funcsdom.miz
begin
reserve x1,x2,z for
set;
reserve A,B for non
empty
set;
definition
let A be
set, B be non
empty
set;
let F be
BinOp of (
Funcs (A,B));
let f,g be
Element of (
Funcs (A,B));
:: original:
.
redefine
func F
. (f,g) ->
Element of (
Funcs (A,B)) ;
coherence
proof
reconsider f, g as
Element of (
Funcs (A,B)) qua non
empty
set;
(F
. (f,g)) is
Element of (
Funcs (A,B));
hence thesis;
end;
end
definition
let A,B,C,D be non
empty
set;
let F be
Function of
[:C, D:], (
Funcs (A,B));
let cd be
Element of
[:C, D:];
:: original:
.
redefine
func F
. cd ->
Element of (
Funcs (A,B)) ;
coherence
proof
(F
. cd) is
Element of (
Funcs (A,B));
hence thesis;
end;
end
reserve f,g,h for
Element of (
Funcs (A,
REAL ));
definition
let X be non
empty
set, Z be
set;
let F be
BinOp of X, f,g be
Function of Z, X;
:: original:
.:
redefine
func F
.: (f,g) ->
Element of (
Funcs (Z,X)) ;
coherence
proof
(F
.: (f,g))
in (
Funcs (Z,X)) by
FUNCT_2: 8;
hence thesis;
end;
end
definition
let X be non
empty
set, Z be
set;
let F be
BinOp of X, a be
Element of X, f be
Function of Z, X;
:: original:
[;]
redefine
func F
[;] (a,f) ->
Element of (
Funcs (Z,X)) ;
coherence
proof
(F
[;] (a,f))
in (
Funcs (Z,X)) by
FUNCT_2: 8;
hence thesis;
end;
end
definition
let A be
set;
::
FUNCSDOM:def1
func
RealFuncAdd (A) ->
BinOp of (
Funcs (A,
REAL )) means
:
Def1: for f,g be
Element of (
Funcs (A,
REAL )) holds (it
. (f,g))
= (
addreal
.: (f,g));
existence
proof
deffunc
F(
Element of (
Funcs (A,
REAL )),
Element of (
Funcs (A,
REAL ))) = (
addreal
.: ($1,$2));
consider F be
BinOp of (
Funcs (A,
REAL )) such that
A1: for x,y be
Element of (
Funcs (A,
REAL )) holds (F
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
take F;
let f,g be
Element of (
Funcs (A,
REAL ));
thus thesis by
A1;
end;
uniqueness
proof
let it1,it2 be
BinOp of (
Funcs (A,
REAL )) such that
A2: for f,g be
Element of (
Funcs (A,
REAL )) holds (it1
. (f,g))
= (
addreal
.: (f,g)) and
A3: for f,g be
Element of (
Funcs (A,
REAL )) holds (it2
. (f,g))
= (
addreal
.: (f,g));
now
let f,g be
Element of (
Funcs (A,
REAL ));
thus (it1
. (f,g))
= (
addreal
.: (f,g)) by
A2
.= (it2
. (f,g)) by
A3;
end;
hence thesis;
end;
end
registration
let A be
set;
cluster (
RealFuncAdd A) ->
real-functions-valued;
coherence
proof
let x be
object;
set IT = (
RealFuncAdd A);
assume x
in (
dom IT);
then (IT
. x) is
Function of A,
REAL by
FUNCT_2: 66,
PARTFUN1: 4;
hence (IT
. x) is
real-valued
Function;
end;
end
definition
let A be
set;
::
FUNCSDOM:def2
func
RealFuncMult (A) ->
BinOp of (
Funcs (A,
REAL )) means
:
Def2: for f,g be
Element of (
Funcs (A,
REAL )) holds (it
. (f,g))
= (
multreal
.: (f,g));
existence
proof
deffunc
F(
Element of (
Funcs (A,
REAL )),
Element of (
Funcs (A,
REAL ))) = (
multreal
.: ($1,$2));
consider F be
BinOp of (
Funcs (A,
REAL )) such that
A1: for x,y be
Element of (
Funcs (A,
REAL )) holds (F
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
take F;
let f,g be
Element of (
Funcs (A,
REAL ));
thus thesis by
A1;
end;
uniqueness
proof
let it1,it2 be
BinOp of (
Funcs (A,
REAL )) such that
A2: for f,g be
Element of (
Funcs (A,
REAL )) holds (it1
. (f,g))
= (
multreal
.: (f,g)) and
A3: for f,g be
Element of (
Funcs (A,
REAL )) holds (it2
. (f,g))
= (
multreal
.: (f,g));
now
let f,g be
Element of (
Funcs (A,
REAL ));
thus (it1
. (f,g))
= (
multreal
.: (f,g)) by
A2
.= (it2
. (f,g)) by
A3;
end;
hence thesis;
end;
end
registration
let A be
set;
cluster (
RealFuncMult A) ->
real-functions-valued;
coherence
proof
let x be
object;
set IT = (
RealFuncMult A);
assume x
in (
dom IT);
then (IT
. x) is
Function of A,
REAL by
FUNCT_2: 66,
PARTFUN1: 4;
hence (IT
. x) is
real-valued
Function;
end;
end
definition
let A be
set;
::
FUNCSDOM:def3
func
RealFuncExtMult (A) ->
Function of
[:
REAL , (
Funcs (A,
REAL )):], (
Funcs (A,
REAL )) means
:
Def3: for a be
Real, f be
Element of (
Funcs (A,
REAL )) holds (it
. (a,f))
= (
multreal
[;] (a,f));
existence
proof
deffunc
F(
Element of
REAL ,
Element of (
Funcs (A,
REAL ))) = (
multreal
[;] ($1,$2));
consider F be
Function of
[:
REAL , (
Funcs (A,
REAL )):], (
Funcs (A,
REAL )) such that
A1: for a be
