qc_lang3.miz
begin
reserve i,k for
Nat;
scheme ::
QC_LANG3:sch1
QCFuncUniq { Al() ->
QC-alphabet , D() -> non
empty
set , F1,F2() ->
Function of (
QC-WFF Al()), D() , V() ->
Element of D() , A,N(
set) ->
Element of D() , C(
set,
set) ->
Element of D() , Q(
set,
set) ->
Element of D() } :
F1()
= F2()
provided
A1: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F1()
. p)
= V()) & (p is
atomic implies (F1()
. p)
= A(p)) & (p is
negative & d1
= (F1()
. (
the_argument_of p)) implies (F1()
. p)
= N(d1)) & (p is
conjunctive & d1
= (F1()
. (
the_left_argument_of p)) & d2
= (F1()
. (
the_right_argument_of p)) implies (F1()
. p)
= C(d1,d2)) & (p is
universal & d1
= (F1()
. (
the_scope_of p)) implies (F1()
. p)
= Q(p,d1))
and
A2: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F2()
. p)
= V()) & (p is
atomic implies (F2()
. p)
= A(p)) & (p is
negative & d1
= (F2()
. (
the_argument_of p)) implies (F2()
. p)
= N(d1)) & (p is
conjunctive & d1
= (F2()
. (
the_left_argument_of p)) & d2
= (F2()
. (
the_right_argument_of p)) implies (F2()
. p)
= C(d1,d2)) & (p is
universal & d1
= (F2()
. (
the_scope_of p)) implies (F2()
. p)
= Q(p,d1));
defpred
Prop[
Element of (
QC-WFF Al())] means (F1()
. $1)
= (F2()
. $1);
A3: for k holds for P be
QC-pred_symbol of k, Al(), l be
QC-variable_list of k, Al() holds
Prop[(P
! l)]
proof
let k;
let P be
QC-pred_symbol of k, Al(), l be
QC-variable_list of k, Al();
A4: (P
! l) is
atomic;
hence (F1()
. (P
! l))
= A(!) by
A1
.= (F2()
. (P
! l)) by
A2,
A4;
end;
A5: for x be
bound_QC-variable of Al(), p be
Element of (
QC-WFF Al()) holds
Prop[p] implies
Prop[(
All (x,p))]
proof
let x be
bound_QC-variable of Al(), p be
Element of (
QC-WFF Al()) such that
A6: (F1()
. p)
= (F2()
. p);
A7: (
All (x,p)) is
universal;
then (
the_scope_of (
All (x,p)))
= p by
QC_LANG1:def 28;
hence (F1()
. (
All (x,p)))
= Q(All,.) by
A1,
A6,
A7
.= (F2()
. (
All (x,p))) by
A2,
A7;
end;
A8: for p,q be
Element of (
QC-WFF Al()) st
Prop[p] &
Prop[q] holds
Prop[(p
'&' q)]
proof
let p,q be
Element of (
QC-WFF Al()) such that
A9: (F1()
. p)
= (F2()
. p) & (F1()
. q)
= (F2()
. q);
A10: (p
'&' q) is
conjunctive;
then
A11: (
the_left_argument_of (p
'&' q))
= p & (
the_right_argument_of (p
'&' q))
= q by
QC_LANG1:def 25,
QC_LANG1:def 26;
hence (F1()
. (p
'&' q))
= C(.,.) by
A1,
A9,
A10
.= (F2()
. (p
'&' q)) by
A2,
A10,
A11;
end;
A12: for p be
Element of (
QC-WFF Al()) st
Prop[p] holds
Prop[(
'not' p)]
proof
let p be
Element of (
QC-WFF Al()) such that
A13: (F1()
. p)
= (F2()
. p);
A14: (
'not' p) is
negative;
then
A15: (
the_argument_of (
'not' p))
= p by
QC_LANG1:def 24;
hence (F1()
. (
'not' p))
= N(.) by
A1,
A13,
A14
.= (F2()
. (
'not' p)) by
A2,
A14,
A15;
end;
(F1()
. (
VERUM Al()))
= V() by
A1;
then
A16:
Prop[(
VERUM Al())] by
A2;
for p be
Element of (
QC-WFF Al()) holds
Prop[p] from
QC_LANG1:sch 1(
A3,
A16,
A12,
A8,
A5);
hence thesis by
FUNCT_2: 63;
end;
scheme ::
QC_LANG3:sch2
QCDefD { Al() ->
QC-alphabet , D() -> non
empty
set , V() ->
Element of D() , p() ->
Element of (
QC-WFF Al()) , A(
Element of (
QC-WFF Al())) ->
Element of D() , N(
Element of D()) ->
Element of D() , C(
Element of D(),
Element of D()) ->
Element of D() , Q(
Element of (
QC-WFF Al()),
Element of D()) ->
Element of D() } :
(ex d be
Element of D(), F be
Function of (
QC-WFF Al()), D() st d
= (F
. p()) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))) & for x1,x2 be
Element of D() st (ex F be
Function of (
QC-WFF Al()), D() st x1
= (F
. p()) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))) & (ex F be
Function of (
QC-WFF Al()), D() st x2
= (F
. p()) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))) holds x1
= x2;
thus ex d be
Element of D(), F be
Function of (
QC-WFF Al()), D() st d
= (F
. p()) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))
proof
consider F be
Function of (
QC-WFF Al()), D() such that
A1: (F
. (
VERUM Al()))
= V() & for p be
Element of (
QC-WFF Al()) holds (p is
atomic implies (F
. p)
= A(p)) & (p is
negative implies (F
. p)
= N(.)) & (p is
conjunctive implies (F
. p)
= C(.,.)) & (p is
universal implies (F
. p)
= Q(p,.)) from
QC_LANG1:sch 3;
take (F
. p()), F;
thus thesis by
A1;
end;
let x1,x2 be
Element of D();
given F1 be
Function of (
QC-WFF Al()), D() such that
A2: x1
= (F1
. p()) and
A3: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F1
. p)
= V()) & (p is
atomic implies (F1
. p)
= A(p)) & (p is
negative & d1
= (F1
. (
the_argument_of p)) implies (F1
. p)
= N(d1)) & (p is
conjunctive & d1
= (F1
. (
the_left_argument_of p)) & d2
= (F1
. (
the_right_argument_of p)) implies (F1
. p)
= C(d1,d2)) & (p is
universal & d1
= (F1
. (
the_scope_of p)) implies (F1
. p)
= Q(p,d1));
given F2 be
Function of (
QC-WFF Al()), D() such that
A4: x2
= (F2
. p()) and
A5: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F2
. p)
= V()) & (p is
atomic implies (F2
. p)
= A(p)) & (p is
negative & d1
= (F2
. (
the_argument_of p)) implies (F2
. p)
= N(d1)) & (p is
conjunctive & d1
= (F2
. (
the_left_argument_of p)) & d2
= (F2
. (
the_right_argument_of p)) implies (F2
. p)
= C(d1,d2)) & (p is
universal & d1
= (F2
. (
the_scope_of p)) implies (F2
. p)
= Q(p,d1));
F1
= F2 from
QCFuncUniq(
A3,
A5);
hence thesis by
A2,
A4;
end;
scheme ::
QC_LANG3:sch3
QCDResult9VERUM { Al() ->
QC-alphabet , D() -> non
empty
set , F(
Element of (
QC-WFF Al())) ->
Element of D() , V() ->
Element of D() , A(
Element of (
QC-WFF Al())) ->
