exp (
omega ,(E2
.
0 )))) by
A250,
Th65
.= ((
CantorNF d)
.
0 ) by
A15,
A20,
A252,
A256,
Th65;
hence contradiction by
A1;
end;
then (L3
.
0 )
in (
Segm (L2
.
0 ));
then (L3
.
0 )
< (L2
.
0 ) by
NAT_1: 44;
then ((L3
.
0 )
+ 1)
<= (L2
.
0 ) by
NAT_1: 13;
then (
Segm ((L3
.
0 )
+ 1))
c= (
Segm (L2
.
0 )) by
NAT_1: 39;
then (((L3
.
0 )
+ 1)
*^ (
exp (
omega ,c)))
c= ((L2
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 41;
then (((L3
.
0 )
+ 1)
*^ (
exp (
omega ,c)))
c= ((
CantorNF b)
.
0 ) by
A250,
A252,
Th65;
then (((L3
.
0 )
+^ 1)
*^ (
exp (
omega ,c)))
c= ((
CantorNF b)
.
0 ) by
CARD_2: 36;
then
A257: (((L3
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c))))
c= ((
CantorNF b)
.
0 ) by
ORDINAL3: 46;
consider d0 be
Cantor-component
Ordinal, D0 be
Cantor-normal-form
Ordinal-Sequence such that
A258: (
CantorNF d)
= (
<%d0%>
^ D0) by
A1,
ORDINAL5: 67;
(
exp (
omega ,(
omega
-exponent d0)))
= (
exp (
omega ,(
omega
-exponent ((
CantorNF d)
.
0 )))) by
A258,
AFINSQ_1: 35
.= (
exp (
omega ,(E3
.
0 ))) by
A15,
Def1
.= (1
*^ (
exp (
omega ,c))) by
A20,
ORDINAL2: 39;
then (((L3
.
0 )
*^ (
exp (
omega ,c)))
+^ (
Sum^ D0))
in (((L3
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c)))) by
ORDINAL2: 32,
A258,
Th43;
then (((L3
.
0 )
*^ (
exp (
omega ,c)))
+^ (
Sum^ D0))
in ((
CantorNF b)
.
0 ) by
A257;
then (((
CantorNF d)
.
0 )
+^ (
Sum^ D0))
in ((
CantorNF b)
.
0 ) by
A15,
A20,
Th65;
then (((
CantorNF d)
.
0 )
+^ (
Sum^ D0))
in (
Sum^ (
CantorNF b)) by
ORDINAL5: 56,
TARSKI:def 3;
then (d0
+^ (
Sum^ D0))
in b by
A258,
AFINSQ_1: 35;
then (
Sum^ (
CantorNF d))
in b by
A258,
ORDINAL5: 55;
hence contradiction by
A1;
end;
then (L2
.
0 )
in (
Segm (L3
.
0 ));
then (L2
.
0 )
< (L3
.
0 ) by
NAT_1: 44;
then ((L2
.
0 )
+ 1)
<= (L3
.
0 ) by
NAT_1: 13;
then (
Segm ((L2
.
0 )
+ 1))
c= (
Segm (L3
.
0 )) by
NAT_1: 39;
then (((L2
.
0 )
+ 1)
*^ (
exp (
omega ,c)))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL2: 41;
then (((L2
.
0 )
+^ 1)
*^ (
exp (
omega ,c)))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
CARD_2: 36;
then
A259: (((L2
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c))))
c= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
ORDINAL3: 46;
(C2
. i)
= ((L3
.
0 )
*^ (
exp (
omega ,c))) by
A22,
A86,
A254,
Th64;
then
A260: (((L2
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c))))
c= (C2
. i) by
A259;
A261: (C1
. i)
= ((L2
.
0 )
*^ (
exp (
omega ,c))) by
A22,
A244,
A253,
Th64;
consider b0 be
Cantor-component
Ordinal, B0 be
Cantor-normal-form
Ordinal-Sequence such that
A262: B1
= (
<%b0%>
^ B0) by
A225,
ORDINAL5: 67;
A263:
0
in (
dom B1) by
A225,
XBOOLE_1: 61,
ORDINAL1: 11;
(
exp (
omega ,(
omega
-exponent b0)))
= (
exp (
omega ,(
omega
-exponent (B1
.