Element of
REAL , f be
Element of (
Funcs (A,
REAL )) holds (F
. (a,f))
=
F(a,f) from
BINOP_1:sch 4;
take F;
let a be
Real, f be
Element of (
Funcs (A,
REAL ));
a
in
REAL by
XREAL_0:def 1;
hence thesis by
A1;
end;
uniqueness
proof
let it1,it2 be
Function of
[:
REAL , (
Funcs (A,
REAL )):], (
Funcs (A,
REAL )) such that
A2: for a be
Real, f be
Element of (
Funcs (A,
REAL )) holds (it1
. (a,f))
= (
multreal
[;] (a,f)) and
A3: for a be
Real, f be
Element of (
Funcs (A,
REAL )) holds (it2
. (a,f))
= (
multreal
[;] (a,f));
now
let a be
Element of
REAL , f be
Element of (
Funcs (A,
REAL ));
thus (it1
. (a,f))
= (
multreal
[;] (a,f)) by
A2
.= (it2
. (a,f)) by
A3;
end;
hence thesis;
end;
end
registration
let A be
set;
cluster (
RealFuncExtMult A) ->
real-functions-valued;
coherence
proof
let x be
object;
set IT = (
RealFuncExtMult A);
assume x
in (
dom IT);
then (IT
. x) is
Function of A,
REAL by
FUNCT_2: 66,
PARTFUN1: 4;
hence (IT
. x) is
real-valued
Function;
end;
end
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
definition
let A be
set;
::
FUNCSDOM:def4
func
RealFuncZero A ->
Element of (
Funcs (A,
REAL )) equals (A
-->
0 );
coherence
proof
(A
--> (
In (
0 ,
REAL ))) is
Function of A,
REAL ;
hence thesis by
FUNCT_2: 8;
end;
::
FUNCSDOM:def5
func
RealFuncUnit A ->
Element of (
Funcs (A,
REAL )) equals (A
--> 1);
coherence
proof
(A
--> jj) is
Function of A,
REAL ;
hence thesis by
FUNCT_2: 8;
end;
end
theorem ::
FUNCSDOM:1
Th1: h
= ((
RealFuncAdd A)
. (f,g)) iff for x be
Element of A holds (h
. x)
= ((f
. x)
+ (g
. x))
proof
A1:
now
assume
A2: for x be
Element of A holds (h
. x)
= ((f
. x)
+ (g
. x));
now
let x be
Element of A;
A3: (
dom (
addreal
.: (f,g)))
= A by
FUNCT_2:def 1;
thus (((
RealFuncAdd A)
. (f,g))
. x)
= ((
addreal
.: (f,g))
. x) by
Def1
.= (
addreal
. ((f
. x),(g
. x))) by
A3,
FUNCOP_1: 22
.= ((f
. x)
+ (g
. x)) by
BINOP_2:def 9
.= (h
. x) by
A2;
end;
hence h
= ((
RealFuncAdd A)
. (f,g));
end;
now
assume
A4: h
= ((
RealFuncAdd A)
. (f,g));
let x be
Element of A;
A5: (
dom (
addreal
.: (f,g)))
= A by
FUNCT_2:def 1;
thus (h
. x)
= ((
addreal
.: (f,g))
. x) by
A4,
Def1
.= (
addreal
. ((f
. x),(g
. x))) by
A5,
FUNCOP_1: 22
.= ((f
. x)
+ (g
. x)) by
BINOP_2:def 9;
end;
hence thesis by
A1;
end;
theorem ::
FUNCSDOM:2
Th2: h
= ((
RealFuncMult A)
. (f,g)) iff for x be
Element of A holds (h
. x)
= ((f
. x)
* (g
. x))
proof
A1:
now
assume
A2: for x be
Element of A holds (h
. x)
= ((f
. x)
* (g
. x));
now
let x be
Element of A;
A3: (
dom (
multreal
.: (f,g)))
= A by
FUNCT_2:def 1;
thus (((
RealFuncMult A)
. (f,g))
. x)
= ((
multreal
.: (f,g))
. x) by
Def2
.= (
multreal
. ((f
. x),(g
. x))) by
A3,
FUNCOP_1: 22
.= ((f
. x)
* (g
. x)) by
BINOP_2:def 11
.= (h
. x) by
A2;
end;
hence h
= ((
RealFuncMult A)
. (f,g));
end;
now
assume
A4: h
= ((
RealFuncMult A)
. (f,g));
let x be
Element of A;
A5: (
dom (
multreal
.: (f,g)))
= A by
FUNCT_2:def 1;
thus (h
. x)
= ((
multreal
.: (f,g))
. x) by
A4,
Def2
.= (
multreal
. ((f
. x),(g
. x))) by
A5,
FUNCOP_1: 22
.= ((f
. x)
* (g
. x)) by
BINOP_2:def 11;
end;
hence thesis by
A1;
end;
theorem ::
FUNCSDOM:3
(
RealFuncZero A)
<> (
RealFuncUnit A)
proof
set a = the
Element of A;
((
RealFuncZero A)
. a)
=
0 ;
hence thesis by
FUNCOP_1: 7;
end;
reserve a,b for
Real;
theorem ::
FUNCSDOM:4
Th4: h
= ((
RealFuncExtMult A)
.
[a, f]) iff for x be
Element of A holds (h
. x)
= (a
* (f
. x))
proof
reconsider aa = a as
Element of
REAL by
XREAL_0:def 1;
thus h
= ((
RealFuncExtMult A)
.
[a, f]) implies for x be
Element of A holds (h
. x)
= (a
* (f
. x))
proof
assume
A1: h
= ((
RealFuncExtMult A)
.
[a, f]);
let x be
Element of A;
h
= ((
RealFuncExtMult A)
. (a,f)) by
A1;
hence (h
. x)
= ((
multreal
[;] (aa,f))
. x) by
Def3
.= (
multreal
. (aa,(f
. x))) by
FUNCOP_1: 53
.= (a
* (f
. x)) by
BINOP_2:def 11;
end;
now
assume
A2: for x be
Element of A holds (h
. x)
= (a
* (f
. x));
for x be
Element of A holds (h
. x)
= (((
RealFuncExtMult A)
.
[aa, f])
. x)
proof
let x be
Element of A;
A3: (
multreal
[;] (a,f))
= ((
RealFuncExtMult A)
. (a,f)) by
Def3;
thus (h
. x)
= (a
* (f
. x)) by
A2
.= (
multreal
. (a,(f
. x))) by
BINOP_2:def 11
.= (((
RealFuncExtMult A)
.
