conmetr.miz
begin
reserve X for
OrtAfPl;
reserve o,a,a1,a2,a3,a4,b,b1,b2,b3,b4,c,c1,c2,c3,d,d1,d2,d3,d4,e1,e2 for
Element of X;
reserve a29,a39,b29,x9 for
Element of the AffinStruct of X;
reserve A,K,M,N for
Subset of X;
reserve A9,K9 for
Subset of the AffinStruct of X;
definition
let X;
::
CONMETR:def1
attr X is
satisfying_OPAP means for o, a1, a2, a3, b1, b2, b3, M, N st o
in M & a1
in M & a2
in M & a3
in M & o
in N & b1
in N & b2
in N & b3
in N & not b2
in M & not a3
in N & M
_|_ N & o
<> a1 & o
<> a2 & o
<> a3 & o
<> b1 & o
<> b2 & o
<> b3 & (a3,b2)
// (a2,b1) & (a3,b3)
// (a1,b1) holds (a1,b2)
// (a2,b3);
::
CONMETR:def2
attr X is
satisfying_PAP means for o, a1, a2, a3, b1, b2, b3, M, N st M is
being_line & N is
being_line & o
in M & a1
in M & a2
in M & a3
in M & o
in N & b1
in N & b2
in N & b3
in N & not b2
in M & not a3
in N & o
<> a1 & o
<> a2 & o
<> a3 & o
<> b1 & o
<> b2 & o
<> b3 & (a3,b2)
// (a2,b1) & (a3,b3)
// (a1,b1) holds (a1,b2)
// (a2,b3);
::
CONMETR:def3
attr X is
satisfying_MH1 means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M
_|_ N & a1
in M & a3
in M & b1
in M & b3
in M & a2
in N & a4
in N & b2
in N & b4
in N & not a2
in M & not a4
in M & (a1,a2)
_|_ (b1,b2) & (a2,a3)
_|_ (b2,b3) & (a3,a4)
_|_ (b3,b4) holds (a1,a4)
_|_ (b1,b4);
::
CONMETR:def4
attr X is
satisfying_MH2 means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M
_|_ N & a1
in M & a3
in M & b2
in M & b4
in M & a2
in N & a4
in N & b1
in N & b3
in N & not a2
in M & not a4
in M & (a1,a2)
_|_ (b1,b2) & (a2,a3)
_|_ (b2,b3) & (a3,a4)
_|_ (b3,b4) holds (a1,a4)
_|_ (b1,b4);
::
CONMETR:def5
attr X is
satisfying_TDES means for o, a, a1, b, b1, c, c1 st o
<> a & o
<> a1 & o
<> b & o
<> b1 & o
<> c & o
<> c1 & not
LIN (b,b1,a) & not
LIN (b,b1,c) &
LIN (o,a,a1) &
LIN (o,b,b1) &
LIN (o,c,c1) & (a,b)
// (a1,b1) & (a,b)
// (o,c) & (b,c)
// (b1,c1) holds (a,c)
// (a1,c1);
::
CONMETR:def6
attr X is
satisfying_SCH means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M is
being_line & N is
being_line & a1
in M & a3
in M & b1
in M & b3
in M & a2
in N & a4
in N & b2
in N & b4
in N & not a4
in M & not a2
in M & not b2
in M & not b4
in M & not a1
in N & not a3
in N & not b1
in N & not b3
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
::
CONMETR:def7
attr X is
satisfying_OSCH means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M
_|_ N & a1
in M & a3
in M & b1
in M & b3