Element of D() , N(
Element of D()) ->
Element of D() , C(
Element of D(),
Element of D()) ->
Element of D() , Q(
Element of (
QC-WFF Al()),
Element of D()) ->
Element of D() } :
F(VERUM)
= V()
provided
A1: for p be
QC-formula of Al(), d be
Element of D() holds d
= F(p) iff ex F be
Function of (
QC-WFF Al()), D() st d
= (F
. p) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1));
ex F be
Function of (
QC-WFF Al()), D() st F(VERUM)
= (F
. (
VERUM Al())) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1)) by
A1;
hence thesis;
end;
scheme ::
QC_LANG3:sch4
QCDResult9atomic { Al() ->
QC-alphabet , D() -> non
empty
set , V() ->
Element of D() , F(
Element of (
QC-WFF Al())) ->
Element of D() , p() ->
QC-formula of Al() , A(
Element of (
QC-WFF Al())) ->
Element of D() , N(
Element of D()) ->
Element of D() , C(
Element of D(),
Element of D()) ->
Element of D() , Q(
Element of (
QC-WFF Al()),
Element of D()) ->
Element of D() } :
F(p)
= A(p)
provided
A1: for p be
QC-formula of Al(), d be
Element of D() holds d
= F(p) iff ex F be
Function of (
QC-WFF Al()), D() st d
= (F
. p) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))
and
A2: p() is
atomic;
ex F be
Function of (
QC-WFF Al()), D() st F(p)
= (F
. p()) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1)) by
A1;
hence thesis by
A2;
end;
scheme ::
QC_LANG3:sch5
QCDResult9negative { Al() ->
QC-alphabet , D() -> non
empty
set , V() ->
Element of D() , p() ->
QC-formula of Al() , A(
Element of (
QC-WFF Al())) ->
Element of D() , N(
Element of D()) ->
Element of D() , C(
Element of D(),
Element of D()) ->
Element of D() , Q(
Element of (
QC-WFF Al()),
Element of D()) ->
Element of D() , F(
Element of (
QC-WFF Al())) ->
Element of D() } :
F(p)
= N(F)
provided
A1: for p be
QC-formula of Al(), d be
Element of D() holds d
= F(p) iff ex F be
Function of (
QC-WFF Al()), D() st d
= (F
. p) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))
and
A2: p() is
negative;
consider F be
Function of (
QC-WFF Al()), D() such that
A3: F(p)
= (F
. p()) and
A4: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1)) by
A1;
(F
. (
the_argument_of p()))
= F(the_argument_of) by
A1,
A4;
hence thesis by
A2,
A3,
A4;
end;
scheme ::
QC_LANG3:sch6
QCDResult9conjunctive { Al() ->
QC-alphabet , D() -> non
empty
set , V() ->
Element of D() , A(
Element of (
QC-WFF Al())) ->
Element of D() , N(
Element of D()) ->
Element of D() , C(
Element of D(),
Element of D()) ->
Element of D() , Q(
Element of (
QC-WFF Al()),
Element of D()) ->
Element of D() , F(
Element of (
QC-WFF Al())) ->
Element of D() , p() ->
QC-formula of Al() } :
for d1,d2 be
Element of D() st d1
= F(the_left_argument_of) & d2
= F(the_right_argument_of) holds F(p)
= C(d1,d2)
provided
A1: for p be
QC-formula of Al(), d be
Element of D() holds d
= F(p) iff ex F be
Function of (
QC-WFF Al()), D() st d
= (F
. p) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))
and
A2: p() is
conjunctive;
consider F be
Function of (
QC-WFF Al()), D() such that
A3: F(p)
= (F
. p()) and
A4: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1)) by
A1;
let d1,d2 be
Element of D();
assume d1
= F(the_left_argument_of) & d2
= F(the_right_argument_of);
then (F
. (
the_left_argument_of p()))
= d1 & (F
. (
the_right_argument_of p()))
= d2 by
A1,
A4;
hence thesis by
A2,
A3,
A4;
end;
scheme ::
QC_LANG3:sch7
QCDResult9universal { Al() ->
QC-alphabet , D() -> non
empty
set , V() ->
Element of D() , p() ->
QC-formula of Al() , A(
Element of (
QC-WFF Al())) ->
Element of D() , N(
Element of D()) ->
Element of D() , C(
Element of D(),
Element of D()) ->
Element of D() , Q(
Element of (
QC-WFF Al()),
Element of D()) ->
Element of D() , F(
Element of (
QC-WFF Al())) ->
Element of D() } :
F(p)
= Q(p,F)
provided
A1: for p be
QC-formula of Al(), d be
Element of D() holds d
= F(p) iff ex F be
Function of (
QC-WFF Al()), D() st d
= (F
. p) & for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1))
and
A2: p() is
universal;
consider F be
Function of (
QC-WFF Al()), D() such that
A3: F(p)
= (F
. p()) and
A4: for p be
Element of (
QC-WFF Al()) holds for d1,d2 be
Element of D() holds (p
= (
VERUM Al()) implies (F
. p)
= V()) & (p is
atomic implies (F
. p)
= A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= Q(p,d1)) by
A1;
(F
. (
the_scope_of p()))
= F(the_scope_of) by
A1,
A4;
hence thesis by
A2,
A3,
A4;
end;
reserve A for
QC-alphabet;
reserve x for
bound_QC-variable of A;
reserve a for
free_QC-variable of A;
reserve p,q for
Element of (
QC-WFF A);
reserve l for
FinSequence of (
QC-variables A);
reserve P,Q for
QC-pred_symbol of A;
reserve V for non
empty
Subset of (
QC-variables A);
reserve s,t for
QC-symbol of A;
theorem ::
QC_LANG3:1
P is
QC-pred_symbol of (
the_arity_of P), A
proof
set k = (
the_arity_of P);
set QCP = { Q : (
the_arity_of Q)
= k };
P
in QCP;
hence thesis;
end;
definition
let A, l, V;
::
QC_LANG3:def1
func
variables_in (l,V) ->
Subset of V equals { (l
. k) : 1
<= k & k
<= (
len l) & (l
. k)
in V };
coherence
proof
set A = { (l
. k) : 1
<= k & k
<= (
len l) & (l
. k)
in V };
A
c= V
proof
let x be
object;
assume x
in A;
then ex k st (l
. k)
= x & 1
<= k & k
<= (
len l) & (l
. k)
in V;
hence thesis;
end;
hence thesis;
end;
end
theorem ::
QC_LANG3:2
(
still_not-bound_in l)
= (
variables_in (l,(
bound_QC-variables A)));
Lm1:
now
let A be
QC-alphabet;
deffunc
F1(
Element of (
QC-WFF A)) = (
still_not-bound_in $1);
deffunc
