papdesaf.miz
begin
registration
let OAS be
OAffinSpace;
cluster (
Lambda OAS) ->
AffinSpace-like non
trivial;
correctness by
DIRAF: 41;
end
registration
let OAS be
OAffinPlane;
cluster (
Lambda OAS) ->
2-dimensional;
correctness by
DIRAF: 45;
end
theorem ::
PAPDESAF:1
Th1: for OAS be
OAffinSpace, x be
set holds (x is
Element of OAS iff x is
Element of (
Lambda OAS)) & (x is
Subset of OAS iff x is
Subset of (
Lambda OAS))
proof
let OAS be
OAffinSpace;
(
Lambda OAS)
=
AffinStruct (# the
carrier of OAS, (
lambda the
CONGR of OAS) #) by
DIRAF:def 2;
hence thesis;
end;
theorem ::
PAPDESAF:2
Th2: for OAS be
OAffinSpace holds for a,b,c be
Element of OAS, a9,b9,c9 be
Element of (
Lambda OAS) st a
= a9 & b
= b9 & c
= c9 holds (a,b,c)
are_collinear iff
LIN (a9,b9,c9)
proof
let OAS be
OAffinSpace;
let a,b,c be
Element of OAS, a9,b9,c9 be
Element of (
Lambda OAS) such that
A1: a
= a9 & b
= b9 & c
= c9;
A2:
now
assume (a,b,c)
are_collinear ;
then (a,b)
'||' (a,c) by
DIRAF:def 5;
then (a9,b9)
// (a9,c9) by
A1,
DIRAF: 38;
hence
LIN (a9,b9,c9) by
AFF_1:def 1;
end;
now
assume
LIN (a9,b9,c9);
then (a9,b9)
// (a9,c9) by
AFF_1:def 1;
then (a,b)
'||' (a,c) by
A1,
DIRAF: 38;
hence (a,b,c)
are_collinear by
DIRAF:def 5;
end;
hence thesis by
A2;
end;
theorem ::
PAPDESAF:3
Th3: for V be
RealLinearSpace, x be
set holds (x is
Element of (
OASpace V) iff x is
VECTOR of V)
proof
let V be
RealLinearSpace, x be
set;
(
OASpace V)
=
AffinStruct (# the
carrier of V, (
DirPar V) #) by
ANALOAF:def 4;
hence thesis;
end;
theorem ::
PAPDESAF:4
Th4: for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds for a,b,c,d be
Element of OAS, u,v,w,y be
VECTOR of V st a
= u & b
= v & c
= w & d
= y holds ((a,b)
'||' (c,d) iff (u,v)
'||' (w,y))
proof
let V be
RealLinearSpace, OAS be
OAffinSpace such that
A1: OAS
= (
OASpace V);
let a,b,c,d be
Element of OAS, u,v,w,y be
VECTOR of V;
assume
A2: a
= u & b
= v & c
= w & d
= y;
A3:
now
assume (u,v)
'||' (w,y);
then (u,v)
// (w,y) or (u,v)
// (y,w) by
GEOMTRAP:def 1;
then (a,b)
// (c,d) or (a,b)
// (d,c) by
A1,
A2,
GEOMTRAP: 2;
hence (a,b)
'||' (c,d) by
DIRAF:def 4;
end;
now
assume (a,b)
'||' (c,d);
then (a,b)
// (c,d) or (a,b)
// (d,c) by
DIRAF:def 4;
then (u,v)
// (w,y) or (u,v)
// (y,w) by
A1,
A2,
GEOMTRAP: 2;
hence (u,v)
'||' (w,y) by
GEOMTRAP:def 1;
end;
hence thesis by
A3;
end;
theorem ::
PAPDESAF:5
for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds ex u,v be
VECTOR of V st for a,b be
Real st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0
proof
let V be
RealLinearSpace, OAS be
OAffinSpace such that
A1: OAS
= (
OASpace V);
consider a,b,c,d be
Element of OAS such that
A2: ( not (a,b)
// (c,d)) & not (a,b)
// (d,c) by
ANALOAF:def 5;
reconsider u = a, v = b, w = c, y = d as
VECTOR of V by
A1,
Th3;
take z1 = (v
- u), z2 = (y
- w);
now
let r1,r2 be
Real;
assume ((r1
* z1)
+ (r2
* z2))
= (
0. V);
then
A3: (r1
* z1)
= (
- (r2
* z2)) by
RLVECT_1: 6
.= (r2
* (
- z2)) by
RLVECT_1: 25
.= ((
- r2)
* z2) by
RLVECT_1: 24;
assume r1
<>
0 or r2
<>
0 ;
then r1
<>
0 or (
- r2)
<>
0 ;
then (u,v)
// (w,y) or (u,v)
// (y,w) by
A3,
ANALMETR: 14;
hence r1
=
0 & r2
=
0 by
A1,
A2,
GEOMTRAP: 2;
end;
hence thesis;
end;
definition
let AS be
AffinSpace;
:: original:
Fanoian
redefine
::
PAPDESAF:def1
attr AS is
Fanoian means for a,b,c,d be
Element of AS st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds (a,b)
// (a,c);
compatibility
proof
thus AS is
Fanoian implies for a,b,c,d be
Element of AS st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds (a,b)
// (a,c)
proof
assume
A1: for a,b,c,d be
Element of AS st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds
LIN (a,b,c);
let a,b,c,d be
Element of AS;
assume (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c);
then
LIN (a,b,c) by
A1;
hence thesis by
AFF_1:def 1;
end;
assume
A2: for a,b,c,d be
Element of AS st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds (a,b)
// (a,c);
let a,b,c,d be
Element of AS;
assume (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c);
then (a,b)
// (a,c) by
A2;
hence thesis by
AFF_1:def 1;
end;
end
definition
let IT be
OAffinSpace;
::
PAPDESAF:def2
attr IT is
Pappian means
:
Def2: (
Lambda IT) is
Pappian;
::
PAPDESAF:def3
attr IT is
Desarguesian means
:
Def3: (
Lambda IT) is
Desarguesian;
::
PAPDESAF:def4
attr IT is
Moufangian means
:
Def4: (
Lambda IT) is
Moufangian;
::
PAPDESAF:def5
attr IT is
translation means
:
Def5: (
Lambda IT) is
translational;
end
definition
let OAS be
OAffinSpace;
::
PAPDESAF:def6
attr OAS is
satisfying_DES means for o,a,b,c,a1,b1,c1 be
Element of OAS st (o,a)
