waybel_4.miz



    begin

    definition

      let L be non empty reflexive RelStr;

      :: WAYBEL_4:def1

      func L -waybelow -> Relation of L means

      : Def1: for x,y be Element of L holds [x, y] in it iff x << y;

      existence

      proof

        defpred P[ object, object] means ex x9,y9 be Element of L st x9 = $1 & y9 = $2 & x9 << y9;

        consider R be Relation of the carrier of L, the carrier of L such that

         A1: for x,y be object holds [x, y] in R iff x in the carrier of L & y in the carrier of L & P[x, y] from RELSET_1:sch 1;

        reconsider R as Relation of L;

        take R;

        let x,y be Element of L;

        hereby

          assume [x, y] in R;

          then ex x9,y9 be Element of L st (x9 = x) & (y9 = y) & (x9 << y9) by A1;

          hence x << y;

        end;

        assume x << y;

        hence thesis by A1;

      end;

      uniqueness

      proof

        let A1,A2 be Relation of L;

        assume

         A2: for x,y be Element of L holds [x, y] in A1 iff x << y;

        assume

         A3: for x,y be Element of L holds [x, y] in A2 iff x << y;

        thus A1 = A2

        proof

          let a,b be object;

          hereby

            assume

             A4: [a, b] in A1;

            then

            reconsider a9 = a, b9 = b as Element of L by ZFMISC_1: 87;

            a9 << b9 by A2, A4;

            hence [a, b] in A2 by A3;

          end;

          assume

           A5: [a, b] in A2;

          then

          reconsider a9 = a, b9 = b as Element of L by ZFMISC_1: 87;

          a9 << b9 by A3, A5;

          hence thesis by A2;

        end;

      end;

    end

    definition

      let L be RelStr;

      :: WAYBEL_4:def2

      func IntRel L -> Relation of L equals the InternalRel of L;

      coherence ;

      correctness ;

    end

    definition

      let L be RelStr, R be Relation of L;

      :: WAYBEL_4:def3

      attr R is auxiliary(i) means

      : Def3: for x,y be Element of L holds [x, y] in R implies x <= y;

      :: WAYBEL_4:def4

      attr R is auxiliary(ii) means

      : Def4: for x,y,z,u be Element of L holds (u <= x & [x, y] in R & y <= z implies [u, z] in R);

    end

    definition

      let L be non empty RelStr, R be Relation of L;

      :: WAYBEL_4:def5

      attr R is auxiliary(iii) means

      : Def5: for x,y,z be Element of L holds ( [x, z] in R & [y, z] in R implies [(x "\/" y), z] in R);

      :: WAYBEL_4:def6

      attr R is auxiliary(iv) means

      : Def6: for x be Element of L holds [( Bottom L), x] in R;

    end

    definition

      let L be non empty RelStr, R be Relation of L;

      :: WAYBEL_4:def7

      attr R is auxiliary means R is auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv);

    end

    registration

      let L be non empty RelStr;

      cluster auxiliary -> auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) for Relation of L;

      coherence ;

      cluster auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) -> auxiliary for Relation of L;

      coherence ;

    end

    registration

      let L be lower-bounded with_suprema transitive antisymmetric RelStr;

      cluster auxiliary for Relation of L;

      existence

      proof

        set A = ( IntRel L);

        take A;

        thus A is auxiliary(i) by ORDERS_2:def 5;

        thus A is auxiliary(ii)

        proof

          let x,y,z,u be Element of L;

          assume that

           A1: u <= x and

           A2: [x, y] in A and

           A3: y <= z;

          x <= y by A2, ORDERS_2:def 5;

          then u <= y by A1, ORDERS_2: 3;

          then u <= z by A3, ORDERS_2: 3;

          hence thesis by ORDERS_2:def 5;

        end;

        thus A is auxiliary(iii)

        proof

          let x,y,z be Element of L;

          assume that

           A4: [x, z] in A and

           A5: [y, z] in A;

          

           A6: x <= z by A4, ORDERS_2:def 5;

          

           A7: y <= z by A5, ORDERS_2:def 5;

          ex q be Element of L st x <= q & y <= q & for c be Element of L st x <= c & y <= c holds q <= c by LATTICE3:def 10;

          then (x "\/" y) <= z by A6, A7, LATTICE3:def 13;

          hence thesis by ORDERS_2:def 5;

        end;

        thus A is auxiliary(iv) by YELLOW_0: 44, ORDERS_2:def 5;

      end;

    end

    theorem :: WAYBEL_4:1

    

     Th1: for L be lower-bounded sup-Semilattice holds for AR be auxiliary(ii) auxiliary(iii) Relation of L holds for x,y,z,u be Element of L holds [x, z] in AR & [y, u] in AR implies [(x "\/" y), (z "\/" u)] in AR

    proof

      let L be lower-bounded sup-Semilattice;

      let AR be auxiliary(ii) auxiliary(iii) Relation of L;

      let x,y,z,u be Element of L;

      assume that

       A1: [x, z] in AR and

       A2: [y, u] in AR;

      

       A3: x <= x;

      

       A4: y <= y;

      

       A5: z <= (z "\/" u) by YELLOW_0: 22;

      

       A6: u <= (z "\/" u) by YELLOW_0: 22;

      

       A7: [x, (z "\/" u)] in AR by A1, A3, A5, Def4;

       [y, (z "\/" u)] in AR by A2, A4, A6, Def4;

      hence thesis by A7, Def5;

    end;

    

     Lm1: for L be lower-bounded sup-Semilattice holds for AR be auxiliary(i) auxiliary(ii) Relation of L holds AR is transitive

    proof

      let L be lower-bounded sup-Semilattice;

      let AR be auxiliary(i) auxiliary(ii) Relation of L;

      

       A1: ( field AR) c= (the carrier of L \/ the carrier of L) by RELSET_1: 8;

      now

        let x,y,z be object;

        assume that

         A2: x in ( field AR) and

         A3: y in ( field AR) and

         A4: z in ( field AR) and

         A5: [x, y] in AR and

         A6: [y, z] in AR;

        reconsider x9 = x, y9 = y, z9 = z as Element of L by A1, A2, A3, A4;

        reconsider x9, y9, z9 as Element of L;

        

         A7: x9 <= y9 by A5, Def3;

        z9 <= z9;

        hence [x, z] in AR by A6, A7, Def4;

      end;

      then AR is_transitive_in ( field AR) by RELAT_2:def 8;

      hence thesis by RELAT_2:def 16;

    end;

    registration

      let L be lower-bounded sup-Semilattice;

      cluster auxiliary(i) auxiliary(ii) -> transitive for Relation of L;

      coherence by Lm1;

    end

    registration

      let L be RelStr;

      cluster ( IntRel L) -> auxiliary(i);

      coherence by ORDERS_2:def 5;

    end

    registration

      let L be transitive RelStr;

      cluster ( IntRel L) -> auxiliary(ii);

      coherence

      proof

        set A = ( IntRel L);

        let x,y,z,u be Element of L;

        assume that

         A1: u <= x and

         A2: [x, y] in A and

         A3: y <= z;

        x <= y by A2, ORDERS_2:def 5;

        then u <= y by A1, ORDERS_2: 3;

        then u <= z by A3, ORDERS_2: 3;

        hence thesis by ORDERS_2:def 5;

      end;

    end

    registration

      let L be with_suprema antisymmetric RelStr;

      cluster ( IntRel L) -> auxiliary(iii);

      coherence

      proof

        set A = ( IntRel L);

        let x,y,z be Element of L;

        assume that

         A1: [x, z] in A and

         A2: [y, z] in A;

        

         A3: x <= z by A1, ORDERS_2:def 5;

        

         A4: y <= z by A2, ORDERS_2:def 5;

        ex q be Element of L st x <= q & y <= q & for c be Element of L st x <= c & y <= c holds q <= c by LATTICE3:def 10;

        then (x "\/" y) <= z by A3, A4, LATTICE3:def 13;

        hence thesis by ORDERS_2:def 5;

      end;

    end

    registration

      let L be lower-bounded antisymmetric non empty RelStr;

      cluster ( IntRel L) -> auxiliary(iv);

      coherence by YELLOW_0: 44, ORDERS_2:def 5;

    end

    reserve a for set;

    definition

      let L be lower-bounded sup-Semilattice;

      :: WAYBEL_4:def8

      func Aux L -> set means

      : Def8: a in it iff a is auxiliary Relation of L;

      existence

      proof

        defpred P[ set] means $1 is auxiliary Relation of L;

        consider X be set such that

         A1: for a holds a in X iff a in ( bool [:the carrier of L, the carrier of L:]) & P[a] from XFAMILY:sch 1;

        take X;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let A1,A2 be set such that

         A2: a in A1 iff a is auxiliary Relation of L and

         A3: a in A2 iff a is auxiliary Relation of L;

        thus A1 = A2

        proof

          thus A1 c= A2

          proof

            let a be object;

            assume a in A1;

            then a is auxiliary Relation of L by A2;

            hence thesis by A3;

          end;

          let a be object;

          assume a in A2;

          then a is auxiliary Relation of L by A3;

          hence thesis by A2;

        end;

      end;

    end

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( Aux L) -> non empty;

      coherence

      proof

        ( IntRel L) is auxiliary Relation of L;

        hence thesis by Def8;

      end;

    end

    

     Lm2: for L be lower-bounded sup-Semilattice holds for AR be auxiliary(i) Relation of L holds for a,b be object st [a, b] in AR holds [a, b] in ( IntRel L)

    proof

      let L be lower-bounded sup-Semilattice;

      let AR be auxiliary(i) Relation of L;

      let a,b be object;

      assume

       A1: [a, b] in AR;

      then

      reconsider a9 = a, b9 = b as Element of L by ZFMISC_1: 87;

      a9 <= b9 by A1, Def3;

      hence thesis by ORDERS_2:def 5;

    end;

    theorem :: WAYBEL_4:2

    

     Th2: for L be lower-bounded sup-Semilattice holds for AR be auxiliary(i) Relation of L holds AR c= ( IntRel L) by Lm2;

    theorem :: WAYBEL_4:3

    for L be lower-bounded sup-Semilattice holds ( Top ( InclPoset ( Aux L))) = ( IntRel L)

    proof

      let L be lower-bounded sup-Semilattice;

      ( IntRel L) = ( "/\" ( {} ,( InclPoset ( Aux L))))

      proof

        set P = ( InclPoset ( Aux L));

        set I = ( IntRel L);

        I in ( Aux L) by Def8;

        then

        reconsider I as Element of P by YELLOW_1: 1;

        

         A1: I is_<=_than {} ;

        for b be Element of P st b is_<=_than {} holds I >= b

        proof

          let b be Element of P;

          b in the carrier of ( InclPoset ( Aux L));

          then b in ( Aux L) by YELLOW_1: 1;

          then

          reconsider b9 = b as auxiliary Relation of L by Def8;

          assume b is_<=_than {} ;

          b9 c= I by Th2;

          hence thesis by YELLOW_1: 3;

        end;

        hence thesis by A1, YELLOW_0: 31;

      end;

      hence thesis;

    end;

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( InclPoset ( Aux L)) -> upper-bounded;

      coherence

      proof

        set I = ( IntRel L);

        I in ( Aux L) by Def8;

        then

        reconsider I as Element of ( InclPoset ( Aux L)) by YELLOW_1: 1;

        take I;

        I is_>=_than the carrier of ( InclPoset ( Aux L))

        proof

          let b be Element of ( InclPoset ( Aux L));

          assume b in the carrier of ( InclPoset ( Aux L));

          then b in ( Aux L) by YELLOW_1: 1;

          then

          reconsider b9 = b as auxiliary Relation of L by Def8;

          b9 c= I by Th2;

          hence thesis by YELLOW_1: 3;

        end;

        hence thesis;

      end;

    end

    definition

      let L be non empty RelStr;

      :: WAYBEL_4:def9

      func AuxBottom L -> Relation of L means

      : Def9: for x,y be Element of L holds [x, y] in it iff x = ( Bottom L);

      existence

      proof

        defpred P[ object, object] means $1 = ( Bottom L);

        consider R be Relation of the carrier of L, the carrier of L such that

         A1: for a,b be object holds [a, b] in R iff a in the carrier of L & b in the carrier of L & P[a, b] from RELSET_1:sch 1;

        reconsider R as Relation of L;

        take R;

        let x,y be Element of L;

        thus [x, y] in R implies x = ( Bottom L) by A1;

        assume x = ( Bottom L);

        hence thesis by A1;

      end;

      uniqueness

      proof

        let A1,A2 be Relation of L;

        assume

         A2: for x,y be Element of L holds [x, y] in A1 iff x = ( Bottom L);

        assume

         A3: for x,y be Element of L holds [x, y] in A2 iff x = ( Bottom L);

        thus A1 = A2

        proof

          let a,b be object;

          hereby

            assume

             A4: [a, b] in A1;

            then

            reconsider a9 = a, b9 = b as Element of L by ZFMISC_1: 87;

             [a9, b9] in A1 by A4;

            then a9 = ( Bottom L) by A2;

            then [a9, b9] in A2 by A3;

            hence [a, b] in A2;

          end;

          assume

           A5: [a, b] in A2;

          then

          reconsider a9 = a, b9 = b as Element of L by ZFMISC_1: 87;

           [a9, b9] in A2 by A5;

          then a9 = ( Bottom L) by A3;

          then [a9, b9] in A1 by A2;

          hence thesis;

        end;

      end;

    end

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( AuxBottom L) -> auxiliary;

      coherence

      proof

        set A = ( AuxBottom L);

        

         A1: A is auxiliary(i)

        proof

          let x,y be Element of L;

          assume [x, y] in A;

          then x = ( Bottom L) by Def9;

          hence thesis by YELLOW_0: 44;

        end;

        

         A2: A is auxiliary(ii)

        proof

          let x,y,z,u be Element of L;

          assume that

           A3: u <= x and

           A4: [x, y] in A and y <= z;

          

           A5: x = ( Bottom L) by A4, Def9;

          ( Bottom L) <= u by YELLOW_0: 44;

          then u = ( Bottom L) by A3, A5, ORDERS_2: 2;

          hence thesis by Def9;

        end;

        

         A6: A is auxiliary(iii)

        proof

          let x,y,z be Element of L;

          assume that

           A7: [x, z] in A and

           A8: [y, z] in A;

          

           A9: y = ( Bottom L) by A8, Def9;

          then x <= y by A7, Def9;

          then (x "\/" y) = ( Bottom L) by A9, YELLOW_0: 24;

          hence thesis by Def9;

        end;

        for x be Element of L holds [( Bottom L), x] in A by Def9;

        then A is auxiliary(iv);

        hence thesis by A1, A2, A6;

      end;

    end

    theorem :: WAYBEL_4:4

    

     Th4: for L be lower-bounded sup-Semilattice holds for AR be auxiliary(iv) Relation of L holds ( AuxBottom L) c= AR

    proof

      let L be with_suprema lower-bounded Poset;

      let AR be auxiliary(iv) Relation of L;

      let a,b be object;

      assume

       A1: [a, b] in ( AuxBottom L);

      then

      reconsider a9 = a, b9 = b as Element of L by ZFMISC_1: 87;

       [a9, b9] in ( AuxBottom L) by A1;

      then a9 = ( Bottom L) by Def9;

      then [a9, b9] in AR by Def6;

      hence thesis;

    end;

    theorem :: WAYBEL_4:5

    for L be lower-bounded sup-Semilattice holds ( Bottom ( InclPoset ( Aux L))) = ( AuxBottom L)

    proof

      let L be with_suprema lower-bounded Poset;

      ( AuxBottom L) in ( Aux L) by Def8;

      then

      reconsider N = ( AuxBottom L) as Element of ( InclPoset ( Aux L)) by YELLOW_1: 1;

      

       A1: N is_>=_than {} ;

      for b be Element of ( InclPoset ( Aux L)) st b is_>=_than {} holds N <= b

      proof

        let b be Element of ( InclPoset ( Aux L));

        assume b is_>=_than {} ;

        b in the carrier of ( InclPoset ( Aux L));

        then b in ( Aux L) by YELLOW_1: 1;

        then

        reconsider b9 = b as auxiliary Relation of L by Def8;

        N c= b9 by Th4;

        hence thesis by YELLOW_1: 3;

      end;

      hence thesis by A1, YELLOW_0: 30;

    end;

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( InclPoset ( Aux L)) -> lower-bounded;

      coherence

      proof

        set I = ( AuxBottom L);

        I in ( Aux L) by Def8;

        then

        reconsider I as Element of ( InclPoset ( Aux L)) by YELLOW_1: 1;

        take I;

        I is_<=_than the carrier of ( InclPoset ( Aux L))

        proof

          let b be Element of ( InclPoset ( Aux L));

          assume b in the carrier of ( InclPoset ( Aux L));

          then b in ( Aux L) by YELLOW_1: 1;

          then

          reconsider b9 = b as auxiliary Relation of L by Def8;

          I c= b9 by Th4;

          hence thesis by YELLOW_1: 3;

        end;

        hence thesis;

      end;

    end

    theorem :: WAYBEL_4:6

    

     Th6: for L be lower-bounded sup-Semilattice holds for a,b be auxiliary(i) Relation of L holds (a /\ b) is auxiliary(i) Relation of L

    proof

      let L be with_suprema lower-bounded Poset;

      let a,b be auxiliary(i) Relation of L;

      reconsider ab = (a /\ b) as Relation of L;

      for x,y be Element of L holds [x, y] in ab implies x <= y

      proof

        let x,y be Element of L;

        assume [x, y] in ab;

        then [x, y] in a by XBOOLE_0:def 4;

        hence thesis by Def3;

      end;

      hence thesis by Def3;

    end;

    theorem :: WAYBEL_4:7

    

