quofield.miz
begin
definition
let I be non
empty
ZeroStr;
::
QUOFIELD:def1
func
Q. I ->
Subset of
[:the
carrier of I, the
carrier of I:] means
:
Def1: for u be
set holds u
in it iff ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I);
existence
proof
set M = {
[a, b] where a,b be
Element of I : b
<> (
0. I) };
for u be
object holds u
in M implies u
in
[:the
carrier of I, the
carrier of I:]
proof
let u be
object;
assume u
in M;
then ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I);
hence thesis;
end;
then
A1: M is
Subset of
[:the
carrier of I, the
carrier of I:] by
TARSKI:def 3;
for u be
set holds u
in M iff ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I);
hence thesis by
A1;
end;
uniqueness
proof
let M1,M2 be
Subset of
[:the
carrier of I, the
carrier of I:];
assume
A2: for u be
set holds u
in M1 iff ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I);
assume
A3: for u be
set holds u
in M2 iff ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I);
A4: for u be
object holds u
in M2 implies u
in M1
proof
let u be
object;
assume u
in M2;
then ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I) by
A3;
hence thesis by
A2;
end;
for u be
object holds u
in M1 implies u
in M2
proof
let u be
object;
assume u
in M1;
then ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I) by
A2;
hence thesis by
A3;
end;
hence thesis by
A4,
TARSKI: 2;
end;
end
theorem ::
QUOFIELD:1
Th1: for I be non
degenerated non
empty
multLoopStr_0 holds (
Q. I) is non
empty
proof
let I be non
degenerated non
empty
multLoopStr_0;
(
1. I)
<> (
0. I);
then
[(
1. I), (
1. I)]
in (
Q. I) by
Def1;
hence thesis;
end;
registration
let I be non
degenerated non
empty
multLoopStr_0;
cluster (
Q. I) -> non
empty;
coherence by
Th1;
end
theorem ::
QUOFIELD:2
Th2: for I be non
degenerated non
empty
multLoopStr_0 holds for u be
Element of (
Q. I) holds (u
`2 )
<> (
0. I)
proof
let I be non
degenerated non
empty
multLoopStr_0;
let u be
Element of (
Q. I);
ex a,b be
Element of I st u
=
[a, b] & b
<> (
0. I) by
Def1;
hence thesis;
end;
definition
let I be non
degenerated
domRing-like non
empty
doubleLoopStr;
let u,v be
Element of (
Q. I);
::
QUOFIELD:def2
func
padd (u,v) ->
Element of (
Q. I) equals
[(((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))), ((u
`2 )
* (v
`2 ))];
coherence
proof
(u
`2 )
<> (
0. I) & (v
`2 )
<> (
0. I) by
Th2;
then ((u
`2 )
* (v
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
hence thesis by
Def1;
end;
end
definition
let I be non
degenerated
domRing-like non
empty
doubleLoopStr;
let u,v be
Element of (
Q. I);
::
QUOFIELD:def3
func
pmult (u,v) ->
Element of (
Q. I) equals
[((u
`1 )
* (v
`1 )), ((u
`2 )
* (v
`2 ))];
coherence
proof
(u
`2 )
<> (
0. I) & (v
`2 )
<> (
0. I) by
Th2;
then ((u
`2 )
* (v
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
hence thesis by
Def1;
end;
end
theorem ::
QUOFIELD:3
Th3: for I be non
degenerated
domRing-like
associative
commutative
Abelian
add-associative
distributive non
empty
doubleLoopStr holds for u,v,w be
Element of (
Q. I) holds (
padd (u,(
padd (v,w))))
= (
padd ((
padd (u,v)),w))
proof
let I be non
degenerated
domRing-like
associative
add-associative
Abelian
distributive
commutative non
empty
doubleLoopStr;
let u,v,w be
Element of (
Q. I);
A1: (((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ ((((v
`1 )
* (w
`2 ))
+ ((w
`1 )
* (v
`2 )))
* (u
`2 )))
= (((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ ((((v
`1 )
* (w
`2 ))
* (u
`2 ))
+ (((w
`1 )
* (v
`2 ))
* (u
`2 )))) by
VECTSP_1:def 3
.= ((((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ (((v
`1 )
* (w
`2 ))
* (u
`2 )))
+ (((w
`1 )
* (v
`2 ))
* (u
`2 ))) by
RLVECT_1:def 3
.= ((((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ (((v
`1 )
* (w
`2 ))
* (u
`2 )))
+ ((w
`1 )
* ((v
`2 )
* (u
`2 )))) by
GROUP_1:def 3
.= (((((u
`1 )
* (v
`2 ))
* (w
`2 ))
+ (((v
`1 )
* (w
`2 ))
* (u
`2 )))
+ ((w
`1 )
* ((v
`2 )
* (u
`2 )))) by
GROUP_1:def 3
.= (((((u
`1 )
* (v
`2 ))
* (w
`2 ))
+ (((v
`1 )
* (u
`2 ))
* (w
`2 )))
+ ((w
`1 )
* ((v
`2 )
* (u
`2 )))) by
GROUP_1:def 3
.= (((((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 )))
* (w
`2 ))
+ ((w
`1 )
* ((v
`2 )
* (u
`2 )))) by
VECTSP_1:def 3;
A2: (v
`2 )
<> (
0. I) by
Th2;
(u
`2 )
<> (
0. I) by
Th2;
then ((u
`2 )
* (v
`2 ))
<> (
0. I) by
A2,
VECTSP_2:def 1;
then
reconsider s =
[(((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))), ((u
`2 )
* (v
`2 ))] as
Element of (
Q. I) by
Def1;
(w
`2 )
<> (
0. I) by
Th2;
then ((v
`2 )
* (w
`2 ))
<> (
0. I) by
A2,
VECTSP_2:def 1;
then
reconsider t =
[(((v
`1 )
* (w
`2 ))
+ ((w
`1 )
* (v
`2 ))), ((v
`2 )
* (w
`2 ))] as
Element of (
Q. I) by
Def1;
(
padd (u,(
padd (v,w))))
=
[(((u
`1 )
* (t
`2 ))
+ ((((v
`1 )
* (w
`2 ))
+ ((w
`1 )
* (v
`2 )))
* (u
`2 ))), ((u
`2 )
* (t
`2 ))]
.=
[(((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ ((((v
`1 )
* (w
`2 ))
+ ((w
`1 )
* (v
`2 )))
* (u
`2 ))), ((u
`2 )
* (t
`2 ))]
.=
[(((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ ((((v
`1 )
* (w
`2 ))
+ ((w
`1 )
* (v
`2 )))
* (u
`2 ))), ((u
`2 )
* ((v
`2 )
* (w
`2 )))]
.=
[(((u
`1 )
* ((v
`2 )
* (w
`2 )))
+ ((((v
`1 )
* (w
`2 ))
+ ((w
`1 )
* (v
`2 )))
* (u
`2 ))), (((u
`2 )
* (v
`2 ))
* (w
`2 ))] by
GROUP_1:def 3;
then (
padd (u,(
padd (v,w))))
=
[(((s
`1 )
* (w
`2 ))
+ ((w
`1 )
* ((v
`2 )
* (u
`2 )))), (((u
`2 )
* (v
`2 ))
* (w
`2 ))] by
A1
.=
[(((s
`1 )
* (w
`2 ))
+ ((w
`1 )
* (s
`2 ))), (((u
`2 )
* (v
`2 ))
* (w
`2 ))]
.= (
padd ((
padd (u,v)),w));
hence thesis;
end;
theorem ::
QUOFIELD:4
Th4: for I be non
degenerated
domRing-like
associative
commutative
Abelian non
empty
doubleLoopStr holds for u,v,w be
Element of (
Q. I) holds (
pmult (u,(
pmult (v,w))))
= (
pmult ((
pmult (u,v)),w))
proof
let I be non
degenerated
domRing-like
associative
commutative
Abelian non
empty
doubleLoopStr;
let u,v,w be
Element of (
Q. I);
A1: (v
`2 )
<> (
0. I) by
Th2;
(w
`2 )
<> (
0. I) by
Th2;
then ((v
`2 )
* (w
`2 ))
<> (
0. I) by
A1,
VECTSP_2:def 1;
then
reconsider t =
[((v
`1 )
* (w
`1 )), ((v
`2 )
* (w
`2 ))] as
Element of (
Q. I) by
Def1;
(u
`2 )
<> (
0. I) by
Th2;
then ((u
`2 )
* (v
`2 ))
<> (
0. I) by
A1,
VECTSP_2:def 1;
then
reconsider s =
[((u
`1 )
* (v
`1 )), ((u
`2 )
* (v
`2 ))] as
Element of (
Q. I) by
Def1;
(
pmult (u,(
pmult (v,w))))
=
[((u
`1 )
* ((v
`1 )
* (w
`1 ))), ((u
`2 )
* (t
`2 ))]
.=
[((u
`1 )
* ((v
`1 )
* (w
`1 ))), ((u
`2 )
* ((v
`2 )
* (w
`2 )))]
.=
[(((u
`1 )
* (v
`1 ))
* (w
`1 )), ((u
`2 )
* ((v
`2 )
* (w
`2 )))] by
GROUP_1:def 3
.=
[(((u
`1 )
* (v
`1 ))
* (w
`1 )), (((u
`2 )
* (v
`2 ))
* (w
`2 ))] by
GROUP_1:def 3
.=
[((s
`1 )
* (w
`1 )), (((u
`2 )
* (v
`2 ))
* (w
`2 ))]
.= (
pmult ((
pmult (u,v)),w));
hence thesis;
end;
definition
let I be non
degenerated
domRing-like
associative
commutative
Abelian
add-associative
distributive non
empty
doubleLoopStr;
let u,v be
Element of (
Q. I);
:: original:
padd
redefine
func
padd (u,v);
commutativity
proof
let u,v be
Element of (
Q. I);
thus (
padd (u,v))
=
[(((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))), ((u
`2 )
* (v
`2 ))]
.= (
padd (v,u));
end;
end
definition
let I be non
degenerated
domRing-like
associative
commutative
Abelian non
empty
doubleLoopStr;
let u,v be
Element of (
Q. I);
:: original:
pmult
redefine
func
pmult (u,v);
commutativity
proof
let u,v be
Element of (
Q. I);
thus (
pmult (u,v))
=
[((u
`1 )
* (v
`1 )), ((u
`2 )
* (v
`2 ))]
.= (
pmult (v,u));
end;
end
definition
let I be non
degenerated non
empty
multLoopStr_0;
let u be
Element of (
Q. I);
::
QUOFIELD:def4
func
QClass. u ->
Subset of (
Q. I) means
:
Def4: for z be
Element of (
Q. I) holds z
in it iff ((z
`1 )
* (u
`2 ))
= ((z
`2 )
* (u
`1 ));
existence
proof
set M = { z where z be
Element of (
Q. I) : ((z
`1 )
* (u
`2 ))
= ((z
`2 )
* (u
`1 )) };
for x be
Element of (
Q. I) holds x
in M implies ((x
`1 )
* (u
`2 ))
= ((x
`2 )
* (u
`1 ))
proof
let x be
Element of (
Q. I);
assume x
in M;
then ex z be
Element of (
Q. I) st x
= z & ((z
`1 )
* (u
`2 ))
= ((z
`2 )
* (u
`1 ));
hence thesis;
end;
then
A1: for x be
Element of (
Q. I) holds x
in M iff ((x
`1 )
* (u
`2 ))
= ((x
`2 )
* (u
`1 ));
for x be
object holds x
in M implies x
in (
Q. I)
proof
let x be
object;
assume x
in M;
then ex z be
Element of (
Q. I) st x
= z & ((z
`1 )
* (u
`2 ))
= ((z
`2 )
* (u
`1 ));
hence thesis;
end;
then M is
Subset of (
Q. I) by
TARSKI:def 3;
hence thesis by
A1;
end;
uniqueness
proof
let M1,M2 be
Subset of (
Q. I);
assume
A2: for z be
Element of (
Q. I) holds z
in M1 iff ((z
`1 )
* (u
`2 ))
= ((z
`2 )
* (u
`1 ));
assume
A3: for z be
Element of (
Q. I) holds z
in M2 iff ((z
`1 )
* (u
`2 ))
= ((z
`2 )
* (u
`1 ));
A4: for x be
object holds x
in M2 implies x
in M1
proof
let x be
object;
assume
A5: x
in M2;
then
reconsider x as
Element of (
Q. I);
((x
`1 )
* (u
`2 ))
= ((x
`2 )
* (u
`1 )) by
A3,
A5;
hence thesis by
A2;
end;
for x be
object holds x
in M1 implies x
in M2
proof
let x be
object;
assume
A6: x
in M1;
then
reconsider x as
Element of (
Q. I);
((x
`1 )
* (u
`2 ))
= ((x
`2 )
* (u
`1 )) by
A2,
A6;
hence thesis by
A3;
end;
hence thesis by
A4,
TARSKI: 2;
end;
end
theorem ::
QUOFIELD:5
Th5: for I be non
degenerated
commutative non
empty
multLoopStr_0 holds for u be
Element of (
Q. I) holds u
in (
QClass. u)
proof
let I be non
degenerated
commutative non
empty
multLoopStr_0;
let u be
Element of (
Q. I);
((u
`1 )
* (u
`2 ))
= ((u
`1 )
* (u
`2 ));
hence thesis by
Def4;
end;
registration
let I be non
degenerated
commutative non
empty
multLoopStr_0;
let u be
Element of (
Q. I);
cluster (
QClass. u) -> non
empty;
coherence by
Th5;
end
definition
let I be non
degenerated non
empty
multLoopStr_0;
::
QUOFIELD:def5
func
Quot. I ->
Subset-Family of (
Q. I) means
:
Def5: for A be
Subset of (
Q. I) holds A
in it iff ex u be
Element of (
Q. I) st A
= (
QClass. u);
existence
proof
defpred
P[
set] means ex u be
Element of (
Q. I) st $1
= (
QClass. u);
thus ex S be
Subset-Family of (
Q. I) st for A be
Subset of (
Q. I) holds A
in S iff
P[A] from
SUBSET_1:sch 3;
end;
uniqueness
proof
defpred
P[
set] means ex a be
Element of (
Q. I) st $1
= (
QClass. a);
let F1,F2 be
Subset-Family of (
Q. I);
assume
A1: for A be
Subset of (
Q. I) holds A
in F1 iff
P[A];
assume
A2: for A be
Subset of (
Q. I) holds A
in F2 iff
P[A];
thus thesis from
SUBSET_1:sch 4(
A1,
A2);
end;
end
theorem ::
QUOFIELD:6
Th6: for I be non
degenerated non
empty
multLoopStr_0 holds (
Quot. I) is non
empty
proof
let I be non
degenerated non
empty
multLoopStr_0;
(
1. I)
<> (
0. I);
then
reconsider u =
[(
1. I), (
1. I)] as
Element of (
Q. I) by
Def1;
(
QClass. u)
in (
Quot. I) by
Def5;
hence thesis;
end;
registration
let I be non
degenerated non
empty
multLoopStr_0;
cluster (
Quot. I) -> non
empty;
coherence by
Th6;
end
theorem ::
QUOFIELD:7
Th7: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
Q. I) holds (ex w be
Element of (
Quot. I) st u
in w & v
in w) implies ((u
`1 )
* (v
`2 ))
= ((v
`1 )
* (u
`2 ))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Q. I);
given w be
Element of (
Quot. I) such that
A1: u
in w and
A2: v
in w;
consider z be
Element of (
Q. I) such that
A3: w
= (
QClass. z) by
Def5;
A4: ((u
`1 )
* (z
`2 ))
= ((z
`1 )
* (u
`2 )) by
A1,
A3,
Def4;
(z
`2 )
divides (z
`2 );
then
A5: (z
`2 )
divides (((v
`2 )
* (u
`1 ))
* (z
`2 )) by
GCD_1: 7;
A6: ((v
`1 )
* (z
`2 ))
= ((z
`1 )
* (v
`2 )) by
A2,
A3,
Def4;
then
A7: (z
`2 )
divides ((z
`1 )
* (v
`2 )) by
GCD_1:def 1;
then
A8: (z
`2 )
divides (((z
`1 )
* (v
`2 ))
* (u
`2 )) by
GCD_1: 7;
A9: (z
`2 )
<> (
0. I) by
Th2;
hence ((v
`1 )
* (u
`2 ))
= ((((z
`1 )
* (v
`2 ))
/ (z
`2 ))
* (u
`2 )) by
A6,
A7,
GCD_1:def 4
.= ((((z
`1 )
* (v
`2 ))
* (u
`2 ))
/ (z
`2 )) by
A7,
A8,
A9,
GCD_1: 11
.= (((v
`2 )
* ((u
`1 )
* (z
`2 )))
/ (z
`2 )) by
A4,
GROUP_1:def 3
.= ((((v
`2 )
* (u
`1 ))
* (z
`2 ))
/ (z
`2 )) by
GROUP_1:def 3
.= (((v
`2 )
* (u
`1 ))
* ((z
`2 )
/ (z
`2 ))) by
A5,
A9,
GCD_1: 11
.= (((u
`1 )
* (v
`2 ))
* (
1_ I)) by
A9,
GCD_1: 9
.= ((u
`1 )
* (v
`2 ));
end;
theorem ::
QUOFIELD:8
Th8: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
Quot. I) holds u
meets v implies u
= v
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: u
= (
QClass. x) by
Def5;
assume (u
/\ v)
<>
{} ;
then u
meets v;
then
consider w be
object such that
A2: w
in u and
A3: w
in v by
XBOOLE_0: 3;
consider y be
Element of (
Q. I) such that
A4: v
= (
QClass. y) by
Def5;
reconsider w as
Element of (
Q. I) by
A2;
A5: ((w
`1 )
* (y
`2 ))
= ((w
`2 )
* (y
`1 )) by
A4,
A3,
Def4;
A6: for z be
Element of (
Q. I) holds z
in (
QClass. x) implies z
in (
QClass. y)
proof
let z be
Element of (
Q. I);
(w
`2 )
divides (w
`2 );
then
A7: (w
`2 )
divides (((z
`2 )
* (y
`1 ))
* (w
`2 )) by
GCD_1: 7;
assume z
in (
QClass. x);
then
A8: ((z
`1 )
* (w
`2 ))
= ((z
`2 )
* (w
`1 )) by
A1,
A2,
Th7;
then
A9: (w
`2 )
divides ((z
`2 )
* (w
`1 )) by
GCD_1:def 1;
then
A10: (w
`2 )
divides (((z
`2 )
* (w
`1 ))
* (y
`2 )) by
GCD_1: 7;
A11: (w
`2 )
<> (
0. I) by
Th2;
then ((z
`1 )
* (y
`2 ))
= ((((z
`2 )
* (w
`1 ))
/ (w
`2 ))
* (y
`2 )) by
A8,
A9,
GCD_1:def 4
.= ((((z
`2 )
* (w
`1 ))
* (y
`2 ))
/ (w
`2 )) by
A9,
A10,
A11,
GCD_1: 11
.= (((z
`2 )
* ((w
`2 )
* (y
`1 )))
/ (w
`2 )) by
A5,
GROUP_1:def 3
.= ((((z
`2 )
* (y
`1 ))
* (w
`2 ))
/ (w
`2 )) by
GROUP_1:def 3
.= (((z
`2 )
* (y
`1 ))
* ((w
`2 )
/ (w
`2 ))) by
A7,
A11,
GCD_1: 11
.= (((z
`2 )
* (y
`1 ))
* (
1_ I)) by
A11,
GCD_1: 9
.= ((z
`2 )
* (y
`1 ));
hence thesis by
Def4;
end;
A12: ((w
`1 )
* (x
`2 ))
= ((w
`2 )
* (x
`1 )) by
A1,
A2,
Def4;
for z be
Element of (
Q. I) holds z
in (
QClass. y) implies z
in (
QClass. x)
proof
let z be
Element of (
Q. I);
(w
`2 )
divides (w
`2 );
then
A13: (w
`2 )
divides (((z
`2 )
* (x
`1 ))
* (w
`2 )) by
GCD_1: 7;
assume z
in (
QClass. y);
then
A14: ((z
`1 )
* (w
`2 ))
= ((z
`2 )
* (w
`1 )) by
A4,
A3,
Th7;
then
A15: (w
`2 )
divides ((z
`2 )
* (w
`1 )) by
GCD_1:def 1;
then
A16: (w
`2 )
divides (((z
`2 )
* (w
`1 ))
* (x
`2 )) by
GCD_1: 7;
A17: (w
`2 )
<> (
0. I) by
Th2;
then ((z
`1 )
* (x
`2 ))
= ((((z
`2 )
* (w
`1 ))
/ (w
`2 ))
* (x
`2 )) by
A14,
A15,
GCD_1:def 4
.= ((((z
`2 )
* (w
`1 ))
* (x
`2 ))
/ (w
`2 )) by
A15,
A16,
A17,
GCD_1: 11
.= (((z
`2 )
* ((w
`2 )
* (x
`1 )))
/ (w
`2 )) by
A12,
GROUP_1:def 3
.= ((((z
`2 )
* (x
`1 ))
* (w
`2 ))
/ (w
`2 )) by
GROUP_1:def 3
.= (((z
`2 )
* (x
`1 ))
* ((w
`2 )
/ (w
`2 ))) by
A13,
A17,
GCD_1: 11
.= (((z
`2 )
* (x
`1 ))
* (
1_ I)) by
A17,
GCD_1: 9
.= ((z
`2 )
* (x
`1 ));
hence thesis by
Def4;
end;
hence thesis by
A1,
A4,
A6,
SUBSET_1: 3;
end;
begin
definition
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Quot. I);
::
QUOFIELD:def6
func
qadd (u,v) ->
Element of (
Quot. I) means
:
Def6: for z be
Element of (
Q. I) holds z
in it iff ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))));
existence
proof
consider y be
Element of (
Q. I) such that
A1: v
= (
QClass. y) by
Def5;
consider x be
Element of (
Q. I) such that
A2: u
= (
QClass. x) by
Def5;
(x
`2 )
<> (
0. I) & (y
`2 )
<> (
0. I) by
Th2;
then ((x
`2 )
* (y
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider t =
[(((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
set M = (
QClass. t);
A3: for z be
Element of (
Q. I) holds z
in M implies ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
proof
let z be
Element of (
Q. I);
assume z
in M;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))));
then
A4: ((z
`1 )
* ((x
`2 )
* (y
`2 )))
= ((z
`2 )
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))));
x
in u by
A2,
Th5;
hence thesis by
A1,
A4,
Th5;
end;
A5: for z be
Element of (
Q. I) holds (ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))) implies z
in M
proof
let z be
Element of (
