pardepap.miz
begin
reserve SAS for
AffinPlane;
theorem ::
PARDEPAP:1
Th1: SAS is
Pappian implies for a1,a2,a3,b1,b2,b3 be
Element of SAS holds ((a1,a2)
// (a1,a3) & (b1,b2)
// (b1,b3) & (a1,b2)
// (a2,b1) & (a2,b3)
// (a3,b2) implies (a3,b1)
// (a1,b3))
proof
assume
A1: SAS is
Pappian;
let a1,a2,a3,b1,b2,b3 be
Element of SAS such that
A2: (a1,a2)
// (a1,a3) and
A3: (b1,b2)
// (b1,b3) and
A4: (a1,b2)
// (a2,b1) and
A5: (a2,b3)
// (a3,b2);
LIN (a1,a2,a3) by
A2,
AFF_1:def 1;
then
consider M be
Subset of SAS such that
A6: M is
being_line and
A7: a1
in M and
A8: a2
in M and
A9: a3
in M by
AFF_1: 21;
LIN (b1,b2,b3) by
A3,
AFF_1:def 1;
then
consider N be
Subset of SAS such that
A10: N is
being_line and
A11: b1
in N and
A12: b2
in N and
A13: b3
in N by
AFF_1: 21;
A14:
now
assume that
A15: M
<> N and
A16: not M
// N;
consider o be
Element of SAS such that
A17: o
in M and
A18: o
in N by
A6,
A10,
A16,
AFF_1: 58;
A19:
now
assume that
A20: o
<> a1 and
A21: b1
<> o and
A22: o
= b3;
A23:
now
assume a2
<> o;
then b2
in M by
A5,
A6,
A8,
A9,
A17,
A22,
AFF_1: 48;
then b2
= o by
A6,
A10,
A12,
A15,
A17,
A18,
AFF_1: 18;
then b1
in M by
A4,
A6,
A7,
A8,
A17,
A20,
AFF_1: 48;
hence thesis by
A6,
A7,
A9,
A17,
A22,
AFF_1: 51;
end;
now
assume a2
= o;
then (o,b1)
// (b2,a1) by
A4,
AFF_1: 4;
then a1
in N by
A10,
A11,
A12,
A13,
A21,
A22,
AFF_1: 48;
hence thesis by
A6,
A7,
A10,
A15,
A17,
A18,
A20,
AFF_1: 18;
end;
hence thesis by
A23;
end;
A24:
now
assume that o
<> a1 and
A25: b1
= o;
A26: (o,a2)
// (a1,b2) by
A4,
A25,
AFF_1: 4;
A27:
now
assume a2
<> o;
then b2
in M by
A6,
A7,
A8,
A17,
A26,
AFF_1: 48;
then b2
= o by
A6,
A10,
A12,
A15,
A17,
A18,
AFF_1: 18;
then
A28: (o,a3)
// (a2,b3) by
A5,
AFF_1: 4;
now
assume o
<> a3;
then b3
in M by
A6,
A8,
A9,
A17,
A28,
AFF_1: 48;
hence thesis by
A6,
A7,
A9,
A17,
A25,
AFF_1: 51;
end;
hence thesis by
A25,
AFF_1: 3;
end;
now
assume
A29: a2
= o;
now
assume
A30: b3
<> o;
(o,b3)
// (b2,a3) by
A5,
A29,
AFF_1: 4;
then a3
in N by
A10,
A12,
A13,
A18,
A30,
AFF_1: 48;
then b1
= a3 by
A6,
A9,
A10,
A15,
A17,
A18,
A25,
AFF_1: 18;
hence thesis by
AFF_1: 3;
end;
hence thesis by
A6,
A7,
A9,
A17,
A25,
AFF_1: 51;
end;
hence thesis by
A27;
end;
A31:
now
assume
A32: o
= a1;
then
A33: (o,b2)
// (b1,a2) by
A4,
AFF_1: 4;
A34:
now
assume b2
<> o;
then a2
in N by
A10,
A11,
A12,
A18,
A33,
AFF_1: 48;
then a2
= o by
A6,
A8,
A10,
A15,
A17,
A18,
AFF_1: 18;
then
A35: (o,b3)
// (b2,a3) by
A5,
AFF_1: 4;
now
assume o
<> b3;
then a3
in N by
A10,
A12,
A13,
A18,
A35,
AFF_1: 48;
hence thesis by
A10,
A11,
A13,
A18,
A32,
AFF_1: 51;
end;
hence thesis by
A32,
AFF_1: 3;
end;
now
assume
A36: b2
= o;
now
assume
A37: a3
<> o;
(o,a3)
// (a2,b3) by
A5,
A36,
AFF_1: 4;
then b3
in M by
A6,
A8,
A9,
A17,
A37,
AFF_1: 48;
then a1
= b3 by
A6,
A10,
A13,
A15,
A17,
A18,
A32,
AFF_1: 18;
hence thesis by
AFF_1: 3;
end;
hence thesis by
A10,
A11,
A13,
A18,
A32,
AFF_1: 51;
end;
hence thesis by
A34;
end;
A38:
now
assume that
A39: o
<> a1 and
A40: b1