     Th7: for L be lower-bounded sup-Semilattice holds for a,b be auxiliary(ii) Relation of L holds (a /\ b) is auxiliary(ii) Relation of L

    proof

      let L be with_suprema lower-bounded Poset;

      let a,b be auxiliary(ii) Relation of L;

      reconsider ab = (a /\ b) as Relation of L;

      for x,y,z,u be Element of L holds u <= x & [x, y] in ab & y <= z implies [u, z] in ab

      proof

        let x,y,z,u be Element of L;

        assume that

         A1: u <= x and

         A2: [x, y] in ab and

         A3: y <= z;

        

         A4: [x, y] in a by A2, XBOOLE_0:def 4;

        

         A5: [x, y] in b by A2, XBOOLE_0:def 4;

        

         A6: [u, z] in a by A1, A3, A4, Def4;

         [u, z] in b by A1, A3, A5, Def4;

        hence thesis by A6, XBOOLE_0:def 4;

      end;

      hence thesis by Def4;

    end;

    theorem :: WAYBEL_4:8

    

     Th8: for L be lower-bounded sup-Semilattice holds for a,b be auxiliary(iii) Relation of L holds (a /\ b) is auxiliary(iii) Relation of L

    proof

      let L be with_suprema lower-bounded Poset;

      let a,b be auxiliary(iii) Relation of L;

      reconsider ab = (a /\ b) as Relation of L;

      for x,y,z be Element of L holds [x, z] in ab & [y, z] in ab implies [(x "\/" y), z] in ab

      proof

        let x,y,z be Element of L;

        assume that

         A1: [x, z] in ab and

         A2: [y, z] in ab;

        

         A3: [x, z] in a by A1, XBOOLE_0:def 4;

        

         A4: [x, z] in b by A1, XBOOLE_0:def 4;

        

         A5: [y, z] in a by A2, XBOOLE_0:def 4;

        

         A6: [y, z] in b by A2, XBOOLE_0:def 4;

        

         A7: [(x "\/" y), z] in a by A3, A5, Def5;

         [(x "\/" y), z] in b by A4, A6, Def5;

        hence thesis by A7, XBOOLE_0:def 4;

      end;

      hence thesis by Def5;

    end;

    theorem :: WAYBEL_4:9

    

     Th9: for L be lower-bounded sup-Semilattice holds for a,b be auxiliary(iv) Relation of L holds (a /\ b) is auxiliary(iv) Relation of L

    proof

      let L be with_suprema lower-bounded Poset;

      let a,b be auxiliary(iv) Relation of L;

      reconsider ab = (a /\ b) as Relation of L;

      for x be Element of L holds [( Bottom L), x] in ab

      proof

        let x be Element of L;

        

         A1: [( Bottom L), x] in a by Def6;

         [( Bottom L), x] in b by Def6;

        hence thesis by A1, XBOOLE_0:def 4;

      end;

      hence thesis by Def6;

    end;

    theorem :: WAYBEL_4:10

    

     Th10: for L be lower-bounded sup-Semilattice holds for a,b be auxiliary Relation of L holds (a /\ b) is auxiliary Relation of L

    proof

      let L be with_suprema lower-bounded Poset;

      let a,b be auxiliary Relation of L;

      reconsider ab = (a /\ b) as Relation of L;

      ab is auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) by Th6, Th7, Th8, Th9;

      hence thesis;

    end;

    theorem :: WAYBEL_4:11

    

     Th11: for L be lower-bounded sup-Semilattice holds for X be non empty Subset of ( InclPoset ( Aux L)) holds ( meet X) is auxiliary Relation of L

    proof

      let L be with_suprema lower-bounded Poset;

      let X be non empty Subset of ( InclPoset ( Aux L));

      X c= the carrier of ( InclPoset ( Aux L));

      then

       A1: X c= ( Aux L) by YELLOW_1: 1;

      set a = the Element of X;

      a in X;

      then a is auxiliary Relation of L by A1, Def8;

      then

      reconsider ab = ( meet X) as Relation of L by SETFAM_1: 7;

      

       A2: ab is auxiliary(i)

      proof

        let x,y be Element of L;

        assume

         A3: [x, y] in ab;

        set V = the Element of X;

        

         A4: V in X;

        

         A5: [x, y] in V by A3, SETFAM_1:def 1;

        V is auxiliary Relation of L by A1, A4, Def8;

        hence x <= y by A5, Def3;

      end;

      

       A6: ab is auxiliary(ii)

      proof

        let x,y,z,u be Element of L;

        assume that

         A7: u <= x and

         A8: [x, y] in ab and

         A9: y <= z;

        for Y be set st Y in X holds [u, z] in Y

        proof

          let Y be set;

          assume

           A10: Y in X;

          then

           A11: Y is auxiliary Relation of L by A1, Def8;

           [x, y] in Y by A8, A10, SETFAM_1:def 1;

          hence thesis by A7, A9, A11, Def4;

        end;

        hence thesis by SETFAM_1:def 1;

      end;

      

       A12: ab is auxiliary(iii)

      proof

        let x,y,z be Element of L;

        assume that

         A13: [x, z] in ab and

         A14: [y, z] in ab;

        for Y be set st Y in X holds [(x "\/" y), z] in Y

        proof

          let Y be set;

          assume

           A15: Y in X;

          then

           A16: Y is auxiliary Relation of L by A1, Def8;

          

           A17: [x, z] in Y by A13, A15, SETFAM_1:def 1;

           [y, z] in Y by A14, A15, SETFAM_1:def 1;

          hence thesis by A16, A17, Def5;

        end;

        hence thesis by SETFAM_1:def 1;

      end;

      ab is auxiliary(iv)

      proof

        let x be Element of L;

        for Y be set st Y in X holds [( Bottom L), x] in Y

        proof

          let Y be set;

          assume Y in X;

          then Y is auxiliary Relation of L by A1, Def8;

          hence thesis by Def6;

        end;

        hence thesis by SETFAM_1:def 1;

      end;

      hence thesis by A2, A6, A12;

    end;

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( InclPoset ( Aux L)) -> with_infima;

      coherence

      proof

        for x,y be set st x in ( Aux L) & y in ( Aux L) holds (x /\ y) in ( Aux L)

        proof

          let x,y be set;

          assume that

           A1: x in ( Aux L) and

           A2: y in ( Aux L);

          

           A3: x is auxiliary Relation of L by A1, Def8;

          y is auxiliary Relation of L by A2, Def8;

          then (x /\ y) is auxiliary Relation of L by A3, Th10;

          hence thesis by Def8;

        end;

        hence thesis by YELLOW_1: 12;

      end;

    end

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( InclPoset ( Aux L)) -> complete;

      coherence

      proof

        for X be Subset of ( InclPoset ( Aux L)) holds ex_inf_of (X,( InclPoset ( Aux L)))

        proof

          let X be Subset of ( InclPoset ( Aux L));

          set N = ( meet X);

          per cases ;

            suppose

             A1: X <> {} ;

            then N is auxiliary Relation of L by Th11;

            then N in ( Aux L) by Def8;

            then

            reconsider N as Element of ( InclPoset ( Aux L)) by YELLOW_1: 1;

            

             A2: X is_>=_than N by SETFAM_1: 3, YELLOW_1: 3;

            for b be Element of ( InclPoset ( Aux L)) st X is_>=_than b holds N >= b

            proof

              let b be Element of ( InclPoset ( Aux L));

              assume

               A3: X is_>=_than b;

              for Z1 be set st Z1 in X holds b c= Z1 by A3, YELLOW_1: 3;

              then b c= ( meet X) by A1, SETFAM_1: 5;

              hence thesis by YELLOW_1: 3;

            end;

            hence thesis by A2, YELLOW_0: 16;

          end;

            suppose X = {} ;

            hence thesis by YELLOW_0: 43;

          end;

        end;

        hence thesis by YELLOW_2: 28;

      end;

    end

    definition

      let L be non empty RelStr, x be Element of L;

      let AR be Relation of the carrier of L;

      

       A1: { y where y be Element of L : [y, x] in AR } c= the carrier of L

      proof

        let z be object;

        assume z in { y where y be Element of L : [y, x] in AR };

        then ex y be Element of L st z = y & [y, x] in AR;

        hence thesis;

      end;

      :: WAYBEL_4:def10

      func AR -below x -> Subset of L equals { y where y be Element of L : [y, x] in AR };

      correctness by A1;

      

       A2: { y where y be Element of L : [x, y] in AR } c= the carrier of L

      proof

        let z be object;

        assume z in { y where y be Element of L : [x, y] in AR };

        then ex y be Element of L st z = y & [x, y] in AR;

        hence thesis;

      end;

      :: WAYBEL_4:def11

      func AR -above x -> Subset of L equals { y where y be Element of L : [x, y] in AR };

      correctness by A2;

    end

    theorem :: WAYBEL_4:12

    

     Th12: for L be lower-bounded sup-Semilattice, x be Element of L holds for AR be auxiliary(i) Relation of L holds (AR -below x) c= ( downarrow x)

    proof

      let L be lower-bounded sup-Semilattice, x be Element of L, AR be auxiliary(i) Relation of L;

      let a be object;

      assume a in (AR -below x);

      then

      consider y1 be Element of L such that

       A1: y1 = a and

       A2: [y1, x] in AR;

      y1 <= x by A2, Def3;

      hence thesis by A1, WAYBEL_0: 17;

    end;

    registration

      let L be lower-bounded sup-Semilattice, x be Element of L;

      let AR be auxiliary(iv) Relation of L;

      cluster (AR -below x) -> non empty;

      coherence

      proof

        set I = (AR -below x);

         [( Bottom L), x] in AR by Def6;

        then ( Bottom L) in I;

        hence thesis;

      end;

    end

    registration

      let L be lower-bounded sup-Semilattice, x be Element of L;

      let AR be auxiliary(ii) Relation of L;

      cluster (AR -below x) -> lower;

      coherence

      proof

        set I = (AR -below x);

        let x1,y1 be Element of L;

        assume that

         A1: x1 in I and

         A2: y1 <= x1;

        

         A3: ex v1 be Element of L st (v1 = x1) & ( [v1, x] in AR) by A1;

        x <= x;

        then [y1, x] in AR by A2, A3, Def4;

        hence thesis;

      end;

    end

    registration

      let L be lower-bounded sup-Semilattice, x be Element of L;

      let AR be auxiliary(iii) Relation of L;

      cluster (AR -below x) -> directed;

      coherence

      proof

        set I = (AR -below x);

        let u1,u2 be Element of L;

        assume that

         A1: u1 in I and

         A2: u2 in I;

        

         A3: ex v1 be Element of L st (v1 = u1) & ( [v1, x] in AR) by A1;

        

         A4: ex v2 be Element of L st (v2 = u2) & ( [v2, x] in AR) by A2;

        take u12 = (u1 "\/" u2);

         [u12, x] in AR by A3, A4, Def5;

        hence thesis by YELLOW_0: 22;

      end;

    end

    definition

      let L be lower-bounded sup-Semilattice;

      let AR be auxiliary(ii) auxiliary(iii) auxiliary(iv) Relation of L;

      :: WAYBEL_4:def12

      func AR -below -> Function of L, ( InclPoset ( Ids L)) means

      : Def12: for x be Element of L holds (it . x) = (AR -below x);

      existence

      proof

        deffunc F( Element of L) = (AR -below $1);

        

         A1: for x be Element of L holds F(x) is Element of ( InclPoset ( Ids L))

        proof

          let x be Element of L;

          reconsider I = F(x) as Ideal of L;

          I in ( Ids L);

          hence thesis by YELLOW_1: 1;

        end;

        consider f be Function of L, ( InclPoset ( Ids L)) such that

         A2: for x be Element of L holds (f . x) = F(x) from FUNCT_2:sch 9( A1);

        take f;

        thus thesis by A2;

      end;

      uniqueness

      proof

        let M1,M2 be Function of L, ( InclPoset ( Ids L));

        assume

         A3: for x be Element of L holds (M1 . x) = (AR -below x);

        assume

         A4: for x be Element of L holds (M2 . x) = (AR -below x);

        for x be object st x in the carrier of L holds (M1 . x) = (M2 . x)

        proof

          let x be object;

          assume x in the carrier of L;

          then

          reconsider x9 = x as Element of L;

          

          thus (M1 . x) = (AR -below x9) by A3

          .= (M2 . x) by A4;

        end;

        hence thesis by FUNCT_2: 12;

      end;

    end

    theorem :: WAYBEL_4:13

    

     Th13: for L be non empty RelStr, AR be Relation of L holds for a be object, y be Element of L holds a in (AR -below y) iff [a, y] in AR

    proof

      let L be non empty RelStr, AR be Relation of L;

      let a be object, y be Element of L;

      a in (AR -below y) iff [a, y] in AR

      proof

        hereby

          assume a in (AR -below y);

          then ex z be Element of L st (a = z) & ( [z, y] in AR);

          hence [a, y] in AR;

        end;

        assume

         A1: [a, y] in AR;

        then

        reconsider x9 = a as Element of L by ZFMISC_1: 87;

        ex z be Element of L st a = z & [z, y] in AR

        proof

          take x9;

          thus thesis by A1;

        end;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: WAYBEL_4:14

    for L be sup-Semilattice, AR be Relation of L holds for y be Element of L holds a in (AR -above y) iff [y, a] in AR

    proof

      let L be with_suprema Poset, AR be Relation of L;

      let y be Element of L;

      a in (AR -above y) iff [y, a] in AR

      proof

        hereby

          assume a in (AR -above y);

          then ex z be Element of L st (a = z) & ( [y, z] in AR);

          hence [y, a] in AR;

        end;

        assume

         A1: [y, a] in AR;

        then

        reconsider x9 = a as Element of L by ZFMISC_1: 87;

        ex z be Element of L st a = z & [y, z] in AR

        proof

          take x9;

          thus thesis by A1;

        end;

        hence thesis;

      end;

      hence thesis;

    end;

    

     Lm3: for L be with_suprema lower-bounded Poset, AR be Relation of L holds for a be set, y be Element of L holds a in ( downarrow y) iff [a, y] in the InternalRel of L

    proof

      let L be with_suprema lower-bounded Poset, AR be Relation of L;

      let a be set, y be Element of L;

      thus a in ( downarrow y) implies [a, y] in the InternalRel of L by ORDERS_2:def 5, WAYBEL_0: 17;

      assume

       A1: [a, y] in the InternalRel of L;

      then

      reconsider a9 = a as Element of L by ZFMISC_1: 87;

      a9 <= y by A1, ORDERS_2:def 5;

      hence thesis by WAYBEL_0: 17;

    end;

    theorem :: WAYBEL_4:15

    for L be lower-bounded sup-Semilattice, AR be auxiliary(i) Relation of L holds for x be Element of L holds AR = the InternalRel of L implies (AR -below x) = ( downarrow x)

    proof

      let L be lower-bounded sup-Semilattice, AR be auxiliary(i) Relation of L;

      let x be Element of L;

      assume

       A1: AR = the InternalRel of L;

      thus (AR -below x) c= ( downarrow x) by Th12;

      thus ( downarrow x) c= (AR -below x)

      proof

        let a be object;

        assume a in ( downarrow x);

        then [a, x] in AR by A1, Lm3;

        hence thesis by Th13;

      end;

    end;

    definition

      let L be non empty Poset;

      :: WAYBEL_4:def13

      func MonSet L -> strict RelStr means

      : Def13: (a in the carrier of it iff ex s be Function of L, ( InclPoset ( Ids L)) st a = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x)) & for c,d be object holds [c, d] in the InternalRel of it iff ex f,g be Function of L, ( InclPoset ( Ids L)) st c = f & d = g & c in the carrier of it & d in the carrier of it & f <= g;

      existence

      proof

        defpred P[ object] means ex s be Function of L, ( InclPoset ( Ids L)) st $1 = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x);

        consider S be set such that

         A1: for a be object holds a in S iff a in ( PFuncs (the carrier of L,the carrier of ( InclPoset ( Ids L)))) & P[a] from XBOOLE_0:sch 1;

        

         A2: a in S iff ex s be Function of L, ( InclPoset ( Ids L)) st a = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x) by A1, PARTFUN1: 45;

        defpred P[ object, object] means ex f,g be Function of L, ( InclPoset ( Ids L)) st $1 = f & $2 = g & f <= g;

        consider R be Relation of S, S such that

         A3: for c,d be object holds [c, d] in R iff c in S & d in S & P[c, d] from RELSET_1:sch 1;

        

         A4: for c,d be object holds [c, d] in R iff ex f,g be Function of L, ( InclPoset ( Ids L)) st c = f & d = g & c in S & d in S & f <= g

        proof

          let c,d be object;

          hereby

            assume

             A5: [c, d] in R;

            then

             A6: c in S by A3;

            

             A7: d in S by A3, A5;

            ex f,g be Function of L, ( InclPoset ( Ids L)) st (c = f) & (d = g) & (f <= g) by A3, A5;

            hence ex f,g be Function of L, ( InclPoset ( Ids L)) st c = f & d = g & c in S & d in S & f <= g by A6, A7;

          end;

          given f,g be Function of L, ( InclPoset ( Ids L)) such that

           A8: c = f and

           A9: d = g and

           A10: c in S and

           A11: d in S and

           A12: f <= g;

          thus thesis by A3, A8, A9, A10, A11, A12;

        end;

        take RelStr (# S, R #);

        thus thesis by A2, A4;

      end;

      uniqueness

      proof

        let R1,R2 be strict RelStr;

        assume

         A13: (a in the carrier of R1 iff ex s be Function of L, ( InclPoset ( Ids L)) st a = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x)) & for c,d be object holds [c, d] in the InternalRel of R1 iff ex f,g be Function of L, ( InclPoset ( Ids L)) st c = f & d = g & c in the carrier of R1 & d in the carrier of R1 & f <= g;

        assume

         A14: (a in the carrier of R2 iff ex s be Function of L, ( InclPoset ( Ids L)) st a = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x)) & for c,d be object holds [c, d] in the InternalRel of R2 iff ex f,g be Function of L, ( InclPoset ( Ids L)) st c = f & d = g & c in the carrier of R2 & d in the carrier of R2 & f <= g;