[aa, f])
. x) by
A3,
FUNCOP_1: 53;
end;
hence h
= ((
RealFuncExtMult A)
. (a,f)) by
FUNCT_2: 63;
end;
hence thesis;
end;
theorem ::
FUNCSDOM:5
Th5: for A be
set, f,g be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncAdd A)
. (f,g))
= ((
RealFuncAdd A)
. (g,f))
proof
let A be
set, f,g be
Element of (
Funcs (A,
REAL ));
thus ((
RealFuncAdd A)
. (f,g))
= (
addreal
.: (f,g)) by
Def1
.= (
addreal
.: (g,f)) by
FUNCOP_1: 65
.= ((
RealFuncAdd A)
. (g,f)) by
Def1;
end;
theorem ::
FUNCSDOM:6
Th6: for A be
set, f,g,h be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncAdd A)
. (f,((
RealFuncAdd A)
. (g,h))))
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (f,g)),h))
proof
let A be
set, f,g,h be
Element of (
Funcs (A,
REAL ));
thus ((
RealFuncAdd A)
. (f,((
RealFuncAdd A)
. (g,h))))
= ((
RealFuncAdd A)
. (f,(
addreal
.: (g,h)))) by
Def1
.= (
addreal
.: (f,(
addreal
.: (g,h)))) by
Def1
.= (
addreal
.: ((
addreal
.: (f,g)),h)) by
FUNCOP_1: 61
.= ((
RealFuncAdd A)
. ((
addreal
.: (f,g)),h)) by
Def1
.= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (f,g)),h)) by
Def1;
end;
theorem ::
FUNCSDOM:7
Th7: for A be
set, f,g be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncMult A)
. (f,g))
= ((
RealFuncMult A)
. (g,f))
proof
let A be
set, f,g be
Element of (
Funcs (A,
REAL ));
thus ((
RealFuncMult A)
. (f,g))
= (
multreal
.: (f,g)) by
Def2
.= (
multreal
.: (g,f)) by
FUNCOP_1: 65
.= ((
RealFuncMult A)
. (g,f)) by
Def2;
end;
theorem ::
FUNCSDOM:8
Th8: for A be
set, f,g,h be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncMult A)
. (f,((
RealFuncMult A)
. (g,h))))
= ((
RealFuncMult A)
. (((
RealFuncMult A)
. (f,g)),h))
proof
let A be
set, f,g,h be
Element of (
Funcs (A,
REAL ));
thus ((
RealFuncMult A)
. (f,((
RealFuncMult A)
. (g,h))))
= ((
RealFuncMult A)
. (f,(
multreal
.: (g,h)))) by
Def2
.= (
multreal
.: (f,(
multreal
.: (g,h)))) by
Def2
.= (
multreal
.: ((
multreal
.: (f,g)),h)) by
FUNCOP_1: 61
.= ((
RealFuncMult A)
. ((
multreal
.: (f,g)),h)) by
Def2
.= ((
RealFuncMult A)
. (((
RealFuncMult A)
. (f,g)),h)) by
Def2;
end;
theorem ::
FUNCSDOM:9
Th9: for A be
set, f be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncMult A)
. ((
RealFuncUnit A),f))
= f
proof
let A be
set, f be
Element of (
Funcs (A,
REAL ));
per cases ;
suppose A
=
{} ;
then
A1: f
=
{} ;
thus ((
RealFuncMult A)
. ((
RealFuncUnit A),f))
= (
multreal
.: ((
RealFuncUnit A),f)) by
Def2
.= f by
A1;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
thus (((
RealFuncMult A)
. ((
RealFuncUnit A),f))
. x)
= (((
RealFuncUnit A)
. x)
* (f
. x)) by
Th2
.= (1
* (f
. x))
.= (f
. x);
end;
hence thesis;
end;
end;
theorem ::
FUNCSDOM:10
Th10: for A be
set, f be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncAdd A)
. ((
RealFuncZero A),f))
= f
proof
let A be
set, f be
Element of (
Funcs (A,
REAL ));
per cases ;
suppose A
=
{} ;
then
A1: f
=
{} ;
thus ((
RealFuncAdd A)
. ((
RealFuncZero A),f))
= (
addreal
.: ((
RealFuncZero A),f)) by
Def1
.= f by
A1;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
thus (((
RealFuncAdd A)
. ((
RealFuncZero A),f))
. x)
= (((
RealFuncZero A)
. x)
+ (f
. x)) by
Th1
.= (
0
+ (f
. x))
.= (f
. x);
end;
hence thesis;
end;
end;
theorem ::
FUNCSDOM:11
Th11: for A be
set, f be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncAdd A)
. (f,((
RealFuncExtMult A)
.
[(
- 1), f])))
= (
RealFuncZero A)
proof
let A be
set, f be
Element of (
Funcs (A,
REAL ));
per cases ;
suppose
A1: A
=
{} ;
then ((
RealFuncAdd A)
. (f,((
RealFuncExtMult A)
.
[(
- jj), f])))
=
{}
.= (
RealFuncZero A) by
A1;
hence thesis;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
set y = (f
. x);
thus (((
RealFuncAdd A)
. (f,((
RealFuncExtMult A)
.
[(
- jj), f])))
. x)
= ((f
. x)
+ (((
RealFuncExtMult A)
.
[(
- jj), f])
. x)) by
Th1
.= ((f
. x)
+ ((
- 1)
* y)) by
Th4
.= ((
RealFuncZero A)
. x);
end;
hence thesis by
FUNCT_2: 63;
end;
end;
theorem ::
FUNCSDOM:12
Th12: for A be
set, f be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncExtMult A)
. (1,f))
= f
proof
let A be
set, f be
Element of (
Funcs (A,
REAL ));
per cases ;
suppose A
=
{} ;
then
A1: f
=
{} ;
thus ((
RealFuncExtMult A)
. (1,f))
= (
multreal
[;] (jj,f)) by
Def3
.= f by
A1;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f as
Element of (
Funcs (A,
REAL ));
reconsider g = ((
RealFuncExtMult A)
. (jj,f)) as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
thus (g
. x)
= (jj
* (f
. x)) by
Th4
.= (f
. x);
end;
hence thesis by
FUNCT_2: 63;
end;
end;
theorem ::
FUNCSDOM:13
Th13: for A be
set, f be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncExtMult A)
. (a,((
RealFuncExtMult A)
. (b,f))))
= ((
RealFuncExtMult A)
. ((a
* b),f))
proof
let A be
set, f be
Element of (
Funcs (A,
REAL ));
reconsider aa = a, bb = b as
Element of
REAL by
XREAL_0:def 1;
per cases ;
suppose
A1: A
=
{} ;
((
RealFuncExtMult A)
. (b,f))
= (
multreal
[;] (b,f)) by
Def3;
hence ((
RealFuncExtMult A)
. (a,((
RealFuncExtMult A)
. (b,f))))
= (
multreal
[;] (aa,(
multreal
[;] (bb,f)))) by
Def3
.= (
multreal
[;] ((a
* b),f)) by
A1
.= ((
RealFuncExtMult A)
. ((a
* b),f)) by
Def3;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
thus (((
RealFuncExtMult A)
.