A1(
Element of (
QC-WFF A)) = (
still_not-bound_in (
the_arguments_of $1));
deffunc
Q1(
Element of (
QC-WFF A),
Subset of (
bound_QC-variables A)) = ($2
\
{(
bound_in $1)});
deffunc
N1(
Subset of (
bound_QC-variables A)) = $1;
deffunc
C1(
Subset of (
bound_QC-variables A),
Subset of (
bound_QC-variables A)) = ($1
\/ $2);
thus for p be
QC-formula of A, d be
Subset of (
bound_QC-variables A) holds d
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
=
A1(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N1(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C1(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q1(p,d1))
proof
let p be
QC-formula of A, d be
Subset of (
bound_QC-variables A);
thus d
= (
still_not-bound_in p) implies ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
= (
still_not-bound_in (
the_arguments_of p))) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= d1) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= (d1
\/ d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= (d1
\
{(
bound_in p)}))
proof
assume d
= (
still_not-bound_in p);
then
consider F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) such that
A1: d
= (F
. p) & for p be
Element of (
QC-WFF A) holds (F
. (
VERUM A))
=
{} & (p is
atomic implies (F
. p)
= { ((
the_arguments_of p)
. k) : 1
<= k & k
<= (
len (
the_arguments_of p)) & ((
the_arguments_of p)
. k)
in (
bound_QC-variables A) }) & (p is
negative implies (F
. p)
= (F
. (
the_argument_of p))) & (p is
conjunctive implies (F
. p)
= ((F
. (
the_left_argument_of p))
\/ (F
. (
the_right_argument_of p)))) & (p is
universal implies (F
. p)
= ((F
. (
the_scope_of p))
\
{(
bound_in p)})) by
QC_LANG1:def 30;
take F;
thus d
= (F
. p) by
A1;
let p be
Element of (
QC-WFF A);
let d1,d2 be
Subset of (
bound_QC-variables A);
thus (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
= (
still_not-bound_in (
the_arguments_of p))) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= d1) by
A1;
thus thesis by
A1;
end;
given F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) such that
A2: d
= (F
. p) and
A3: for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
= (
still_not-bound_in (
the_arguments_of p))) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= d1) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= (d1
\/ d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= (d1
\
{(
bound_in p)}));
now
let p be
Element of (
QC-WFF A);
thus (F
. (
VERUM A))
=
{} by
A3;
thus p is
atomic implies (F
. p)
= { ((
the_arguments_of p)
. k) : 1
<= k & k
<= (
len (
the_arguments_of p)) & ((
the_arguments_of p)
. k)
in (
bound_QC-variables A) }
proof
assume p is
atomic;
then (F
. p)
= (
still_not-bound_in (
the_arguments_of p)) by
A3;
hence thesis;
end;
thus p is
negative implies (F
. p)
= (F
. (
the_argument_of p)) by
A3;
thus p is
conjunctive implies (F
. p)
= ((F
. (
the_left_argument_of p))
\/ (F
. (
the_right_argument_of p))) by
A3;
assume p is
universal;
hence (F
. p)
= ((F
. (
the_scope_of p))
\
{(
bound_in p)}) by
A3;
end;
hence thesis by
A2,
QC_LANG1:def 30;
end;
end;
theorem ::
QC_LANG3:3
Th3: (
still_not-bound_in (
VERUM A))
=
{}
proof
deffunc
F1(
Element of (
QC-WFF A)) = (
still_not-bound_in $1);
deffunc
A1(
Element of (
QC-WFF A)) = (
still_not-bound_in (
the_arguments_of $1));
deffunc
Q1(
Element of (
QC-WFF A),
Subset of (
bound_QC-variables A)) = ($2
\
{(
bound_in $1)});
deffunc
N1(
Subset of (
bound_QC-variables A)) = $1;
deffunc
C1(
Subset of (
bound_QC-variables A),
Subset of (
bound_QC-variables A)) = ($1
\/ $2);
A1: for p be
QC-formula of A, d be
Subset of (
bound_QC-variables A) holds d
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
=
A1(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N1(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C1(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q1(p,d1)) by
Lm1;
thus
F1(VERUM)
= (
{} (
bound_QC-variables A)) from
QCDResult9VERUM(
A1)
.=
{} ;
end;
theorem ::
QC_LANG3:4
Th4: for p be
QC-formula of A st p is
atomic holds (
still_not-bound_in p)
= (
still_not-bound_in (
the_arguments_of p))
proof
deffunc
F1(
Element of (
QC-WFF A)) = (
still_not-bound_in $1);
deffunc
A1(
Element of (
QC-WFF A)) = (
still_not-bound_in (
the_arguments_of $1));
deffunc
Q1(
Element of (
QC-WFF A),
Subset of (
bound_QC-variables A)) = ($2
\
{(
bound_in $1)});
deffunc
N1(
Subset of (
bound_QC-variables A)) = $1;
deffunc
C1(
Subset of (
bound_QC-variables A),
Subset of (
bound_QC-variables A)) = ($1
\/ $2);
A1: for p be
QC-formula of A, d be
Subset of (
bound_QC-variables A) holds d
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
=
A1(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N1(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C1(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q1(p,d1)) by
Lm1;
let p be
QC-formula of A such that
A2: p is
atomic;
thus
F1(p)
=
A1(p) from
QCDResult9atomic(
A1,
A2);
end;
theorem ::
QC_LANG3:5
for P be
QC-pred_symbol of k, A holds for l be
QC-variable_list of k, A holds (
still_not-bound_in (P
! l))
= (
still_not-bound_in l)
proof
let P be
QC-pred_symbol of k, A;
let l be
QC-variable_list of k, A;
A1: (P
! l) is
atomic;
then (
the_arguments_of (P
! l))
= l by
QC_LANG1:def 23;
hence thesis by
A1,
Th4;
end;
theorem ::
QC_LANG3:6
Th6: for p be
QC-formula of A st p is
negative holds (
still_not-bound_in p)
= (
still_not-bound_in (
the_argument_of p))
