semi_af1.miz
begin
definition
let IT be non
empty
AffinStruct;
::
SEMI_AF1:def1
attr IT is
Semi_Affine_Space-like means
:
Def1: (for a,b be
Element of IT holds (a,b)
// (b,a)) & (for a,b,c be
Element of IT holds (a,b)
// (c,c)) & (for a,b,p,q,r,s be
Element of IT holds (a
<> b & (a,b)
// (p,q) & (a,b)
// (r,s) implies (p,q)
// (r,s))) & (for a,b,c be
Element of IT holds ((a,b)
// (a,c) implies (b,a)
// (b,c))) & (ex a,b,c be
Element of IT st not (a,b)
// (a,c)) & (for a,b,p be
Element of IT holds ex q be
Element of IT st ((a,b)
// (p,q) & (a,p)
// (b,q))) & (for o,a be
Element of IT holds (ex p be
Element of IT st (for b,c be
Element of IT holds (o,a)
// (o,p) & (ex d be
Element of IT st ((o,p)
// (o,b) implies (o,c)
// (o,d) & (p,c)
// (b,d)))))) & (for o,a,a9,b,b9,c,c9 be
Element of IT holds ( not (o,a)
// (o,b) & not (o,a)
// (o,c) & (o,a)
// (o,a9) & (o,b)
// (o,b9) & (o,c)
// (o,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))) & (for a,a9,b,b9,c,c9 be
Element of IT holds ( not (a,a9)
// (a,b) & not (a,a9)
// (a,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))) & (for a1,a2,a3,b1,b2,b3 be
Element of IT holds ((a1,a2)
// (a1,a3) & (b1,b2)
// (b1,b3) & (a1,b2)
// (a2,b1) & (a2,b3)
// (a3,b2) implies (a3,b1)
// (a1,b3))) & for a,b,c,d be
Element of IT holds ( not (a,b)
// (a,c) & (a,b)
// (c,d) & (a,c)
// (b,d) implies not (a,d)
// (b,c));
end
registration
cluster
Semi_Affine_Space-like for non
empty
AffinStruct;
existence
proof
consider SAS be
AffinPlane such that
A1: ((for o,a,a9,b,b9,c,c9 be
Element of SAS holds ( not (o,a)
// (o,b) & not (o,a)
// (o,c) & (o,a)
// (o,a9) & (o,b)
// (o,b9) & (o,c)
// (o,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))) & for a,a9,b,b9,c,c9 be
Element of SAS holds ( not (a,a9)
// (a,b) & not (a,a9)
// (a,c) & (a,a9)
// (b,b9) & (a,a9)
// (c,c9) & (a,b)
// (a9,b9) & (a,c)
// (a9,c9) implies (b,c)
// (b9,c9))) & ((for a1,a2,a3,b1,b2,b3 be
Element of SAS holds ((a1,a2)
// (a1,a3) & (b1,b2)
// (b1,b3) & (a1,b2)
// (a2,b1) & (a2,b3)
// (a3,b2) implies (a3,b1)
// (a1,b3))) & for a,b,c,d be
Element of SAS holds ( not (a,b)
// (a,c) & (a,b)
// (c,d) & (a,c)
// (b,d) implies not (a,d)
// (b,c))) by
PARDEPAP: 4;
reconsider AS = SAS as non
empty
AffinStruct;
take AS;
thus for a,b be
Element of AS holds (a,b)
// (b,a) by
DIRAF: 40;
thus thesis by
A1,
DIRAF: 40,
PARDEPAP: 5;
end;
end
definition
mode
Semi_Affine_Space is
Semi_Affine_Space-like non
empty
AffinStruct;
end
reserve SAS for
Semi_Affine_Space;
reserve a,a9,a1,a2,a3,a4,b,b9,c,c9,d,d9,d1,d2,o,p,p1,p2,q,r,r1,r2,s,x,y,t,z for
Element of SAS;
theorem ::
SEMI_AF1:1
Th1: (a,b)
// (a,b)
proof
(b,a)
// (b,b) by
Def1;
hence thesis by
Def1;
end;
theorem ::
SEMI_AF1:2
Th2: (a,b)
// (c,d) implies (c,d)
// (a,b)
proof
assume
A1: (a,b)
// (c,d);
(a,b)
// (a,b) by
Th1;
then a
<> b implies (c,d)
// (a,b) by
A1,
Def1;
hence thesis by
Def1;
end;
theorem ::
SEMI_AF1:3
Th3: (a,a)
// (b,c)
proof
(b,c)
// (a,a) by
Def1;
hence thesis by
Th2;
end;
theorem ::
SEMI_AF1:4
Th4: (a,b)
// (c,d) implies (b,a)
// (c,d)
proof
assume
A1: (a,b)
// (c,d);
(a,b)
// (b,a) by
Def1;
then a
<> b implies (b,a)
// (c,d) by
A1,
Def1;
hence thesis by
A1;
end;
theorem ::
SEMI_AF1:5
Th5: (a,b)
// (c,d) implies (a,b)
// (d,c)
proof
assume (a,b)
// (c,d);
then (c,d)
// (a,b) by
Th2;
then (d,c)
// (a,b) by
Th4;
hence thesis by
Th2;
end;
theorem ::
SEMI_AF1:6
Th6: (a,b)
// (c,d) implies (b,a)
// (c,d) & (a,b)
// (d,c) & (b,a)
// (d,c) & (c,d)
// (a,b) & (d,c)
// (a,b) & (c,d)
// (b,a) & (d,c)
// (b,a)
proof
assume (a,b)
// (c,d);
then (c,d)
// (a,b) by
Th2;
then
A1: (d,c)
// (a,b) by
Th4;
then
A2: (d,c)
// (b,a) by
Th5;
then (c,d)
// (b,a) by
Th4;
hence thesis by
A1,
A2,
Th2,
Th4;
end;
theorem ::
SEMI_AF1:7
Th7: (a,b)
// (a,c) implies (a,c)
// (a,b) & (b,a)
// (a,c) & (a,b)
// (c,a) & (a,c)
// (b,a) & (b,a)
// (c,a) & (c,a)
// (a,b) & (c,a)
// (b,a) & (b,a)
// (b,c) & (a,b)
// (b,c) & (b,a)
// (c,b) & (b,c)
// (b,a) & (a,b)
// (c,b) & (c,b)
// (b,a) & (b,c)
// (a,b) & (c,b)
// (a,b) & (c,a)
// (c,b) & (a,c)
// (c,b) & (c,a)
// (b,c) & (a,c)
// (b,c) & (c,b)
// (c,a) & (b,c)
// (c,a) & (c,b)
// (a,c) & (b,c)
// (a,c)
proof
assume
A1: (a,b)
// (a,c);
then (a,c)
// (a,b) by
Th2;
then
A2: (c,a)
// (c,b) by
Def1;
(b,a)
// (b,c) by
A1,
Def1;
hence thesis by
A1,
A2,
Th6;
end;
theorem ::
SEMI_AF1:8
Th8: a
<> b & (p,q)
// (a,b) & (a,b)
// (r,s) implies (p,q)
// (r,s)
proof
assume that
A1: a
<> b and
A2: (p,q)
// (a,b) and
A3: (a,b)
// (r,s);
(a,b)
// (p,q) by
A2,
Th6;
hence thesis by
A1,
A3,
Def1;
end;
theorem ::
SEMI_AF1:9
not (a,b)
// (a,d) implies a
<> b & b
<> d & d
<> a by
Def1,
Th1,
Th3;
theorem ::
SEMI_AF1:10
not (a,b)
// (p,q) implies a
<> b & p
<> q by
Def1,
Th3;
theorem ::
SEMI_AF1:11
(a,b)
// (a,x) & (b,c)
// (b,x) & (c,a)
// (c,x) implies (a,b)
// (a,c)
proof
assume that
A1: (a,b)
// (a,x) and
A2: (b,c)
// (b,x) and
A3: (c,a)
// (c,x);
now
assume
A4: a
<> x;
(a,x)
// (a,b) & (a,x)
// (a,c) by
A1,
A3,
Th7;
hence thesis by
A4,
Def1;
end;
hence thesis by
A2,
Th7;
end;
theorem ::
SEMI_AF1:12
Th12: not (a,b)
// (a,c) & p
<> q implies not (p,q)
// (p,a) or not (p,q)
// (p,b) or not (p,q)
// (p,c)
proof
assume that
A1: not (a,b)
// (a,c) and
A2: p
<> q;
now
assume that
A3: a
<> p and
A4: (p,q)
// (p,a) and
A5: (p,q)
// (p,b) and
A6: (p,q)
// (p,c);
(p,a)
// (p,c) by
A2,
A4,
A6,
Def1;
then
A7: (a,p)
// (a,c) by
Def1;
(p,a)
// (p,b) by
A2,
A4,
A5,
Def1;
then (a,p)
// (a,b) by
Def1;
hence contradiction by
