real_lat.miz
begin
reserve x,y for
Real;
definition
::
REAL_LAT:def1
func
minreal ->
BinOp of
REAL means
:
Def1: (it
. (x,y))
= (
min (x,y));
existence
proof
deffunc
F(
Real,
Real) = (
In ((
min ($1,$2)),
REAL ));
consider o be
BinOp of
REAL such that
A1: for a,b be
Element of
REAL holds (o
. (a,b))
=
F(a,b) from
BINOP_1:sch 4;
take o;
let a,b be
Real;
reconsider aa = a, bb = b as
Element of
REAL by
XREAL_0:def 1;
(o
. (aa,bb))
=
F(aa,bb) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
BinOp of
REAL ;
assume that
A2: (f1
. (x,y))
= (
min (x,y)) and
A3: (f2
. (x,y))
= (
min (x,y));
for x,y be
Element of
REAL holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Element of
REAL ;
(f1
. (x,y))
= (
min (x,y)) by
A2;
hence thesis by
A3;
end;
hence thesis by
BINOP_1: 2;
end;
::
REAL_LAT:def2
func
maxreal ->
BinOp of
REAL means
:
Def2: (it
. (x,y))
= (
max (x,y));
existence
proof
deffunc
F(
Real,
Real) = (
In ((
max ($1,$2)),
REAL ));
consider o be
BinOp of
REAL such that
A4: for a,b be
Element of
REAL holds (o
. (a,b))
=
F(a,b) from
BINOP_1:sch 4;
take o;
let a,b be
Real;
reconsider a, b as
Element of
REAL by
XREAL_0:def 1;
(o
. (a,b))
=
F(a,b) by
A4;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
BinOp of
REAL ;
assume that
A5: (f1
. (x,y))
= (
max (x,y)) and
A6: (f2
. (x,y))
= (
max (x,y));
for x,y be
Element of
REAL holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Element of
REAL ;
(f1
. (x,y))
= (
max (x,y)) by
A5;
hence thesis by
A6;
end;
hence thesis by
BINOP_1: 2;
end;
end
definition
::
REAL_LAT:def3
func
Real_Lattice ->
strict
LattStr equals
LattStr (#
REAL ,
maxreal ,
minreal #);
coherence ;
end
registration
cluster the
carrier of
Real_Lattice ->
real-membered;
coherence ;
end
registration
cluster
Real_Lattice -> non
empty;
coherence ;
end
reserve a,b,c for
Element of
Real_Lattice ;
registration
let a,b be
Element of
Real_Lattice ;
identify
max (a,b) with a
"\/" b;
compatibility by
Def2;
identify
min (a,b) with a
"/\" b;
compatibility by
Def1;
end
Lm1: (a
"\/" (b
"\/" c))
= ((a
"\/" b)
"\/" c) by
XXREAL_0: 34;
Lm2: ((a
"/\" b)
"\/" b)
= b by
XXREAL_0: 36;
Lm3: (a
"/\" (b
"/\" c))
= ((a
"/\" b)
"/\" c) by
XXREAL_0: 33;
Lm4: (a
"/\" (a
"\/" b))
= a by
XXREAL_0: 35;
registration
cluster
Real_Lattice ->
Lattice-like;
coherence
proof
Real_Lattice is
join-commutative
join-associative
meet-absorbing
meet-commutative
meet-associative
join-absorbing by
Lm1,
Lm2,
Lm3,
Lm4;
hence thesis;
end;
end
Lm5: (a
"/\" (b
"\/" c))
= ((a
"/\" b)
"\/" (a
"/\" c)) by
XXREAL_0: 38;
reserve p,q,r for
Element of
Real_Lattice ;
theorem ::
REAL_LAT:1
Th1: (