// (o,a1) & (o,b)
// (o,b1) & (o,c)
// (o,c1) & not (o,a,b)
are_collinear & not (o,a,c)
are_collinear & (a,b)
// (a1,b1) & (a,c)
// (a1,c1) holds (b,c)
// (b1,c1);
end
definition
let OAS be
OAffinSpace;
::
PAPDESAF:def7
attr OAS is
satisfying_DES_1 means for o,a,b,c,a1,b1,c1 be
Element of OAS st (a,o)
// (o,a1) & (b,o)
// (o,b1) & (c,o)
// (o,c1) & not (o,a,b)
are_collinear & not (o,a,c)
are_collinear & (a,b)
// (b1,a1) & (a,c)
// (c1,a1) holds (b,c)
// (c1,b1);
end
theorem ::
PAPDESAF:6
Th6: for OAS be
OAffinSpace st OAS is
satisfying_DES_1 holds OAS is
satisfying_DES
proof
let OAS be
OAffinSpace such that
A1: OAS is
satisfying_DES_1;
for o,a,b,c,a1,b1,c1 be
Element of OAS st (o,a)
// (o,a1) & (o,b)
// (o,b1) & (o,c)
// (o,c1) & not (o,a,b)
are_collinear & not (o,a,c)
are_collinear & (a,b)
// (a1,b1) & (a,c)
// (a1,c1) holds (b,c)
// (b1,c1)
proof
let o,a,b,c,a1,b1,c1 be
Element of OAS such that
A2: (o,a)
// (o,a1) and
A3: (o,b)
// (o,b1) and
A4: (o,c)
// (o,c1) and
A5: not (o,a,b)
are_collinear and
A6: not (o,a,c)
are_collinear and
A7: (a,b)
// (a1,b1) and
A8: (a,c)
// (a1,c1);
consider a2 be
Element of OAS such that
A9:
Mid (a,o,a2) and
A10: o
<> a2 by
DIRAF: 13;
A11: (a,o)
// (o,a2) by
A9,
DIRAF:def 3;
A12: o
<> a by
A5,
DIRAF: 31;
then
consider c2 be
Element of OAS such that
A13: (c,o)
// (o,c2) and
A14: (c,a)
// (a2,c2) by
A11,
ANALOAF:def 5;
A15: (c2,a2)
// (a,c) by
A14,
DIRAF: 2;
A16: (c2,o)
// (o,c) by
A13,
DIRAF: 2;
then
Mid (c2,o,c) by
DIRAF:def 3;
then
A17: (c2,o,c)
are_collinear by
DIRAF: 28;
(a,o,a2)
are_collinear by
A9,
DIRAF: 28;
then
A18: (o,a2,a)
are_collinear by
DIRAF: 30;
A19: o
<> c2
proof
assume o
= c2;
then (o,a2)
// (a,c) by
A14,
DIRAF: 2;
then (o,a2)
'||' (a,c) by
DIRAF:def 4;
then (o,a2,o)
are_collinear & (o,a2,c)
are_collinear by
A10,
A18,
DIRAF: 31,
DIRAF: 33;
hence contradiction by
A6,
A10,
A18,
DIRAF: 32;
end;
A20: not (o,a2,c2)
are_collinear
proof
A21: (c2,o,o)
are_collinear by
DIRAF: 31;
A22: (o,a2,o)
are_collinear by
DIRAF: 31;
assume (o,a2,c2)
are_collinear ;
then (c2,o,a)
are_collinear by
A10,
A18,
A22,
DIRAF: 32;
hence contradiction by
A6,
A17,
A19,
A21,
DIRAF: 32;
end;
consider b2 be
Element of OAS such that
A23: (b,o)
// (o,b2) and
A24: (b,a)
// (a2,b2) by
A12,
A11,
ANALOAF:def 5;
A25: (b2,a2)
// (a,b) by
A24,
DIRAF: 2;
a
<> b by
A5,
DIRAF: 31;
then (b2,a2)
// (a1,b1) by
A7,
A25,
DIRAF: 3;
then
A26: (a2,b2)
// (b1,a1) by
DIRAF: 2;
o
<> c by
A6,
DIRAF: 31;
then
A27: (c2,o)
// (o,c1) by
A4,
A16,
DIRAF: 3;
A28: (a,c)
// (c2,a2) by
A14,
ANALOAF:def 5;
A29: (b2,o)
// (o,b) by
A23,
DIRAF: 2;
then
Mid (b2,o,b) by
DIRAF:def 3;
then
A30: (b2,o,b)
are_collinear by
DIRAF: 28;
A31: o
<> b2
proof
assume o
= b2;
then (o,a2)
// (a,b) by
A24,
DIRAF: 2;
then (o,a2)
'||' (a,b) by
DIRAF:def 4;
then (o,a2,o)
are_collinear & (o,a2,b)
are_collinear by
A10,
A18,
DIRAF: 31,
DIRAF: 33;
hence contradiction by
A5,
A10,
A18,
DIRAF: 32;
end;
A32: not (o,a2,b2)
are_collinear
proof
A33: (b2,o,o)
are_collinear by
DIRAF: 31;
A34: (o,a2,o)
are_collinear by
DIRAF: 31;
assume (o,a2,b2)
are_collinear ;
then (b2,o,a)
are_collinear by
A10,
A18,
A34,
DIRAF: 32;
hence contradiction by
A5,
A30,
A31,
A33,
DIRAF: 32;
end;
A35:
now
(b2,a2)
// (a,b) by
A24,
DIRAF: 2;
then
A36: (b2,a2)
'||' (a,b) by
DIRAF:def 4;
assume
A37: c2
= b2;
then
A38: (o,b2,c)
are_collinear by
A17,
DIRAF: 30;
(c2,a2)
// (a,c) by
A14,
DIRAF: 2;
then
A39: (b2,a2)
'||' (a,c) by
A37,
DIRAF:def 4;
( not (o,b2,a2)
are_collinear ) & (o,b2,b)
are_collinear by
A30,
A32,
DIRAF: 30;
then b
= c by
A18,
A38,
A36,
A39,
PASCH: 4;
hence thesis by
DIRAF: 4;
end;
(a2,o)
// (o,a) by
A11,
DIRAF: 2;
then
A40: (a2,o)
// (o,a1) by
A2,
A12,
DIRAF: 3;
a
<> c by
A6,
DIRAF: 31;
then (c2,a2)
// (a1,c1) by
A8,
A15,
DIRAF: 3;
then
A41: (a2,c2)
// (c1,a1) by
DIRAF: 2;
o
<> b by
A5,
DIRAF: 31;
then (b2,o)
// (o,b1) by
A3,
A29,
DIRAF: 3;
then
A42: (c2,b2)
// (b1,c1) by
A1,
A40,
A27,
A41,
A26,
A32,
A20;
(a,b)
// (b2,a2) by
A24,
ANALOAF:def 5;
then (b,c)
// (c2,b2) by
A1,
A5,
A6,
A11,
A23,
A13,
A28;
hence thesis by
A42,
A35,
DIRAF: 3;
end;
hence thesis;
end;
theorem ::
PAPDESAF:7
Th7: for OAS be
OAffinSpace holds for o,a,b,a9,b9 be
Element of OAS st not (o,a,b)
are_collinear & (a,o)
// (o,a9) & (o,b,b9)
are_collinear & (a,b)
'||' (a9,b9) holds (b,o)
// (o,b9) & (a,b)
// (b9,a9)
proof
let OAS be
OAffinSpace;
let o,a,b,a9,b9 be
Element of OAS such that
A1: not (o,a,b)
are_collinear and
A2: (a,o)
// (o,a9) and
A3: (o,b,b9)
are_collinear and
A4: (a,b)
'||' (a9,b9);
Mid (a,o,a9) & (a,b)
'||' (b9,a9) by
A2,
A4,
DIRAF: 22,
DIRAF:def 3;
then
Mid (b,o,b9) by
