membered.miz
    
    begin
    
    reserve x for
    object, 
    
X,F for
    set;
    
    definition
    
      let X be
    set;
    
      :: 
    
    MEMBERED:def1
    
      attr X is
    
    complex-membered means 
    
      :
    
    Def1: x 
    in X implies x is 
    complex;
    
      :: 
    
    MEMBERED:def2
    
      attr X is
    
    ext-real-membered means 
    
      :
    
    Def2: x 
    in X implies x is 
    ext-real;
    
      :: 
    
    MEMBERED:def3
    
      attr X is
    
    real-membered means 
    
      :
    
    Def3: x 
    in X implies x is 
    real;
    
      :: 
    
    MEMBERED:def4
    
      attr X is
    
    rational-membered means 
    
      :
    
    Def4: x 
    in X implies x is 
    rational;
    
      :: 
    
    MEMBERED:def5
    
      attr X is
    
    integer-membered means 
    
      :
    
    Def5: x 
    in X implies x is 
    integer;
    
      :: 
    
    MEMBERED:def6
    
      attr X is
    
    natural-membered means 
    
      :
    
    Def6: x 
    in X implies x is 
    natural;
    
    end
    
    registration
    
      cluster 
    natural-membered -> 
    integer-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A1: X is 
    natural-membered;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    natural by 
    A1;
    
        then x
    in  
    omega by 
    ORDINAL1:def 12;
    
        hence x
    in  
    INT by 
    NUMBERS: 17;
    
      end;
    
      cluster 
    integer-membered -> 
    rational-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A2: X is 
    integer-membered;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    integer by 
    A2;
    
        then x
    in  
    INT ; 
    
        hence x
    in  
    RAT by 
    NUMBERS: 14;
    
      end;
    
      cluster 
    rational-membered -> 
    real-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A3: X is 
    rational-membered;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    rational by 
    A3;
    
        then x
    in  
    RAT ; 
    
        hence x
    in  
    REAL by 
    NUMBERS: 12;
    
      end;
    
      cluster 
    real-membered -> 
    ext-real-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A4: X is 
    real-membered;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    real by 
    A4;
    
        then x
    in  
    REAL ; 
    
        hence x
    in  
    ExtREAL by 
    NUMBERS: 31;
    
      end;
    
      cluster 
    real-membered -> 
    complex-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A5: X is 
    real-membered;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    real by 
    A5;
    
        then x
    in  
    REAL ; 
    
        hence x
    in  
    COMPLEX by 
    NUMBERS: 11;
    
      end;
    
    end
    
    registration
    
      cluster non 
    empty
    natural-membered for 
    set;
    
      existence
    
      proof
    
        take
    {
    0 }; 
    
        thus
    {
    0 } is non 
    empty;
    
        let x;
    
        assume x
    in  
    {
    0 }; 
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
    end
    
    registration
    
      cluster 
    COMPLEX -> 
    complex-membered;
    
      coherence ;
    
      cluster 
    ExtREAL -> 
    ext-real-membered;
    
      coherence
    
      proof
    
        let x;
    
        thus thesis;
    
      end;
    
      cluster 
    REAL -> 
    real-membered;
    
      coherence ;
    
      cluster 
    RAT -> 
    rational-membered;
    
      coherence
    
      proof
    
        let x;
    
        thus thesis;
    
      end;
    
      cluster 
    INT -> 
    integer-membered;
    
      coherence ;
    
      cluster 
    NAT -> 
    natural-membered;
    
      coherence ;
    
    end
    
    theorem :: 
    
    MEMBERED:1
    
    
    
    
    
    Th1: X is 
    complex-membered implies X 
    c=  
    COMPLEX  
    
    proof
    
      assume
    
      
    
    A1: X is 
    complex-membered;
    
      let x be
    object;
    
      assume x
    in X; 
    
      then x is
    complex by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:2
    
    
    
    
    
    Th2: X is 
    ext-real-membered implies X 
    c=  
    ExtREAL  
    
    proof
    
      assume
    
      
    
    A1: X is 
    ext-real-membered;
    
      let x be
    object;
    
      assume x
    in X; 
    
      then x is
    ext-real by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:3
    
    
    
    
    
    Th3: X is 
    real-membered implies X 
    c=  
    REAL  
    
    proof
    
      assume
    
      
    
    A1: X is 
    real-membered;
    
      let x be
    object;
    
      assume x
    in X; 
    
      then x is
    real by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:4
    
    
    
    
    
    Th4: X is 
    rational-membered implies X 
    c=  
    RAT  
    
    proof
    
      assume
    
      
    