maxreal
. (p,q))
= (
maxreal
. (q,p))
proof
thus (
maxreal
. (p,q))
= (q
"\/" p) by
LATTICES:def 1
.= (
maxreal
. (q,p));
end;
theorem ::
REAL_LAT:2
Th2: (
minreal
. (p,q))
= (
minreal
. (q,p))
proof
thus (
minreal
. (p,q))
= (q
"/\" p) by
LATTICES:def 2
.= (
minreal
. (q,p));
end;
theorem ::
REAL_LAT:3
Th3: (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (q,r)),p)) & (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (p,q)),r)) & (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (q,p)),r)) & (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (r,p)),q)) & (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (r,q)),p)) & (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (p,r)),q))
proof
set s = (q
"\/" r);
thus
A1: (
maxreal
. (p,(
maxreal
. (q,r))))
= (s
"\/" p) by
LATTICES:def 1
.= (
maxreal
. ((
maxreal
. (q,r)),p));
thus (
maxreal
. (p,(
maxreal
. (q,r))))
= (p
"\/" s)
.= ((p
"\/" q)
"\/" r) by
XXREAL_0: 34
.= (
maxreal
. ((
maxreal
. (p,q)),r));
thus (
maxreal
. (p,(
maxreal
. (q,r))))
= (p
"\/" s)
.= ((q
"\/" p)
"\/" r) by
XXREAL_0: 34
.= (
maxreal
. ((
maxreal
. (q,p)),r));
thus
A2: (
maxreal
. (p,(
maxreal
. (q,r))))
= (p
"\/" (q
"\/" r))
.= ((r
"\/" p)
"\/" q) by
XXREAL_0: 34
.= (
maxreal
. ((
maxreal
. (r,p)),q));
thus (
maxreal
. (p,(
maxreal
. (q,r))))
= (
maxreal
. ((
maxreal
. (r,q)),p)) by
A1,
Th1;
thus thesis by
A2,
Th1;
end;
theorem ::
REAL_LAT:4
Th4: (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (q,r)),p)) & (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (p,q)),r)) & (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (q,p)),r)) & (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (r,p)),q)) & (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (r,q)),p)) & (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (p,r)),q))
proof
set s = (q
"/\" r);
thus
A1: (
minreal
. (p,(
minreal
. (q,r))))
= (s
"/\" p) by
LATTICES:def 2
.= (
minreal
. ((
minreal
. (q,r)),p));
thus (
minreal
. (p,(
minreal
. (q,r))))
= (p
"/\" s)
.= ((p
"/\" q)
"/\" r) by
XXREAL_0: 33
.= (
minreal
. ((
minreal
. (p,q)),r));
thus (
minreal
. (p,(
minreal
. (q,r))))
= (p
"/\" s)
.= ((q
"/\" p)
"/\" r) by
XXREAL_0: 33
.= (
minreal
. ((
minreal
. (q,p)),r));
thus
A2: (
minreal
. (p,(
minreal
. (q,r))))
= (p
"/\" (q
"/\" r))
.= ((r
"/\" p)
"/\" q) by
XXREAL_0: 33
.= (
minreal
. ((
minreal
. (r,p)),q));
thus (
minreal
. (p,(
minreal
. (q,r))))
= (
minreal
. ((
minreal
. (r,q)),p)) by
A1,
Th2;
thus thesis by
A2,
Th2;
end;
theorem ::
REAL_LAT:5
Th5: (
maxreal
. ((
minreal
. (p,q)),q))
= q & (
maxreal
. (q,(
minreal
. (p,q))))