proof
deffunc
F1(
Element of (
QC-WFF A)) = (
still_not-bound_in $1);
deffunc
A1(
Element of (
QC-WFF A)) = (
still_not-bound_in (
the_arguments_of $1));
deffunc
Q1(
Element of (
QC-WFF A),
Subset of (
bound_QC-variables A)) = ($2
\
{(
bound_in $1)});
deffunc
N1(
Subset of (
bound_QC-variables A)) = $1;
deffunc
C1(
Subset of (
bound_QC-variables A),
Subset of (
bound_QC-variables A)) = ($1
\/ $2);
A1: for p be
QC-formula of A, d be
Subset of (
bound_QC-variables A) holds d
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
=
A1(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N1(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C1(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q1(p,d1)) by
Lm1;
let p be
QC-formula of A such that
A2: p is
negative;
thus
F1(p)
=
N1(F1) from
QCDResult9negative(
A1,
A2);
end;
theorem ::
QC_LANG3:7
Th7: for p be
QC-formula of A holds (
still_not-bound_in (
'not' p))
= (
still_not-bound_in p)
proof
let p be
QC-formula of A;
A1: (
'not' p) is
negative;
then (
the_argument_of (
'not' p))
= p by
QC_LANG1:def 24;
hence thesis by
A1,
Th6;
end;
theorem ::
QC_LANG3:8
Th8: (
still_not-bound_in (
FALSUM A))
=
{}
proof
(
still_not-bound_in (
FALSUM A))
= (
still_not-bound_in (
'not' (
VERUM A))) by
QC_LANG2:def 1
.= (
still_not-bound_in (
VERUM A)) by
Th7
.=
{} by
Th3;
hence thesis;
end;
theorem ::
QC_LANG3:9
Th9: for p be
QC-formula of A st p is
conjunctive holds (
still_not-bound_in p)
= ((
still_not-bound_in (
the_left_argument_of p))
\/ (
still_not-bound_in (
the_right_argument_of p)))
proof
deffunc
F1(
Element of (
QC-WFF A)) = (
still_not-bound_in $1);
deffunc
A1(
Element of (
QC-WFF A)) = (
still_not-bound_in (
the_arguments_of $1));
deffunc
Q1(
Element of (
QC-WFF A),
Subset of (
bound_QC-variables A)) = ($2
\
{(
bound_in $1)});
deffunc
N1(
Subset of (
bound_QC-variables A)) = $1;
deffunc
C1(
Subset of (
bound_QC-variables A),
Subset of (
bound_QC-variables A)) = ($1
\/ $2);
A1: for p be
QC-formula of A, d be
Subset of (
bound_QC-variables A) holds d
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
=
A1(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N1(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C1(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q1(p,d1)) by
Lm1;
let p be
QC-formula of A such that
A2: p is
conjunctive;
for d1,d2 be
Subset of (
bound_QC-variables A) st d1
=
F1(the_left_argument_of) & d2
=
F1(the_right_argument_of) holds
F1(p)
=
C1(d1,d2) from
QCDResult9conjunctive(
A1,
A2);
hence thesis;
end;
theorem ::
QC_LANG3:10
Th10: for p,q be
QC-formula of A holds (
still_not-bound_in (p
'&' q))
= ((
still_not-bound_in p)
\/ (
still_not-bound_in q))
proof
let p,q be
QC-formula of A;
set pq = (p
'&' q);
A1: pq is
conjunctive;
then (
the_left_argument_of pq)
= p & (
the_right_argument_of pq)
= q by
QC_LANG1:def 25,
QC_LANG1:def 26;
hence thesis by
A1,
Th9;
end;
theorem ::
QC_LANG3:11
Th11: for p be
QC-formula of A st p is
universal holds (
still_not-bound_in p)
= ((
still_not-bound_in (
the_scope_of p))
\
{(
bound_in p)})
proof
deffunc
F1(
Element of (
QC-WFF A)) = (
still_not-bound_in $1);
deffunc
A1(
Element of (
QC-WFF A)) = (
still_not-bound_in (
the_arguments_of $1));
deffunc
Q1(
Element of (
QC-WFF A),
Subset of (
bound_QC-variables A)) = ($2
\
{(
bound_in $1)});
deffunc
N1(
Subset of (
bound_QC-variables A)) = $1;
deffunc
C1(
Subset of (
bound_QC-variables A),
Subset of (
bound_QC-variables A)) = ($1
\/ $2);
A1: for p be
QC-formula of A, d be
Subset of (
bound_QC-variables A) holds d
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool (
bound_QC-variables A)) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of (
bound_QC-variables A) holds (p
= (
VERUM A) implies (F
. p)
= (
{} (
bound_QC-variables A))) & (p is
atomic implies (F
. p)
=
A1(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N1(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C1(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q1(p,d1)) by
Lm1;
let p be
QC-formula of A such that
A2: p is
universal;
thus
F1(p)
=
Q1(p,F1) from
QCDResult9universal(
A1,
A2);
end;
theorem ::
QC_LANG3:12
Th12: for p be
QC-formula of A holds (
still_not-bound_in (
All (x,p)))
= ((
still_not-bound_in p)
\
{x})
proof
let p be
QC-formula of A;
set a = (
All (x,p));
A1: a is
universal;
then (
the_scope_of a)
= p & (
bound_in a)
= x by
QC_LANG1:def 27,
QC_LANG1:def 28;
hence thesis by
A1,
Th11;
end;
theorem ::
QC_LANG3:13
Th13: for p be
QC-formula of A st p is
disjunctive holds (
still_not-bound_in p)
= ((
still_not-bound_in (
the_left_disjunct_of p))
\/ (
still_not-bound_in (
the_right_disjunct_of p)))
proof
let p be
QC-formula of A;
set p1 = (
the_left_disjunct_of p);
set p2 = (
the_right_disjunct_of p);
assume p is
disjunctive;
then p
= ((
the_left_disjunct_of p)
'or' (
the_right_disjunct_of p)) by
QC_LANG2: 37;
then p
= (
'not' ((
'not' p1)
'&' (
'not' p2))) by
QC_LANG2:def 3;
then (
still_not-bound_in p)
= (
still_not-bound_in ((
'not' p1)
'&' (
'not' p2))) by
Th7
.= ((
still_not-bound_in (
'not' p1))
\/ (
still_not-bound_in (
'not' p2))) by
Th10
.= ((
still_not-bound_in p1)
\/ (
still_not-bound_in (
'not' p2))) by
Th7
.= ((
still_not-bound_in p1)
\/ (
still_not-bound_in p2)) by
Th7;
hence thesis;
end;
theorem ::
QC_LANG3:14
for p,q be
QC-formula of A holds (
still_not-bound_in (p
'or' q))
= ((
still_not-bound_in p)
\/ (
still_not-bound_in q))
proof