Q. I);
given a,b be
Element of (
Q. I) such that
A6: a
in u and
A7: b
in v and
A8: ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))));
A9: ((b
`1 )
* (y
`2 ))
= ((b
`2 )
* (y
`1 )) by
A1,
A7,
Def4;
(a
`2 )
<> (
0. I) & (b
`2 )
<> (
0. I) by
Th2;
then
A10: ((a
`2 )
* (b
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
A11: ((a
`1 )
* (x
`2 ))
= ((a
`2 )
* (x
`1 )) by
A2,
A6,
Def4;
now
per cases ;
case
A12: (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
= (
0. I);
then (
0. I)
= ((((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
* ((x
`2 )
* (y
`2 )))
.= (((((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
* (x
`2 ))
* (y
`2 )) by
GROUP_1:def 3
.= (((((a
`1 )
* (b
`2 ))
* (x
`2 ))
+ (((b
`1 )
* (a
`2 ))
* (x
`2 )))
* (y
`2 )) by
VECTSP_1:def 3
.= (((((a
`1 )
* (b
`2 ))
* (x
`2 ))
* (y
`2 ))
+ ((((b
`1 )
* (a
`2 ))
* (x
`2 ))
* (y
`2 ))) by
VECTSP_1:def 3
.= (((((a
`1 )
* (x
`2 ))
* (b
`2 ))
* (y
`2 ))
+ (((x
`2 )
* ((a
`2 )
* (b
`1 )))
* (y
`2 ))) by
GROUP_1:def 3
.= (((((a
`1 )
* (x
`2 ))
* (b
`2 ))
* (y
`2 ))
+ ((x
`2 )
* (((a
`2 )
* (b
`1 ))
* (y
`2 )))) by
GROUP_1:def 3
.= (((((a
`2 )
* (x
`1 ))
* (b
`2 ))
* (y
`2 ))
+ ((x
`2 )
* ((a
`2 )
* ((b
`1 )
* (y
`2 ))))) by
A11,
GROUP_1:def 3
.= (((((a
`2 )
* (x
`1 ))
* (b
`2 ))
* (y
`2 ))
+ ((x
`2 )
* (((a
`2 )
* (b
`2 ))
* (y
`1 )))) by
A9,
GROUP_1:def 3
.= (((((a
`2 )
* (x
`1 ))
* (b
`2 ))
* (y
`2 ))
+ (((x
`2 )
* (y
`1 ))
* ((a
`2 )
* (b
`2 )))) by
GROUP_1:def 3
.= (((y
`2 )
* ((x
`1 )
* ((a
`2 )
* (b
`2 ))))
+ (((x
`2 )
* (y
`1 ))
* ((a
`2 )
* (b
`2 )))) by
GROUP_1:def 3
.= ((((y
`2 )
* (x
`1 ))
* ((a
`2 )
* (b
`2 )))
+ (((x
`2 )
* (y
`1 ))
* ((a
`2 )
* (b
`2 )))) by
GROUP_1:def 3
.= ((((y
`2 )
* (x
`1 ))
+ ((x
`2 )
* (y
`1 )))
* ((a
`2 )
* (b
`2 ))) by
VECTSP_1:def 3;
then
A13: (((y
`2 )
* (x
`1 ))
+ ((x
`2 )
* (y
`1 )))
= (
0. I) by
A10,
VECTSP_2:def 1;
((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
= (
0. I) by
A12;
then (z
`1 )
= (
0. I) by
A8,
A10,
VECTSP_2:def 1;
then ((z
`1 )
* (t
`2 ))
= (
0. I)
.= ((z
`2 )
* (((y
`2 )
* (x
`1 ))
+ ((x
`2 )
* (y
`1 )))) by
A13
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
case
A14: (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
<> (
0. I);
(((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
divides (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )));
then
A15: (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
divides (((z
`1 )
* ((y
`2 )
* (x
`2 )))
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GCD_1: 7;
A16: (((z
`1 )
* (((y
`2 )
* (x
`2 ))
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
= ((((z
`1 )
* ((y
`2 )
* (x
`2 )))
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* ((y
`2 )
* (x
`2 )))
* ((((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))) by
A14,
A15,
GCD_1: 11
.= (((z
`1 )
* ((y
`2 )
* (x
`2 )))
* (
1_ I)) by
A14,
GCD_1: 9
.= ((z
`1 )
* ((x
`2 )
* (y
`2 )));
A17: (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
divides ((z
`1 )
* ((a
`2 )
* (b
`2 ))) by
A8,
GCD_1:def 1;
then
A18: (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
divides (((z
`1 )
* ((a
`2 )
* (b
`2 )))
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))) by
GCD_1: 7;
(((z
`1 )
* ((a
`2 )
* (b
`2 )))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
= (z
`2 ) by
A8,
A14,
A17,
GCD_1:def 4;
then ((z
`2 )
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))))
= ((((z
`1 )
* ((a
`2 )
* (b
`2 )))
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
A14,
A17,
A18,
GCD_1: 11
.= (((((z
`1 )
* (a
`2 ))
* (b
`2 ))
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= ((((z
`1 )
* (a
`2 ))
* ((b
`2 )
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* ((a
`2 )
* ((b
`2 )
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* ((a
`2 )
* (((b
`2 )
* ((x
`1 )
* (y
`2 )))
+ ((b
`2 )
* ((y
`1 )
* (x
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
VECTSP_1:def 2
.= (((z
`1 )
* (((a
`2 )
* ((b
`2 )
* ((x
`1 )
* (y
`2 ))))
+ ((a
`2 )
* ((b
`2 )
* ((y
`1 )
* (x
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
VECTSP_1:def 2
.= (((z
`1 )
* (((a
`2 )
* (((b
`2 )
* (x
`1 ))
* (y
`2 )))
+ ((a
`2 )
* ((b
`2 )
* ((y
`1 )
* (x
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* ((((a
`2 )
* ((x
`1 )
* (b
`2 )))
* (y
`2 ))
+ ((a
`2 )
* ((b
`2 )
* ((y
`1 )
* (x
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* (((((a
`1 )
* (x
`2 ))
* (b
`2 ))
* (y
`2 ))
+ ((a
`2 )
* ((b
`2 )
* ((y
`1 )
* (x
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
A11,
GROUP_1:def 3
.= (((z
`1 )
* (((((a
`1 )
* (x
`2 ))
* (b
`2 ))
* (y
`2 ))
+ ((a
`2 )
* (((b
`1 )
* (y
`2 ))
* (x
`2 )))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
A9,
GROUP_1:def 3
.= (((z
`1 )
* (((y
`2 )
* ((x
`2 )
* ((a
`1 )
* (b
`2 ))))
+ ((a
`2 )
* (((b
`1 )
* (y
`2 ))
* (x
`2 )))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* (((y
`2 )
* ((x
`2 )
* ((a
`1 )
* (b
`2 ))))
+ ((x
`2 )
* ((a
`2 )
* ((b
`1 )
* (y
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* (((y
`2 )
* ((x
`2 )
* ((a
`1 )
* (b
`2 ))))
+ ((x
`2 )
* ((y
`2 )
* ((b
`1 )
* (a
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* ((((y
`2 )
* (x
`2 ))
* ((a
`1 )
* (b
`2 )))
+ ((x
`2 )
* ((y
`2 )
* ((b
`1 )
* (a
`2 ))))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* ((((y
`2 )
* (x
`2 ))
* ((a
`1 )
* (b
`2 )))
+ (((y
`2 )
* (x
`2 ))
* ((b
`1 )
* (a
`2 )))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`1 )
* (((y
`2 )
* (x
`2 ))
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))))
/ (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
VECTSP_1:def 2;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (((y
`2 )
* (x
`1 ))
+ ((x
`2 )
* (y
`1 )))) by
A16
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
end;
hence thesis;
end;
M is
Element of (
Quot. I) by
Def5;
hence thesis by
A5,
A3;
end;
uniqueness
proof
let M1,M2 be
Element of (
Quot. I);
assume
A19: for z be
Element of (
Q. I) holds z
in M1 iff ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))));
assume
A20: for z be
Element of (
Q. I) holds z
in M2 iff ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))));
A21: for x be
object holds x
in M2 implies x
in M1
proof
let x be
object;
assume
A22: x
in M2;
then
reconsider x as
Element of (
Q. I);
ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((x
`1 )
* ((a
`2 )
* (b
`2 )))
= ((x
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
A20,
A22;
hence thesis by
A19;
end;
for x be
object holds x
in M1 implies x
in M2
proof
let x be
object;
assume
A23: x
in M1;
then
reconsider x as
Element of (
Q. I);
ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((x
`1 )
* ((a
`2 )
* (b
`2 )))
= ((x
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
A19,
A23;
hence thesis by
A20;
end;
hence thesis by
A21,
TARSKI: 2;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Quot. I);
::
QUOFIELD:def7
func
qmult (u,v) ->
Element of (
Quot. I) means
:
Def7: for z be
Element of (
Q. I) holds z
in it iff ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 )));
existence
proof
consider y be
Element of (
Q. I) such that
A1: v
= (
QClass. y) by
Def5;
consider x be
Element of (
Q. I) such that
A2: u
= (
QClass. x) by
Def5;
(x
`2 )
<> (
0. I) & (y
`2 )
<> (
0. I) by
Th2;
then ((x
`2 )
* (y
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider t =
[((x
`1 )
* (y
`1 )), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
set M = (
QClass. t);
A3: for z be
Element of (
Q. I) holds z
in M implies ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 )))
proof
let z be
Element of (
Q. I);
assume z
in M;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* ((x
`1 )
* (y
`1 )));
then
A4: ((z
`1 )
* ((x
`2 )
* (y
`2 )))
= ((z
`2 )
* ((x
`1 )
* (y
`1 )));
x
in u by
A2,
Th5;
hence thesis by
A1,
A4,
Th5;
end;
A5: for z be
Element of (
Q. I) holds (ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 )))) implies z
in M
proof
let z be
Element of (
Q. I);
given a,b be
Element of (
Q. I) such that
A6: a
in u and
A7: b
in v and
A8: ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 )));
A9: ((a
`1 )
* (x
`2 ))
= ((a
`2 )
* (x
`1 )) by
A2,
A6,
Def4;
A10: ((b
`1 )
* (y
`2 ))
= ((b
`2 )
* (y
`1 )) by
A1,
A7,
Def4;
(a
`2 )
<> (
0. I) & (b
`2 )
<> (
0. I) by
Th2;
then
A11: ((a
`2 )
* (b
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
A12: ((a
`2 )
* (b
`2 ))
divides ((z
`2 )
* ((a
`1 )
* (b
`1 ))) by
A8,
GCD_1:def 1;
then
A13: ((a
`2 )
* (b
`2 ))
divides (((z
`2 )
* ((a
`1 )
* (b
`1 )))
* ((x
`2 )
* (y
`2 ))) by
GCD_1: 7;
((a
`2 )
* (b
`2 ))
divides ((a
`2 )
* (b
`2 ));
then ((a
`2 )
* (b
`2 ))
divides (((z
`2 )
* ((x
`1 )
* (y
`1 )))
* ((a
`2 )
* (b
`2 ))) by
GCD_1: 7;
then
A14: ((((z
`2 )
* ((x
`1 )
* (y
`1 )))
* ((a
`2 )
* (b
`2 )))
/ ((a
`2 )
* (b
`2 )))
= (((z
`2 )
* ((x
`1 )
* (y
`1 )))
* (((a
`2 )
* (b
`2 ))
/ ((a
`2 )
* (b
`2 )))) by
A11,
GCD_1: 11
.= (((z
`2 )
* ((x
`1 )
* (y
`1 )))
* (
1_ I)) by
A11,
GCD_1: 9
.= ((z
`2 )
* ((x
`1 )
* (y
`1 )));
(((z
`2 )
* ((a
`1 )
* (b
`1 )))
/ ((a
`2 )
* (b
`2 )))
= (z
`1 ) by
A8,
A12,
A11,
GCD_1:def 4;
then ((z
`1 )
* ((x
`2 )
* (y
`2 )))
= ((((z
`2 )
* ((a
`1 )
* (b
`1 )))
* ((x
`2 )
* (y
`2 )))
/ ((a
`2 )
* (b
`2 ))) by
A12,
A11,
A13,
GCD_1: 11
.= (((z
`2 )
* (((a
`1 )
* (b
`1 ))
* ((x
`2 )
* (y
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((a
`1 )
* ((b
`1 )
* ((x
`2 )
* (y
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((a
`1 )
* ((x
`2 )
* ((b
`1 )
* (y
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (((a
`2 )
* (x
`1 ))
* ((b
`1 )
* (y
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
A9,
GROUP_1:def 3
.= (((z
`2 )
* ((x
`1 )
* ((a
`2 )
* ((b
`2 )
* (y
`1 )))))
/ ((a
`2 )
* (b
`2 ))) by
A10,
GROUP_1:def 3
.= (((z
`2 )
* ((x
`1 )
* ((y
`1 )
* ((a
`2 )
* (b
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (((x
`1 )
* (y
`1 ))
* ((a
`2 )
* (b
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= ((((z
`2 )
* ((x
`1 )
* (y
`1 )))
* ((a
`2 )
* (b
`2 )))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* ((x
`1 )
* (y
`1 ))) by
A14
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
M is
Element of (
Quot. I) by
Def5;
hence thesis by
A5,
A3;
end;
uniqueness
proof
let M1,M2 be
Element of (
Quot. I);
assume
A15: for z be
Element of (
Q. I) holds z
in M1 iff ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 )));
assume
A16: for z be
Element of (
Q. I) holds z
in M2 iff ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 )));
A17: for x be
object holds x
in M2 implies x
in M1
proof
let x be
object;
assume
A18: x
in M2;
then
reconsider x as
Element of (
Q. I);
ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((x
`1 )
* ((a
`2 )
* (b
`2 )))
= ((x
`2 )
* ((a
`1 )
* (b
`1 ))) by
A16,
A18;
hence thesis by
A15;
end;
for x be
object holds x
in M1 implies x
in M2
proof
let x be
object;
assume
A19: x
in M1;
then
reconsider x as
Element of (
Q. I);
ex a,b be
Element of (
Q. I) st a
in u & b
in v & ((x
`1 )
* ((a
`2 )
* (b
`2 )))
= ((x
`2 )
* ((a
`1 )
* (b
`1 ))) by
A15,
A19;
hence thesis by
A16;
end;
hence thesis by
A17,
TARSKI: 2;
end;
end
definition
let I be non
degenerated non
empty
multLoopStr_0;
let u be
Element of (
Q. I);
:: original:
QClass.
redefine
func
QClass. u ->
Element of (
Quot. I) ;
coherence by
Def5;
end
theorem ::
QUOFIELD:9
Th9: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
Q. I) holds (
qadd ((
QClass. u),(
QClass. v)))
= (
QClass. (
padd (u,v)))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Q. I);
(u
`2 )
<> (
0. I) & (v
`2 )
<> (
0. I) by
Th2;
then ((u
`2 )
* (v
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider w =
[(((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))), ((u
`2 )
* (v
`2 ))] as
Element of (
Q. I) by
Def1;
A1: (w
`1 )
= (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))) & (w
`2 )
= ((u
`2 )
* (v
`2 ));
A2: for z be
Element of (
Q. I) holds z
in (
qadd ((
QClass. u),(
QClass. v))) implies z
in (
QClass. (
padd (u,v)))
proof
let z be
Element of (
Q. I);
assume z
in (
qadd ((
QClass. u),(
QClass. v)));
then
consider a,b be
Element of (
Q. I) such that
A3: a
in (
QClass. u) and
A4: b
in (
QClass. v) and
A5: ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
Def6;
A6: ((a
`1 )
* (u
`2 ))
= ((a
`2 )
* (u
`1 )) by
A3,
Def4;
A7: ((b
`1 )
* (v
`2 ))
= ((b
`2 )
* (v
`1 )) by
A4,
Def4;
((a
`2 )
* (b
`2 ))
divides ((a
`2 )
* (b
`2 ));
then
A8: ((a
`2 )
* (b
`2 ))
divides (((z
`2 )
* (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))))
* ((a
`2 )
* (b
`2 ))) by
GCD_1: 7;
A9: ((a
`2 )
* (b
`2 ))
divides ((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))) by
A5,
GCD_1:def 1;
then
A10: ((a
`2 )
* (b
`2 ))
divides (((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
* ((u
`2 )
* (v
`2 ))) by
GCD_1: 7;
(a
`2 )
<> (
0. I) & (b
`2 )
<> (
0. I) by
Th2;
then
A11: ((a
`2 )
* (b
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then (z
`1 )
= (((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
A5,
A9,
GCD_1:def 4;
then ((z
`1 )
* ((u
`2 )
* (v
`2 )))
= ((((z
`2 )
* (((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 ))))
* ((u
`2 )
* (v
`2 )))
/ ((a
`2 )
* (b
`2 ))) by
A11,
A9,
A10,
GCD_1: 11
.= (((z
`2 )
* ((((a
`1 )
* (b
`2 ))
+ ((b
`1 )
* (a
`2 )))
* ((u
`2 )
* (v
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((a
`1 )
* (b
`2 ))
* ((u
`2 )
* (v
`2 )))
+ (((b
`1 )
* (a
`2 ))
* ((u
`2 )
* (v
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
VECTSP_1:def 3
.= (((z
`2 )
* (((b
`2 )
* ((a
`1 )
* ((u
`2 )
* (v
`2 ))))
+ (((b
`1 )
* (a
`2 ))
* ((u
`2 )
* (v
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (((b
`2 )
* (((a
`2 )
* (u
`1 ))
* (v
`2 )))
+ (((b
`1 )
* (a
`2 ))
* ((u
`2 )
* (v
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
A6,
GROUP_1:def 3
.= (((z
`2 )
* (((b
`2 )
* (((a
`2 )
* (u
`1 ))
* (v
`2 )))
+ ((a
`2 )
* ((b
`1 )
* ((v
`2 )
* (u
`2 ))))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (((b
`2 )
* (((a
`2 )
* (u
`1 ))
* (v
`2 )))
+ ((a
`2 )
* (((b
`2 )
* (v
`1 ))
* (u
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
A7,
GROUP_1:def 3
.= (((z
`2 )
* ((((b
`2 )
* ((a
`2 )
* (u
`1 )))
* (v
`2 ))
+ ((a
`2 )
* (((b
`2 )
* (v
`1 ))
* (u
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((u
`1 )
* ((b
`2 )
* (a
`2 )))
* (v
`2 ))
+ ((a
`2 )
* (((b
`2 )
* (v
`1 ))
* (u
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((u
`1 )
* (v
`2 ))
* ((b
`2 )
* (a
`2 )))
+ ((a
`2 )
* (((b
`2 )
* (v
`1 ))
* (u
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((u
`1 )
* (v
`2 ))
* ((b
`2 )
* (a
`2 )))
+ (((a
`2 )
* ((b
`2 )
* (v
`1 )))
* (u
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((u
`1 )
* (v
`2 ))
* ((a
`2 )
* (b
`2 )))
+ (((v
`1 )
* ((a
`2 )
* (b
`2 )))
* (u
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((u
`1 )
* (v
`2 ))
* ((a
`2 )
* (b
`2 )))
+ (((v
`1 )
* (u
`2 ))
* ((a
`2 )
* (b
`2 )))))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* ((((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 )))
* ((a
`2 )
* (b
`2 ))))
/ ((a
`2 )
* (b
`2 ))) by
VECTSP_1:def 3
.= ((((z
`2 )
* (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))))
* ((a
`2 )
* (b
`2 )))
/ ((a
`2 )
* (b
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))))
* (((a
`2 )
* (b
`2 ))
/ ((a
`2 )
* (b
`2 )))) by
A11,
A8,
GCD_1: 11
.= (((z
`2 )
* (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))))
* (
1_ I)) by
A11,
GCD_1: 9
.= ((z
`2 )
* (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))));
hence thesis by
A1,
Def4;
end;
for z be
Element of (
Q. I) holds z
in (
QClass. (
padd (u,v))) implies z
in (
qadd ((
QClass. u),(