= q & (
maxreal
. (q,(
minreal
. (q,p))))
= q & (
maxreal
. ((
minreal
. (q,p)),q))
= q
proof
set s = (p
"/\" q);
thus
A1: (
maxreal
. ((
minreal
. (p,q)),q))
= (s
"\/" q)
.= q by
XXREAL_0: 36;
thus (
maxreal
. (q,(
minreal
. (p,q))))
= ((p
"/\" q)
"\/" q) by
LATTICES:def 1
.= q by
XXREAL_0: 36;
thus (
maxreal
. (q,(
minreal
. (q,p))))
= (
maxreal
. (q,(q
"/\" p)))
.= ((p
"/\" q)
"\/" q) by
LATTICES:def 1
.= q by
XXREAL_0: 36;
thus thesis by
A1,
Th2;
end;
theorem ::
REAL_LAT:6
Th6: (
minreal
. (q,(
maxreal
. (q,p))))
= q & (
minreal
. ((
maxreal
. (p,q)),q))
= q & (
minreal
. (q,(
maxreal
. (p,q))))
= q & (
minreal
. ((
maxreal
. (q,p)),q))
= q
proof
set s = (q
"\/" p);
thus
A1: (
minreal
. (q,(
maxreal
. (q,p))))
= (q
"/\" s)
.= q by
XXREAL_0: 35;
thus
A2: (
minreal
. ((
maxreal
. (p,q)),q))
= (
minreal
. ((p
"\/" q),q))
.= (q
"/\" (q
"\/" p)) by
LATTICES:def 2
.= q by
XXREAL_0: 35;
thus (
minreal
. (q,(
maxreal
. (p,q))))
= q by
A1,
Th1;
thus thesis by
A2,
Th1;
end;
theorem ::
REAL_LAT:7
Th7: (
minreal
. (q,(
maxreal
. (p,r))))
= (
maxreal
. ((
minreal
. (q,p)),(
minreal
. (q,r))))
proof
set s = (p
"\/" r);
thus (
minreal
. (q,(
maxreal
. (p,r))))
= (q
"/\" s)
.= ((q
"/\" p)
"\/" (q
"/\" r)) by
XXREAL_0: 38
.= (
maxreal
. ((
minreal
. (q,p)),(
minreal
. (q,r))));
end;
registration
cluster
Real_Lattice ->
distributive;
coherence by
Lm5;
end
reserve A,B for non
empty
set;
reserve f,g,h for
Element of (
Funcs (A,
REAL ));
definition
let A;
::
REAL_LAT:def4
func
maxfuncreal (A) ->
BinOp of (
Funcs (A,
REAL )) means
:
Def4: (it
. (f,g))
= (
maxreal
.: (f,g));
existence
proof
deffunc
O(
Element of (
Funcs (A,
REAL )),
Element of (
Funcs (A,
REAL ))) = (
maxreal
.: ($1,$2));
ex o be
BinOp of (
Funcs (A,
REAL )) st for a,b be
Element of (
Funcs (A,
REAL )) holds (o
. (a,b))
=
O(a,b) from
BINOP_1:sch 4;
hence thesis;
end;
uniqueness
proof
let F1,F2 be
BinOp of (
Funcs (A,
REAL )) such that
A1: for f,g be
Element of (
Funcs (A,
REAL )) holds (F1
. (f,g))
= (
maxreal
.: (f,g)) and
A2: for f,g be
Element of (
Funcs (A,
REAL )) holds (F2
. (f,g))
= (
maxreal
.: (f,g));
now
let f,g be
Element of (
Funcs (A,
REAL ));
thus (F1
. (f,g))
= (
maxreal
.: (f,g)) by
A1
.= (F2
. (f,g)) by
A2;
end;
hence thesis by
BINOP_1: 2;
end;
::
REAL_LAT:def5
func
minfuncreal (A) ->
BinOp of (
Funcs (A,
REAL )) means
:
Def5: (it
. (f,g))
= (
minreal
.: (f,g));
existence
proof
deffunc
O(
Element of (
Funcs (A,
REAL )),
Element of (
Funcs (A,
REAL ))) = (
minreal
.: ($1,$2));
ex o be
BinOp of (
Funcs (A,
REAL )) st for a,b be
Element of (
Funcs (A,
REAL )) holds (o
. (a,b))
=
O(a,b) from