A1,
A3,
PASCH: 6;
hence (b,o)
// (o,b9) by
DIRAF:def 3;
hence thesis by
A1,
A2,
A4,
PASCH: 12;
end;
theorem ::
PAPDESAF:8
Th8: for OAS be
OAffinSpace holds for o,a,b,a9,b9 be
Element of OAS st not (o,a,b)
are_collinear & (o,a)
// (o,a9) & (o,b,b9)
are_collinear & (a,b)
'||' (a9,b9) holds (o,b)
// (o,b9) & (a,b)
// (a9,b9)
proof
let OAS be
OAffinSpace;
let o,a,b,a9,b9 be
Element of OAS such that
A1: not (o,a,b)
are_collinear and
A2: (o,a)
// (o,a9) and
A3: (o,b,b9)
are_collinear and
A4: (a,b)
'||' (a9,b9);
A5: o
<> a by
A1,
DIRAF: 31;
consider a2 be
Element of OAS such that
A6:
Mid (a,o,a2) and
A7: o
<> a2 by
DIRAF: 13;
(a,o)
// (o,a2) by
A6,
DIRAF:def 3;
then
consider b2 be
Element of OAS such that
A8: (b,o)
// (o,b2) and
A9: (b,a)
// (a2,b2) by
A5,
ANALOAF:def 5;
A10: (o,b)
// (b2,o) by
A8,
DIRAF: 2;
(a,o)
// (o,a2) by
A6,
DIRAF:def 3;
then (a2,o)
// (o,a) by
DIRAF: 2;
then
A11: (a2,o)
// (o,a9) by
A2,
A5,
DIRAF: 3;
(a,o,a2)
are_collinear by
A6,
DIRAF: 28;
then
A12: (o,a2,a)
are_collinear by
DIRAF: 30;
A13: o
<> b2
proof
assume o
= b2;
then (o,a2)
// (a,b) by
A9,
DIRAF: 2;
then (o,a2)
'||' (a,b) by
DIRAF:def 4;
then (o,a2,o)
are_collinear & (o,a2,b)
are_collinear by
A7,
A12,
DIRAF: 31,
DIRAF: 33;
hence contradiction by
A1,
A7,
A12,
DIRAF: 32;
end;
Mid (b,o,b2) by
A8,
DIRAF:def 3;
then (b,o,b2)
are_collinear by
DIRAF: 28;
then
A14: (b2,o,b)
are_collinear by
DIRAF: 30;
A15: not (o,a2,b2)
are_collinear
proof
A16: (b2,o,o)
are_collinear by
DIRAF: 31;
A17: (o,a2,o)
are_collinear by
DIRAF: 31;
assume (o,a2,b2)
are_collinear ;
then (b2,o,a)
are_collinear by
A7,
A12,
A17,
DIRAF: 32;
hence contradiction by
A1,
A14,
A13,
A16,
DIRAF: 32;
end;
(a2,b2)
// (b,a) by
A9,
DIRAF: 2;
then
A18: (a2,b2)
'||' (a,b) by
DIRAF:def 4;
b
<> a by
A1,
DIRAF: 31;
then
A19: (a2,b2)
'||' (a9,b9) by
A4,
A18,
DIRAF: 23;
A20: (a,b)
// (b2,a2) by
A9,
DIRAF: 2;
Mid (b,o,b2) by
A8,
DIRAF:def 3;
then (b,o,b2)
are_collinear by
DIRAF: 28;
then
A21: (o,b,b2)
are_collinear by
DIRAF: 30;
A22: (o,b,o)
are_collinear by
DIRAF: 31;
o
<> b by
A1,
DIRAF: 31;
then
A23: (o,b2,b9)
are_collinear by
A3,
A21,
A22,
DIRAF: 32;
then (a2,b2)
// (b9,a9) by
A15,
A11,
A19,
Th7;
then
A24: (b2,a2)
// (a9,b9) by
DIRAF: 2;
(b2,o)
// (o,b9) by
A15,
A11,
A19,
A23,
Th7;
hence (o,b)
// (o,b9) by
A13,
A10,
DIRAF: 3;
a2
<> b2 by
A15,
DIRAF: 31;
hence thesis by
A20,
A24,
DIRAF: 3;
end;
theorem ::
PAPDESAF:9
Th9: for OAP be
OAffinSpace st OAP is
satisfying_DES_1 holds (
Lambda OAP) is
Desarguesian
proof
let OAP be
OAffinSpace;
set AP = (
Lambda OAP);
assume
A1: OAP is
satisfying_DES_1;
then
A2: OAP is
satisfying_DES by
Th6;
for A,P,C be
Subset of AP, o,a,b,c,a9,b9,c9 be
Element of AP st o
in A & o
in P & o
in C & o
<> a & o
<> b & o
<> c & a
in A & a9
in A & b
in P & b9
in P & c
in C & c9
in C & A is
being_line & P is
being_line & C is
being_line & A
<> P & A
<> C & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) holds (b,c)
// (b9,c9)
proof
let A,P,C be
Subset of AP;
let o,a,b,c,a9,b9,c9 be
Element of AP;
reconsider o1 = o, a1 = a, b1 = b, c1 = c, a19 = a9, b19 = b9, c19 = c9 as
Element of OAP by
Th1;
assume that
A3: o
in A and
A4: o
in P and
A5: o
in C and
A6: o
<> a and
A7: o
<> b and
A8: o
<> c and
A9: a
in A and
A10: a9
in A and
A11: b
in P and
A12: b9
in P and
A13: c
in C and
A14: c9
in C and
A15: A is
being_line and
A16: P is
being_line and
A17: C is
being_line and
A18: A
<> P and
A19: A
<> C and
A20: (a,b)
// (a9,b9) & (a,c)
// (a9,c9);
LIN (o,b,b9) by
A4,
A11,
A12,
A16,
AFF_1: 21;
then
A21: (o1,b1,b19)
are_collinear by
Th2;
A22: not (o1,a1,b1)
are_collinear & not (o1,a1,c1)
are_collinear
proof
A23:
now
assume
LIN (o,a,c);
then
consider X be
Subset of (
Lambda OAP) such that
A24: X is
being_line & o
in X and
A25: a
in X and
A26: c
in X by
AFF_1: 21;
X
= C by
A5,
A8,
A13,
A17,
A24,
A26,
AFF_1: 18;
hence contradiction by
A3,
A6,
A9,
A15,
A19,
A24,
A25,
AFF_1: 18;
end;
A27:
now
assume
LIN (o,a,b);
then
consider X be
Subset of (
Lambda OAP) such that
A28: X is
being_line & o
in X and
A29: a
in X and
A30: b
in X by
AFF_1: 21;
X
= P by
A4,
A7,
A11,
A16,
A28,
A30,
AFF_1: 18;
hence contradiction by
A3,
A6,
A9,
A15,
A18,
A28,
A29,
AFF_1: 18;
end;
assume not thesis;
hence contradiction by
A27,
A23,
Th2;
end;
LIN (o,c,c9) by
A5,
A13,
A14,
A17,
AFF_1: 21;
then
A31: (o1,c1,c19)
are_collinear by
Th2;
A32: (a1,b1)
'||' (a19,b19) & (a1,c1)
'||' (a19,c19) by
A20,
DIRAF: 38;
A33:
now
assume
A34: (a1,o1)
// (o1,a19);
then
A35: (a1,b1)
// (b19,a19) & (a1,c1)
// (c19,a19) by
A21,
A31,
A22,
A32,
Th7;
(b1,o1)
// (o1,b19) & (c1,o1)
// (o1,c19) by
A21,
A31,
A22,
A32,
