quin_1.miz
begin
reserve x,a,b,c for
Real;
definition
let a,b,c be
Complex;
::
QUIN_1:def1
func
delta (a,b,c) ->
number equals ((b
^2 )
- ((4
* a)
* c));
coherence ;
end
registration
let a,b,c be
Complex;
cluster (
delta (a,b,c)) ->
complex;
coherence ;
end
registration
let a,b,c be
Real;
cluster (
delta (a,b,c)) ->
real;
coherence ;
end
theorem ::
QUIN_1:1
Th1: for a,b,c,x be
Complex holds a
<>
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
proof
let a,b,c,x be
Complex;
assume
A1: a
<>
0 ;
then
A2: (4
* a)
<>
0 ;
(((a
* (x
^2 ))
+ (b
* x))
+ c)
= (((a
* (x
^2 ))
+ ((b
* x)
* 1))
+ c)
.= (((a
* (x
^2 ))
+ ((b
* x)
* (a
* (1
/ a))))
+ c) by
A1,
XCMPLX_1: 106
.= ((a
* ((x
^2 )
+ ((b
* x)
* (1
/ a))))
+ c)
.= ((a
* ((x
^2 )
+ ((b
* x)
/ a)))
+ c) by
XCMPLX_1: 99
.= ((a
* ((x
^2 )
+ (x
* (b
/ a))))
+ c) by
XCMPLX_1: 74
.= ((a
* ((x
^2 )
+ (x
* ((2
* b)
/ (2
* a)))))
+ c) by
XCMPLX_1: 91
.= ((a
* ((x
^2 )
+ (x
* (2
* (b
/ (2
* a))))))
+ c) by
XCMPLX_1: 74
.= (((a
* ((x
^2 )
+ ((2
* x)
* (b
/ (2
* a)))))
+ ((b
^2 )
/ (4
* a)))
+ (c
- ((b
^2 )
/ (4
* a))))
.= (((a
* ((x
^2 )
+ ((2
* x)
* (b
/ (2
* a)))))
+ (a
* (((b
^2 )
/ (4
* a))
* (1
/ a))))
+ (c
- ((b
^2 )
/ (4
* a)))) by
A1,
XCMPLX_1: 109
.= (((a
* ((x
^2 )
+ ((2
* x)
* (b
/ (2
* a)))))
+ (a
* (((b
^2 )
* 1)
/ ((4
* a)
* a))))
+ (c
- ((b
^2 )
/ (4
* a)))) by
XCMPLX_1: 76
.= (((a
* ((x
^2 )
+ ((2
* x)
* (b
/ (2
* a)))))
+ (a
* ((b
^2 )
/ ((2
* a)
^2 ))))
+ (c
- ((b
^2 )
/ (4
* a))))
.= (((a
* ((x
^2 )
+ ((2
* x)
* (b
/ (2
* a)))))
+ (a
* ((b
/ (2
* a))
^2 )))
+ (c
- ((b
^2 )
/ (4
* a)))) by
XCMPLX_1: 76
.= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- (((b
^2 )
/ (4
* a))
- c))
.= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- (((b
^2 )
/ (4
* a))
- (((4
* a)
* c)
/ (4
* a)))) by
A2,
XCMPLX_1: 89
.= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- (((b
^2 )
- ((4
* a)
* c))
/ (4
* a))) by
XCMPLX_1: 120;
hence thesis;
end;
theorem ::
QUIN_1:2
a
>
0 & (
delta (a,b,c))
<=
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
>=
0
proof
assume that
A1: a
>
0 and
A2: (
delta (a,b,c))
<=
0 ;
(
- (
delta (a,b,c)))
>= (
-
0 ) & (4
* a)
>
0 by
A1,
A2,
XREAL_1: 25,
XREAL_1: 129;
then ((
- (
delta (a,b,c)))
/ (4
* a))
>=
0 by
XREAL_1: 136;
then (
- ((
delta (a,b,c))
/ (4
* a)))
>=
0 by
XCMPLX_1: 187;
then
A3: ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+ (
- ((
delta (a,b,c))
/ (4
* a))))
>= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+
0 ) by
XREAL_1: 7;
((x
+ (b
/ (2
* a)))
^2 )
>=
0 by
XREAL_1: 63;
then (a
* ((x
+ (b
/ (2
* a)))
^2 ))
>=
0 by
A1,
XREAL_1: 127;
then ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
>=
0 by
A3,
XXREAL_0: 2;
hence thesis by
A1,
Th1;
end;
theorem ::
QUIN_1:3
a
>
0 & (
delta (a,b,c))
<
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0
proof
assume that
A1: a
>
0 and
A2: (
delta (a,b,c))
<
0 ;
(
- (
delta (a,b,c)))
> (
-
0 ) & (4
* a)
>
0 by
A1,
A2,
XREAL_1: 26,
XREAL_1: 129;
then ((
- (
delta (a,b,c)))
/ (4
* a))
>
0 by
XREAL_1: 139;
then (
- ((
delta (a,b,c))
/ (4
* a)))
>
0 by
XCMPLX_1: 187;
then
A3: ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+ (
- ((
delta (a,b,c))
/ (4
* a))))
> (a
* ((x
+ (b
/ (2
* a)))
^2 )) by
XREAL_1: 29;
((x
+ (b
/ (2
* a)))
^2 )
>=
0 by
XREAL_1: 63;
then (a
* ((x
+ (b
/ (2
* a)))
^2 ))
>=
0 by
A1,
XREAL_1: 127;
then ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
>
0 by
A3,
XXREAL_0: 2;
hence thesis by
A1,
Th1;
end;
theorem ::
QUIN_1:4
a
<
0 & (
delta (a,b,c))