        

         A15: the carrier of R1 c= the carrier of R2

        proof

          let b be object;

          assume b in the carrier of R1;

          then ex s be Function of L, ( InclPoset ( Ids L)) st (b = s) & (s is monotone) & (for x be Element of L holds (s . x) c= ( downarrow x)) by A13;

          hence thesis by A14;

        end;

        

         A16: the carrier of R2 c= the carrier of R1

        proof

          let b be object;

          assume b in the carrier of R2;

          then ex s be Function of L, ( InclPoset ( Ids L)) st (b = s) & (s is monotone) & (for x be Element of L holds (s . x) c= ( downarrow x)) by A14;

          hence thesis by A13;

        end;

        the InternalRel of R1 = the InternalRel of R2

        proof

          let c,d be object;

           A17:

          now

            assume [c, d] in the InternalRel of R1;

            then ex f,g be Function of L, ( InclPoset ( Ids L)) st (c = f) & (d = g) & (c in the carrier of R1) & (d in the carrier of R1) & (f <= g) by A13;

            hence [c, d] in the InternalRel of R2 by A14, A15;

          end;

          now

            assume [c, d] in the InternalRel of R2;

            then ex f,g be Function of L, ( InclPoset ( Ids L)) st (c = f) & (d = g) & (c in the carrier of R2) & (d in the carrier of R2) & (f <= g) by A14;

            hence [c, d] in the InternalRel of R1 by A13, A16;

          end;

          hence thesis by A17;

        end;

        hence thesis by A15, A16, XBOOLE_0:def 10;

      end;

    end

    theorem :: WAYBEL_4:16

    for L be lower-bounded sup-Semilattice holds ( MonSet L) is full SubRelStr of (( InclPoset ( Ids L)) |^ the carrier of L)

    proof

      let L be lower-bounded sup-Semilattice;

      set J = (the carrier of L --> ( InclPoset ( Ids L)));

      

       A1: the carrier of ( MonSet L) c= the carrier of (( InclPoset ( Ids L)) |^ the carrier of L)

      proof

        let a be object;

        assume a in the carrier of ( MonSet L);

        then

        consider s be Function of L, ( InclPoset ( Ids L)) such that

         A2: a = s and s is monotone and for x be Element of L holds (s . x) c= ( downarrow x) by Def13;

        s in ( Funcs (the carrier of L,the carrier of ( InclPoset ( Ids L)))) by FUNCT_2: 8;

        hence thesis by A2, YELLOW_1: 28;

      end;

      

       A3: the InternalRel of ( MonSet L) c= the InternalRel of (( InclPoset ( Ids L)) |^ the carrier of L)

      proof

        let a,b be object;

        assume [a, b] in the InternalRel of ( MonSet L);

        then

        consider f,g be Function of L, ( InclPoset ( Ids L)) such that

         A4: a = f and

         A5: b = g and a in the carrier of ( MonSet L) and b in the carrier of ( MonSet L) and

         A6: f <= g by Def13;

        set AG = ( product (the carrier of L --> ( InclPoset ( Ids L))));

        

         A7: AG = (( InclPoset ( Ids L)) |^ the carrier of L) by YELLOW_1:def 5;

        

         A8: f in ( Funcs (the carrier of L,the carrier of ( InclPoset ( Ids L)))) by FUNCT_2: 8;

        

         A9: g in ( Funcs (the carrier of L,the carrier of ( InclPoset ( Ids L)))) by FUNCT_2: 8;

        

         A10: f in the carrier of AG by A7, A8, YELLOW_1: 28;

        reconsider f9 = f, g9 = g as Element of AG by A7, A8, A9, YELLOW_1: 28;

        

         A11: f9 in ( product ( Carrier (the carrier of L --> ( InclPoset ( Ids L))))) by A10, YELLOW_1:def 4;

        ex ff,gg be Function st ff = f9 & gg = g9 & for i be object st i in the carrier of L holds ex R be RelStr, xi,yi be Element of R st R = (J . i) & xi = (ff . i) & yi = (gg . i) & xi <= yi

        proof

          take f, g;

          thus f = f9 & g = g9;

          let i be object;

          assume

           A12: i in the carrier of L;

          then

          reconsider i9 = i as Element of L;

          take R = ( InclPoset ( Ids L));

          reconsider xi = (f . i9), yi = (g . i9) as Element of R;

          take xi, yi;

          thus R = (J . i) & xi = (f . i) & yi = (g . i) by A12, FUNCOP_1: 7;

          reconsider i9 = i as Element of L by A12;

          ex a,b be Element of ( InclPoset ( Ids L)) st (a = (f . i9)) & (b = (g . i9)) & (a <= b) by A6;

          hence thesis;

        end;

        then f9 <= g9 by A11, YELLOW_1:def 4;

        then [a, b] in the InternalRel of ( product (the carrier of L --> ( InclPoset ( Ids L)))) by A4, A5, ORDERS_2:def 5;

        hence thesis by YELLOW_1:def 5;

      end;

      set J = (the carrier of L --> ( InclPoset ( Ids L)));

      the InternalRel of ( MonSet L) = (the InternalRel of (( InclPoset ( Ids L)) |^ the carrier of L) |_2 the carrier of ( MonSet L))

      proof

        let a,b be object;

        thus [a, b] in the InternalRel of ( MonSet L) implies [a, b] in (the InternalRel of (( InclPoset ( Ids L)) |^ the carrier of L) |_2 the carrier of ( MonSet L)) by A3, XBOOLE_0:def 4;

        assume

         A13: [a, b] in (the InternalRel of (( InclPoset ( Ids L)) |^ the carrier of L) |_2 the carrier of ( MonSet L));

        then

         A14: [a, b] in the InternalRel of (( InclPoset ( Ids L)) |^ the carrier of L) by XBOOLE_0:def 4;

        

         A15: [a, b] in [:the carrier of ( MonSet L), the carrier of ( MonSet L):] by A13, XBOOLE_0:def 4;

        

         A16: a in the carrier of (( InclPoset ( Ids L)) |^ the carrier of L) by A14, ZFMISC_1: 87;

        

         A17: b in the carrier of (( InclPoset ( Ids L)) |^ the carrier of L) by A14, ZFMISC_1: 87;

        

         A18: a in the carrier of ( product J) by A16, YELLOW_1:def 5;

        reconsider a9 = a, b9 = b as Element of ( product J) by A16, A17, YELLOW_1:def 5;

         [a9, b9] in the InternalRel of ( product J) by A14, YELLOW_1:def 5;

        then

         A19: a9 <= b9 by ORDERS_2:def 5;

        a9 in ( product ( Carrier J)) by A18, YELLOW_1:def 4;

        then

        consider f,g be Function such that

         A20: f = a9 and

         A21: g = b9 and

         A22: for i be object st i in the carrier of L holds ex R be RelStr, xi,yi be Element of R st R = ((the carrier of L --> ( InclPoset ( Ids L))) . i) & xi = (f . i) & yi = (g . i) & xi <= yi by A19, YELLOW_1:def 4;

        

         A23: f in ( Funcs (the carrier of L,the carrier of ( InclPoset ( Ids L)))) by A16, A20, YELLOW_1: 28;

        g in ( Funcs (the carrier of L,the carrier of ( InclPoset ( Ids L)))) by A17, A21, YELLOW_1: 28;

        then

        reconsider f, g as Function of the carrier of L, the carrier of ( InclPoset ( Ids L)) by A23, FUNCT_2: 66;

        reconsider f, g as Function of L, ( InclPoset ( Ids L));

        now

          take f, g;

          f <= g

          proof

            let j be set;

            assume j in the carrier of L;

            then

            reconsider j9 = j as Element of L;

            take (f . j9), (g . j9);

            ex R be RelStr, xi,yi be Element of R st (R = ((the carrier of L --> ( InclPoset ( Ids L))) . j9)) & (xi = (f . j9)) & (yi = (g . j9)) & (xi <= yi) by A22;

            hence thesis;

          end;

          hence a9 = f & b9 = g & a9 in the carrier of ( MonSet L) & b9 in the carrier of ( MonSet L) & f <= g by A15, A20, A21, ZFMISC_1: 87;

        end;

        hence thesis by Def13;

      end;

      hence thesis by A1, A3, YELLOW_0:def 13, YELLOW_0:def 14;

    end;

    theorem :: WAYBEL_4:17

    

     Th17: for L be lower-bounded sup-Semilattice, AR be auxiliary(ii) Relation of L holds for x,y be Element of L holds x <= y implies (AR -below x) c= (AR -below y)

    proof

      let L be lower-bounded sup-Semilattice, AR be auxiliary(ii) Relation of L;

      let x,y be Element of L;

      assume

       A1: x <= y;

      let a be object;

      assume a in (AR -below x);

      then

      consider y2 be Element of L such that

       A2: y2 = a and

       A3: [y2, x] in AR;

      y2 <= y2;

      then [y2, y] in AR by A1, A3, Def4;

      hence thesis by A2;

    end;

    registration

      let L be lower-bounded sup-Semilattice;

      let AR be auxiliary(ii) auxiliary(iii) auxiliary(iv) Relation of L;

      cluster (AR -below ) -> monotone;

      coherence

      proof

        set s = (AR -below );

        let x,y be Element of L;

        

         A1: (s . x) = (AR -below x) by Def12;

        

         A2: (s . y) = (AR -below y) by Def12;

        assume x <= y;

        then (AR -below x) c= (AR -below y) by Th17;

        hence thesis by A1, A2, YELLOW_1: 3;

      end;

    end

    theorem :: WAYBEL_4:18

    

     Th18: for L be lower-bounded sup-Semilattice, AR be auxiliary Relation of L holds (AR -below ) in the carrier of ( MonSet L)

    proof

      let L be lower-bounded sup-Semilattice, AR be auxiliary Relation of L;

      set s = (AR -below );

      ex s be Function of L, ( InclPoset ( Ids L)) st (AR -below ) = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x)

      proof

        take s;

        for x be Element of L holds (s . x) c= ( downarrow x)

        proof

          let x be Element of L;

          (s . x) = (AR -below x) by Def12;

          hence thesis by Th12;

        end;

        hence thesis;

      end;

      hence thesis by Def13;

    end;

    registration

      let L be lower-bounded sup-Semilattice;

      cluster ( MonSet L) -> non empty;

      coherence by Th18;

    end

    theorem :: WAYBEL_4:19

    

     Th19: for L be lower-bounded sup-Semilattice holds ( IdsMap L) in the carrier of ( MonSet L)

    proof

      let L be lower-bounded sup-Semilattice;

      set s = ( IdsMap L);

      ex s9 be Function of L, ( InclPoset ( Ids L)) st s = s9 & s9 is monotone & for x be Element of L holds (s9 . x) c= ( downarrow x)

      proof

        take s;

        thus thesis by YELLOW_2:def 4;

      end;

      hence thesis by Def13;

    end;

    theorem :: WAYBEL_4:20

    for L be lower-bounded sup-Semilattice, AR be auxiliary Relation of L holds (AR -below ) <= ( IdsMap L)

    proof

      let L be lower-bounded sup-Semilattice, AR be auxiliary Relation of L;

      let x be set;

      assume x in the carrier of L;

      then

      reconsider x9 = x as Element of L;

      

       A1: ((AR -below ) . x9) = (AR -below x9) by Def12;

      (( IdsMap L) . x9) = ( downarrow x9) by YELLOW_2:def 4;

      then

       A2: ((AR -below ) . x) c= (( IdsMap L) . x) by A1, Th12;

      reconsider a = ((AR -below ) . x9), b = (( IdsMap L) . x9) as Element of ( InclPoset ( Ids L));

      take a, b;

      thus thesis by A2, YELLOW_1: 3;

    end;

    theorem :: WAYBEL_4:21

    

     Th21: for L be lower-bounded non empty Poset holds for I be Ideal of L holds ( Bottom L) in I

    proof

      let L be lower-bounded non empty Poset;

      let I be Ideal of L;

      set x = the Element of I;

      ( Bottom L) <= x by YELLOW_0: 44;

      hence thesis by WAYBEL_0:def 19;

    end;

    theorem :: WAYBEL_4:22

    for L be upper-bounded non empty Poset holds for F be Filter of L holds ( Top L) in F

    proof

      let L be upper-bounded non empty Poset;

      let F be Filter of L;

      set x = the Element of F;

      ( Top L) >= x by YELLOW_0: 45;

      hence thesis by WAYBEL_0:def 20;

    end;

    theorem :: WAYBEL_4:23

    

     Th23: for L be lower-bounded non empty Poset holds ( downarrow ( Bottom L)) = {( Bottom L)}

    proof

      let L be lower-bounded non empty Poset;

      thus ( downarrow ( Bottom L)) c= {( Bottom L)}

      proof

        let a be object;

        assume a in ( downarrow ( Bottom L));

        then a in { x where x be Element of L : ex y be Element of L st x <= y & y in {( Bottom L)} } by WAYBEL_0: 14;

        then

        consider a9 be Element of L such that

         A1: a9 = a and

         A2: ex y be Element of L st a9 <= y & y in {( Bottom L)};

        consider y be Element of L such that

         A3: a9 <= y and

         A4: y in {( Bottom L)} by A2;

        

         A5: ( Bottom L) <= a9 by YELLOW_0: 44;

        y = ( Bottom L) by A4, TARSKI:def 1;

        hence thesis by A1, A3, A4, A5, ORDERS_2: 2;

      end;

      let a be object;

      assume a in {( Bottom L)};

      then

       A6: a = ( Bottom L) by TARSKI:def 1;

      ( Bottom L) <= ( Bottom L);

      hence thesis by A6, WAYBEL_0: 17;

    end;

    theorem :: WAYBEL_4:24

    for L be upper-bounded non empty Poset holds ( uparrow ( Top L)) = {( Top L)}

    proof

      let L be upper-bounded non empty Poset;

      thus ( uparrow ( Top L)) c= {( Top L)}

      proof

        let x be object;

        assume

         A1: x in ( uparrow ( Top L));

        then

        reconsider x as Element of L;

        

         A2: x >= ( Top L) by A1, WAYBEL_0: 18;

        x <= ( Top L) by YELLOW_0: 45;

        then x = ( Top L) by A2, ORDERS_2: 2;

        hence thesis by TARSKI:def 1;

      end;

      let x be object;

      assume x in {( Top L)};

      then

       A3: x = ( Top L) by TARSKI:def 1;

      ( Top L) <= ( Top L);

      hence thesis by A3, WAYBEL_0: 18;

    end;

    

     Lm4: for L be lower-bounded sup-Semilattice, I be Ideal of L holds {( Bottom L)} c= I

    proof

      let L be lower-bounded sup-Semilattice;

      let I be Ideal of L;

      let a be object;

      assume a in {( Bottom L)};

      then a = ( Bottom L) by TARSKI:def 1;

      hence thesis by Th21;

    end;

    reserve L for lower-bounded sup-Semilattice;

    reserve x for Element of L;

    theorem :: WAYBEL_4:25

    

     Th25: (the carrier of L --> {( Bottom L)}) is Function of L, ( InclPoset ( Ids L))

    proof

       {( Bottom L)} = ( downarrow ( Bottom L)) by Th23;

      then {( Bottom L)} in the set of all X where X be Ideal of L;

      then {( Bottom L)} in the carrier of ( InclPoset ( Ids L)) by YELLOW_1: 1;

      hence thesis by FUNCOP_1: 45;

    end;

    

     Lm5: for f be Function of L, ( InclPoset ( Ids L)) st f = (the carrier of L --> {( Bottom L)}) holds f is monotone by YELLOW_1: 3;

    theorem :: WAYBEL_4:26

    

     Th26: (the carrier of L --> {( Bottom L)}) in the carrier of ( MonSet L)

    proof

      set s = (the carrier of L --> {( Bottom L)});

      ex s9 be Function of L, ( InclPoset ( Ids L)) st s = s9 & s9 is monotone & for x be Element of L holds (s9 . x) c= ( downarrow x)

      proof

        reconsider s as Function of L, ( InclPoset ( Ids L)) by Th25;

        take s;

        for x holds (s . x) c= ( downarrow x) by Lm4;

        hence thesis by Lm5;

      end;

      hence thesis by Def13;

    end;

    theorem :: WAYBEL_4:27

    for AR be auxiliary Relation of L holds [(the carrier of L --> {( Bottom L)}), (AR -below )] in the InternalRel of ( MonSet L)

    proof

      let AR be auxiliary Relation of L;

      set c = (the carrier of L --> {( Bottom L)}), d = (AR -below );

      ex f,g be Function of L, ( InclPoset ( Ids L)) st c = f & d = g & c in the carrier of ( MonSet L) & d in the carrier of ( MonSet L) & f <= g

      proof

        reconsider c as Function of L, ( InclPoset ( Ids L)) by Th25;

        take c, d;

        c <= d

        proof

          let x be set;

          assume x in the carrier of L;

          then

          reconsider x9 = x as Element of L;

          (d . x) = (AR -below x9) by Def12;

          then

          reconsider dx = (d . x9) as Ideal of L;

          reconsider dx9 = dx as Element of ( InclPoset ( Ids L));

          