    A1: X is 
    rational-membered;
    
      let x be
    object;
    
      assume x
    in X; 
    
      then x is
    rational by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:5
    
    
    
    
    
    Th5: X is 
    integer-membered implies X 
    c=  
    INT  
    
    proof
    
      assume
    
      
    
    A1: X is 
    integer-membered;
    
      let x be
    object;
    
      assume x
    in X; 
    
      then x is
    integer by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:6
    
    
    
    
    
    Th6: X is 
    natural-membered implies X 
    c=  
    NAT by 
    ORDINAL1:def 12;
    
    registration
    
      let X be
    complex-membered  
    set;
    
      cluster -> 
    complex for 
    Element of X; 
    
      coherence
    
      proof
    
        let e be
    Element of X; 
    
        per cases ;
    
          suppose X is
    empty;
    
          hence thesis by
    SUBSET_1:def 1;
    
        end;
    
          suppose X is non
    empty;
    
          hence thesis by
    Def1;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    ext-real-membered  
    set;
    
      cluster -> 
    ext-real for 
    Element of X; 
    
      coherence
    
      proof
    
        let e be
    Element of X; 
    
        per cases ;
    
          suppose X is
    empty;
    
          hence thesis by
    SUBSET_1:def 1;
    
        end;
    
          suppose X is non
    empty;
    
          hence thesis by
    Def2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    real-membered  
    set;
    
      cluster -> 
    real for 
    Element of X; 
    
      coherence
    
      proof
    
        let e be
    Element of X; 
    
        per cases ;
    
          suppose X is
    empty;
    
          hence thesis by
    SUBSET_1:def 1;
    
        end;
    
          suppose X is non
    empty;
    
          hence thesis by
    Def3;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    rational-membered  
    set;
    
      cluster -> 
    rational for 
    Element of X; 
    
      coherence
    
      proof
    
        let e be
    Element of X; 
    
        per cases ;
    
          suppose X is
    empty;
    
          hence thesis by
    SUBSET_1:def 1;
    
        end;
    
          suppose X is non
    empty;
    
          hence thesis by
    Def4;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    integer-membered  
    set;
    
      cluster -> 
    integer for 
    Element of X; 
    
      coherence
    
      proof
    
        let e be
    Element of X; 
    
        per cases ;
    
          suppose X is
    empty;
    
          hence thesis by
    SUBSET_1:def 1;
    
        end;
    
          suppose X is non
    empty;
    
          hence thesis by
    Def5;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    natural-membered  
    set;
    
      cluster -> 
    natural for 
    Element of X; 
    
      coherence
    
      proof
    
        let e be
    Element of X; 
    
        per cases ;
    
          suppose X is
    empty;
    
          hence thesis by
    SUBSET_1:def 1;
    
        end;
    
          suppose X is non
    empty;
    
          hence thesis by
    Def6;
    
        end;
    
      end;
    
    end
    
    reserve c,c1,c2,c3 for
    Complex, 
    
e,e1,e2,e3 for
    ExtReal, 
    
r,r1,r2,r3 for
    Real, 
    
w,w1,w2,w3 for
    Rational, 
    
i,i1,i2,i3 for
    Integer, 
    
n,n1,n2,n3 for
    Nat;
    
    theorem :: 
    
    MEMBERED:7
    
    for X be non
    empty
    complex-membered  
    set holds ex c st c 
    in X 
    
    proof
    
      let X be non
    empty
    complex-membered  
    set;
    
      ex x be
    object st x 
    in X by 
    XBOOLE_0:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:8
    
    for X be non
    empty
    ext-real-membered  
    set holds ex e st e 
    in X 
    
    proof
    
      let X be non
    empty
    ext-real-membered  
    set;
    
      ex x be
    object st x 
    in X by 
    XBOOLE_0:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:9
    
    for X be non
    empty
    real-membered  
    set holds ex r st r 
    in X 
    
    proof
    
      let X be non
    empty
    real-membered  
    set;
    
      ex x be
    object st x 
    in X by 
    XBOOLE_0:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:10
    
    for X be non
    empty
    rational-membered  
    set holds ex w st w 
    in X 
    
    proof
    
      let X be non
    empty
    rational-membered  
    set;
    
      ex x be
    object st x 
    in X by 
    XBOOLE_0:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:11
    
    for X be non
    empty
    integer-membered  
    set holds ex i st i 
    in X 
    
    proof
    
      let X be non
    empty
    integer-membered  
    set;
    
      ex x be
    object st x 
    in X by 
    XBOOLE_0:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:12
    
    for X be non
    empty
    natural-membered  
    set holds ex n st n 
    in X 
    
    proof
    
      let X be non
    empty
    natural-membered  
    set;
    
      ex x be
    object st x 
    in X by 
    XBOOLE_0:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEMBERED:13
    
    for X be
    complex-membered  
    set st for c holds c 
    in X holds X 
    =  
    COMPLEX  
    
    proof
    
      let X be
    complex-membered  
    set such that 
    
      
    