QClass. v)))
proof
let z be
Element of (
Q. I);
assume z
in (
QClass. (
padd (u,v)));
then
A12: ((z
`1 )
* ((u
`2 )
* (v
`2 )))
= ((z
`2 )
* (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 )))) by
A1,
Def4;
u
in (
QClass. u) & v
in (
QClass. v) by
Th5;
hence thesis by
A12,
Def6;
end;
hence thesis by
A2,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:10
Th10: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
Q. I) holds (
qmult ((
QClass. u),(
QClass. v)))
= (
QClass. (
pmult (u,v)))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Q. I);
(u
`2 )
<> (
0. I) & (v
`2 )
<> (
0. I) by
Th2;
then ((u
`2 )
* (v
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider w =
[((u
`1 )
* (v
`1 )), ((u
`2 )
* (v
`2 ))] as
Element of (
Q. I) by
Def1;
A1: (w
`1 )
= ((u
`1 )
* (v
`1 )) & (w
`2 )
= ((u
`2 )
* (v
`2 ));
A2: for z be
Element of (
Q. I) holds z
in (
qmult ((
QClass. u),(
QClass. v))) implies z
in (
QClass. (
pmult (u,v)))
proof
let z be
Element of (
Q. I);
assume z
in (
qmult ((
QClass. u),(
QClass. v)));
then
consider a,b be
Element of (
Q. I) such that
A3: a
in (
QClass. u) and
A4: b
in (
QClass. v) and
A5: ((z
`1 )
* ((a
`2 )
* (b
`2 )))
= ((z
`2 )
* ((a
`1 )
* (b
`1 ))) by
Def7;
A6: ((b
`1 )
* (v
`2 ))
= ((b
`2 )
* (v
`1 )) by
A4,
Def4;
A7: ((a
`1 )
* (u
`2 ))
= ((a
`2 )
* (u
`1 )) by
A3,
Def4;
now
per cases ;
case
A8: (a
`1 )
= (
0. I);
then ((a
`1 )
* (b
`1 ))
= (
0. I);
then
A9: ((z
`2 )
* ((a
`1 )
* (b
`1 )))
= (
0. I);
A10: (a
`2 )
<> (
0. I) by
Th2;
(b
`2 )
<> (
0. I) by
Th2;
then ((a
`2 )
* (b
`2 ))
<> (
0. I) by
A10,
VECTSP_2:def 1;
then
A11: (z
`1 )
= (
0. I) by
A5,
A9,
VECTSP_2:def 1;
((a
`1 )
* (u
`2 ))
= (
0. I) by
A8;
then (u
`1 )
= (
0. I) by
A7,
A10,
VECTSP_2:def 1;
then ((z
`2 )
* ((u
`1 )
* (v
`1 )))
= ((z
`2 )
* (
0. I))
.= (
0. I)
.= ((z
`1 )
* ((u
`2 )
* (v
`2 ))) by
A11;
hence thesis by
A1,
Def4;
end;
case
A12: (b
`1 )
= (
0. I);
then ((a
`1 )
* (b
`1 ))
= (
0. I);
then
A13: ((z
`2 )
* ((a
`1 )
* (b
`1 )))
= (
0. I);
A14: (b
`2 )
<> (
0. I) by
Th2;
(a
`2 )
<> (
0. I) by
Th2;
then ((a
`2 )
* (b
`2 ))
<> (
0. I) by
A14,
VECTSP_2:def 1;
then
A15: (z
`1 )
= (
0. I) by
A5,
A13,
VECTSP_2:def 1;
((b
`1 )
* (v
`2 ))
= (
0. I) by
A12;
then (v
`1 )
= (
0. I) by
A6,
A14,
VECTSP_2:def 1;
then ((z
`2 )
* ((u
`1 )
* (v
`1 )))
= ((z
`2 )
* (
0. I))
.= (
0. I)
.= ((z
`1 )
* ((u
`2 )
* (v
`2 ))) by
A15;
hence thesis by
A1,
Def4;
end;
case
A16: (a
`1 )
<> (
0. I) & (b
`1 )
<> (
0. I);
((a
`1 )
* (b
`1 ))
divides ((a
`1 )
* (b
`1 ));
then
A17: ((a
`1 )
* (b
`1 ))
divides ((((z
`2 )
* (u
`1 ))
* (v
`1 ))
* ((a
`1 )
* (b
`1 ))) by
GCD_1: 7;
A18: ((a
`1 )
* (b
`1 ))
<> (
0. I) by
A16,
VECTSP_2:def 1;
A19: (b
`1 )
divides ((b
`2 )
* (v
`1 )) by
A6,
GCD_1:def 1;
then
A20: (v
`2 )
= (((b
`2 )
* (v
`1 ))
/ (b
`1 )) by
A6,
A16,
GCD_1:def 4;
A21: (a
`1 )
divides ((a
`2 )
* (u
`1 )) by
A7,
GCD_1:def 1;
then
A22: ((a
`1 )
* (b
`1 ))
divides (((a
`2 )
* (u
`1 ))
* ((b
`2 )
* (v
`1 ))) by
A19,
GCD_1: 3;
then
A23: ((a
`1 )
* (b
`1 ))
divides ((z
`1 )
* (((a
`2 )
* (u
`1 ))
* ((b
`2 )
* (v
`1 )))) by
GCD_1: 7;
(u
`2 )
= (((a
`2 )
* (u
`1 ))
/ (a
`1 )) by
A7,
A16,
A21,
GCD_1:def 4;
then ((z
`1 )
* ((u
`2 )
* (v
`2 )))
= ((z
`1 )
* ((((a
`2 )
* (u
`1 ))
* ((b
`2 )
* (v
`1 )))
/ ((a
`1 )
* (b
`1 )))) by
A16,
A21,
A19,
A20,
GCD_1: 14
.= (((z
`1 )
* (((a
`2 )
* (u
`1 ))
* ((b
`2 )
* (v
`1 ))))
/ ((a
`1 )
* (b
`1 ))) by
A18,
A22,
A23,
GCD_1: 11
.= (((z
`1 )
* ((((u
`1 )
* (a
`2 ))
* (b
`2 ))
* (v
`1 )))
/ ((a
`1 )
* (b
`1 ))) by
GROUP_1:def 3
.= (((z
`1 )
* ((((a
`2 )
* (b
`2 ))
* (u
`1 ))
* (v
`1 )))
/ ((a
`1 )
* (b
`1 ))) by
GROUP_1:def 3
.= ((((z
`1 )
* (((a
`2 )
* (b
`2 ))
* (u
`1 )))
* (v
`1 ))
/ ((a
`1 )
* (b
`1 ))) by
GROUP_1:def 3
.= (((((z
`2 )
* ((a
`1 )
* (b
`1 )))
* (u
`1 ))
* (v
`1 ))
/ ((a
`1 )
* (b
`1 ))) by
A5,
GROUP_1:def 3
.= (((((z
`2 )
* (u
`1 ))
* ((a
`1 )
* (b
`1 )))
* (v
`1 ))
/ ((a
`1 )
* (b
`1 ))) by
GROUP_1:def 3
.= (((((z
`2 )
* (u
`1 ))
* (v
`1 ))
* ((a
`1 )
* (b
`1 )))
/ ((a
`1 )
* (b
`1 ))) by
GROUP_1:def 3
.= ((((z
`2 )
* (u
`1 ))
* (v
`1 ))
* (((a
`1 )
* (b
`1 ))
/ ((a
`1 )
* (b
`1 )))) by
A18,
A17,
GCD_1: 11
.= ((((z
`2 )
* (u
`1 ))
* (v
`1 ))
* (
1_ I)) by
A18,
GCD_1: 9
.= (((z
`2 )
* (u
`1 ))
* (v
`1 ))
.= ((z
`2 )
* ((u
`1 )
* (v
`1 ))) by
GROUP_1:def 3;
hence thesis by
A1,
Def4;
end;
end;
hence thesis;
end;
for z be
Element of (
Q. I) holds z
in (
QClass. (
pmult (u,v))) implies z
in (
qmult ((
QClass. u),(
QClass. v)))
proof
let z be
Element of (
Q. I);
assume z
in (
QClass. (
pmult (u,v)));
then
A24: ((z
`1 )
* ((u
`2 )
* (v
`2 )))
= ((z
`2 )
* ((u
`1 )
* (v
`1 ))) by
A1,
Def4;
u
in (
QClass. u) & v
in (
QClass. v) by
Th5;
hence thesis by
A24,
Def7;
end;
hence thesis by
A2,
SUBSET_1: 3;
end;
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def8
func
q0. I ->
Element of (
Quot. I) means
:
Def8: for z be
Element of (
Q. I) holds z
in it iff (z
`1 )
= (
0. I);
existence
proof
reconsider t =
[(
0. I), (
1_ I)] as
Element of (
Q. I) by
Def1;
set M = (
QClass. t);
A1: for z be
Element of (
Q. I) holds z
in M implies (z
`1 )
= (
0. I)
proof
let z be
Element of (
Q. I);
assume z
in M;
then
A2: ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4
.= ((z
`2 )
* (
0. I))
.= (
0. I);
thus thesis by
A2;
end;
for z be
Element of (
Q. I) holds (z
`1 )
= (
0. I) implies z
in M
proof
let z be
Element of (
Q. I);
assume (z
`1 )
= (
0. I);
then ((z
`1 )
* (t
`2 ))
= (
0. I)
.= ((z
`2 )
* (
0. I))
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
hence thesis by
A1;
end;
uniqueness
proof
let M1,M2 be
Element of (
Quot. I);
assume
A3: for z be
Element of (
Q. I) holds z
in M1 iff (z
`1 )
= (
0. I);
assume
A4: for z be
Element of (
Q. I) holds z
in M2 iff (z
`1 )
= (
0. I);
A5: for z be
Element of (
Q. I) holds z
in M2 implies z
in M1
proof
let z be
Element of (
Q. I);
assume z
in M2;
then (z
`1 )
= (
0. I) by
A4;
hence thesis by
A3;
end;
for z be
Element of (
Q. I) holds z
in M1 implies z
in M2
proof
let z be
Element of (
Q. I);
assume z
in M1;
then (z
`1 )
= (
0. I) by
A3;
hence thesis by
A4;
end;
hence thesis by
A5,
SUBSET_1: 3;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def9
func
q1. I ->
Element of (
Quot. I) means
:
Def9: for z be
Element of (
Q. I) holds z
in it iff (z
`1 )
= (z
`2 );
existence
proof
(
1_ I)
<> (
0. I);
then
reconsider t =
[(
1_ I), (
1_ I)] as
Element of (
Q. I) by
Def1;
set M = (
QClass. t);
A1: for z be
Element of (
Q. I) holds z
in M implies (z
`1 )
= (z
`2 )
proof
let z be
Element of (
Q. I);
assume z
in M;
then
A2: ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
(z
`1 )
= ((z
`1 )
* (
1_ I))
.= ((z
`2 )
* (t
`1 )) by
A2
.= ((z
`2 )
* (
1_ I))
.= (z
`2 );
hence thesis;
end;
for z be
Element of (
Q. I) holds (z
`1 )
= (z
`2 ) implies z
in M
proof
let z be
Element of (
Q. I);
assume (z
`1 )
= (z
`2 );
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (
1_ I))
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
hence thesis by
A1;
end;
uniqueness
proof
let M1,M2 be
Element of (
Quot. I);
assume
A3: for z be
Element of (
Q. I) holds z
in M1 iff (z
`1 )
= (z
`2 );
assume
A4: for z be
Element of (
Q. I) holds z
in M2 iff (z
`1 )
= (z
`2 );
A5: for z be
Element of (
Q. I) holds z
in M2 implies z
in M1
proof
let z be
Element of (
Q. I);
assume z
in M2;
then (z
`1 )
= (z
`2 ) by
A4;
hence thesis by
A3;
end;
for z be
Element of (
Q. I) holds z
in M1 implies z
in M2
proof
let z be
Element of (
Q. I);
assume z
in M1;
then (z
`1 )
= (z
`2 ) by
A3;
hence thesis by
A4;
end;
hence thesis by
A5,
SUBSET_1: 3;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
::
QUOFIELD:def10
func
qaddinv (u) ->
Element of (
Quot. I) means
:
Def10: for z be
Element of (
Q. I) holds z
in it iff ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 )));
existence
proof
consider x be
Element of (
Q. I) such that
A1: u
= (
QClass. x) by
Def5;
(x
`2 )
<> (
0. I) by
Th2;
then
reconsider t =
[(
- (x
`1 )), (x
`2 )] as
Element of (
Q. I) by
Def1;
set M = (
QClass. t);
A2: for z be
Element of (
Q. I) holds (ex a be
Element of (
Q. I) st (a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 ))))) implies z
in M
proof
let z be
Element of (
Q. I);
given a be
Element of (
Q. I) such that
A3: a
in u and
A4: ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 )));
A5: ((a
`1 )
* (x
`2 ))
= ((a
`2 )
* (x
`1 )) by
A1,
A3,
Def4;
A6: (((z
`1 )
* (x
`2 ))
* (a
`2 ))
= (((z
`2 )
* (
- (a
`1 )))
* (x
`2 )) by
A4,
GROUP_1:def 3
.= ((
- ((z
`2 )
* (a
`1 )))
* (x
`2 )) by
GCD_1: 48
.= (((
- (z
`2 ))
* (a
`1 ))
* (x
`2 )) by
GCD_1: 48
.= ((
- (z
`2 ))
* ((a
`2 )
* (x
`1 ))) by
A5,
GROUP_1:def 3
.= (((
- (z
`2 ))
* (x
`1 ))
* (a
`2 )) by
GROUP_1:def 3
.= ((
- ((z
`2 )
* (x
`1 )))
* (a
`2 )) by
GCD_1: 48
.= (((z
`2 )
* (
- (x
`1 )))
* (a
`2 )) by
GCD_1: 48;
A7: (a
`2 )
<> (
0. I) by
Th2;
(a
`2 )
divides (a
`2 );
then
A8: (a
`2 )
divides (((z
`2 )
* (
- (x
`1 )))
* (a
`2 )) by
GCD_1: 7;
(a
`2 )
divides (a
`2 );
then
A9: (a
`2 )
divides (((z
`1 )
* (x
`2 ))
* (a
`2 )) by
GCD_1: 7;
((z
`1 )
* (t
`2 ))
= ((z
`1 )
* (x
`2 ))
.= (((z
`1 )
* (x
`2 ))
* (
1_ I))
.= (((z
`1 )
* (x
`2 ))
* ((a
`2 )
/ (a
`2 ))) by
A7,
GCD_1: 9
.= ((((z
`2 )
* (
- (x
`1 )))
* (a
`2 ))
/ (a
`2 )) by
A7,
A6,
A9,
GCD_1: 11
.= (((z
`2 )
* (
- (x
`1 )))
* ((a
`2 )
/ (a
`2 ))) by
A7,
A8,
GCD_1: 11
.= (((z
`2 )
* (
- (x
`1 )))
* (
1_ I)) by
A7,
GCD_1: 9
.= ((z
`2 )
* (
- (x
`1 )))
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
for z be
Element of (
Q. I) holds z
in M implies ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 )))
proof
let z be
Element of (
Q. I);
assume z
in M;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
then ((z
`1 )
* (x
`2 ))
= ((z
`2 )
* (t
`1 ))
.= ((z
`2 )
* (
- (x
`1 )));
hence thesis by
A1,
Th5;
end;
hence thesis by
A2;
end;
uniqueness
proof
let M1,M2 be
Element of (
Quot. I);
assume
A10: for z be
Element of (
Q. I) holds z
in M1 iff ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 )));
assume
A11: for z be
Element of (
Q. I) holds z
in M2 iff ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 )));
A12: for z be
Element of (
Q. I) holds z
in M2 implies z
in M1
proof
let z be
Element of (
Q. I);
assume z
in M2;
then ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 ))) by
A11;
hence thesis by
A10;
end;
for z be
Element of (
Q. I) holds z
in M1 implies z
in M2
proof
let z be
Element of (
Q. I);
assume z
in M1;
then ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`2 ))
= ((z
`2 )
* (
- (a
`1 ))) by
A10;
hence thesis by
A11;
end;
hence thesis by
A12,
SUBSET_1: 3;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
assume
A1: u
<> (
q0. I);
::
QUOFIELD:def11
func
qmultinv (u) ->
Element of (
Quot. I) means
:
Def11: for z be
Element of (
Q. I) holds z
in it iff ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 ));
existence
proof
consider x be
Element of (
Q. I) such that
A2: u
= (
QClass. x) by
Def5;
(x
`1 )
<> (
0. I)
proof
assume (x
`1 )
= (
0. I);
then
A3: x
in (
q0. I) by
Def8;
x
in u by
A2,
Th5;
then u
meets (
q0. I) by
A3,
XBOOLE_0: 3;
hence contradiction by
A1,
Th8;
end;
then
reconsider t =
[(x
`2 ), (x
`1 )] as
Element of (
Q. I) by
Def1;
set M = (
QClass. t);
A4: for z be
Element of (
Q. I) holds (ex a be
Element of (
Q. I) st (a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 )))) implies z
in M
proof
let z be
Element of (
Q. I);
given a be
Element of (
Q. I) such that
A5: a
in u and
A6: ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 ));
A7: ((a
`1 )
* (x
`2 ))
= ((a
`2 )
* (x
`1 )) by
A2,
A5,
Def4;
A8: (((z
`1 )
* (t
`2 ))
* (a
`2 ))
= (((z
`1 )
* (x
`1 ))
* (a
`2 ))
.= ((z
`1 )
* ((a
`1 )
* (x
`2 ))) by
A7,
GROUP_1:def 3
.= (((z
`2 )
* (a
`2 ))
* (x
`2 )) by
A6,
GROUP_1:def 3
.= (((z
`2 )
* (a
`2 ))
* (t
`1 ))
.= (((z
`2 )
* (t
`1 ))
* (a
`2 )) by
GROUP_1:def 3;
A9: (a
`2 )
<> (
0. I) by
Th2;
(a
`2 )
divides (a
`2 );
then
A10: (a
`2 )
divides (((z
`2 )
* (t
`1 ))
* (a
`2 )) by
GCD_1: 7;
(a
`2 )
divides (a
`2 );
then
A11: (a
`2 )
divides (((z
`1 )
* (t
`2 ))
* (a
`2 )) by
GCD_1: 7;
((z
`1 )
* (t
`2 ))
= (((z
`1 )
* (t
`2 ))
* (
1_ I))
.= (((z
`1 )
* (t
`2 ))
* ((a
`2 )
/ (a
`2 ))) by
A9,
GCD_1: 9
.= ((((z
`2 )
* (t
`1 ))
* (a
`2 ))
/ (a
`2 )) by
A9,
A8,
A11,
GCD_1: 11
.= (((z
`2 )
* (t
`1 ))
* ((a
`2 )
/ (a
`2 ))) by
A9,
A10,
GCD_1: 11
.= (((z
`2 )
* (t
`1 ))
* (
1_ I)) by
A9,
GCD_1: 9
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
for z be
Element of (
Q. I) holds z
in M implies ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 ))
proof
let z be
Element of (
Q. I);
assume z
in M;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
then ((z
`1 )
* (x
`1 ))
= ((z
`2 )
* (t
`1 ))
.= ((z
`2 )
* (x
`2 ));
hence thesis by
A2,
Th5;
end;
hence thesis by
A4;
end;
uniqueness
proof
let M1,M2 be
Element of (
Quot. I);
assume
A12: for z be
Element of (
Q. I) holds z
in M1 iff ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 ));
assume
A13: for z be
Element of (
Q. I) holds z
in M2 iff ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 ));
A14: for z be
Element of (
Q. I) holds z
in M2 implies z
in M1
proof
let z be
Element of (
Q. I);
assume z
in M2;
then ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 )) by
A13;
hence thesis by
A12;
end;
for z be
Element of (
Q. I) holds z
in M1 implies z
in M2
proof
let z be
Element of (
Q. I);
assume z
in M1;
then ex a be
Element of (
Q. I) st a
in u & ((z
`1 )
* (a
`1 ))
= ((z
`2 )
* (a
`2 )) by
A12;
hence thesis by
A13;
end;
hence thesis by
A14,
SUBSET_1: 3;
end;
end
theorem ::
QUOFIELD:11
Th11: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds (
qadd (u,(
qadd (v,w))))
= (
qadd ((
qadd (u,v)),w)) & (
qadd (u,v))
= (
qadd (v,u))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: u
= (
QClass. x) by
Def5;
consider z be
Element of (
Q. I) such that
A2: w
= (
QClass. z) by
Def5;
consider y be
Element of (
Q. I) such that
A3: v
= (
QClass. y) by
Def5;
A4: (
qadd (u,v))
= (
QClass. (
padd (x,y))) by
A1,
A3,
Th9
.= (
qadd (v,u)) by
A1,
A3,
Th9;
(
qadd (u,(
qadd (v,w))))
= (
qadd ((
QClass. x),(
QClass. (
padd (y,z))))) by
A1,
A3,
A2,
Th9
.= (
QClass. (
padd (x,(
padd (y,z))))) by
Th9
.= (
QClass. (
padd ((
padd (x,y)),z))) by
Th3
.= (
qadd ((
QClass. (
padd (x,y))),(
QClass. z))) by
Th9
.= (
qadd ((
qadd (u,v)),w)) by
A1,
A3,
A2,
Th9;
hence thesis by
A4;
end;
theorem ::
QUOFIELD:12
Th12: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) holds (
qadd (u,(
q0. I)))
= u & (
qadd ((
q0. I),u))
= u
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: (
q0. I)
= (
QClass. x) by
Def5;
consider y be
Element of (
Q. I) such that
A2: u
= (
QClass. y) by
Def5;
A3: (x
`2 )
<> (
0. I) by
Th2;
(y
`2 )
<> (
0. I) by
Th2;
then ((x
`2 )
* (y
`2 ))
<> (
0. I) by
A3,
VECTSP_2:def 1;
then
reconsider t =
[(((y
`1 )
* (x
`2 ))
+ ((x
`1 )
* (y
`2 ))), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
x
in (
q0. I) by
A1,
Th5;
then
A4: (x
`1 )
= (
0. I) by
Def8;
A5: for z be
Element of (
Q. I) holds z
in (
QClass. y) implies z
in (
QClass. t)
proof
let z be
Element of (
Q. I);
assume z
in (
QClass. y);
then
A6: ((z
`1 )
* (y
`2 ))
= ((z
`2 )
* (y
`1 )) by
Def4;
((z
`1 )
* (t
`2 ))
= ((z
`1 )
* ((x
`2 )
* (y
`2 )))
.= (((z
`2 )
* (y
`1 ))
* (x
`2 )) by
A6,
GROUP_1:def 3
.= ((z
`2 )
* ((y
`1 )
* (x
`2 ))) by
GROUP_1:def 3
.= ((z
`2 )
* (((y
`1 )
* (x
`2 ))
+ (
0. I))) by
RLVECT_1: 4
.= ((z
`2 )
* (((y
`1 )
* (x
`2 ))
+ ((x
`1 )
* (y
`2 )))) by
A4
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
A7: for z be
Element of (
Q. I) holds z
in (
QClass. t) implies z
in (
QClass. y)
proof
let z be
Element of (
Q. I);
(x
`2 )