<=
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
<=
0
proof
assume that
A1: a
<
0 and
A2: (
delta (a,b,c))
<=
0 ;
(
- (
delta (a,b,c)))
>= (
-
0 ) & (4
* a)
<
0 by
A1,
A2,
XREAL_1: 25,
XREAL_1: 132;
then ((
- (
delta (a,b,c)))
/ (4
* a))
<=
0 by
XREAL_1: 137;
then (
- ((
delta (a,b,c))
/ (4
* a)))
<=
0 by
XCMPLX_1: 187;
then
A3: ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+ (
- ((
delta (a,b,c))
/ (4
* a))))
<= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+
0 ) by
XREAL_1: 7;
(a
* ((x
+ (b
/ (2
* a)))
^2 ))
<=
0 by
A1,
XREAL_1: 63,
XREAL_1: 131;
then ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
<=
0 by
A3,
XXREAL_0: 2;
hence thesis by
A1,
Th1;
end;
theorem ::
QUIN_1:5
a
<
0 & (
delta (a,b,c))
<
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0
proof
assume that
A1: a
<
0 and
A2: (
delta (a,b,c))
<
0 ;
(
- (
delta (a,b,c)))
>
0 & (4
* a)
<
0 by
A1,
A2,
XREAL_1: 58,
XREAL_1: 132;
then ((
- (
delta (a,b,c)))
/ (4
* a))
<
0 by
XREAL_1: 142;
then (
- ((
delta (a,b,c))
/ (4
* a)))
<
0 by
XCMPLX_1: 187;
then
A3: ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+ (
- ((
delta (a,b,c))
/ (4
* a))))
< ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
+
0 ) by
XREAL_1: 6;
(a
* ((x
+ (b
/ (2
* a)))
^2 ))
<=
0 by
A1,
XREAL_1: 63,
XREAL_1: 131;
then ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
<
0 by
A3,
XXREAL_0: 2;
hence thesis by
A1,
Th1;
end;
theorem ::
QUIN_1:6
Th6: a
>
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
>=
0 implies (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>=
0
proof
assume that
A1: a
>
0 and
A2: (((a
* (x
^2 ))
+ (b
* x))
+ c)
>=
0 ;
A3: (4
* a)
<>
0 by
A1;
(4
* a)
>
0 & ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
>=
0 by
A1,
A2,
Th1,
XREAL_1: 129;
then ((4
* a)
* ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a))))
>=
0 by
XREAL_1: 127;
then
A4: (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>=
0 ;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>=
0 by
A4,
XCMPLX_1: 87;
hence thesis by
A3,
XCMPLX_1: 87;
end;
theorem ::
QUIN_1:7
Th7: a
>
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 implies (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0
proof
assume that
A1: a
>
0 and
A2: (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 ;
A3: (4
* a)
<>
0 by
A1;
(4
* a)
>
0 & ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
>
0 by
A1,
A2,
Th1,
XREAL_1: 129;
then ((4
* a)
* ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a))))
>
0 by
XREAL_1: 129;
then
A4: (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 ;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 by
A4,
XCMPLX_1: 87;
hence thesis by
A3,
XCMPLX_1: 87;
end;
theorem ::
QUIN_1:8
Th8: a
<
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
<=
0 implies (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>=
0
proof
assume that
A1: a
<
0 and
A2: (((a
* (x
^2 ))
+ (b
* x))
+ c)
<=
0 ;
A3: (4
* a)
<>
0 by
A1;
(4
* a)
<
0 & ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
<=
0 by
A1,
A2,
Th1,
XREAL_1: 132;
then ((4
* a)
* ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a))))
>=
0 by
XREAL_1: 128;
then
A4: (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>=
0 ;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>=
0 by
A4,
XCMPLX_1: 87;
hence thesis by
A3,
XCMPLX_1: 87;
end;
theorem ::
QUIN_1:9
Th9: a
<
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 implies (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0
proof