A1,
A3,
A7,
Def1;
end;
hence thesis by
A1,
A2,
Def1;
end;
theorem ::
SEMI_AF1:13
Th13: p
<> q implies ex r st not (p,q)
// (p,r)
proof
consider a, b, c such that
A1: not (a,b)
// (a,c) by
Def1;
assume p
<> q;
then not (p,q)
// (p,a) or not (p,q)
// (p,b) or not (p,q)
// (p,c) by
A1,
Th12;
hence thesis;
end;
theorem ::
SEMI_AF1:14
Th14: not (a,b)
// (a,c) implies not (a,b)
// (c,a) & not (b,a)
// (a,c) & not (b,a)
// (c,a) & not (a,c)
// (a,b) & not (a,c)
// (b,a) & not (c,a)
// (a,b) & not (c,a)
// (b,a) & not (b,a)
// (b,c) & not (b,a)
// (c,b) & not (a,b)
// (b,c) & not (a,b)
// (c,b) & not (b,c)
// (b,a) & not (b,c)
// (a,b) & not (c,b)
// (a,b) & not (c,b)
// (b,a) & not (c,b)
// (c,a) & not (c,b)
// (a,c) & not (b,c)
// (c,a) & not (b,c)
// (a,c) & not (c,a)
// (c,b) & not (c,a)
// (b,c) & not (a,c)
// (b,c) & not (a,c)
// (c,b)
proof
assume
A1: not (a,b)
// (a,c);
A2:
now
assume (a,c)
// (c,b);
then (c,a)
// (c,b) by
Th6;
hence contradiction by
A1,
Th7;
end;
assume
A3: not thesis;
not (b,a)
// (b,c) by
A1,
Th7;
hence thesis by
A1,
A3,
A2,
Th6;
end;
theorem ::
SEMI_AF1:15
Th15: not (a,b)
// (c,d) & (a,b)
// (p,q) & (c,d)
// (r,s) & p
<> q & r
<> s implies not (p,q)
// (r,s)
proof
assume that
A1: not (a,b)
// (c,d) and
A2: (a,b)
// (p,q) and
A3: (c,d)
// (r,s) and
A4: p
<> q and
A5: r
<> s;
assume (p,q)
// (r,s);
then (a,b)
// (r,s) by
A2,
A4,
Th8;
then
A6: (r,s)
// (a,b) by
Th6;
(r,s)
// (c,d) by
A3,
Th6;
hence contradiction by
A1,
A5,
A6,
Def1;
end;
theorem ::
SEMI_AF1:16
Th16: not (a,b)
// (a,c) & (a,b)
// (p,q) & (a,c)
// (p,r) & (b,c)
// (q,r) & p
<> q implies not (p,q)
// (p,r)
proof
assume that
A1: not (a,b)
// (a,c) and
A2: (a,b)
// (p,q) and
A3: (a,c)
// (p,r) and
A4: (b,c)
// (q,r) and
A5: p
<> q;
now
assume p
= r;
then
A6: (p,q)
// (b,c) by
A4,
Th6;
(p,q)
// (a,b) by
A2,
Th6;
then (a,b)
// (b,c) by
A5,
A6,
Def1;
then (b,a)
// (b,c) by
Th4;
hence contradiction by
A1,
Th7;
end;
hence thesis by
A1,
A2,
A3,
A5,
Th15;
end;
theorem ::
SEMI_AF1:17
Th17: not (a,b)
// (a,c) & (a,c)
// (p,r) & (b,c)
// (p,r) implies p
= r
proof
assume that
A1: ( not (a,b)
// (a,c)) & (a,c)
// (p,r) and
A2: (b,c)
// (p,r);
A3: (p,r)
// (b,c) by
A2,
Th6;
( not (a,c)
// (b,c)) & (p,r)
// (a,c) by
A1,
Th6,
Th14;
hence thesis by
A3,
Def1;
end;
theorem ::
SEMI_AF1:18
Th18: not (p,q)
// (p,r1) & (p,r1)
// (p,r2) & (q,r1)
// (q,r2) implies r1
= r2
proof
assume that
A1: ( not (p,q)
// (p,r1)) & (p,r1)
// (p,r2) and
A2: (q,r1)
// (q,r2);
A3: (r1,r2)
// (r1,q) by
A2,
Th14;
( not (r1,p)
// (r1,q)) & (r1,r2)
// (r1,p) by
A1,
Th14;
hence thesis by
A3,
Def1;
end;
theorem ::
SEMI_AF1:19
Th19: not (a,b)
// (a,c) & (a,b)
// (p,q) & (a,c)
// (p,r1) & (a,c)
// (p,r2) & (b,c)
// (q,r1) & (b,c)
// (q,r2) implies r1
= r2
proof
assume that
A1: not (a,b)
// (a,c) and
A2: (a,b)
// (p,q) and
A3: (a,c)
// (p,r1) and
A4: (a,c)
// (p,r2) and
A5: (b,c)
// (q,r1) and
A6: (b,c)
// (q,r2);
A7:
now
b
<> c by
A1,
Th1;
then
A8: (q,r1)
// (q,r2) by
A5,
A6,
Def1;
a
<> c by
A1,
Def1;
then
A9: (p,r1)
// (p,r2) by
A3,
A4,
Def1;
assume p
<> q;
then not (p,q)
// (p,r1) by
A1,
A2,
A3,
A5,
Th16;
hence thesis by
A9,
A8,
Th18;
end;
now
assume
A10: p
= q;
then p
= r1 by
A1,
A3,
A5,
Th17;
hence thesis by
A1,
A4,
A6,
A10,
Th17;
end;
hence thesis by
A7;
end;
theorem ::
SEMI_AF1:20
a
= b or c
= d or a
= c & b
= d or a
= d & b
= c implies (a,b)
// (c,d) by
Def1,
Th1,
Th3;
theorem ::
SEMI_AF1:21
a
= b or a
= c or b
= c implies (a,b)
// (a,c) by
Def1,
Th1,
Th3;
definition
let SAS, a, b, c;
::
SEMI_AF1:def2
pred a,b,c
are_collinear means (a,b)
// (a,c);
end
theorem ::
SEMI_AF1:22
Th22: (a1,a2,a3)
are_collinear implies (a1,a3,a2)
are_collinear & (a2,a1,a3)
are_collinear & (a2,a3,a1)
are_collinear & (a3,a1,a2)
are_collinear & (a3,a2,a1)
are_collinear by
Th7;
theorem ::
SEMI_AF1:23
Th23: not (a,b,c)
are_collinear & (a,b)
// (p,q) & (a,c)
// (p,r) & p
<> q & p
<> r implies not (p,q,r)
are_collinear by
Th15;
theorem ::
SEMI_AF1:24
Th24: a
= b or b
= c or c
= a implies (a,b,c)
are_collinear by
Def1,
Th1,
Th3;
theorem ::
SEMI_AF1:25
Th25: p
<> q implies ex r st not (p,q,r)
are_collinear
proof
assume p
<> q;
then
consider r such that
A1: not (p,q)
// (p,r) by
Th13;
take r;
thus thesis by
A1;
end;
theorem ::
SEMI_AF1:26
Th26: (a,b,c)
are_collinear & (a,b,d)
are_collinear implies (a,b)
// (c,d)
proof
assume that
A1: (a,b,c)
are_collinear and
A2: (a,b,d)
are_collinear ;
now
assume that
A3: a
<> b and
A4: a
<> c;
A5: (a,b)
// (a,c) by
A1;
(a,b)
// (a,d) by
A2;
then (a,c)
// (a,d) by
A3,
A5,
Def1;
then (a,c)
// (c,d) by
Th7;
hence thesis by
A4,
A5,
Th8;
end;
hence thesis by
A2,
Th3;
end;
theorem ::
SEMI_AF1:27
Th27: not (a,b,c)
are_collinear & (a,b)
// (c,d) implies not (a,b,d)
are_collinear
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b)
// (c,d);
now
assume that
A3: c
<> d and
A4: (a,b,d)
are_collinear ;
(a,b)
// (a,d) by
A4;
then
A5: (a,b)
// (d,a) by
Th6;
A6: (a,b)
// (d,c) by
A2,
Th6;
A7: (a,c)
// (c,a) by
Def1;
A8: not (a,b)
// (a,c) by
A1;
then a
<> b by
Th3;
then
A9: (d,c)
// (d,a) by
A6,
A5,
Def1;
c
<> a by
A8,
Def1;
then not (c,d)
// (c,a) by
A2,
A3,
A8,
A7,
Th15;
hence contradiction by
A9,
Th7;
end;
hence thesis by
A1;
end;
theorem ::
SEMI_AF1:28
Th28: not (a,b,c)
are_collinear & (a,b)
// (c,d) & c
<> d & (c,d,x)
are_collinear implies not (a,b,x)
are_collinear by
Th8,
Th27;
theorem ::
SEMI_AF1:29
not (o,a,b)
are_collinear & (o,a,x)
are_collinear & (o,b,x)
are_collinear implies o
= x
proof
assume that
A1: not (o,a,b)