divides (x
`2 );
then
A8: (x
`2 )
divides (((z
`1 )
* (y
`2 ))
* (x
`2 )) by
GCD_1: 7;
(x
`2 )
divides (x
`2 );
then
A9: (x
`2 )
divides (((z
`2 )
* (y
`1 ))
* (x
`2 )) by
GCD_1: 7;
assume z
in (
QClass. t);
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
then
A10: ((z
`1 )
* ((x
`2 )
* (y
`2 )))
= ((z
`2 )
* (t
`1 ));
A11: (((z
`1 )
* (y
`2 ))
* (x
`2 ))
= ((z
`1 )
* ((x
`2 )
* (y
`2 ))) by
GROUP_1:def 3
.= ((z
`2 )
* (((y
`1 )
* (x
`2 ))
+ ((
0. I)
* (y
`2 )))) by
A4,
A10
.= ((z
`2 )
* (((y
`1 )
* (x
`2 ))
+ (
0. I)))
.= ((z
`2 )
* ((y
`1 )
* (x
`2 ))) by
RLVECT_1: 4
.= (((z
`2 )
* (y
`1 ))
* (x
`2 )) by
GROUP_1:def 3;
((z
`1 )
* (y
`2 ))
= (((z
`1 )
* (y
`2 ))
* (
1_ I))
.= (((z
`1 )
* (y
`2 ))
* ((x
`2 )
/ (x
`2 ))) by
A3,
GCD_1: 9
.= ((((z
`2 )
* (y
`1 ))
* (x
`2 ))
/ (x
`2 )) by
A3,
A11,
A8,
GCD_1: 11
.= (((z
`2 )
* (y
`1 ))
* ((x
`2 )
/ (x
`2 ))) by
A3,
A9,
GCD_1: 11
.= (((z
`2 )
* (y
`1 ))
* (
1_ I)) by
A3,
GCD_1: 9
.= ((z
`2 )
* (y
`1 ));
hence thesis by
Def4;
end;
(
qadd (u,(
q0. I)))
= (
QClass. (
padd (y,x))) & (
qadd ((
q0. I),u))
= (
QClass. (
padd (x,y))) by
A1,
A2,
Th9;
hence thesis by
A2,
A5,
A7,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:13
Th13: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds (
qmult (u,(
qmult (v,w))))
= (
qmult ((
qmult (u,v)),w)) & (
qmult (u,v))
= (
qmult (v,u))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: u
= (
QClass. x) by
Def5;
consider z be
Element of (
Q. I) such that
A2: w
= (
QClass. z) by
Def5;
consider y be
Element of (
Q. I) such that
A3: v
= (
QClass. y) by
Def5;
A4: (
qmult (u,v))
= (
QClass. (
pmult (x,y))) by
A1,
A3,
Th10
.= (
qmult (v,u)) by
A1,
A3,
Th10;
(
qmult (u,(
qmult (v,w))))
= (
qmult ((
QClass. x),(
QClass. (
pmult (y,z))))) by
A1,
A3,
A2,
Th10
.= (
QClass. (
pmult (x,(
pmult (y,z))))) by
Th10
.= (
QClass. (
pmult ((
pmult (x,y)),z))) by
Th4
.= (
qmult ((
QClass. (
pmult (x,y))),(
QClass. z))) by
Th10
.= (
qmult ((
qmult (u,v)),w)) by
A1,
A3,
A2,
Th10;
hence thesis by
A4;
end;
theorem ::
QUOFIELD:14
Th14: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) holds (
qmult (u,(
q1. I)))
= u & (
qmult ((
q1. I),u))
= u
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: (
q1. I)
= (
QClass. x) by
Def5;
consider y be
Element of (
Q. I) such that
A2: u
= (
QClass. y) by
Def5;
A3: (x
`2 )
<> (
0. I) by
Th2;
(y
`2 )
<> (
0. I) by
Th2;
then ((x
`2 )
* (y
`2 ))
<> (
0. I) by
A3,
VECTSP_2:def 1;
then
reconsider t =
[((x
`1 )
* (y
`1 )), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
x
in (
q1. I) by
A1,
Th5;
then
A4: (x
`1 )
= (x
`2 ) by
Def9;
A5: for z be
Element of (
Q. I) holds z
in (
QClass. y) implies z
in (
QClass. t)
proof
let z be
Element of (
Q. I);
assume z
in (
QClass. y);
then
A6: ((z
`1 )
* (y
`2 ))
= ((z
`2 )
* (y
`1 )) by
Def4;
((z
`1 )
* (t
`2 ))
= ((z
`1 )
* ((x
`2 )
* (y
`2 )))
.= (((z
`2 )
* (y
`1 ))
* (x
`2 )) by
A6,
GROUP_1:def 3
.= ((z
`2 )
* ((x
`1 )
* (y
`1 ))) by
A4,
GROUP_1:def 3
.= ((z
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
A7: for z be
Element of (
Q. I) holds z
in (
QClass. t) implies z
in (
QClass. y)
proof
let z be
Element of (
Q. I);
(x
`2 )
divides (x
`2 );
then
A8: (x
`2 )
divides (((z
`1 )
* (y
`2 ))
* (x
`2 )) by
GCD_1: 7;
(x
`2 )
divides (x
`2 );
then
A9: (x
`2 )
divides (((z
`2 )
* (y
`1 ))
* (x
`2 )) by
GCD_1: 7;
assume z
in (
QClass. t);
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
then
A10: ((z
`1 )
* ((x
`2 )
* (y
`2 )))
= ((z
`2 )
* (t
`1 ));
A11: (((z
`1 )
* (y
`2 ))
* (x
`2 ))
= ((z
`1 )
* ((x
`2 )
* (y
`2 ))) by
GROUP_1:def 3
.= ((z
`2 )
* ((x
`2 )
* (y
`1 ))) by
A4,
A10
.= (((z
`2 )
* (y
`1 ))
* (x
`2 )) by
GROUP_1:def 3;
((z
`1 )
* (y
`2 ))
= (((z
`1 )
* (y
`2 ))
* (
1_ I))
.= (((z
`1 )
* (y
`2 ))
* ((x
`2 )
/ (x
`2 ))) by
A3,
GCD_1: 9
.= ((((z
`2 )
* (y
`1 ))
* (x
`2 ))
/ (x
`2 )) by
A3,
A11,
A8,
GCD_1: 11
.= (((z
`2 )
* (y
`1 ))
* ((x
`2 )
/ (x
`2 ))) by
A3,
A9,
GCD_1: 11
.= (((z
`2 )
* (y
`1 ))
* (
1_ I)) by
A3,
GCD_1: 9
.= ((z
`2 )
* (y
`1 ));
hence thesis by
Def4;
end;
(
qmult (u,(
q1. I)))
= (
QClass. (
pmult (y,x))) & (
qmult ((
q1. I),u))
= (
QClass. (
pmult (x,y))) by
A1,
A2,
Th10;
hence thesis by
A2,
A5,
A7,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:15
Th15: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds (
qmult ((
qadd (u,v)),w))
= (
qadd ((
qmult (u,w)),(
qmult (v,w))))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: u
= (
QClass. x) by
Def5;
consider y be
Element of (
Q. I) such that
A2: v
= (
QClass. y) by
Def5;
consider z be
Element of (
Q. I) such that
A3: w
= (
QClass. z) by
Def5;
A4: (
qmult ((
qadd (u,v)),w))
= (
qmult ((
QClass. (
padd (x,y))),(
QClass. z))) by
A1,
A2,
A3,
Th9
.= (
QClass. (
pmult ((
padd (x,y)),z))) by
Th10;
A5: (z
`2 )
<> (
0. I) by
Th2;
A6: (y
`2 )
<> (
0. I) by
Th2;
then
A7: ((y
`2 )
* (z
`2 ))
<> (
0. I) by
A5,
VECTSP_2:def 1;
then
reconsider s2 =
[((y
`1 )
* (z
`1 )), ((y
`2 )
* (z
`2 ))] as
Element of (
Q. I) by
Def1;
A8: (x
`2 )
<> (
0. I) by
Th2;
then
A9: ((x
`2 )
* (y
`2 ))
<> (
0. I) by
A6,
VECTSP_2:def 1;
then
reconsider s =
[(((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
A10: ((x
`2 )
* (z
`2 ))
<> (
0. I) by
A8,
A5,
VECTSP_2:def 1;
then
reconsider s1 =
[((x
`1 )
* (z
`1 )), ((x
`2 )
* (z
`2 ))] as
Element of (
Q. I) by
Def1;
(((x
`2 )
* (z
`2 ))
* ((y
`2 )
* (z
`2 )))
<> (
0. I) by
A7,
A10,
VECTSP_2:def 1;
then
reconsider s3 =
[((((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (z
`2 )))
+ (((y
`1 )
* (z
`1 ))
* ((x
`2 )
* (z
`2 )))), (((x
`2 )
* (z
`2 ))
* ((y
`2 )
* (z
`2 )))] as
Element of (
Q. I) by
Def1;
(((x
`2 )
* (y
`2 ))
* (z
`2 ))
<> (
0. I) by
A5,
A9,
VECTSP_2:def 1;
then
reconsider r =
[((((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))
* (z
`1 )), (((x
`2 )
* (y
`2 ))
* (z
`2 ))] as
Element of (
Q. I) by
Def1;
A11: for t be
Element of (
Q. I) holds t
in (
QClass. (
padd ((
pmult (x,z)),(
pmult (y,z))))) implies t
in (
QClass. (
pmult ((
padd (x,y)),z)))
proof
let t be
Element of (
Q. I);
assume t
in (
QClass. (
padd ((
pmult (x,z)),(
pmult (y,z)))));
then ((t
`1 )
* (s3
`2 ))
= ((t
`2 )
* (s3
`1 )) by
Def4;
then ((t
`1 )
* (((x
`2 )
* (z
`2 ))
* ((y
`2 )
* (z
`2 ))))
= ((t
`2 )
* (s3
`1 ));
then
A12: ((t
`1 )
* (((x
`2 )
* (z
`2 ))
* ((y
`2 )
* (z
`2 ))))
= ((t
`2 )
* ((((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (z
`2 )))
+ (((y
`1 )
* (z
`1 ))
* ((x
`2 )
* (z
`2 )))));
(((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
* (z
`2 ))
= ((t
`1 )
* ((((x
`2 )
* (y
`2 ))
* (z
`2 ))
* (z
`2 ))) by
GROUP_1:def 3
.= ((t
`1 )
* (((x
`2 )
* ((y
`2 )
* (z
`2 )))
* (z
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (z
`2 )))
+ (((y
`1 )
* (z
`1 ))
* ((x
`2 )
* (z
`2 ))))) by
A12,
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (z
`1 ))
* (y
`2 ))
* (z
`2 ))
+ (((y
`1 )
* (z
`1 ))
* ((x
`2 )
* (z
`2 ))))) by
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (z
`1 ))
* (y
`2 ))
* (z
`2 ))
+ ((((y
`1 )
* (z
`1 ))
* (x
`2 ))
* (z
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (z
`1 ))
* (y
`2 ))
+ (((y
`1 )
* (z
`1 ))
* (x
`2 )))
* (z
`2 ))) by
VECTSP_1:def 3
.= ((t
`2 )
* ((((z
`1 )
* ((x
`1 )
* (y
`2 )))
+ (((y
`1 )
* (z
`1 ))
* (x
`2 )))
* (z
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((z
`1 )
* ((x
`1 )
* (y
`2 )))
+ ((z
`1 )
* ((y
`1 )
* (x
`2 ))))
* (z
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* (((z
`1 )
* (((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 ))))
* (z
`2 ))) by
VECTSP_1:def 2
.= (((t
`2 )
* ((((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))
* (z
`1 )))
* (z
`2 )) by
GROUP_1:def 3;
then ((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
= ((t
`2 )
* ((((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))
* (z
`1 ))) by
A5,
GCD_1: 1;
then ((t
`1 )
* (r
`2 ))
= ((t
`2 )
* ((((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))
* (z
`1 )))
.= ((t
`2 )
* (r
`1 ));
hence thesis by
Def4;
end;
A13: for t be
Element of (
Q. I) holds t
in (
QClass. (
pmult ((
padd (x,y)),z))) implies t
in (
QClass. (
padd ((
pmult (x,z)),(
pmult (y,z)))))
proof
let t be
Element of (
Q. I);
assume t
in (
QClass. (
pmult ((
padd (x,y)),z)));
then ((t
`1 )
* (r
`2 ))
= ((t
`2 )
* (r
`1 )) by
Def4;
then ((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
= ((t
`2 )
* (r
`1 ));
then
A14: ((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
= ((t
`2 )
* ((((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))
* (z
`1 )));
((t
`1 )
* (s3
`2 ))
= ((t
`1 )
* (((x
`2 )
* (z
`2 ))
* ((y
`2 )
* (z
`2 ))))
.= ((t
`1 )
* ((((x
`2 )
* (z
`2 ))
* (y
`2 ))
* (z
`2 ))) by
GROUP_1:def 3
.= (((t
`1 )
* (((x
`2 )
* (z
`2 ))
* (y
`2 )))
* (z
`2 )) by
GROUP_1:def 3
.= (((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
* (z
`2 )) by
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`2 ))
+ ((y
`1 )
* (x
`2 )))
* (z
`1 ))
* (z
`2 ))) by
A14,
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`2 ))
* (z
`1 ))
+ (((y
`1 )
* (x
`2 ))
* (z
`1 )))
* (z
`2 ))) by
VECTSP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`2 ))
* (z
`1 ))
* (z
`2 ))
+ ((((y
`1 )
* (x
`2 ))
* (z
`1 ))
* (z
`2 )))) by
VECTSP_1:def 3
.= ((t
`2 )
* ((((y
`2 )
* ((x
`1 )
* (z
`1 )))
* (z
`2 ))
+ ((((y
`1 )
* (x
`2 ))
* (z
`1 ))
* (z
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (z
`2 )))
+ ((((y
`1 )
* (x
`2 ))
* (z
`1 ))
* (z
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (z
`2 )))
+ ((((y
`1 )
* (z
`1 ))
* (x
`2 ))
* (z
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (z
`2 )))
+ (((y
`1 )
* (z
`1 ))
* ((x
`2 )
* (z
`2 ))))) by
GROUP_1:def 3
.= ((t
`2 )
* (s3
`1 ));
hence thesis by
Def4;
end;
(
qadd ((
qmult (u,w)),(
qmult (v,w))))
= (
qadd ((
QClass. (
pmult (x,z))),(
qmult ((
QClass. y),(
QClass. z))))) by
A1,
A2,
A3,
Th10
.= (
qadd ((
QClass. (
pmult (x,z))),(
QClass. (
pmult (y,z))))) by
Th10
.= (
QClass. (
padd ((
pmult (x,z)),(
pmult (y,z))))) by
Th9;
hence thesis by
A4,
A13,
A11,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:16
Th16: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds (
qmult (u,(
qadd (v,w))))
= (
qadd ((
qmult (u,v)),(
qmult (u,w))))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: u
= (
QClass. x) by
Def5;
consider y be
Element of (
Q. I) such that
A2: v
= (
QClass. y) by
Def5;
consider z be
Element of (
Q. I) such that
A3: w
= (
QClass. z) by
Def5;
A4: (x
`2 )
<> (
0. I) by
Th2;
A5: (z
`2 )
<> (
0. I) by
Th2;
then
A6: ((x
`2 )
* (z
`2 ))
<> (
0. I) by
A4,
VECTSP_2:def 1;
then
reconsider s2 =
[((x
`1 )
* (z
`1 )), ((x
`2 )
* (z
`2 ))] as
Element of (
Q. I) by
Def1;
A7: (y
`2 )
<> (
0. I) by
Th2;
then
A8: ((y
`2 )
* (z
`2 ))
<> (
0. I) by
A5,
VECTSP_2:def 1;
then
reconsider s =
[(((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 ))), ((y
`2 )
* (z
`2 ))] as
Element of (
Q. I) by
Def1;
A9: ((x
`2 )
* (y
`2 ))
<> (
0. I) by
A4,
A7,
VECTSP_2:def 1;
then
reconsider s1 =
[((x
`1 )
* (y
`1 )), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
(((x
`2 )
* (y
`2 ))
* ((x
`2 )
* (z
`2 )))
<> (
0. I) by
A9,
A6,
VECTSP_2:def 1;
then
reconsider s3 =
[((((x
`1 )
* (y
`1 ))
* ((x
`2 )
* (z
`2 )))
+ (((x
`1 )
* (z
`1 ))
* ((x
`2 )
* (y
`2 )))), (((x
`2 )
* (y
`2 ))
* ((x
`2 )
* (z
`2 )))] as
Element of (
Q. I) by
Def1;
((x
`2 )
* ((y
`2 )
* (z
`2 )))
<> (
0. I) by
A4,
A8,
VECTSP_2:def 1;
then
reconsider r =
[((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 )))), ((x
`2 )
* ((y
`2 )
* (z
`2 )))] as
Element of (
Q. I) by
Def1;
A10: for t be
Element of (
Q. I) holds t
in (
QClass. (
padd ((
pmult (x,y)),(
pmult (x,z))))) implies t
in (
QClass. (
pmult (x,(
padd (y,z)))))
proof
let t be
Element of (
Q. I);
assume t
in (
QClass. (
padd ((
pmult (x,y)),(
pmult (x,z)))));
then ((t
`1 )
* (s3
`2 ))
= ((t
`2 )
* (s3
`1 )) by
Def4;
then ((t
`1 )
* (((x
`2 )
* (y
`2 ))
* ((x
`2 )
* (z
`2 ))))
= ((t
`2 )
* (s3
`1 ));
then
A11: ((t
`1 )
* (((x
`2 )
* (y
`2 ))
* ((x
`2 )
* (z
`2 ))))
= ((t
`2 )
* ((((x
`1 )
* (y
`1 ))
* ((x
`2 )
* (z
`2 )))
+ (((x
`1 )
* (z
`1 ))
* ((x
`2 )
* (y
`2 )))));
(((t
`1 )
* ((x
`2 )
* ((y
`2 )
* (z
`2 ))))
* (x
`2 ))
= (((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
* (x
`2 )) by
GROUP_1:def 3
.= ((t
`1 )
* ((((x
`2 )
* (y
`2 ))
* (z
`2 ))
* (x
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (y
`1 ))
* ((x
`2 )
* (z
`2 )))
+ (((x
`1 )
* (z
`1 ))
* ((x
`2 )
* (y
`2 ))))) by
A11,
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`1 ))
* (z
`2 ))
* (x
`2 ))
+ (((x
`1 )
* (z
`1 ))
* ((x
`2 )
* (y
`2 ))))) by
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`1 ))
* (z
`2 ))
* (x
`2 ))
+ ((((x
`1 )
* (z
`1 ))
* (y
`2 ))
* (x
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`1 ))
* (z
`2 ))
+ (((x
`1 )
* (z
`1 ))
* (y
`2 )))
* (x
`2 ))) by
VECTSP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* ((y
`1 )
* (z
`2 )))
+ (((x
`1 )
* (z
`1 ))
* (y
`2 )))
* (x
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* ((y
`1 )
* (z
`2 )))
+ ((x
`1 )
* ((z
`1 )
* (y
`2 ))))
* (x
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* (((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 ))))
* (x
`2 ))) by
VECTSP_1:def 2
.= (((t
`2 )
* ((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 )))))
* (x
`2 )) by
GROUP_1:def 3;
then ((t
`1 )
* ((x
`2 )
* ((y
`2 )
* (z
`2 ))))
= ((t
`2 )
* ((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 ))))) by
A4,
GCD_1: 1;
then ((t
`1 )
* (r
`2 ))
= ((t
`2 )
* ((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 )))))
.= ((t
`2 )
* (r
`1 ));
hence thesis by
Def4;
end;
A12: for t be
Element of (
Q. I) holds t
in (
QClass. (
pmult (x,(
padd (y,z))))) implies t
in (
QClass. (
padd ((
pmult (x,y)),(
pmult (x,z)))))
proof
let t be
Element of (
Q. I);
assume t
in (
QClass. (
pmult (x,(
padd (y,z)))));
then ((t
`1 )
* (r
`2 ))
= ((t
`2 )
* (r
`1 )) by
Def4;
then ((t
`1 )
* ((x
`2 )
* ((y
`2 )
* (z
`2 ))))
= ((t
`2 )
* (r
`1 ));
then
A13: ((t
`1 )
* ((x
`2 )
* ((y
`2 )
* (z
`2 ))))
= ((t
`2 )
* ((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 )))));
((t
`1 )
* (s3
`2 ))
= ((t
`1 )
* (((x
`2 )
* (y
`2 ))
* ((x
`2 )
* (z
`2 ))))
.= ((t
`1 )
* ((((x
`2 )
* (y
`2 ))
* (z
`2 ))
* (x
`2 ))) by
GROUP_1:def 3
.= (((t
`1 )
* (((x
`2 )
* (y
`2 ))
* (z
`2 )))
* (x
`2 )) by
GROUP_1:def 3
.= (((t
`2 )
* ((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 )))))
* (x
`2 )) by
A13,
GROUP_1:def 3
.= ((t
`2 )
* (((x
`1 )
* (((y
`1 )
* (z
`2 ))
+ ((z
`1 )
* (y
`2 ))))
* (x
`2 ))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* ((y
`1 )
* (z
`2 )))
+ ((x
`1 )
* ((z
`1 )
* (y
`2 ))))
* (x
`2 ))) by
VECTSP_1:def 2
.= ((t
`2 )
* ((((x
`1 )
* ((y
`1 )
* (z
`2 )))
* (x
`2 ))
+ (((x
`1 )
* ((z
`1 )
* (y
`2 )))
* (x
`2 )))) by
VECTSP_1:def 3
.= ((t
`2 )
* (((((x
`1 )
* (y
`1 ))
* (z
`2 ))
* (x
`2 ))
+ (((x
`1 )
* ((z
`1 )
* (y
`2 )))
* (x
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (y
`1 ))
* ((z
`2 )
* (x
`2 )))
+ (((x
`1 )
* ((z
`1 )
* (y
`2 )))
* (x
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (y
`1 ))
* ((z
`2 )
* (x
`2 )))
+ ((((x
`1 )
* (z
`1 ))
* (y
`2 ))
* (x
`2 )))) by
GROUP_1:def 3
.= ((t
`2 )
* ((((x
`1 )
* (y
`1 ))
* ((z
`2 )
* (x
`2 )))
+ (((x
`1 )
* (z
`1 ))
* ((y
`2 )
* (x
`2 ))))) by
GROUP_1:def 3
.= ((t
`2 )
* (s3
`1 ));
hence thesis by
Def4;
end;
A14: (
qmult (u,(
qadd (v,w))))
= (
qmult ((
QClass. x),(
QClass. (
padd (y,z))))) by
A1,
A2,
A3,
Th9
.= (
QClass. (
pmult (x,(
padd (y,z))))) by
Th10;
(
qadd ((
qmult (u,v)),(
qmult (u,w))))
= (
qadd ((
QClass. (
pmult (x,y))),(
qmult ((
QClass. x),(
QClass. z))))) by
A1,
A2,
A3,
Th10
.= (
qadd ((
QClass. (
pmult (x,y))),(
QClass. (