in M & a2
in N & a4
in N & b2
in N & b4
in N & not a4
in M & not a2
in M & not b2
in M & not b4
in M & not a1
in N & not a3
in N & not b1
in N & not b3
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
::
CONMETR:def8
attr X is
satisfying_des means for a, a1, b, b1, c, c1 st not
LIN (a,a1,b) & not
LIN (a,a1,c) & (a,a1)
// (b,b1) & (a,a1)
// (c,c1) & (a,b)
// (a1,b1) & (a,c)
// (a1,c1) holds (b,c)
// (b1,c1);
end
theorem ::
CONMETR:1
Th1: ex a, b, c st
LIN (a,b,c) & a
<> b & b
<> c & c
<> a
proof
consider a,p be
Element of X such that
A1: a
<> p by
ANALMETR: 39;
consider b such that
A2: (a,p)
_|_ (p,b) and
A3: p
<> b by
ANALMETR: 39;
reconsider a9 = a, b9 = b, p9 = p as
Element of the AffinStruct of X;
consider c such that
A4: (p,c)
_|_ (a,b) and
A5:
LIN (a,b,c) by
ANALMETR: 69;
take a, b, c;
thus
LIN (a,b,c) by
A5;
thus a
<> b
proof
assume not thesis;
then (a,p)
_|_ (a,p) by
A2,
ANALMETR: 61;
hence contradiction by
A1,
ANALMETR: 39;
end;
thus b
<> c
proof
assume not thesis;
then (a,p)
// (a,b) by
A2,
A3,
A4,
ANALMETR: 63;
then
LIN (a,p,b) by
ANALMETR:def 10;
then
LIN (a9,p9,b9) by
ANALMETR: 40;
then
LIN (p9,a9,b9) by
AFF_1: 6;
then
LIN (p,a,b) by
ANALMETR: 40;
then (p,a)
// (p,b) by
ANALMETR:def 10;
then (a,p)
_|_ (p,a) by
A2,
A3,
ANALMETR: 62;
then (a,p)
_|_ (a,p) by
ANALMETR: 61;
hence contradiction by
A1,
ANALMETR: 39;
end;
assume not thesis;
then (a,p)
_|_ (a,b) by
A4,
ANALMETR: 61;
then (p,b)
// (a,b) by
A1,
A2,
ANALMETR: 63;
then (b,p)
// (b,a) by
ANALMETR: 59;
then
LIN (b,p,a) by
ANALMETR:def 10;
then
LIN (b9,p9,a9) by
ANALMETR: 40;
then
LIN (p9,a9,b9) by
AFF_1: 6;
then
LIN (p,a,b) by
ANALMETR: 40;
then (p,a)
// (p,b) by
ANALMETR:def 10;
then (a,p)
_|_ (p,a) by
A2,
A3,
ANALMETR: 62;
then (a,p)
_|_ (a,p) by
ANALMETR: 61;
hence contradiction by
A1,
ANALMETR: 39;
end;
theorem ::
CONMETR:2
Th2: for a, b holds ex c st
LIN (a,b,c) & a
<> c & b
<> c
proof
let a, b;
consider p,q,r be
Element of X such that
A1:
LIN (p,q,r) and
A2: p
<> q and
A3: q
<> r and
A4: r
<> p by
Th1;
reconsider a9 = a, b9 = b, p9 = p, q9 = q, r9 = r as
Element of the AffinStruct of X;
LIN (p9,q9,r9) by
A1,
ANALMETR: 40;
then
consider c9 be
Element of the AffinStruct of X such that
A5:
LIN (a9,b9,c9) and
A6: a9
<> c9 and
A7: b9
<> c9 by
A2,
A3,
A4,
TRANSLAC: 1;
reconsider c = c9 as
Element of X;
LIN (a,b,c) by
A5,
ANALMETR: 40;
hence thesis by
A6,
A7;
end;
theorem ::
CONMETR:3