are_collinear and
A2: (o,a,x)
are_collinear and
A3: (o,b,x)
are_collinear ;
(b,o,x)
are_collinear by
A3,
Th22;
then
A4: (b,o)
// (b,x);
(o,a)
// (o,x) by
A2;
then
A5: (a,o)
// (a,x) by
Th14;
not (a,b,o)
are_collinear by
A1,
Th22;
then not (a,b)
// (a,o);
hence thesis by
A5,
A4,
Th18;
end;
theorem ::
SEMI_AF1:30
o
<> a & o
<> b & (o,a,b)
are_collinear & (o,a,a9)
are_collinear & (o,b,b9)
are_collinear implies (a,b)
// (a9,b9)
proof
assume that
A1: o
<> a and
A2: o
<> b and
A3: (o,a,b)
are_collinear and
A4: (o,a,a9)
are_collinear and
A5: (o,b,b9)
are_collinear ;
A6:
now
A7: (o,a)
// (o,b) by
A3;
(o,a)
// (o,a9) by
A4;
then
A8: (o,b)
// (o,a9) by
A1,
A7,
Def1;
(o,b)
// (o,b9) by
A5;
then (o,a9)
// (o,b9) by
A2,
A8,
Def1;
then
A9: (o,a9)
// (a9,b9) by
Th7;
(o,b)
// (a,b) by
A7,
Th7;
then
A10: (a,b)
// (o,a9) by
A2,
A8,
Def1;
assume o
<> a9;
hence thesis by
A10,
A9,
Th8;
end;
now
assume
A11: o
= a9;
then (a9,a)
// (a9,b) by
A3;
then
A12: (a,b)
// (a9,b) by
Th7;
(a9,b)
// (a9,b9) by
A5,
A11;
hence thesis by
A2,
A11,
A12,
Th8;
end;
hence thesis by
A6;
end;
theorem ::
SEMI_AF1:31
not (a,b)
// (c,d) & (a,b,p1)
are_collinear & (a,b,p2)
are_collinear & (c,d,p1)
are_collinear & (c,d,p2)
are_collinear implies p1
= p2
proof
assume that
A1: not (a,b)
// (c,d) and
A2: (a,b,p1)
are_collinear & (a,b,p2)
are_collinear and
A3: (c,d,p1)
are_collinear & (c,d,p2)
are_collinear ;
(c,d)
// (p1,p2) by
A3,
Th26;
then
A4: (p1,p2)
// (c,d) by
Th6;
(a,b)
// (p1,p2) by
A2,
Th26;
then (p1,p2)
// (a,b) by
Th6;
hence thesis by
A1,
A4,
Def1;
end;
theorem ::
SEMI_AF1:32
Th32: a
<> b & (a,b,c)
are_collinear & (a,b)
// (c,d) implies (a,c)
// (b,d)
proof
assume that
A1: a
<> b and
A2: (a,b,c)
are_collinear and
A3: (a,b)
// (c,d);
now
A4: (a,b)
// (a,c) by
A2;
then (a,b)
// (c,b) by
Th7;
then (c,b)
// (c,d) by
A1,
A3,
Def1;
then
A5: (b,c)
// (b,d) by
Th7;
assume
A6: b
<> c;
(b,c)
// (a,c) by
A4,
Th7;
hence thesis by
A6,
A5,
Def1;
end;
hence thesis by
A3;
end;
theorem ::
SEMI_AF1:33
Th33: a
<> b & (a,b,c)
are_collinear & (a,b)
// (c,d) implies (c,b)
// (c,d)
proof
assume that
A1: a
<> b and
A2: (a,b,c)
are_collinear and
A3: (a,b)
// (c,d);
now
(a,b)
// (a,c) by
A2;
then
A4: (a,c)
// (c,b) & (a,c)
// (c,d) by
A1,
A3,
Def1,
Th7;
assume a
<> c;
hence thesis by
A4,
Def1;
end;
hence thesis by
A3;
end;
theorem ::
SEMI_AF1:34
Th34: not (o,a,c)
are_collinear & (o,a,b)
are_collinear & (o,c,d1)
are_collinear & (o,c,d2)
are_collinear & (a,c)
// (b,d1) & (a,c)
// (b,d2) implies d1
= d2 by
Th19;
theorem ::
SEMI_AF1:35
a
<> b & (a,b,c)
are_collinear & (a,b,d)
are_collinear implies (a,c,d)
are_collinear by
Def1;
definition
let SAS, a, b, c, d;
::
SEMI_AF1:def3
pred
parallelogram a,b,c,d means not (a,b,c)
are_collinear & (a,b)
// (c,d) & (a,c)
// (b,d);
end
theorem ::
SEMI_AF1:36
Th36:
parallelogram (a,b,c,d) implies a
<> b & a
<> c & c
<> b & a
<> d & b
<> d & c
<> d
proof
assume
A1:
parallelogram (a,b,c,d);
then not (a,b,c)
are_collinear ;
hence a
<> b & a
<> c & c
<> b by
Th24;
A2:
now
assume a
= d;
then (a,b)
// (c,a) by
A1;
then
A3: (a,b)
// (a,c) by
Th6;
not (a,b,c)
are_collinear by
A1;
hence contradiction by
A3;
end;
A4:
now
assume c
= d;
then (a,c)
// (b,c) by
A1;
then (c,a)
// (c,b) by
Th6;
then
A5: (c,a,b)
are_collinear ;
not (a,b,c)
are_collinear by
A1;
hence contradiction by
A5,
Th22;
end;
A6:
now
assume b
= d;
then (a,b)
// (c,b) by
A1;
then (b,a)
// (b,c) by
Th6;
then
A7: (b,a,c)
are_collinear ;
not (a,b,c)
are_collinear by
A1;
hence contradiction by
A7,
Th22;
end;
assume not thesis;
hence contradiction by
A2,
A6,
A4;
end;
theorem ::
SEMI_AF1:37
Th37:
parallelogram (a,b,c,d) implies not (a,b,c)
are_collinear & not (b,a,d)
are_collinear & not (c,d,a)
are_collinear & not (d,c,b)
are_collinear
proof
A1: (a,b)
// (b,a) by
Def1;
assume
A2:
parallelogram (a,b,c,d);
hence not (a,b,c)
are_collinear ;
A3: b
<> a & b
<> d by
A2,
Th36;
(a,c)
// (b,d) by
A2;
then
A4: (a,c)
// (d,b) by
Th6;
(a,b)
// (c,d) by
A2;
then
A5: (a,b)
// (d,c) by
Th6;
( not (a,b,c)
are_collinear ) & (a,c)
// (b,d) by
A2;
hence not (b,a,d)
are_collinear by
A1,
A3,
Th23;
A6: (a,c)
// (c,a) by
Def1;
A7: c
<> d & c
<> a by
A2,
Th36;
( not (a,b,c)
are_collinear ) & (a,b)
// (c,d) by
A2;
hence not (c,d,a)
are_collinear by
A6,
A7,
Th23;
A8: d
<> b by
A2,
Th36;
( not (a,b,c)
are_collinear ) & c
<> d by
A2,
Th36;
hence thesis by
A5,
A4,
A8,
Th23;
end;
theorem ::
SEMI_AF1:38
Th38:
parallelogram (a1,a2,a3,a4) implies not (a1,a2,a3)
are_collinear & not (a1,a3,a2)
are_collinear & not (a1,a2,a4)
are_collinear & not (a1,a4,a2)
are_collinear & not (a1,a3,a4)
are_collinear & not (a1,a4,a3)
are_collinear & not (a2,a1,a3)
are_collinear & not (a2,a3,a1)
are_collinear & not (a2,a1,a4)
are_collinear & not (a2,a4,a1)
are_collinear & not (a2,a3,a4)
are_collinear & not (a2,a4,a3)
are_collinear & not (a3,a1,a2)
are_collinear & not (a3,a2,a1)
are_collinear & not (a3,a1,a4)
are_collinear & not (a3,a4,a1)
are_collinear & not (a3,a2,a4)
are_collinear & not (a3,a4,a2)
are_collinear & not (a4,a1,a2)
are_collinear & not (a4,a2,a1)
are_collinear & not (a4,a1,a3)
are_collinear & not (a4,a3,a1)
are_collinear & not (a4,a2,a3)
are_collinear & not (a4,a3,a2)
are_collinear
proof
assume
A1:
parallelogram (a1,a2,a3,a4);
then
A2: ( not (a3,a4,a1)
are_collinear ) & not (a4,a3,a2)
are_collinear by
Th37;
( not (a1,a2,a3)
are_collinear ) & not (a2,a1,a4)
are_collinear by
A1,
Th37;
hence thesis by
A2,
Th22;
end;
theorem ::
SEMI_AF1:39
Th39:
parallelogram (a,b,c,d) implies not (a,b,x)