assume that
A1: a
<
0 and
A2: (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 ;
A3: (4
* a)
<>
0 by
A1;
(4
* a)
<
0 & ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
<
0 by
A1,
A2,
Th1,
XREAL_1: 132;
then ((4
* a)
* ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a))))
>
0 by
XREAL_1: 130;
then
A4: (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 ;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 by
A4,
XCMPLX_1: 87;
hence thesis by
A3,
XCMPLX_1: 87;
end;
theorem ::
QUIN_1:10
(for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
>=
0 ) & a
>
0 implies (
delta (a,b,c))
<=
0
proof
assume that
A1: for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
>=
0 and
A2: a
>
0 ;
(((a
* ((
- (b
/ (2
* a)))
^2 ))
+ (b
* (
- (b
/ (2
* a)))))
+ c)
>=
0 by
A1;
then (((((2
* a)
* (
- (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>=
0 by
A2,
Th6;
then
A3: ((((
- ((2
* a)
* (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>=
0 ;
(2
* a)
<>
0 by
A2;
then ((((
- b)
+ b)
^2 )
- (
delta (a,b,c)))
>=
0 by
A3,
XCMPLX_1: 87;
then (
- (
delta (a,b,c)))
>= (
-
0 );
hence thesis by
XREAL_1: 24;
end;
theorem ::
QUIN_1:11
(for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
<=
0 ) & a
<
0 implies (
delta (a,b,c))
<=
0
proof
assume that
A1: for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
<=
0 and
A2: a
<
0 ;
(((a
* ((
- (b
/ (2
* a)))
^2 ))
+ (b
* (
- (b
/ (2
* a)))))
+ c)
<=
0 by
A1;
then (((((2
* a)
* (
- (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>=
0 by
A2,
Th8;
then
A3: ((((
- ((2
* a)
* (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>=
0 ;
(2
* a)
<>
0 by
A2;
then ((((
- b)
+ b)
^2 )
- (
delta (a,b,c)))
>=
0 by
A3,
XCMPLX_1: 87;
then (
- (
delta (a,b,c)))
>= (
-
0 );
hence thesis by
XREAL_1: 24;
end;
theorem ::
QUIN_1:12
(for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 ) & a
>
0 implies (
delta (a,b,c))
<
0
proof
assume that
A1: for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 and
A2: a
>
0 ;
(((a
* ((
- (b
/ (2
* a)))
^2 ))
+ (b
* (
- (b
/ (2
* a)))))
+ c)
>
0 by
A1;
then (((((2
* a)
* (
- (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>
0 by
A2,
Th7;
then
A3: ((((
- ((2
* a)
* (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>
0 ;
(2
* a)
<>
0 by
A2;
then ((((
- b)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 by
A3,
XCMPLX_1: 87;
then (
- (
delta (a,b,c)))
>
0 ;
hence thesis by
XREAL_1: 58;
end;
theorem ::
QUIN_1:13
(for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 ) & a
<
0 implies (
delta (a,b,c))
<
0
proof
assume that
A1: for x holds (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 and
A2: a
<
0 ;
(((a
* ((
- (b
/ (2
* a)))
^2 ))
+ (b
* (
- (b
/ (2
* a)))))
+ c)
<
0 by
A1;
then (((((2
* a)
* (
- (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>
0 by
A2,
Th9;
then
A3: ((((
- ((2
* a)
* (b
/ (2
* a))))
+ b)
^2 )
- (
delta (a,b,c)))
>
0 ;
(2
* a)
<>
0 by
A2;
then ((((
- b)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 by
A3,
XCMPLX_1: 87;
then (
- (
delta (a,b,c)))
> (
-
0 );
hence thesis by
XREAL_1: 24;
end;
theorem ::
QUIN_1:14
Th14: for a,b,c,x be
Complex holds a
<>
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
=
0 implies (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
=
0
proof
let a,b,c,x be
Complex;
assume that
A1: a
<>
0 and
A2: (((a
* (x
^2 ))
+ (b
* x))
+ c)
=
0 ;
A3: (4
* a)
<>
0 by
A1;
((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
=
0 by
A1,
A2,
Th1;
then