let p,q be
QC-formula of A;
A1: (
the_right_disjunct_of (p
'or' q))
= q by
QC_LANG2: 29;
(p
'or' q) is
disjunctive & (
the_left_disjunct_of (p
'or' q))
= p by
QC_LANG2: 29,
QC_LANG2:def 10;
hence thesis by
A1,
Th13;
end;
theorem ::
QC_LANG3:15
Th15: for p be
QC-formula of A st p is
conditional holds (
still_not-bound_in p)
= ((
still_not-bound_in (
the_antecedent_of p))
\/ (
still_not-bound_in (
the_consequent_of p)))
proof
let p be
QC-formula of A;
set p1 = (
the_antecedent_of p);
set p2 = (
the_consequent_of p);
assume p is
conditional;
then p
= ((
the_antecedent_of p)
=> (
the_consequent_of p)) by
QC_LANG2: 38;
then p
= (
'not' (p1
'&' (
'not' p2))) by
QC_LANG2:def 2;
then (
still_not-bound_in p)
= (
still_not-bound_in (p1
'&' (
'not' p2))) by
Th7
.= ((
still_not-bound_in p1)
\/ (
still_not-bound_in (
'not' p2))) by
Th10
.= ((
still_not-bound_in p1)
\/ (
still_not-bound_in p2)) by
Th7;
hence thesis;
end;
theorem ::
QC_LANG3:16
Th16: for p,q be
QC-formula of A holds (
still_not-bound_in (p
=> q))
= ((
still_not-bound_in p)
\/ (
still_not-bound_in q))
proof
let p,q be
QC-formula of A;
A1: (
the_consequent_of (p
=> q))
= q by
QC_LANG2: 30;
(p
=> q) is
conditional & (
the_antecedent_of (p
=> q))
= p by
QC_LANG2: 30,
QC_LANG2:def 11;
hence thesis by
A1,
Th15;
end;
theorem ::
QC_LANG3:17
Th17: for p be
QC-formula of A st p is
biconditional holds (
still_not-bound_in p)
= ((
still_not-bound_in (
the_left_side_of p))
\/ (
still_not-bound_in (
the_right_side_of p)))
proof
let p be
QC-formula of A;
set p1 = (
the_left_side_of p);
set p2 = (
the_right_side_of p);
assume p is
biconditional;
then p
= ((
the_left_side_of p)
<=> (
the_right_side_of p)) by
QC_LANG2: 39;
then p
= ((p1
=> p2)
'&' (p2
=> p1)) by
QC_LANG2:def 4;
then (
still_not-bound_in p)
= ((
still_not-bound_in (p1
=> p2))
\/ (
still_not-bound_in (p2
=> p1))) by
Th10
.= (((
still_not-bound_in p1)
\/ (
still_not-bound_in p2))
\/ (
still_not-bound_in (p2
=> p1))) by
Th16
.= (((
still_not-bound_in p1)
\/ (
still_not-bound_in p2))
\/ ((
still_not-bound_in p1)
\/ (
still_not-bound_in p2))) by
Th16
.= ((
still_not-bound_in p1)
\/ (
still_not-bound_in p2));
hence thesis;
end;
theorem ::
QC_LANG3:18
for p,q be
QC-formula of A holds (
still_not-bound_in (p
<=> q))
= ((
still_not-bound_in p)
\/ (
still_not-bound_in q))
proof
let p,q be
QC-formula of A;
A1: (
the_right_side_of (p
<=> q))
= q by
QC_LANG2: 31;
(p
<=> q) is
biconditional & (
the_left_side_of (p
<=> q))
= p by
QC_LANG2: 31,
QC_LANG2:def 12;
hence thesis by
A1,
Th17;
end;
theorem ::
QC_LANG3:19
Th19: for p be
QC-formula of A holds (
still_not-bound_in (
Ex (x,p)))
= ((
still_not-bound_in p)
\
{x})
proof
let p be
QC-formula of A;
(
Ex (x,p))
= (
'not' (
All (x,(
'not' p)))) by
QC_LANG2:def 5;
hence (
still_not-bound_in (
Ex (x,p)))
= (
still_not-bound_in (
All (x,(
'not' p)))) by
Th7
.= ((
still_not-bound_in (
'not' p))
\
{x}) by
Th12
.= ((
still_not-bound_in p)
\
{x}) by
Th7;
end;
theorem ::
QC_LANG3:20
(
VERUM A) is
closed & (
FALSUM A) is
closed by
Th3,
Th8;
theorem ::
QC_LANG3:21
Th21: for p be
QC-formula of A holds p is
closed iff (
'not' p) is
closed by
Th7;
theorem ::
QC_LANG3:22
Th22: for p,q be
QC-formula of A holds p is
closed & q is
closed iff (p
'&' q) is
closed
proof
let p,q be
QC-formula of A;
thus p is
closed & q is
closed implies (p
'&' q) is
closed
proof
assume (
still_not-bound_in p)
=
{} & (
still_not-bound_in q)
=
{} ;
then ((
still_not-bound_in p)
\/ (
still_not-bound_in q))
=
{} ;
hence (
still_not-bound_in (p
'&' q))
=
{} by
Th10;
end;
assume
A1: (
still_not-bound_in (p
'&' q))
=
{} ;
(
still_not-bound_in (p
'&' q))
= ((
still_not-bound_in p)
\/ (
still_not-bound_in q)) by
Th10;
hence (
still_not-bound_in p)
=
{} & (
still_not-bound_in q)
=
{} by
A1,
XBOOLE_1: 15;
end;
theorem ::
QC_LANG3:23
Th23: for p be
QC-formula of A holds (
All (x,p)) is
closed iff (
still_not-bound_in p)
c=
{x}
proof
let p be
QC-formula of A;
thus (
All (x,p)) is
closed implies (
still_not-bound_in p)
c=
{x}
proof
assume (
still_not-bound_in (
All (x,p)))
=
{} ;
then
{}
= ((
still_not-bound_in p)
\
{x}) by
Th12;
hence thesis by
XBOOLE_1: 37;
end;
assume (
still_not-bound_in p)
c=
{x};
then
{}
= ((
still_not-bound_in p)
\
{x}) by
XBOOLE_1: 37;
hence (
still_not-bound_in (
All (x,p)))
=
{} by
Th12;
end;
theorem ::
QC_LANG3:24
for p be
QC-formula of A st p is
closed holds (
All (x,p)) is
closed
proof
let p be
QC-formula of A;
assume (
still_not-bound_in p)
=
{} ;
then (
still_not-bound_in p)
c=
{x} by
XBOOLE_1: 2;
hence thesis by
Th23;
end;
theorem ::
QC_LANG3:25
for p,q be
QC-formula of A holds p is
closed & q is
closed iff (p
'or' q) is
closed
proof
let p,q be
QC-formula of A;
A1: (p
'or' q)
= (
'not' ((
'not' p)
'&' (
'not' q))) by
QC_LANG2:def 3;
((
'not' p)
'&' (
'not' q)) is
closed iff (
'not' p) is
closed & (
'not' q) is
closed by
Th22;
hence thesis by
A1,
Th21;
end;
theorem ::
QC_LANG3:26
Th26: for p,q be
QC-formula of A holds p is
closed & q is
closed iff (p
=> q) is
closed
proof
let p,q be
QC-formula of A;
A1: (p
=> q)
= (
'not' (p
'&' (
'not' q))) by
QC_LANG2:def 2;
(p
'&' (
'not' q)) is
closed iff p is
closed & (
'not' q) is
closed by
Th22;
hence thesis by
A1,
Th21;
end;
theorem ::
QC_LANG3:27
for p,q be
QC-formula of A holds p is
closed & q is
closed iff (p
<=> q) is
closed
proof
let p,q be
QC-formula of A;
(p
<=> q)
= ((p
=> q)
'&' (q
=> p)) by
QC_LANG2:def 4;
then (p
<=> q) is
closed iff (p