    A1: for c holds c 
    in X; 
    
      thus X
    c=  
    COMPLEX by 
    Th1;
    
      let e be
    object;
    
      assume e
    in  
    COMPLEX ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MEMBERED:14
    
    for X be
    ext-real-membered  
    set st for e holds e 
    in X holds X 
    =  
    ExtREAL  
    
    proof
    
      let X be
    ext-real-membered  
    set such that 
    
      
    
    A1: for e holds e 
    in X; 
    
      thus X
    c=  
    ExtREAL by 
    Th2;
    
      let e be
    object;
    
      assume e
    in  
    ExtREAL ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MEMBERED:15
    
    for X be
    real-membered  
    set st for r holds r 
    in X holds X 
    =  
    REAL  
    
    proof
    
      let X be
    real-membered  
    set such that 
    
      
    
    A1: for r holds r 
    in X; 
    
      thus X
    c=  
    REAL by 
    Th3;
    
      let e be
    object;
    
      assume e
    in  
    REAL ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MEMBERED:16
    
    for X be
    rational-membered  
    set st for w holds w 
    in X holds X 
    =  
    RAT  
    
    proof
    
      let X be
    rational-membered  
    set such that 
    
      
    
    A1: for w holds w 
    in X; 
    
      thus X
    c=  
    RAT by 
    Th4;
    
      let e be
    object;
    
      assume e
    in  
    RAT ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MEMBERED:17
    
    for X be
    integer-membered  
    set st for i holds i 
    in X holds X 
    =  
    INT  
    
    proof
    
      let X be
    integer-membered  
    set such that 
    
      
    
    A1: for i holds i 
    in X; 
    
      thus X
    c=  
    INT by 
    Th5;
    
      let e be
    object;
    
      assume e
    in  
    INT ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MEMBERED:18
    
    for X be
    natural-membered  
    set st for n holds n 
    in X holds X 
    =  
    NAT  
    
    proof
    
      let X be
    natural-membered  
    set such that 
    
      
    
    A1: for n holds n 
    in X; 
    
      thus X
    c=  
    NAT by 
    Th6;
    
      let e be
    object;
    
      assume e
    in  
    NAT ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MEMBERED:19
    
    
    
    
    
    Th19: for Y be 
    complex-membered  
    set st X 
    c= Y holds X is 
    complex-membered;
    
    theorem :: 
    
    MEMBERED:20
    
    
    
    
    
    Th20: for Y be 
    ext-real-membered  
    set st X 
    c= Y holds X is 
    ext-real-membered;
    
    theorem :: 
    
    MEMBERED:21
    
    
    
    
    
    Th21: for Y be 
    real-membered  
    set st X 
    c= Y holds X is 
    real-membered;
    
    theorem :: 
    
    MEMBERED:22
    
    
    
    
    
    Th22: for Y be 
    rational-membered  
    set st X 
    c= Y holds X is 
    rational-membered;
    
    theorem :: 
    
    MEMBERED:23
    
    
    
    
    
    Th23: for Y be 
    integer-membered  
    set st X 
    c= Y holds X is 
    integer-membered;
    
    theorem :: 
    
    MEMBERED:24
    
    
    
    
    
    Th24: for Y be 
    natural-membered  
    set st X 
    c= Y holds X is 
    natural-membered;
    
    registration
    
      cluster 
    empty -> 
    natural-membered for 
    set;
    
      coherence ;
    
    end
    
    registration
    
      let c;
    
      cluster 
    {c} ->
    complex-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      let e be
    ExtReal;
    
      cluster 
    {e} ->
    ext-real-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      let r;
    
      cluster 
    {r} ->
    real-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      let w;
    
      cluster 
    {w} ->
    rational-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      let i;
    
      cluster 
    {i} ->
    integer-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      let n;
    
      cluster 
    {n} ->
    natural-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      let c1, c2;
    
      cluster 
    {c1, c2} ->
    complex-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let e1,e2 be
    ExtReal;
    
      cluster 
    {e1, e2} ->
    ext-real-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let r1, r2;
    
      cluster 
    {r1, r2} ->
    real-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let w1, w2;
    
      cluster 
    {w1, w2} ->
    rational-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let i1, i2;
    
      cluster 
    {i1, i2} ->
    integer-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let n1, n2;
    