           A1: (c . x) c= dx by Lm4;

          take (c . x9), dx9;

          thus thesis by A1, YELLOW_1: 3;

        end;

        hence thesis by Th18, Th26;

      end;

      hence thesis by Def13;

    end;

    

     Lm6: for L holds ex x be Element of ( MonSet L) st x is_>=_than the carrier of ( MonSet L)

    proof

      let L;

      set x = ( IdsMap L);

      reconsider x as Element of ( MonSet L) by Th19;

      x is_>=_than the carrier of ( MonSet L)

      proof

        let b be Element of ( MonSet L);

        assume b in the carrier of ( MonSet L);

        consider s be Function of L, ( InclPoset ( Ids L)) such that

         A1: b = s and s is monotone and

         A2: for x be Element of L holds (s . x) c= ( downarrow x) by Def13;

        ( IdsMap L) >= s

        proof

          let a be set;

          assume a in the carrier of L;

          then

          reconsider a9 = a as Element of L;

          

           A3: (( IdsMap L) . a) = ( downarrow a9) by YELLOW_2:def 4;

          

           A4: (s . a) c= ( downarrow a9) by A2;

          reconsider A = (s . a9), B = (( IdsMap L) . a9) as Element of ( InclPoset ( Ids L));

          take A, B;

          thus thesis by A3, A4, YELLOW_1: 3;

        end;

        then [b, x] in the InternalRel of ( MonSet L) by A1, Def13;

        hence thesis by ORDERS_2:def 5;

      end;

      hence thesis;

    end;

    registration

      let L;

      cluster ( MonSet L) -> upper-bounded;

      coherence by Lm6;

    end

    definition

      let L;

      :: WAYBEL_4:def14

      func Rel2Map L -> Function of ( InclPoset ( Aux L)), ( MonSet L) means

      : Def14: for AR be auxiliary Relation of L holds (it . AR) = (AR -below );

      existence

      proof

        defpred P[ object, object] means ex AR be auxiliary Relation of L st AR = $1 & $2 = (AR -below );

        

         A1: for a be object st a in the carrier of ( InclPoset ( Aux L)) holds ex y be object st y in the carrier of ( MonSet L) & P[a, y]

        proof

          let a be object;

          assume a in the carrier of ( InclPoset ( Aux L));

          then a in ( Aux L) by YELLOW_1: 1;

          then

          reconsider AR = a as auxiliary Relation of L by Def8;

          take (AR -below );

          thus thesis by Th18;

        end;

        consider f be Function of the carrier of ( InclPoset ( Aux L)), the carrier of ( MonSet L) such that

         A2: for a be object st a in the carrier of ( InclPoset ( Aux L)) holds P[a, (f . a)] from FUNCT_2:sch 1( A1);

        take f;

        now

          let AR be auxiliary Relation of L;

          AR in ( Aux L) by Def8;

          then AR in the carrier of ( InclPoset ( Aux L)) by YELLOW_1: 1;

          then P[AR, (f . AR)] by A2;

          hence (f . AR) = (AR -below );

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let I1,I2 be Function of ( InclPoset ( Aux L)), ( MonSet L);

        assume

         A3: for AR be auxiliary Relation of L holds (I1 . AR) = (AR -below );

        assume

         A4: for AR be auxiliary Relation of L holds (I2 . AR) = (AR -below );

        ( dom I1) = the carrier of ( InclPoset ( Aux L)) by FUNCT_2:def 1;

        then

         A5: ( dom I1) = ( Aux L) by YELLOW_1: 1;

        ( dom I2) = the carrier of ( InclPoset ( Aux L)) by FUNCT_2:def 1;

        then

         A6: ( dom I2) = ( Aux L) by YELLOW_1: 1;

        now

          let a be object;

          assume a in ( Aux L);

          then

          reconsider AR = a as auxiliary Relation of L by Def8;

          (I1 . AR) = (AR -below ) by A3

          .= (I2 . AR) by A4;

          hence (I1 . a) = (I2 . a);

        end;

        hence thesis by A5, A6, FUNCT_1: 2;

      end;

    end

    theorem :: WAYBEL_4:28

    for R1,R2 be auxiliary Relation of L st R1 c= R2 holds (R1 -below ) <= (R2 -below )

    proof

      let R1,R2 be auxiliary Relation of L;

      assume

       A1: R1 c= R2;

      let x be set;

      assume x in the carrier of L;

      then

      reconsider x9 = x as Element of L;

      

       A2: (R1 -below x9) c= (R2 -below x9)

      proof

        let a be object;

        assume a in (R1 -below x9);

        then ex b be Element of L st (b = a) & ( [b, x9] in R1);

        hence thesis by A1;

      end;

      reconsider A1 = ((R1 -below ) . x9), A2 = ((R2 -below ) . x9) as Element of ( InclPoset ( Ids L));

      take A1, A2;

      

       A3: ((R1 -below ) . x) = (R1 -below x9) by Def12;

      ((R2 -below ) . x) = (R2 -below x9) by Def12;

      hence thesis by A2, A3, YELLOW_1: 3;

    end;

    theorem :: WAYBEL_4:29

    

     Th29: for R1,R2 be Relation of L st R1 c= R2 holds (R1 -below x) c= (R2 -below x)

    proof

      let R1,R2 be Relation of L;

      assume

       A1: R1 c= R2;

      let a be object;

      assume a in (R1 -below x);

      then ex b be Element of L st (b = a) & ( [b, x] in R1);

      hence thesis by A1;

    end;

    

     Lm7: ( Rel2Map L) is monotone

    proof

      let x,y be Element of ( InclPoset ( Aux L));

      

       A1: x in the carrier of ( InclPoset ( Aux L));

      

       A2: y in the carrier of ( InclPoset ( Aux L));

      

       A3: x in ( Aux L) by A1, YELLOW_1: 1;

      y in ( Aux L) by A2, YELLOW_1: 1;

      then

      reconsider R1 = x, R2 = y as auxiliary Relation of L by A3, Def8;

      assume x <= y;

      then

       A4: x c= y by YELLOW_1: 3;

      let a,b be Element of ( MonSet L);

      assume that

       A5: a = (( Rel2Map L) . x) and

       A6: b = (( Rel2Map L) . y);

      thus a <= b

      proof

        

         A7: (( Rel2Map L) . x) = (R1 -below ) by Def14;

        

         A8: (( Rel2Map L) . y) = (R2 -below ) by Def14;

        consider s be Function of L, ( InclPoset ( Ids L)) such that

         A9: (( Rel2Map L) . x) = s and s is monotone and for x be Element of L holds (s . x) c= ( downarrow x) by Def13;

        consider t be Function of L, ( InclPoset ( Ids L)) such that

         A10: (( Rel2Map L) . y) = t and t is monotone and for x be Element of L holds (t . x) c= ( downarrow x) by Def13;

        s <= t

        proof

          let q be set;

          assume q in the carrier of L;

          then

          reconsider q9 = q as Element of L;

          

           A11: (s . q) = (R1 -below q9) by A7, A9, Def12;

          

           A12: (t . q) = (R2 -below q9) by A8, A10, Def12;

          

           A13: (R1 -below q9) c= (R2 -below q9) by A4, Th29;

          reconsider sq = (s . q9), tq = (t . q9) as Element of ( InclPoset ( Ids L));

          sq <= tq by A11, A12, A13, YELLOW_1: 3;

          hence thesis;

        end;

        then [(R1 -below ), (R2 -below )] in the InternalRel of ( MonSet L) by A7, A8, A9, A10, Def13;

        hence thesis by A5, A6, A7, A8, ORDERS_2:def 5;

      end;

    end;

    registration

      let L;

      cluster ( Rel2Map L) -> monotone;

      coherence by Lm7;

    end

    definition

      let L;

      :: WAYBEL_4:def15

      func Map2Rel L -> Function of ( MonSet L), ( InclPoset ( Aux L)) means

      : Def15: for s be object st s in the carrier of ( MonSet L) holds ex AR be auxiliary Relation of L st AR = (it . s) & for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = s & x9 in (s9 . y9);

      existence

      proof

        defpred P[ object, object] means ex AR be auxiliary Relation of L st AR = $2 & for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = $1 & x9 in (s9 . y9);

        

         A1: for a be object st a in the carrier of ( MonSet L) holds ex b be object st b in the carrier of ( InclPoset ( Aux L)) & P[a, b]

        proof

          let a be object;

          assume

           A2: a in the carrier of ( MonSet L);

          defpred Q[ object, object] means ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = $1 & y9 = $2 & s9 = a & x9 in (s9 . y9);

          consider R be Relation of the carrier of L, the carrier of L such that

           A3: for x,y be object holds [x, y] in R iff x in the carrier of L & y in the carrier of L & Q[x, y] from RELSET_1:sch 1;

          reconsider R as Relation of L;

          

           A4: R is auxiliary(i)

          proof

            let x,y be Element of L;

            assume [x, y] in R;

            then

            consider x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) such that

             A5: x9 = x and

             A6: y9 = y and

             A7: s9 = a and

             A8: x9 in (s9 . y9) by A3;

            ex s be Function of L, ( InclPoset ( Ids L)) st (a = s) & (s is monotone) & (for x be Element of L holds (s . x) c= ( downarrow x)) by A2, Def13;

            then (s9 . y) c= ( downarrow y) by A7;

            hence x <= y by A5, A6, A8, WAYBEL_0: 17;

          end;

          

           A9: R is auxiliary(ii)

          proof

            let x,y,z,u be Element of L;

            assume that

             A10: u <= x and

             A11: [x, y] in R and

             A12: y <= z;

            

             A13: ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (x9 = x) & (y9 = y) & (s9 = a) & (x9 in (s9 . y9)) by A3, A11;

            consider s be Function of L, ( InclPoset ( Ids L)) such that

             A14: a = s and

             A15: s is monotone and for x be Element of L holds (s . x) c= ( downarrow x) by A2, Def13;

            reconsider sy = (s . y), sz = (s . z) as Element of ( InclPoset ( Ids L));

            sy <= sz by A12, A15;

            then

             A16: (s . y) c= (s . z) by YELLOW_1: 3;

            (s . z) in the carrier of ( InclPoset ( Ids L));

            then (s . z) in ( Ids L) by YELLOW_1: 1;

            then

            consider sz be Ideal of L such that

             A17: (s . z) = sz;

            u in sz by A10, A13, A14, A16, A17, WAYBEL_0:def 19;

            hence thesis by A3, A14, A17;

          end;

          

           A18: R is auxiliary(iii)

          proof

            let x,y,z be Element of L;

            assume that

             A19: [x, z] in R and

             A20: [y, z] in R;

            consider x1,z1 be Element of L, s1 be Function of L, ( InclPoset ( Ids L)) such that

             A21: x1 = x and

             A22: z1 = z and

             A23: s1 = a and

             A24: x1 in (s1 . z1) by A3, A19;

            

             A25: ex y2,z2 be Element of L, s2 be Function of L, ( InclPoset ( Ids L)) st (y2 = y) & (z2 = z) & (s2 = a) & (y2 in (s2 . z2)) by A3, A20;

            (s1 . z) in the carrier of ( InclPoset ( Ids L));

            then (s1 . z) in ( Ids L) by YELLOW_1: 1;

            then

            consider sz be Ideal of L such that

             A26: (s1 . z) = sz;

            consider z3 be Element of L such that

             A27: z3 in sz and

             A28: x <= z3 and

             A29: y <= z3 by A21, A22, A23, A24, A25, A26, WAYBEL_0:def 1;

            ex q be Element of L st x <= q & y <= q & for c be Element of L st x <= c & y <= c holds q <= c by LATTICE3:def 10;

            then (x "\/" y) <= z3 by A28, A29, LATTICE3:def 13;

            then (x "\/" y) in sz by A27, WAYBEL_0:def 19;

            hence thesis by A3, A23, A26;

          end;

          R is auxiliary(iv)

          proof

            let x be Element of L;

            reconsider x9 = ( Bottom L), y9 = x as Element of L;

            consider s9 be Function of L, ( InclPoset ( Ids L)) such that

             A30: a = s9 and s9 is monotone and for x be Element of L holds (s9 . x) c= ( downarrow x) by A2, Def13;

            (s9 . y9) in the carrier of ( InclPoset ( Ids L));

            then (s9 . y9) in ( Ids L) by YELLOW_1: 1;

            then

            consider sy be Ideal of L such that

             A31: sy = (s9 . y9);

            x9 in sy by Th21;

            hence thesis by A3, A30, A31;

          end;

          then

          reconsider R as auxiliary Relation of L by A4, A9, A18;

          

           A32: for x,y be object holds [x, y] in R iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = a & x9 in (s9 . y9) by A3;

          take b = R;

          b in ( Aux L) by Def8;

          hence thesis by A32, YELLOW_1: 1;

        end;

        consider f be Function of the carrier of ( MonSet L), the carrier of ( InclPoset ( Aux L)) such that

         A33: for a be object st a in the carrier of ( MonSet L) holds P[a, (f . a)] from FUNCT_2:sch 1( A1);

        reconsider f9 = f as Function of ( MonSet L), ( InclPoset ( Aux L));

        take f9;

        let s be object;

        assume

         A34: s in the carrier of ( MonSet L);

        then

        reconsider s9 = s as Element of ( MonSet L);

        (f9 . s9) in the carrier of ( InclPoset ( Aux L));

        then (f9 . s9) in ( Aux L) by YELLOW_1: 1;

        then

        reconsider fs = (f9 . s9) as auxiliary Relation of L by Def8;

        take fs;

        ex AR be auxiliary Relation of L st AR = (f9 . s) & for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = s & x9 in (s9 . y9) by A33, A34;

        hence thesis;

      end;

      uniqueness

      proof

        let M1,M2 be Function of ( MonSet L), ( InclPoset ( Aux L));

        assume

         A35: for s be object st s in the carrier of ( MonSet L) holds ex AR be auxiliary Relation of L st AR = (M1 . s) & for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = s & x9 in (s9 . y9);

        assume

         A36: for s be object st s in the carrier of ( MonSet L) holds ex AR be auxiliary Relation of L st AR = (M2 . s) & for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = s & x9 in (s9 . y9);

        

         A37: ( dom M1) = the carrier of ( MonSet L) by FUNCT_2:def 1;

        

         A38: ( dom M2) = the carrier of ( MonSet L) by FUNCT_2:def 1;

        for s be object st s in the carrier of ( MonSet L) holds (M1 . s) = (M2 . s)

        proof

          let s be object;

          assume

           A39: s in the carrier of ( MonSet L);

          then

          consider AR1 be auxiliary Relation of L such that

           A40: AR1 = (M1 . s) and

           A41: for x,y be object holds [x, y] in AR1 iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = s & x9 in (s9 . y9) by A35;

          consider AR2 be auxiliary Relation of L such that

           A42: AR2 = (M2 . s) and

           A43: for x,y be object holds [x, y] in AR2 iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = s & x9 in (s9 . y9) by A36, A39;

          AR1 = AR2

          proof

            let x,y be object;

            hereby

              assume [x, y] in AR1;

              then ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (x9 = x) & (y9 = y) & (s9 = s) & (x9 in (s9 . y9)) by A41;

              hence [x, y] in AR2 by A43;

            end;

            assume [x, y] in AR2;

            then ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (x9 = x) & (y9 = y) & (s9 = s) & (x9 in (s9 . y9)) by A43;

            hence thesis by A41;

          end;

          hence thesis by A40, A42;

        end;

        hence thesis by A37, A38, FUNCT_1: 2;

      end;

    end

    

     Lm8: ( Map2Rel L) is monotone

    proof

      set f = ( Map2Rel L);

      

       A1: ( InclPoset ( Aux L)) = RelStr (# ( Aux L), ( RelIncl ( Aux L)) #) by YELLOW_1:def 1;

      let x,y be Element of ( MonSet L);

      assume x <= y;

      then [x, y] in the InternalRel of ( MonSet L) by ORDERS_2:def 5;

      then

      consider s,t be Function of L, ( InclPoset ( Ids L)) such that

       A2: x = s and

       A3: y = t and x in the carrier of ( MonSet L) and y in the carrier of ( MonSet L) and

       A4: s <= t by Def13;

      

       A5: (f . s) in the carrier of ( InclPoset ( Aux L)) by A2, FUNCT_2: 5;

      

       A6: (f . t) in the carrier of ( InclPoset ( Aux L)) by A3, FUNCT_2: 5;

      

       A7: (f . s) in ( Aux L) by A5, YELLOW_1: 1;

      

       A8: (f . t) in ( Aux L) by A6, YELLOW_1: 1;

      then

      reconsider AS = (f . s), AT = (f . t) as auxiliary Relation of L by A7, Def8;

      reconsider AS9 = AS, AT9 = AT as Element of ( InclPoset ( Aux L)) by A2, A3, FUNCT_2: 5;

      for a,b be object st [a, b] in AS holds [a, b] in AT

      proof

        let a,b be object;

        assume

         A9: [a, b] in AS;

        then

         A10: b in the carrier of L by ZFMISC_1: 87;

        reconsider a9 = a, b9 = b as Element of L by A9, ZFMISC_1: 87;

        reconsider sb = (s . b9), tb = (t . b9) as Element of ( InclPoset ( Ids L));

        ex a1,b1 be Element of ( InclPoset ( Ids L)) st (a1 = (s . b)) & (b1 = (t . b)) & (a1 <= b1) by A4, A10;

        then

         A11: sb c= tb by YELLOW_1: 3;

        ex AR be auxiliary Relation of L st (AR = (f . x)) & (for a9,b9 be object holds [a9, b9] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = a9 & y9 = b9 & s9 = x & x9 in (s9 . y9)) by Def15;

        then

         A12: ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (x9 = a9) & (y9 = b9) & (s9 = s) & (x9 in (s9 . y9)) by A2, A9;

        ex AR1 be auxiliary Relation of L st (AR1 = (f . y)) & (for a9,b9 be object holds [a9, b9] in AR1 iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = a9 & y9 = b9 & s9 = y & x9 in (s9 . y9)) by Def15;

        hence thesis by A3, A11, A12;

      end;

      then AS9 c= AT9 by RELAT_1:def 3;

      then [AS9, AT9] in ( RelIncl ( Aux L)) by A7, A8, WELLORD2:def 1;

      hence thesis by A1, A2, A3, ORDERS_2:def 5;

    end;

    registration

      let L;

      cluster ( Map2Rel L) -> monotone;

      coherence by Lm8;

    end

    theorem :: WAYBEL_4:30

    