[aa, ((
RealFuncExtMult A)
.
[bb, f])])
. x)
= (aa
* (((
RealFuncExtMult A)
.
[bb, f])
. x)) by
Th4
.= (aa
* (bb
* (f
. x))) by
Th4
.= ((aa
* bb)
* (f
. x))
.= (((
RealFuncExtMult A)
.
[(aa
* bb), f])
. x) by
Th4;
end;
hence thesis by
FUNCT_2: 63;
end;
end;
theorem ::
FUNCSDOM:14
Th14: for A be
set, f be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
. (a,f)),((
RealFuncExtMult A)
. (b,f))))
= ((
RealFuncExtMult A)
. ((a
+ b),f))
proof
let A be
set, f be
Element of (
Funcs (A,
REAL ));
reconsider aa = a, bb = b as
Element of
REAL by
XREAL_0:def 1;
per cases ;
suppose
A1: A
=
{} ;
thus ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
. (a,f)),((
RealFuncExtMult A)
. (b,f))))
= ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
. (aa,f)),((
RealFuncExtMult A)
. (bb,f))))
.=
{} by
A1
.= (
multreal
[;] ((a
+ b),f)) by
A1
.= ((
RealFuncExtMult A)
. ((a
+ b),f)) by
Def3;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
thus (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[aa, f]),((
RealFuncExtMult A)
.
[bb, f])))
. x)
= ((((
RealFuncExtMult A)
.
[aa, f])
. x)
+ (((
RealFuncExtMult A)
.
[bb, f])
. x)) by
Th1
.= ((a
* (f
. x))
+ (((
RealFuncExtMult A)
.
[bb, f])
. x)) by
Th4
.= ((a
* (f
. x))
+ (b
* (f
. x))) by
Th4
.= ((a
+ b)
* (f
. x))
.= (((
RealFuncExtMult A)
.
[(aa
+ bb), f])
. x) by
Th4;
end;
hence thesis by
FUNCT_2: 63;
end;
end;
Lm2: for A be
set, f,g be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
. (a,f)),((
RealFuncExtMult A)
. (a,g))))
= ((
RealFuncExtMult A)
. (a,((
RealFuncAdd A)
. (f,g))))
proof
let A be
set, f,g be
Element of (
Funcs (A,
REAL ));
reconsider aa = a as
Element of
REAL by
XREAL_0:def 1;
per cases ;
suppose
A1: A
=
{} ;
thus ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
. (a,f)),((
RealFuncExtMult A)
. (a,g))))
= ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
. (aa,f)),((
RealFuncExtMult A)
. (aa,g))))
.=
{} by
A1
.= (
multreal
[;] (a,((
RealFuncAdd A)
. (f,g)))) by
A1
.= ((
RealFuncExtMult A)
. (a,((
RealFuncAdd A)
. (f,g)))) by
Def3;
end;
suppose A
<>
{} ;
then
reconsider A as non
empty
set;
reconsider f, g as
Element of (
Funcs (A,
REAL ));
now
let x be
Element of A;
thus (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[aa, f]),((
RealFuncExtMult A)
.
[aa, g])))
. x)
= ((((
RealFuncExtMult A)
.
[aa, f])
. x)
+ (((
RealFuncExtMult A)
.
[aa, g])
. x)) by
Th1
.= ((a
* (f
. x))
+ (((
RealFuncExtMult A)
.
[aa, g])
. x)) by
Th4
.= ((a
* (f
. x))
+ (a
* (g
. x))) by
Th4
.= (a
* ((f
. x)
+ (g
. x)))
.= (a
* (((
RealFuncAdd A)
. (f,g))
. x)) by
Th1
.= (((
RealFuncExtMult A)
.
[aa, ((
RealFuncAdd A)
. (f,g))])
. x) by
Th4;
end;
hence thesis by
FUNCT_2: 63;
end;
end;
theorem ::
FUNCSDOM:15
Th15: for A be
set, f,g,h be
Element of (
Funcs (A,
REAL )) holds ((
RealFuncMult A)
. (f,((
RealFuncAdd A)
. (g,h))))
= ((
RealFuncAdd A)
. (((
RealFuncMult A)
. (f,g)),((
RealFuncMult A)
. (f,h))))
proof
let A be
set, f,g,h be
Element of (
Funcs (A,
REAL ));
A1: (
multreal
.: (f,(
addreal
.: (g,h))))
= (
addreal
.: ((
multreal
.: (f,g)),(
multreal
.: (f,h))))
proof
let a be
Element of A;
per cases ;
suppose A
=
{} ;
hence ((
multreal
.: (f,(
addreal
.: (g,h))))
. a)
= ((
addreal
.: ((
multreal
.: (f,g)),(
multreal
.: (f,h))))
. a);
end;
suppose A
<>
{} ;
then
reconsider B = A as non
empty
set;
reconsider ff = f, gg = g, hh = h as
Element of (
Funcs (B,
REAL ));
reconsider b = a as
Element of B;
thus ((
multreal
.: (f,(
addreal
.: (g,h))))
. a)
= (
multreal
. ((f
. b),((
addreal
.: (g,h))
. b))) by
FUNCOP_1: 37
.= (
multreal
. ((f
. b),(
addreal
. ((g
. b),(h
. b))))) by
FUNCOP_1: 37
.= ((ff
. b)
* (
addreal
. ((gg
. b),(hh
. b)))) by
BINOP_2:def 11
.= ((ff
. b)
* ((gg
. b)
+ (hh
. b))) by
BINOP_2:def 9
.= (((ff
. b)
* (gg
. b))
+ ((ff
. b)
* (hh
. b)))
.= (((ff
. b)
* (gg
. b))
+ (
multreal
. ((ff
. b),(hh
. b)))) by
BINOP_2:def 11
.= ((
multreal
. ((ff
. b),(gg
. b)))
+ (
multreal
. ((ff
. b),(hh
. b)))) by
BINOP_2:def 11
.= (
addreal
. ((
multreal
. ((f
. a),(g
. a))),(
multreal
. ((f