A34,
Th7;
then (b1,c1)
// (c19,b19) by
A1,
A22,
A34,
A35;
then (b1,c1)
'||' (b19,c19) by
DIRAF:def 4;
hence thesis by
DIRAF: 38;
end;
A36:
now
assume
A37: (o1,a1)
// (o1,a19);
then
A38: (a1,b1)
// (a19,b19) & (a1,c1)
// (a19,c19) by
A21,
A31,
A22,
A32,
Th8;
(o1,b1)
// (o1,b19) & (o1,c1)
// (o1,c19) by
A21,
A31,
A22,
A32,
A37,
Th8;
then (b1,c1)
// (b19,c19) by
A2,
A22,
A37,
A38;
then (b1,c1)
'||' (b19,c19) by
DIRAF:def 4;
hence thesis by
DIRAF: 38;
end;
LIN (o,a,a9) by
A3,
A9,
A10,
A15,
AFF_1: 21;
then (o1,a1,a19)
are_collinear by
Th2;
then
Mid (o1,a1,a19) or
Mid (a1,o1,a19) or
Mid (o1,a19,a1) by
DIRAF: 29;
hence thesis by
A33,
A36,
DIRAF: 7,
DIRAF:def 3;
end;
hence thesis by
AFF_2:def 4;
end;
theorem ::
PAPDESAF:10
Th10: for V be
RealLinearSpace holds for o,u,v,u1,v1 be
VECTOR of V, r be
Real st (o
- u)
= (r
* (u1
- o)) & r
<>
0 & (o,v)
'||' (o,v1) & not (o,u)
'||' (o,v) & (u,v)
'||' (u1,v1) holds v1
= (u1
+ (((
- r)
" )
* (v
- u))) & v1
= (o
+ (((
- r)
" )
* (v
- o))) & (v
- u)
= ((
- r)
* (v1
- u1))
proof
let V be
RealLinearSpace;
let o,u,v,u1,v1 be
VECTOR of V, r be
Real such that
A1: (o
- u)
= (r
* (u1
- o)) and
A2: r
<>
0 and
A3: (o,v)
'||' (o,v1) and
A4: not (o,u)
'||' (o,v) and
A5: (u,v)
'||' (u1,v1);
A6: (
- r)
<>
0 by
A2;
for r1,r2 be
Real st ((r1
* (u
- o))
+ (r2
* (v
- o)))
= (
0. V) holds r1
=
0 & r2
=
0
proof
let r1,r2 be
Real;
assume ((r1
* (u
- o))
+ (r2
* (v
- o)))
= (
0. V);
then
A7: (r1
* (u
- o))
= (
- (r2
* (v
- o))) by
RLVECT_1: 6
.= (r2
* (
- (v
- o))) by
RLVECT_1: 25
.= ((
- r2)
* (v
- o)) by
RLVECT_1: 24;
assume r1
<>
0 or r2
<>
0 ;
then r1
<>
0 or (
- r2)
<>
0 ;
then (o,u)
// (o,v) or (o,u)
// (v,o) by
A7,
ANALMETR: 14;
hence contradiction by
A4,
GEOMTRAP:def 1;
end;
then
reconsider X = (
OASpace V) as
OAffinSpace by
ANALOAF: 26;
set w = (u1
+ (((
- r)
" )
* (v
- u)));
reconsider p = o, a = u, a1 = u1, b = v, b1 = v1, q = w as
Element of X by
Th3;
(a,b)
'||' (a1,b1) by
A5,
Th4;
then
A8: (b,a)
'||' (a1,b1) by
DIRAF: 22;
(p,b)
'||' (p,b1) by
A3,
Th4;
then
A9: (p,b,b1)
are_collinear by
DIRAF:def 5;
A10: ((
- r)
* (w
- u1))
= ((
- r)
* (((
- r)
" )
* (v
- u))) by
RLSUB_2: 61
.= (((
- r)
* ((
- r)
" ))
* (v
- u)) by
RLVECT_1:def 7
.= (1
* (v
- u)) by
A6,
XCMPLX_0:def 7;
then
A11: (v
- u)
= ((
- r)
* (w
- u1)) by
RLVECT_1:def 8;
(u,v)
// (u1,w) or (u,v)
// (w,u1) by
A10,
ANALMETR: 14;
then (u,v)
'||' (u1,w) by
GEOMTRAP:def 1;
then (a,b)
'||' (a1,q) by
Th4;
then
A12: (b,a)
'||' (a1,q) by
DIRAF: 22;
A13: ((
- r)
* (o
- w))
= (((
- r)
* o)
- ((
- r)
* w)) by
RLVECT_1: 34
.= (((
- r)
* o)
- (((
- r)
* u1)
+ ((
- r)
* (((
- r)
" )
* (v
- u))))) by
RLVECT_1:def 5
.= (((
- r)
* o)
- (((
- r)
* u1)
+ (((
- r)
* ((
- r)
" ))
* (v
- u)))) by
RLVECT_1:def 7
.= (((
- r)
* o)
- (((
- r)
* u1)
+ (1
* (v
- u)))) by
A6,
XCMPLX_0:def 7
.= (((
- r)
* o)
- (((
- r)
* u1)
+ (v
- u))) by
RLVECT_1:def 8
.= ((((
- r)
* o)
- ((
- r)
* u1))
- (v
- u)) by
RLVECT_1: 27
.= (((
- r)
* (o
- u1))
- (v
- u)) by
RLVECT_1: 34
.= ((r
* (
- (o
- u1)))
- (v
- u)) by
RLVECT_1: 24
.= ((o
- u)
- (v
- u)) by
A1,
RLVECT_1: 33
.= (o
- ((v
- u)
+ u)) by
RLVECT_1: 27
.= (o
- v) by
RLSUB_2: 61
.= (1
* (o
- v)) by
RLVECT_1:def 8;
then (v,o)
// (w,o) or (v,o)
// (o,w) by
ANALMETR: 14;
then (o,v)
// (w,o) or (o,v)
// (o,w) by
ANALOAF: 12;
then (o,v)
'||' (o,w) by
GEOMTRAP:def 1;
then (p,b)
'||' (p,q) by
Th4;
then
A14: (p,b,q)
are_collinear by
DIRAF:def 5;
(1
* (u
- o))
= ((
- 1)
* (
- (u
- o))) by
RLVECT_1: 26
.= ((
- 1)
* (r
* (u1
- o))) by
A1,
RLVECT_1: 33
.= (((
- 1)
* r)
* (u1
- o)) by
RLVECT_1:def 7
.= ((
- r)
* (u1
- o));
then (o,u)
// (o,u1) or (o,u)
// (u1,o) by
ANALMETR: 14;
then (o,u)
'||' (o,u1) by
GEOMTRAP:def 1;
then (p,a)
'||' (p,a1) by
Th4;
then
A15: (p,a,a1)
are_collinear by
DIRAF:def 5;
A16: not (p,b,a)
are_collinear
proof
assume (p,b,a)
are_collinear ;
then (p,b)
'||' (p,a) by
DIRAF:def 5;
then (p,a)
'||' (p,b) by
DIRAF: 22;
hence contradiction by
A4,
Th4;
end;
A17: ((
- r)
* (w
- o))
= (r
* (
- (w
- o))) by
RLVECT_1: 24
.= (r
* (o
- w)) by
RLVECT_1: 33
.= (
- (
- (r
* (o
- w)))) by
RLVECT_1: 17
.= (
- (r
* (
- (o
- w)))) by
RLVECT_1: 25
.= (
- (1
* (o
- v))) by
A13,
RLVECT_1: 24
.= (
- (o
- v)) by
RLVECT_1:def 8
.= (v
- o) by
RLVECT_1: 33;
w
= (o
+ (w
- o)) by
RLSUB_2: 61
.= (o
+ (((
- r)
" )
* (v
- o))) by
A6,
A17,
ANALOAF: 6;
hence thesis by
A11,
A16,
A9,
A14,
A15,
A12,
A8,
PASCH: 4;
end;
Lm1: for V be
RealLinearSpace holds for u,v,w be
VECTOR of V st u
<> v & w
<> v & (u,v)
// (v,w) holds ex r be
Real st (v
- u)
= (r
* (w
- v)) &
0
< r
proof
let V be
RealLinearSpace;
let u,v,w be
VECTOR of V;