pmult (x,z))))) by
Th10
.= (
QClass. (
padd ((
pmult (x,y)),(
pmult (x,z))))) by
Th9;
hence thesis by
A14,
A12,
A10,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:17
Th17: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) holds (
qadd (u,(
qaddinv u)))
= (
q0. I) & (
qadd ((
qaddinv u),u))
= (
q0. I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
consider x be
Element of (
Q. I) such that
A1: (
qaddinv u)
= (
QClass. x) by
Def5;
x
in (
qaddinv u) by
A1,
Th5;
then
consider a be
Element of (
Q. I) such that
A2: a
in u and
A3: ((x
`1 )
* (a
`2 ))
= ((x
`2 )
* (
- (a
`1 ))) by
Def10;
consider y be
Element of (
Q. I) such that
A4: u
= (
QClass. y) by
Def5;
(x
`2 )
<> (
0. I) & (y
`2 )
<> (
0. I) by
Th2;
then ((x
`2 )
* (y
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider t =
[(((y
`1 )
* (x
`2 ))
+ ((x
`1 )
* (y
`2 ))), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
A5: (a
`2 )
<> (
0. I) by
Th2;
y
in u by
A4,
Th5;
then
A6: ((y
`1 )
* (a
`2 ))
= ((a
`1 )
* (y
`2 )) by
A2,
Th7;
((t
`1 )
* (a
`2 ))
= ((((y
`1 )
* (x
`2 ))
+ ((x
`1 )
* (y
`2 )))
* (a
`2 ))
.= ((((y
`1 )
* (x
`2 ))
* (a
`2 ))
+ (((x
`1 )
* (y
`2 ))
* (a
`2 ))) by
VECTSP_1:def 3
.= (((x
`2 )
* ((a
`1 )
* (y
`2 )))
+ (((x
`1 )
* (y
`2 ))
* (a
`2 ))) by
A6,
GROUP_1:def 3
.= (((x
`2 )
* ((a
`1 )
* (y
`2 )))
+ (((x
`2 )
* (
- (a
`1 )))
* (y
`2 ))) by
A3,
GROUP_1:def 3
.= (((x
`2 )
* ((a
`1 )
* (y
`2 )))
+ ((
- ((x
`2 )
* (a
`1 )))
* (y
`2 ))) by
GCD_1: 48
.= (((x
`2 )
* ((a
`1 )
* (y
`2 )))
+ (
- (((x
`2 )
* (a
`1 ))
* (y
`2 )))) by
GCD_1: 48
.= ((((x
`2 )
* (a
`1 ))
* (y
`2 ))
+ (
- (((x
`2 )
* (a
`1 ))
* (y
`2 )))) by
GROUP_1:def 3
.= (
0. I) by
RLVECT_1:def 10;
then
A7: (t
`1 )
= (
0. I) by
A5,
VECTSP_2:def 1;
A8: for z be
Element of (
Q. I) holds z
in (
q0. I) implies z
in (
QClass. t)
proof
let z be
Element of (
Q. I);
assume z
in (
q0. I);
then (z
`1 )
= (
0. I) by
Def8;
then
A9: ((z
`1 )
* (t
`2 ))
= (
0. I);
((z
`2 )
* (t
`1 ))
= (
0. I) by
A7;
hence thesis by
A9,
Def4;
end;
A10: (t
`2 )
<> (
0. I) by
Th2;
A11: for z be
Element of (
Q. I) holds z
in (
QClass. t) implies z
in (
q0. I)
proof
let z be
Element of (
Q. I);
assume z
in (
QClass. t);
then
A12: ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
((z
`2 )
* (t
`1 ))
= (
0. I) by
A7;
then (z
`1 )
= (
0. I) by
A10,
A12,
VECTSP_2:def 1;
hence thesis by
Def8;
end;
(
qadd (u,(
qaddinv u)))
= (
QClass. (
padd (y,x))) & (
qadd ((
qaddinv u),u))
= (
QClass. (
padd (x,y))) by
A1,
A4,
Th9;
hence thesis by
A11,
A8,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:18
Th18: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) st u
<> (
q0. I) holds (
qmult (u,(
qmultinv u)))
= (
q1. I) & (
qmult ((
qmultinv u),u))
= (
q1. I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
assume
A1: u
<> (
q0. I);
consider x be
Element of (
Q. I) such that
A2: (
qmultinv u)
= (
QClass. x) by
Def5;
consider y be
Element of (
Q. I) such that
A3: u
= (
QClass. y) by
Def5;
(x
`2 )
<> (
0. I) & (y
`2 )
<> (
0. I) by
Th2;
then
A4: ((x
`2 )
* (y
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider t =
[((x
`1 )
* (y
`1 )), ((x
`2 )
* (y
`2 ))] as
Element of (
Q. I) by
Def1;
x
in (
qmultinv u) by
A2,
Th5;
then
consider a be
Element of (
Q. I) such that
A5: a
in u and
A6: ((x
`1 )
* (a
`1 ))
= ((x
`2 )
* (a
`2 )) by
A1,
Def11;
y
in u by
A3,
Th5;
then
A7: ((y
`1 )
* (a
`2 ))
= ((a
`1 )
* (y
`2 )) by
A5,
Th7;
A8: (a
`1 )
<> (
0. I)
proof
assume (a
`1 )
= (
0. I);
then a
in (
q0. I) by
Def8;
then a
in ((
q0. I)
/\ u) by
A5,
XBOOLE_0:def 4;
then (
q0. I)
meets u;
hence contradiction by
A1,
Th8;
end;
A9: (a
`2 )
<> (
0. I) by
Th2;
A10: for z be
Element of (
Q. I) holds z
in (
q1. I) implies z
in (
QClass. t)
proof
let z be
Element of (
Q. I);
assume z
in (
q1. I);
then (z
`1 )
= (z
`2 ) by
Def9;
then
A11: (((z
`1 )
* (t
`2 ))
* ((a
`1 )
* (a
`2 )))
= (((z
`2 )
* ((x
`2 )
* (y
`2 )))
* ((a
`1 )
* (a
`2 )))
.= ((z
`2 )
* (((x
`2 )
* (y
`2 ))
* ((a
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= ((z
`2 )
* ((x
`2 )
* ((y
`2 )
* ((a
`1 )
* (a
`2 ))))) by
GROUP_1:def 3
.= ((z
`2 )
* ((x
`2 )
* (((y
`1 )
* (a
`2 ))
* (a
`2 )))) by
A7,
GROUP_1:def 3
.= ((z
`2 )
* (((x
`1 )
* (a
`1 ))
* ((y
`1 )
* (a
`2 )))) by
A6,
GROUP_1:def 3
.= ((z
`2 )
* ((x
`1 )
* ((a
`1 )
* ((y
`1 )
* (a
`2 ))))) by
GROUP_1:def 3
.= ((z
`2 )
* ((x
`1 )
* ((y
`1 )
* ((a
`1 )
* (a
`2 ))))) by
GROUP_1:def 3
.= ((z
`2 )
* (((x
`1 )
* (y
`1 ))
* ((a
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= (((z
`2 )
* ((x
`1 )
* (y
`1 )))
* ((a
`1 )
* (a
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (t
`1 ))
* ((a
`1 )
* (a
`2 )));
((a
`1 )
* (a
`2 ))
<> (
0. I) by
A8,
A9,
VECTSP_2:def 1;
then ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
A11,
GCD_1: 1;
hence thesis by
Def4;
end;
A12: for z be
Element of (
Q. I) holds z
in (
QClass. t) implies z
in (
q1. I)
proof
let z be
Element of (
Q. I);
assume z
in (
QClass. t);
then
A13: ((z
`1 )
* (t
`2 ))
= ((z
`2 )
* (t
`1 )) by
Def4;
((a
`2 )
* (a
`1 ))
<> (
0. I) by
A8,
A9,
VECTSP_2:def 1;
then
A14: (((x
`2 )
* (y
`2 ))
* ((a
`2 )
* (a
`1 )))
<> (
0. I) by
A4,
VECTSP_2:def 1;
((z
`1 )
* (((x
`2 )
* (y
`2 ))
* ((a
`1 )
* (a
`2 ))))
= (((z
`1 )
* ((x
`2 )
* (y
`2 )))
* ((a
`1 )
* (a
`2 ))) by
GROUP_1:def 3
.= (((z
`2 )
* (t
`1 ))
* ((a
`1 )
* (a
`2 ))) by
A13
.= (((z
`2 )
* ((x
`1 )
* (y
`1 )))
* ((a
`1 )
* (a
`2 )))
.= ((z
`2 )
* (((x
`1 )
* (y
`1 ))
* ((a
`1 )
* (a
`2 )))) by
GROUP_1:def 3
.= ((z
`2 )
* ((((y
`1 )
* (x
`1 ))
* (a
`1 ))
* (a
`2 ))) by
GROUP_1:def 3
.= ((z
`2 )
* (((y
`1 )
* ((x
`2 )
* (a
`2 )))
* (a
`2 ))) by
A6,
GROUP_1:def 3
.= ((z
`2 )
* (((x
`2 )
* (a
`2 ))
* ((a
`1 )
* (y
`2 )))) by
A7,
GROUP_1:def 3
.= ((z
`2 )
* ((x
`2 )
* ((a
`2 )
* ((a
`1 )
* (y
`2 ))))) by
GROUP_1:def 3
.= ((z
`2 )
* ((x
`2 )
* ((y
`2 )
* ((a
`2 )
* (a
`1 ))))) by
GROUP_1:def 3
.= ((z
`2 )
* (((x
`2 )
* (y
`2 ))
* ((a
`2 )
* (a
`1 )))) by
GROUP_1:def 3;
then (z
`1 )
= (z
`2 ) by
A14,
GCD_1: 1;
hence thesis by
Def9;
end;
(
qmult (u,(
qmultinv u)))
= (
QClass. (
pmult (y,x))) & (
qmult ((
qmultinv u),u))
= (
QClass. (
pmult (x,y))) by
A2,
A3,
Th10;
hence thesis by
A12,
A10,
SUBSET_1: 3;
end;
theorem ::
QUOFIELD:19
Th19: for I be non
degenerated
domRing-like
commutative
Ring holds (
q1. I)
<> (
q0. I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
reconsider t =
[(
0. I), (
1_ I)] as
Element of (
Q. I) by
Def1;
assume
A1: (
q1. I)
= (
q0. I);
(t
`1 )
= (
0. I);
then t
in (
q0. I) by
Def8;
then (t
`1 )
= (t
`2 ) by
A1,
Def9;
hence contradiction;
end;
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def12
func
quotadd (I) ->
BinOp of (
Quot. I) means
:
Def12: for u,v be
Element of (
Quot. I) holds (it
. (u,v))
= (
qadd (u,v));
existence
proof
deffunc
O(
Element of (
Quot. I),
Element of (
Quot. I)) = (
qadd ($1,$2));
consider F be
BinOp of (
Quot. I) such that
A1: for u,v be
Element of (
Quot. I) holds (F
. (u,v))
=
O(u,v) from
BINOP_1:sch 4;
take F;
let u,v be
Element of (
Quot. I);
thus thesis by
A1;
end;
uniqueness
proof
let F1,F2 be
BinOp of (
Quot. I) such that
A2: for u,v be
Element of (
Quot. I) holds (F1
. (u,v))
= (
qadd (u,v)) and
A3: for u,v be
Element of (
Quot. I) holds (F2
. (u,v))
= (
qadd (u,v));
now
let u,v be
Element of (
Quot. I);
thus (F1
. (u,v))
= (
qadd (u,v)) by
A2
.= (F2
. (u,v)) by
A3;
end;
hence thesis by
BINOP_1: 2;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def13
func
quotmult (I) ->
BinOp of (
Quot. I) means
:
Def13: for u,v be
Element of (
Quot. I) holds (it
. (u,v))
= (
qmult (u,v));
existence
proof
deffunc
O(
Element of (
Quot. I),
Element of (
Quot. I)) = (
qmult ($1,$2));
consider F be
BinOp of (
Quot. I) such that
A1: for u,v be
Element of (
Quot. I) holds (F
. (u,v))
=
O(u,v) from
BINOP_1:sch 4;
take F;
let u,v be
Element of (
Quot. I);
thus thesis by
A1;
end;
uniqueness
proof
let F1,F2 be
BinOp of (
Quot. I) such that
A2: for u,v be
Element of (
Quot. I) holds (F1
. (u,v))
= (
qmult (u,v)) and
A3: for u,v be
Element of (
Quot. I) holds (F2
. (u,v))
= (
qmult (u,v));
now
let u,v be
Element of (
Quot. I);
thus (F1
. (u,v))
= (
qmult (u,v)) by
A2
.= (F2
. (u,v)) by
A3;
end;
hence thesis by
BINOP_1: 2;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def14
func
quotaddinv (I) ->
UnOp of (
Quot. I) means
:
Def14: for u be
Element of (
Quot. I) holds (it
. u)
= (
qaddinv u);
existence
proof
deffunc
O(
Element of (
Quot. I)) = (
qaddinv $1);
consider F be
UnOp of (
Quot. I) such that
A1: for u be
Element of (
Quot. I) holds (F
. u)
=
O(u) from
FUNCT_2:sch 4;
take F;
let u be
Element of (
Quot. I);
thus thesis by
A1;
end;
uniqueness
proof
let F1,F2 be
UnOp of (
Quot. I) such that
A2: for u be
Element of (
Quot. I) holds (F1
. u)
= (
qaddinv u) and
A3: for u be
Element of (
Quot. I) holds (F2
. u)
= (
qaddinv u);
now
let u be
Element of (
Quot. I);
for u be
object st u
in (
Quot. I) holds (F1
. u)
= (F2
. u)
proof
let u be
object;
assume u
in (
Quot. I);
then
reconsider u as
Element of (
Quot. I);
(F1
. u)
= (
qaddinv u) by
A2
.= (F2
. u) by
A3;
hence thesis;
end;
hence thesis;
end;
hence thesis;
end;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def15
func
quotmultinv (I) ->
UnOp of (
Quot. I) means
:
Def15: for u be
Element of (
Quot. I) holds (it
. u)
= (
qmultinv u);
existence
proof
deffunc
O(
Element of (
Quot. I)) = (
qmultinv $1);
consider F be
UnOp of (
Quot. I) such that
A1: for u be
Element of (
Quot. I) holds (F
. u)
=
O(u) from
FUNCT_2:sch 4;
take F;
let u be
Element of (
Quot. I);
thus thesis by
A1;
end;
uniqueness
proof
let F1,F2 be
UnOp of (
Quot. I) such that
A2: for u be
Element of (
Quot. I) holds (F1
. u)
= (
qmultinv u) and
A3: for u be
Element of (
Quot. I) holds (F2
. u)
= (
qmultinv u);
now
let u be
Element of (
Quot. I);
for u be
object st u
in (
Quot. I) holds (F1
. u)
= (F2
. u)
proof
let u be
object;
assume u
in (
Quot. I);
then
reconsider u as
Element of (
Quot. I);
(F1
. u)
= (
qmultinv u) by
A2
.= (F2
. u) by
A3;
hence thesis;
end;
hence thesis;
end;
hence thesis;
end;
end
theorem ::
QUOFIELD:20
Th20: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds ((
quotadd I)
. (((
quotadd I)
. (u,v)),w))
= ((
quotadd I)
. (u,((
quotadd I)
. (v,w))))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
((
quotadd I)
. (((
quotadd I)
. (u,v)),w))
= ((
quotadd I)
. ((
qadd (u,v)),w)) by
Def12
.= (
qadd ((
qadd (u,v)),w)) by
Def12
.= (
qadd (u,(
qadd (v,w)))) by
Th11
.= (
qadd (u,((
quotadd I)
. (v,w)))) by
Def12
.= ((
quotadd I)
. (u,((
quotadd I)
. (v,w)))) by
Def12;
hence thesis;
end;
theorem ::
QUOFIELD:21
Th21: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
Quot. I) holds ((
quotadd I)
. (u,v))
= ((
quotadd I)
. (v,u))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Quot. I);
((
quotadd I)
. (u,v))
= (
qadd (u,v)) by
Def12
.= (
qadd (v,u)) by
Th11
.= ((
quotadd I)
. (v,u)) by
Def12;
hence thesis;
end;
theorem ::
QUOFIELD:22
Th22: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) holds ((
quotadd I)
. (u,(
q0. I)))
= u & ((
quotadd I)
. ((
q0. I),u))
= u
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
A1: ((
quotadd I)
. ((
q0. I),u))
= (
qadd ((
q0. I),u)) by
Def12
.= u by
Th12;
((
quotadd I)
. (u,(
q0. I)))
= (
qadd (u,(
q0. I))) by
Def12
.= u by
Th12;
hence thesis by
A1;
end;
theorem ::
QUOFIELD:23
Th23: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds ((
quotmult I)
. (((
quotmult I)
. (u,v)),w))
= ((
quotmult I)
. (u,((
quotmult I)
. (v,w))))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
((
quotmult I)
. (((
quotmult I)
. (u,v)),w))
= ((
quotmult I)
. ((
qmult (u,v)),w)) by
Def13
.= (
qmult ((
qmult (u,v)),w)) by
Def13
.= (
qmult (u,(
qmult (v,w)))) by
Th13
.= (
qmult (u,((
quotmult I)
. (v,w)))) by
Def13
.= ((
quotmult I)
. (u,((
quotmult I)
. (v,w)))) by
Def13;
hence thesis;
end;
theorem ::
QUOFIELD:24
Th24: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
Quot. I) holds ((
quotmult I)
. (u,v))
= ((
quotmult I)
. (v,u))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
Quot. I);
((
quotmult I)
. (u,v))
= (
qmult (u,v)) by
Def13
.= (
qmult (v,u)) by
Th13
.= ((
quotmult I)
. (v,u)) by
Def13;
hence thesis;
end;
theorem ::
QUOFIELD:25
Th25: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) holds ((
quotmult I)
. (u,(
q1. I)))
= u & ((
quotmult I)
. ((
q1. I),u))
= u
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
A1: ((
quotmult I)
. ((
q1. I),u))
= (
qmult ((
q1. I),u)) by
Def13
.= u by
Th14;
((
quotmult I)
. (u,(
q1. I)))
= (
qmult (u,(
q1. I))) by
Def13
.= u by
Th14;
hence thesis by
A1;
end;
theorem ::
QUOFIELD:26
Th26: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds ((
quotmult I)
. (((
quotadd I)
. (u,v)),w))
= ((
quotadd I)
. (((
quotmult I)
. (u,w)),((
quotmult I)
. (v,w))))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
((
quotmult I)
. (((
quotadd I)
. (u,v)),w))
= ((
quotmult I)
. ((
qadd (u,v)),w)) by
Def12
.= (
qmult ((
qadd (u,v)),w)) by
Def13
.= (
qadd ((
qmult (u,w)),(
qmult (v,w)))) by
Th15
.= (
qadd (((
quotmult I)
. (u,w)),(
qmult (v,w)))) by
Def13
.= (
qadd (((
quotmult I)
. (u,w)),((
quotmult I)
. (v,w)))) by
Def13
.= ((
quotadd I)
. (((
quotmult I)
. (u,w)),((
quotmult I)
. (v,w)))) by
Def12;
hence thesis;
end;
theorem ::
QUOFIELD:27
Th27: for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
Quot. I) holds ((
quotmult I)
. (u,((
quotadd I)
. (v,w))))
= ((
quotadd I)
. (((
quotmult I)
. (u,v)),((
quotmult I)
. (u,w))))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v,w be
Element of (
Quot. I);
((
quotmult I)
. (u,((
quotadd I)
. (v,w))))
= ((
quotmult I)
. (u,(
qadd (v,w)))) by
Def12
.= (
qmult (u,(
qadd (v,w)))) by
Def13
.= (
qadd ((
qmult (u,v)),(
qmult (u,w)))) by
Th16
.= (
qadd (((
quotmult I)
. (u,v)),(
qmult (u,w)))) by
Def13
.= (
qadd (((
quotmult I)
. (u,v)),((
quotmult I)
. (u,w)))) by
Def13
.= ((
quotadd I)
. (((
quotmult I)
. (u,v)),((
quotmult I)
. (u,w)))) by
Def12;
hence thesis;
end;
theorem ::
QUOFIELD:28
Th28: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) holds ((
quotadd I)
. (u,((
quotaddinv I)
. u)))
= (
q0. I) & ((
quotadd I)
. (((
quotaddinv I)
. u),u))
= (
q0. I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
A1: ((
quotadd I)
. (((
quotaddinv I)
. u),u))
= ((
quotadd I)
. ((
qaddinv u),u)) by
Def14
.= (
qadd ((
qaddinv u),u)) by
Def12
.= (
q0. I) by
Th17;
((
quotadd I)
. (u,((
quotaddinv I)
. u)))
= ((
quotadd I)
. (u,(
qaddinv u))) by
Def14
.= (
qadd (u,(
qaddinv u))) by
Def12
.= (
q0. I) by
Th17;
hence thesis by
A1;
end;
theorem ::
QUOFIELD:29
Th29: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
Quot. I) st u
<> (
q0. I) holds ((
quotmult I)
. (u,((
quotmultinv I)
. u)))
= (
q1. I) & ((
quotmult I)
. (((
quotmultinv I)
. u),u))
= (
q1. I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
Quot. I);
assume
A1: u
<> (
q0. I);
A2: ((
quotmult I)
. (((
quotmultinv I)
. u),u))
= ((
quotmult I)
. ((
qmultinv u),u)) by
Def15
.= (
qmult ((
qmultinv u),u)) by
Def13
.= (
q1. I) by
A1,
Th18;
((
quotmult I)
. (u,((
quotmultinv I)
. u)))
= ((
quotmult I)
. (u,(
qmultinv u))) by
Def15
.= (
qmult (u,(
qmultinv u))) by
Def13
.= (
q1. I) by
A1,
Th18;
hence thesis by
A2;
end;
begin
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def16
func
the_Field_of_Quotients (I) ->
strict
doubleLoopStr equals
doubleLoopStr (# (
Quot. I), (
quotadd I), (
quotmult I), (
q1. I), (
q0. I) #);
correctness ;
end
registration
let I be non
degenerated
domRing-like
commutative
Ring;
cluster (
the_Field_of_Quotients I) -> non
empty;
coherence ;
end
theorem ::
QUOFIELD:30
for I be non
degenerated
domRing-like
commutative
Ring holds the