A4: (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
=
0 ;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
=
0 by
A4,
XCMPLX_1: 87;
hence thesis by
A3,
XCMPLX_1: 87;
end;
Lm1: for a,b be
Complex holds (a
^2 )
= (b
^2 ) implies a
= b or a
= (
- b)
proof
let a,b be
Complex;
assume (a
^2 )
= (b
^2 );
then ((a
+ b)
* (a
- b))
=
0 ;
then (a
+ b)
=
0 or (a
- b)
=
0 by
XCMPLX_1: 6;
hence thesis;
end;
theorem ::
QUIN_1:15
a
<>
0 & (
delta (a,b,c))
>=
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
=
0 implies x
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume that
A1: a
<>
0 and
A2: (
delta (a,b,c))
>=
0 and
A3: (((a
* (x
^2 ))
+ (b
* x))
+ c)
=
0 ;
(((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
=
0 by
A1,
A3,
Th14;
then ((((2
* a)
* x)
+ b)
^2 )
= ((
sqrt (
delta (a,b,c)))
^2 ) by
A2,
SQUARE_1:def 2;
then
A4: (((2
* a)
* x)
+ b)
= (
sqrt (
delta (a,b,c))) or (((2
* a)
* x)
+ b)
= (
- (
sqrt (
delta (a,b,c)))) by
Lm1;
(2
* a)
<>
0 by
A1;
hence thesis by
A4,
XCMPLX_1: 89;
end;
theorem ::
QUIN_1:16
Th16: a
<>
0 & (
delta (a,b,c))
>=
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
= ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
proof
assume that
A1: a
<>
0 and
A2: (
delta (a,b,c))
>=
0 ;
(((a
* (x
^2 ))
+ (b
* x))
+ c)
= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- (1
* ((
delta (a,b,c))
/ (4
* a)))) by
A1,
Th1
.= ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((a
* (1
/ a))
* ((
delta (a,b,c))
/ (4
* a)))) by
A1,
XCMPLX_1: 106
.= (a
* (((x
+ (b
/ (2
* a)))
^2 )
- ((1
/ a)
* ((
delta (a,b,c))
/ (4
* a)))))
.= (a
* (((x
+ (b
/ (2
* a)))
^2 )
- (((
delta (a,b,c))
* 1)
/ ((4
* a)
* a)))) by
XCMPLX_1: 76
.= (a
* (((x
+ (b
/ (2
* a)))
^2 )
- (((
sqrt (
delta (a,b,c)))
^2 )
/ ((2
* a)
^2 )))) by
A2,
SQUARE_1:def 2
.= (a
* (((x
+ (b
/ (2
* a)))
^2 )
- (((
sqrt (
delta (a,b,c)))
/ (2
* a))
^2 ))) by
XCMPLX_1: 76
.= ((a
* (x
- ((
- (b
/ (2
* a)))
+ ((
sqrt (
delta (a,b,c)))
/ (2
* a)))))
* (x
- ((
- (b
/ (2
* a)))
- ((
sqrt (
delta (a,b,c)))
/ (2
* a)))))
.= ((a
* (x
- (((
- b)
/ (2
* a))
+ ((
sqrt (
delta (a,b,c)))
/ (2
* a)))))
* (x
- ((
- (b
/ (2
* a)))
- ((
sqrt (
delta (a,b,c)))
/ (2
* a))))) by
XCMPLX_1: 187
.= ((a
* (x
- (((
- b)
/ (2
* a))
+ ((
sqrt (
delta (a,b,c)))
/ (2
* a)))))
* (x
- (((
- b)
/ (2
* a))
- ((
sqrt (
delta (a,b,c)))
/ (2
* a))))) by
XCMPLX_1: 187
.= ((a
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
/ (2
* a))
- ((
sqrt (
delta (a,b,c)))
/ (2
* a))))) by
XCMPLX_1: 62
.= ((a
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))) by
XCMPLX_1: 120;
hence thesis;
end;
theorem ::
QUIN_1:17
Th17: a
<
0 & (
delta (a,b,c))
>
0 implies (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume that
A1: a
<
0 and
A2: (
delta (a,b,c))
>
0 ;
(
sqrt (
delta (a,b,c)))
>
0 by
A2,
SQUARE_1: 25;
then (2
* (
sqrt (
delta (a,b,c))))
>
0 by
XREAL_1: 129;
then ((
sqrt (
delta (a,b,c)))
+ (
sqrt (
delta (a,b,c))))
>
0 ;
then (
sqrt (
delta (a,b,c)))
> (
- (
sqrt (
delta (a,b,c)))) by
XREAL_1: 59;
then
A3: ((
- b)
+ (
sqrt (
delta (a,b,c))))
> ((
- b)
+ (
- (
sqrt (
delta (a,b,c))))) by
XREAL_1: 6;
(2
* a)
<
0 by
A1,
XREAL_1: 132;
hence thesis by
A3,
XREAL_1: 75;
end;
theorem ::
QUIN_1:18
a
<
0 & (
delta (a,b,c))
>
0 implies ((((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 iff (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
< x & x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
proof
assume that
A1: a
<
0 and
A2: (
delta (a,b,c))
>
0 ;