assume u
<> v & w
<> v & (u,v)
// (v,w);
then
consider a,b be
Real such that
A1: (a
* (v
- u))
= (b
* (w
- v)) and
A2:
0
< a and
A3:
0
< b by
ANALOAF: 7;
take r = ((a
" )
* b);
0
< (a
" ) by
A2,
XREAL_1: 122;
then
A4: (
0
* b)
< r by
A3,
XREAL_1: 68;
(v
- u)
= (1
* (v
- u)) by
RLVECT_1:def 8
.= (((a
" )
* a)
* (v
- u)) by
A2,
XCMPLX_0:def 7
.= ((a
" )
* (b
* (w
- v))) by
A1,
RLVECT_1:def 7
.= (r
* (w
- v)) by
RLVECT_1:def 7;
hence thesis by
A4;
end;
theorem ::
PAPDESAF:11
Th11: for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds OAS is
satisfying_DES_1
proof
let V be
RealLinearSpace, OAS be
OAffinSpace such that
A1: OAS
= (
OASpace V);
for o,a,b,c,a1,b1,c1 be
Element of OAS st (a,o)
// (o,a1) & (b,o)
// (o,b1) & (c,o)
// (o,c1) & not (o,a,b)
are_collinear & not (o,a,c)
are_collinear & (a,b)
// (b1,a1) & (a,c)
// (c1,a1) holds (b,c)
// (c1,b1)
proof
let o,a,b,c,a1,b1,c1 be
Element of OAS such that
A2: (a,o)
// (o,a1) and
A3: (b,o)
// (o,b1) and
A4: (c,o)
// (o,c1) and
A5: not (o,a,b)
are_collinear and
A6: not (o,a,c)
are_collinear and
A7: (a,b)
// (b1,a1) and
A8: (a,c)
// (c1,a1);
reconsider y = o, u = a, v = b, w = c, u1 = a1, v1 = b1, w1 = c1 as
VECTOR of V by
A1,
Th3;
A9: o
<> a by
A5,
DIRAF: 31;
A10:
now
A11: not (y,u)
'||' (y,v) & not (y,u)
'||' (y,w)
proof
assume not thesis;
then (y,u)
// (y,v) or (y,u)
// (v,y) or (y,u)
// (y,w) or (y,u)
// (w,y) by
GEOMTRAP:def 1;
then (o,a)
// (o,b) or (o,a)
// (b,o) or (o,a)
// (o,c) or (o,a)
// (c,o) by
A1,
GEOMTRAP: 2;
then (o,a)
'||' (o,b) or (o,a)
'||' (o,c) by
DIRAF:def 4;
hence contradiction by
A5,
A6,
DIRAF:def 5;
end;
(o,c)
// (c1,o) by
A4,
DIRAF: 2;
then (y,w)
// (w1,y) by
A1,
GEOMTRAP: 2;
then
A12: (y,w)
'||' (y,w1) by
GEOMTRAP:def 1;
(o,b)
// (b1,o) by
A3,
DIRAF: 2;
then (y,v)
// (v1,y) by
A1,
GEOMTRAP: 2;
then
A13: (y,v)
'||' (y,v1) by
GEOMTRAP:def 1;
assume
A14: o
<> a1;
(u,y)
// (y,u1) by
A1,
A2,
GEOMTRAP: 2;
then
consider r be
Real such that
A15: (y
- u)
= (r
* (u1
- y)) and
A16:
0
< r by
A9,
A14,
Lm1;
(u,w)
// (w1,u1) by
A1,
A8,
GEOMTRAP: 2;
then (u,w)
'||' (u1,w1) by
GEOMTRAP:def 1;
then
A17: w1
= (u1
+ (((
- r)
" )
* (w
- u))) by
A15,
A16,
A12,
A11,
Th10;
(u,v)
// (v1,u1) by
A1,
A7,
GEOMTRAP: 2;
then (u,v)
'||' (u1,v1) by
GEOMTRAP:def 1;
then v1
= (u1
+ (((
- r)
" )
* (v
- u))) by
A15,
A16,
A13,
A11,
Th10;
then
A18: (1
* (w1
- v1))
= ((u1
+ (((
- r)
" )
* (w
- u)))
- (u1
+ (((
- r)
" )
* (v
- u)))) by
A17,
RLVECT_1:def 8
.= ((((((
- r)
" )
* (w
- u))
+ u1)
- u1)
- (((
- r)
" )
* (v
- u))) by
RLVECT_1: 27
.= ((((
- r)
" )
* (w
- u))
- (((
- r)
" )
* (v
- u))) by
RLSUB_2: 61
.= (((
- r)
" )
* ((w
- u)
- (v
- u))) by
RLVECT_1: 34
.= (((
- r)
" )
* (w
- ((v
- u)
+ u))) by
RLVECT_1: 27
.= (((
- r)
" )
* (w
- v)) by
RLSUB_2: 61
.= ((
- (r
" ))
* (w
- v)) by
XCMPLX_1: 222
.= ((r
" )
* (
- (w
- v))) by
RLVECT_1: 24
.= ((r
" )
* (v
- w)) by
RLVECT_1: 33;
0
< (r
" ) by
A16,
XREAL_1: 122;
then (w,v)
// (v1,w1) by
A18,
ANALOAF:def 1;
then (c,b)
// (b1,c1) by
A1,
GEOMTRAP: 2;
hence thesis by
DIRAF: 2;
end;
now
assume
A19: o
= a1;
A20: o
= c1
proof
(c,o)
'||' (o,c1) by
A4,
DIRAF:def 4;
then (o,c1)
'||' (o,c) by
DIRAF: 22;
then
A21: (o,c1,c)
are_collinear by
DIRAF:def 5;
A22: (o,c1,o)
are_collinear by
DIRAF: 31;
assume
A23: o
<> c1;
(a,c)
'||' (c1,o) by
A8,
A19,
DIRAF:def 4;
then (o,c1)
'||' (c,a) by
DIRAF: 22;
then (o,c1,a)
are_collinear by
A23,
A21,
DIRAF: 33;
hence contradiction by
A6,
A23,
A21,
A22,
DIRAF: 32;
end;
o
= b1
proof
(b,o)
'||' (o,b1) by
A3,
DIRAF:def 4;
then (o,b1)
'||' (o,b) by
DIRAF: 22;
then
A24: (o,b1,b)
are_collinear by
DIRAF:def 5;
A25: (o,b1,o)
are_collinear by
DIRAF: 31;
assume
A26: o
<> b1;
(a,b)
'||' (b1,o) by
A7,
A19,
DIRAF:def 4;
then (o,b1)
'||' (b,a) by
DIRAF: 22;
then (o,b1,a)
are_collinear by
A26,
A24,
DIRAF: 33;
hence contradiction by
A5,
A26,
A24,
A25,
DIRAF: 32;
end;
hence thesis by
A20,
DIRAF: 4;
end;
hence thesis by
A10;
end;
hence thesis;
end;
theorem ::
PAPDESAF:12
for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds OAS is
satisfying_DES_1 & OAS is
satisfying_DES by
Th6,
Th11;
Lm2: for V be
RealLinearSpace holds for y,u,v be
VECTOR of V st (y,u)
'||' (y,v) & y
<> u & y
<> v holds ex r be
Real st (u
- y)
= (r
* (v
- y)) & r
<>
0
proof
let V be
RealLinearSpace;
let y,u,v be
VECTOR of V such that
A1: (y,u)
'||' (y,v) and
A2: y
<> u and
A3: y
<> v;
(y,u)
// (y,v) or (y,u)
// (v,y) by
A1,
GEOMTRAP:def 1;
then
consider a,b be
Real such that
A4: (a
* (u
- y))
= (b
* (v
- y)) and
A5: a
<>
0 or b
<>
0 by
ANALMETR: 14;
A6:
now
assume
A7: b
=
0 ;
then (
0. V)
= (a
* (u
- y)) by
A4,
RLVECT_1: 10;