      cluster 
    {n1, n2} ->
    natural-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let c1, c2, c3;
    
      cluster 
    {c1, c2, c3} ->
    complex-membered;
    
      coherence by
    ENUMSET1:def 1;
    
    end
    
    registration
    
      let e1,e2,e3 be
    ExtReal;
    
      cluster 
    {e1, e2, e3} ->
    ext-real-membered;
    
      coherence by
    ENUMSET1:def 1;
    
    end
    
    registration
    
      let r1, r2, r3;
    
      cluster 
    {r1, r2, r3} ->
    real-membered;
    
      coherence by
    ENUMSET1:def 1;
    
    end
    
    registration
    
      let w1, w2, w3;
    
      cluster 
    {w1, w2, w3} ->
    rational-membered;
    
      coherence by
    ENUMSET1:def 1;
    
    end
    
    registration
    
      let i1, i2, i3;
    
      cluster 
    {i1, i2, i3} ->
    integer-membered;
    
      coherence by
    ENUMSET1:def 1;
    
    end
    
    registration
    
      let n1, n2, n3;
    
      cluster 
    {n1, n2, n3} ->
    natural-membered;
    
      coherence by
    ENUMSET1:def 1;
    
    end
    
    registration
    
      let X be
    complex-membered  
    set;
    
      cluster -> 
    complex-membered for 
    Subset of X; 
    
      coherence ;
    
    end
    
    registration
    
      let X be
    ext-real-membered  
    set;
    
      cluster -> 
    ext-real-membered for 
    Subset of X; 
    
      coherence ;
    
    end
    
    registration
    
      let X be
    real-membered  
    set;
    
      cluster -> 
    real-membered for 
    Subset of X; 
    
      coherence ;
    
    end
    
    registration
    
      let X be
    rational-membered  
    set;
    
      cluster -> 
    rational-membered for 
    Subset of X; 
    
      coherence ;
    
    end
    
    registration
    
      let X be
    integer-membered  
    set;
    
      cluster -> 
    integer-membered for 
    Subset of X; 
    
      coherence ;
    
    end
    
    registration
    
      let X be
    natural-membered  
    set;
    
      cluster -> 
    natural-membered for 
    Subset of X; 
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    complex-membered  
    set;
    
      cluster (X 
    \/ Y) -> 
    complex-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in (X 
    \/ Y); 
    
        then x
    in X or x 
    in Y by 
    XBOOLE_0:def 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    ext-real-membered  
    set;
    
      cluster (X 
    \/ Y) -> 
    ext-real-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in (X 
    \/ Y); 
    
        then x
    in X or x 
    in Y by 
    XBOOLE_0:def 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    real-membered  
    set;
    
      cluster (X 
    \/ Y) -> 
    real-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in (X 
    \/ Y); 
    
        then x
    in X or x 
    in Y by 
    XBOOLE_0:def 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    rational-membered  
    set;
    
      cluster (X 
    \/ Y) -> 
    rational-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in (X 
    \/ Y); 
    
        then x
    in X or x 
    in Y by 
    XBOOLE_0:def 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    integer-membered  
    set;
    
      cluster (X 
    \/ Y) -> 
    integer-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in (X 
    \/ Y); 
    
        then x
    in X or x 
    in Y by 
    XBOOLE_0:def 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    natural-membered  
    set;
    
      cluster (X 
    \/ Y) -> 
    natural-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in (X 
    \/ Y); 
    
        then x
    in X or x 
    in Y by 
    XBOOLE_0:def 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X be
    complex-membered  
    set, Y be 
    set;
    
      cluster (X 
    /\ Y) -> 
    complex-membered;
    
      coherence by
    Th19,
    XBOOLE_1: 17;
    
      cluster (Y 
    /\ X) -> 
    complex-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    ext-real-membered  
    set, Y be 
    set;
    
      cluster (X 
    /\ Y) -> 
    ext-real-membered;
    
      coherence by
    Th20,
    XBOOLE_1: 17;
    
      cluster (Y 
    /\ X) -> 
    ext-real-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    real-membered  
    set, Y be 
    set;
    
      cluster (X 
    /\ Y) -> 
    real-membered;
    
      coherence by
    Th21,
    XBOOLE_1: 17;
    
      cluster (Y 
    /\ X) -> 
    real-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    rational-membered  
    set, Y be 
    set;
    
      cluster (X 
    /\ Y) -> 
    rational-membered;
    
      coherence by
    Th22,
    XBOOLE_1: 17;
    
      cluster (Y 
    /\ X) -> 
    rational-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    integer-membered  
    set, Y be 
    set;
    
      cluster (X 
    /\ Y) -> 
    integer-membered;
    