. a),(h
. a))))) by
BINOP_2:def 9
.= (
addreal
. ((
multreal
. ((f
. a),(g
. a))),((
multreal
.: (ff,h))
. a))) by
FUNCOP_1: 37
.= (
addreal
. (((
multreal
.: (ff,g))
. a),((
multreal
.: (ff,h))
. a))) by
FUNCOP_1: 37
.= ((
addreal
.: ((
multreal
.: (f,g)),(
multreal
.: (f,h))))
. a) by
FUNCOP_1: 37;
end;
end;
thus ((
RealFuncMult A)
. (f,((
RealFuncAdd A)
. (g,h))))
= ((
RealFuncMult A)
. (f,(
addreal
.: (g,h)))) by
Def1
.= (
addreal
.: ((
multreal
.: (f,g)),(
multreal
.: (f,h)))) by
A1,
Def2
.= ((
RealFuncAdd A)
. ((
multreal
.: (f,g)),(
multreal
.: (f,h)))) by
Def1
.= ((
RealFuncAdd A)
. (((
RealFuncMult A)
. (f,g)),(
multreal
.: (f,h)))) by
Def2
.= ((
RealFuncAdd A)
. (((
RealFuncMult A)
. (f,g)),((
RealFuncMult A)
. (f,h)))) by
Def2;
end;
theorem ::
FUNCSDOM:16
Th16: for A be
set, f,g,h be
Element of (
Funcs (A,
REAL )), a be
Real holds ((
RealFuncMult A)
. (((
RealFuncExtMult A)
. (a,f)),g))
= ((
RealFuncExtMult A)
. (a,((
RealFuncMult A)
. (f,g))))
proof
let A be
set, f,g,h be
Element of (
Funcs (A,
REAL )), a be
Real;
reconsider aa = a as
Element of
REAL by
XREAL_0:def 1;
thus ((
RealFuncMult A)
. (((
RealFuncExtMult A)
. (a,f)),g))
= ((
RealFuncMult A)
. ((
multreal
[;] (a,f)),g)) by
Def3
.= (
multreal
.: ((
multreal
[;] (aa,f)),g)) by
Def2
.= (
multreal
[;] (aa,(
multreal
.: (f,g)))) by
FUNCOP_1: 85
.= ((
RealFuncExtMult A)
. (a,(
multreal
.: (f,g)))) by
Def3
.= ((
RealFuncExtMult A)
. (a,((
RealFuncMult A)
. (f,g)))) by
Def2;
end;
theorem ::
FUNCSDOM:17
Th17: x1
in A implies ((
RealFuncZero A)
+* (x1
.--> 1))
in (
Funcs (A,
REAL )) & ((
RealFuncUnit A)
+* (x1
.-->
0 ))
in (
Funcs (A,
REAL ))
proof
assume
a0: x1
in A;
A2: (
dom ((
RealFuncZero A)
+* (x1
.--> 1)))
= ((
dom (
RealFuncZero A))
\/ (
dom (x1
.--> 1))) by
FUNCT_4:def 1
.= ((
dom (
RealFuncZero A))
\/
{x1})
.= (A
\/
{x1})
.= A by
a0,
XBOOLE_1: 12,
ZFMISC_1: 31;
a2: (
dom ((
RealFuncUnit A)
+* (x1
.-->
0 )))
= ((
dom (
RealFuncUnit A))
\/ (
dom (x1
.-->
0 ))) by
FUNCT_4:def 1
.= ((
dom (
RealFuncUnit A))
\/
{x1})
.= (A
\/
{x1})
.= A by
a0,
XBOOLE_1: 12,
ZFMISC_1: 31;
H2: (
rng ((
RealFuncZero A)
+* (x1
.--> 1)))
c= ((
rng (
RealFuncZero A))
\/ (
rng (x1
.--> 1))) by
FUNCT_4: 17;
B1: (
rng (
RealFuncZero A))
c=
REAL by
RELAT_1:def 19;
(
rng (x1
.--> 1))
=
{1} by
FUNCOP_1: 8;
then (
rng (x1
.--> 1))
c=
REAL by
XREAL_0:def 1,
ZFMISC_1: 31;
then ((
rng (
RealFuncZero A))
\/ (
rng (x1
.--> 1)))
c= (
REAL
\/
REAL ) by
B1,
XBOOLE_1: 13;
then
S1: ((
RealFuncZero A)
+* (x1
.--> 1)) is
Function of A,
REAL by
A2,
FUNCT_2: 2,
H2,
XBOOLE_1: 1;
H2: (
rng ((
RealFuncUnit A)
+* (x1
.-->
0 )))
c= ((
rng (
RealFuncUnit A))
\/ (
rng (x1
.-->
0 ))) by
FUNCT_4: 17;
B1: (
rng (
RealFuncUnit A))
c=
REAL by
RELAT_1:def 19;
(
rng (x1
.-->
0 ))
=
{
0 } by
FUNCOP_1: 8;
then (
rng (x1
.-->
0 ))
c=
REAL by
XREAL_0:def 1,
ZFMISC_1: 31;
then ((
rng (
RealFuncUnit A))
\/ (
rng (x1
.-->
0 )))
c= (
REAL
\/
REAL ) by
B1,
XBOOLE_1: 13;
then ((
RealFuncUnit A)
+* (x1
.-->
0 )) is
Function of A,
REAL by
a2,
FUNCT_2: 2,
H2,
XBOOLE_1: 1;
hence thesis by
S1,
FUNCT_2: 8;
end;
theorem ::
FUNCSDOM:18
Th18: x1
in A & x2
in A & x1
<> x2 & f
= ((
RealFuncZero A)
+* (x1
.--> 1)) & g
= ((
RealFuncUnit A)
+* (x1
.-->
0 )) implies for a, b st ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
= (
RealFuncZero A) holds a
=
0 & b
=
0
proof
assume that
A1: x1
in A and
A2: x2
in A and
A3: x1
<> x2 and
A4: f
= ((
RealFuncZero A)
+* (x1
.--> 1)) & g
= ((
RealFuncUnit A)
+* (x1
.-->
0 ));
a5: (f
. x2)
= ((
RealFuncZero A)
. x2) by
A3,
A4,
FUNCT_4: 83
.=
0 by
A2,
FUNCOP_1: 7;
A5: (g
. x2)
= ((
RealFuncUnit A)
. x2) by
A3,
A4,
FUNCT_4: 83
.= 1 by
A2,
FUNCOP_1: 7;
a6: (f
. x1)
= 1 by
A4,
FUNCT_4: 113;
A6: (g
. x1)
=
0 by
A4,
FUNCT_4: 113;
let a, b;
reconsider x1, x2 as
Element of A by
A1,
A2;
reconsider aa = a, bb = b as
Element of
REAL by
XREAL_0:def 1;
assume
A7: ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
= (
RealFuncZero A);
then
A8:
0
= (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[aa, f]),((
RealFuncExtMult A)
.