are_collinear or not (c,d,x)
are_collinear
proof
assume
A1:
parallelogram (a,b,c,d);
then
A2: c
<> d by
Th36;
( not (a,b,c)
are_collinear ) & (a,b)
// (c,d) by
A1;
hence thesis by
A2,
Th28;
end;
theorem ::
SEMI_AF1:40
parallelogram (a,b,c,d) implies
parallelogram (a,c,b,d) by
Th38;
theorem ::
SEMI_AF1:41
parallelogram (a,b,c,d) implies
parallelogram (c,d,a,b) by
Th6,
Th38;
theorem ::
SEMI_AF1:42
parallelogram (a,b,c,d) implies
parallelogram (b,a,d,c) by
Th6,
Th38;
theorem ::
SEMI_AF1:43
Th43:
parallelogram (a,b,c,d) implies
parallelogram (a,c,b,d) &
parallelogram (c,d,a,b) &
parallelogram (b,a,d,c) &
parallelogram (c,a,d,b) &
parallelogram (d,b,c,a) &
parallelogram (b,d,a,c) by
Th38,
Th6;
theorem ::
SEMI_AF1:44
Th44: not (a,b,c)
are_collinear implies ex d st
parallelogram (a,b,c,d)
proof
assume
A1: not (a,b,c)
are_collinear ;
consider d such that
A2: (a,b)
// (c,d) & (a,c)
// (b,d) by
Def1;
take d;
thus thesis by
A1,
A2;
end;
theorem ::
SEMI_AF1:45
Th45:
parallelogram (a,b,c,d1) &
parallelogram (a,b,c,d2) implies d1
= d2
proof
assume that
A1:
parallelogram (a,b,c,d1) and
A2:
parallelogram (a,b,c,d2);
not (b,c,a)
are_collinear by
A1,
Th38;
then
A3: not (b,c)
// (b,a);
(a,c)
// (b,d2) by
A2;
then
A4: (c,a)
// (b,d2) by
Th6;
(a,b)
// (c,d2) by
A2;
then
A5: (b,a)
// (c,d2) by
Th6;
(a,c)
// (b,d1) by
A1;
then
A6: (c,a)
// (b,d1) by
Th6;
(a,b)
// (c,d1) by
A1;
then
A7: (b,a)
// (c,d1) by
Th6;
(b,c)
// (c,b) by
Def1;
hence thesis by
A3,
A7,
A5,
A6,
A4,
Th19;
end;
theorem ::
SEMI_AF1:46
Th46:
parallelogram (a,b,c,d) implies not (a,d)
// (b,c)
proof
assume
A1:
parallelogram (a,b,c,d);
then not (a,b,c)
are_collinear ;
then
A2: not (a,b)
// (a,c);
(a,b)
// (c,d) & (a,c)
// (b,d) by
A1;
hence thesis by
A2,
Def1;
end;
theorem ::
SEMI_AF1:47
Th47:
parallelogram (a,b,c,d) implies not
parallelogram (a,b,d,c)
proof
assume
A1:
parallelogram (a,b,c,d);
then not (a,b,c)
are_collinear ;
then
A2: not (a,b)
// (a,c);
assume not thesis;
then
A3: (a,d)
// (b,c);
(a,b)
// (c,d) & (a,c)
// (b,d) by
A1;
hence contradiction by
A3,
A2,
Def1;
end;
theorem ::
SEMI_AF1:48
Th48: a
<> b implies ex c st (a,b,c)
are_collinear & c
<> a & c
<> b
proof
assume a
<> b;
then
consider p such that
A1: not (a,b,p)
are_collinear by
Th25;
consider q such that
A2:
parallelogram (a,b,p,q) by
A1,
Th44;
not (p,q,b)
are_collinear by
A2,
Th38;
then
consider c such that
A3:
parallelogram (p,q,b,c) by
Th44;
take c;
A4: (p,q)
// (b,c) by
A3;
p
<> q & (a,b)
// (p,q) by
A2,
Th36;
then (a,b)
// (b,c) by
A4,
Th8;
then (b,a)
// (b,c) by
Th6;
then
A5: (b,a,c)
are_collinear ;
A6: not (a,q)
// (b,p) by
A2,
Th46;
(p,b)
// (q,c) & not (b,c,p)
are_collinear by
A3,
Th37;
hence thesis by
A6,
A5,
Th6,
Th22,
Th24;
end;
theorem ::
SEMI_AF1:49
Th49:
parallelogram (a,a9,b,b9) &
parallelogram (a,a9,c,c9) implies (b,c)
// (b9,c9)
proof
assume that
A1:
parallelogram (a,a9,b,b9) and
A2:
parallelogram (a,a9,c,c9);
A3: (a,a9)
// (c,c9) & (a,c)
// (a9,c9) by
A2;
not (a,a9,c)
are_collinear by
A2;
then
A4: not (a,a9)
// (a,c);
not (a,a9,b)
are_collinear by
A1;
then
A5: not (a,a9)
// (a,b);
(a,a9)
// (b,b9) & (a,b)
// (a9,b9) by
A1;
hence thesis by
A5,
A4,
A3,
Def1;
end;
theorem ::
SEMI_AF1:50
Th50: not (b,b9,c)
are_collinear &
parallelogram (a,a9,b,b9) &
parallelogram (a,a9,c,c9) implies
parallelogram (b,b9,c,c9)
proof
assume that
A1: not (b,b9,c)
are_collinear and
A2:
parallelogram (a,a9,b,b9) and
A3:
parallelogram (a,a9,c,c9);
A4: (a,a9)
// (c,c9) by
A3;
a
<> a9 & (a,a9)
// (b,b9) by
A2,
Th36;
then
A5: (b,b9)
// (c,c9) by
A4,
Def1;
(b,c)
// (b9,c9) by
A2,
A3,
Th49;
hence thesis by
A1,
A5;
end;
theorem ::
SEMI_AF1:51
Th51: (a,b,c)
are_collinear & b
<> c &
parallelogram (a,a9,b,b9) &
parallelogram (a,a9,c,c9) implies
parallelogram (b,b9,c,c9)
proof
assume that
A1: (a,b,c)
are_collinear and
A2: b
<> c and
A3:
parallelogram (a,a9,b,b9) and
A4:
parallelogram (a,a9,c,c9);
A5: b
<> b9 by
A3,
Th36;
(a,b)
// (a,c) by
A1;
then
A6: (a,b)
// (b,c) by
Th7;
thus thesis by
A2,
A3,
A4,
A6,
A5,
Th23,
Th50;
end;
theorem ::
SEMI_AF1:52
Th52:
parallelogram (a,a9,b,b9) &
parallelogram (a,a9,c,c9) &
parallelogram (b,b9,d,d9) implies (c,d)
// (c9,d9)
proof
assume that
A1:
parallelogram (a,a9,b,b9) and
A2:
parallelogram (a,a9,c,c9) and
A3:
parallelogram (b,b9,d,d9);
A4:
now
assume
A5: not (a,a9,d)
are_collinear ;
parallelogram (b,b9,a,a9) by
A1,
Th43;
then
parallelogram (a,a9,d,d9) by
A3,
A5,
Th50;
hence thesis by
A2,
Th49;
end;
A6:
now
A7: ( not (a,a9,b)
are_collinear ) & (a,a9)
// (a,a9) by
A1,
Th1;
A8: a
<> a9 by
A1,
Th36;
assume that
A9: (b,b9,c)
are_collinear and
A10: (a,a9,d)
are_collinear ;
a
<> b by
A1,
Th36;
then
consider x such that
A11: (a,b,x)
are_collinear and
A12: x
<> a and
A13: x
<> b by
Th48;
(a,b)
// (a,x) by
A11;
then
consider y such that
A14:
parallelogram (a,a9,x,y) by
A12,
A7,
A8,
Th23,
Th44;
A15: not (x,y,d)
are_collinear by
A10,
A14,
Th39;
parallelogram (b,b9,x,y) by
A1,
A11,
A13,
A14,
Th51;
then
A16:
parallelogram (x,y,d,d9) by
A3,
A15,
Th50;
not (x,y,c)
are_collinear by
A1,
A9,
A11,
A13,
A14,
Th39,
Th51;
then
parallelogram (x,y,c,c9) by
A2,
A14,
Th50;
hence thesis by
A16,
Th49;
end;
now
assume not (b,b9,c)
are_collinear ;
then
parallelogram (b,b9,c,c9) by
A1,
A2,
Th50;
hence thesis by
A3,
Th49;
end;
hence thesis by
A4,
A6;
end;
Lm1: a
<> b implies ex c, d st
parallelogram (a,b,c,d)
proof
assume a
<> b;
then
consider c such that
A1: not (a,b,c)
are_collinear by
Th25;
ex d st
parallelogram (a,b,c,d) by
A1,
Th44;
hence thesis;