      coherence by
    Th23,
    XBOOLE_1: 17;
    
      cluster (Y 
    /\ X) -> 
    integer-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    natural-membered  
    set, Y be 
    set;
    
      cluster (X 
    /\ Y) -> 
    natural-membered;
    
      coherence by
    Th24,
    XBOOLE_1: 17;
    
      cluster (Y 
    /\ X) -> 
    natural-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    complex-membered  
    set, Y be 
    set;
    
      cluster (X 
    \ Y) -> 
    complex-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    ext-real-membered  
    set, Y be 
    set;
    
      cluster (X 
    \ Y) -> 
    ext-real-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    real-membered  
    set, Y be 
    set;
    
      cluster (X 
    \ Y) -> 
    real-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    rational-membered  
    set, Y be 
    set;
    
      cluster (X 
    \ Y) -> 
    rational-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    integer-membered  
    set, Y be 
    set;
    
      cluster (X 
    \ Y) -> 
    integer-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    natural-membered  
    set, Y be 
    set;
    
      cluster (X 
    \ Y) -> 
    natural-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    complex-membered  
    set;
    
      cluster (X 
    \+\ Y) -> 
    complex-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    ext-real-membered  
    set;
    
      cluster (X 
    \+\ Y) -> 
    ext-real-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    real-membered  
    set;
    
      cluster (X 
    \+\ Y) -> 
    real-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    rational-membered  
    set;
    
      cluster (X 
    \+\ Y) -> 
    rational-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    integer-membered  
    set;
    
      cluster (X 
    \+\ Y) -> 
    integer-membered;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    natural-membered  
    set;
    
      cluster (X 
    \+\ Y) -> 
    natural-membered;
    
      coherence ;
    
    end
    
    definition
    
      let X be
    complex-membered  
    set, Y be 
    set;
    
      :: original:
    c=
    
      redefine
    
      :: 
    
    MEMBERED:def7
    
      pred X
    
    c= Y means c 
    in X implies c 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X be
    ext-real-membered  
    set, Y be 
    set;
    
      :: original:
    c=
    
      redefine
    
      :: 
    
    MEMBERED:def8
    
      pred X
    
    c= Y means e 
    in X implies e 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X be
    real-membered  
    set, Y be 
    set;
    
      :: original:
    c=
    
      redefine
    
      :: 
    
    MEMBERED:def9
    
      pred X
    
    c= Y means r 
    in X implies r 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X be
    rational-membered  
    set, Y be 
    set;
    
      :: original:
    c=
    
      redefine
    
      :: 
    
    MEMBERED:def10
    
      pred X
    
    c= Y means w 
    in X implies w 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X be
    integer-membered  
    set, Y be 
    set;
    
      :: original:
    c=
    
      redefine
    
      :: 
    
    MEMBERED:def11
    
      pred X
    
    c= Y means i 
    in X implies i 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X be
    natural-membered  
    set, Y be 
    set;
    
      :: original:
    c=
    
      redefine
    
      :: 
    
    MEMBERED:def12
    
      pred X
    
    c= Y means n 
    in X implies n 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    complex-membered  
    set;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    MEMBERED:def13
    
      pred X
    
    = Y means c 
    in X iff c 
    in Y; 
    
      compatibility
    
      proof
    
        thus X
    = Y implies for c holds c 
    in X iff c 
    in Y; 
    
        assume c
    in X iff c 
    in Y; 
    
        hence X
    c= Y & Y 
    c= X; 
    
      end;
    
    end
    
    definition
    
      let X,Y be
    ext-real-membered  
    set;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    MEMBERED:def14
    
      pred X
    
    = Y means e 
    in X iff e 
    in Y; 
    
      compatibility
    
      proof
    
        thus X
    = Y implies for e holds e 
    in X iff e 
    in Y; 
    
        assume e
    in X iff e 
    in Y; 
    
        then X
    c= Y & Y 
    c= X; 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X,Y be
    real-membered  
    set;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    MEMBERED:def15
    
      pred X
    
    = Y means r 
    in X iff r 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    rational-membered  
    set;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    MEMBERED:def16
    
      pred X
    
    = Y means w 
    in X iff w 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    integer-membered  
    set;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    MEMBERED:def17
    
      pred X
    
    = Y means i 
    in X iff i 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    natural-membered  
    set;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    MEMBERED:def18
    
      pred X
    
    = Y means n 
    in X iff n 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    complex-membered  
    set;
    
      :: original:
    misses
    
      redefine
    
      :: 
    