0 )))) by
A262,
AFINSQ_1: 35
.= (
exp (
omega ,(
omega
-exponent (C1
. (
0
+ i))))) by
A263,
AFINSQ_2:def 2
.= (1
*^ (
exp (
omega ,c))) by
A244,
ORDINAL2: 39;
then (((L2
.
0 )
*^ (
exp (
omega ,c)))
+^ (
Sum^ B0))
in (((L2
.
0 )
*^ (
exp (
omega ,c)))
+^ (1
*^ (
exp (
omega ,c)))) by
A262,
Th43,
ORDINAL2: 32;
then ((C1
. (
0
+ i))
+^ (
Sum^ B0))
in (C2
. i) by
A260,
A261;
then ((B1
.
0 )
+^ (
Sum^ B0))
in (C2
. i) by
A263,
AFINSQ_2:def 2;
then (b0
+^ (
Sum^ B0))
in (C2
. i) by
A262,
AFINSQ_1: 35;
hence (
Sum^ B1)
in (C2
. i) by
A262,
ORDINAL5: 55;
end;
end;
suppose B1
=
{} ;
hence thesis by
A22,
XBOOLE_1: 61,
ORDINAL1: 11,
ORDINAL5: 52;
end;
end;
i
in (
Segm (
dom C2)) by
A14,
Th77,
TARSKI:def 3;
then (
0
+ i)
< (
len C2) by
NAT_1: 44;
then (
Sum^ B1)
in (B2
.
0 ) by
A183,
AFINSQ_2: 8;
then (
Sum^ B1)
in (
Sum^ B2) by
ORDINAL5: 56,
TARSKI:def 3;
then
A265: ((
Sum^ A1)
+^ (
Sum^ B1))
in ((
Sum^ A2)
+^ (
Sum^ B2)) by
A85,
ORDINAL2: 32;
A266: (a
(+) b)
= (
Sum^ (A1
^ B1))
.= ((
Sum^ A1)
+^ (
Sum^ B1)) by
Th24;
(a
(+) d)
= (
Sum^ (A2
^ B2))
.= ((
Sum^ A2)
+^ (
Sum^ B2)) by
Th24;
hence thesis by
A265,
A266;
end;
end;
theorem ::
ORDINAL7:94
Th107: for a,b,c be
Ordinal st b
in c holds (a
(+) b)
in (a
(+) c)
proof
let a,b,c be
Ordinal;
assume
A1: b
in c;
per cases ;
suppose a
=
0 ;
then (a
(+) b)
= b & (a
(+) c)
= c by
Th82;
hence thesis by
A1;
end;
suppose
A2: a
<>
0 ;
defpred
P[
Nat] means ((
CantorNF b)
. $1)
<> ((
CantorNF c)
. $1);
A3: ex i be
Nat st
P[i]
proof
assume
A4: for i be
Nat holds not
P[i];
A5: (
dom (
CantorNF b))
= (
dom (
CantorNF c))
proof
assume (
dom (
CantorNF b))
<> (
dom (
CantorNF c));
per cases by
XBOOLE_0:def 10;
suppose not (
dom (
CantorNF b))
c= (
dom (
CantorNF c));
then
A6: ((
CantorNF b)
. (
dom (
CantorNF c)))
<>
{} by
ORDINAL1: 16,
FUNCT_1:def 9;
not (
dom (
CantorNF c))
in (
dom (
CantorNF c));
then ((
CantorNF c)
. (
dom (
CantorNF c)))
=
{} by
FUNCT_1:def 2;
hence contradiction by
A4,
A6;
end;
suppose not (
dom (
CantorNF c))
c= (
dom (
CantorNF b));
then
A7: ((
CantorNF c)
. (
dom (
CantorNF b)))
<>
{} by
ORDINAL1: 16,
FUNCT_1:def 9;
not (
dom (
CantorNF b))
in (
dom (
CantorNF b));
then ((
CantorNF b)
. (
dom (
CantorNF b)))
=
{} by
FUNCT_1:def 2;
hence contradiction by
A4,
A7;
end;
end;
for x be
object st x
in (
dom (
CantorNF b)) holds ((