Th3: for A, a st A is
being_line holds ex K st a
in K & A
_|_ K
proof
let A, a;
assume A is
being_line;
then
consider b, c such that
A1: b
<> c and
A2: A
= (
Line (b,c)) by
ANALMETR:def 12;
consider d such that
A3: (b,c)
_|_ (a,d) and
A4: a
<> d by
ANALMETR: 39;
reconsider a9 = a, d9 = d as
Element of the AffinStruct of X;
take K = (
Line (a,d));
K
= (
Line (a9,d9)) by
ANALMETR: 41;
hence a
in K by
AFF_1: 15;
thus thesis by
A1,
A2,
A3,
A4,
ANALMETR: 45;
end;
theorem ::
CONMETR:4
Th4: A is
being_line & a
in A & b
in A & c
in A implies
LIN (a,b,c)
proof
assume that
A1: A is
being_line and
A2: a
in A and
A3: b
in A and
A4: c
in A;
reconsider a9 = a, b9 = b, c9 = c as
Element of the AffinStruct of X;
reconsider A9 = A as
Subset of the AffinStruct of X;
A9 is
being_line by
A1,
ANALMETR: 43;
then
LIN (a9,b9,c9) by
A2,
A3,
A4,
AFF_1: 21;
hence thesis by
ANALMETR: 40;
end;
theorem ::
CONMETR:5
Th5: A is
being_line & M is
being_line & a
in A & b
in A & a
in M & b
in M implies a
= b or A
= M
proof
assume that
A1: A is
being_line and
A2: M is
being_line and
A3: a
in A and
A4: b
in A and
A5: a
in M and
A6: b
in M;
reconsider A9 = A, M9 = M as
Subset of the AffinStruct of X;
A7: M9 is
being_line by
A2,
ANALMETR: 43;
assume
A8: a
<> b;
A9 is
being_line by
A1,
ANALMETR: 43;
hence thesis by
A3,
A4,
A5,
A6,
A8,
A7,
AFF_1: 18;
end;
theorem ::
CONMETR:6
Th6: for a, b, c, d, M holds for M9 be
Subset of the AffinStruct of X, c9,d9 be
Element of the AffinStruct of X st c
= c9 & d
= d9 & M
= M9 & a
in M & b
in M & (c9,d9)
// M9 holds (c,d)
// (a,b)
proof
let a, b, c, d, M;
let M9 be
Subset of the AffinStruct of X, c9,d9 be
Element of the AffinStruct of X such that
A1: c
= c9 and
A2: d
= d9 and
A3: M
= M9 and
A4: a
in M and
A5: b
in M and
A6: (c9,d9)
// M9;
reconsider a9 = a, b9 = b as
Element of the AffinStruct of X;
A7: M9 is
being_line by
A6,
AFF_1: 26;
then (a9,b9)
// M9 by
A3,
A4,
A5,
AFF_1: 52;
then (c9,d9)
// (a9,b9) by
A7,
A6,
AFF_1: 31;
hence thesis by
A1,
A2,
ANALMETR: 36;
end;
theorem ::
CONMETR:7
Th7: X is
satisfying_TDES implies the AffinStruct of X is
Moufangian
proof
assume
A1: X is
satisfying_TDES;
let K9 be
Subset of the AffinStruct of X;
let o9,a9,b9,c9,a19,b19,c19 be
Element of the AffinStruct of X;
assume that
A2: K9 is
being_line and
A3: o9
in K9 and
A4: c9
in K9 and
A5: c19
in K9 and
A6: not a9
in K9 and
A7: o9
<> c9 and
A8: a9
<> b9 and
A9:
LIN (o9,a9,a19) and