    MEMBERED:def19
    
      pred X
    
    misses Y means not ex c st c 
    in X & c 
    in Y; 
    
      compatibility
    
      proof
    
        thus X
    misses Y implies not ex c st c 
    in X & c 
    in Y by 
    XBOOLE_0: 3;
    
        assume
    
        
    
    A1: not ex c st c 
    in X & c 
    in Y; 
    
        assume X
    meets Y; 
    
        then ex x be
    object st x 
    in X & x 
    in Y by 
    XBOOLE_0: 3;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    definition
    
      let X,Y be
    ext-real-membered  
    set;
    
      :: original:
    misses
    
      redefine
    
      :: 
    
    MEMBERED:def20
    
      pred X
    
    misses Y means not ex e st e 
    in X & e 
    in Y; 
    
      compatibility
    
      proof
    
        thus X
    misses Y implies not ex e st e 
    in X & e 
    in Y by 
    XBOOLE_0: 3;
    
        assume
    
        
    
    A1: not ex e st e 
    in X & e 
    in Y; 
    
        assume X
    meets Y; 
    
        then ex x be
    object st x 
    in X & x 
    in Y by 
    XBOOLE_0: 3;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    definition
    
      let X,Y be
    real-membered  
    set;
    
      :: original:
    misses
    
      redefine
    
      :: 
    
    MEMBERED:def21
    
      pred X
    
    misses Y means not ex r st r 
    in X & r 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    rational-membered  
    set;
    
      :: original:
    misses
    
      redefine
    
      :: 
    
    MEMBERED:def22
    
      pred X
    
    misses Y means not ex w st w 
    in X & w 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    integer-membered  
    set;
    
      :: original:
    misses
    
      redefine
    
      :: 
    
    MEMBERED:def23
    
      pred X
    
    misses Y means not ex i st i 
    in X & i 
    in Y; 
    
      compatibility ;
    
    end
    
    definition
    
      let X,Y be
    natural-membered  
    set;
    
      :: original:
    misses
    
      redefine
    
      :: 
    
    MEMBERED:def24
    
      pred X
    
    misses Y means not ex n st n 
    in X & n 
    in Y; 
    
      compatibility ;
    
    end
    
    theorem :: 
    
    MEMBERED:25
    
    (for X st X
    in F holds X is 
    complex-membered) implies (
    union F) is 
    complex-membered
    
    proof
    
      assume
    
      
    
    A1: for X st X 
    in F holds X is 
    complex-membered;
    
      let x;
    
      assume x
    in ( 
    union F); 
    
      then
    
      consider X such that
    
      
    
    A2: x 
    in X and 
    
      
    
    A3: X 
    in F by 
    TARSKI:def 4;
    
      X is
    complex-membered by 
    A1,
    A3;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MEMBERED:26
    
    (for X st X
    in F holds X is 
    ext-real-membered) implies (
    union F) is 
    ext-real-membered
    
    proof
    
      assume
    
      
    
    A1: for X st X 
    in F holds X is 
    ext-real-membered;
    
      let x;
    
      assume x
    in ( 
    union F); 
    
      then
    
      consider X such that
    
      
    
    A2: x 
    in X and 
    
      
    
    A3: X 
    in F by 
    TARSKI:def 4;
    
      X is
    ext-real-membered by 
    A1,
    A3;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MEMBERED:27
    
    (for X st X
    in F holds X is 
    real-membered) implies (
    union F) is 
    real-membered
    
    proof
    
      assume
    
      
    
    A1: for X st X 
    in F holds X is 
    real-membered;
    
      let x;
    
      assume x
    in ( 
    union F); 
    
      then
    
      consider X such that
    
      
    
    A2: x 
    in X and 
    
      
    
    A3: X 
    in F by 
    TARSKI:def 4;
    
      X is
    real-membered by 
    A1,
    A3;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MEMBERED:28
    
    (for X st X
    in F holds X is 
    rational-membered) implies (
    union F) is 
    rational-membered
    
    proof
    
      assume
    
      
    
    A1: for X st X 
    in F holds X is 
    rational-membered;
    
      let x;
    
      assume x
    in ( 
    union F); 
    
      then
    
      consider X such that
    
      
    
    A2: x 
    in X and 
    
      
    
    A3: X 
    in F by 
    TARSKI:def 4;
    
      X is
    rational-membered by 
    A1,
    A3;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MEMBERED:29
    
    (for X st X
    in F holds X is 
    integer-membered) implies (
    union F) is 
    integer-membered
    
    proof
    
      assume
    
      
    
    A1: for X st X 
    in F holds X is 
    integer-membered;
    
      let x;
    
      assume x
    in ( 
    union F); 
    
      then
    
      consider X such that
    
      
    