[bb, g])))
. x2)
.= ((((
RealFuncExtMult A)
.
[aa, f])
. x2)
+ (((
RealFuncExtMult A)
.
[bb, g])
. x2)) by
Th1
.= ((a
* (f
. x2))
+ (((
RealFuncExtMult A)
.
[bb, g])
. x2)) by
Th4
.= (
0
+ (b
* 1)) by
A5,
Th4,
a5
.= b;
0
= (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[aa, f]),((
RealFuncExtMult A)
.
[bb, g])))
. x1) by
A7
.= ((((
RealFuncExtMult A)
.
[aa, f])
. x1)
+ (((
RealFuncExtMult A)
.
[bb, g])
. x1)) by
Th1
.= ((a
* (f
. x1))
+ (((
RealFuncExtMult A)
.
[bb, g])
. x1)) by
Th4
.= (a
+ (b
*
0 )) by
A6,
Th4,
a6
.= a;
hence thesis by
A8;
end;
::$Canceled
theorem ::
FUNCSDOM:20
Th20: A
=
{x1, x2} & x1
<> x2 & f
= ((
RealFuncZero A)
+* (x1
.--> 1)) & g
= ((
RealFuncUnit A)
+* (x1
.-->
0 )) implies for h holds ex a, b st h
= ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
proof
assume that
A1: A
=
{x1, x2} and
A2: x1
<> x2 and
A3: f
= ((
RealFuncZero A)
+* (x1
.--> 1)) & g
= ((
RealFuncUnit A)
+* (x1
.-->
0 ));
a4: x2
in A by
A1,
TARSKI:def 2;
A4: (f
. x2)
= ((
RealFuncZero A)
. x2) by
A2,
A3,
FUNCT_4: 83
.=
0 by
FUNCOP_1: 7,
a4;
A5: (g
. x2)
= ((
RealFuncUnit A)
. x2) by
A2,
A3,
FUNCT_4: 83
.= 1 by
FUNCOP_1: 7,
a4;
a6: (f
. x1)
= 1 by
A3,
FUNCT_4: 113;
B6: (g
. x1)
=
0 by
A3,
FUNCT_4: 113;
let h;
reconsider x1, x2 as
Element of A by
A1,
TARSKI:def 2;
take a = (h
. x1), b = (h
. x2);
now
let x be
Element of A;
A6: x
= x1 or x
= x2 by
A1,
TARSKI:def 2;
A7: (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x2)
= ((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (((
RealFuncExtMult A)
.
[b, g])
. x2)) by
Th1
.= ((a
* (f
. x2))
+ (((
RealFuncExtMult A)
.
[b, g])
. x2)) by
Th4
.= (
0
+ (b
* 1)) by
A5,
A4,
Th4
.= (h
. x2);
(((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x1)
= ((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1)) by
Th1
.= ((a
* 1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1)) by
a6,
Th4
.= (a
+ (b
*
0 )) by
Th4,
B6
.= (h
. x1);
hence (h
. x)
= (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x) by
A6,
A7;
end;
hence thesis by
FUNCT_2: 63;
end;
::$Canceled
theorem ::
FUNCSDOM:22
Th22: A
=
{x1, x2} & x1
<> x2 implies ex f, g st (for a, b st ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 ) & for h holds ex a, b st h
= ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
proof
assume that
A1: A
=
{x1, x2} and
A2: x1
<> x2;
x1
in A by
TARSKI:def 2,
A1;
then
reconsider f = ((
RealFuncZero A)
+* (x1
.--> 1)), g = ((
RealFuncUnit A)
+* (x1
.-->
0 )) as
Element of (
Funcs (A,
REAL )) by
Th17;
take f, g;
x1
in A & x2
in A by
A1,
TARSKI:def 2;
hence thesis by
A1,
A2,
Th18,
Th20;
end;
definition
let A be
set;
::
FUNCSDOM:def6
func
RealVectSpace (A) ->
strict
RealLinearSpace equals
RLSStruct (# (
Funcs (A,
REAL )), (
RealFuncZero A), (
RealFuncAdd A), (
RealFuncExtMult A) #);
coherence
proof
set S =
RLSStruct (# (
Funcs (A,
REAL )), (
RealFuncZero A), (
RealFuncAdd A), (
RealFuncExtMult A) #);
A1: S is
add-associative by
Th6;
A2: S is
right_complementable
proof
let u be
Element of S;
reconsider u9 = u as
Element of (
Funcs (A,
REAL ));
reconsider w = ((
RealFuncExtMult A)
.