     Th30: (( Map2Rel L) * ( Rel2Map L)) = ( id ( dom ( Rel2Map L)))

    proof

      set LS = (( Map2Rel L) * ( Rel2Map L));

      set R = ( id ( dom ( Rel2Map L)));

      ( dom LS) = the carrier of ( InclPoset ( Aux L)) by FUNCT_2:def 1;

      then

       A1: ( dom LS) = ( Aux L) by YELLOW_1: 1;

      ( dom R) = the carrier of ( InclPoset ( Aux L)) by FUNCT_2:def 1;

      then

       A2: ( dom R) = ( Aux L) by YELLOW_1: 1;

      for a be object st a in ( Aux L) holds (LS . a) = (R . a)

      proof

        let a be object;

        assume

         A3: a in ( Aux L);

        then

        reconsider AR = a as auxiliary Relation of L by Def8;

        

         A4: a in the carrier of ( InclPoset ( Aux L)) by A3, YELLOW_1: 1;

        then

         A5: a in ( dom ( Rel2Map L)) by FUNCT_2:def 1;

        then (LS . a) = (( Map2Rel L) . (( Rel2Map L) . AR)) by FUNCT_1: 13;

        then

         A6: (LS . a) = (( Map2Rel L) . (AR -below )) by Def14;

        (LS . a) in the carrier of ( InclPoset ( Aux L)) by A4, FUNCT_2: 5;

        then (LS . a) in ( Aux L) by YELLOW_1: 1;

        then

        reconsider La = (LS . a) as auxiliary Relation of L by Def8;

        

         A7: (AR -below ) in the carrier of ( MonSet L) by Th18;

        for c,b be object holds [c, b] in La iff [c, b] in AR

        proof

          let c,b be object;

          hereby

            assume

             A8: [c, b] in La;

            ex AR9 be auxiliary Relation of L st (AR9 = (( Map2Rel L) . (AR -below ))) & (for c,b be object holds [c, b] in AR9 iff ex c9,b9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st c9 = c & b9 = b & s9 = (AR -below ) & c9 in (s9 . b9)) by A7, Def15;

            then

            consider c9,b9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) such that

             A9: c9 = c and

             A10: b9 = b and

             A11: s9 = (AR -below ) and

             A12: c9 in (s9 . b9) by A6, A8;

            c9 in (AR -below b9) by A11, A12, Def12;

            hence [c, b] in AR by A9, A10, Th13;

          end;

          assume

           A13: [c, b] in AR;

          then

          reconsider c9 = c, b9 = b as Element of L by ZFMISC_1: 87;

          c9 in (AR -below b9) by A13;

          then

           A14: c9 in ((AR -below ) . b9) by Def12;

          ex AR9 be auxiliary Relation of L st (AR9 = (( Map2Rel L) . (AR -below ))) & (for c,b be object holds [c, b] in AR9 iff ex c9,b9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st c9 = c & b9 = b & s9 = (AR -below ) & c9 in (s9 . b9)) by A7, Def15;

          hence thesis by A6, A14;

        end;

        then La = AR;

        hence thesis by A5, FUNCT_1: 18;

      end;

      hence thesis by A1, A2, FUNCT_1: 2;

    end;

    theorem :: WAYBEL_4:31

    

     Th31: (( Rel2Map L) * ( Map2Rel L)) = ( id the carrier of ( MonSet L))

    proof

      set LS = (( Rel2Map L) * ( Map2Rel L));

      set R = ( id the carrier of ( MonSet L));

      

       A1: ( dom LS) = the carrier of ( MonSet L) by FUNCT_2:def 1;

      

       A2: ( dom R) = the carrier of ( MonSet L);

      for a be object st a in the carrier of ( MonSet L) holds (LS . a) = (R . a)

      proof

        let a be object;

        assume

         A3: a in the carrier of ( MonSet L);

        then

        consider s be Function of L, ( InclPoset ( Ids L)) such that

         A4: a = s and s is monotone and for x be Element of L holds (s . x) c= ( downarrow x) by Def13;

        (LS . s) in the carrier of ( MonSet L) by A3, A4, FUNCT_2: 5;

        then

        consider Ls be Function of L, ( InclPoset ( Ids L)) such that

         A5: (LS . s) = Ls and Ls is monotone and for x be Element of L holds (Ls . x) c= ( downarrow x) by Def13;

        set AR = (( Map2Rel L) . s);

        AR in the carrier of ( InclPoset ( Aux L)) by A3, A4, FUNCT_2: 5;

        then AR in ( Aux L) by YELLOW_1: 1;

        then

        reconsider AR as auxiliary Relation of L by Def8;

        ( dom ( Map2Rel L)) = the carrier of ( MonSet L) by FUNCT_2:def 1;

        then Ls = (( Rel2Map L) . AR) by A3, A4, A5, FUNCT_1: 13;

        then

         A6: Ls = (AR -below ) by Def14;

        

         A7: ( dom Ls) = the carrier of L by FUNCT_2:def 1;

        

         A8: ( dom s) = the carrier of L by FUNCT_2:def 1;

        now

          let b be object;

          assume

           A9: b in the carrier of L;

          then

          reconsider b9 = b as Element of L;

          

           A10: (Ls . b) c= (s . b)

          proof

            let d be object;

            assume d in (Ls . b);

            then d in (AR -below b9) by A6, Def12;

            then

             A11: [d, b9] in AR by Th13;

            ex AR9 be auxiliary Relation of L st (AR9 = (( Map2Rel L) . s)) & (for d,b9 be object holds [d, b9] in AR9 iff ex d9,b99 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st d9 = d & b99 = b9 & s9 = s & d9 in (s9 . b99)) by A3, A4, Def15;

            then ex d9,b99 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (d9 = d) & (b99 = b9) & (s9 = s) & (d9 in (s9 . b99)) by A11;

            hence thesis;

          end;

          (s . b) c= (Ls . b)

          proof

            let d be object;

            assume

             A12: d in (s . b);

            (s . b) in the carrier of ( InclPoset ( Ids L)) by A9, FUNCT_2: 5;

            then (s . b) in ( Ids L) by YELLOW_1: 1;

            then ex X be Ideal of L st ((s . b) = X);

            then

            reconsider d9 = d as Element of L by A12;

            ex AR9 be auxiliary Relation of L st (AR9 = (( Map2Rel L) . s)) & (for d,b9 be object holds [d, b9] in AR9 iff ex d9,b99 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st d9 = d & b99 = b9 & s9 = s & d9 in (s9 . b99)) by A3, A4, Def15;

            then [d9, b9] in AR by A12;

            then d9 in (AR -below b9);

            hence thesis by A6, Def12;

          end;

          hence (Ls . b) = (s . b) by A10;

        end;

        then Ls = s by A7, A8, FUNCT_1: 2;

        hence thesis by A3, A4, A5, FUNCT_1: 18;

      end;

      hence thesis by A1, A2, FUNCT_1: 2;

    end;

    registration

      let L;

      cluster ( Rel2Map L) -> one-to-one;

      coherence

      proof

        ex g be Function st (g * ( Rel2Map L)) = ( id ( dom ( Rel2Map L)))

        proof

          take ( Map2Rel L);

          thus thesis by Th30;

        end;

        hence thesis by FUNCT_1: 31;

      end;

    end

    theorem :: WAYBEL_4:32

    

     Th32: (( Rel2Map L) " ) = ( Map2Rel L)

    proof

      (( Rel2Map L) * ( Map2Rel L)) = ( id the carrier of ( MonSet L)) implies ( rng ( Rel2Map L)) = the carrier of ( MonSet L) by FUNCT_2: 18;

      then

       A1: ( rng ( Rel2Map L)) = ( dom ( Map2Rel L)) by Th31, FUNCT_2:def 1;

      (( Map2Rel L) * ( Rel2Map L)) = ( id ( dom ( Rel2Map L))) by Th30;

      hence thesis by A1, FUNCT_1: 41;

    end;

    theorem :: WAYBEL_4:33

    ( Rel2Map L) is isomorphic

    proof

      ex g be Function of ( MonSet L), ( InclPoset ( Aux L)) st g = (( Rel2Map L) " ) & g is monotone

      proof

        reconsider g = ( Map2Rel L) as Function of ( MonSet L), ( InclPoset ( Aux L));

        take g;

        thus thesis by Th32;

      end;

      hence thesis by WAYBEL_0:def 38;

    end;

    theorem :: WAYBEL_4:34

    

     Th34: for L be complete LATTICE, x be Element of L holds ( meet { I where I be Ideal of L : x <= ( sup I) }) = ( waybelow x)

    proof

      let L be complete LATTICE, x be Element of L;

      set X = { I where I be Ideal of L : x <= ( sup I) };

      X c= ( bool the carrier of L)

      proof

        let a be object;

        assume a in X;

        then ex I be Ideal of L st (a = I) & (x <= ( sup I));

        hence thesis;

      end;

      then

      reconsider X9 = X as Subset-Family of L;

      ( sup ( downarrow x)) = x by WAYBEL_0: 34;

      then

       A1: ( downarrow x) in X;

      thus ( meet X) c= ( waybelow x)

      proof

        let a be object;

        assume

         A2: a in ( meet X);

        then a in ( meet X9);

        then

        reconsider y = a as Element of L;

        now

          let I be Ideal of L;

          assume x <= ( sup I);

          then I in X;

          hence y in I by A2, SETFAM_1:def 1;

        end;

        then y << x by WAYBEL_3: 21;

        hence thesis by WAYBEL_3: 7;

      end;

      thus ( waybelow x) c= ( meet X)

      proof

        let a be object;

        assume a in ( waybelow x);

        then a in { y where y be Element of L : y << x } by WAYBEL_3:def 3;

        then

         A3: ex a9 be Element of L st (a9 = a) & (a9 << x);

        for Y be set holds Y in X implies a in Y

        proof

          let Y be set;

          assume Y in X;

          then ex I be Ideal of L st (Y = I) & (x <= ( sup I));

          hence thesis by A3, WAYBEL_3: 20;

        end;

        hence thesis by A1, SETFAM_1:def 1;

      end;

    end;

    definition

      let L be Semilattice, I be Ideal of L;

      :: WAYBEL_4:def16

      func DownMap I -> Function of L, ( InclPoset ( Ids L)) means

      : Def16: for x be Element of L holds (x <= ( sup I) implies (it . x) = (( downarrow x) /\ I)) & ( not x <= ( sup I) implies (it . x) = ( downarrow x));

      existence

      proof

        defpred P[ object, object] means for x be Element of L st x = $1 holds (x <= ( sup I) implies $2 = (( downarrow x) /\ I)) & ( not x <= ( sup I) implies $2 = ( downarrow x));

        defpred C[ Element of L] means $1 <= ( sup I);

        deffunc F( Element of L) = (( downarrow $1) /\ I);

        deffunc G( Element of L) = ( downarrow $1);

        consider f be Function such that

         A1: ( dom f) = the carrier of L & for x be Element of L holds ( C[x] implies (f . x) = F(x)) & ( not C[x] implies (f . x) = G(x)) from PARTFUN1:sch 4;

        

         A2: for a be object st a in the carrier of L holds ex y be object st y in the carrier of ( InclPoset ( Ids L)) & P[a, y]

        proof

          let a be object;

          assume a in the carrier of L;

          then

          reconsider x = a as Element of L;

          take y = (f . x);

          thus y in the carrier of ( InclPoset ( Ids L))

          proof

            per cases ;

              suppose x <= ( sup I);

              then y = (( downarrow x) /\ I) by A1;

              then y is Ideal of L by YELLOW_2: 40;

              then y in the set of all X where X be Ideal of L;

              hence thesis by YELLOW_1: 1;

            end;

              suppose not x <= ( sup I);

              then y = ( downarrow x) by A1;

              then y in the set of all X where X be Ideal of L;

              hence thesis by YELLOW_1: 1;

            end;

          end;

          thus thesis by A1;

        end;

        consider f be Function of the carrier of L, the carrier of ( InclPoset ( Ids L)) such that

         A3: for a be object st a in the carrier of L holds P[a, (f . a)] from FUNCT_2:sch 1( A2);

        reconsider f as Function of L, ( InclPoset ( Ids L));

        for x be Element of L holds (x <= ( sup I) implies (f . x) = (( downarrow x) /\ I)) & ( not x <= ( sup I) implies (f . x) = ( downarrow x)) by A3;

        hence thesis;

      end;

      uniqueness

      proof

        let M1,M2 be Function of L, ( InclPoset ( Ids L));

        assume

         A4: for x be Element of L holds (x <= ( sup I) implies (M1 . x) = (( downarrow x) /\ I)) & ( not x <= ( sup I) implies (M1 . x) = ( downarrow x));

        assume

         A5: for x be Element of L holds (x <= ( sup I) implies (M2 . x) = (( downarrow x) /\ I)) & ( not x <= ( sup I) implies (M2 . x) = ( downarrow x));

        

         A6: ( dom M1) = the carrier of L by FUNCT_2:def 1;

        

         A7: ( dom M2) = the carrier of L by FUNCT_2:def 1;

        now

          let x be object;

          assume x in the carrier of L;

          then

          reconsider x9 = x as Element of L;

           A8:

          now

            assume

             A9: x9 <= ( sup I);

            then (M1 . x9) = (( downarrow x9) /\ I) by A4;

            hence (M1 . x9) = (M2 . x9) by A5, A9;

          end;

          now

            assume

             A10: not x9 <= ( sup I);

            then (M1 . x9) = ( downarrow x9) by A4;

            hence (M1 . x9) = (M2 . x9) by A5, A10;

          end;

          hence (M1 . x) = (M2 . x) by A8;

        end;

        hence thesis by A6, A7, FUNCT_1: 2;

      end;

    end

    

     Lm9: for L be Semilattice, I be Ideal of L holds ( DownMap I) is monotone

    proof

      let L be Semilattice, I be Ideal of L;

      let x,y be Element of L;

      assume

       A1: x <= y;

      per cases ;

        suppose

         A2: x <= ( sup I) & y <= ( sup I);

        then

         A3: (( DownMap I) . x) = (( downarrow x) /\ I) by Def16;

        (( DownMap I) . y) = (( downarrow y) /\ I) by A2, Def16;

        then (( DownMap I) . x) c= (( DownMap I) . y) by A1, A3, WAYBEL_0: 21, XBOOLE_1: 26;

        hence thesis by YELLOW_1: 3;

      end;

        suppose

         A4: x <= ( sup I) & not y <= ( sup I);

        then

         A5: (( DownMap I) . x) = (( downarrow x) /\ I) by Def16;

        

         A6: (( DownMap I) . y) = ( downarrow y) by A4, Def16;

        

         A7: ( downarrow x) c= ( downarrow y) by A1, WAYBEL_0: 21;

        (( downarrow x) /\ I) c= ( downarrow x) by XBOOLE_1: 17;

        then (( DownMap I) . x) c= (( DownMap I) . y) by A5, A6, A7;

        hence thesis by YELLOW_1: 3;

      end;

        suppose not x <= ( sup I) & y <= ( sup I);

        hence thesis by A1, ORDERS_2: 3;

      end;

        suppose

         A8: not x <= ( sup I) & not y <= ( sup I);

        then

         A9: (( DownMap I) . x) = ( downarrow x) by Def16;

        (( DownMap I) . y) = ( downarrow y) by A8, Def16;

        then (( DownMap I) . x) c= (( DownMap I) . y) by A1, A9, WAYBEL_0: 21;

        hence thesis by YELLOW_1: 3;

      end;

    end;

    

     Lm10: for L be Semilattice, x be Element of L holds for I be Ideal of L holds (( DownMap I) . x) c= ( downarrow x)

    proof

      let L be Semilattice, x be Element of L;

      let I be Ideal of L;

      per cases ;

        suppose x <= ( sup I);

        then (( DownMap I) . x) = (( downarrow x) /\ I) by Def16;

        hence thesis by XBOOLE_1: 17;

      end;

        suppose not x <= ( sup I);

        hence thesis by Def16;

      end;

    end;

    theorem :: WAYBEL_4:35

    

     Th35: for L be Semilattice, I be Ideal of L holds ( DownMap I) in the carrier of ( MonSet L)

    proof

      let L be Semilattice, I be Ideal of L;

      reconsider mI = ( DownMap I) as Function of L, ( InclPoset ( Ids L));

      ex s be Function of L, ( InclPoset ( Ids L)) st mI = s & s is monotone & for x be Element of L holds (s . x) c= ( downarrow x)

      proof

        take mI;

        thus thesis by Lm9, Lm10;

      end;

      hence thesis by Def13;

    end;

    theorem :: WAYBEL_4:36

    

     Th36: for L be with_infima antisymmetric reflexive RelStr, x be Element of L holds for D be non empty lower Subset of L holds ( {x} "/\" D) = (( downarrow x) /\ D)

    proof

      let L be with_infima antisymmetric reflexive RelStr, x be Element of L;

      let D be non empty lower Subset of L;

      