thus (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 implies (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
< x & x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 ;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
>
0 by
A1,
A2,
Th16;
then (a
* ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
>
0 ;
then ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
< (
0
/ a) by
A1,
XREAL_1: 84;
then (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 by
XREAL_1: 133;
then x
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) & x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) & (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) & x
> (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
A1,
A2,
Th17,
XREAL_1: 47,
XREAL_1: 48;
hence thesis by
XXREAL_0: 2;
end;
assume (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
< x & x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a));
then (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 by
XREAL_1: 49,
XREAL_1: 50;
then ((x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
<
0 by
XREAL_1: 132;
then (a
* ((x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
>
0 by
A1,
XREAL_1: 130;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
>
0 ;
hence thesis by
A1,
A2,
Th16;
end;
theorem ::
QUIN_1:19
a
<
0 & (
delta (a,b,c))
>
0 implies ((((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 iff x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
proof
assume that
A1: a
<
0 and
A2: (
delta (a,b,c))
>
0 ;
thus (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 implies x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 ;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
<
0 by
A1,
A2,
Th16;
then (a
* ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
<
0 ;
then ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
> (
0
/ a) by
A1,
XREAL_1: 82;
then (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 by
XREAL_1: 134;
hence thesis by
XREAL_1: 47,
XREAL_1: 48;
end;
assume x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a));
then
A3: (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 by
XREAL_1: 49,
XREAL_1: 50;
(((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
A1,
A2,
Th17;
then (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
> (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))) by
XREAL_1: 10;
then (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 & (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 by
A3,
XXREAL_0: 2;
then ((x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
>
0 by
XREAL_1: 129,
XREAL_1: 130;
then (a
* ((x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
<
0 by
A1,
XREAL_1: 132;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
<
0 ;
hence thesis by
A1,
A2,
Th16;
end;
theorem ::
QUIN_1:20
for a,b,c,x be
Complex holds a
<>
0 & (
delta (a,b,c))
=
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
=
0 implies x
= (
- (b
/ (2
* a)))
proof
let a,b,c,x be
Complex;
assume that
A1: a
<>
0 and
A2: (
delta (a,b,c))
=
0 & (((a
* (x
^2 ))
+ (b
* x))
+ c)
=
0 ;
(((((2
* a)
* x)
+ b)
^2 )
-
0 )
=
0 by
A1,
A2,
Th14;
then
A3: (((2
* a)
* x)
+ b)
=
0 by
XCMPLX_1: 6;
(2
* a)
<>
0 by
A1;
then x
= ((
- b)
/ (2
* a)) by
A3,
XCMPLX_1: 89;
hence thesis by
XCMPLX_1: 187;
end;
theorem ::
QUIN_1:21
Th21: a
>
0 & (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0
proof
assume that
A1: a
>
0 and
A2: (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 ;
(4
* a)
<>
0 by
A1;
then