<> o and o
<> b3 and
A41: o
= a3;
A42: (o,b2)
// (b3,a2) by
A5,
A41,
AFF_1: 4;
A43:
now
assume b2
<> o;
then a2
in N by
A10,
A12,
A13,
A18,
A42,
AFF_1: 48;
then a2
= o by
A6,
A8,
A10,
A15,
A17,
A18,
AFF_1: 18;
then (o,b1)
// (b2,a1) by
A4,
AFF_1: 4;
then a1
in N by
A10,
A11,
A12,
A18,
A40,
AFF_1: 48;
hence thesis by
A10,
A11,
A13,
A18,
A41,
AFF_1: 51;
end;
now
assume b2
= o;
then b1
in M by
A4,
A6,
A7,
A8,
A9,
A39,
A41,
AFF_1: 48;
hence thesis by
A6,
A10,
A11,
A15,
A17,
A18,
A40,
AFF_1: 18;
end;
hence thesis by
A43;
end;
now
assume that
A44: o
<> a1 & o
<> b1 and
A45: o
<> b3 and
A46: o
<> a3;
A47: o
<> b2
proof
assume o
= b2;
then (o,a3)
// (a2,b3) by
A5,
AFF_1: 4;
then b3
in M by
A6,
A8,
A9,
A17,
A46,
AFF_1: 48;
hence contradiction by
A6,
A10,
A13,
A15,
A17,
A18,
A45,
AFF_1: 18;
end;
o
<> a2
proof
assume o
= a2;
then (o,b3)
// (b2,a3) by
A5,
AFF_1: 4;
then a3
in N by
A10,
A12,
A13,
A18,
A45,
AFF_1: 48;
hence contradiction by
A6,
A9,
A10,
A15,
A17,
A18,
A46,
AFF_1: 18;
end;
then (a1,b3)
// (a3,b1) by
A1,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A15,
A17,
A18,
A44,
A45,
A46,
A47,
AFF_2:def 2;
hence thesis by
AFF_1: 4;
end;
hence thesis by
A31,
A24,
A19,
A38;
end;
A48: SAS is
satisfying_pap by
A1,
AFF_2: 9;
now
assume M
<> N & M
// N;
then (a1,b3)
// (a3,b1) by
A48,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
AFF_2:def 13;
hence thesis by
AFF_1: 4;
end;
hence thesis by
A6,
A7,
A9,
A11,
A13,
A14,
AFF_1: 51;
end;
theorem ::
PARDEPAP:2
Th2: SAS is
Desarguesian implies for o,a,a9,b,b9,c,c9 be
Element of SAS holds ( not (o,a)
// (o,b) & not (o,a)
// (o,c) & (o,a)
// (o,a9) & (o,b)
// (o,b9) & (o,c)
// (o,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))
proof
assume
A1: SAS is
Desarguesian;
let o,a,a9,b,b9,c,c9 be
Element of SAS such that
A2: not (o,a)
// (o,b) and
A3: not (o,a)
// (o,c) and
A4: (o,a)
// (o,a9) and
A5: (o,b)
// (o,b9) and
A6: (o,c)
// (o,c9) and
A7: (a,b)
// (a9,b9) & (a,c)
// (a9,c9);
A8: o
<> a & o
<> b by
A2,
AFF_1: 3;
A9: o
<> c by
A3,
AFF_1: 3;
LIN (o,b,b9) by
A5,
AFF_1:def 1;
then
consider P be
Subset of SAS such that
A10: P is
being_line & o
in P and
A11: b
in P and
A12: b9
in P by
AFF_1: 21;
LIN (o,a,a9) by
A4,
AFF_1:def 1;
then
consider A be
Subset of SAS such that
A13: A is
being_line & o
in A & a
in A and
A14: a9
in A by
AFF_1: 21;
LIN (o,c,c9) by
A6,
AFF_1:def 1;
then
consider C be
Subset of SAS such that
A15: C is
being_line & o
in C and
A16: c
in C and
A17: c9
in C by
AFF_1: 21;
A18: A
<> C by
A3,
A13,
A16,
AFF_1: 51;
A
<> P by
A2,
A13,
A11,
AFF_1: 51;
hence thesis by
A1,
A7,
A13,
A14,
A10,
A11,
A12,
A15,
A16,
A17,
A8,
A9,
A18,
AFF_2:def 4;
end;
theorem ::
PARDEPAP:3
Th3: SAS is
translational implies for a,a9,b,b9,c,c9 be
Element of SAS holds ( not (a,a9)
// (a,b) & not (a,a9)
// (a,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))
proof
assume
A1: SAS is
translational;
let a,a9,b,b9,c,c9 be
Element of SAS such that
A2: not (a,a9)