=> q) is
closed & (q
=> p) is
closed by
Th22;
hence thesis by
Th26;
end;
theorem ::
QC_LANG3:28
Th28: for p be
QC-formula of A holds (
Ex (x,p)) is
closed iff (
still_not-bound_in p)
c=
{x}
proof
let p be
QC-formula of A;
thus (
Ex (x,p)) is
closed implies (
still_not-bound_in p)
c=
{x}
proof
assume (
still_not-bound_in (
Ex (x,p)))
=
{} ;
then
{}
= ((
still_not-bound_in p)
\
{x}) by
Th19;
hence thesis by
XBOOLE_1: 37;
end;
assume (
still_not-bound_in p)
c=
{x};
then
{}
= ((
still_not-bound_in p)
\
{x}) by
XBOOLE_1: 37;
hence (
still_not-bound_in (
Ex (x,p)))
=
{} by
Th19;
end;
theorem ::
QC_LANG3:29
for p be
QC-formula of A st p is
closed holds (
Ex (x,p)) is
closed
proof
let p be
QC-formula of A;
assume (
still_not-bound_in p)
=
{} ;
then (
still_not-bound_in p)
c=
{x} by
XBOOLE_1: 2;
hence thesis by
Th28;
end;
definition
let A, s;
::
QC_LANG3:def2
func
x. s ->
bound_QC-variable of A equals
[4, s];
coherence
proof
4
in
{4} by
TARSKI:def 1;
hence thesis by
ZFMISC_1:def 2;
end;
end
theorem ::
QC_LANG3:30
ex t st (
x. t)
= x
proof
consider i,t be
object such that
A1: i
in
{4} and
A2: t
in (
QC-symbols A) and
A3:
[i, t]
= x by
ZFMISC_1:def 2;
reconsider t as
QC-symbol of A by
A2;
take t;
thus thesis by
A1,
A3,
TARSKI:def 1;
end;
definition
let A, k;
::
QC_LANG3:def3
func (A)
a. k ->
free_QC-variable of A equals
[6, k];
coherence
proof
A1: k
in
NAT by
ORDINAL1:def 12;
6
in
{6} by
TARSKI:def 1;
hence thesis by
ZFMISC_1:def 2,
A1;
end;
end
theorem ::
QC_LANG3:31
ex i st (A
a. i)
= a
proof
consider x,y be
object such that
A1: x
in
{6} and
A2: y
in
NAT and
A3:
[x, y]
= a by
ZFMISC_1:def 2;
reconsider i = y as
Nat by
A2;
take i;
thus thesis by
A1,
A3,
TARSKI:def 1;
end;
theorem ::
QC_LANG3:32
for c be
Element of (
fixed_QC-variables A) holds for a be
Element of (
free_QC-variables A) holds c
<> a
proof
let c be
Element of (
fixed_QC-variables A);
let a be
Element of (
free_QC-variables A);
consider a1,a2 be
object such that
A1: a1
in
{6} and a2
in
NAT and
A2: a
=
[a1, a2] by
ZFMISC_1:def 2;
consider c1,c2 be
object such that
A3: c1
in
{5} and c2
in (
QC-symbols A) and
A4: c
=
[c1, c2] by
ZFMISC_1:def 2;
A5: c1
= 5 by
A3,
TARSKI:def 1;
a1
= 6 by
A1,
TARSKI:def 1;
hence thesis by
A2,
A4,
A5,
XTUPLE_0: 1;
end;
theorem ::
QC_LANG3:33
for c be
Element of (
fixed_QC-variables A) holds for x be
Element of (
bound_QC-variables A) holds c
<> x
proof
let c be
Element of (
fixed_QC-variables A);
let x be
Element of (
bound_QC-variables A);
consider x1,x2 be
object such that
A1: x1
in
{4} and x2
in (
QC-symbols A) and
A2: x
=
[x1, x2] by
ZFMISC_1:def 2;
consider c1,c2 be
object such that
A3: c1
in
{5} and c2
in (
QC-symbols A) and
A4: c
=
[c1, c2] by
ZFMISC_1:def 2;
A5: c1
= 5 by
A3,
TARSKI:def 1;
x1
= 4 by
A1,
TARSKI:def 1;
hence thesis by
A2,
A4,
A5,
XTUPLE_0: 1;
end;
theorem ::
QC_LANG3:34
for a be
Element of (
free_QC-variables A) holds for x be
Element of (
bound_QC-variables A) holds a
<> x
proof
let a be
Element of (
free_QC-variables A);
let x be
Element of (
bound_QC-variables A);
consider x1,x2 be
object such that
A1: x1
in
{4} and x2
in (
QC-symbols A) and
A2: x
=
[x1, x2] by
ZFMISC_1:def 2;
consider a1,a2 be
object such that
A3: a1
in
{6} and a2
in
NAT and
A4: a
=
[a1, a2] by
ZFMISC_1:def 2;
A5: a1
= 6 by
A3,
TARSKI:def 1;
x1
= 4 by
A1,
TARSKI:def 1;
hence thesis by
A2,
A4,
A5,
XTUPLE_0: 1;
end;
definition
let A, V, p;
::
QC_LANG3:def4
func
Vars (p,V) ->
Subset of V means
:
Def4: ex F be
Function of (
QC-WFF A), (
bool V) st it
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of V holds (p
= (
VERUM A) implies (F
. p)
= (
{} V)) & (p is
atomic implies (F
. p)
= (
variables_in ((
the_arguments_of p),V))) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
= d1) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
= (d1
\/ d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
= d1);
correctness
proof
deffunc
Q(
Element of (
QC-WFF A),
Subset of V) = $2;
deffunc
C(
Subset of V,
Subset of V) = ($1
\/ $2);
deffunc
N(
Subset of V) = $1;
deffunc
A(
Element of (
QC-WFF A)) = (
variables_in ((
the_arguments_of $1),V));
thus (ex d be
Subset of V, F be
Function of (
QC-WFF A), (
bool V) st d
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of V holds (p
= (
VERUM A) implies (F
. p)
= (
{} V)) & (p is
atomic implies (F
. p)
=
A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q(p,d1))) & for x1,x2 be
Subset of V st (ex F be
Function of (
QC-WFF A), (
bool V) st x1
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of V holds (p
= (
VERUM A) implies (F
. p)
= (
{} V)) & (p is
atomic implies (F
. p)
=
A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q(p,d1))) & (ex F be
Function of (
QC-WFF A), (
bool V) st x2
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of V holds (p
= (
VERUM A) implies (F
. p)
= (
{} V)) & (p is
atomic implies (F
. p)
=
A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q(p,d1))) holds x1
= x2 from
QCDefD;
end;
end
Lm2:
now
let A, V;
deffunc
F1(
Element of (
QC-WFF A)) = (
Vars ($1,V));
deffunc
A(
Element of (
QC-WFF A)) = (
variables_in ((
the_arguments_of $1),V));
deffunc
N(
Subset of V) = $1;
deffunc
C(
Subset of V,
Subset of V) = ($1
\/ $2);
deffunc
Q(
Element of (
QC-WFF A),
Subset of V) = $2;
A1: for X be
Subset of V holds X
=
F1(p) iff ex F be
Function of (
QC-WFF A), (
bool V) st X
= (F
. p) & for p be
Element of (
QC-WFF A) holds for d1,d2 be
Subset of V holds (p