A3: (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 by
A2,
XCMPLX_1: 87;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 by
A3,
XCMPLX_1: 87;
then
A4: ((4
* a)
* ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a))))
>
0 ;
(4
* a)
>
0 by
A1,
XREAL_1: 129;
then ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
> (
0
/ (4
* a)) by
A4,
XREAL_1: 83;
hence thesis by
A1,
Th1;
end;
theorem ::
QUIN_1:22
a
>
0 & (
delta (a,b,c))
=
0 implies ((((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 iff x
<> (
- (b
/ (2
* a))))
proof
assume that
A1: a
>
0 and
A2: (
delta (a,b,c))
=
0 ;
A3: (2
* a)
<>
0 by
A1;
thus (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 implies x
<> (
- (b
/ (2
* a)))
proof
assume (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 ;
then (((((2
* a)
* x)
+ b)
^2 )
-
0 )
>
0 by
A1,
A2,
Th7;
then ((2
* a)
* x)
<> (
- b);
then x
<> ((
- b)
/ (2
* a)) by
A3,
XCMPLX_1: 87;
hence thesis by
XCMPLX_1: 187;
end;
assume x
<> (
- (b
/ (2
* a)));
then x
<> ((
- b)
/ (2
* a)) by
XCMPLX_1: 187;
then (((2
* a)
* x)
+ b)
<>
0 by
A3,
XCMPLX_1: 89;
then (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 by
A2,
SQUARE_1: 12;
hence thesis by
A1,
Th21;
end;
theorem ::
QUIN_1:23
Th23: a
<
0 & (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 implies (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0
proof
assume that
A1: a
<
0 and
A2: (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 ;
(4
* a)
<>
0 by
A1;
then
A3: (((((2
* a)
* x)
+ b)
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 by
A2,
XCMPLX_1: 87;
(2
* a)
<>
0 by
A1;
then (((((2
* a)
* x)
+ ((2
* a)
* (b
/ (2
* a))))
^2 )
- ((4
* a)
* ((
delta (a,b,c))
/ (4
* a))))
>
0 by
A3,
XCMPLX_1: 87;
then
A4: ((4
* a)
* ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a))))
>
0 ;
(4
* a)
<
0 by
A1,
XREAL_1: 132;
then ((a
* ((x
+ (b
/ (2
* a)))
^2 ))
- ((
delta (a,b,c))
/ (4
* a)))
< (
0
/ (4
* a)) by
A4,
XREAL_1: 84;
hence thesis by
A1,
Th1;
end;
theorem ::
QUIN_1:24
a
<
0 & (
delta (a,b,c))
=
0 implies ((((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 iff x
<> (
- (b
/ (2
* a))))
proof
assume that
A1: a
<
0 and
A2: (
delta (a,b,c))
=
0 ;
A3: (2
* a)
<>
0 by
A1;
thus (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 implies x
<> (
- (b
/ (2
* a)))
proof
assume (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 ;
then (((((2
* a)
* x)
+ b)
^2 )
-
0 )
>
0 by
A1,
A2,
Th9;
then ((2
* a)
* x)
<> (
- b);
then x
<> ((
- b)
/ (2
* a)) by
A3,
XCMPLX_1: 87;
hence thesis by
XCMPLX_1: 187;
end;
assume x
<> (
- (b
/ (2
* a)));
then x
<> ((
- b)
/ (2
* a)) by
XCMPLX_1: 187;
then (((2
* a)
* x)
+ b)
<>
0 by
A3,
XCMPLX_1: 89;
then (((((2
* a)
* x)
+ b)
^2 )
- (
delta (a,b,c)))
>
0 by
A2,
SQUARE_1: 12;
hence thesis by
A1,
Th23;
end;
theorem ::
QUIN_1:25
Th25: a
>
0 & (
delta (a,b,c))
>
0 implies (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume that
A1: a
>
0 and
A2: (
delta (a,b,c))
>
0 ;
(
sqrt (
delta (a,b,c)))
>
0 by
A2,
SQUARE_1: 25;
then (2
* (
sqrt (
delta (a,b,c))))
>
0 by
XREAL_1: 129;
then ((
sqrt (
delta (a,b,c)))
+ (
sqrt (
delta (a,b,c))))
>
0 ;
then (
sqrt (
delta (a,b,c)))
> (
- (
sqrt (
delta (a,b,c)))) by
XREAL_1: 59;
then
A3: ((
- b)
+ (
sqrt (
delta (a,b,c))))
> ((
- b)
+ (
- (
sqrt (
delta (a,b,c))))) by
XREAL_1: 6;
(2
* a)
>
0 by
A1,
XREAL_1: 129;
hence thesis by
A3,
XREAL_1: 74;
end;
theorem ::
QUIN_1:26
a
>
0 & (
delta (a,b,c))
>
0 implies ((((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 iff (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