       A1: ( {x} "/\" D) = { (x9 "/\" y) where x9,y be Element of L : x9 in {x} & y in D } by YELLOW_4:def 4;

      thus ( {x} "/\" D) c= (( downarrow x) /\ D)

      proof

        let a be object;

        assume a in ( {x} "/\" D);

        then a in { (x9 "/\" y) where x9,y be Element of L : x9 in {x} & y in D } by YELLOW_4:def 4;

        then

        consider x9,y be Element of L such that

         A2: a = (x9 "/\" y) and

         A3: x9 in {x} and

         A4: y in D;

        reconsider a9 = a as Element of L by A2;

        

         A5: x9 = x by A3, TARSKI:def 1;

        

         A6: ex v be Element of L st x9 >= v & y >= v & for c be Element of L st x9 >= c & y >= c holds v >= c by LATTICE3:def 11;

        then

         A7: (x9 "/\" y) <= x9 by LATTICE3:def 14;

        

         A8: (x9 "/\" y) <= y by A6, LATTICE3:def 14;

        

         A9: a in ( downarrow x) by A2, A5, A7, WAYBEL_0: 17;

        a9 in D by A2, A4, A8, WAYBEL_0:def 19;

        hence thesis by A9, XBOOLE_0:def 4;

      end;

      thus (( downarrow x) /\ D) c= ( {x} "/\" D)

      proof

        let a be object;

        assume

         A10: a in (( downarrow x) /\ D);

        then

         A11: a in ( downarrow x) by XBOOLE_0:def 4;

        reconsider a9 = a as Element of D by A10, XBOOLE_0:def 4;

        

         A12: x in {x} by TARSKI:def 1;

        a9 <= x by A11, WAYBEL_0: 17;

        then a9 = (a9 "/\" x) by YELLOW_0: 25;

        hence thesis by A1, A12;

      end;

    end;

    begin

    definition

      let L be non empty RelStr, AR be Relation of L;

      :: WAYBEL_4:def17

      attr AR is approximating means

      : Def17: for x be Element of L holds x = ( sup (AR -below x));

    end

    definition

      let L be non empty Poset;

      let mp be Function of L, ( InclPoset ( Ids L));

      :: WAYBEL_4:def18

      attr mp is approximating means for x be Element of L holds ex ii be Subset of L st ii = (mp . x) & x = ( sup ii);

    end

    theorem :: WAYBEL_4:37

    

     Th37: for L be lower-bounded meet-continuous Semilattice, I be Ideal of L holds ( DownMap I) is approximating

    proof

      let L be lower-bounded meet-continuous Semilattice;

      let I be Ideal of L;

      for x be Element of L holds ex ii be Subset of L st ii = (( DownMap I) . x) & x = ( sup ii)

      proof

        let x be Element of L;

        set ii = (( DownMap I) . x);

        ii in the carrier of ( InclPoset ( Ids L));

        then ii in ( Ids L) by YELLOW_1: 1;

        then

        consider ii9 be Ideal of L such that

         A1: ii9 = ii;

        reconsider dI = (( downarrow x) /\ I) as Subset of L;

        per cases ;

          suppose

           A2: x <= ( sup I);

          

          then ( sup ii9) = ( sup dI) by A1, Def16

          .= ( sup ( {x} "/\" I)) by Th36

          .= (x "/\" ( sup I)) by WAYBEL_2:def 6

          .= x by A2, YELLOW_0: 25;

          hence thesis by A1;

        end;

          suppose not x <= ( sup I);

          

          then ( sup ii9) = ( sup ( downarrow x)) by A1, Def16

          .= x by WAYBEL_0: 34;

          hence thesis by A1;

        end;

      end;

      hence thesis;

    end;

    

     Lm11: for L be complete LATTICE, x be Element of L holds for D be directed Subset of L holds ( sup ( {x} "/\" D)) <= x

    proof

      let L be complete LATTICE, x be Element of L;

      let D be directed Subset of L;

      

       A1: ( {x} "/\" D) = { (a "/\" b) where a,b be Element of L : a in {x} & b in D } by YELLOW_4:def 4;

      

       A2: ex_sup_of (( {x} "/\" D),L) by YELLOW_0: 17;

      for c be Element of L st c in ( {x} "/\" D) holds c <= x

      proof

        let c be Element of L;

        assume c in ( {x} "/\" D);

        then

        consider a,b be Element of L such that

         A3: c = (a "/\" b) and

         A4: a in {x} and b in D by A1;

        a = x by A4, TARSKI:def 1;

        hence thesis by A3, YELLOW_0: 23;

      end;

      then x is_>=_than ( {x} "/\" D);

      hence thesis by A2, YELLOW_0: 30;

    end;

    theorem :: WAYBEL_4:38

    

     Th38: for L be lower-bounded continuous LATTICE holds L is meet-continuous

    proof

      let L be lower-bounded continuous LATTICE;

      now

        let D be non empty directed Subset of L;

        let x be Element of L;

        assume

         A1: x <= ( sup D);

        

         A2: ex_sup_of (( waybelow x),L) by YELLOW_0: 17;

        

         A3: ex_sup_of (( downarrow ( sup ( {x} "/\" D))),L) by YELLOW_0: 17;

        ( waybelow x) c= ( downarrow ( sup ( {x} "/\" D)))

        proof

          let q be object;

          assume q in ( waybelow x);

          then q in { y where y be Element of L : y << x } by WAYBEL_3:def 3;

          then

          consider q9 be Element of L such that

           A4: q9 = q and

           A5: q9 << x;

          

           A6: q9 <= x by A5, WAYBEL_3: 1;

          consider d be Element of L such that

           A7: d in D and

           A8: q9 <= d by A1, A5, WAYBEL_3:def 1;

          x in {x} by TARSKI:def 1;

          then (x "/\" d) in { (a "/\" b) where a,b be Element of L : a in {x} & b in D } by A7;

          then

           A9: (x "/\" d) in ( {x} "/\" D) by YELLOW_4:def 4;

           ex_inf_of ( {x, d},L) by YELLOW_0: 17;

          then

           A10: q9 <= (x "/\" d) by A6, A8, YELLOW_0: 19;

          ( sup ( {x} "/\" D)) is_>=_than ( {x} "/\" D) by YELLOW_0: 32;

          then (x "/\" d) <= ( sup ( {x} "/\" D)) by A9;

          then q9 <= ( sup ( {x} "/\" D)) by A10, ORDERS_2: 3;

          hence thesis by A4, WAYBEL_0: 17;

        end;

        then ( sup ( waybelow x)) <= ( sup ( downarrow ( sup ( {x} "/\" D)))) by A2, A3, YELLOW_0: 34;

        then ( sup ( waybelow x)) <= ( sup ( {x} "/\" D)) by WAYBEL_0: 34;

        then

         A11: x <= ( sup ( {x} "/\" D)) by WAYBEL_3:def 5;

        ( sup ( {x} "/\" D)) <= x by Lm11;

        hence x = ( sup ( {x} "/\" D)) by A11, ORDERS_2: 2;

      end;

      then for x be Element of L, D be non empty directed Subset of L st x <= ( sup D) holds x = ( sup ( {x} "/\" D));

      hence thesis by WAYBEL_2: 52;

    end;

    registration

      cluster continuous -> meet-continuous for lower-bounded LATTICE;

      coherence by Th38;

    end

    theorem :: WAYBEL_4:39

    for L be lower-bounded continuous LATTICE, I be Ideal of L holds ( DownMap I) is approximating by Th37;

    registration

      let L be non empty reflexive antisymmetric RelStr;

      cluster (L -waybelow ) -> auxiliary(i);

      coherence

      proof

        let x,y be Element of L;

        assume [x, y] in (L -waybelow );

        then x << y by Def1;

        hence thesis by WAYBEL_3: 1;

      end;

    end

    registration

      let L be non empty reflexive transitive RelStr;

      cluster (L -waybelow ) -> auxiliary(ii);

      coherence

      proof

        set AR = (L -waybelow );

        let x,y,z,u be Element of L;

        assume that

         A1: u <= x and

         A2: [x, y] in AR and

         A3: y <= z;

        x << y by A2, Def1;

        then u << z by A1, A3, WAYBEL_3: 2;

        hence [u, z] in AR by Def1;

      end;

    end

    registration

      let L be with_suprema Poset;

      cluster (L -waybelow ) -> auxiliary(iii);

      coherence

      proof

        set AR = (L -waybelow );

        let x,y,z be Element of L;

        assume that

         A1: [x, z] in AR and

         A2: [y, z] in AR;

        

         A3: x << z by A1, Def1;

        y << z by A2, Def1;

        then (x "\/" y) << z by A3, WAYBEL_3: 3;

        hence [(x "\/" y), z] in AR by Def1;

      end;

    end

    registration

      let L be /\-complete non empty Poset;

      cluster (L -waybelow ) -> auxiliary(iii);

      coherence

      proof

        set AR = (L -waybelow );

        let x,y,z be Element of L;

        assume that

         A1: [x, z] in AR and

         A2: [y, z] in AR;

        

         A3: x << z by A1, Def1;

        y << z by A2, Def1;

        then (x "\/" y) << z by A3, WAYBEL_3: 3;

        hence thesis by Def1;

      end;

    end

    registration

      let L be lower-bounded antisymmetric reflexive non empty RelStr;

      cluster (L -waybelow ) -> auxiliary(iv);

      coherence

      proof

        let x be Element of L;

        ( Bottom L) << x by WAYBEL_3: 4;

        hence thesis by Def1;

      end;

    end

    theorem :: WAYBEL_4:40

    

     Th40: for L be complete LATTICE, x be Element of L holds ((L -waybelow ) -below x) = ( waybelow x)

    proof

      let L be complete LATTICE, x be Element of L;

      set AR = (L -waybelow );

      set A = { y where y be Element of L : [y, x] in AR };

      set B = { y where y be Element of L : y << x };

      

       A1: A c= B

      proof

        let a be object;

        assume a in A;

        then

        consider v be Element of L such that

         A2: a = v and

         A3: [v, x] in AR;

        v << x by A3, Def1;

        hence thesis by A2;

      end;

      B c= A

      proof

        let a be object;

        assume a in B;

        then

        consider v be Element of L such that

         A4: a = v and

         A5: v << x;

         [v, x] in AR by A5, Def1;

        hence thesis by A4;

      end;

      then A = B by A1;

      hence thesis by WAYBEL_3:def 3;

    end;

    theorem :: WAYBEL_4:41

    

     Th41: for L be LATTICE holds ( IntRel L) is approximating

    proof

      let L be LATTICE;

      set AR = ( IntRel L);

      let x be Element of L;

      set A = { y where y be Element of L : [y, x] in AR };

      set E = { u where u be Element of L : u <= x };

      

       A1: A c= E

      proof

        let a be object;

        assume a in A;

        then

        consider v be Element of L such that

         A2: a = v and

         A3: [v, x] in AR;

        v <= x by A3, ORDERS_2:def 5;

        hence thesis by A2;

      end;

      E c= A

      proof

        let a be object;

        assume a in E;

        then

        consider v be Element of L such that

         A4: a = v and

         A5: v <= x;

         [v, x] in AR by A5, ORDERS_2:def 5;

        hence thesis by A4;

      end;

      then

       A6: { y where y be Element of L : [y, x] in AR } = E by A1;

      { y where y be Element of L : y <= x } c= the carrier of L

      proof

        let z be object;

        assume z in { y where y be Element of L : y <= x };

        then ex y be Element of L st z = y & y <= x;

        hence thesis;

      end;

      then

      reconsider E as Subset of L;

      

       A7: x is_>=_than E

      proof

        let b be Element of L;

        assume b in E;

        then ex b9 be Element of L st (b9 = b) & (b9 <= x);

        hence b <= x;

      end;

      now

        let b be Element of L;

        assume

         A8: b is_>=_than E;

        x in E;

        hence x <= b by A8;

      end;

      hence thesis by A6, A7, YELLOW_0: 30;

    end;

    

     Lm12: for L be lower-bounded continuous LATTICE holds (L -waybelow ) is approximating

    proof

      let L be lower-bounded continuous LATTICE;

      let x be Element of L;

      x = ( sup ( waybelow x)) by WAYBEL_3:def 5;

      hence thesis by Th40;

    end;

    registration

      let L be lower-bounded continuous LATTICE;

      cluster (L -waybelow ) -> approximating;

      coherence by Lm12;

    end

    registration

      let L be complete LATTICE;

      cluster approximating auxiliary for Relation of L;

      existence

      proof

        reconsider A = ( IntRel L) as auxiliary Relation of L;

        A is approximating by Th41;

        hence thesis;

      end;

    end

    definition

      let L be complete LATTICE;

      defpred P[ object] means $1 is approximating auxiliary Relation of L;

      :: WAYBEL_4:def19

      func App L -> set means

      : Def19: a in it iff a is approximating auxiliary Relation of L;

      existence

      proof

        consider X be set such that

         A1: for a be object holds a in X iff a in ( Aux L) & P[a] from XBOOLE_0:sch 1;

        take X;

        a is approximating auxiliary Relation of L implies a in X

        proof

          assume

           A2: a is approximating auxiliary Relation of L;

          then a in ( Aux L) by Def8;

          hence thesis by A1, A2;

        end;

        hence thesis by A1;

      end;

      uniqueness

      proof

        thus for X1,X2 be set st (for x be set holds x in X1 iff P[x]) & (for x be set holds x in X2 iff P[x]) holds X1 = X2 from XFAMILY:sch 3;

      end;

    end

    registration

      let L be complete LATTICE;

      cluster ( App L) -> non empty;

      coherence

      proof

        set a = the approximating auxiliary Relation of L;

        a in ( App L) by Def19;

        hence thesis;

      end;

    end

    theorem :: WAYBEL_4:42

    

     Th42: for L be complete LATTICE holds for mp be Function of L, ( InclPoset ( Ids L)) st mp is approximating & mp in the carrier of ( MonSet L) holds ex AR be approximating auxiliary Relation of L st AR = (( Map2Rel L) . mp)

    proof

      let L be complete LATTICE;

      let mp be Function of L, ( InclPoset ( Ids L));

      assume that

       A1: mp is approximating and

       A2: mp in the carrier of ( MonSet L);

      consider AR be auxiliary Relation of L such that

       A3: AR = (( Map2Rel L) . mp) and

       A4: for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = mp & x9 in (s9 . y9) by A2, Def15;

      now

        let x be Element of L;

        

         A5: ex ii be Subset of L st (ii = (mp . x)) & (x = ( sup ii)) by A1;

        

         A6: (AR -below x) c= (mp . x)

        proof

          let a be object;

          assume a in (AR -below x);

          then [a, x] in AR by Th13;

          then ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (x9 = a) & (y9 = x) & (s9 = mp) & (x9 in (s9 . y9)) by A4;

          hence thesis;

        end;

        (mp . x) c= (AR -below x)

        proof

          let a be object;

          assume

           A7: a in (mp . x);

          then

          reconsider a9 = a as Element of L by A5;

           [a9, x] in AR by A4, A7;

          hence thesis;

        end;

        hence x = ( sup (AR -below x)) by A5, A6, XBOOLE_0:def 10;

      end;

      then

      reconsider AR as approximating auxiliary Relation of L by Def17;

      take AR;

      thus thesis by A3;

    end;

    theorem :: WAYBEL_4:43

    

     Th43: for L be complete LATTICE, x be Element of L holds ( meet the set of all (( DownMap I) . x) where I be Ideal of L) = ( waybelow x)

    proof

      let L be complete LATTICE, x be Element of L;

      set A = the set of all (( DownMap I) . x) where I be Ideal of L;

      set A1 = { (( DownMap I) . x) where I be Ideal of L : x <= ( sup I) };

      

       A1: A1 c= { (( downarrow x) /\ I) where I be Ideal of L : x <= ( sup I) }

      proof

        let a be object;

        assume a in A1;

        then

        consider I1 be Ideal of L such that

         A2: a = (( DownMap I1) . x) and

         A3: x <= ( sup I1);

        a = (( downarrow x) /\ I1) by A2, A3, Def16;

        hence thesis by A3;

      end;

      { (( downarrow x) /\ I) where I be Ideal of L : x <= ( sup I) } c= A1

      proof

        let a be object;

        assume a in { (( downarrow x) /\ I) where I be Ideal of L : x <= ( sup I) };

        then

        consider I1 be Ideal of L such that

         A4: a = (( downarrow x) /\ I1) and

         A5: x <= ( sup I1);

        a = (( DownMap I1) . x) by A4, A5, Def16;

        hence thesis by A5;

      end;

      then

       A6: A1 = { (( downarrow x) /\ I) where I be Ideal of L : x <= ( sup I) } by A1;

      set A2 = { (( DownMap I) . x) where I be Ideal of L : not x <= ( sup I) };

      

       A7: A2 c= { ( downarrow x) where I be Ideal of L : not x <= ( sup I) }

      proof

        let a be object;

        assume a in A2;

        then

         A8: ex I1 be Ideal of L st (a = (( DownMap I1) . x)) & ( not x <= ( sup I1));

        then a = ( downarrow x) by Def16;

        hence thesis by A8;

      end;

      { ( downarrow x) where I be Ideal of L : not x <= ( sup I) } c= A2

      proof

        let a be object;

        assume a in { ( downarrow x) where I be Ideal of L : not x <= ( sup I) };

        then

        consider I1 be Ideal of L such that

         A9: a = ( downarrow x) and

         A10: not x <= ( sup I1);

        a = (( DownMap I1) . x) by A9, A10, Def16;

        hence thesis by A10;

      end;

      then

       A11: A2 = { ( downarrow x) where I be Ideal of L : not x <= ( sup I) } by A7;

      