end;
theorem ::
SEMI_AF1:53
a
<> d implies ex b, c st
parallelogram (a,b,c,d)
proof
assume a
<> d;
then
consider b such that
A1: not (a,d,b)
are_collinear by
Th25;
not (b,a,d)
are_collinear by
A1,
Th22;
then
consider c such that
A2:
parallelogram (b,a,d,c) by
Th44;
parallelogram (a,b,c,d) by
A2,
Th43;
hence thesis;
end;
definition
let SAS, a, b, r, s;
::
SEMI_AF1:def4
pred
congr a,b,r,s means a
= b & r
= s or ex p, q st
parallelogram (p,q,a,b) &
parallelogram (p,q,r,s);
end
theorem ::
SEMI_AF1:54
Th54:
congr (a,a,b,c) implies b
= c by
Th36;
theorem ::
SEMI_AF1:55
Th55:
congr (a,b,c,c) implies a
= b by
Th36;
theorem ::
SEMI_AF1:56
Th56:
congr (a,b,b,a) implies a
= b by
Th47;
theorem ::
SEMI_AF1:57
Th57:
congr (a,b,c,d) implies (a,b)
// (c,d)
proof
assume
A1:
congr (a,b,c,d);
now
assume a
<> b;
then
consider p, q such that
A2:
parallelogram (p,q,a,b) and
A3:
parallelogram (p,q,c,d) by
A1;
A4: (p,q)
// (c,d) by
A3;
p
<> q & (p,q)
// (a,b) by
A2,
Th36;
hence thesis by
A4,
Def1;
end;
hence thesis by
Th3;
end;
theorem ::
SEMI_AF1:58
Th58:
congr (a,b,c,d) implies (a,c)
// (b,d)
proof
assume
A1:
congr (a,b,c,d);
then
A2: a
<> b implies thesis by
Th49;
now
assume
A3: a
= b;
then c
= d by
A1,
Th54;
hence thesis by
A3,
Th1;
end;
hence thesis by
A2;
end;
theorem ::
SEMI_AF1:59
Th59:
congr (a,b,c,d) & not (a,b,c)
are_collinear implies
parallelogram (a,b,c,d) by
Th57,
Th58;
theorem ::
SEMI_AF1:60
Th60:
parallelogram (a,b,c,d) implies
congr (a,b,c,d)
proof
A1: (a,b)
// (a,b) by
Th1;
assume
A2:
parallelogram (a,b,c,d);
then
A3: ( not (a,c,b)
are_collinear ) & a
<> b by
Th36,
Th38;
a
<> c by
A2,
Th36;
then
consider p such that
A4: (a,c,p)
are_collinear and
A5: a
<> p and
A6: c
<> p by
Th48;
(a,c)
// (a,p) by
A4;
then
consider q such that
A7:
parallelogram (a,p,b,q) by
A5,
A1,
A3,
Th23,
Th44;
parallelogram (a,b,p,q) by
A7,
Th43;
then
parallelogram (c,d,p,q) by
A2,
A4,
A6,
Th51;
then
A8:
parallelogram (p,q,c,d) by
Th43;
parallelogram (p,q,a,b) by
A7,
Th43;
hence thesis by
A8;
end;
theorem ::
SEMI_AF1:61
Th61:
congr (a,b,c,d) & (a,b,c)
are_collinear &
parallelogram (r,s,a,b) implies
parallelogram (r,s,c,d)
proof
assume that
A1:
congr (a,b,c,d) and
A2: (a,b,c)
are_collinear and
A3:
parallelogram (r,s,a,b);
now
A4:
parallelogram (a,b,r,s) by
A3,
Th43;
assume
A5: a
<> b;
then
consider p, q such that
A6:
parallelogram (p,q,a,b) and
A7:
parallelogram (p,q,c,d) by
A1;
parallelogram (a,b,p,q) by
A6,
Th43;
then
A8: (r,c)
// (s,d) by
A7,
A4,
Th52;
(r,s)
// (a,b) & (a,b)
// (c,d) by
A1,
A3,
Th57;
then
A9: (r,s)
// (c,d) by
A5,
Th8;
not (r,s,c)
are_collinear by
A2,
A3,
Th39;
hence thesis by
A9,
A8;
end;
hence thesis by
A3,
Th36;
end;
theorem ::
SEMI_AF1:62
Th62:
congr (a,b,c,x) &
congr (a,b,c,y) implies x
= y
proof
assume that
A1:
congr (a,b,c,x) and
A2:
congr (a,b,c,y);
A3:
now
assume that a
<> b and
A4: not (a,b,c)
are_collinear ;
parallelogram (a,b,c,x) &
parallelogram (a,b,c,y) by
A1,
A2,
A4,
Th59;
hence thesis by
Th45;
end;
A5:
now
assume that
A6: a
<> b and
A7: (a,b,c)
are_collinear ;
consider p, q such that
A8:
parallelogram (a,b,p,q) by
A6,
Lm1;
parallelogram (p,q,a,b) by
A8,
Th43;
then
parallelogram (p,q,c,x) &
parallelogram (p,q,c,y) by
A1,
A2,
A7,
Th61;
hence thesis by
Th45;
end;
now
assume
A9: a
= b;
then c
= x by
A1,
Th54;
hence thesis by
A2,
A9,
Th54;
end;
hence thesis by
A5,
A3;
end;
theorem ::
SEMI_AF1:63
Th63: ex d st
congr (a,b,c,d)
proof
A1:
now
assume a
= b;
then
congr (a,b,c,c);
hence thesis;
end;
A2:
now
assume that
A3: a
<> b and
A4: (a,b,c)
are_collinear ;
consider p, q such that
A5:
parallelogram (a,b,p,q) by
A3,
Lm1;
not (p,q,c)
are_collinear by
A4,
A5,
Th39;
then
consider d such that
A6:
parallelogram (p,q,c,d) by
Th44;
parallelogram (p,q,a,b) by
A5,
Th43;
then
congr (a,b,c,d) by
A6;
hence thesis;
end;
now
assume that a
<> b and
A7: not (a,b,c)
are_collinear ;
ex d st
parallelogram (a,b,c,d) by
A7,
Th44;
hence thesis by
Th60;
end;
hence thesis by
A1,
A2;
end;
theorem ::
SEMI_AF1:64
Th64:
congr (a,b,a,b)
proof
now
assume a
<> b;
then
consider p, q such that
A1:
parallelogram (a,b,p,q) by
Lm1;
parallelogram (p,q,a,b) by
A1,
Th43;
hence thesis;
end;
hence thesis;
end;
theorem ::
SEMI_AF1:65
Th65:
congr (r,s,a,b) &
congr (r,s,c,d) implies
congr (a,b,c,d)
proof
assume that
A1:
congr (r,s,a,b) and
A2:
congr (r,s,c,d);
A3:
now
assume that r
<> s and
A4: ( not (r,s,a)
are_collinear ) & not (r,s,c)
are_collinear ;
parallelogram (r,s,a,b) &
parallelogram (r,s,c,d) by
A1,
A2,
A4,
Th59;
hence thesis;
end;
A5:
now
assume that
A6: r
<> s and
A7: (r,s,c)
are_collinear ;
consider p, q such that
A8:
parallelogram (p,q,r,s) and
A9:
parallelogram (p,q,a,b) by
A1,
A6;
parallelogram (p,q,c,d) by
A2,
A7,
A8,
Th61;
hence thesis by
A9;
end;
A10:
now
assume that
A11: r
<> s and
A12: (r,s,a)
are_collinear ;
consider p, q such that
A13:
parallelogram (p,q,r,s) and
A14:
parallelogram (p,q,c,d) by
A2,
A11;
parallelogram (p,q,a,b) by
A1,
A12,
A13,
Th61;
hence thesis by
A14;
end;
r
= s implies thesis by
A1,
A2,
Th54;
hence thesis by
A10,
A5,
A3;
end;
theorem ::
SEMI_AF1:66
congr (a,b,c,d) implies
congr (c,d,a,b);
theorem ::
SEMI_AF1:67
Th67:
congr (a,b,c,d) implies
congr (b,a,d,c)
proof
assume
A1:
congr (a,b,c,d);
A2:
now
assume a
<> b;
then
consider p, q such that
A3:
parallelogram (p,q,a,b) &
parallelogram (p,q,c,d) by
A1;
parallelogram (q,p,b,a) &
parallelogram (q,p,d,c) by
A3,
Th43;
hence thesis;
end;
a
= b implies thesis by
A1,
Th54;
hence thesis by
A2;
end;
theorem ::
SEMI_AF1:68