    A2: x 
    in X and 
    
      
    
    A3: X 
    in F by 
    TARSKI:def 4;
    
      X is
    integer-membered by 
    A1,
    A3;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MEMBERED:30
    
    (for X st X
    in F holds X is 
    natural-membered) implies (
    union F) is 
    natural-membered
    
    proof
    
      assume
    
      
    
    A1: for X st X 
    in F holds X is 
    natural-membered;
    
      let x;
    
      assume x
    in ( 
    union F); 
    
      then
    
      consider X such that
    
      
    
    A2: x 
    in X and 
    
      
    
    A3: X 
    in F by 
    TARSKI:def 4;
    
      X is
    natural-membered by 
    A1,
    A3;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    MEMBERED:31
    
    for X st X
    in F & X is 
    complex-membered holds ( 
    meet F) is 
    complex-membered by 
    Th19,
    SETFAM_1: 3;
    
    theorem :: 
    
    MEMBERED:32
    
    for X st X
    in F & X is 
    ext-real-membered holds ( 
    meet F) is 
    ext-real-membered by 
    Th20,
    SETFAM_1: 3;
    
    theorem :: 
    
    MEMBERED:33
    
    for X st X
    in F & X is 
    real-membered holds ( 
    meet F) is 
    real-membered by 
    Th21,
    SETFAM_1: 3;
    
    theorem :: 
    
    MEMBERED:34
    
    for X st X
    in F & X is 
    rational-membered holds ( 
    meet F) is 
    rational-membered by 
    Th22,
    SETFAM_1: 3;
    
    theorem :: 
    
    MEMBERED:35
    
    for X st X
    in F & X is 
    integer-membered holds ( 
    meet F) is 
    integer-membered by 
    Th23,
    SETFAM_1: 3;
    
    theorem :: 
    
    MEMBERED:36
    
    for X st X
    in F & X is 
    natural-membered holds ( 
    meet F) is 
    natural-membered by 
    Th24,
    SETFAM_1: 3;
    
    scheme :: 
    
    MEMBERED:sch1
    
    CMSeparation { P[
    object] } :
    
ex X be 
    complex-membered  
    set st for c holds c 
    in X iff P[c]; 
    
      consider X be
    set such that 
    
      
    
    A1: for x be 
    object holds x 
    in X iff x 
    in  
    COMPLEX & P[x] from 
    XBOOLE_0:sch 1;
    
      X is
    complex-membered
    
      proof
    
        let x;
    
        assume x
    in X; 
    
        then x
    in  
    COMPLEX by 
    A1;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider X as
    complex-membered  
    set;
    
      take X;
    
      let c;
    
      c
    in  
    COMPLEX by 
    XCMPLX_0:def 2;
    
      hence thesis by
    A1;
    
    end;
    
    scheme :: 
    
    MEMBERED:sch2
    
    EMSeparation { P[
    object] } :
    
ex X be 
    ext-real-membered  
    set st for e holds e 
    in X iff P[e]; 
    
      consider X be
    set such that 
    
      
    
    A1: for x be 
    object holds x 
    in X iff x 
    in  
    ExtREAL & P[x] from 
    XBOOLE_0:sch 1;
    
      X is
    ext-real-membered
    
      proof
    
        let x;
    
        assume x
    in X; 
    
        then x
    in  
    ExtREAL by 
    A1;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider X as
    ext-real-membered  
    set;
    
      take X;
    
      let e;
    
      e
    in  
    ExtREAL by 
    XXREAL_0:def 1;
    
      hence thesis by
    A1;
    
    end;
    
    scheme :: 
    
    MEMBERED:sch3
    
    RMSeparation { P[
    object] } :
    
ex X be 
    real-membered  
    set st for r holds r 
    in X iff P[r]; 
    
      consider X be
    set such that 
    
      
    
    A1: for x be 
    object holds x 
    in X iff x 
    in  
    REAL & P[x] from 
    XBOOLE_0:sch 1;
    
      X is
    real-membered
    
      proof
    
        let x;
    
        assume x
    in X; 
    
        then x
    in  
    REAL by 
    A1;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider X as
    real-membered  
    set;
    
      take X;
    
      let r;
    
      r
    in  
    REAL by 
    XREAL_0:def 1;
    
      hence thesis by
    A1;
    
    end;
    
    scheme :: 
    
    MEMBERED:sch4
    
    WMSeparation { P[
    object] } :
    
ex X be 
    rational-membered  
    set st for w holds w 
    in X iff P[w]; 
    
      consider X be
    set such that 
    
      
    
    A1: for x be 
    object holds x 
    in X iff x 
    in  
    RAT & P[x] from 
    XBOOLE_0:sch 1;
    