[(
- jj), u9]) as
VECTOR of S;
take w;
thus thesis by
Th11;
end;
A3: S is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital by
Lm2,
Th14,
Th13,
Th12;
A4: S is
right_zeroed
proof
let u be
Element of S;
reconsider u9 = u as
Element of (
Funcs (A,
REAL ));
thus (u
+ (
0. S))
= ((
RealFuncAdd A)
. ((
RealFuncZero A),u9)) by
Th5
.= u by
Th10;
end;
S is
Abelian by
Th5;
hence thesis by
A1,
A4,
A2,
A3;
end;
end
theorem ::
FUNCSDOM:23
ex V be
strict
RealLinearSpace st ex u,v be
Element of V st (for a, b st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 ) & for w be
Element of V holds ex a, b st w
= ((a
* u)
+ (b
* v))
proof
set A =
{
0 , 1};
take V = (
RealVectSpace A);
consider f,g be
Element of (
Funcs (A,
REAL )) such that
A1: for a, b st ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 and
A2: for h be
Element of (
Funcs (A,
REAL )) holds ex a, b st h
= ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))) by
Th22;
reconsider u = f, v = g as
Element of V;
take u, v;
thus for a, b st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 by
A1;
thus for w be
Element of V holds ex a, b st w
= ((a
* u)
+ (b
* v))
proof
let w be
Element of V;
reconsider h = w as
Element of (
Funcs (A,
REAL ));
consider a, b such that
A3: h
= ((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))) by
A2;
h
= ((a
* u)
+ (b
* v)) by
A3;
hence thesis;
end;
end;
definition
let A;
::
FUNCSDOM:def7
func
RRing (A) ->
strict
doubleLoopStr equals
doubleLoopStr (# (
Funcs (A,
REAL )), (
RealFuncAdd A), (
RealFuncMult A), (
RealFuncUnit A), (
RealFuncZero A) #);
correctness ;
end
registration
let A;
cluster (
RRing A) -> non
empty;
coherence ;
end
Lm3:
now
let A;
set FR = (
RRing A);
let h,a be
Element of FR;
reconsider g = h as
Element of (
Funcs (A,
REAL ));
assume
A1: a
= (
RealFuncUnit A);
hence (h
* a)
= ((
RealFuncMult A)
. ((
RealFuncUnit A),g)) by
Th7
.= h by
Th9;
thus (a
* h)
= h by
A1,
Th9;
end;
registration
let A;
cluster (
RRing A) ->
unital;
coherence
proof
reconsider e = (
RealFuncUnit A) as
Element of (
RRing A);
take e;
thus thesis by
Lm3;
end;
end
theorem ::
FUNCSDOM:24
(
1. (
RRing A))
= (
RealFuncUnit A);
theorem ::
FUNCSDOM:25
Th25: for x,y,z be
Element of (
RRing A) holds (x
+ y)
= (y
+ x) & ((x
+ y)
+ z)
= (x
+ (y
+ z)) & (x
+ (
0. (
RRing A)))
= x & (ex t be
Element of (
RRing A) st (x
+ t)
= (
0. (
RRing A))) & (x
* y)
= (y
* x) & ((x
* y)
* z)
= (x
* (y
* z)) & (x
* (
1. (
RRing A)))
= x & ((
1. (
RRing A))
* x)
= x & (x
* (y
+ z))
= ((x
* y)
+ (x
* z)) & ((y
+ z)
* x)
= ((y
* x)
+ (z
* x))
proof
let x,y,z be
Element of (
RRing A);
set IT = (
RRing A);
reconsider f = x as
Element of (
Funcs (A,
REAL ));
thus (x
+ y)
= (y
+ x) by
Th5;
thus ((x
+ y)
+ z)
= (x
+ (y
+ z)) by
Th6;
thus (x
+ (
0. (
RRing A)))
= ((
RealFuncAdd A)
. ((
RealFuncZero A),f)) by
Th5
.= x by
Th10;
thus ex t be
Element of (
RRing A) st (x
+ t)
= (
0. (
RRing A))
proof
set h = ((
RealFuncExtMult A)
.
[(
- jj), f]);
reconsider t = h as
Element of IT;
take t;
thus thesis by
Th11;
end;
thus (x
* y)
= (y
* x) by
Th7;
thus ((x
* y)
* z)
= (x
* (y
* z)) by
Th8;
thus (x
* (
1. (
RRing A)))
= ((
RealFuncMult A)
. ((
RealFuncUnit A),f)) by
Th7
.= x by
Th9;
hence ((
1. (
RRing A))
* x)
= x by
Th7;
thus (x
* (y
+ z))
= ((x
* y)
+ (x
* z)) by
Th15;
hence ((y
+ z)
* x)
= ((x
* y)
+ (x
* z)) by
Th7
.= ((y
* x)
+ (x
* z)) by
Th7
.= ((y
* x)
+ (z
* x)) by
Th7;
end;
registration
cluster
strict
Abelian
add-associative
right_zeroed
right_complementable
associative
commutative
right_unital
right-distributive for 1
-element
doubleLoopStr;
existence
proof
take L =
Trivial-doubleLoopStr ;
thus L is
strict;
thus L is
Abelian by
STRUCT_0:def 10;
thus L is
add-associative by
STRUCT_0:def 10;
thus L is
right_zeroed by
STRUCT_0:def 10;
thus L is
right_complementable
proof
let x be
Element of L;
take x;
thus thesis by
STRUCT_0:def 10;
end;
thus L is
associative by
STRUCT_0:def 10;
thus L is
commutative by
STRUCT_0:def 10;
thus L is
right_unital by
STRUCT_0:def 10;
let x be
Element of L;
thus thesis by
STRUCT_0:def 10;
end;
end
theorem ::
FUNCSDOM:26
(
RRing A) is
commutative
Ring
proof
A1: (
RRing A) is
Abelian by
Th25;
A2: (
RRing A) is
add-associative by
Th25;
A3: (
RRing A) is
right_complementable
proof
let x be
Element of (
RRing A);
consider t be
Element of (
RRing A) such that
A4: (x
+ t)
= (
0. (
RRing A)) by
Th25;
take t;
thus thesis by
A4;
end;
A5: (
RRing A) is
right_zeroed by
Th25;
A6: (
RRing A) is
distributive by
Th25;
A7: (
RRing A) is
well-unital by
Th25;
A8: (
RRing A) is
associative by
Th25;
(
RRing A) is
commutative by
Th25;
hence thesis by
A1,
A2,
A5,
A3,
A8,
A7,
A6;
end;
definition
struct (
doubleLoopStr,
RLSStruct)
AlgebraStr
(# the
carrier ->
set,
the
multF,
addF ->
BinOp of the carrier,
the
Mult ->
Function of
[:
REAL , the carrier:], the carrier,
the
OneF,
ZeroF ->
Element of the carrier #)
attr strict
strict;
end
registration
cluster non
empty for
AlgebraStr;
existence
proof
set X = the non
empty
set, m = the
BinOp of X, M = the
Function of
[:
REAL , X:], X, u = the
Element of X;
take
AlgebraStr (# X, m, m, M, u, u #);
thus the
carrier of
AlgebraStr (# X, m, m, M, u, u #) is non
empty;
end;
end
definition
let A be
set;
::
FUNCSDOM:def8
func
RAlgebra A ->
strict
AlgebraStr equals
AlgebraStr (# (
Funcs (A,
REAL )), (
RealFuncMult A), (
RealFuncAdd A), (
RealFuncExtMult A), (
RealFuncUnit A), (
RealFuncZero A) #);
correctness ;
end
registration
let A;
cluster (
RAlgebra A) -> non
empty;
coherence ;
end
Lm4:
now
let A;
set F = (
RAlgebra A);
let x,e be
Element of F;
reconsider f = x as
Element of (
Funcs (A,
REAL ));
assume
A1: e
= (
RealFuncUnit A);
hence (x
* e)
= ((
RealFuncMult A)
. ((
RealFuncUnit A),f)) by
Th7
.= x by
Th9;
thus (e
* x)
= x by
A1,
Th9;
end;
registration
let A;
cluster (
RAlgebra A) ->
unital;
coherence
proof
reconsider e = (
RealFuncUnit A) as
Element of (
RAlgebra A);
take e;
thus thesis by
Lm4;
end;
end
theorem ::
FUNCSDOM:27
(
1. (
RAlgebra A))
= (
RealFuncUnit A);
definition
let IT be non
empty
AlgebraStr;
::
FUNCSDOM:def9
attr IT is
vector-associative means for x,y be
Element of IT holds for a holds (a
* (x
* y))
= ((a
* x)
* y);
end
registration
let A be
set;
cluster (
RAlgebra A) -> non
empty;
coherence ;
end
registration
let A be
set;
cluster (
RAlgebra A) ->
strict
Abelian
add-associative
right_zeroed
right_complementable
commutative
associative
right_unital
right-distributive
vector-associative
scalar-associative
vector-distributive
scalar-distributive;
coherence
proof
thus (
RAlgebra A) is
strict;
thus (
RAlgebra A) is
Abelian by
Th5;
thus (
RAlgebra A) is
add-associative by
Th6;
thus (
RAlgebra A) is
right_zeroed
proof
let x be
Element of (
RAlgebra A);
thus (x
+ (
0. (
RAlgebra A)))
= ((
RealFuncAdd A)
. ((
RealFuncZero A),x)) by
Th5
.= x by
Th10;
end;
thus (
RAlgebra A) is
right_complementable
proof
let x be
Element of (
RAlgebra A);
reconsider f = x as
Element of (
Funcs (A,
REAL ));
reconsider t = ((
RealFuncExtMult A)
.