CantorNF b)
. x)
= ((
CantorNF c)
. x) by
A4;
then (
Sum^ (
CantorNF b))
= (
Sum^ (
CantorNF c)) by
A5,
FUNCT_1: 2;
hence contradiction by
A1;
end;
consider i be
Nat such that
A8:
P[i] & for j be
Nat st
P[j] holds i
<= j from
NAT_1:sch 5(
A3);
set A1 = ((
CantorNF b)
| i), A2 = ((
CantorNF c)
| i);
set B1 = ((
CantorNF b)
/^ i), B2 = ((
CantorNF c)
/^ i);
A9: i
c= (
dom (
CantorNF b)) & i
c= (
dom (
CantorNF c))
proof
assume not (i
c= (
dom (
CantorNF b)) & i
c= (
dom (
CantorNF c)));
per cases ;
suppose
A10: not i
c= (
dom (
CantorNF b));
then
consider x be
object such that
A11: x
in i & not x
in (
dom (
CantorNF b)) by
TARSKI:def 3;
i
in
omega by
ORDINAL1:def 12;
then x
in
omega by
A11,
ORDINAL1: 10;
then
reconsider x as
Nat;
A12: ((
CantorNF b)
. x)
=
{} by
A11,
FUNCT_1:def 2;
x
in (
Segm i) by
A11;
then ((
CantorNF b)
. x)
= ((
CantorNF c)
. x) by
A8,
NAT_1: 44;
then (
dom (
CantorNF c))
c= x by
A12,
FUNCT_1:def 9,
ORDINAL1: 16;
then (
dom (
CantorNF c))
in i by
A11,
ORDINAL1: 12;
then
A13: ((
CantorNF c)
. i)
=
{} by
FUNCT_1:def 2;
(
dom (
CantorNF b))
in i by
A10,
ORDINAL1: 16;
hence contradiction by
A8,
A13,
FUNCT_1:def 2;
end;
suppose
A14: not i
c= (
dom (
CantorNF c));
then
consider x be
object such that
A15: x
in i & not x
in (
dom (
CantorNF c)) by
TARSKI:def 3;
i
in
omega by
ORDINAL1:def 12;
then x
in
omega by
A15,
ORDINAL1: 10;
then
reconsider x as
Nat;
A16: ((
CantorNF c)
. x)
=
{} by
A15,
FUNCT_1:def 2;
x
in (
Segm i) by
A15;
then ((
CantorNF b)
. x)
= ((
CantorNF c)
. x) by
A8,
NAT_1: 44;
then (
dom (
CantorNF b))
c= x by
A16,
FUNCT_1:def 9,
ORDINAL1: 16;
then (
dom (
CantorNF b))
in i by
A15,
ORDINAL1: 12;
then
A17: ((
CantorNF b)
. i)
=
{} by
FUNCT_1:def 2;
(
dom (
CantorNF c))
in i by
A14,
ORDINAL1: 16;
hence contradiction by
A8,
A17,
FUNCT_1:def 2;
end;
end;
A18: (
dom A1)
= ((
dom (
CantorNF b))
/\ i) by
RELAT_1: 61
.= i by
A9,
XBOOLE_1: 28
.= ((
dom (
CantorNF c))
/\ i) by
A9,
XBOOLE_1: 28
.= (
dom A2) by
RELAT_1: 61;
for x be
object st x
in (
dom A1) holds (A1
. x)
= (A2
. x)
proof
let x be
object;
assume x
in (
dom A1);
then
A19: x
in i by
RELAT_1: 57;
i
in
omega by
ORDINAL1:def 12;
then x
in
omega by
A19,
ORDINAL1: 10;
then
reconsider m = x as
Nat;
m
in (
Segm i) by
A19;
then
A20: m
< i by
NAT_1: 44;
thus (A1
. x)
= ((
CantorNF b)
. m) by
A19,
FUNCT_1: 49