then (u
- y)
= (
0. V) by
A5,
A7,
RLVECT_1: 11;
hence contradiction by
A2,
RLVECT_1: 21;
end;
A8:
now
assume
A9: a
=
0 ;
then (
0. V)
= (b
* (v
- y)) by
A4,
RLVECT_1: 10;
then (v
- y)
= (
0. V) by
A5,
A9,
RLVECT_1: 11;
hence contradiction by
A3,
RLVECT_1: 21;
end;
then
A10: (a
" )
<>
0 by
XCMPLX_1: 202;
take r = ((a
" )
* b);
(r
* (v
- y))
= ((a
" )
* (a
* (u
- y))) by
A4,
RLVECT_1:def 7
.= (((a
" )
* a)
* (u
- y)) by
RLVECT_1:def 7
.= (1
* (u
- y)) by
A8,
XCMPLX_0:def 7
.= (u
- y) by
RLVECT_1:def 8;
hence thesis by
A6,
A10,
XCMPLX_1: 6;
end;
Lm3: for V be
RealLinearSpace holds for u,v,y be
VECTOR of V holds ((u
- y)
- (v
- y))
= (u
- v)
proof
let V be
RealLinearSpace;
let u,v,y be
VECTOR of V;
thus ((u
- y)
- (v
- y))
= (u
- ((v
- y)
+ y)) by
RLVECT_1: 27
.= (u
- v) by
RLSUB_2: 61;
end;
theorem ::
PAPDESAF:13
Th13: for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds (
Lambda OAS) is
Pappian
proof
let V be
RealLinearSpace, OAS be
OAffinSpace such that
A1: OAS
= (
OASpace V);
set AS = (
Lambda OAS);
for M,N be
Subset of AS, o,a,b,c,a9,b9,c9 be
Element of AS st M is
being_line & N is
being_line & M
<> N & o
in M & o
in N & o
<> a & o
<> a9 & o
<> b & o
<> b9 & o
<> c & o
<> c9 & a
in M & b
in M & c
in M & a9
in N & b9
in N & c9
in N & (a,b9)
// (b,a9) & (b,c9)
// (c,b9) holds (a,c9)
// (c,a9)
proof
let M,N be
Subset of AS, o,a,b,c,a9,b9,c9 be
Element of AS such that
A2: M is
being_line and
A3: N is
being_line and
A4: M
<> N and
A5: o
in M and
A6: o
in N and
A7: o
<> a and
A8: o
<> a9 and
A9: o
<> b and o
<> b9 and
A10: o
<> c and
A11: o
<> c9 and
A12: a
in M and
A13: b
in M and
A14: c
in M and
A15: a9
in N and
A16: b9
in N and
A17: c9
in N and
A18: (a,b9)
// (b,a9) and
A19: (b,c9)
// (c,b9);
reconsider o1 = o, a1 = a, b1 = b, c1 = c, a19 = a9, b19 = b9, c19 = c9 as
Element of OAS by
Th1;
reconsider q = o1, u = a1, v = b1, w = c1, u9 = a19, v9 = b19, w9 = c19 as
VECTOR of V by
A1,
Th3;
(b1,c19)
'||' (c1,b19) by
A19,
DIRAF: 38;
then
A20: (v,w9)
'||' (w,v9) by
A1,
Th4;
A21: not (q,v)
'||' (q,w9) & not (q,v)
'||' (q,u9)
proof
assume not thesis;
then (o1,b1)
'||' (o1,c19) or (o1,b1)
'||' (o1,a19) by
A1,
Th4;
then (o,b)
// (o,c9) or (o,b)
// (o,a9) by
DIRAF: 38;
then
LIN (o,b,c9) or
LIN (o,b,a9) by
AFF_1:def 1;
then c9
in M or a9
in M by
A2,
A5,
A9,
A13,
AFF_1: 25;
hence contradiction by
A2,
A3,
A4,
A5,
A6,
A8,
A11,
A15,
A17,
AFF_1: 18;
end;
LIN (o,c,b) by
A2,
A5,
A13,
A14,
AFF_1: 21;
then (o,c)
// (o,b) by
AFF_1:def 1;
then (o1,c1)
'||' (o1,b1) by
DIRAF: 38;
then (q,w)
'||' (q,v) by
A1,
Th4;
then
consider r2 be
Real such that
A22: (w
- q)
= (r2
* (v
- q)) and
A23: r2
<>
0 by
A9,
A10,
Lm2;
A24: (
- r2)
<>
0 by
A23;
LIN (o,a,b) by
A2,
A5,
A12,
A13,
AFF_1: 21;
then (o,a)
// (o,b) by
AFF_1:def 1;
then (o1,a1)
'||' (o1,b1) by
DIRAF: 38;
then (q,u)
'||' (q,v) by
A1,
Th4;
then
consider r1 be
Real such that
A25: (u
- q)
= (r1
* (v
- q)) and
A26: r1
<>
0 by
A7,
A9,
Lm2;
A27: ((
- r1)
* (q
- v))
= (r1
* (
- (q
- v))) by
RLVECT_1: 24
.= (u
- q) by
A25,
RLVECT_1: 33;
LIN (o,c9,b9) by
A3,
A6,
A16,
A17,
AFF_1: 21;
then (o,c9)
// (o,b9) by
AFF_1:def 1;
then (o1,c19)
'||' (o1,b19) by
DIRAF: 38;
then
A28: (q,w9)
'||' (q,v9) by
A1,
Th4;
((
- r2)
* (q
- v))
= (r2
* (
- (q
- v))) by
RLVECT_1: 24
.= (w
- q) by
A22,
RLVECT_1: 33;
then
A29: (q
- v)
= (((
- r2)
" )
* (w
- q)) by
A24,
ANALOAF: 5;
((
- r2)
" )
<>
0 by
A24,
XCMPLX_1: 202;
then v9
= (q
+ (((
- ((
- r2)
" ))
" )
* (w9
- q))) by
A20,
A29,
A28,
A21,
Th10
.= (q
+ (((
- (
- (r2
" )))
" )
* (w9
- q))) by
XCMPLX_1: 222
.= (q
+ (r2
* (w9
- q)));
then
A30: (v9
- q)
= (r2
* (w9
- q)) by
RLSUB_2: 61;
LIN (o,a9,b9) by
A3,
A6,
A15,
A16,
AFF_1: 21;
then (o,a9)
// (o,b9) by
AFF_1:def 1;
then (o1,a19)
'||' (o1,b19) by
DIRAF: 38;
then
A31: (q,u9)
'||' (q,v9) by
A1,
Th4;
(a1,b19)
'||' (b1,a19) by
A18,
DIRAF: 38;
then (b1,a19)
'||' (a1,b19) by
DIRAF: 22;
then
A32: (v,u9)
'||' (u,v9) by
A1,
Th4;
(r1
" )
<>
0 by
A26,
XCMPLX_1: 202;
then
A33: ((r1
" )
* r2)
<>
0 by
A23,
XCMPLX_1: 6;
set s = (r1
* (r2
" ));
A34: (u
- q)
= (r1
* ((r2
" )
* (w
- q))) by
A25,
A22,
A23,
ANALOAF: 6
.= (s
* (w
- q)) by
RLVECT_1:def 7;
(
- r1)
<>
0 by
A26;
then
A35: ((
- r1)
" )
<>
0 by
XCMPLX_1: 202;
(
- r1)
<>
0 by
A26;
then (q
- v)
= (((
- r1)
" )
* (u
- q)) by
A27,
ANALOAF: 6;
then v9
= (q
+ (((
- ((
- r1)
" ))
" )
* (u9
- q))) by
A32,
A35,
A31,
A21,
Th10
.= (q
+ (((
- (
- (r1
" )))
" )
* (u9
- q))) by
XCMPLX_1: 222
.= (q
+ (r1
* (u9
- q)));
then (v9
- q)
= (r1
* (u9
- q)) by
RLSUB_2: 61;
then (u9
- q)
= ((r1
" )
* (r2
* (w9
- q))) by
A26,
A30,
ANALOAF: 6
.= (((r1
" )
* r2)
* (w9