Th68:
congr (a,b,c,d) implies
congr (a,c,b,d)
proof
assume
A1:
congr (a,b,c,d);
A2:
now
assume
A3: a
= c;
congr (a,b,a,b) by
Th64;
then b
= d by
A1,
A3,
Th62;
hence thesis by
A3;
end;
A4:
now
assume that
A5: a
<> b and
A6: a
<> c and
A7: (a,b,c)
are_collinear ;
A8: (a,b)
// (a,c) by
A7;
consider p, q such that
A9:
parallelogram (p,q,a,b) and
A10:
parallelogram (p,q,c,d) by
A1,
A5;
A11: (a,p)
// (a,p) by
Th1;
( not (a,b,p)
are_collinear ) & a
<> p by
A9,
Th36,
Th38;
then
consider r such that
A12:
parallelogram (a,c,p,r) by
A6,
A8,
A11,
Th23,
Th44;
A13: (a,c)
// (p,r) by
A12;
A14: (p,q)
// (c,d) by
A10;
p
<> q & (p,q)
// (a,b) by
A9,
Th36;
then
A15: (a,b)
// (c,d) by
A14,
Def1;
then (a,c)
// (b,d) by
A5,
A7,
Th32;
then
A16: (p,r)
// (b,d) by
A6,
A13,
Def1;
parallelogram (p,r,a,c) by
A12,
Th43;
then
A17: (p,a)
// (r,c);
(p,a)
// (q,b) & p
<> a by
A9,
Th36;
then
A18: (r,c)
// (q,b) by
A17,
Def1;
(p,c)
// (q,d) by
A10;
then
A19: (q,d)
// (p,c) by
Th6;
(p,q)
// (a,b) by
A9;
then
A20: (a,b)
// (p,q) by
Th6;
A21: (a,c)
// (p,r) by
A12;
(a,b)
// (a,c) by
A7;
then (a,c)
// (p,q) by
A5,
A20,
Def1;
then (p,q)
// (p,r) by
A6,
A21,
Def1;
then
A22: (r,q)
// (r,p) by
Th7;
(a,c,b)
are_collinear by
A7,
Th22;
then
A23: not (p,r,b)
are_collinear by
A12,
Th39;
A24:
parallelogram (p,r,a,c) by
A12,
Th43;
(c,b)
// (c,d) by
A5,
A7,
A15,
Th33;
then (b,c)
// (b,d) by
Th7;
then (p,b)
// (r,d) by
A22,
A18,
A19,
Def1;
then
parallelogram (p,r,b,d) by
A23,
A16;
hence thesis by
A24;
end;
A25:
now
assume that a
<> b and a
<> c and
A26: not (a,b,c)
are_collinear ;
parallelogram (a,b,c,d) by
A1,
A26,
Th59;
then
parallelogram (a,c,b,d) by
Th43;
hence thesis by
Th60;
end;
now
assume
A27: a
= b;
then c
= d by
A1,
Th54;
hence thesis by
A27,
Th64;
end;
hence thesis by
A2,
A4,
A25;
end;
theorem ::
SEMI_AF1:69
Th69:
congr (a,b,c,d) implies
congr (c,d,a,b) &
congr (b,a,d,c) &
congr (a,c,b,d) &
congr (d,c,b,a) &
congr (b,d,a,c) &
congr (c,a,d,b) &
congr (d,b,c,a)
proof
assume
A1:
congr (a,b,c,d);
then
congr (c,d,a,b);
then
A2:
congr (d,c,b,a) by
Th67;
congr (b,a,d,c) &
congr (a,c,b,d) by
A1,
Th67,
Th68;
hence thesis by
A2,
Th67,
Th68;
end;
theorem ::
SEMI_AF1:70
Th70:
congr (a,b,p,q) &
congr (b,c,q,s) implies
congr (a,c,p,s)
proof
assume
congr (a,b,p,q) &
congr (b,c,q,s);
then
congr (b,q,a,p) &
congr (b,q,c,s) by
Th69;
then
congr (a,p,c,s) by
Th65;
hence thesis by
Th68;
end;
theorem ::
SEMI_AF1:71
Th71:
congr (b,a,p,q) &
congr (c,a,p,r) implies
congr (b,c,r,q)
proof
assume that
A1:
congr (b,a,p,q) and
A2:
congr (c,a,p,r);
A3:
congr (r,p,a,c) by
A2,
Th69;
consider s such that
A4:
congr (p,q,r,s) by
Th63;
congr (r,p,s,q) by
A4,
Th69;
then
A5:
congr (a,c,s,q) by
A3,
Th65;
congr (p,q,b,a) by
A1;
then
congr (b,a,r,s) by
A4,
Th65;
hence thesis by
A5,
Th70;
end;
theorem ::
SEMI_AF1:72
congr (a,o,o,p) &
congr (b,o,o,q) implies
congr (a,b,q,p) by
Th71;
theorem ::
SEMI_AF1:73
Th73:
congr (b,a,p,q) &
congr (c,a,p,r) implies (b,c)
// (q,r)
proof
assume
congr (b,a,p,q) &
congr (c,a,p,r);
then
congr (b,c,r,q) by
Th71;
then (b,c)
// (r,q) by
Th57;
hence thesis by
Th6;
end;
theorem ::
SEMI_AF1:74
congr (a,o,o,p) &
congr (b,o,o,q) implies (a,b)
// (p,q) by
Th73;
definition
let SAS, a, b, o;
::
SEMI_AF1:def5
func
sum (a,b,o) ->
Element of SAS means
:
Def5:
congr (o,a,b,it );
correctness by
Th62,
Th63;
end
definition
let SAS, a, o;
::
SEMI_AF1:def6
func
opposite (a,o) ->
Element of SAS means
:
Def6: (
sum (a,it ,o))
= o;
existence
proof
consider b be
Element of SAS such that
A1:
congr (a,o,o,b) by
Th63;
take b;
congr (o,a,b,o) by
A1,
Th67;
hence thesis by
Def5;
end;
uniqueness
proof
let b1,b2 be
Element of SAS such that
A2: (
sum (a,b1,o))
= o and
A3: (
sum (a,b2,o))
= o;
congr (o,a,b2,o) by
A3,
Def5;
then
A4:
congr (a,o,o,b2) by
Th67;
congr (o,a,b1,o) by
A2,
Def5;
then
congr (a,o,o,b1) by
Th67;
hence thesis by
A4,
Th62;
end;
end
definition
let SAS, a, b, o;
::
SEMI_AF1:def7
func
diff (a,b,o) ->
Element of SAS equals (
sum (a,(
opposite (b,o)),o));
correctness ;
end
theorem ::
SEMI_AF1:75
Th75: (
sum (a,o,o))
= a by
Th64,
Def5;
theorem ::
SEMI_AF1:76
ex x st (
sum (a,x,o))
= o
proof
consider x such that
A1:
congr (a,o,o,x) by
Th63;
A2:
congr (o,a,x,(
sum (a,x,o))) by
Def5;
congr (o,a,x,o) by
A1,
Th69;
hence thesis by
A2,
Th62;
end;
theorem ::
SEMI_AF1:77
(
sum ((
sum (a,b,o)),c,o))
= (
sum (a,(
sum (b,c,o)),o))
proof
congr (o,a,b,(
sum (a,b,o))) &
congr (o,a,(
sum (b,c,o)),(
sum (a,(
sum (b,c,o)),o))) by
Def5;
then
A1:
congr (b,(
sum (a,b,o)),(
sum (b,c,o)),(
sum (a,(
sum (b,c,o)),o))) by
Th65;
congr (o,b,c,(
sum (b,c,o))) by
Def5;
then
A2:
congr (b,o,(
sum (b,c,o)),c) by
Th69;
congr (o,(
sum (a,b,o)),c,(
sum ((
sum (a,b,o)),c,o))) by
Def5;
then
congr (b,(
sum (a,b,o)),(
sum (b,c,o)),(
sum ((
sum (a,b,o)),c,o))) by
A2,
Th70;
hence thesis by
A1,
Th62;
end;
theorem ::
SEMI_AF1:78
Th78: (
sum (a,b,o))
= (
sum (b,a,o))
proof
congr (o,b,a,(
sum (b,a,o))) by
Def5;
then
congr (o,a,b,(
sum (b,a,o))) by
Th69;
hence thesis by
Def5;
end;
theorem ::
SEMI_AF1:79
(
sum (a,a,o))
= o implies a
= o
proof
assume (
sum (a,a,o))
= o;
then
congr (o,a,a,o) by
Def5;
hence thesis by
Th56;
end;
theorem ::
SEMI_AF1:80
(
sum (a,x,o))
= (
sum (a,y,o)) implies x
= y
proof
assume
A1: (
sum (a,x,o))
= (
sum (a,y,o));
congr (o,a,x,(
sum (a,x,o))) by
Def5;
then
A2:
congr (a,o,(
sum (a,x,o)),x) by
Th69;
congr (o,a,y,(
sum (a,y,o))) by
Def5;
then
congr (a,o,(
sum (a,x,o)),y) by
A1,
Th69;
hence thesis by
A2,
Th62;
end;
theorem ::
SEMI_AF1:81
Th81:
congr (a,o,o,(
opposite (a,o)))
proof
(
sum (a,(
opposite (a,o)),o))
= o &
congr (o,a,(
opposite (a,o)),(
sum (a,(
opposite (a,o)),o))) by
Def5,
Def6;
hence thesis by
Th69;
end;
theorem ::
SEMI_AF1:82
Th82: (
opposite (a,o))
= (
opposite (b,o)) implies a
= b
proof
assume
A1: (
opposite (a,o))
= (
opposite (b,o));
congr (a,o,o,(
opposite (a,o))) by
Th81;
then
A2:
congr ((
opposite (a,o)),o,o,a) by
Th69;
congr (b,o,o,(
opposite (b,o))) by
Th81;
then
congr ((
opposite (a,o)),o,o,b) by
A1,
Th69;
hence thesis by
A2,
Th62;
end;
theorem ::
SEMI_AF1:83
(a,b)
// ((
opposite (a,o)),(
opposite (b,o)))
proof
(
sum (b,(
opposite (b,o)),o))
= o by
Def6;
then
congr (o,b,(
opposite (b,o)),o) by
Def5;
then
A1:
congr (b,o,o,(
opposite (b,o))) by
Th69;
(
sum (a,(
opposite (a,o)),o))
= o by
Def6;
then
congr (o,a,(
opposite (a,o)),o) by
Def5;
then
congr (a,o,o,(
opposite (a,o))) by
Th69;
hence thesis by
A1,
Th73;
end;
theorem ::
SEMI_AF1:84
(
opposite (o,o))
= o
proof
(
sum (o,(
opposite (o,o)),o))
= o by
Def6;
then (
sum ((
opposite (o,o)),o,o))
= o by
Th78;
hence thesis by
Th75;
end;
theorem ::
SEMI_AF1:85
Th85: (p,q)
// ((
sum (p,r,o)),(
sum (q,r,o)))
proof
congr (o,p,r,(
sum (p,r,o))) by
Def5;
then
A1:
congr (p,o,(
sum (p,r,o)),r) by
Th69;
congr (o,q,r,(
sum (q,r,o))) by
Def5;
then
congr (p,q,(
sum (p,r,o)),(
sum (q,r,o))) by
A1,
Th70;
hence thesis by
Th57;
end;
theorem ::
SEMI_AF1:86
(p,q)
// (r,s) implies (p,q)
// ((
sum (p,r,o)),(
sum (q,s,o)))
proof
assume
A1: (p,q)
// (r,s);
now
consider t such that
A2:
congr (o,q,r,t) by
Th63;
assume that
A3: p
<> q and
A4: r
<> s;
congr (o,q,s,(
sum (q,s,o))) by
Def5;
then
congr (r,t,s,(
sum (q,s,o))) by
A2,
Th65;
then
A5:
congr (r,s,t,(
sum (q,s,o))) by
Th69;
then
A6: t
<> (
sum (q,s,o)) by
A4,
Th55;
(r,s)
// (t,(
sum (q,s,o))) by
A5,
Th57;
then
A7: (p,q)
// (t,(
sum (q,s,o))) by
A1,
A4,
Th8;
congr (o,p,r,(
sum (p,r,o))) by
Def5;
then
congr (p,o,(
sum (p,r,o)),r) by
Th69;
then
congr (p,q,(
sum (p,r,o)),t) by
A2,
Th70;
then (p,q)
// ((
sum (p,r,o)),t) by
Th57;
then (p,q)
// (t,(
sum (p,r,o))) by
Th6;
then (t,(
sum (q,s,o)))
// (t,(
sum (p,r,o))) by
A3,
A7,
Def1;
then (t,(
sum (q,s,o)))
// ((
sum (p,r,o)),(
sum (q,s,o))) by
Th7;
hence thesis by
A6,
A7,
Th8;
end;
hence thesis by
Th3,
Th85;
end;
theorem ::
SEMI_AF1:87
Th87: (
diff (a,b,o))
= o iff a
= b
proof
(
diff (a,b,o))
= o implies a
= b
proof
assume (
diff (a,b,o))
= o;
then (
opposite (a,o))
= (
opposite (b,o)) by
Def6;
hence thesis by
Th82;
end;
hence thesis by
Def6;
end;
theorem ::
SEMI_AF1:88
Th88: (o,(
diff (b,a,o)))
// (a,b)
proof
congr (a,o,o,(
opposite (a,o))) by
Th81;
then
A1:
congr (o,(
opposite (a,o)),a,o);
congr (o,b,(
opposite (a,o)),(
sum (b,(
opposite (a,o)),o))) by
Def5;
then
congr (o,(
opposite (a,o)),b,(
diff (b,a,o))) by
Th69;
then
congr (a,o,b,(
diff (b,a,o))) by
A1,
Th65;
then
congr (o,(
diff (b,a,o)),a,b) by
Th69;
hence thesis by
Th57;
end;
theorem ::
SEMI_AF1:89
(o,(
diff (b,a,o)),(
diff (d,c,o)))
are_collinear iff (a,b)
// (c,d)
proof
A1: (a,b)
// (c,d) implies (o,(
diff (b,a,o)),(
diff (d,c,o)))
are_collinear
proof
assume
A2: (a,b)
// (c,d);
A3:
now
(o,(
diff (d,c,o)))
// (c,d) by
Th88;
then
A4: (c,d)
// (o,(
diff (d,c,o))) by
Th6;
assume that
A5: a
<> b and
A6: c
<> d;
(o,(
diff (b,a,o)))
// (a,b) by
Th88;
then (a,b)
// (o,(
diff (b,a,o))) by
Th6;
then (o,(
diff (b,a,o)))
// (c,d) by
A2,
A5,
Def1;
then (o,(
diff (b,a,o)))
// (o,(
diff (d,c,o))) by
A6,
A4,
Th8;
hence thesis;
end;
now
assume a
= b or c
= d;
then o
= (
diff (b,a,o)) or o
= (
diff (d,c,o)) by
Th87;
then (o,(
diff (b,a,o)))
// (o,(
diff (d,c,o))) by
Def1,
Th3;
hence thesis;
end;
hence thesis by
A3;
end;
(o,(
diff (b,a,o)),(
diff (d,c,o)))
are_collinear implies (a,b)
// (c,d)
proof
assume
A7: (o,(
diff (b,a,o)),(
diff (d,c,o)))
are_collinear ;
A8:
now
A9: (o,(
diff (d,c,o)))
// (c,d) by
Th88;
assume that
A10: o
<> (
diff (b,a,o)) and
A11: o
<> (
diff (d,c,o));
(o,(
diff (b,a,o)))
// (o,(
diff (d,c,o))) & (o,(
diff (b,a,o)))
// (a,b) by
A7,
Th88;
then (o,(
diff (d,c,o)))
// (a,b) by
A10,
Def1;
hence thesis by
A11,
A9,
Def1;
end;
now
assume o
= (
diff (b,a,o)) or o
= (
diff (d,c,o));
then a
= b or c
= d by
Th87;
hence thesis by
Def1,
Th3;
end;
hence thesis by
A8;
end;
hence thesis by
A1;
end;
definition
let SAS, a, b, c, d, o;
::
SEMI_AF1:def8
pred
trap a,b,c,d,o means not (o,a,c)
are_collinear & (o,a,b)
are_collinear & (o,c,d)
are_collinear & (a,c)
// (b,d);
end
definition
let SAS, o, p;
::
SEMI_AF1:def9
pred
qtrap o,p means for b, c holds ex d st ((o,p,b)
are_collinear implies (o,c,d)
are_collinear & (p,c)
// (b,d));
end
theorem ::
SEMI_AF1:90
Th90:
trap (a,b,c,d,o) implies o
<> a & a
<> c & c
<> o by
Th24;
theorem ::
SEMI_AF1:91
trap (a,b,c,x,o) &
trap (a,b,c,y,o) implies x
= y by
Th34;
theorem ::
SEMI_AF1:92
not (o,a,b)
are_collinear implies
trap (a,o,b,o,o) by
Def1,
Th24;
theorem ::
SEMI_AF1:93
Th93:
trap (a,b,c,d,o) implies
trap (c,d,a,b,o) by
Th22,
Th6;
theorem ::
SEMI_AF1:94
Th94:
trap (a,b,c,d,d) implies d
= b
proof
assume
A1:
trap (a,b,c,d,d);
then (a,c)
// (b,d);
then
A2: (d,b)
// (a,c) by
Th6;
(d,a,b)
are_collinear by
A1;
then (d,a)
// (d,b);
then
A3: (d,b)
// (a,d) by
Th6;
assume not thesis;
then (a,d)
// (a,c) by
A3,
A2,
Def1;
then
A4: (d,a)
// (d,c) by
Th7;
not (d,a,c)
are_collinear by
A1;
hence contradiction by
A4;
end;
theorem ::
SEMI_AF1:95
Th95: o
<> b &
trap (a,b,c,d,o) implies not (o,b,d)
are_collinear
proof
assume that
A1: o
<> b and
A2:
trap (a,b,c,d,o);
(o,a,b)
are_collinear by