carrier of (
the_Field_of_Quotients I)
= (
Quot. I) & the
addF of (
the_Field_of_Quotients I)
= (
quotadd I) & the
multF of (
the_Field_of_Quotients I)
= (
quotmult I) & (
0. (
the_Field_of_Quotients I))
= (
q0. I) & (
1. (
the_Field_of_Quotients I))
= (
q1. I);
theorem ::
QUOFIELD:31
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
the_Field_of_Quotients I) holds ((
quotadd I)
. (u,v)) is
Element of (
the_Field_of_Quotients I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
the_Field_of_Quotients I);
reconsider s = u, t = v as
Element of (
Quot. I);
((
quotadd I)
. (u,v))
= (
qadd (s,t)) by
Def12;
hence thesis;
end;
theorem ::
QUOFIELD:32
Th32: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
the_Field_of_Quotients I) holds ((
quotaddinv I)
. u) is
Element of (
the_Field_of_Quotients I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
the_Field_of_Quotients I);
reconsider s = u as
Element of (
Quot. I);
((
quotaddinv I)
. u)
= (
qaddinv s) by
Def14;
hence thesis;
end;
theorem ::
QUOFIELD:33
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
the_Field_of_Quotients I) holds ((
quotmult I)
. (u,v)) is
Element of (
the_Field_of_Quotients I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u,v be
Element of (
the_Field_of_Quotients I);
reconsider s = u as
Element of (
Quot. I);
reconsider t = v as
Element of (
Quot. I);
((
quotmult I)
. (u,v))
= (
qmult (s,t)) by
Def13;
hence thesis;
end;
theorem ::
QUOFIELD:34
for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
the_Field_of_Quotients I) holds ((
quotmultinv I)
. u) is
Element of (
the_Field_of_Quotients I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
the_Field_of_Quotients I);
reconsider s = u as
Element of (
Quot. I);
((
quotmultinv I)
. u)
= (
qmultinv s) by
Def15;
hence thesis;
end;
theorem ::
QUOFIELD:35
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
the_Field_of_Quotients I) holds (u
+ v)
= ((
quotadd I)
. (u,v));
Lm1: for I be non
degenerated
domRing-like
commutative
Ring holds (
the_Field_of_Quotients I) is
add-associative
right_zeroed
right_complementable
proof
let I be non
degenerated
domRing-like
commutative
Ring;
A1: (
the_Field_of_Quotients I) is
right_complementable
proof
let v be
Element of (
the_Field_of_Quotients I);
reconsider m = v as
Element of (
Quot. I);
reconsider n = ((
quotaddinv I)
. m) as
Element of (
the_Field_of_Quotients I);
take n;
thus thesis by
Th28;
end;
(for u,v,w be
Element of (
the_Field_of_Quotients I) holds ((u
+ v)
+ w)
= (u
+ (v
+ w))) & for v be
Element of (
the_Field_of_Quotients I) holds (v
+ (
0. (
the_Field_of_Quotients I)))
= v by
Th20,
Th22;
hence thesis by
A1,
RLVECT_1:def 3,
RLVECT_1:def 4;
end;
registration
let I be non
degenerated
domRing-like
commutative
Ring;
cluster (
the_Field_of_Quotients I) ->
add-associative
right_zeroed
right_complementable;
coherence by
Lm1;
end
theorem ::
QUOFIELD:36
for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
the_Field_of_Quotients I) holds (
- u)
= ((
quotaddinv I)
. u)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
the_Field_of_Quotients I);
reconsider z = ((
quotaddinv I)
. u) as
Element of (
the_Field_of_Quotients I) by
Th32;
(z
+ u)
= (
0. (
the_Field_of_Quotients I)) by
Th28;
hence thesis by
RLVECT_1: 6;
end;
theorem ::
QUOFIELD:37
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
the_Field_of_Quotients I) holds (u
* v)
= ((
quotmult I)
. (u,v));
Lm2: for I be non
degenerated
domRing-like
commutative
Ring holds (
the_Field_of_Quotients I) is
commutative non
empty
doubleLoopStr
proof
let I be non
degenerated
domRing-like
commutative
Ring;
for x,y be
Element of (
the_Field_of_Quotients I) holds (x
* y)
= (y
* x) by
Th24;
hence thesis by
GROUP_1:def 12;
end;
registration
let I be non
degenerated
domRing-like
commutative
Ring;
cluster (
the_Field_of_Quotients I) ->
commutative;
coherence by
Lm2;
end
Lm3: for I be non
degenerated
domRing-like
commutative
Ring holds (
the_Field_of_Quotients I) is
well-unital by
Th25;
registration
let I be non
degenerated
domRing-like
commutative
Ring;
cluster (
the_Field_of_Quotients I) ->
well-unital;
coherence by
Lm3;
end
theorem ::
QUOFIELD:38
for I be non
degenerated
domRing-like
commutative
Ring holds (
1. (
the_Field_of_Quotients I))
= (
q1. I) & (
0. (
the_Field_of_Quotients I))
= (
q0. I);
theorem ::
QUOFIELD:39
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
the_Field_of_Quotients I) holds ((u
+ v)
+ w)
= (u
+ (v
+ w)) by
Th20;
theorem ::
QUOFIELD:40
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
the_Field_of_Quotients I) holds (u
+ v)
= (v
+ u) by
Th21;
theorem ::
QUOFIELD:41
for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
the_Field_of_Quotients I) holds (u
+ (
0. (
the_Field_of_Quotients I)))
= u by
Th22;
theorem ::
QUOFIELD:42
for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
the_Field_of_Quotients I) holds ((
1. (
the_Field_of_Quotients I))
* u)
= u;
theorem ::
QUOFIELD:43
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v be
Element of (
the_Field_of_Quotients I) holds (u
* v)
= (v
* u);
theorem ::
QUOFIELD:44
for I be non
degenerated
domRing-like
commutative
Ring holds for u,v,w be
Element of (
the_Field_of_Quotients I) holds ((u
* v)
* w)
= (u
* (v
* w)) by
Th23;
theorem ::
QUOFIELD:45
Th45: for I be non
degenerated
domRing-like
commutative
Ring holds for u be
Element of (
the_Field_of_Quotients I) st u
<> (
0. (
the_Field_of_Quotients I)) holds ex v be
Element of (
the_Field_of_Quotients I) st (u
* v)
= (
1. (
the_Field_of_Quotients I))
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let u be
Element of (
the_Field_of_Quotients I);
assume
A1: u
<> (
0. (
the_Field_of_Quotients I));
reconsider u as
Element of (
Quot. I);
reconsider v = ((
quotmultinv I)
. u) as
Element of (
the_Field_of_Quotients I);
reconsider u as
Element of (
the_Field_of_Quotients I);
(u
* v)
= (
1. (
the_Field_of_Quotients I)) by
A1,
Th29;
hence thesis;
end;
theorem ::
QUOFIELD:46
Th46: for I be non
degenerated
domRing-like
commutative
Ring holds (
the_Field_of_Quotients I) is
add-associative
right_zeroed
right_complementable
Abelian
associative
unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr
proof
let I be non
degenerated
domRing-like
commutative
Ring;
A1: (
the_Field_of_Quotients I) is
almost_left_invertible
proof
let x be
Element of (
the_Field_of_Quotients I);
assume x
<> (
0. (
the_Field_of_Quotients I));
then
consider y be
Element of (
the_Field_of_Quotients I) such that
A2: (x
* y)
= (
1. (
the_Field_of_Quotients I)) by
Th45;
take y;
thus (y
* x)
= (
1. (
the_Field_of_Quotients I)) by
A2;
end;
A3: (
q0. I)
<> (
q1. I) & (
0. (
the_Field_of_Quotients I))
= (
q0. I) by
Th19;
A4: (
1. (
the_Field_of_Quotients I))
= (
q1. I) & for x,y,z be
Element of (
the_Field_of_Quotients I) holds (x
* (y
+ z))
= ((x
* y)
+ (x
* z)) & ((y
+ z)
* x)
= ((y
* x)
+ (z
* x)) by
Th26,
Th27;
(for x,y,z be
Element of (
the_Field_of_Quotients I) holds ((x
* y)
* z)
= (x
* (y
* z))) & for u,v be
Element of (
the_Field_of_Quotients I) holds (u
+ v)
= (v
+ u) by
Th21,
Th23;
hence thesis by
A1,
A3,
A4,
GROUP_1:def 3,
RLVECT_1:def 2,
STRUCT_0:def 8,
VECTSP_1:def 7;
end;
registration
let I be non
degenerated
domRing-like
commutative
Ring;
cluster (
the_Field_of_Quotients I) ->
Abelian
associative
distributive
almost_left_invertible non
degenerated;
coherence by
Th46;
end
theorem ::
QUOFIELD:47
Th47: for I be non
degenerated
domRing-like
commutative
Ring holds for x be
Element of (
the_Field_of_Quotients I) st x
<> (
0. (
the_Field_of_Quotients I)) holds for a be
Element of I st a
<> (
0. I) holds for u be
Element of (
Q. I) st x
= (
QClass. u) & u
=
[a, (
1. I)] holds for v be
Element of (
Q. I) st v
=
[(
1. I), a] holds (x
" )
= (
QClass. v)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
let x be
Element of (
the_Field_of_Quotients I);
assume
A1: x
<> (
0. (
the_Field_of_Quotients I));
let a be
Element of I;
assume
A2: a
<> (
0. I);
then
reconsider res =
[a, a] as
Element of (
Q. I) by
Def1;
A3: for u be
object holds u
in (
QClass. res) implies u
in (
q1. I)
proof
let u be
object;
assume
A4: u
in (
QClass. res);
then
reconsider u as
Element of (
Q. I);
((u
`1 )
* a)
= ((u
`1 )
* (res
`2 ))
.= ((u
`2 )
* (res
`1 )) by
A4,
Def4
.= ((u
`2 )
* a);
then (u
`1 )
= (u
`2 ) by
A2,
GCD_1: 1;
hence thesis by
Def9;
end;
for u be
object holds u
in (
q1. I) implies u
in (
QClass. res)
proof
let u be
object;
assume
A5: u
in (
q1. I);
then
reconsider u as
Element of (
Q. I);
((u
`1 )
* (res
`2 ))
= ((u
`1 )
* a)
.= ((u
`2 )
* a) by
A5,
Def9
.= ((u
`2 )
* (res
`1 ));
hence thesis by
Def4;
end;
then
A6: (
q1. I)
= (
QClass. res) by
A3,
TARSKI: 2;
let u be
Element of (
Q. I);
assume that
A7: x
= (
QClass. u) and
A8: u
=
[a, (
1. I)];
let v be
Element of (
Q. I);
assume
A9: v
=
[(
1. I), a];
(
pmult (u,v))
=
[(a
* (v
`1 )), ((u
`2 )
* (v
`2 ))] by
A8
.=
[(a
* (
1. I)), ((u
`2 )
* (v
`2 ))] by
A9
.=
[(a
* (
1. I)), ((
1. I)
* (v
`2 ))] by
A8
.=
[(a
* (
1. I)), ((
1. I)
* a)] by
A9
.=
[a, ((
1. I)
* a)]
.=
[a, a];
then
A10: (
qmult ((
QClass. u),(
QClass. v)))
= (
1. (
the_Field_of_Quotients I)) by
A6,
Th10;
reconsider y = (
QClass. v) as
Element of (
the_Field_of_Quotients I);
reconsider y as
Element of (
the_Field_of_Quotients I);
(
qmult ((
QClass. u),(
QClass. v)))
= (x
* y) by
A7,
Def13;
hence thesis by
A1,
A10,
VECTSP_1:def 10;
end;
registration
cluster ->
domRing-like
right_unital for
add-associative
right_zeroed
right_complementable
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr;
coherence
proof
let R be
add-associative
right_zeroed
right_complementable
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr;
thus R is
domRing-like
proof
let x,y be
Element of R such that
A1: (x
* y)
= (
0. R) and
A2: x
<> (
0. R);
(x
* y)
= (x
* (
0. R)) by
A1;
hence thesis by
A2,
VECTSP_1: 5;
end;
let x be
Element of R;
thus thesis;
end;
end
registration
cluster
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
left_unital
distributive
almost_left_invertible non
degenerated for non
empty
doubleLoopStr;
existence
proof
set R = the
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
left_unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr;
take R;
thus thesis;
end;
end
definition
let F be
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr;
let x,y be
Element of F;
::
QUOFIELD:def17
func x
/ y ->
Element of F equals (x
* (y
" ));
correctness ;
end
theorem ::
QUOFIELD:48
Th48: for F be non
degenerated
almost_left_invertible
commutative
Ring holds for a,b,c,d be
Element of F st b
<> (
0. F) & d
<> (
0. F) holds ((a
/ b)
* (c
/ d))
= ((a
* c)
/ (b
* d))
proof
let F be non
degenerated
almost_left_invertible
commutative
Ring;
let a,b,c,d be
Element of F;
assume
A1: b
<> (
0. F) & d
<> (
0. F);
((a
/ b)
* (c
/ d))
= (a
* ((b
" )
* (c
* (d
" )))) by
GROUP_1:def 3
.= (a
* (((b
" )
* (d
" ))
* c)) by
GROUP_1:def 3
.= ((a
* c)
* ((b
" )
* (d
" ))) by
GROUP_1:def 3
.= ((a
* c)
/ (d
* b)) by
A1,
GCD_1: 49;
hence thesis;
end;
theorem ::
QUOFIELD:49
Th49: for F be non
degenerated
almost_left_invertible
commutative
Ring holds for a,b,c,d be
Element of F st b
<> (
0. F) & d
<> (
0. F) holds ((a
/ b)
+ (c
/ d))
= (((a
* d)
+ (c
* b))
/ (b
* d))
proof
let F be non
degenerated
almost_left_invertible
commutative
Ring;
let a,b,c,d be
Element of F;
assume that
A1: b
<> (
0. F) and
A2: d
<> (
0. F);
(((a
* d)
+ (c
* b))
/ (b
* d))
= (((a
* d)
+ (c
* b))
* ((b
" )
* (d
" ))) by
A1,
A2,
GCD_1: 49
.= ((((a
* d)
+ (c
* b))
* (b
" ))
* (d
" )) by
GROUP_1:def 3
.= ((((a
* d)
* (b
" ))
+ ((c
* b)
* (b
" )))
* (d
" )) by
VECTSP_1:def 3
.= ((((a
* d)
* (b
" ))
+ (c
* (b
* (b
" ))))
* (d
" )) by
GROUP_1:def 3
.= ((((a
* d)
* (b
" ))
+ (c
* (
1. F)))
* (d
" )) by
A1,
VECTSP_1:def 10
.= ((((a
* d)
* (b
" ))
+ c)
* (d
" ))
.= ((((a
* d)
* (b
" ))
* (d
" ))
+ (c
* (d
" ))) by
VECTSP_1:def 3
.= (((b
" )
* ((a
* d)
* (d
" )))
+ (c
* (d
" ))) by
GROUP_1:def 3
.= (((b
" )
* (a
* (d
* (d
" ))))
+ (c
* (d
" ))) by
GROUP_1:def 3
.= (((b
" )
* (a
* (
1. F)))
+ (c
* (d
" ))) by
A2,
VECTSP_1:def 10
.= (((b
" )
* a)
+ (c
* (d
" )));
hence thesis;
end;
begin
notation
let R,S be non
empty
doubleLoopStr;
let f be
Function of R, S;
synonym f is
RingHomomorphism for f is
linear;
synonym f is
RingEpimorphism for f is
epimorphism;
synonym f is
RingMonomorphism for f is
monomorphism;
end
notation
let R,S be non
empty
doubleLoopStr;
let f be
Function of R, S;
synonym f is
embedding for f is
RingMonomorphism;
synonym f is
RingIsomorphism for f is
isomorphism;
end
theorem ::
QUOFIELD:50
Th50: for R,S be
Ring holds for f be
Function of R, S st f is
RingHomomorphism holds (f
. (
0. R))
= (
0. S)
proof
let R,S be
Ring;
let f be
Function of R, S;
assume
A1: f is
RingHomomorphism;
(f
. (
0. R))
= (f
. ((
0. R)
+ (
0. R))) by
RLVECT_1: 4
.= ((f
. (
0. R))
+ (f
. (
0. R))) by
A1,
VECTSP_1:def 20;
then (
0. S)
= (((f
. (
0. R))
+ (f
. (
0. R)))
+ (
- (f
. (
0. R)))) by
RLVECT_1:def 10
.= ((f
. (
0. R))
+ ((f
. (
0. R))
+ (
- (f
. (
0. R))))) by
RLVECT_1:def 3
.= ((f
. (
0. R))
+ (
0. S)) by
RLVECT_1:def 10
.= (f
. (
0. R)) by
RLVECT_1: 4;
hence thesis;
end;
theorem ::
QUOFIELD:51
Th51: for R,S be
Ring holds for f be
Function of R, S st f is
RingMonomorphism holds for x be
Element of R holds (f
. x)
= (
0. S) iff x
= (
0. R)
proof
let R,S be
Ring;
let f be
Function of R, S;
assume
A1: f is
RingMonomorphism;
then
A2: f is
RingHomomorphism;
let x be
Element of R;
A3: f is
one-to-one by
A1;
(f
. x)
= (
0. S) implies x
= (
0. R)
proof
assume
A4: (f
. x)
= (
0. S);
(f
. (
0. R))
= (
0. S) by
A2,
Th50;
hence thesis by
A3,
A4,
FUNCT_2: 19;
end;
hence thesis by
A2,
Th50;
end;
theorem ::
QUOFIELD:52
Th52: for R,S be non
degenerated
almost_left_invertible
commutative
Ring holds for f be
Function of R, S st f is
RingHomomorphism holds for x be
Element of R st x
<> (
0. R) holds (f
. (x
" ))
= ((f
. x)
" )
proof
let R,S be non
degenerated
almost_left_invertible
commutative
Ring;
let f be
Function of R, S;
assume
A1: f is
RingHomomorphism;
let x be
Element of R;
assume
A2: x
<> (
0. R);
A3: ((f
. x)
* (f
. (x
" )))
= (f
. ((x
" )
* x)) by
A1,
GROUP_6:def 6
.= (f
. (
1_ R)) by
A2,
VECTSP_1:def 10
.= (
1_ S) by
A1,
GROUP_1:def 13;
then (f
. x)
<> (
0. S);
hence thesis by
A3,
VECTSP_1:def 10;
end;
theorem ::
QUOFIELD:53
Th53: for R,S be non
degenerated
almost_left_invertible
commutative
Ring holds for f be
Function of R, S st f is
RingHomomorphism holds for x,y be
Element of R st y
<> (
0. R) holds (f
. (x
* (y
" )))
= ((f
. x)
* ((f
. y)
" ))
proof
let R,S be non
degenerated
almost_left_invertible
commutative
Ring;
let f be
Function of R, S;
assume
A1: f is
RingHomomorphism;
let x,y be
Element of R;
assume
A2: y
<> (
0. R);
thus (f
. (x
* (y
" )))
= ((f
. x)
* (f
. (y
" ))) by
A1,
GROUP_6:def 6
.= ((f
. x)
* ((f
. y)
" )) by
A1,
A2,
Th52;
end;
theorem ::
QUOFIELD:54
Th54: for R,S,T be
Ring holds for f be
Function of R, S st f is
RingHomomorphism holds for g be
Function of S, T st g is
RingHomomorphism holds (g
* f) is
RingHomomorphism
proof
let R,S,T be
Ring;
let f be
Function of R, S;
assume
A1: f is
RingHomomorphism;
let g be
Function of S, T;
assume
A2: g is
RingHomomorphism;
then
A3: for x,y be
Element of S holds (g
. (x
+ y))
= ((g
. x)
+ (g
. y)) & (g
. (x
* y))
= ((g
. x)
* (g
. y)) & (g
. (
1_ S))
= (
1_ T) by
GROUP_1:def 13,
GROUP_6:def 6,
VECTSP_1:def 20;
A4: for x,y be
Element of R holds ((g
* f)
. (x
* y))
= (((g
* f)
. x)
* ((g
* f)
. y))
proof
let x,y be
Element of R;
thus ((g
* f)
. (x
* y))
= (g
. (f
. (x
* y))) by
FUNCT_2: 15
.= (g
. ((f
. x)
* (f
. y))) by
A1,
GROUP_6:def 6