BINOP_1:sch 4;
hence thesis;
end;
uniqueness
proof
let F1,F2 be
BinOp of (
Funcs (A,
REAL )) such that
A3: for f,g be
Element of (
Funcs (A,
REAL )) holds (F1
. (f,g))
= (
minreal
.: (f,g)) and
A4: for f,g be
Element of (
Funcs (A,
REAL )) holds (F2
. (f,g))
= (
minreal
.: (f,g));
now
let f,g be
Element of (
Funcs (A,
REAL ));
thus (F1
. (f,g))
= (
minreal
.: (f,g)) by
A3
.= (F2
. (f,g)) by
A4;
end;
hence thesis by
BINOP_1: 2;
end;
end
Lm6: for x be
Element of A, f be
Function of A, B holds x
in (
dom f)
proof
let x be
Element of A, f be
Function of A, B;
x
in A;
hence thesis by
FUNCT_2:def 1;
end;
theorem ::
REAL_LAT:8
Th8: ((
maxfuncreal A)
. (f,g))
= ((
maxfuncreal A)
. (g,f))
proof
now
let x be
Element of A;
A1: x
in (
dom (
maxreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
maxreal
.: (g,f))) by
Lm6;
thus (((
maxfuncreal A)
. (f,g))
. x)
= ((
maxreal
.: (f,g))
. x) by
Def4
.= (
maxreal
. ((f
. x),(g
. x))) by
A1,
FUNCOP_1: 22
.= (
maxreal
. ((g
. x),(f
. x))) by
Th1
.= ((
maxreal
.: (g,f))
. x) by
A2,
FUNCOP_1: 22
.= (((
maxfuncreal A)
. (g,f))
. x) by
Def4;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
REAL_LAT:9
Th9: ((
minfuncreal A)
. (f,g))
= ((
minfuncreal A)
. (g,f))
proof
now
let x be
Element of A;
A1: x
in (
dom (
minreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
minreal
.: (g,f))) by
Lm6;
thus (((
minfuncreal A)
. (f,g))
. x)
= ((
minreal
.: (f,g))
. x) by
Def5
.= (
minreal
. ((f
. x),(g
. x))) by
A1,
FUNCOP_1: 22
.= (
minreal
. ((g
. x),(f
. x))) by
Th2
.= ((
minreal
.: (g,f))
. x) by
A2,
FUNCOP_1: 22
.= (((
minfuncreal A)
. (g,f))
. x) by
Def5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
REAL_LAT:10
Th10: ((
maxfuncreal A)
. (((
maxfuncreal A)
. (f,g)),h))
= ((
maxfuncreal A)
. (f,((
maxfuncreal A)
. (g,h))))
proof
now
let x be
Element of A;
A1: x
in (
dom (
maxreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
maxreal
.: (g,h))) by
Lm6;
A3: x
in (
dom (
maxreal
.: ((
maxreal
.: (f,g)),h))) by
Lm6;
A4: x
in (
dom (
maxreal
.: (f,(
maxreal
.: (g,h))))) by
Lm6;
thus (((
maxfuncreal A)
. (((
maxfuncreal A)
. (f,g)),h))
. x)
= (((
maxfuncreal A)
. ((
maxreal
.: (f,g)),h))
. x) by
Def4
.= ((
maxreal
.: ((
maxreal
.: (f,g)),h))
. x) by
Def4
.= (
maxreal
. (((
maxreal
.: (f,g))
. x),(h
. x))) by
A3,
FUNCOP_1: 22
.= (
maxreal
. ((
maxreal
. ((f
. x),(g
. x))),(h
. x))) by
A1,
FUNCOP_1: 22
.= (
maxreal
. ((f
. x),(
maxreal
. ((g
. x),(h
. x))))) by
Th3
.= (
maxreal
. ((f
. x),((
maxreal
.: (g,h))
. x))) by
A2,
FUNCOP_1: 22
.= ((
maxreal
.: (f,(
maxreal
.: (g,h))))
. x) by
A4,
FUNCOP_1: 22
.= (((
maxfuncreal A)