[(
- jj), f]) as
Element of (
RAlgebra A);
take t;
thus thesis by
Th11;
end;
thus (
RAlgebra A) is
commutative by
Th7;
thus (
RAlgebra A) is
associative by
Th8;
thus (
RAlgebra A) is
right_unital
proof
let x be
Element of (
RAlgebra A);
thus (x
* (
1. (
RAlgebra A)))
= ((
RealFuncMult A)
. ((
RealFuncUnit A),x)) by
Th7
.= x by
Th9;
end;
thus (
RAlgebra A) is
right-distributive by
Th15;
thus (
RAlgebra A) is
vector-associative by
Th16;
thus (
RAlgebra A) is
scalar-associative by
Th13;
thus (
RAlgebra A) is
vector-distributive by
Lm2;
let a,b be
Real, v be
Element of (
RAlgebra A);
thus thesis by
Th14;
end;
end
registration
cluster
strict
Abelian
add-associative
right_zeroed
right_complementable
commutative
associative
right_unital
right-distributive
vector-associative
scalar-associative
vector-distributive
scalar-distributive for non
empty
AlgebraStr;
existence
proof
take (
RAlgebra
{} );
thus thesis;
end;
end
definition
mode
Algebra is
Abelian
add-associative
right_zeroed
right_complementable
commutative
associative
right_unital
right-distributive
vector-associative
scalar-associative
vector-distributive
scalar-distributive non
empty
AlgebraStr;
end
theorem ::
FUNCSDOM:28
((
RealFuncAdd A)
. (f,g))
= (f
+ g)
proof
A1: (
dom ((
RealFuncAdd A)
. (f,g)))
= A by
FUNCT_2:def 1;
a1: (
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1
.= (A
/\ (
dom g)) by
FUNCT_2:def 1
.= (A
/\ A) by
FUNCT_2:def 1
.= A;
now
let x be
object;
assume
a0: x
in (
dom (f
+ g));
A3: (
dom (
addreal
.: (f,g)))
= A by
FUNCT_2:def 1;
thus (((
RealFuncAdd A)
. (f,g))
. x)
= ((
addreal
.: (f,g))
. x) by
Def1
.= (
addreal
. ((f
. x),(g
. x))) by
a1,
a0,
A3,
FUNCOP_1: 22
.= ((f
. x)
+ (g
. x)) by
BINOP_2:def 9
.= ((f
+ g)
. x) by
VALUED_1: 1,
a1,
a0;
end;
hence thesis by
a1,
A1,
FUNCT_1: 2;
end;
theorem ::
FUNCSDOM:29
((
RealFuncMult A)
. (f,g))
= (f
(#) g)
proof
A1: (
dom ((
RealFuncMult A)
. (f,g)))
= A by
FUNCT_2:def 1;
a1: (
dom (f
(#) g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4
.= (A
/\ (
dom g)) by
FUNCT_2:def 1
.= (A
/\ A) by
FUNCT_2:def 1
.= A;
now
let x be
object;
assume
a0: x
in (
dom (f
(#) g));
A3: (
dom (
multreal
.: (f,g)))
= A by
FUNCT_2:def 1;
thus (((
RealFuncMult A)
. (f,g))
. x)
= ((
multreal
.: (f,g))
. x) by
Def2
.= (
multreal
. ((f
. x),(g
. x))) by
a1,
a0,
A3,
FUNCOP_1: 22
.= ((f
. x)
* (g
. x)) by
BINOP_2:def 11
.= ((f
(#) g)
. x) by
VALUED_1: 5;
end;
hence thesis by
A1,
a1,
FUNCT_1: 2;
end;
theorem ::
FUNCSDOM:30
((
RealFuncExtMult A)
. (a,f))
= (a
(#) f)
proof
reconsider aa = a as
Element of
REAL by
XREAL_0:def 1;
set h = ((
RealFuncExtMult A)
. (a,f));
b1: (
dom (a
(#) f))
= (
dom f) by
VALUED_1:def 5
.= A by
FUNCT_2:def 1;
A2:
now
let x be
Element of A;
thus (h
. x)
= ((
multreal
[;] (aa,f))
. x) by
Def3
.= (
multreal
. (aa,(f
. x))) by
FUNCOP_1: 53
.= (a
* (f
. x)) by
BINOP_2:def 11
.= ((a
(#) f)
. x) by
VALUED_1:def 5,
b1;
end;
a
in
REAL & f
in (
Funcs (A,
REAL )) by
XREAL_0:def 1;
then
[a, f]
in
[:
REAL , (
Funcs (A,
REAL )):] by
ZFMISC_1: 87;
then ((
RealFuncExtMult A)
. (a,f)) is
Function of A,
REAL by
FUNCT_2: 66,
FUNCT_2: 5;
then
B1: (
dom ((
RealFuncExtMult A)
. (a,f)))
= A by
FUNCT_2:def 1;
for x be
object st x
in (
dom (a
(#) f)) holds (((
RealFuncExtMult A)
. (a,f))
. x)
= ((a
(#) f)
. x) by
A2,
b1;
hence thesis by
FUNCT_1: 2,
B1,
b1;
end;