A10:
LIN (o9,b9,b19) and
A11: (a9,b9)
// (a19,b19) and
A12: (a9,c9)
// (a19,c19) and
A13: (a9,b9)
// K9;
reconsider K = K9 as
Subset of X;
reconsider o = o9, a = a9, a1 = a19, b = b9, b1 = b19, c = c9, c1 = c19 as
Element of X;
A14: (a,c)
// (a1,c1) by
A12,
ANALMETR: 36;
A15: (a,b)
// (a1,b1) by
A11,
ANALMETR: 36;
now
A16:
now
assume
A17: o
<> a1;
A18: o
<> a & o
<> b & o
<> c & o
<> c1 & o
<> b1
proof
A19:
now
(o9,c9)
// K9 by
A2,
A3,
A4,
AFF_1: 23;
then
A20: (a9,b9)
// (o9,c9) by
A2,
A13,
AFF_1: 31;
assume o
= b1;
then (a19,o9)
// (o9,c9) by
A8,
A11,
A20,
DIRAF: 40;
then (o9,c9)
// (o9,a19) by
AFF_1: 4;
then
LIN (o9,c9,a19) by
AFF_1:def 1;
then
A21: a19
in K9 by
A2,
A3,
A4,
A7,
AFF_1: 25;
LIN (o9,a19,a9) by
A9,
AFF_1: 6;
hence contradiction by
A2,
A3,
A6,
A17,
A21,
AFF_1: 25;
end;
A22:
now
(o9,a9)
// (o9,a19) by
A9,
AFF_1:def 1;
then
A23: (o9,a19)
// (a9,o9) by
AFF_1: 4;
assume o
= c1;
then (o9,a19)
// (a9,c9) by
A12,
AFF_1: 4;
then (a9,c9)
// (a9,o9) by
A17,
A23,
DIRAF: 40;
then
LIN (a9,c9,o9) by
AFF_1:def 1;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A2,
A3,
A4,
A6,
A7,
AFF_1: 25;
end;
assume o
= a or o
= b or o
= c or o
= c1 or o
= b1;
hence contradiction by
A3,
A6,
A7,
A13,
A22,
A19,
AFF_1: 35;
end;
A24:
now
assume
A25: a
<> a19;
A26: not
LIN (a,a1,b) & not
LIN (a,a1,c)
proof
A27:
now
LIN (a9,a19,o9) by
A9,
AFF_1: 6;
then (a9,a19)
// (a9,o9) by
AFF_1:def 1;
then
A28: (a,a1)
// (a,o) by
ANALMETR: 36;
assume
LIN (a,a1,b);
then (a,a1)
// (a,b) by
ANALMETR:def 10;
then (a,b)
// (a,o) by
A25,
A28,
ANALMETR: 60;
then
A29: (a,b)
// (o,a) by
ANALMETR: 59;
(a9,b9)
// (o9,c9) by
A2,
A3,
A4,
A7,
A13,
AFF_1: 27;
then (a,b)
// (o,c) by
ANALMETR: 36;
then (o,c)
// (o,a) by
A8,
A29,
ANALMETR: 60;
then
LIN (o,c,a) by
ANALMETR:def 10;
then
LIN (o9,c9,a9) by
ANALMETR: 40;
hence contradiction by
A2,
A3,
A4,
A6,
A7,
AFF_1: 25;
end;
A30:
now
LIN (a9,a19,o9) by
A9,
AFF_1: 6;
then (a9,a19)
// (a9,o9) by
AFF_1:def 1;
then
A31: (a,a1)
// (a,o) by
ANALMETR: 36;
assume
LIN (a,a1,c);
then (a,a1)
// (a,c) by
ANALMETR:def 10;
then (a,c)
// (a,o) by
A25,
A31,
ANALMETR: 60;
then
LIN (a,c,o) by
ANALMETR:def 10;
then
LIN (a9,c9,o9) by
ANALMETR: 40;
then
LIN (c9,o9,a9) by
AFF_1: 6;
hence contradiction by
A2,
A3,
A4,
A6,
A7,
AFF_1: 25;
end;
assume
LIN (a,a1,b) or
LIN (a,a1,c);
hence contradiction by
A27,
A30;
end;
A32:
LIN (o,b,b1) by
A10,
ANALMETR: 40;
(o9,c9)