.= ((
CantorNF c)
. m) by
A8,
A20
.= (A2
. x) by
A19,
FUNCT_1: 49;
end;
then
A21: A1
= A2 by
A18,
FUNCT_1: 2;
A22: (
Sum^ B1)
in (
Sum^ B2)
proof
(
Sum^ (
CantorNF b))
in (
Sum^ (A2
^ B2)) by
A1;
then (
Sum^ (A1
^ B1))
in ((
Sum^ A2)
+^ (
Sum^ B2)) by
Th24;
then ((
Sum^ A1)
+^ (
Sum^ B1))
in ((
Sum^ A2)
+^ (
Sum^ B2)) by
Th24;
hence thesis by
A21,
ORDINAL3: 22;
end;
A23: (A1
^ B1) is
Cantor-normal-form;
A24: (A2
^ B2) is
Cantor-normal-form;
A25: b
= (
Sum^ (A1
^ B1))
.= ((
Sum^ A1)
+^ (
Sum^ B1)) by
Th24
.= ((
Sum^ A1)
(+) (
Sum^ B1)) by
A23,
Th84;
A26: c
= (
Sum^ (A2
^ B2))
.= ((
Sum^ A2)
+^ (
Sum^ B2)) by
Th24
.= ((
Sum^ A2)
(+) (
Sum^ B2)) by
A24,
Th84;
A27: (a
(+) (
Sum^ A1)) is non
empty by
A2;
(B1
.
0 )
<> (B2
.
0 )
proof
0
in (
dom B1) or
0
in (
dom B2)
proof
assume not
0
in (
dom B1) & not
0
in (
dom B2);
then (
dom B1)
c=
{} & (
dom B2)
c=
{} by
ORDINAL1: 16;
then B1
=
{} & B2
=
{} ;
then (A1
^ B1)
= A1 & (A2
^ B2)
= A2;
then
A28: (
CantorNF b)
= A1 & (
CantorNF c)
= A2;
not i
in i;
then not i
in ((
dom (
CantorNF b))
/\ i) & not i
in ((
dom (
CantorNF c))
/\ i) by
XBOOLE_0:def 4;
then
A29: not i
in (
dom A1) & not i
in (
dom A2) by
RELAT_1: 61;
then ((
CantorNF b)
. i)
=
{} by
A28,
FUNCT_1:def 2
.= ((
CantorNF c)
. i) by
A28,
A29,
FUNCT_1:def 2;
hence contradiction by
A8;
end;
per cases ;
suppose
0
in (
dom B1) &
0
in (
dom B2);
then (B1
.
0 )
= ((
CantorNF b)
. (
0
+ i)) & (B2
.
0 )
= ((
CantorNF c)
. (
0
+ i)) by
AFINSQ_2:def 2;
hence thesis by
A8;
end;
suppose
0
in (
dom B1) & not
0
in (
dom B2);
then (B1
.
0 )
<>
{} & (B2
.
0 )
=
{} by
FUNCT_1:def 9,
FUNCT_1:def 2;
hence thesis;
end;
suppose not
0
in (
dom B1) &
0
in (
dom B2);
then (B1
.
0 )
=
{} & (B2
.
0 )
<>
{} by
FUNCT_1:def 9,
FUNCT_1:def 2;
hence thesis;
end;
end;
then ((
CantorNF (
Sum^ B1))
.
0 )
<> ((
CantorNF (
Sum^ B2))
.
0 );
then ((a
(+) (
Sum^ A1))
(+) (
Sum^ B1))
in ((a
(+) (
Sum^ A2))
(+) (
Sum^ B2)) by
A21,
A22,
A27,
Lm11;
then (a
(+) b)
in ((a
(+) (
Sum^ A2))
(+) (
Sum^ B2)) by
A25,
Th81;
hence thesis by
A26,
Th81;
end;
end;
theorem ::
ORDINAL7:95
for a,b,c be
Ordinal st b
c= c holds (a
(+) b)
c= (a
(+) c)
proof
let a,b,c be
Ordinal;
assume
A1: b
c= c;
per cases by
ORDINAL1: 16;
suppose c
c= b;
hence thesis by
A1,
XBOOLE_0:def 10;
end;
suppose b
in c;
hence thesis by
Th107,
ORDINAL1:def 2;
end;
end;