. (f,(
maxreal
.: (g,h))))
. x) by
Def4
.= (((
maxfuncreal A)
. (f,((
maxfuncreal A)
. (g,h))))
. x) by
Def4;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
REAL_LAT:11
Th11: ((
minfuncreal A)
. (((
minfuncreal A)
. (f,g)),h))
= ((
minfuncreal A)
. (f,((
minfuncreal A)
. (g,h))))
proof
now
let x be
Element of A;
A1: x
in (
dom (
minreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
minreal
.: (g,h))) by
Lm6;
A3: x
in (
dom (
minreal
.: ((
minreal
.: (f,g)),h))) by
Lm6;
A4: x
in (
dom (
minreal
.: (f,(
minreal
.: (g,h))))) by
Lm6;
thus (((
minfuncreal A)
. (((
minfuncreal A)
. (f,g)),h))
. x)
= (((
minfuncreal A)
. ((
minreal
.: (f,g)),h))
. x) by
Def5
.= ((
minreal
.: ((
minreal
.: (f,g)),h))
. x) by
Def5
.= (
minreal
. (((
minreal
.: (f,g))
. x),(h
. x))) by
A3,
FUNCOP_1: 22
.= (
minreal
. ((
minreal
. ((f
. x),(g
. x))),(h
. x))) by
A1,
FUNCOP_1: 22
.= (
minreal
. ((f
. x),(
minreal
. ((g
. x),(h
. x))))) by
Th4
.= (
minreal
. ((f
. x),((
minreal
.: (g,h))
. x))) by
A2,
FUNCOP_1: 22
.= ((
minreal
.: (f,(
minreal
.: (g,h))))
. x) by
A4,
FUNCOP_1: 22
.= (((
minfuncreal A)
. (f,(
minreal
.: (g,h))))
. x) by
Def5
.= (((
minfuncreal A)
. (f,((
minfuncreal A)
. (g,h))))
. x) by
Def5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
REAL_LAT:12
Th12: ((
maxfuncreal A)
. (f,((
minfuncreal A)
. (f,g))))
= f
proof
now
let x be
Element of A;
A1: x
in (
dom (
minreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
maxreal
.: (f,(
minreal
.: (f,g))))) by
Lm6;
thus (((
maxfuncreal A)
. (f,((
minfuncreal A)
. (f,g))))
. x)
= (((
maxfuncreal A)
. (f,(
minreal
.: (f,g))))
. x) by
Def5
.= ((
maxreal
.: (f,(
minreal
.: (f,g))))
. x) by
Def4
.= (
maxreal
. ((f
. x),((
minreal
.: (f,g))
. x))) by
A2,
FUNCOP_1: 22
.= (
maxreal
. ((f
. x),(
minreal
. ((f
. x),(g
. x))))) by
A1,
FUNCOP_1: 22
.= (f
. x) by
Th5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
REAL_LAT:13
Th13: ((
maxfuncreal A)
. (((
minfuncreal A)
. (f,g)),f))
= f
proof
thus ((
maxfuncreal A)
. (((
minfuncreal A)
. (f,g)),f))
= ((
maxfuncreal A)
. (f,((
minfuncreal A)
. (f,g)))) by
Th8
.= f by
Th12;
end;
theorem ::
REAL_LAT:14
Th14: ((
maxfuncreal A)
. (((
minfuncreal A)
. (g,f)),f))
= f
proof
thus ((
maxfuncreal A)
. (((
minfuncreal A)
. (g,f)),f))
= ((
maxfuncreal A)
. (((
minfuncreal A)
. (f,g)),f)) by
Th9
.= f by
Th13;
end;
theorem ::
REAL_LAT:15
((
maxfuncreal A)
. (f,((
minfuncreal A)
. (g,f))))
= f
proof
thus ((
maxfuncreal A)
. (f,((
minfuncreal A)
. (g,f))))
= ((
maxfuncreal A)
. (f,((
minfuncreal A)
. (f,g)))) by
Th9
.= f by
Th12;
end;
theorem ::
REAL_LAT:16
Th16: ((