// (o9,c19) by
A2,
A3,
A4,
A5,
AFF_1: 39,
AFF_1: 41;
then (o,c)
// (o,c1) by
ANALMETR: 36;
then
A33:
LIN (o,c,c1) by
ANALMETR:def 10;
(o9,c9)
// K9 by
A2,
A3,
A4,
AFF_1: 40,
AFF_1: 41;
then (a9,b9)
// (o9,c9) by
A2,
A13,
AFF_1: 31;
then (b9,a9)
// (o9,c9) by
AFF_1: 4;
then
A34: (b,a)
// (o,c) by
ANALMETR: 36;
A35: (b,a)
// (b1,a1) by
A15,
ANALMETR: 59;
LIN (o,a,a1) by
A9,
ANALMETR: 40;
then (b,c)
// (b1,c1) by
A1,
A14,
A17,
A18,
A26,
A32,
A33,
A35,
A34;
hence thesis by
ANALMETR: 36;
end;
now
A36: not
LIN (o9,a9,c9)
proof
assume
LIN (o9,a9,c9);
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A2,
A3,
A4,
A6,
A7,
AFF_1: 25;
end;
assume
A37: a
= a1;
(o9,c9)
// (o9,c19) by
A2,
A3,
A4,
A5,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c9,c19) by
AFF_1:def 1;
then
A38: c9
= c19 by
A12,
A37,
A36,
AFF_1: 14;
not
LIN (o9,a9,b9)
proof
assume
LIN (o9,a9,b9);
then
LIN (a9,b9,o9) by
AFF_1: 6;
then
A39: (a9,b9)
// (a9,o9) by
AFF_1:def 1;
(o9,c9)
// K9 by
A2,
A3,
A4,
AFF_1: 23;
then (a9,b9)
// (o9,c9) by
A2,
A13,
AFF_1: 31;
then (a9,o9)
// (o9,c9) by
A8,
A39,
DIRAF: 40;
then (o9,c9)
// (o9,a9) by
AFF_1: 4;
then
LIN (o9,c9,a9) by
AFF_1:def 1;
hence contradiction by
A2,
A3,
A4,
A6,
A7,
AFF_1: 25;
end;
then b9
= b19 by
A10,
A11,
A37,
AFF_1: 14;
hence thesis by
A38,
AFF_1: 2;
end;
hence thesis by
A24;
end;
assume
A40: not b
in K;
A41: o
= a1 implies o
= b1 & o
= c1
proof
assume that
A42: o
= a1 and
A43: o
<> b1 or o
<> c1;
A44:
now
A45: (o9,c19)
// (a9,c9) by
A12,
A42,
AFF_1: 4;
assume
A46: o
<> c1;
(o9,c19)
// (o9,c9) by
A2,
A3,
A4,
A5,
AFF_1: 39,
AFF_1: 41;
then (a9,c9)
// (o9,c9) by
A46,
A45,
DIRAF: 40;
then (c9,a9)
// (c9,o9) by
AFF_1: 4;
then
LIN (c9,a9,o9) by
AFF_1:def 1;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A2,
A3,
A4,
A6,
A7,
AFF_1: 25;
end;
now
(o9,c9)
// K9 by
A2,
A3,
A4,
AFF_1: 23;
then (a9,b9)
// (o9,c9) by
A2,
A13,
AFF_1: 31;
then (o9,c9)
// (o9,b19) by
A8,
A11,
A42,
DIRAF: 40;
then
LIN (o9,c9,b19) by
AFF_1:def 1;
then
A47: b19
in K9 by
A2,
A3,
A4,
A7,
AFF_1: 25;
assume
A48: o
<> b1;
LIN (o9,b19,b9) by
A10,
AFF_1: 6;
hence contradiction by
A2,
A3,
A40,
A48,
A47,
AFF_1: 25;
end;
hence contradiction by
A43,
A44;
end;
now
assume o
= a1;
then (b,c)
// (b1,c1) by
A41,
ANALMETR: 39;
hence thesis by
ANALMETR: 36;
end;
hence thesis by
A16;
end;
hence thesis by
A6,
A13,
AFF_1: 35;
end;
theorem ::
CONMETR:8
Th8: the AffinStruct of X is
translational implies X is