      X is
    rational-membered
    
      proof
    
        let x;
    
        assume x
    in X; 
    
        then x
    in  
    RAT by 
    A1;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider X as
    rational-membered  
    set;
    
      take X;
    
      let w;
    
      w
    in  
    RAT by 
    RAT_1:def 2;
    
      hence thesis by
    A1;
    
    end;
    
    scheme :: 
    
    MEMBERED:sch5
    
    IMSeparation { P[
    object] } :
    
ex X be 
    integer-membered  
    set st for i holds i 
    in X iff P[i]; 
    
      consider X be
    set such that 
    
      
    
    A1: for x be 
    object holds x 
    in X iff x 
    in  
    INT & P[x] from 
    XBOOLE_0:sch 1;
    
      X is
    integer-membered
    
      proof
    
        let x;
    
        assume x
    in X; 
    
        then x
    in  
    INT by 
    A1;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider X as
    integer-membered  
    set;
    
      take X;
    
      let i;
    
      i
    in  
    INT by 
    INT_1:def 2;
    
      hence thesis by
    A1;
    
    end;
    
    scheme :: 
    
    MEMBERED:sch6
    
    NMSeparation { P[
    object] } :
    
ex X be 
    natural-membered  
    set st for n holds n 
    in X iff P[n]; 
    
      consider X be
    set such that 
    
      
    
    A1: for x be 
    object holds x 
    in X iff x 
    in  
    NAT & P[x] from 
    XBOOLE_0:sch 1;
    
      X is
    natural-membered
    
      proof
    
        let x;
    
        assume x
    in X; 
    
        then x
    in  
    NAT by 
    A1;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider X as
    natural-membered  
    set;
    
      take X;
    
      let n;
    
      n
    in  
    NAT by 
    ORDINAL1:def 12;
    
      hence thesis by
    A1;
    
    end;
    
    registration
    
      cluster non 
    empty
    natural-membered for 
    set;
    
      existence
    
      proof
    
        set X = the non
    empty
    natural-membered  
    set;
    
        take X;
    
        thus thesis;
    
      end;
    
    end
    
    reserve a,b,d for
    Real;
    
    theorem :: 
    
    MEMBERED:37
    
    for X,Y be
    real-membered  
    set st X 
    <>  
    {} & Y 
    <>  
    {} & for a, b st a 
    in X & b 
    in Y holds a 
    <= b holds ex d st (for a st a 
    in X holds a 
    <= d) & for b st b 
    in Y holds d 
    <= b 
    
    proof
    
      let X,Y be
    real-membered  
    set;
    
      set x = the
    Element of X; 
    
      reconsider a = x as
    Real;
    
      set y = the
    Element of Y; 
    
      reconsider b = y as
    Real;
    
      assume X
    <>  
    {} & Y 
    <>  
    {} ; 
    
      then
    
      
    
    A1: a 
    in X & b 
    in Y; 
    
      
    
      
    
    A2: X 
    c=  
    REAL & Y 
    c=  
    REAL by 
    Th3;
    
      assume for a, b st a
    in X & b 
    in Y holds a 
    <= b; 
    
      then
    
      consider d be
    Real such that 
    
      
    
    A3: for a,b be 
    Real st a 
    in X & b 
    in Y holds a 
    <= d & d 
    <= b by 
    A2,
    AXIOMS: 1;
    
      reconsider d as
    Real;
    
      take d;
    
      thus thesis by
    A1,
    A3;
    
    end;
    
    definition
    
      let X be
    set;
    
      :: 
    
    MEMBERED:def25
    
      attr X is
    
    add-closed means for x,y be 
    Complex st x 
    in X & y 
    in X holds (x 
    + y) 
    in X; 
    
    end
    
    registration
    
      cluster 
    empty -> 
    add-closed for 
    set;
    
      coherence ;
    
      cluster 
    COMPLEX -> 
    add-closed;
    
      coherence by
    XCMPLX_0:def 2;
    
      cluster 
    REAL -> 
    add-closed;
    
      coherence by
    XREAL_0:def 1;
    
      cluster 
    RAT -> 
    add-closed;
    
      coherence by
    RAT_1:def 2;
    
      cluster 
    INT -> 
    add-closed;
    
      coherence by
    INT_1:def 2;
    
      cluster 
    NAT -> 
    add-closed;
    
      coherence by
    ORDINAL1:def 12;
    
      cluster non 
    empty
    add-closed
    natural-membered for 
    set;
    
      existence
    
      proof
    
        take
    NAT ; 
    
        thus thesis;
    
      end;
    
    end