A2;
then
A3: (o,a)
// (o,b);
(o,c,d)
are_collinear by
A2;
then
A4: (o,c)
// (o,d);
o
<> d & not (o,a,c)
are_collinear by
A1,
A2,
Th94;
hence thesis by
A1,
A3,
A4,
Th23;
end;
theorem ::
SEMI_AF1:96
o
<> b &
trap (a,b,c,d,o) implies
trap (b,a,d,c,o) by
Th22,
Th6,
Th95;
theorem ::
SEMI_AF1:97
trap (a,b,c,d,b) implies b
= d by
Th93,
Th94;
theorem ::
SEMI_AF1:98
Th98:
trap (a,p,b,q,o) &
trap (a,p,c,r,o) implies (b,c)
// (q,r)
proof
assume that
A1:
trap (a,p,b,q,o) and
A2:
trap (a,p,c,r,o);
not (o,a,b)
are_collinear by
A1;
then
A3: not (o,a)
// (o,b);
(o,c,r)
are_collinear by
A2;
then
A4: (o,c)
// (o,r);
not (o,a,c)
are_collinear by
A2;
then
A5: not (o,a)
// (o,c);
(o,b,q)
are_collinear by
A1;
then
A6: (o,b)
// (o,q);
(o,a,p)
are_collinear by
A1;
then
A7: (o,a)
// (o,p);
(a,b)
// (p,q) & (a,c)
// (p,r) by
A1,
A2;
hence thesis by
A3,
A7,
A6,
A5,
A4,
Def1;
end;
theorem ::
SEMI_AF1:99
Th99:
trap (a,p,b,q,o) &
trap (a,p,c,r,o) & not (o,b,c)
are_collinear implies
trap (b,q,c,r,o) by
Th98;
theorem ::
SEMI_AF1:100
trap (a,p,b,q,o) &
trap (a,p,c,r,o) &
trap (b,q,d,s,o) implies (c,d)
// (r,s)
proof
assume that
A1:
trap (a,p,b,q,o) and
A2:
trap (a,p,c,r,o) and
A3:
trap (b,q,d,s,o);
A4:
now
assume
A5: not (o,a,d)
are_collinear ;
trap (b,q,a,p,o) by
A1,
Th93;
then
trap (a,p,d,s,o) by
A3,
A5,
Th99;
hence thesis by
A2,
Th98;
end;
A6:
now
not (o,a,b)
are_collinear by
A1;
then not (b,a,o)
are_collinear by
Th22;
then
consider x such that
A7:
parallelogram (b,a,o,x) by
Th44;
(o,b,q)
are_collinear by
A1;
then (o,b)
// (o,q);
then
A8: (b,o)
// (q,o) by
Th6;
A9: (o,x)
// (o,x) by
Th1;
(b,o)
// (a,x) & b
<> o by
A7,
Th36;
then
A10: (q,o)
// (a,x) by
A8,
Def1;
A11: not (o,x,b)
are_collinear by
A7,
Th38;
A12: o
<> d by
A3,
Th90;
assume that
A13: o
<> p and
A14: (o,b,c)
are_collinear and
A15: (o,a,d)
are_collinear ;
not (o,p,q)
are_collinear by
A1,
A13,
Th95;
then not (q,p,o)
are_collinear by
Th22;
then
consider y such that
A16:
parallelogram (q,p,o,y) by
Th44;
A17: not (o,x,a)
are_collinear by
A7,
Th38;
A18: o
<> c by
A2,
Th90;
(a,b)
// (p,q) by
A1;
then
A19: (b,a)
// (q,p) by
Th6;
A20: (o,a,p)
are_collinear by
A1;
(b,a)
// (o,x) & b
<> a by
A7,
Th36;
then
A21: (q,p)
// (o,x) by
A19,
Def1;
A22: o
<> x by
A7,
Th36;
q
<> p & (q,p)
// (o,y) by
A16,
Th36;
then (o,x)
// (o,y) by
A21,
Def1;
then
A23: (o,x,y)
are_collinear ;
(q,o)
// (p,y) & q
<> o by
A16,
Th36;
then
A24: (a,x)
// (p,y) by
A10,
Def1;
not (o,a,x)
are_collinear by
A7,
Th38;
then
A25:
trap (a,p,x,y,o) by
A23,
A24,
A20;
not (o,b,x)
are_collinear by
A7,
Th38;
then
A26:
trap (b,q,x,y,o) by
A1,
A25,
Th99;
(o,a)
// (o,d) by
A15;
then
A27:
trap (x,y,d,s,o) by
A3,
A26,
A22,
A12,
A17,
A9,
Th23,
Th99;
(o,b)
// (o,c) by
A14;
then
trap (x,y,c,r,o) by
A2,
A25,
A11,
A22,
A18,
A9,
Th23,
Th99;
hence thesis by
A27,
Th98;
end;
A28:
now
assume
A29: o
= p;
then o
= q by
A1,
Th93,
Th94;
then
A30: o
= s by
A3,
Th93,
Th94;
o
= r by
A2,
A29,
Th93,
Th94;
hence thesis by
A30,
Def1;
end;
now
assume not (o,b,c)
are_collinear ;
then
trap (b,q,c,r,o) by
A1,
A2,
Th99;
hence thesis by
A3,
Th98;
end;
hence thesis by
A4,
A28,
A6;
end;
theorem ::
SEMI_AF1:101
Th101: for o, a holds ex p st (o,a,p)
are_collinear &
qtrap (o,p)
proof
let o, a;
consider p such that
A1: for b, c holds (o,a)
// (o,p) & ex d st (o,p)
// (o,b) implies (o,c)
// (o,d) & (p,c)
// (b,d) by
Def1;
take p;
now
thus (o,a,p)
are_collinear by
A1;
let b, c;
consider d such that
A2: (o,p)
// (o,b) implies (o,c)
// (o,d) & (p,c)
// (b,d) by
A1;
take d;
assume (o,p,b)
are_collinear ;
hence (o,c,d)
are_collinear & (p,c)
// (b,d) by
A2;
end;
hence thesis;
end;
theorem ::
SEMI_AF1:102
Th102: ex x, y, z st x
<> y & y
<> z & z
<> x
proof
consider x, y, z such that
A1: not (x,y)
// (x,z) by
Def1;
take x, y, z;
thus thesis by
A1,
Def1,
Th1,
Th3;
end;
theorem ::
SEMI_AF1:103
Th103:
qtrap (o,p) implies o
<> p
proof
ex b st o
<> b
proof
consider x, y, z such that
A1: x
<> y and y
<> z and z
<> x by
Th102;
o
<> x or o
<> y or o
<> z by
A1;
hence thesis;
end;
then
consider b such that
A2: o
<> b;
consider c such that
A3: not (o,b)
// (o,c) by
A2,
Th13;
assume
qtrap (o,p);
then
consider d such that
A4: (o,p,b)
are_collinear implies (o,c,d)
are_collinear & (p,c)
// (b,d);
A5:
now
assume that
A6: b
<> d & not (o,b)
// (o,c) and
A7: (o,d)
// (b,d) and
A8: (o,c)
// (b,d);
(d,o)
// (d,b) by
A7,
Th6;
hence b
<> d & not (o,b)
// (o,c) & (b,d)
// (o,b) & (b,d)
// (o,c) by
A6,
A8,
Th6,
Th7;
end;
assume not thesis;
then (o,o)
// (o,b) implies (o,c)
// (o,d) & (o,c)
// (b,d) by
A4;
then b
= d & not (o,b)
// (o,c) & (o,c)
// (o,d) or b
<> d & o
<> c & not (o,b)
// (o,c) & (o,c)
// (o,d) & (o,c)
// (b,d) by
A3,
Def1,
Th3;
hence contradiction by
A5,
Def1,
Th6;
end;
theorem ::
SEMI_AF1:104
qtrap (o,p) implies ex q st not (o,p,q)
are_collinear &
qtrap (o,q)
proof
A1: (o,p)
// (o,p) by
Th1;
assume
A2:
qtrap (o,p);
then
A3: o
<> p by
Th103;
consider r such that
A4: not (o,p,r)
are_collinear by
A2,
Th25,
Th103;
consider q such that
A5: (o,r,q)
are_collinear and
A6:
qtrap (o,q) by
Th101;
take q;
o
<> q & (o,r)
// (o,q) by
A5,
A6,
Th103;
hence thesis by
A3,
A4,
A6,
A1,
Th23;
end;
theorem ::
SEMI_AF1:105
not (o,p,c)
are_collinear & (o,p,b)
are_collinear &
qtrap (o,p) implies ex d st
trap (p,b,c,d,o)
proof
assume that
A1: ( not (o,p,c)
are_collinear ) & (o,p,b)
are_collinear and
A2:
qtrap (o,p);
consider d such that
A3: (o,p,b)
are_collinear implies (o,c,d)
are_collinear & (p,c)
// (b,d) by
A2;
take d;
thus thesis by
A1,
A3;
end;