satisfying_des
proof
assume
A1: the AffinStruct of X is
translational;
let a, a1, b, b1, c, c1;
assume that
A2: not
LIN (a,a1,b) and
A3: not
LIN (a,a1,c) and
A4: (a,a1)
// (b,b1) and
A5: (a,a1)
// (c,c1) and
A6: (a,b)
// (a1,b1) and
A7: (a,c)
// (a1,c1);
reconsider a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1 as
Element of the AffinStruct of X;
LIN (a9,a19,a19) by
AFF_1: 7;
then
consider A9 be
Subset of the AffinStruct of X such that
A8: A9 is
being_line and
A9: a9
in A9 and
A10: a19
in A9 and a19
in A9 by
AFF_1: 21;
A11: (a9,b9)
// (a19,b19) by
A6,
ANALMETR: 36;
(b,b1)
// (a,a1) by
A4,
ANALMETR: 59;
then
A12: (b9,b19)
// (a9,a19) by
ANALMETR: 36;
A13: a9
<> a19
proof
assume a9
= a19;
then
LIN (a9,a19,b9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then for x9 holds x9
in A9 iff
LIN (a9,a19,x9) by
A8,
A9,
A10,
AFF_1: 21,
AFF_1: 25;
then A9
= (
Line (a9,a19)) by
AFF_1:def 2;
then
A14: (b9,b19)
// A9 by
A13,
A12,
AFF_1:def 4;
A15: (a9,c9)
// (a19,c19) by
A7,
ANALMETR: 36;
(c,c1)
// (a,a1) by
A5,
ANALMETR: 59;
then
A16: (c9,c19)
// (a9,a19) by
ANALMETR: 36;
A17: a9
<> a19
proof
assume a9
= a19;
then
LIN (a9,a19,b9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then for x9 holds x9
in A9 iff
LIN (a9,a19,x9) by
A8,
A9,
A10,
AFF_1: 21,
AFF_1: 25;
then A9
= (
Line (a9,a19)) by
AFF_1:def 2;
then
A18: (c9,c19)
// A9 by
A17,
A16,
AFF_1:def 4;
LIN (c9,c19,c19) by
AFF_1: 7;
then
consider N9 be
Subset of the AffinStruct of X such that
A19: N9 is
being_line and
A20: c9
in N9 and
A21: c19
in N9 and c19
in N9 by
AFF_1: 21;
LIN (b9,b19,b19) by
AFF_1: 7;
then
consider M9 be
Subset of the AffinStruct of X such that
A22: M9 is
being_line and
A23: b9
in M9 and
A24: b19
in M9 and b19
in M9 by
AFF_1: 21;
A25: A9
<> M9 & A9
<> N9
proof
assume A9
= M9 or A9
= N9;
then
LIN (a9,a19,b9) or
LIN (a9,a19,c9) by
A8,
A9,
A10,
A23,
A20,
AFF_1: 21;
hence contradiction by
A2,
A3,
ANALMETR: 40;
end;
A26: c9
<> c19
proof
assume c9
= c19;
then (c,a)
// (c,a1) by
A7,
ANALMETR: 59;
then
LIN (c,a,a1) by
ANALMETR:def 10;
then
LIN (c9,a9,a19) by
ANALMETR: 40;
then
LIN (a9,a19,c9) by
AFF_1: 6;
hence contradiction by
A3,
ANALMETR: 40;
end;
then for x9 holds x9
in N9 iff
LIN (c9,c19,x9) by
A19,
A20,
A21,
AFF_1: 21,
AFF_1: 25;
then N9
= (
Line (c9,c19)) by
AFF_1:def 2;
then
A27: A9
// N9 by
A18,
A26,
AFF_1:def 5;
A28: b9
<> b19
proof
assume b9
= b19;
then (b,a)
// (b,a1) by