minfuncreal A)
. (f,((
maxfuncreal A)
. (f,g))))
= f
proof
now
let x be
Element of A;
A1: x
in (
dom (
maxreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
minreal
.: (f,(
maxreal
.: (f,g))))) by
Lm6;
thus (((
minfuncreal A)
. (f,((
maxfuncreal A)
. (f,g))))
. x)
= (((
minfuncreal A)
. (f,(
maxreal
.: (f,g))))
. x) by
Def4
.= ((
minreal
.: (f,(
maxreal
.: (f,g))))
. x) by
Def5
.= (
minreal
. ((f
. x),((
maxreal
.: (f,g))
. x))) by
A2,
FUNCOP_1: 22
.= (
minreal
. ((f
. x),(
maxreal
. ((f
. x),(g
. x))))) by
A1,
FUNCOP_1: 22
.= (f
. x) by
Th6;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
REAL_LAT:17
Th17: ((
minfuncreal A)
. (f,((
maxfuncreal A)
. (g,f))))
= f
proof
thus ((
minfuncreal A)
. (f,((
maxfuncreal A)
. (g,f))))
= ((
minfuncreal A)
. (f,((
maxfuncreal A)
. (f,g)))) by
Th8
.= f by
Th16;
end;
theorem ::
REAL_LAT:18
Th18: ((
minfuncreal A)
. (((
maxfuncreal A)
. (g,f)),f))
= f
proof
thus ((
minfuncreal A)
. (((
maxfuncreal A)
. (g,f)),f))
= ((
minfuncreal A)
. (f,((
maxfuncreal A)
. (g,f)))) by
Th9
.= f by
Th17;
end;
theorem ::
REAL_LAT:19
((
minfuncreal A)
. (((
maxfuncreal A)
. (f,g)),f))
= f
proof
thus ((
minfuncreal A)
. (((
maxfuncreal A)
. (f,g)),f))
= ((
minfuncreal A)
. (((
maxfuncreal A)
. (g,f)),f)) by
Th8
.= f by
Th18;
end;
theorem ::
REAL_LAT:20
Th20: ((
minfuncreal A)
. (f,((
maxfuncreal A)
. (g,h))))
= ((
maxfuncreal A)
. (((
minfuncreal A)
. (f,g)),((
minfuncreal A)
. (f,h))))
proof
now
let x be
Element of A;
A1: x
in (
dom (
minreal
.: (f,g))) by
Lm6;
A2: x
in (
dom (
minreal
.: (f,h))) by
Lm6;
A3: x
in (
dom (
minreal
.: (f,(
maxreal
.: (g,h))))) by
Lm6;
A4: x
in (
dom (
maxreal
.: ((
minreal
.: (f,g)),(
minreal
.: (f,h))))) by
Lm6;
A5: x
in (
dom (
maxreal
.: (g,h))) by
Lm6;
thus (((
minfuncreal A)
. (f,((
maxfuncreal A)
. (g,h))))
. x)
= (((
minfuncreal A)
. (f,(
maxreal
.: (g,h))))
. x) by
Def4
.= ((
minreal
.: (f,(
maxreal
.: (g,h))))
. x) by
Def5
.= (
minreal
. ((f
. x),((
maxreal
.: (g,h))
. x))) by
A3,
FUNCOP_1: 22
.= (
minreal
. ((f
. x),(
maxreal
. ((g
. x),(h
. x))))) by
A5,
FUNCOP_1: 22
.= (
maxreal
. ((
minreal
. ((f
. x),(g
. x))),(
minreal
. ((f
. x),(h
. x))))) by
Th7
.= (
maxreal
. (((
minreal
.: (f,g))
. x),(
minreal
. ((f
. x),(h
. x))))) by
A1,
FUNCOP_1: 22
.= (
maxreal
. (((
minreal
.: (f,g))
. x),((
minreal
.: (f,h))
. x))) by
A2,
FUNCOP_1: 22
.= ((
maxreal
.: ((
minreal
.: (f,g)),(
minreal
.: (f,h))))
. x) by
A4,
FUNCOP_1: 22
.= (((
maxfuncreal A)
. ((
minreal
.: (f,g)),(
minreal
.: (f,h))))
. x) by
Def4
.= (((
maxfuncreal A)
. (((
minfuncreal A)
. (f,g)),(
minreal
.: (f,h))))
. x) by
Def5
.= (((