= (
VERUM A) implies (F
. p)
= (
{} V)) & (p is
atomic implies (F
. p)
=
A(p)) & (p is
negative & d1
= (F
. (
the_argument_of p)) implies (F
. p)
=
N(d1)) & (p is
conjunctive & d1
= (F
. (
the_left_argument_of p)) & d2
= (F
. (
the_right_argument_of p)) implies (F
. p)
=
C(d1,d2)) & (p is
universal & d1
= (F
. (
the_scope_of p)) implies (F
. p)
=
Q(p,d1)) by
Def4;
thus
F1(VERUM)
= (
{} V) from
QCDResult9VERUM(
A1)
.=
{} ;
thus p is
atomic implies (
Vars (p,V))
= (
variables_in ((
the_arguments_of p),V))
proof
assume
A2: p is
atomic;
thus
F1(p)
=
A(p) from
QCDResult9atomic(
A1,
A2);
end;
thus p is
negative implies (
Vars (p,V))
= (
Vars ((
the_argument_of p),V))
proof
assume
A3: p is
negative;
thus
F1(p)
=
N(F1) from
QCDResult9negative(
A1,
A3);
end;
thus p is
conjunctive implies (
Vars (p,V))
= ((
Vars ((
the_left_argument_of p),V))
\/ (
Vars ((
the_right_argument_of p),V)))
proof
assume
A4: p is
conjunctive;
for d1,d2 be
Subset of V st d1
=
F1(the_left_argument_of) & d2
=
F1(the_right_argument_of) holds
F1(p)
=
C(d1,d2) from
QCDResult9conjunctive(
A1,
A4);
hence thesis;
end;
thus p is
universal implies (
Vars (p,V))
= (
Vars ((
the_scope_of p),V))
proof
assume
A5: p is
universal;
thus
F1(p)
=
Q(p,F1) from
QCDResult9universal(
A1,
A5);
end;
end;
theorem ::
QC_LANG3:35
(
Vars ((
VERUM A),V))
=
{} by
Lm2;
theorem ::
QC_LANG3:36
Th36: p is
atomic implies (
Vars (p,V))
= (
variables_in ((
the_arguments_of p),V)) & (
Vars (p,V))
= { ((
the_arguments_of p)
. k) : 1
<= k & k
<= (
len (
the_arguments_of p)) & ((
the_arguments_of p)
. k)
in V }
proof
assume p is
atomic;
hence (
Vars (p,V))
= (
variables_in ((
the_arguments_of p),V)) by
Lm2;
hence thesis;
end;
theorem ::
QC_LANG3:37
Th37: for P be
QC-pred_symbol of k, A holds for l be
QC-variable_list of k, A holds (
Vars ((P
! l),V))
= (
variables_in (l,V)) & (
Vars ((P
! l),V))
= { (l
. i) : 1
<= i & i
<= (
len l) & (l
. i)
in V }
proof
let P be
QC-pred_symbol of k, A;
let l be
QC-variable_list of k, A;
A1: (P
! l) is
atomic;
then (
the_arguments_of (P
! l))
= l by
QC_LANG1:def 23;
hence thesis by
A1,
Th36;
end;
theorem ::
QC_LANG3:38
p is
negative implies (
Vars (p,V))
= (
Vars ((
the_argument_of p),V)) by
Lm2;
theorem ::
QC_LANG3:39
Th39: (
Vars ((
'not' p),V))
= (
Vars (p,V))
proof
set 9p = (
'not' p);
A1: 9p is
negative;
then (
the_argument_of 9p)
= p by
QC_LANG1:def 24;
hence thesis by
A1,
Lm2;
end;
theorem ::
QC_LANG3:40
Th40: (
Vars ((
FALSUM A),V))
=
{}
proof
(
FALSUM A)
= (
'not' (
VERUM A)) by
QC_LANG2:def 1;
hence (
Vars ((
FALSUM A),V))
= (
Vars ((
VERUM A),V)) by
Th39
.=
{} by
Lm2;
end;
theorem ::
QC_LANG3:41
p is
conjunctive implies (
Vars (p,V))
= ((
Vars ((
the_left_argument_of p),V))
\/ (
Vars ((
the_right_argument_of p),V))) by
Lm2;
theorem ::
QC_LANG3:42
Th42: (
Vars ((p
'&' q),V))
= ((
Vars (p,V))
\/ (
Vars (q,V)))
proof
set pq = (p
'&' q);
A1: (p
'&' q) is
conjunctive;
then (
the_left_argument_of pq)
= p & (
the_right_argument_of pq)
= q by
QC_LANG1:def 25,
QC_LANG1:def 26;
hence thesis by
A1,
Lm2;
end;
theorem ::
QC_LANG3:43
p is
universal implies (
Vars (p,V))
= (
Vars ((
the_scope_of p),V)) by
Lm2;
theorem ::
QC_LANG3:44
Th44: (
Vars ((
All (x,p)),V))
= (
Vars (p,V))
proof
A1: (
All (x,p)) is
universal;
then (
the_scope_of (
All (x,p)))
= p by
QC_LANG1:def 28;
hence thesis by
A1,
Lm2;
end;
theorem ::
QC_LANG3:45
Th45: p is
disjunctive implies (
Vars (p,V))
= ((
Vars ((
the_left_disjunct_of p),V))
\/ (
Vars ((
the_right_disjunct_of p),V)))
proof
set p1 = (
the_left_disjunct_of p);
set p2 = (
the_right_disjunct_of p);
assume p is
disjunctive;
then p
= (p1
'or' p2) by
QC_LANG2: 37;
then p
= (
'not' ((
'not' p1)
'&' (
'not' p2))) by
QC_LANG2:def 3;
hence (
Vars (p,V))
= (
Vars (((
'not' p1)
'&' (
'not' p2)),V)) by
Th39
.= ((
Vars ((
'not' p1),V))
\/ (
Vars ((
'not' p2),V))) by
Th42
.= ((
Vars (p1,V))
\/ (
Vars ((
'not' p2),V))) by
Th39
.= ((
Vars ((
the_left_disjunct_of p),V))
\/ (
Vars ((
the_right_disjunct_of p),V))) by
Th39;
end;
theorem ::
QC_LANG3:46
(
Vars ((p
'or' q),V))
= ((
Vars (p,V))
\/ (
Vars (q,V)))
proof
A1: (
the_right_disjunct_of (p
'or' q))
= q by
QC_LANG2: 29;
(p
'or' q) is
disjunctive & (
the_left_disjunct_of (p
'or' q))
= p by
QC_LANG2: 29,
QC_LANG2:def 10;
hence thesis by
A1,
Th45;
end;
theorem ::
QC_LANG3:47
Th47: p is
conditional implies (
Vars (p,V))
= ((
Vars ((
the_antecedent_of p),V))
\/ (
Vars ((
the_consequent_of p),V)))
proof
set p1 = (
the_antecedent_of p);
set p2 = (
the_consequent_of p);
assume p is
conditional;
then p
= (p1
=> p2) by
QC_LANG2: 38;
then p
= (
'not' (p1
'&' (
'not' p2))) by
QC_LANG2:def 2;
hence (
Vars (p,V))
= (
Vars ((p1
'&' (
'not' p2)),V)) by
Th39
.= ((
Vars (p1,V))
\/ (
Vars ((
'not' p2),V))) by
Th42
.= ((
Vars ((
the_antecedent_of p),V))
\/ (
Vars ((
the_consequent_of p),V))) by
Th39;
end;
theorem ::
QC_LANG3:48
Th48: (
Vars ((p
=> q),V))
= ((
Vars (p,V))
\/ (
Vars (q,V)))
proof
A1: (
the_consequent_of (p
=> q))
= q by
QC_LANG2: 30;
(p
=> q) is
conditional & (
the_antecedent_of (p
=> q))
= p by
QC_LANG2: 30,
QC_LANG2:def 11;
hence thesis by
A1,
Th47;
end;
theorem ::
QC_LANG3:49
Th49: p is
biconditional implies (
Vars (p,V))
= ((
Vars ((
the_left_side_of p),V))
\/ (
Vars ((
the_right_side_of p),V)))
proof
set p1 = (
the_left_side_of p);
set p2 = (
the_right_side_of p);
assume p is
biconditional;
then p
= (p1
<=> p2) by
QC_LANG2: 39;
then p
= ((p1
=> p2)
'&' (p2
=> p1)) by