- q)) by
RLVECT_1:def 7;
then
A36: (w9
- q)
= ((((r1
" )
* r2)
" )
* (u9
- q)) by
A33,
ANALOAF: 6
.= ((((r1
" )
" )
* (r2
" ))
* (u9
- q)) by
XCMPLX_1: 204
.= (s
* (u9
- q));
(1
* (w9
- u))
= (w9
- u) by
RLVECT_1:def 8
.= ((s
* (u9
- q))
- (s
* (w
- q))) by
A36,
A34,
Lm3
.= (s
* ((u9
- q)
- (w
- q))) by
RLVECT_1: 34
.= (s
* (u9
- w)) by
Lm3;
then (u,w9)
// (w,u9) or (u,w9)
// (u9,w) by
ANALMETR: 14;
then (u,w9)
'||' (w,u9) by
GEOMTRAP:def 1;
then (a1,c19)
'||' (c1,a19) by
A1,
Th4;
hence thesis by
DIRAF: 38;
end;
hence thesis by
AFF_2:def 2;
end;
theorem ::
PAPDESAF:14
Th14: for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds (
Lambda OAS) is
Desarguesian by
Th9,
Th11;
theorem ::
PAPDESAF:15
Th15: for AS be
AffinSpace st AS is
Desarguesian holds AS is
Moufangian
proof
let AS be
AffinSpace such that
A1: AS is
Desarguesian;
now
let K be
Subset of AS, o,a,b,c,a9,b9,c9 be
Element of AS such that
A2: K is
being_line and
A3: o
in K and
A4: c
in K & c9
in K and
A5: not a
in K and
A6: o
<> c and
A7: a
<> b and
A8:
LIN (o,a,a9) and
A9:
LIN (o,b,b9) and
A10: (a,b)
// (a9,b9) & (a,c)
// (a9,c9) and
A11: (a,b)
// K;
set A = (
Line (o,a)), P = (
Line (o,b));
A12: o
in A by
A3,
A5,
AFF_1: 24;
A13:
now
assume
A14: o
= b;
(b,a)
// K by
A11,
AFF_1: 34;
hence contradiction by
A2,
A3,
A5,
A14,
AFF_1: 23;
end;
then
A15: b
in P by
AFF_1: 24;
A16: a
in A by
A3,
A5,
AFF_1: 24;
A17: A is
being_line by
A3,
A5,
AFF_1: 24;
A18: A
<> P
proof
assume A
= P;
then (a,b)
// A by
A17,
A16,
A15,
AFF_1: 40,
AFF_1: 41;
hence contradiction by
A3,
A5,
A7,
A11,
A12,
A16,
AFF_1: 45,
AFF_1: 53;
end;
A19: P is
being_line & o
in P by
A13,
AFF_1: 24;
then
A20: b9
in P by
A9,
A13,
A15,
AFF_1: 25;
a9
in A by
A3,
A5,
A8,
A17,
A12,
A16,
AFF_1: 25;
hence (b,c)
// (b9,c9) by
A1,
A2,
A3,
A4,
A5,
A6,
A10,
A13,
A17,
A12,
A16,
A19,
A15,
A20,
A18,
AFF_2:def 4;
end;
hence thesis by
AFF_2:def 7;
end;
theorem ::
PAPDESAF:16
Th16: for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds (
Lambda OAS) is
Moufangian
proof
let V be
RealLinearSpace, OAS be
OAffinSpace;
assume OAS
= (
OASpace V);
then (
Lambda OAS) is
Desarguesian by
Th9,
Th11;
hence thesis by
Th15;
end;
theorem ::
PAPDESAF:17
Th17: for V be
RealLinearSpace, OAS be
OAffinSpace st OAS
= (
OASpace V) holds (
Lambda OAS) is
translational
proof
let V be
RealLinearSpace, OAS be
OAffinSpace such that
A1: OAS
= (
OASpace V);
set AS = (
Lambda OAS);
for A,P,C be
Subset of AS, a,b,c,a9,b9,c9 be
Element of AS st A
// P & A
// C & a
in A & a9
in A & b
in P & b9
in P & c
in C & c9
in C & A is
being_line & P is
being_line & C is
being_line & A
<> P & A
<> C & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) holds (b,c)
// (b9,c9)
proof
let A,P,C be
Subset of AS, a,b,c,a9,b9,c9 be
Element of AS such that
A2: A
// P and
A3: A
// C and
A4: a
in A and
A5: a9
in A and
A6: b
in P and
A7: b9
in P and
A8: c
in C and
A9: c9
in C and
A10: A is
being_line and
A11: P is
being_line and
A12: C is
being_line and
A13: A
<> P and
A14: A
<> C and
A15: (a,b)
// (a9,b9) and
A16: (a,c)
// (a9,c9);
reconsider a1 = a, b1 = b, c1 = c, a19 = a9, b19 = b9, c19 = c9 as
Element of OAS by
Th1;
reconsider u = a1, v = b1, w = c1, u9 = a19 as
VECTOR of V by
A1,
Th3;
A17:
now
assume
A18: a
<> a9;
A19: not (a1,a19,b1)
are_collinear
proof
assume (a1,a19,b1)
are_collinear ;
then
LIN (a,a9,b) by
Th2;
then b
in A by
A4,
A5,
A10,
A18,
AFF_1: 25;
hence contradiction by
A2,
A6,
A13,
AFF_1: 45;
end;
A20: not (a1,a19,c1)
are_collinear
proof
assume (a1,a19,c1)
are_collinear ;
then
LIN (a,a9,c) by
Th2;
then c
in A by
A4,
A5,
A10,
A18,
AFF_1: 25;
hence contradiction by
A3,
A8,
A14,
AFF_1: 45;
end;
(a,a9)
// (c,c9) by
A3,
A4,
A5,
A8,
A9,
AFF_1: 39;
then
A21: (a1,a19)
'||' (c1,c19) by
DIRAF: 38;
(a,a9)
// (b,b9) by
A2,
A4,
A5,
A6,
A7,
AFF_1: 39;
then
A22: (a1,a19)
'||' (b1,b19) by
DIRAF: 38;
set v99 = ((u9
+ v)
- u), w99 = ((u9
+ w)
- u);
reconsider b199 = v99, c199 = w99 as
Element of OAS by
A1,
Th3;
(w99
- v99)
= ((u9
+ w)
- (((u9
+ v)
- u)
+ u)) by
RLVECT_1: 27
.= ((u9
+ w)
- (u9
+ v)) by
RLSUB_2: 61
.= (((w
+ u9)
- u9)
- v) by
RLVECT_1: 27
.= (w
- v) by
RLSUB_2: 61;
then (v,w)
// (v99,w99) by
ANALOAF: 15;
then
A23: (v,w)
'||' (v99,w99) by
GEOMTRAP:def 1;
(u,u9)
// (v,v99) by
ANALOAF: 16;
then (u,u9)
'||' (v,v99) by
GEOMTRAP:def 1;
then
A24: (a1,a19)
'||' (b1,b199) by
A1,
Th4;
(u,w)
// (u9,w99) by
ANALOAF: 16;
then (u,w)
'||' (u9,w99) by
GEOMTRAP:def 1;
then
A25: (a1,c1)
'||' (a19,c199) by
A1,
Th4;
(u,u9)
// (w,w99) by
ANALOAF: 16;
then (u,u9)
'||' (w,w99) by
GEOMTRAP:def 1;
then
A26: (a1,a19)
'||' (c1,c199) by
A1,
Th4;