A6,
ANALMETR: 59;
then
LIN (b,a,a1) by
ANALMETR:def 10;
then
LIN (b9,a9,a19) by
ANALMETR: 40;
then
LIN (a9,a19,b9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
then for x9 holds x9
in M9 iff
LIN (b9,b19,x9) by
A22,
A23,
A24,
AFF_1: 21,
AFF_1: 25;
then M9
= (
Line (b9,b19)) by
AFF_1:def 2;
then A9
// M9 by
A14,
A28,
AFF_1:def 5;
then (b9,c9)
// (b19,c19) by
A1,
A8,
A9,
A10,
A22,
A23,
A24,
A19,
A20,
A21,
A27,
A25,
A11,
A15;
hence thesis by
ANALMETR: 36;
end;
theorem ::
CONMETR:9
X is
satisfying_MH1 implies X is
satisfying_OSCH
proof
assume
A1: X is
satisfying_MH1;
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A2: M
_|_ N and
A3: a1
in M and
A4: a3
in M and
A5: b1
in M and
A6: b3
in M and
A7: a2
in N and
A8: a4
in N and
A9: b2
in N and
A10: b4
in N and
A11: not a4
in M and
A12: not a2
in M and
A13: not b2
in M and
A14: not b4
in M and
A15: not a1
in N and
A16: not a3
in N and
A17: not b1
in N and not b3
in N and
A18: (a3,a2)
// (b3,b2) and
A19: (a2,a1)
// (b2,b1) and
A20: (a1,a4)
// (b1,b4);
reconsider M9 = M, N9 = N as
Subset of the AffinStruct of X;
N is
being_line by
A2,
ANALMETR: 44;
then
A21: N9 is
being_line by
ANALMETR: 43;
reconsider b49 = b4, b19 = b1, b29 = b2, b39 = b3, a19 = a1, a29 = a2, a39 = a3, a49 = a4 as
Element of the AffinStruct of X;
M is
being_line by
A2,
ANALMETR: 44;
then
A22: M9 is
being_line by
ANALMETR: 43;
not M9
// N9
proof
assume M9
// N9;
then M
// N by
ANALMETR: 46;
hence contradiction by
A2,
ANALMETR: 52;
end;
then ex o9 be
Element of the AffinStruct of X st o9
in M9 & o9
in N9 by
A22,
A21,
AFF_1: 58;
then
consider o such that
A23: o
in M and
A24: o
in N;
reconsider o9 = o as
Element of the AffinStruct of X;
A25:
now
assume
A26: b2
<> b4;
A27:
now
consider e19 be
Element of the AffinStruct of X such that
A28: o9
<> e19 and
A29: e19
in M9 by
A22,
AFF_1: 20;
reconsider e1 = e19 as
Element of X;
ex d49 be
Element of the AffinStruct of X st o9
<> d49 & d49
in N9 by
A21,
AFF_1: 20;
then
consider d4 such that
A30: d4
in N and
A31: d4
<> o;
reconsider d49 = d4 as
Element of the AffinStruct of X;
consider e2 such that
A32: (a1,a4)
_|_ (d4,e2) and
A33: e2
<> d4 by
ANALMETR: 39;
reconsider e29 = e2 as
Element of the AffinStruct of X;
assume
A34: b1
<> b3;
not (o9,e19)
// (d49,e29)
proof
A35: a49
<> a29
proof
assume a49
= a29;
then (a2,a1)
// (b1,b4) by
A20,
ANALMETR: 59;
then (b1,b4)
// (b2,b1) by
A3,
A12,
A19,