       A12: A c= (A1 \/ A2)

      proof

        let a be object;

        assume a in A;

        then

        consider I2 be Ideal of L such that

         A13: a = (( DownMap I2) . x);

        x <= ( sup I2) or not x <= ( sup I2);

        then a in A1 or a in A2 by A13;

        hence thesis by XBOOLE_0:def 3;

      end;

      (A1 \/ A2) c= A

      proof

        let a be object;

        assume a in (A1 \/ A2);

        then a in A1 or a in A2 by XBOOLE_0:def 3;

        then

        consider I2,I3 be Ideal of L such that

         A14: a = (( DownMap I2) . x) & x <= ( sup I2) or a = (( DownMap I3) . x) & not x <= ( sup I3);

        per cases by A14;

          suppose a = (( DownMap I2) . x) & x <= ( sup I2);

          hence thesis;

        end;

          suppose a = (( DownMap I3) . x) & not x <= ( sup I3);

          hence thesis;

        end;

      end;

      then

       A15: A = (A1 \/ A2) by A12;

      per cases ;

        suppose

         A16: x = ( Bottom L);

        

         A17: A2 = {}

        proof

          assume A2 <> {} ;

          then

          reconsider A29 = A2 as non empty set;

          set a = the Element of A29;

          a in A29;

          then ex I1 be Ideal of L st (a = ( downarrow x)) & ( not x <= ( sup I1)) by A11;

          hence contradiction by A16, YELLOW_0: 44;

        end;

        set Dx = ( downarrow x);

        x <= ( sup Dx) by A16, YELLOW_0: 44;

        then

         A18: (Dx /\ Dx) in A1 by A6;

        A1 c= { K where K be Ideal of L : x <= ( sup K) }

        proof

          let a be object;

          assume a in A1;

          then ex H be Ideal of L st (a = (( downarrow x) /\ H)) & (x <= ( sup H)) by A6;

          then

          reconsider a9 = a as Ideal of L by YELLOW_2: 40;

          x <= ( sup a9) by A16, YELLOW_0: 44;

          hence thesis;

        end;

        then

         A19: ( meet { K where K be Ideal of L : x <= ( sup K) }) c= ( meet A1) by A18, SETFAM_1: 6;

        

         A20: ( meet A1) = {x}

        proof

          reconsider I9 = ( downarrow x) as Ideal of L;

          x <= ( sup I9) by A16, YELLOW_0: 44;

          then (( downarrow x) /\ I9) in A1 by A6;

          then {x} in A1 by A16, Th23;

          hence ( meet A1) c= {x} by SETFAM_1: 3;

          for Z1 be set st Z1 in A1 holds {x} c= Z1

          proof

            let Z1 be set;

            assume Z1 in A1;

            then

            consider Z19 be Ideal of L such that

             A21: Z1 = (( downarrow x) /\ Z19) and x <= ( sup Z19) by A6;

            

             A22: {x} c= Z19 by A16, Lm4;

             {x} c= ( downarrow x) by A16, Th23;

            hence thesis by A21, A22, XBOOLE_1: 19;

          end;

          hence thesis by A18, SETFAM_1: 5;

        end;

        set E = the Ideal of L;

        x <= ( sup E) by A16, YELLOW_0: 44;

        then

         A23: E in { K where K be Ideal of L : x <= ( sup K) };

        for Z1 be set st Z1 in { K where K be Ideal of L : x <= ( sup K) } holds ( meet A1) c= Z1

        proof

          let Z1 be set;

          assume Z1 in { K where K be Ideal of L : x <= ( sup K) };

          then ex K1 be Ideal of L st (K1 = Z1) & (x <= ( sup K1));

          hence thesis by A16, A20, Lm4;

        end;

        then ( meet A1) c= ( meet { K where K be Ideal of L : x <= ( sup K) }) by A23, SETFAM_1: 5;

        then ( meet A1) = ( meet { K where K be Ideal of L : x <= ( sup K) }) by A19;

        hence thesis by A15, A17, Th34;

      end;

        suppose

         A24: ( Bottom L) <> x;

        set O = ( downarrow ( Bottom L));

        

         A25: ( sup O) = ( Bottom L) by WAYBEL_0: 34;

        then not x < ( sup O) by ORDERS_2: 6, YELLOW_0: 44;

        then not x <= ( sup O) by A24, A25, ORDERS_2:def 6;

        then

         A26: ( downarrow x) in A2 by A11;

        reconsider O1 = ( downarrow x) as Ideal of L;

        

         A27: x <= ( sup O1) by WAYBEL_0: 34;

        ( downarrow x) = (( downarrow x) /\ O1);

        then

         A28: ( downarrow x) in A1 by A6, A27;

        

         A29: ( meet A2) c= ( downarrow x) by A26, SETFAM_1: 3;

        now

          let Z1 be set;

          assume Z1 in A2;

          then ex L1 be Ideal of L st (Z1 = ( downarrow x)) & ( not x <= ( sup L1)) by A11;

          hence ( downarrow x) c= Z1;

        end;

        then ( downarrow x) c= ( meet A2) by A26, SETFAM_1: 5;

        then

         A30: ( meet A2) = ( downarrow x) by A29;

        

         A31: ( meet A) = (( meet A1) /\ ( meet A2)) by A15, A26, A28, SETFAM_1: 9;

        

         A32: ( meet A1) c= ( downarrow x) by A28, SETFAM_1: 3;

        

         A33: ( meet A) = ( meet A1) by A28, A30, A31, SETFAM_1: 3, XBOOLE_1: 28;

        

         A34: ( meet A1) c= (( downarrow x) /\ ( meet { I where I be Ideal of L : x <= ( sup I) }))

        proof

          let a be object;

          assume

           A35: a in ( meet A1);

          thus a in (( downarrow x) /\ ( meet { I where I be Ideal of L : x <= ( sup I) }))

          proof

            reconsider L9 = ( [#] L) as Subset of L;

             ex_sup_of (L9,L) by YELLOW_0: 17;

            then L9 is_<=_than ( sup L9) by YELLOW_0:def 9;

            then x <= ( sup L9);

            then

             A36: L9 in { I where I be Ideal of L : x <= ( sup I) };

            now

              let Y1 be set;

              assume Y1 in { I where I be Ideal of L : x <= ( sup I) };

              then

              consider Y19 be Ideal of L such that

               A37: Y1 = Y19 and

               A38: x <= ( sup Y19);

              

               A39: (( downarrow x) /\ Y19) c= Y19 by XBOOLE_1: 17;

              (( downarrow x) /\ Y19) in A1 by A6, A38;

              then a in (( downarrow x) /\ Y19) by A35, SETFAM_1:def 1;

              hence a in Y1 by A37, A39;

            end;

            then a in ( meet { I where I be Ideal of L : x <= ( sup I) }) by A36, SETFAM_1:def 1;

            hence thesis by A32, A35, XBOOLE_0:def 4;

          end;

        end;

        (( downarrow x) /\ ( meet { I where I be Ideal of L : x <= ( sup I) })) c= ( meet A1)

        proof

          let a be object;

          assume

           A40: a in (( downarrow x) /\ ( meet { I where I be Ideal of L : x <= ( sup I) }));

          then

           A41: a in ( downarrow x) by XBOOLE_0:def 4;

          

           A42: a in ( meet { I where I be Ideal of L : x <= ( sup I) }) by A40, XBOOLE_0:def 4;

          now

            let Y1 be set;

            assume Y1 in { (( downarrow x) /\ I) where I be Ideal of L : x <= ( sup I) };

            then

            consider I1 be Ideal of L such that

             A43: Y1 = (( downarrow x) /\ I1) and

             A44: x <= ( sup I1);

            I1 in { I where I be Ideal of L : x <= ( sup I) } by A44;

            then a in I1 by A42, SETFAM_1:def 1;

            hence a in Y1 by A41, A43, XBOOLE_0:def 4;

          end;

          hence a in ( meet A1) by A6, A28, SETFAM_1:def 1;

        end;

        then (( downarrow x) /\ ( meet { I where I be Ideal of L : x <= ( sup I) })) = ( meet A1) by A34;

        then (( downarrow x) /\ ( waybelow x)) = ( meet A1) by Th34;

        hence thesis by A33, WAYBEL_3: 11, XBOOLE_1: 28;

      end;

    end;

    theorem :: WAYBEL_4:44

    

     Th44: for L be lower-bounded meet-continuous LATTICE, x be Element of L holds ( meet { (AR -below x) where AR be auxiliary Relation of L : AR in ( App L) }) = ( waybelow x)

    proof

      let L be lower-bounded meet-continuous LATTICE, x be Element of L;

      set A = { (AR -below x) where AR be auxiliary Relation of L : AR in ( App L) };

      set AA = the approximating auxiliary Relation of L;

      AA in ( App L) by Def19;

      then

       A1: (AA -below x) in A;

      

       A2: ( meet { I where I be Ideal of L : x <= ( sup I) }) = ( waybelow x) by Th34;

      

       A3: ( meet the set of all (( DownMap I) . x) where I be Ideal of L) = ( waybelow x) by Th43;

      set I1 = the Ideal of L;

      

       A4: (( DownMap I1) . x) in the set of all (( DownMap I) . x) where I be Ideal of L;

       the set of all (( DownMap I) . x) where I be Ideal of L c= A

      proof

        let a be object;

        assume a in the set of all (( DownMap I) . x) where I be Ideal of L;

        then

        consider I be Ideal of L such that

         A5: a = (( DownMap I) . x);

        

         A6: ( DownMap I) is approximating by Th37;

        ( DownMap I) in the carrier of ( MonSet L) by Th35;

        then

        consider AR be auxiliary Relation of L such that

         A7: AR = (( Map2Rel L) . ( DownMap I)) and

         A8: for x,y be object holds [x, y] in AR iff ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st x9 = x & y9 = y & s9 = ( DownMap I) & x9 in (s9 . y9) by Def15;

        

         A9: ex AR1 be approximating auxiliary Relation of L st (AR1 = (( Map2Rel L) . ( DownMap I))) by A6, Th35, Th42;

        

         A10: ex ii be Subset of L st (ii = (( DownMap I) . x)) & (x = ( sup ii)) by A6;

        

         A11: (AR -below x) c= (( DownMap I) . x)

        proof

          let a be object;

          assume a in (AR -below x);

          then [a, x] in AR by Th13;

          then ex x9,y9 be Element of L, s9 be Function of L, ( InclPoset ( Ids L)) st (x9 = a) & (y9 = x) & (s9 = ( DownMap I)) & (x9 in (s9 . y9)) by A8;

          hence thesis;

        end;

        (( DownMap I) . x) c= (AR -below x)

        proof

          let a be object;

          assume

           A12: a in (( DownMap I) . x);

          then

          reconsider a9 = a as Element of L by A10;

           [a9, x] in AR by A8, A12;

          hence thesis;

        end;

        then

         A13: (AR -below x) = (( DownMap I) . x) by A11;

        AR in ( App L) by A7, A9, Def19;

        hence thesis by A5, A13;

      end;

      hence ( meet A) c= ( waybelow x) by A3, A4, SETFAM_1: 6;

      A c= { I where I be Ideal of L : x <= ( sup I) }

      proof

        let a be object;

        assume a in A;

        then

        consider AR be auxiliary Relation of L such that

         A14: a = (AR -below x) and

         A15: AR in ( App L);

        reconsider AR as approximating auxiliary Relation of L by A15, Def19;

        ( sup (AR -below x)) = x by Def17;

        hence thesis by A14;

      end;

      hence ( waybelow x) c= ( meet A) by A1, A2, SETFAM_1: 6;

    end;

    reserve L for complete LATTICE;

    theorem :: WAYBEL_4:45

    

     Th45: L is continuous iff for R be approximating auxiliary Relation of L holds (L -waybelow ) c= R & (L -waybelow ) is approximating

    proof

      set AR = (L -waybelow );

      hereby

        assume

         A1: L is continuous;

        then

        reconsider L9 = L as lower-bounded meet-continuous LATTICE;

        thus for R be approximating auxiliary Relation of L holds AR c= R & AR is approximating

        proof

          let R be approximating auxiliary Relation of L;

          reconsider R9 = R as approximating auxiliary Relation of L9;

          for a,b be object st [a, b] in AR holds [a, b] in R

          proof

            let a,b be object;

            assume

             A2: [a, b] in AR;

            then

            reconsider a9 = a, b9 = b as Element of L9 by ZFMISC_1: 87;

            a9 << b9 by A2, Def1;

            then

             A3: a9 in ( waybelow b9) by WAYBEL_3: 7;

            

             A4: ( meet { (A1 -below b9) where A1 be auxiliary Relation of L9 : A1 in ( App L9) }) = ( waybelow b9) by Th44;

            R9 in ( App L9) by Def19;

            then (R9 -below b9) in { (A1 -below b9) where A1 be auxiliary Relation of L9 : A1 in ( App L9) };

            then ( waybelow b9) c= (R9 -below b9) by A4, SETFAM_1: 3;

            hence thesis by A3, Th13;

          end;

          hence AR c= R;

          thus thesis by A1;

        end;

      end;

      assume

       A5: for R be approximating auxiliary Relation of L holds AR c= R & AR is approximating;

      for x be Element of L holds x = ( sup ( waybelow x))

      proof

        let x be Element of L;

        x = ( sup (AR -below x)) by A5, Def17;

        hence thesis by Th40;

      end;

      then L is satisfying_axiom_of_approximation by WAYBEL_3:def 5;

      hence thesis;

    end;

    theorem :: WAYBEL_4:46

    L is continuous iff (L is meet-continuous & ex R be approximating auxiliary Relation of L st for R9 be approximating auxiliary Relation of L holds R c= R9)

    proof

      hereby

        assume

         A1: L is continuous;

        hence L is meet-continuous;

        reconsider R = (L -waybelow ) as approximating auxiliary Relation of L by A1;

        take R;

        thus for R9 be approximating auxiliary Relation of L holds R c= R9 by A1, Th45;

      end;

      assume

       A2: L is meet-continuous;

      given R be approximating auxiliary Relation of L such that

       A3: for R9 be approximating auxiliary Relation of L holds R c= R9;

      for x be Element of L holds x = ( sup ( waybelow x))

      proof

        let x be Element of L;

        set K = { (AR -below x) where AR be auxiliary Relation of L : AR in ( App L) };

        

         A4: ( meet K) = ( waybelow x) by A2, Th44;

        R in ( App L) by Def19;

        then

         A5: (R -below x) in K;

        then

         A6: ( waybelow x) c= (R -below x) by A4, SETFAM_1: 3;

        

         A7: ( sup (R -below x)) = x by Def17;

        for a st a in K holds (R -below x) c= a

        proof

          let a;

          assume a in K;

          then

          consider AA be auxiliary Relation of L such that

           A8: a = (AA -below x) and

           A9: AA in ( App L);

          reconsider AA as approximating auxiliary Relation of L by A9, Def19;

          let b be object;

          assume

           A10: b in (R -below x);

          (R -below x) c= (AA -below x) by A3, Th29;

          hence thesis by A8, A10;

        end;

        then (R -below x) c= ( meet K) by A5, SETFAM_1: 5;

        hence thesis by A4, A6, A7, XBOOLE_0:def 10;

      end;

      then L is satisfying_axiom_of_approximation by WAYBEL_3:def 5;

      hence thesis;

    end;

    definition

      let L be RelStr, AR be Relation of L;

      :: WAYBEL_4:def20

      attr AR is satisfying_SI means for x,z be Element of L holds ( [x, z] in AR & x <> z implies ex y be Element of L st [x, y] in AR & [y, z] in AR & x <> y);

    end

    definition

      let L be RelStr, AR be Relation of L;

      :: WAYBEL_4:def21

      attr AR is satisfying_INT means

      : Def21: for x,z be Element of L holds ( [x, z] in AR implies ex y be Element of L st [x, y] in AR & [y, z] in AR);

    end

    theorem :: WAYBEL_4:47

    

     Th47: for L be RelStr, AR be Relation of L holds AR is satisfying_SI implies AR is satisfying_INT

    proof

      let L be RelStr, AR be Relation of L;

      assume

       A1: AR is satisfying_SI;

      let x,z be Element of L;

       [x, z] in AR implies ex y be Element of L st [x, y] in AR & [y, z] in AR

      proof

        assume

         A2: [x, z] in AR;

        per cases ;

          suppose x <> z;

          then ex y be Element of L st ( [x, y] in AR) & ( [y, z] in AR) & (x <> y) by A1, A2;

          hence thesis;

        end;

          suppose x = z;

          hence thesis by A2;

        end;

      end;

      hence thesis;

    end;

    registration

      let L be non empty RelStr;

      cluster satisfying_SI -> satisfying_INT for Relation of L;

      coherence by Th47;

    end

    reserve AR for Relation of L;

    reserve x,y,z for Element of L;

    theorem :: WAYBEL_4:48

    

     Th48: for AR be approximating Relation of L st not x <= y holds ex u be Element of L st [u, x] in AR & not u <= y

    proof

      let AR be approximating Relation of L;

      assume

       A1: not x <= y;

      

       A2: x = ( sup (AR -below x)) by Def17;

       ex_sup_of ((AR -below x),L) by YELLOW_0: 17;

      then y is_>=_than (AR -below x) implies y >= x by A2, YELLOW_0:def 9;

      then

      consider u be Element of L such that

       A3: u in (AR -below x) and

       A4: not u <= y by A1;

      take u;

      thus thesis by A3, A4, Th13;

    end;

    theorem :: WAYBEL_4:49

    