.= ((g
. (f
. x))
* (g
. (f
. y))) by
A2,
GROUP_6:def 6
.= (((g
* f)
. x)
* (g
. (f
. y))) by
FUNCT_2: 15
.= (((g
* f)
. x)
* ((g
* f)
. y)) by
FUNCT_2: 15;
end;
A5: for x,y be
Element of R holds ((g
* f)
. (x
+ y))
= (((g
* f)
. x)
+ ((g
* f)
. y))
proof
let x,y be
Element of R;
thus ((g
* f)
. (x
+ y))
= (g
. (f
. (x
+ y))) by
FUNCT_2: 15
.= (g
. ((f
. x)
+ (f
. y))) by
A1,
VECTSP_1:def 20
.= ((g
. (f
. x))
+ (g
. (f
. y))) by
A2,
VECTSP_1:def 20
.= (((g
* f)
. x)
+ (g
. (f
. y))) by
FUNCT_2: 15
.= (((g
* f)
. x)
+ ((g
* f)
. y)) by
FUNCT_2: 15;
end;
for x,y be
Element of R holds (f
. (x
+ y))
= ((f
. x)
+ (f
. y)) & (f
. (x
* y))
= ((f
. x)
* (f
. y)) & (f
. (
1_ R))
= (
1_ S) by
A1,
GROUP_1:def 13,
GROUP_6:def 6,
VECTSP_1:def 20;
then
A6: ((g
* f)
. (
1. R))
= (
1. T) by
A3,
FUNCT_2: 15;
(
1_ R)
= (
1. R) & (
1_ T)
= (
1. T);
then (g
* f) is
additive
multiplicative
unity-preserving by
A6,
A5,
A4,
GROUP_1:def 13,
GROUP_6:def 6;
hence thesis;
end;
theorem ::
QUOFIELD:55
for R be non
empty
doubleLoopStr holds (
id R) is
RingHomomorphism;
registration
let R be non
empty
doubleLoopStr;
cluster (
id R) ->
RingHomomorphism;
coherence ;
end
definition
::$Canceled
let R,S be non
empty
doubleLoopStr;
::
QUOFIELD:def22
pred R
is_embedded_in S means ex f be
Function of R, S st f is
RingMonomorphism;
end
definition
let R,S be non
empty
doubleLoopStr;
::
QUOFIELD:def23
pred R
is_ringisomorph_to S means ex f be
Function of R, S st f is
RingIsomorphism;
symmetry
proof
let R,S be non
empty
doubleLoopStr;
given f be
Function of R, S such that
A1: f is
RingIsomorphism;
A2: f is
onto by
A1;
then
A3: (
rng f)
= (
[#] S);
set g = (f
" );
A4: f is
one-to-one by
A1;
A5: f is
RingHomomorphism by
A1;
for x,y be
Element of S holds (g
. (x
+ y))
= ((g
. x)
+ (g
. y)) & (g
. (x
* y))
= ((g
. x)
* (g
. y)) & (g
. (
1_ S))
= (
1_ R)
proof
let x,y be
Element of S;
consider x9 be
object such that
A6: x9
in the
carrier of R and
A7: (f
. x9)
= x by
A3,
FUNCT_2: 11;
reconsider x9 as
Element of R by
A6;
A8: x9
= ((f qua
Function
" )
. (f
. x9)) by
A4,
FUNCT_2: 26
.= (g
. x) by
A4,
A7,
A2,
TOPS_2:def 4;
consider y9 be
object such that
A9: y9
in the
carrier of R and
A10: (f
. y9)
= y by
A3,
FUNCT_2: 11;
reconsider y9 as
Element of R by
A9;
A11: y9
= ((f qua
Function
" )
. (f
. y9)) by
A4,
FUNCT_2: 26
.= (g
. y) by
A4,
A10,
A2,
TOPS_2:def 4;
thus (g
. (x
+ y))
= (g
. (f
. (x9
+ y9))) by
A5,
A7,
A10,
VECTSP_1:def 20
.= ((f qua
Function
" )
. (f
. (x9
+ y9))) by
A2,
A4,
TOPS_2:def 4
.= ((g
. x)
+ (g
. y)) by
A4,
A8,
A11,
FUNCT_2: 26;
thus (g
. (x
* y))
= (g
. (f
. (x9
* y9))) by
A5,
A7,
A10,
GROUP_6:def 6
.= ((f qua
Function
" )
. (f
. (x9
* y9))) by
A2,
A4,
TOPS_2:def 4
.= ((g
. x)
* (g
. y)) by
A4,
A8,
A11,
FUNCT_2: 26;
thus (g
. (
1_ S))
= (g
. (f
. (
1_ R))) by
A5,
GROUP_1:def 13
.= ((f qua
Function
" )
. (f
. (
1_ R))) by
A2,
A4,
TOPS_2:def 4
.= (
1_ R) by
A4,
FUNCT_2: 26;
end;
then
A12: g is
additive
multiplicative
unity-preserving by
GROUP_1:def 13,
GROUP_6:def 6;
(
rng g)
= (
[#] R) by
A3,
A4,
TOPS_2: 49;
then g is
onto;
then
A13: g is
RingEpimorphism by
A12;
g is
one-to-one by
A3,
A4,
TOPS_2: 50;
then g is
RingMonomorphism by
A12;
hence thesis by
A13;
end;
end
begin
definition
let I be non
empty
ZeroStr;
let x,y be
Element of I;
assume
A1: y
<> (
0. I);
::
QUOFIELD:def24
func
quotient (x,y) ->
Element of (
Q. I) equals
:
Def20:
[x, y];
coherence by
A1,
Def1;
end
definition
let I be non
degenerated
domRing-like
commutative
Ring;
::
QUOFIELD:def25
func
canHom (I) ->
Function of I, (
the_Field_of_Quotients I) means
:
Def21: for x be
Element of I holds (it
. x)
= (
QClass. (
quotient (x,(
1. I))));
existence
proof
set f = {
[x, (
QClass. (
quotient (x,y)))] where x,y be
Element of I : y
= (
1. I) };
A1: for u be
object holds u
in f implies ex a,b be
object st u
=
[a, b]
proof
let u be
object;
assume u
in f;
then ex a,b be
Element of I st u
=
[a, (
QClass. (
quotient (a,b)))] & b
= (
1. I);
hence thesis;
end;
for a,b1,b2 be
object st
[a, b1]
in f &
[a, b2]
in f holds b1
= b2
proof
let a,b1,b2 be
object;
assume that
A2:
[a, b1]
in f and
A3:
[a, b2]
in f;
consider x1,x2 be
Element of I such that
A4:
[a, b1]
=
[x1, (
QClass. (
quotient (x1,x2)))] and
A5: x2
= (
1. I) by
A2;
A6: a
= x1 by
A4,
XTUPLE_0: 1;
consider y1,y2 be
Element of I such that
A7:
[a, b2]
=
[y1, (
QClass. (
quotient (y1,y2)))] and
A8: y2
= (
1. I) by
A3;
A9: a
= y1 by
A7,
XTUPLE_0: 1;
reconsider a as
Element of I by
A6;
b1
= b2 by
A4,
A5,
A7,
A8,
A6,
A9,
XTUPLE_0: 1;
hence thesis;
end;
then
reconsider f as
Function by
A1,
FUNCT_1:def 1,
RELAT_1:def 1;
A10: for x be
object holds x
in (
dom f) implies x
in the
carrier of I
proof
let x be
object;
assume x
in (
dom f);
then
consider y be
object such that
A11:
[x, y]
in f by
XTUPLE_0:def 12;
consider a,b be
Element of I such that
A12:
[x, y]
=
[a, (
QClass. (
quotient (a,b)))] and b
= (
1. I) by
A11;
x
= a by
A12,
XTUPLE_0: 1;
hence thesis;
end;
for x be
object holds x
in the
carrier of I implies x
in (
dom f)
proof
let x be
object;
assume x
in the
carrier of I;
then
reconsider x as
Element of I;
[x, (
QClass. (
quotient (x,(
1. I))))]
in f;
hence thesis by
XTUPLE_0:def 12;
end;
then
A13: (
dom f)
= the
carrier of I by
A10,
TARSKI: 2;
for y be
object holds y
in (
rng f) implies y
in the
carrier of (
the_Field_of_Quotients I)
proof
let y be
object;
assume y
in (
rng f);
then
consider x be
object such that
A14:
[x, y]
in f by
XTUPLE_0:def 13;
consider a,b be
Element of I such that
A15:
[x, y]
=
[a, (
QClass. (
quotient (a,b)))] and b
= (
1. I) by
A14;
y
= (
QClass. (
quotient (a,b))) by
A15,
XTUPLE_0: 1;
hence thesis;
end;
then (
rng f)
c= the
carrier of (
the_Field_of_Quotients I) by
TARSKI:def 3;
then
reconsider f as
Function of I, (
the_Field_of_Quotients I) by
A13,
FUNCT_2:def 1,
RELSET_1: 4;
for x be
Element of I holds (f
. x)
= (
QClass. (
quotient (x,(
1. I))))
proof
let x be
Element of I;
[x, (
QClass. (
quotient (x,(
1. I))))]
in f;
hence thesis by
A13,
FUNCT_1:def 2;
end;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of I, (
the_Field_of_Quotients I);
assume
A16: for x be
Element of I holds (f1
. x)
= (
QClass. (
quotient (x,(
1. I))));
assume
A17: for x be
Element of I holds (f2
. x)
= (
QClass. (
quotient (x,(
1. I))));
for x be
object st x
in the
carrier of I holds (f1
. x)
= (f2
. x)
proof
let x be
object;
assume x
in the
carrier of I;
then
reconsider x as
Element of I;
(f1
. x)
= (
QClass. (
quotient (x,(
1. I)))) by
A16
.= (f2
. x) by
A17;
hence thesis;
end;
hence thesis;
end;
end
theorem ::
QUOFIELD:56
Th56: for I be non
degenerated
domRing-like
commutative
Ring holds (
canHom I) is
RingHomomorphism
proof
let I be non
degenerated
domRing-like
commutative
Ring;
A1: (
0. I)
<> (
1. I);
for x,y be
Element of I holds ((
canHom I)
. (x
+ y))
= (((
canHom I)
. x)
+ ((
canHom I)
. y)) & ((
canHom I)
. (x
* y))
= (((
canHom I)
. x)
* ((
canHom I)
. y)) & ((
canHom I)
. (
1_ I))
= (
1_ (
the_Field_of_Quotients I))
proof
reconsider res3 =
[(
1. I), (
1. I)] as
Element of (
Q. I) by
A1,
Def1;
let x,y be
Element of I;
reconsider t1 = (
quotient (x,(
1. I))), t2 = (
quotient (y,(
1. I))) as
Element of (
Q. I);
A2: (t1
`2 )
= (
[x, (
1. I)]
`2 ) by
A1,
Def20
.= (
1. I);
(t1
`2 )
<> (
0. I) & (t2
`2 )
<> (
0. I) by
Th2;
then
A3: ((t1
`2 )
* (t2
`2 ))
<> (
0. I) by
VECTSP_2:def 1;
then
reconsider sum =
[(((t1
`1 )
* (t2
`2 ))
+ ((t2
`1 )
* (t1
`2 ))), ((t1
`2 )
* (t2
`2 ))] as
Element of (
Q. I) by
Def1;
A4: (t2
`1 )
= (
[y, (
1. I)]
`1 ) by
A1,
Def20
.= y;
reconsider prod =
[((t1
`1 )
* (t2
`1 )), ((t1
`2 )
* (t2
`2 ))] as
Element of (
Q. I) by
A3,
Def1;
A5: (
QClass. t1)
= ((
canHom I)
. x) & (
QClass. t2)
= ((
canHom I)
. y) by
Def21;
A6: ((
quotadd I)
. ((
QClass. t1),(
QClass. t2)))
= (
qadd ((
QClass. t1),(
QClass. t2))) by
Def12
.= (
QClass. (
padd (t1,t2))) by
Th9
.= (
QClass. sum);
A7: (t1
`1 )
= (
[x, (
1. I)]
`1 ) by
A1,
Def20
.= x;
A8: (t2
`2 )
= (
[y, (
1. I)]
`2 ) by
A1,
Def20
.= (
1. I);
then
A9: sum
=
[((t1
`1 )
+ ((t2
`1 )
* (
1. I))), ((
1. I)
* (
1. I))] by
A2
.=
[((t1
`1 )
+ (t2
`1 )), ((
1. I)
* (
1. I))]
.=
[(x
+ y), (
1. I)] by
A4,
A7;
thus ((
canHom I)
. (x
+ y))
= (
QClass. (
quotient ((x
+ y),(
1. I)))) by
Def21
.= (((
canHom I)
. x)
+ ((
canHom I)
. y)) by
A1,
A5,
A6,
A9,
Def20;
A10: ((
quotmult I)
. ((
QClass. t1),(
QClass. t2)))
= (
qmult ((
QClass. t1),(
QClass. t2))) by
Def13
.= (
QClass. (
pmult (t1,t2))) by
Th10
.= (
QClass. prod);
A11: prod
=
[(x
* y), (
1. I)] by
A8,
A2,
A4,
A7;
thus ((
canHom I)
. (x
* y))
= (
QClass. (
quotient ((x
* y),(
1. I)))) by
Def21
.= (((
canHom I)
. x)
* ((
canHom I)
. y)) by
A1,
A5,
A10,
A11,
Def20;
A12: for u be
object holds u
in (
QClass. res3) implies u
in (
q1. I)
proof
let u be
object;
assume
A13: u
in (
QClass. res3);
then
reconsider u as
Element of (
Q. I);
(u
`1 )
= ((u
`1 )
* (
1. I))
.= ((u
`1 )
* (res3
`2 ))
.= ((u
`2 )
* (res3
`1 )) by
A13,
Def4
.= ((u
`2 )
* (
1. I))
.= (u
`2 );
hence thesis by
Def9;
end;
for u be
object holds u
in (
q1. I) implies u
in (
QClass. res3)
proof
let u be
object;
assume
A14: u
in (
q1. I);
then
reconsider u as
Element of (
Q. I);
((u
`1 )
* (res3
`2 ))
= ((u
`1 )
* (
1. I))
.= (u
`1 )
.= (u
`2 ) by
A14,
Def9
.= ((u
`2 )
* (
1. I))
.= ((u
`2 )
* (res3
`1 ));
hence thesis by
Def4;
end;
then
A15: (
q1. I)
= (
QClass. res3) by
A12,
TARSKI: 2;
thus ((
canHom I)
. (
1_ I))
= (
QClass. (
quotient ((
1. I),(
1. I)))) by
Def21
.= (
1_ (
the_Field_of_Quotients I)) by
A1,
A15,
Def20;
end;
then (
canHom I) is
additive
multiplicative
unity-preserving by
GROUP_1:def 13,
GROUP_6:def 6;
hence thesis;
end;
theorem ::
QUOFIELD:57
Th57: for I be non
degenerated
domRing-like
commutative
Ring holds (
canHom I) is
embedding
proof
let I be non
degenerated
domRing-like
commutative
Ring;
A1: (
0. I)
<> (
1. I);
for x1,x2 be
object st x1
in (
dom (
canHom I)) & x2
in (
dom (
canHom I)) & ((
canHom I)
. x1)
= ((
canHom I)
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A2: x1
in (
dom (
canHom I)) & x2
in (
dom (
canHom I)) and
A3: ((
canHom I)
. x1)
= ((
canHom I)
. x2);
reconsider x1, x2 as
Element of I by
A2;
reconsider t1 = (
quotient (x1,(
1. I))), t2 = (
quotient (x2,(
1. I))) as
Element of (
Q. I);
A4: t1
in (
QClass. t1) by
Th5;
(
QClass. t1)
= ((
canHom I)
. x2) by
A3,
Def21
.= (
QClass. t2) by
Def21;
then
A5: ((t1
`1 )
* (t2
`2 ))
= ((t1
`2 )
* (t2
`1 )) by
A4,
Def4;
A6: (t1
`2 )
= (
[x1, (
1. I)]
`2 ) by
A1,
Def20
.= (
1. I);
A7: (t1
`1 )
= (
[x1, (
1. I)]
`1 ) by
A1,
Def20
.= x1;
A8: (t2
`1 )
= (
[x2, (
1. I)]
`1 ) by
A1,
Def20
.= x2;
(t2
`2 )
= (
[x2, (
1. I)]
`2 ) by
A1,
Def20
.= (
1. I);
then x1
= ((t1
`2 )
* (t2
`1 )) by
A5,
A7
.= x2 by
A6,
A8;
hence thesis;
end;
then
A9: (
canHom I) is
one-to-one by
FUNCT_1:def 4;
(
canHom I) is
RingHomomorphism by
Th56;
hence thesis by
A9;
end;
theorem ::
QUOFIELD:58
for I be non
degenerated
domRing-like
commutative
Ring holds I
is_embedded_in (
the_Field_of_Quotients I)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
(
canHom I) is
embedding by
Th57;
hence thesis;
end;
theorem ::
QUOFIELD:59
Th59: for F be non
degenerated
almost_left_invertible
domRing-like
commutative
Ring holds F
is_ringisomorph_to (
the_Field_of_Quotients F)
proof
let F be non
degenerated
almost_left_invertible
domRing-like
commutative
Ring;
A1: (
0. F)
<> (
1. F);
A2: (
dom (
canHom F))
= the
carrier of F by
FUNCT_2:def 1;
A3: for x be
object holds x
in the
carrier of (
the_Field_of_Quotients F) implies x
in (
rng (
canHom F))
proof
let x be
object;
assume x
in the
carrier of (
the_Field_of_Quotients F);
then
reconsider x as
Element of (
Quot. F);
consider u be
Element of (
Q. F) such that
A4: x
= (
QClass. u) by
Def5;
consider a,b be
Element of F such that
A5: u
=
[a, b] and
A6: b
<> (
0. F) by
Def1;
consider z be
Element of F such that
A7: (z
* b)
= (
1. F) by
A6,
VECTSP_1:def 9;
reconsider t =
[(a
* z), (
1. F)] as
Element of (
Q. F) by
A1,
Def1;
A8: for x be
object holds x
in (
QClass. t) implies x
in (
QClass. u)
proof
let x be
object;
assume
A9: x
in (
QClass. t);
then
reconsider x as
Element of (
Q. F);
(x
`1 )
= ((x
`1 )
* (
1. F))
.= ((x
`1 )
* (t
`2 ))
.= ((x
`2 )
* (t
`1 )) by
A9,
Def4
.= ((x
`2 )
* (a
* z));
then ((x
`1 )
* (u
`2 ))
= (((x
`2 )
* (a
* z))
* b) by
A5
.= ((x
`2 )
* ((a
* z)
* b)) by
GROUP_1:def 3
.= ((x
`2 )
* (a
* (
1. F))) by
A7,
GROUP_1:def 3
.= ((x
`2 )
* a)
.= ((x
`2 )
* (u
`1 )) by
A5;
hence thesis by
Def4;
end;
for x be
object holds x
in (
QClass. u) implies x
in (
QClass. t)
proof
let x be
object;
assume
A10: x
in (
QClass. u);
then
reconsider x as
Element of (
Q. F);
((x
`1 )
* (t
`2 ))
= ((x
`1 )
* (b
* z)) by
A7
.= (((x
`1 )
* b)
* z) by
GROUP_1:def 3
.= (((x
`1 )
* (u
`2 ))
* z) by
A5
.= (((x
`2 )
* (u
`1 ))
* z) by
A10,
Def4
.= (((x
`2 )
* a)
* z) by
A5
.= ((x
`2 )
* (a
* z)) by
GROUP_1:def 3
.= ((x
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
then
A11: (
QClass. t)
= (
QClass. u) by
A8,
TARSKI: 2;
((
canHom F)
. (a
* z))
= (
QClass. (
quotient ((a
* z),(
1. F)))) by
Def21
.= x by
A1,
A4,
A11,
Def20;
hence thesis by
A2,
FUNCT_1:def 3;
end;
for x be
object holds x
in (
rng (
canHom F)) implies x
in the
carrier of (
the_Field_of_Quotients F);
then (
rng (
canHom F))
= the
carrier of (
the_Field_of_Quotients F) by
A3,
TARSKI: 2;
then
A12: (
canHom F) is
onto;
A13: (
canHom F) is
embedding by
Th57;
then (
canHom F) is
RingHomomorphism;
then (
canHom F) is
RingEpimorphism by
A12;
hence thesis by
A13;
end;
registration
let I be non
degenerated
domRing-like
commutative
Ring;
cluster (
the_Field_of_Quotients I) ->
domRing-like
right_unital
right-distributive;
coherence ;
end
theorem ::
QUOFIELD:60
for I be non
degenerated
domRing-like
commutative
Ring holds (
the_Field_of_Quotients (
the_Field_of_Quotients I))
is_ringisomorph_to (
the_Field_of_Quotients I) by
Th59;
definition
let I,F be non
empty
doubleLoopStr;
let f be
Function of I, F;
::
QUOFIELD:def26
pred I
has_Field_of_Quotients_Pair F,f means f is
RingMonomorphism & for F9 be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr holds for f9 be
Function of I, F9 st f9 is
RingMonomorphism holds ex h be
Function of F, F9 st h is
RingHomomorphism & (h
* f)
= f9 & for h9 be
Function of F, F9 st h9 is
RingHomomorphism & (h9
* f)
= f9 holds h9
= h;
end
theorem ::
QUOFIELD:61
for I be non
degenerated
domRing-like
commutative
Ring holds ex F be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr st ex f be
Function of I, F st I
has_Field_of_Quotients_Pair (F,f)
proof
let I be non
degenerated
domRing-like
commutative
Ring;
A1:
now
let F9 be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr;
let f9 be
Function of I, F9;
set hh = {
[
[a, b], ((f9
. a)
* ((f9
. b)
" ))] where a,b be
Element of I : b
<> (
0. I) };
A2: for u be
object holds u
in hh implies ex a,b be
object st u
=
[a, b]
proof
let u be
object;
assume u
in hh;
then ex a,b be
Element of I st u
=
[
[a, b], ((f9
. a)
* ((f9
. b)
" ))] & b
<> (
0. I);
hence thesis;
end;
for a,b1,b2 be
object st
[a, b1]
in hh &
[a, b2]
in hh holds b1
= b2
proof
let a,b1,b2 be
object;
assume that
A3:
[a, b1]
in hh and
A4:
[a, b2]
in hh;
consider x1,x2 be
Element of I such that
A5:
[a, b1]
=
[
[x1, x2], ((f9
. x1)
* ((f9
. x2)
" ))] and x2
<> (
0. I) by
A3;
consider y1,y2 be
Element of I such that
A6:
[a, b2]
=
[
[y1, y2], ((f9
. y1)
* ((f9
. y2)
" ))] and y2
<> (
0. I) by
A4;
A7: a
=
[y1, y2] by
A6,
XTUPLE_0: 1;
A8: a
=
[x1, x2] by
A5,
XTUPLE_0: 1;
then
A9: x2
= y2 by
A7,
XTUPLE_0: 1;
x1
= y1 by
A7,
A8,
XTUPLE_0: 1;
then b1
= b2 by
A5,
A6,
A9,
XTUPLE_0: 1;
hence thesis;
end;
then
reconsider hh as
Function by