maxfuncreal A)
. (((
minfuncreal A)
. (f,g)),((
minfuncreal A)
. (f,h))))
. x) by
Def5;
end;
hence thesis by
FUNCT_2: 63;
end;
Lm7: for a,b,c be
Element of
LattStr (# (
Funcs (A,
REAL )), (
maxfuncreal A), (
minfuncreal A) #) holds (a
"\/" (b
"\/" c))
= ((a
"\/" b)
"\/" c) by
Th10;
Lm8: for a,b,c be
Element of
LattStr (# (
Funcs (A,
REAL )), (
maxfuncreal A), (
minfuncreal A) #) holds (a
"/\" (b
"/\" c))
= ((a
"/\" b)
"/\" c) by
Th11;
definition
let A;
::
REAL_LAT:def6
func
RealFunc_Lattice A -> non
empty
strict
LattStr equals
LattStr (# (
Funcs (A,
REAL )), (
maxfuncreal A), (
minfuncreal A) #);
coherence ;
end
reserve L for non
empty
LattStr,
p,q,r for
Element of L;
registration
let A;
cluster (
RealFunc_Lattice A) ->
join-commutative
join-associative
meet-absorbing
meet-commutative
meet-associative
join-absorbing;
coherence by
Th8,
Th10,
Th14,
Th9,
Th11,
Th16;
end
reserve p,q,r for
Element of (
RealFunc_Lattice A);
theorem ::
REAL_LAT:21
Th21: ((
maxfuncreal A)
. (p,q))
= ((
maxfuncreal A)
. (q,p))
proof
thus ((
maxfuncreal A)
. (p,q))
= (q
"\/" p) by
LATTICES:def 1
.= ((
maxfuncreal A)
. (q,p));
end;
theorem ::
REAL_LAT:22
Th22: ((
minfuncreal A)
. (p,q))
= ((
minfuncreal A)
. (q,p))
proof
thus ((
minfuncreal A)
. (p,q))
= (q
"/\" p) by
LATTICES:def 2
.= ((
minfuncreal A)
. (q,p));
end;
theorem ::
REAL_LAT:23
((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (q,r)),p)) & ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (p,q)),r)) & ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (q,p)),r)) & ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (r,p)),q)) & ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (r,q)),p)) & ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (p,r)),q))
proof
set s = (q
"\/" r);
thus
A1: ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= (s
"\/" p) by
LATTICES:def 1
.= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (q,r)),p));
thus ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (p,q)),r)) by
Th10;
thus ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= (p
"\/" s)
.= ((q
"\/" p)
"\/" r) by
Lm7
.= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (q,p)),r));
thus
A2: ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= (p
"\/" (q
"\/" r))
.= ((r
"\/" p)
"\/" q) by
Lm7
.= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (r,p)),q));
thus ((
maxfuncreal A)
. (p,((
maxfuncreal A)
. (q,r))))
= ((
maxfuncreal A)
. (((
maxfuncreal A)
. (r,q)),p)) by
A1,
Th21;
thus thesis by
A2,
Th21;
end;
theorem ::
REAL_LAT:24