< x & x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
proof
assume that
A1: a
>
0 and
A2: (
delta (a,b,c))
>
0 ;
thus (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 implies (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
< x & x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume (((a
* (x
^2 ))
+ (b
* x))
+ c)
<
0 ;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
<
0 by
A1,
A2,
Th16;
then (a
* ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
<
0 ;
then ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
< (
0
/ a) by
A1,
XREAL_1: 81;
then (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 by
XREAL_1: 133;
then x
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) & x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) & x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) & x
> (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
A1,
A2,
Th25,
XREAL_1: 47,
XREAL_1: 48;
hence thesis by
XXREAL_0: 2;
end;
assume (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
< x & x
< (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a));
then (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 by
XREAL_1: 49,
XREAL_1: 50;
then ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
<
0 by
XREAL_1: 132;
then (a
* ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
<
0 by
A1,
XREAL_1: 132;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
<
0 ;
hence thesis by
A1,
A2,
Th16;
end;
theorem ::
QUIN_1:27
a
>
0 & (
delta (a,b,c))
>
0 implies ((((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 iff x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
> (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
proof
assume that
A1: a
>
0 and
A2: (
delta (a,b,c))
>
0 ;
thus (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 implies x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
> (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume (((a
* (x
^2 ))
+ (b
* x))
+ c)
>
0 ;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
>
0 by
A1,
A2,
Th16;
then (a
* ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
>
0 ;
then ((x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
> (
0
/ a) by
A1,
XREAL_1: 83;
then (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 by
XREAL_1: 134;
hence thesis by
XREAL_1: 47,
XREAL_1: 48;
end;
assume x
< (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
> (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a));
then
A3: (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 or (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 by
XREAL_1: 49,
XREAL_1: 50;
(((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
> (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
A1,
A2,
Th25;
then (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
< (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))) by
XREAL_1: 10;
then (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
<
0 or (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 & (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
>
0 by
A3,
XXREAL_0: 2;
then ((x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
>
0 by
XREAL_1: 129,
XREAL_1: 130;
then (a
* ((x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))))
>
0 by
A1,
XREAL_1: 129;
then ((a
* (x
- (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
* (x
- (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))))
>
0 ;
hence thesis by
A1,
A2,
Th16;
end;