A2,
FUNCT_1:def 1,
RELAT_1:def 1;
A10: for x be
object holds x
in (
dom hh) implies x
in (
Q. I)
proof
let x be
object;
assume x
in (
dom hh);
then
consider y be
object such that
A11:
[x, y]
in hh by
XTUPLE_0:def 12;
consider a,b be
Element of I such that
A12:
[x, y]
=
[
[a, b], ((f9
. a)
* ((f9
. b)
" ))] and
A13: b
<> (
0. I) by
A11;
x
=
[a, b] by
A12,
XTUPLE_0: 1;
hence thesis by
A13,
Def1;
end;
for x be
object holds x
in (
Q. I) implies x
in (
dom hh)
proof
let x be
object;
assume x
in (
Q. I);
then
consider a,b be
Element of I such that
A14: x
=
[a, b] and
A15: b
<> (
0. I) by
Def1;
[
[a, b], ((f9
. a)
* ((f9
. b)
" ))]
in hh by
A15;
hence thesis by
A14,
XTUPLE_0:def 12;
end;
then
A16: (
dom hh)
= (
Q. I) by
A10,
TARSKI: 2;
for y be
object holds y
in (
rng hh) implies y
in the
carrier of F9
proof
let y be
object;
assume y
in (
rng hh);
then
consider x be
object such that
A17:
[x, y]
in hh by
XTUPLE_0:def 13;
consider a,b be
Element of I such that
A18:
[x, y]
=
[
[a, b], ((f9
. a)
* ((f9
. b)
" ))] and b
<> (
0. I) by
A17;
y
= ((f9
. a)
* ((f9
. b)
" )) by
A18,
XTUPLE_0: 1;
hence thesis;
end;
then (
rng hh)
c= the
carrier of F9 by
TARSKI:def 3;
then
reconsider hh as
Function of (
Q. I), the
carrier of F9 by
A16,
FUNCT_2:def 1,
RELSET_1: 4;
set h = {
[(
QClass. u), (hh
. u)] where u be
Element of (
Q. I) : (
1. I)
= (
1. I) };
(
0. F9)
<> (
1. F9) & ((
1. F9)
* (
1. F9))
= (
1. F9);
then
A19: ((
1. F9)
" )
= (
1. F9) by
VECTSP_1:def 10;
assume
A20: f9 is
RingMonomorphism;
then
A21: f9 is
RingHomomorphism;
A22: for v be
object holds v
in h implies ex a,b be
object st v
=
[a, b]
proof
let v be
object;
assume v
in h;
then ex u be
Element of (
Q. I) st v
=
[(
QClass. u), (hh
. u)] & (
1. I)
= (
1. I);
hence thesis;
end;
A23: for x be
Element of (
Q. I) holds (hh
. x)
= ((f9
. (x
`1 ))
* ((f9
. (x
`2 ))
" ))
proof
let x be
Element of (
Q. I);
consider a,b be
Element of I such that
A24: x
=
[a, b] and
A25: b
<> (
0. I) by
Def1;
A26:
[
[a, b], ((f9
. a)
* ((f9
. b)
" ))]
in hh by
A25;
thus thesis by
A16,
A24,
A26,
FUNCT_1:def 2;
end;
for a,b1,b2 be
object st
[a, b1]
in h &
[a, b2]
in h holds b1
= b2
proof
let a,b1,b2 be
object;
assume that
A27:
[a, b1]
in h and
A28:
[a, b2]
in h;
consider u1 be
Element of (
Q. I) such that
A29:
[a, b1]
=
[(
QClass. u1), (hh
. u1)] and (
1. I)
= (
1. I) by
A27;
consider u2 be
Element of (
Q. I) such that
A30:
[a, b2]
=
[(
QClass. u2), (hh
. u2)] and (
1. I)
= (
1. I) by
A28;
A31: a
= (
QClass. u2) by
A30,
XTUPLE_0: 1;
a
= (
QClass. u1) by
A29,
XTUPLE_0: 1;
then u1
in (
QClass. u2) by
A31,
Th5;
then
A32: ((u1
`1 )
* (u2
`2 ))
= ((u1
`2 )
* (u2
`1 )) by
Def4;
(u1
`2 )
<> (
0. I) by
Th2;
then
A33: (f9
. (u1
`2 ))
<> (
0. F9) by
A20,
Th51;
(u2
`2 )
<> (
0. I) by
Th2;
then
A34: (f9
. (u2
`2 ))
<> (
0. F9) by
A20,
Th51;
A35: f9 is
RingHomomorphism by
A20;
A36: (hh
. u1)
= ((f9
. (u1
`1 ))
/ (f9
. (u1
`2 ))) by
A23
.= (((f9
. (u1
`1 ))
/ (f9
. (u1
`2 )))
* (
1. F9))
.= (((f9
. (u1
`1 ))
/ (f9
. (u1
`2 )))
* ((f9
. (u2
`2 ))
/ (f9
. (u2
`2 )))) by
A34,
VECTSP_1:def 10
.= (((f9
. (u1
`1 ))
* (f9
. (u2
`2 )))
/ ((f9
. (u1
`2 ))
* (f9
. (u2
`2 )))) by
A33,
A34,
Th48
.= ((f9
. ((u1
`2 )
* (u2
`1 )))
/ ((f9
. (u1
`2 ))
* (f9
. (u2
`2 )))) by
A32,
A35,
GROUP_6:def 6
.= (((f9
. (u1
`2 ))
* (f9
. (u2
`1 )))
/ ((f9
. (u1
`2 ))
* (f9
. (u2
`2 )))) by
A35,
GROUP_6:def 6
.= (((f9
. (u1
`2 ))
/ (f9
. (u1
`2 )))
* ((f9
. (u2
`1 ))
/ (f9
. (u2
`2 )))) by
A33,
A34,
Th48
.= ((
1. F9)
* ((f9
. (u2
`1 ))
* ((f9
. (u2
`2 ))
" ))) by
A33,
VECTSP_1:def 10
.= ((f9
. (u2
`1 ))
* ((f9
. (u2
`2 ))
" ))
.= (hh
. u2) by
A23;
b1
= (hh
. u2) by
A36,
A29,
XTUPLE_0: 1
.= b2 by
A30,
XTUPLE_0: 1;
hence thesis;
end;
then
reconsider h as
Function by
A22,
FUNCT_1:def 1,
RELAT_1:def 1;
A37: for x be
object holds x
in (
dom h) implies x
in (
Quot. I)
proof
let x be
object;
assume x
in (
dom h);
then
consider y be
object such that
A38:
[x, y]
in h by
XTUPLE_0:def 12;
consider u be
Element of (
Q. I) such that
A39:
[x, y]
=
[(
QClass. u), (hh
. u)] and (
1. I)
= (
1. I) by
A38;
x
= (
QClass. u) by
A39,
XTUPLE_0: 1;
hence thesis;
end;
for x be
object holds x
in (
Quot. I) implies x
in (
dom h)
proof
let x be
object;
assume x
in (
Quot. I);
then
consider u be
Element of (
Q. I) such that
A40: x
= (
QClass. u) by
Def5;
[(
QClass. u), (hh
. u)]
in h;
hence thesis by
A40,
XTUPLE_0:def 12;
end;
then
A41: (
dom h)
= (
Quot. I) by
A37,
TARSKI: 2;
for y be
object holds y
in (
rng h) implies y
in the
carrier of F9
proof
let y be
object;
assume y
in (
rng h);
then
consider x be
object such that
A42:
[x, y]
in h by
XTUPLE_0:def 13;
consider u be
Element of (
Q. I) such that
A43:
[x, y]
=
[(
QClass. u), (hh
. u)] and (
1. I)
= (
1. I) by
A42;
y
= (hh
. u) by
A43,
XTUPLE_0: 1;
hence thesis;
end;
then (
rng h)
c= the
carrier of F9 by
TARSKI:def 3;
then
reconsider h as
Function of (
Quot. I), the
carrier of F9 by
A41,
FUNCT_2:def 1,
RELSET_1: 4;
reconsider h as
Function of (
the_Field_of_Quotients I), F9;
A44: for x be
Element of (
the_Field_of_Quotients I) holds for u be
Element of (
Q. I) st x
= (
QClass. u) holds (h
. x)
= (hh
. u)
proof
let x be
Element of (
the_Field_of_Quotients I);
let u be
Element of (
Q. I);
A45:
[(
QClass. u), (hh
. u)]
in h;
assume x
= (
QClass. u);
hence thesis by
A41,
A45,
FUNCT_1:def 2;
end;
A46:
now
let h9 be
Function of (
the_Field_of_Quotients I), F9;
assume that
A47: h9 is
RingHomomorphism and
A48: (h9
* (
canHom I))
= f9;
A49: (
0. I)
<> (
1. I);
for x be
object st x
in the
carrier of (
the_Field_of_Quotients I) holds (h9
. x)
= (h
. x)
proof
let x be
object;
assume x
in the
carrier of (
the_Field_of_Quotients I);
then
reconsider x as
Element of (
the_Field_of_Quotients I);
reconsider x9 = x as
Element of (
Quot. I);
consider u be
Element of (
Q. I) such that
A50: x9
= (
QClass. u) by
Def5;
consider a,b be
Element of I such that
A51: u
=
[a, b] and
A52: b
<> (
0. I) by
Def1;
reconsider a9 =
[a, (
1. I)], b9 =
[b, (
1. I)] as
Element of (
Q. I) by
A49,
Def1;
reconsider a99 = (
QClass. a9), b99 = (
QClass. b9) as
Element of (
the_Field_of_Quotients I);
reconsider bi =
[(
1. I), b] as
Element of (
Q. I) by
A52,
Def1;
reconsider aa = (
QClass. (
quotient (a,(
1. I)))) as
Element of (
the_Field_of_Quotients I);
reconsider bb = (
QClass. (
quotient (b,(
1. I)))) as
Element of (
the_Field_of_Quotients I);
reconsider bi9 = (
QClass. bi) as
Element of (
the_Field_of_Quotients I);
A54: b99
<> (
0. (
the_Field_of_Quotients I))
proof
A55: b9
in b99 by
Th5;
assume
A56: b99
= (
0. (
the_Field_of_Quotients I));
b
= (
[b, (
1. I)]
`1 )
.= (
0. I) by
A56,
A55,
Def8;
hence contradiction by
A52;
end;
A57: (h
. x)
= (hh
. u) by
A44,
A50
.= (((h9
* (
canHom I))
. (u
`1 ))
* ((f9
. (u
`2 ))
" )) by
A23,
A48
.= ((h9
. ((
canHom I)
. (u
`1 )))
* (((h9
* (
canHom I))
. (u
`2 ))
" )) by
A48,
FUNCT_2: 15
.= ((h9
. ((
canHom I)
. (u
`1 )))
* ((h9
. ((
canHom I)
. (u
`2 )))
" )) by
FUNCT_2: 15;
A58: (h9
. ((
quotmult I)
. (a99,bi9)))
= (h9
. (
qmult ((
QClass. a9),(
QClass. bi)))) by
Def13
.= (h9
. (
QClass. (
pmult (a9,bi)))) by
Th10;
((h9
. ((
canHom I)
. (u
`1 )))
* ((h9
. ((
canHom I)
. (u
`2 )))
" ))
= ((h9
. ((
canHom I)
. a))
* ((h9
. ((
canHom I)
. (u
`2 )))
" )) by
A51
.= ((h9
. aa)
* ((h9
. ((
canHom I)
. (u
`2 )))
" )) by
Def21
.= ((h9
. a99)
* ((h9
. ((
canHom I)
. (u
`2 )))
" )) by
A49,
Def20
.= ((h9
. a99)
* ((h9
. ((
canHom I)
. b))
" )) by
A51
.= ((h9
. a99)
* ((h9
. bb)
" )) by
Def21
.= ((h9
. a99)
* ((h9
. b99)
" )) by
A49,
Def20
.= (h9
. (a99
* (b99
" ))) by
A47,
A54,
Th53;
hence thesis by
A50,
A51,
A52,
A57,
A54,
A58,
Th47;
end;
hence h9
= h;
end;
A59: (
1_ F9)
= (
1. F9);
for x,y be
Element of (
the_Field_of_Quotients I) holds (h
. (x
+ y))
= ((h
. x)
+ (h
. y)) & (h
. (x
* y))
= ((h
. x)
* (h
. y)) & (h
. (
1_ (
the_Field_of_Quotients I)))
= (
1_ F9)
proof
let x,y be
Element of (
the_Field_of_Quotients I);
reconsider x, y as
Element of (
Quot. I);
A60: (
0. F9)
<> (
1. F9);
consider u be
Element of (
Q. I) such that
A61: x
= (
QClass. u) by
Def5;
A62: (u
`2 )
<> (
0. I) by
Th2;
then
A63: (f9
. (u
`2 ))
<> (
0. F9) by
A20,
Th51;
consider v be
Element of (
Q. I) such that
A64: y
= (
QClass. v) by
Def5;
A65: (v
`2 )
<> (
0. I) by
Th2;
then
A66: (f9
. (v
`2 ))
<> (
0. F9) by
A20,
Th51;
A67: ((u
`2 )
* (v
`2 ))
<> (
0. I) by
A62,
A65,
VECTSP_2:def 1;
then
reconsider t =
[(((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))), ((u
`2 )
* (v
`2 ))] as
Element of (
Q. I) by
Def1;
reconsider x, y as
Element of (
the_Field_of_Quotients I);
reconsider x9 = x, y9 = y as
Element of (
Quot. I);
A68: (h
. (
qadd (x9,y9)))
= (h
. (
QClass. (
padd (u,v)))) by
A61,
A64,
Th9
.= (h
. (
QClass. t));
A69: ((h
. x)
+ (h
. y))
= ((hh
. u)
+ (h
. y)) by
A44,
A61
.= ((hh
. u)
+ (hh
. v)) by
A44,
A64
.= (((f9
. (u
`1 ))
* ((f9
. (u
`2 ))
" ))
+ (hh
. v)) by
A23
.= (((f9
. (u
`1 ))
/ (f9
. (u
`2 )))
+ ((f9
. (v
`1 ))
/ (f9
. (v
`2 )))) by
A23
.= ((((f9
. (u
`1 ))
* (f9
. (v
`2 )))
+ ((f9
. (v
`1 ))
* (f9
. (u
`2 ))))
/ ((f9
. (u
`2 ))
* (f9
. (v
`2 )))) by
A63,
A66,
Th49
.= (((f9
. ((u
`1 )
* (v
`2 )))
+ ((f9
. (v
`1 ))
* (f9
. (u
`2 ))))
/ ((f9
. (u
`2 ))
* (f9
. (v
`2 )))) by
A21,
GROUP_6:def 6
.= (((f9
. ((u
`1 )
* (v
`2 )))
+ (f9
. ((v
`1 )
* (u
`2 ))))
/ ((f9
. (u
`2 ))
* (f9
. (v
`2 )))) by
A21,
GROUP_6:def 6
.= (((f9
. ((u
`1 )
* (v
`2 )))
+ (f9
. ((v
`1 )
* (u
`2 ))))
* ((f9
. ((u
`2 )
* (v
`2 )))
" )) by
A21,
GROUP_6:def 6
.= ((f9
. (((u
`1 )
* (v
`2 ))
+ ((v
`1 )
* (u
`2 ))))
* ((f9
. ((u
`2 )
* (v
`2 )))
" )) by
A21,
VECTSP_1:def 20
.= ((f9
. (t
`1 ))
* ((f9
. ((u
`2 )
* (v
`2 )))
" ))
.= ((f9
. (t
`1 ))
* ((f9
. (t
`2 ))
" ))
.= (hh
. t) by
A23;
A70: (h
. (
QClass. t))
= (hh
. t) by
A44;
reconsider t =
[((u
`1 )
* (v
`1 )), ((u
`2 )
* (v
`2 ))] as
Element of (
Q. I) by
A67,
Def1;
A71: ((h
. x)
* (h
. y))
= ((hh
. u)
* (h
. y)) by
A44,
A61
.= ((hh
. u)
* (hh
. v)) by
A44,
A64
.= (((f9
. (u
`1 ))
* ((f9
. (u
`2 ))
" ))
* (hh
. v)) by
A23
.= (((f9
. (u
`1 ))
/ (f9
. (u
`2 )))
* ((f9
. (v
`1 ))
/ (f9
. (v
`2 )))) by
A23
.= (((f9
. (u
`1 ))
* (f9
. (v
`1 )))
/ ((f9
. (u
`2 ))
* (f9
. (v
`2 )))) by
A63,
A66,
Th48
.= ((f9
. ((u
`1 )
* (v
`1 )))
/ ((f9
. (u
`2 ))
* (f9
. (v
`2 )))) by
A21,
GROUP_6:def 6
.= ((f9
. ((u
`1 )
* (v
`1 )))
* ((f9
. ((u
`2 )
* (v
`2 )))
" )) by
A21,
GROUP_6:def 6
.= ((f9
. (t
`1 ))
* ((f9
. ((u
`2 )
* (v
`2 )))
" ))
.= ((f9
. (t
`1 ))
* ((f9
. (t
`2 ))
" ))
.= (hh
. t) by
A23;
reconsider x9 = x, y9 = y as
Element of (
Quot. I);
A72: (h
. (
qmult (x9,y9)))
= (h
. (
QClass. (
pmult (u,v)))) by
A61,
A64,
Th10
.= (h
. (
QClass. t));
A73: (h
. (
QClass. t))
= (hh
. t) by
A44;
(
0. I)
<> (
1. I);
then
reconsider t =
[(
1. I), (
1. I)] as
Element of (
Q. I) by
Def1;
A74: for u be
object holds u
in (
QClass. t) implies u
in (
q1. I)
proof
let u be
object;
assume
A75: u
in (
QClass. t);
then
reconsider u as
Element of (
Q. I);
(u
`1 )
= ((u
`1 )
* (
1. I))
.= ((u
`1 )
* (t
`2 ))
.= ((u
`2 )
* (t
`1 )) by
A75,
Def4
.= ((u
`2 )
* (
1. I))
.= (u
`2 );
hence thesis by
Def9;
end;
for u be
object holds u
in (
q1. I) implies u
in (
QClass. t)
proof
let u be
object;
assume
A76: u
in (
q1. I);
then
reconsider u as
Element of (
Q. I);
((u
`1 )
* (t
`2 ))
= ((u
`1 )
* (
1. I))
.= (u
`1 )
.= (u
`2 ) by
A76,
Def9
.= ((u
`2 )
* (
1. I))
.= ((u
`2 )
* (t
`1 ));
hence thesis by
Def4;
end;
then (
q1. I)
= (
QClass. t) by
A74,
TARSKI: 2;
then (h
. (
1_ (
the_Field_of_Quotients I)))
= (hh
. t) by
A44
.= ((f9
. (t
`1 ))
* ((f9
. (t
`2 ))
" )) by
A23
.= ((f9
. (
1. I))
* ((f9
. (t
`2 ))
" ))
.= ((f9
. (
1. I))
* ((f9
. (
1. I))
" ))
.= ((
1. F9)
* ((f9
. (
1_ I))
" )) by
A21,
A59,
GROUP_1:def 13
.= ((
1. F9)
* ((
1_ F9)
" )) by
A21,
GROUP_1:def 13
.= (
1_ F9) by
A60,
VECTSP_1:def 10;
hence thesis by
A69,
A68,
A70,
A71,
A72,
A73,
Def12,
Def13;
end;
then
A77: h is
additive
multiplicative
unity-preserving by
GROUP_1:def 13,
GROUP_6:def 6;
A78: for x be
object holds x
in (
dom f9) implies x
in (
dom (
canHom I)) & ((
canHom I)
. x)
in (
dom h)
proof
let x be
object;
assume x
in (
dom f9);
then
reconsider x as
Element of I;
(
dom h)
= the
carrier of (
the_Field_of_Quotients I) by
FUNCT_2:def 1;
then x
in the
carrier of I & ((
canHom I)
. x)
in (
dom h);
hence thesis by
FUNCT_2:def 1;
end;
A79: (
0. I)
<> (
1. I);
A80: for x be
object st x
in (
dom f9) holds (f9
. x)
= (h
. ((
canHom I)
. x))
proof
let x be
object;
assume x
in (
dom f9);
then
reconsider x as
Element of I;
reconsider u =
[x, (
1. I)] as
Element of (
Q. I) by
A79,
Def1;
reconsider u9 = (
QClass. u) as
Element of (
the_Field_of_Quotients I);
(h
. ((
canHom I)
. x))
= (h
. (
QClass. (
quotient (x,(
1. I))))) by
Def21
.= (h
. u9) by
Def20
.= (hh
. u) by
A44
.= ((f9
. (u
`1 ))
* ((f9
. (u
`2 ))
" )) by
A23
.= ((f9
. (u
`1 ))
* ((f9
. (
1_ I))
" ))
.= ((f9
. (u
`1 ))
* (
1_ F9)) by
A21,
A19,
GROUP_1:def 13
.= (f9
. (u
`1 ))
.= (f9
. x);
hence thesis;
end;
for x be
object holds x
in (
dom (
canHom I)) & ((
canHom I)
. x)
in (
dom h) implies x
in (
dom f9)
proof
let x be
object;
assume that
A81: x
in (
dom (
canHom I)) and ((
canHom I)
. x)
in (
dom h);
reconsider x as
Element of I by
A81;
x
in the
carrier of I;
hence thesis by
FUNCT_2:def 1;
end;
then (h
* (
canHom I))
= f9 by
A78,
A80,
FUNCT_1: 10;
hence ex h be
Function of (
the_Field_of_Quotients I), F9 st h is
RingHomomorphism & (h
* (
canHom I))
= f9 & for h9 be
Function of (
the_Field_of_Quotients I), F9 st h9 is
RingHomomorphism & (h9
* (
canHom I))
= f9 holds h9
= h by
A77,
A46;
end;
(
canHom I) is
embedding by
Th57;
then I
has_Field_of_Quotients_Pair ((
the_Field_of_Quotients I),(
canHom I)) by
A1;
hence thesis;
end;
theorem ::
QUOFIELD:62
for I be
domRing-like
commutative
Ring holds for F,F9 be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr holds for f be
Function of I, F holds for f9 be
Function of I, F9 st I
has_Field_of_Quotients_Pair (F,f) & I
has_Field_of_Quotients_Pair (F9,f9) holds F
is_ringisomorph_to F9
proof
let I be
domRing-like
commutative
Ring;
let F,F9 be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr;
let f be
Function of I, F;
let f9 be
Function of I, F9;
assume that
A1: I
has_Field_of_Quotients_Pair (F,f) and
A2: I
has_Field_of_Quotients_Pair (F9,f9);
A3: ((
id F9)
* f9)
= f9 by
FUNCT_2: 17;
f is
RingMonomorphism by
A1;
then
consider h2 be
Function of F9, F such that
A4: h2 is
RingHomomorphism & (h2
* f9)
= f and for h9 be
Function of F9, F st h9 is
RingHomomorphism & (h9
* f9)
= f holds h9
= h2 by
A2;
consider h3 be
Function of F, F such that h3 is
RingHomomorphism and (h3
* f)
= f and
A5: for h9 be
Function of F, F st h9 is
RingHomomorphism & (h9
* f)
= f holds h9
= h3 by
A1;
A6: ((
id F)
* f)
= f by
FUNCT_2: 17;
f9 is
RingMonomorphism by
A2;
then
consider h1 be
Function of F, F9 such that
A7: h1 is
RingHomomorphism and
A8: (h1
* f)
= f9 and for h9 be
Function of F, F9 st h9 is
RingHomomorphism & (h9
* f)
= f9 holds h9
= h1 by
A1;
((h2
* h1)
* f)
= f & (h2
* h1) is
RingHomomorphism by
A7,
A8,
A4,
Th54,
RELAT_1: 36;
then
A9: (h2
* h1)
= h3 by
A5
.= (
id the
carrier of F) by
A6,
A5;
consider h3 be
Function of F9, F9 such that h3 is
RingHomomorphism and (h3
* f9)
= f9 and
A10: for h9 be
Function of F9, F9 st h9 is
RingHomomorphism & (h9
* f9)
= f9 holds h9
= h3 by
A2;
((h1
* h2)
* f9)
= f9 & (h1
* h2) is
RingHomomorphism by
A7,
A8,
A4,
Th54,
RELAT_1: 36;
then (h1
* h2)
= h3 by
A10
.= (
id the
carrier of F9) by
A3,
A10;
then (
rng h1)
= the
carrier of F9 by
FUNCT_2: 18;
then h1 is
onto;
then
A11: h1 is
RingEpimorphism by
A7;
h1 is
one-to-one by
A9,
FUNCT_2: 31;
then h1 is
RingMonomorphism by
A7;
hence thesis by
A11;
end;