(u,v)
// (u9,v99) by
ANALOAF: 16;
then (u,v)
'||' (u9,v99) by
GEOMTRAP:def 1;
then
A27: (a1,b1)
'||' (a19,b199) by
A1,
Th4;
(a1,c1)
'||' (a19,c19) by
A16,
DIRAF: 38;
then
A28: c199
= c19 by
A20,
A21,
A26,
A25,
PASCH: 5;
(a1,b1)
'||' (a19,b19) by
A15,
DIRAF: 38;
then b199
= b19 by
A19,
A22,
A24,
A27,
PASCH: 5;
then (b1,c1)
'||' (b19,c19) by
A1,
A28,
A23,
Th4;
hence thesis by
DIRAF: 38;
end;
now
assume
A29: a
= a9;
A30: c
= c9
proof
LIN (a,c,c9) by
A16,
A29,
AFF_1:def 1;
then
A31:
LIN (c,c9,a) by
AFF_1: 6;
assume c
<> c9;
then a
in C by
A8,
A9,
A12,
A31,
AFF_1: 25;
hence contradiction by
A3,
A4,
A14,
AFF_1: 45;
end;
b
= b9
proof
LIN (a,b,b9) by
A15,
A29,
AFF_1:def 1;
then
A32:
LIN (b,b9,a) by
AFF_1: 6;
assume b
<> b9;
then a
in P by
A6,
A7,
A11,
A32,
AFF_1: 25;
hence contradiction by
A2,
A4,
A13,
AFF_1: 45;
end;
hence thesis by
A30,
AFF_1: 2;
end;
hence thesis by
A17;
end;
hence thesis by
AFF_2:def 11;
end;
theorem ::
PAPDESAF:18
Th18: for OAS be
OAffinSpace holds (
Lambda OAS) is
Fanoian
proof
let OAS be
OAffinSpace;
set AS = (
Lambda OAS);
for a,b,c,d be
Element of AS st (a,b)
// (c,d) & (a,c)
// (b,d) & (a,d)
// (b,c) holds (a,b)
// (a,c)
proof
let a,b,c,d be
Element of AS such that
A1: (a,b)
// (c,d) and
A2: (a,c)
// (b,d) and
A3: (a,d)
// (b,c);
reconsider a1 = a, b1 = b, c1 = c, d1 = d as
Element of OAS by
Th1;
set P = (
Line (a,d)), Q = (
Line (b,c));
assume
A4: not (a,b)
// (a,c);
then
A5: a
<> d by
A1,
AFF_1: 4;
then
A6: P is
being_line by
AFF_1:def 3;
A7: not (a1,b1,c1)
are_collinear
proof
assume not thesis;
then (a1,b1)
'||' (a1,c1) by
DIRAF:def 5;
hence contradiction by
A4,
DIRAF: 38;
end;
(a1,b1)
'||' (c1,d1) & (a1,c1)
'||' (b1,d1) by
A1,
A2,
DIRAF: 38;
then
consider x1 be
Element of OAS such that
A8: (x1,a1,d1)
are_collinear and
A9: (x1,b1,c1)
are_collinear by
A7,
PASCH: 25;
reconsider x = x1 as
Element of AS by
Th1;
A10: d
in P by
AFF_1: 15;
(x1,a1)
'||' (x1,d1) by
A8,
DIRAF:def 5;
then (x,a)
// (x,d) by
DIRAF: 38;
then
LIN (x,a,d) by
AFF_1:def 1;
then
LIN (a,d,x) by
AFF_1: 6;
then
A11: x
in P by
AFF_1:def 2;
A12: a
in P & b
in Q by
AFF_1: 15;
(x1,b1)
'||' (x1,c1) by
A9,
DIRAF:def 5;
then (x,b)
// (x,c) by
DIRAF: 38;
then
LIN (x,b,c) by
AFF_1:def 1;
then
LIN (b,c,x) by
AFF_1: 6;
then
A13: x
in Q by
AFF_1:def 2;
A14: c
in Q by
AFF_1: 15;
A15: not
LIN (a,b,c) by
A4,
AFF_1:def 1;
then
A16: b
<> c by
AFF_1: 7;
then Q is
being_line by
AFF_1:def 3;
then P
// Q by
A3,
A16,
A5,
A6,
A10,
A12,
A14,
AFF_1: 38;
then P
= Q by
A11,
A13,
AFF_1: 45;
hence contradiction by
A15,
A6,
A12,
A14,
AFF_1: 21;
end;
hence thesis;
end;
registration
cluster
Pappian
Desarguesian
Moufangian
translation for
OAffinSpace;
existence
proof
consider V be
RealLinearSpace such that
A1: ex u,v be
VECTOR of V st for a,b be
Real st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 by
FUNCSDOM: 23;
reconsider X = (
OASpace V) as
OAffinSpace by
A1,
ANALOAF: 26;
take X;
set AS = (
Lambda X);
A2: AS is
Moufangian & AS is
translational by
Th16,
Th17;
AS is
Pappian & AS is
Desarguesian by
Th9,
Th11,
Th13;
hence thesis by
A2;
end;
end
registration
cluster
strict
Fanoian
Pappian
Desarguesian
Moufangian
translational for
AffinPlane;
existence
proof
consider V be
RealLinearSpace such that
A1: ex u,v be
VECTOR of V st (for a,b be
Real st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 ) & for w be
VECTOR of V holds ex a,b be
Real st w
= ((a
* u)
+ (b
* v)) by
FUNCSDOM: 23;
reconsider OAS = (
OASpace V) as
OAffinPlane by
A1,
ANALOAF: 28;
take X = (
Lambda OAS);
A2: X is
Pappian by
Th13;
then X is
Moufangian by
AFF_2: 11,
AFF_2: 12;
hence thesis by
A2,
Th18,
AFF_2: 11,
AFF_2: 14;
end;
end
registration
cluster
strict
Fanoian
Pappian
Desarguesian
Moufangian
translational for
AffinSpace;
existence
proof
consider V be
RealLinearSpace such that
A1: ex u,v be
VECTOR of V st for a,b be
Real st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 by
FUNCSDOM: 23;
reconsider X = (
OASpace V) as
OAffinSpace by
A1,
ANALOAF: 26;
take (
Lambda X);
thus thesis by
Th13,
Th14,
Th16,
Th17,
Th18;
end;
end
registration
let OAS be
OAffinSpace;
cluster (
Lambda OAS) ->
Fanoian;
correctness by
Th18;
end
registration
let OAS be
Pappian
OAffinSpace;
cluster (
Lambda OAS) ->
Pappian;
correctness by
Def2;
end
registration
let OAS be
Desarguesian
OAffinSpace;
cluster (
Lambda OAS) ->
Desarguesian;
correctness by
Def3;
end
registration
let OAS be
Moufangian
OAffinSpace;
cluster (
Lambda OAS) ->
Moufangian;
correctness by
Def4;
end
registration
let OAS be
translation
OAffinSpace;
cluster (
Lambda OAS) ->
translational;
correctness by
Def5;
end