((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (q,r)),p)) & ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (p,q)),r)) & ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (q,p)),r)) & ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (r,p)),q)) & ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (r,q)),p)) & ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (p,r)),q))
proof
set s = (q
"/\" r);
thus
A1: ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= (s
"/\" p) by
LATTICES:def 2
.= ((
minfuncreal A)
. (((
minfuncreal A)
. (q,r)),p));
thus ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (p,q)),r)) by
Th11;
thus ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= (p
"/\" s)
.= ((q
"/\" p)
"/\" r) by
Lm8
.= ((
minfuncreal A)
. (((
minfuncreal A)
. (q,p)),r));
thus
A2: ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= (p
"/\" (q
"/\" r))
.= ((r
"/\" p)
"/\" q) by
Lm8
.= ((
minfuncreal A)
. (((
minfuncreal A)
. (r,p)),q));
thus ((
minfuncreal A)
. (p,((
minfuncreal A)
. (q,r))))
= ((
minfuncreal A)
. (((
minfuncreal A)
. (r,q)),p)) by
A1,
Th22;
thus thesis by
A2,
Th22;
end;
theorem ::
REAL_LAT:25
((
maxfuncreal A)
. (((
minfuncreal A)
. (p,q)),q))
= q & ((
maxfuncreal A)
. (q,((
minfuncreal A)
. (p,q))))
= q & ((
maxfuncreal A)
. (q,((
minfuncreal A)
. (q,p))))
= q & ((
maxfuncreal A)
. (((
minfuncreal A)
. (q,p)),q))
= q
proof
thus
A1: ((
maxfuncreal A)
. (((
minfuncreal A)
. (p,q)),q))
= q by
Th14;
thus ((
maxfuncreal A)
. (q,((
minfuncreal A)
. (p,q))))
= ((p
"/\" q)
"\/" q) by
LATTICES:def 1
.= q by
Th14;
thus ((
maxfuncreal A)
. (q,((
minfuncreal A)
. (q,p))))
= ((
maxfuncreal A)
. (q,(q
"/\" p)))
.= ((p
"/\" q)
"\/" q) by
LATTICES:def 1
.= q by
Th14;
thus thesis by
A1,
Th22;
end;
theorem ::
REAL_LAT:26
((
minfuncreal A)
. (q,((
maxfuncreal A)
. (q,p))))
= q & ((
minfuncreal A)
. (((
maxfuncreal A)
. (p,q)),q))
= q & ((
minfuncreal A)
. (q,((
maxfuncreal A)
. (p,q))))
= q & ((
minfuncreal A)
. (((
maxfuncreal A)
. (q,p)),q))
= q
proof
thus
A1: ((
minfuncreal A)
. (q,((
maxfuncreal A)
. (q,p))))
= q by
Th16;
thus
A2: ((
minfuncreal A)
. (((
maxfuncreal A)
. (p,q)),q))
= ((
minfuncreal A)
. ((p
"\/" q),q))
.= (q
"/\" (q
"\/" p)) by
LATTICES:def 2
.= q by
Th16;
thus ((
minfuncreal A)
. (q,((
maxfuncreal A)
. (p,q))))
= q by
A1,
Th21;
thus thesis by
A2,
Th21;
end;
theorem ::
REAL_LAT:27
((
minfuncreal A)
. (q,((
maxfuncreal A)
. (p,r))))
= ((
maxfuncreal A)
. (((
minfuncreal A)
. (q,p)),((
minfuncreal A)
. (q,r)))) by
Th20;
theorem ::
REAL_LAT:28
(
RealFunc_Lattice A) is
D_Lattice
proof
(p
"/\" (q
"\/" r))
= ((p
"/\" q)
"\/" (p
"/\" r)) by
Th20;
hence thesis by
LATTICES:def 11;
end;