QC_LANG2:def 4;
hence (
Vars (p,V))
= ((
Vars ((p1
=> p2),V))
\/ (
Vars ((p2
=> p1),V))) by
Th42
.= (((
Vars (p1,V))
\/ (
Vars (p2,V)))
\/ (
Vars ((p2
=> p1),V))) by
Th48
.= (((
Vars (p1,V))
\/ (
Vars (p2,V)))
\/ ((
Vars (p1,V))
\/ (
Vars (p2,V)))) by
Th48
.= ((
Vars ((
the_left_side_of p),V))
\/ (
Vars ((
the_right_side_of p),V)));
end;
theorem ::
QC_LANG3:50
(
Vars ((p
<=> q),V))
= ((
Vars (p,V))
\/ (
Vars (q,V)))
proof
A1: (
the_right_side_of (p
<=> q))
= q by
QC_LANG2: 31;
(p
<=> q) is
biconditional & (
the_left_side_of (p
<=> q))
= p by
QC_LANG2: 31,
QC_LANG2:def 12;
hence thesis by
A1,
Th49;
end;
theorem ::
QC_LANG3:51
p is
existential implies (
Vars (p,V))
= (
Vars ((
the_argument_of (
the_scope_of (
the_argument_of p))),V))
proof
set p1 = (
the_argument_of (
the_scope_of (
the_argument_of p)));
set x = (
bound_in (
the_argument_of p));
assume p is
existential;
then p
= (
Ex (x,p1)) by
QC_LANG2: 40;
then p
= (
'not' (
All (x,(
'not' p1)))) by
QC_LANG2:def 5;
then (
Vars (p,V))
= (
Vars ((
All (x,(
'not' p1))),V)) by
Th39
.= (
Vars ((
'not' p1),V)) by
Th44
.= (
Vars (p1,V)) by
Th39;
hence thesis;
end;
theorem ::
QC_LANG3:52
(
Vars ((
Ex (x,p)),V))
= (
Vars (p,V))
proof
(
Ex (x,p))
= (
'not' (
All (x,(
'not' p)))) by
QC_LANG2:def 5;
hence (
Vars ((
Ex (x,p)),V))
= (
Vars ((
All (x,(
'not' p))),V)) by
Th39
.= (
Vars ((
'not' p),V)) by
Th44
.= (
Vars (p,V)) by
Th39;
end;
definition
let A, p;
::
QC_LANG3:def5
func
Free p ->
Subset of (
free_QC-variables A) equals (
Vars (p,(
free_QC-variables A)));
correctness ;
end
theorem ::
QC_LANG3:53
(
Free (
VERUM A))
=
{} by
Lm2;
theorem ::
QC_LANG3:54
for P be
QC-pred_symbol of k, A holds for l be
QC-variable_list of k, A holds (
Free (P
! l))
= { (l
. i) : 1
<= i & i
<= (
len l) & (l
. i)
in (
free_QC-variables A) } by
Th37;
theorem ::
QC_LANG3:55
(
Free (
'not' p))
= (
Free p) by
Th39;
theorem ::
QC_LANG3:56
(
Free (
FALSUM A))
=
{} by
Th40;
theorem ::
QC_LANG3:57
(
Free (p
'&' q))
= ((
Free p)
\/ (
Free q)) by
Th42;
theorem ::
QC_LANG3:58
(
Free (
All (x,p)))
= (
Free p) by
Th44;
theorem ::
QC_LANG3:59
(
Free (p
'or' q))
= ((
Free p)
\/ (
Free q))
proof
(p
'or' q)
= (
'not' ((
'not' p)
'&' (
'not' q))) by
QC_LANG2:def 3;
hence (
Free (p
'or' q))
= (
Free ((
'not' p)
'&' (
'not' q))) by
Th39
.= ((
Free (
'not' p))
\/ (
Free (
'not' q))) by
Th42
.= ((
Free p)
\/ (
Free (
'not' q))) by
Th39
.= ((
Free p)
\/ (
Free q)) by
Th39;
end;
theorem ::
QC_LANG3:60
Th60: (
Free (p
=> q))
= ((
Free p)
\/ (
Free q))
proof
(p
=> q)
= (
'not' (p
'&' (
'not' q))) by
QC_LANG2:def 2;
hence (
Free (p
=> q))
= (
Free (p
'&' (
'not' q))) by
Th39
.= ((
Free p)
\/ (
Free (
'not' q))) by
Th42
.= ((
Free p)
\/ (
Free q)) by
Th39;
end;
theorem ::
QC_LANG3:61
(
Free (p
<=> q))
= ((
Free p)
\/ (
Free q))
proof
(p
<=> q)
= ((p
=> q)
'&' (q
=> p)) by
QC_LANG2:def 4;
hence (
Free (p
<=> q))
= ((
Free (p
=> q))
\/ (
Free (q
=> p))) by
Th42
.= (((
Free p)
\/ (
Free q))
\/ (
Free (q
=> p))) by
Th60
.= (((
Free p)
\/ (
Free q))
\/ ((
Free p)
\/ (
Free q))) by
Th60
.= ((
Free p)
\/ (
Free q));
end;
theorem ::
QC_LANG3:62
(
Free (
Ex (x,p)))
= (
Free p)
proof
(
Ex (x,p))
= (
'not' (
All (x,(
'not' p)))) by
QC_LANG2:def 5;
hence (
Free (
Ex (x,p)))
= (
Free (
All (x,(
'not' p)))) by
Th39
.= (
Free (
'not' p)) by
Th44
.= (
Free p) by
Th39;
end;
definition
let A, p;
::
QC_LANG3:def6
func
Fixed p ->
Subset of (
fixed_QC-variables A) equals (
Vars (p,(
fixed_QC-variables A)));
correctness ;
end
theorem ::
QC_LANG3:63
(
Fixed (
VERUM A))
=
{} by
Lm2;
theorem ::
QC_LANG3:64
for P be
QC-pred_symbol of k, A holds for l be
QC-variable_list of k, A holds (
Fixed (P
! l))
= { (l
. i) : 1
<= i & i
<= (
len l) & (l
. i)
in (
fixed_QC-variables A) } by
Th37;
theorem ::
QC_LANG3:65
(
Fixed (
'not' p))
= (
Fixed p) by
Th39;
theorem ::
QC_LANG3:66
(
Fixed (
FALSUM A))
=
{}
proof
thus (
Fixed (
FALSUM A))
= (
Fixed (
'not' (
VERUM A))) by
QC_LANG2:def 1
.= (
Fixed (
VERUM A)) by
Th39
.=
{} by
Lm2;
end;
theorem ::
QC_LANG3:67
(
Fixed (p
'&' q))
= ((
Fixed p)
\/ (
Fixed q)) by
Th42;
theorem ::
QC_LANG3:68
(
Fixed (
All (x,p)))
= (
Fixed p) by
Th44;
theorem ::
QC_LANG3:69
(
Fixed (p
'or' q))
= ((
Fixed p)
\/ (
Fixed q))
proof
(p
'or' q)
= (
'not' ((
'not' p)
'&' (
'not' q))) by
QC_LANG2:def 3;
hence (
Fixed (p
'or' q))
= (
Fixed ((
'not' p)
'&' (
'not' q))) by
Th39
.= ((
Fixed (
'not' p))
\/ (
Fixed (
'not' q))) by
Th42
.= ((
Fixed p)
\/ (
Fixed (
'not' q))) by
Th39
.= ((
Fixed p)
\/ (
Fixed q)) by
Th39;
end;
theorem ::
QC_LANG3:70
Th70: (
Fixed (p
=> q))
= ((
Fixed p)
\/ (
Fixed q))
proof
(p
=> q)
= (
'not' (p
'&' (
'not' q))) by
QC_LANG2:def 2;
hence (
Fixed (p
=> q))
= (
Fixed (p
'&' (
'not' q))) by
Th39
.= ((
Fixed p)
\/ (
Fixed (
'not' q))) by
Th42
.= ((
Fixed p)
\/ (
Fixed q)) by
Th39;
end;
theorem ::
QC_LANG3:71
(
Fixed (p
<=> q))
= ((
Fixed p)
\/ (
Fixed q))
proof
(p
<=> q)
= ((p
=> q)
'&' (q
=> p)) by
QC_LANG2:def 4;
hence (
Fixed (p
<=> q))
= ((
Fixed (p
=> q))
\/ (
Fixed (q
=> p))) by
Th42
.= (((
Fixed p)
\/ (
Fixed q))
\/ (
Fixed (q
=> p))) by
Th70
.= (((
Fixed p)
\/ (
Fixed q))
\/ ((
Fixed q)
\/ (
Fixed p))) by
Th70
.= ((
Fixed p)
\/ (
Fixed q));
end;
theorem ::
QC_LANG3:72
(
Fixed (
Ex (x,p)))
= (
Fixed p)
proof
(
Ex (x,p))
= (
'not' (
All (x,(
'not' p)))) by
QC_LANG2:def 5;
hence (
Fixed (
Ex (x,p)))
= (
Fixed (
All (x,(
'not' p)))) by
Th39
.= (
Fixed (
'not' p)) by
Th44
.= (
Fixed p) by
Th39;
end;