// (a,b) and
A3: not (a,a9)
// (a,c) and
A4: (a,a9)
// (b,b9) and
A5: (a,a9)
// (c,c9) and
A6: (a,b)
// (a9,b9) & (a,c)
// (a9,c9);
set A = (
Line (a,a9));
A7: a
<> a9 by
A2,
AFF_1: 3;
then
A8: A is
being_line by
AFF_1:def 3;
then
consider C be
Subset of SAS such that
A9: c
in C and
A10: A
// C by
AFF_1: 49;
A11: C is
being_line by
A10,
AFF_1: 36;
A12: a
in A & a9
in A by
AFF_1: 15;
then
A13: A
<> C by
A3,
A8,
A9,
AFF_1: 51;
A14: (a,a9)
// A by
A8,
A12,
AFF_1: 23;
then (a,a9)
// C by
A10,
AFF_1: 43;
then (c,c9)
// C by
A5,
A7,
AFF_1: 32;
then
A15: c9
in C by
A9,
A11,
AFF_1: 23;
consider P be
Subset of SAS such that
A16: b
in P and
A17: A
// P by
A8,
AFF_1: 49;
A18: P is
being_line by
A17,
AFF_1: 36;
(a,a9)
// P by
A14,
A17,
AFF_1: 43;
then (b,b9)
// P by
A4,
A7,
AFF_1: 32;
then
A19: b9
in P by
A16,
A18,
AFF_1: 23;
A
<> P by
A2,
A8,
A12,
A16,
AFF_1: 51;
hence thesis by
A1,
A6,
A8,
A12,
A16,
A17,
A9,
A10,
A18,
A11,
A19,
A15,
A13,
AFF_2:def 11;
end;
theorem ::
PARDEPAP:4
ex SAS st (for o,a,a9,b,b9,c,c9 be
Element of SAS holds ( not (o,a)
// (o,b) & not (o,a)
// (o,c) & (o,a)
// (o,a9) & (o,b)
// (o,b9) & (o,c)
// (o,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))) & (for a,a9,b,b9,c,c9 be
Element of SAS holds ( not (a,a9)
// (a,b) & not (a,a9)
// (a,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))) & (for a1,a2,a3,b1,b2,b3 be
Element of SAS holds ((a1,a2)
// (a1,a3) & (b1,b2)
// (b1,b3) & (a1,b2)
// (a2,b1) & (a2,b3)
// (a3,b2) implies (a3,b1)
// (a1,b3))) & for a,b,c,d be
Element of SAS holds ( not (a,b)
// (a,c) & (a,b)
// (c,d) & (a,c)
// (b,d) implies not (a,d)
// (b,c))
proof
set PAS = the
Fanoian
Pappian
Desarguesian
translational
AffinPlane;
reconsider SAS = PAS as
AffinPlane;
take SAS;
thus thesis by
Th1,
Th2,
Th3,
PAPDESAF:def 1;
end;
theorem ::
PARDEPAP:5
for o,a be
Element of SAS holds ex p be
Element of SAS st for b,c be
Element of SAS holds ((o,a)
// (o,p) & ex d be
Element of SAS st ((o,p)
// (o,b) implies (o,c)
// (o,d) & (p,c)
// (b,d)))
proof
let o,a be
Element of SAS;
ex p be
Element of SAS st o
<> p & (o,a)
// (o,p)
proof
consider x,y be
Element of SAS such that
A1: x
<> y by
DIRAF: 40;
now
assume a
= o;
then
A2: (o,a)
// (o,x) & (o,a)
// (o,y) by
AFF_1: 3;
o
<> x or o
<> y by
A1;
hence thesis by
A2;
end;
hence thesis by
AFF_1: 2;
end;
then
consider p be
Element of SAS such that
A3: o
<> p and
A4: (o,a)
// (o,p);
take p;
thus for b,c be
Element of SAS holds ((o,a)
// (o,p) & ex d be
Element of SAS st ((o,p)
// (o,b) implies (o,c)
// (o,d) & (p,c)
// (b,d)))
proof
let b,c be
Element of SAS;
ex d be
Element of SAS st ((o,p)
// (o,b) implies (o,c)
// (o,d) & (p,c)
// (b,d))
proof
now
assume (o,p)
// (o,b);
then (p,o)
// (o,b) by
AFF_1: 4;
then
consider d be
Element of SAS such that
A5: (c,o)
// (o,d) & (c,p)
// (b,d) by
A3,
DIRAF: 40;
(o,c)
// (o,d) & (p,c)
// (b,d) by
A5,
AFF_1: 4;
hence thesis;
end;
hence thesis;
end;
hence thesis by
A4;
end;
end;