     Th49: for R be approximating auxiliary(i) auxiliary(iii) Relation of L holds [x, z] in R & x <> z implies ex y st x <= y & [y, z] in R & x <> y

    proof

      let R be approximating auxiliary(i) auxiliary(iii) Relation of L;

      assume that

       A1: [x, z] in R and

       A2: x <> z;

      x <= z by A1, Def3;

      then x < z by A2, ORDERS_2:def 6;

      then not z < x by ORDERS_2: 4;

      then not z <= x by A2, ORDERS_2:def 6;

      then

      consider u be Element of L such that

       A3: [u, z] in R and

       A4: not u <= x by Th48;

      take y = (x "\/" u);

      thus x <= y by YELLOW_0: 22;

      thus [y, z] in R by A1, A3, Def5;

      thus thesis by A4, YELLOW_0: 24;

    end;

    theorem :: WAYBEL_4:50

    

     Th50: for R be approximating auxiliary Relation of L holds x << z & x <> z implies ex y be Element of L st [x, y] in R & [y, z] in R & x <> y

    proof

      let R be approximating auxiliary Relation of L;

      assume that

       A1: x << z and

       A2: x <> z;

      set I = { u where u be Element of L : ex y be Element of L st [u, y] in R & [y, z] in R };

      

       A3: [( Bottom L), ( Bottom L)] in R by Def6;

       [( Bottom L), z] in R by Def6;

      then

       A4: ( Bottom L) in I by A3;

      I c= the carrier of L

      proof

        let v be object;

        assume v in I;

        then ex u1 be Element of L st v = u1 & ex y be Element of L st [u1, y] in R & [y, z] in R;

        hence thesis;

      end;

      then

      reconsider I as non empty Subset of L by A4;

      

       A5: I is lower

      proof

        let x1,y1 be Element of L;

        assume that

         A6: x1 in I and

         A7: y1 <= x1;

        consider v1 be Element of L such that

         A8: v1 = x1 and

         A9: ex s1 be Element of L st [v1, s1] in R & [s1, z] in R by A6;

        consider s1 be Element of L such that

         A10: [v1, s1] in R and

         A11: [s1, z] in R by A9;

        s1 <= s1;

        then [y1, s1] in R by A7, A8, A10, Def4;

        hence thesis by A11;

      end;

      I is directed

      proof

        let u1,u2 be Element of L;

        assume that

         A12: u1 in I and

         A13: u2 in I;

        consider v1 be Element of L such that

         A14: v1 = u1 and

         A15: ex y1 be Element of L st [v1, y1] in R & [y1, z] in R by A12;

        consider v2 be Element of L such that

         A16: v2 = u2 and

         A17: ex y2 be Element of L st [v2, y2] in R & [y2, z] in R by A13;

        consider y1 be Element of L such that

         A18: [v1, y1] in R and

         A19: [y1, z] in R by A15;

        consider y2 be Element of L such that

         A20: [v2, y2] in R and

         A21: [y2, z] in R by A17;

        take (u1 "\/" u2);

        

         A22: [(u1 "\/" u2), (y1 "\/" y2)] in R by A14, A16, A18, A20, Th1;

         [(y1 "\/" y2), z] in R by A19, A21, Def5;

        hence thesis by A22, YELLOW_0: 22;

      end;

      then

      reconsider I as Ideal of L by A5;

      ( sup I) = z

      proof

        set z9 = ( sup I);

        assume

         A23: z9 <> z;

        

         A24: I c= (R -below z)

        proof

          let a be object;

          assume a in I;

          then

          consider u be Element of L such that

           A25: a = u and

           A26: ex y2 be Element of L st [u, y2] in R & [y2, z] in R;

          consider y2 be Element of L such that

           A27: [u, y2] in R and

           A28: [y2, z] in R by A26;

          

           A29: u <= y2 by A27, Def3;

          z <= z;

          then [u, z] in R by A28, A29, Def4;

          hence thesis by A25;

        end;

        

         A30: ex_sup_of (I,L) by YELLOW_0: 17;

         ex_sup_of ((R -below z),L) by YELLOW_0: 17;

        then

         A31: ( sup I) <= ( sup (R -below z)) by A24, A30, YELLOW_0: 34;

        z = ( sup (R -below z)) by Def17;

        then z9 < z by A23, A31, ORDERS_2:def 6;

        then not z <= z9 by ORDERS_2: 6;

        then

        consider y be Element of L such that

         A32: [y, z] in R and

         A33: not y <= z9 by Th48;

        consider u be Element of L such that

         A34: [u, y] in R and

         A35: not u <= z9 by A33, Th48;

        

         A36: u in I by A32, A34;

        z9 = ( "\/" (I,L)) & ex_sup_of (I,L) iff z9 is_>=_than I & for b be Element of L st b is_>=_than I holds z9 <= b by YELLOW_0: 30;

        hence contradiction by A35, A36, YELLOW_0: 17;

      end;

      then x in I by A1, WAYBEL_3: 20;

      then

      consider v be Element of L such that

       A37: v = x and

       A38: ex y9 be Element of L st [v, y9] in R & [y9, z] in R;

      consider y9 be Element of L such that

       A39: [v, y9] in R and

       A40: [y9, z] in R by A38;

      

       A41: x <= y9 by A37, A39, Def3;

      z <= z;

      then [x, z] in R by A40, A41, Def4;

      then

      consider y99 be Element of L such that

       A42: x <= y99 and

       A43: [y99, z] in R and

       A44: x <> y99 by A2, Th49;

      

       A45: x < y99 by A42, A44, ORDERS_2:def 6;

      set Y = (y9 "\/" y99);

      

       A46: y9 <= Y by YELLOW_0: 22;

      y99 <= Y by YELLOW_0: 22;

      then

       A47: x <> Y by A45, ORDERS_2: 7;

      x <= x;

      then

       A48: [x, Y] in R by A37, A39, A46, Def4;

       [Y, z] in R by A40, A43, Def5;

      hence thesis by A47, A48;

    end;

    theorem :: WAYBEL_4:51

    

     Th51: for L be lower-bounded continuous LATTICE holds (L -waybelow ) is satisfying_SI

    proof

      let L be lower-bounded continuous LATTICE;

      set R = (L -waybelow );

      thus R is satisfying_SI

      proof

        let x,z be Element of L;

        assume that

         A1: [x, z] in R and

         A2: x <> z;

        x << z by A1, Def1;

        hence thesis by A2, Th50;

      end;

    end;

    registration

      let L be lower-bounded continuous LATTICE;

      cluster (L -waybelow ) -> satisfying_SI;

      coherence by Th51;

    end

    theorem :: WAYBEL_4:52

    

     Th52: for L be lower-bounded continuous LATTICE, x,y be Element of L st x << y holds ex x9 be Element of L st x << x9 & x9 << y

    proof

      let L be lower-bounded continuous LATTICE;

      let x,y be Element of L;

      set R = (L -waybelow );

      assume x << y;

      then [x, y] in R by Def1;

      then

      consider x9 be Element of L such that

       A1: [x, x9] in R and

       A2: [x9, y] in R by Def21;

      

       A3: x << x9 by A1, Def1;

      x9 << y by A2, Def1;

      hence thesis by A3;

    end;

    theorem :: WAYBEL_4:53

    for L be lower-bounded continuous LATTICE holds for x,y be Element of L holds (x << y iff for D be non empty directed Subset of L st y <= ( sup D) holds ex d be Element of L st d in D & x << d)

    proof

      let L be lower-bounded continuous LATTICE;

      let x,y be Element of L;

      hereby

        assume

         A1: x << y;

        let D be non empty directed Subset of L;

        assume

         A2: y <= ( sup D);

        consider x9 be Element of L such that

         A3: x << x9 and

         A4: x9 << y by A1, Th52;

        ex d be Element of L st (d in D) & (x9 <= d) by A2, A4, WAYBEL_3:def 1;

        hence ex d be Element of L st d in D & x << d by A3, WAYBEL_3: 2;

      end;

      assume

       A5: for D be non empty directed Subset of L st y <= ( sup D) holds ex d be Element of L st d in D & x << d;

      for D be non empty directed Subset of L st y <= ( sup D) holds ex d be Element of L st d in D & x <= d

      proof

        let D be non empty directed Subset of L;

        assume y <= ( sup D);

        then ex d be Element of L st (d in D) & (x << d) by A5;

        hence thesis by WAYBEL_3: 1;

      end;

      hence thesis by WAYBEL_3:def 1;

    end;

    begin

    definition

      let L be RelStr, X be Subset of L, R be Relation of the carrier of L;

      :: WAYBEL_4:def22

      pred X is_directed_wrt R means for x,y be Element of L st x in X & y in X holds ex z be Element of L st z in X & [x, z] in R & [y, z] in R;

    end

    theorem :: WAYBEL_4:54

    for L be RelStr, X be Subset of L st X is_directed_wrt the InternalRel of L holds X is directed

    proof

      let L be RelStr, X be Subset of L;

      assume

       A1: X is_directed_wrt the InternalRel of L;

      let x,y be Element of L;

      assume that

       A2: x in X and

       A3: y in X;

      consider z be Element of L such that

       A4: z in X and

       A5: [x, z] in the InternalRel of L and

       A6: [y, z] in the InternalRel of L by A1, A2, A3;

      take z;

      thus z in X by A4;

      thus thesis by A5, A6, ORDERS_2:def 5;

    end;

    definition

      let X be set, x be object;

      let R be Relation;

      :: WAYBEL_4:def23

      pred x is_maximal_wrt X,R means x in X & not ex y be set st y in X & y <> x & [x, y] in R;

    end

    definition

      let L be RelStr, X be set, x be Element of L;

      :: WAYBEL_4:def24

      pred x is_maximal_in X means x is_maximal_wrt (X,the InternalRel of L);

    end

    theorem :: WAYBEL_4:55

    for L be RelStr, X be set, x be Element of L holds x is_maximal_in X iff x in X & not ex y be Element of L st y in X & x < y

    proof

      let L be RelStr, X be set, x be Element of L;

      hereby

        assume x is_maximal_in X;

        then

         A1: x is_maximal_wrt (X,the InternalRel of L);

        hence x in X;

        let y be Element of L;

        per cases by A1;

          suppose not y in X;

          hence not y in X or not x < y;

        end;

          suppose y = x;

          hence not y in X or not x < y;

        end;

          suppose not [x, y] in the InternalRel of L;

          then not x <= y by ORDERS_2:def 5;

          hence not y in X or not x < y by ORDERS_2:def 6;

        end;

      end;

      assume that

       A2: x in X and

       A3: not ex y be Element of L st y in X & x < y;

      assume not x is_maximal_in X;

      then not x is_maximal_wrt (X,the InternalRel of L);

      then

      consider y be set such that

       A4: y in X and

       A5: y <> x and

       A6: [x, y] in the InternalRel of L by A2;

      reconsider y as Element of L by A6, ZFMISC_1: 87;

      x <= y by A6, ORDERS_2:def 5;

      then x < y by A5, ORDERS_2:def 6;

      hence thesis by A3, A4;

    end;

    definition

      let X be set, x be object;

      let R be Relation;

      :: WAYBEL_4:def25

      pred x is_minimal_wrt X,R means x in X & not ex y be set st y in X & y <> x & [y, x] in R;

    end

    definition

      let L be RelStr, X be set, x be Element of L;

      :: WAYBEL_4:def26

      pred x is_minimal_in X means x is_minimal_wrt (X,the InternalRel of L);

    end

    theorem :: WAYBEL_4:56

    for L be RelStr, X be set, x be Element of L holds x is_minimal_in X iff x in X & not ex y be Element of L st y in X & x > y

    proof

      let L be RelStr, X be set, x be Element of L;

      hereby

        assume x is_minimal_in X;

        then

         A1: x is_minimal_wrt (X,the InternalRel of L);

        hence x in X;

        let y be Element of L;

        per cases by A1;

          suppose not y in X;

          hence not y in X or not x > y;

        end;

          suppose y = x;

          hence not y in X or not x > y;

        end;

          suppose not [y, x] in the InternalRel of L;

          then not y <= x by ORDERS_2:def 5;

          hence not y in X or not y < x by ORDERS_2:def 6;

        end;

      end;

      assume that

       A2: x in X and

       A3: not ex y be Element of L st y in X & x > y;

      assume not x is_minimal_in X;

      then not x is_minimal_wrt (X,the InternalRel of L);

      then

      consider y be set such that

       A4: y in X and

       A5: y <> x and

       A6: [y, x] in the InternalRel of L by A2;

      reconsider y as Element of L by A6, ZFMISC_1: 87;

      y <= x by A6, ORDERS_2:def 5;

      then y < x by A5, ORDERS_2:def 6;

      hence thesis by A3, A4;

    end;

    theorem :: WAYBEL_4:57

    AR is satisfying_SI implies for x holds (ex y st y is_maximal_wrt ((AR -below x),AR)) implies [x, x] in AR

    proof

      assume

       A1: AR is satisfying_SI;

      let x;

      given y such that

       A2: y is_maximal_wrt ((AR -below x),AR);

      

       A3: y in (AR -below x) by A2;

      assume

       A4: not [x, x] in AR;

      

       A5: [y, x] in AR by A3, Th13;

      per cases ;

        suppose x = y;

        hence contradiction by A3, A4, Th13;

      end;

        suppose x <> y;

        then

        consider z such that

         A6: [y, z] in AR and

         A7: [z, x] in AR and

         A8: z <> y by A1, A5;

        z in (AR -below x) by A7;

        hence contradiction by A2, A6, A8;

      end;

    end;

    theorem :: WAYBEL_4:58

    (for x holds (ex y st y is_maximal_wrt ((AR -below x),AR)) implies [x, x] in AR) implies AR is satisfying_SI

    proof

      assume

       A1: for x holds (ex y st y is_maximal_wrt ((AR -below x),AR)) implies [x, x] in AR;

      now

        let z, x;

        assume that

         A2: [z, x] in AR and

         A3: z <> x;

        

         A4: z in (AR -below x) by A2;

        per cases ;

          suppose [x, x] in AR;

          hence ex y st [z, y] in AR & [y, x] in AR & z <> y by A2, A3;

        end;

          suppose not [x, x] in AR;

          then not z is_maximal_wrt ((AR -below x),AR) by A1;

          then

          consider y be set such that

           A5: y in (AR -below x) and

           A6: y <> z and

           A7: [z, y] in AR by A4;

           [y, x] in AR by A5, Th13;

          hence ex y st [z, y] in AR & [y, x] in AR & z <> y by A5, A6, A7;

        end;

      end;

      hence thesis;

    end;

    theorem :: WAYBEL_4:59

    for AR be auxiliary(ii) auxiliary(iii) Relation of L holds AR is satisfying_INT implies for x holds (AR -below x) is_directed_wrt AR

    proof

      let AR be auxiliary(ii) auxiliary(iii) Relation of L;

      assume

       A1: AR is satisfying_INT;

      let x, y, z;

      assume that

       A2: y in (AR -below x) and

       A3: z in (AR -below x);

      

       A4: [y, x] in AR by A2, Th13;

      

       A5: [z, x] in AR by A3, Th13;

      consider y9 be Element of L such that

       A6: [y, y9] in AR and

       A7: [y9, x] in AR by A1, A4;

      consider z9 be Element of L such that

       A8: [z, z9] in AR and

       A9: [z9, x] in AR by A1, A5;

      take u = (y9 "\/" z9);

       [u, x] in AR by A7, A9, Def5;

      hence u in (AR -below x);

      

       A10: y <= y;

      y9 <= u by YELLOW_0: 22;

      hence [y, u] in AR by A6, A10, Def4;

      

       A11: z <= z;

      z9 <= u by YELLOW_0: 22;

      hence [z, u] in AR by A8, A11, Def4;

    end;

    theorem :: WAYBEL_4:60

    (for x holds (AR -below x) is_directed_wrt AR) implies AR is satisfying_INT

    proof

      assume

       A1: for x holds (AR -below x) is_directed_wrt AR;

      let X,Z be Element of L;

      assume [X, Z] in AR;

      then

       A2: X in (AR -below Z);

      (AR -below Z) is_directed_wrt AR by A1;

      then

      consider u be Element of L such that

       A3: u in (AR -below Z) and

       A4: [X, u] in AR and [X, u] in AR by A2;

      take u;

      thus [X, u] in AR by A4;

      thus [u, Z] in AR by A3, Th13;

    end;

    theorem :: WAYBEL_4:61

    

     Th61: for R be approximating auxiliary(i) auxiliary(ii) auxiliary(iii) Relation of L st R is satisfying_INT holds R is satisfying_SI

    proof

      let R be approximating auxiliary(i) auxiliary(ii) auxiliary(iii) Relation of L;

      assume

       A1: R is satisfying_INT;

      let x, z;

      assume that

       A2: [x, z] in R and

       A3: x <> z;

      consider y such that

       A4: [x, y] in R and

       A5: [y, z] in R by A1, A2;

      consider y9 be Element of L such that

       A6: x <= y9 and

       A7: [y9, z] in R and

       A8: x <> y9 by A2, A3, Th49;

      

       A9: x < y9 by A6, A8, ORDERS_2:def 6;

      take Y = (y "\/" y9);

      

       A10: x <= y by A4, Def3;

      

       A11: x <= x;

      

       A12: y <= Y by YELLOW_0: 22;

      per cases ;

        suppose y9 <= y;

        then x < y by A9, ORDERS_2: 7;

        hence thesis by A4, A5, A7, A11, A12, Def4, Def5, ORDERS_2: 7;

      end;

        suppose not y9 <= y;

        then y <> Y by YELLOW_0: 24;

        then y < Y by A12, ORDERS_2:def 6;

        hence thesis by A4, A5, A7, A10, A11, A12, Def4, Def5, ORDERS_2: 7;

      end;

    end;

    registration

      let L;

      cluster satisfying_INT -> satisfying_SI for approximating auxiliary Relation of L;

      coherence by Th61;

    end