ANALMETR: 60;
then (b1,b4)
// (b1,b2) by
ANALMETR: 59;
then
LIN (b1,b4,b2) by
ANALMETR:def 10;
then
LIN (b19,b49,b29) by
ANALMETR: 40;
then
LIN (b29,b49,b19) by
AFF_1: 6;
hence contradiction by
A9,
A10,
A17,
A21,
A26,
AFF_1: 25;
end;
A36: a1
<> a3
proof
assume a1
= a3;
then (a3,a2)
// (b2,b1) by
A19,
ANALMETR: 59;
then (b3,b2)
// (b2,b1) by
A4,
A12,
A18,
ANALMETR: 60;
then (b2,b3)
// (b2,b1) by
ANALMETR: 59;
then
LIN (b2,b3,b1) by
ANALMETR:def 10;
then
LIN (b29,b39,b19) by
ANALMETR: 40;
then
LIN (b19,b39,b29) by
AFF_1: 6;
hence contradiction by
A5,
A6,
A13,
A22,
A34,
AFF_1: 25;
end;
assume (o9,e19)
// (d49,e29);
then (o,e1)
// (d4,e2) by
ANALMETR: 36;
then
A37: (o,e1)
_|_ (a1,a4) by
A32,
A33,
ANALMETR: 62;
(o9,e19)
// (a19,a39) by
A3,
A4,
A22,
A23,
A29,
AFF_1: 39,
AFF_1: 41;
then (o,e1)
// (a1,a3) by
ANALMETR: 36;
then
A38: (a1,a3)
_|_ (a1,a4) by
A28,
A37,
ANALMETR: 62;
(a1,a3)
_|_ (a2,a4) by
A2,
A3,
A4,
A7,
A8,
ANALMETR: 56;
then (a1,a4)
// (a2,a4) by
A38,
A36,
ANALMETR: 63;
then (a4,a2)
// (a4,a1) by
ANALMETR: 59;
then
LIN (a4,a2,a1) by
ANALMETR:def 10;
then
LIN (a49,a29,a19) by
ANALMETR: 40;
hence contradiction by
A7,
A8,
A15,
A21,
A35,
AFF_1: 25;
end;
then
consider d19 be
Element of the AffinStruct of X such that
A39:
LIN (o9,e19,d19) and
A40:
LIN (d49,e29,d19) by
AFF_1: 60;
reconsider d1 = d19 as
Element of X;
consider e19 be
Element of the AffinStruct of X such that
A41: o9
<> e19 and
A42: e19
in N9 by
A21,
AFF_1: 20;
A43: d1
in M by
A22,
A23,
A28,
A29,
A39,
AFF_1: 25;
LIN (d4,e2,d1) by
A40,
ANALMETR: 40;
then (d4,e2)
// (d4,d1) by
ANALMETR:def 10;
then
A44: (d1,d4)
// (d4,e2) by
ANALMETR: 59;
then (a1,a4)
_|_ (d1,d4) by
A32,
A33,
ANALMETR: 62;
then
A45: (b1,b4)
_|_ (d1,d4) by
A3,
A11,
A20,
ANALMETR: 62;
reconsider e1 = e19 as
Element of X;
consider e2 such that
A46: (a2,a1)
_|_ (d1,e2) and
A47: e2
<> d1 by
ANALMETR: 39;
reconsider e29 = e2 as
Element of the AffinStruct of X;
not (o9,e19)
// (e29,d19)
proof
A48: a19
<> a39
proof
assume a19
= a39;
then (a3,a2)
// (b2,b1) by
A19,
ANALMETR: 59;
then (b3,b2)
// (b2,b1) by
A4,
A12,
A18,
ANALMETR: 60;
then (b2,b3)
// (b2,b1) by
ANALMETR: 59;
then
LIN (b2,b3,b1) by
ANALMETR:def 10;
then
LIN (b29,b39,b19) by
ANALMETR: 40;
then
LIN (b19,b39,b29) by
AFF_1: 6;
hence contradiction by
A5,
A6,
A13,
A22,
A34,
AFF_1: 25;
end;
(o9,e19)
// (a29,a49) by
A7,
A8,
A21,
A24,
A42,
AFF_1: 39,
AFF_1: 41;
then
A49: (o,e1)
// (a2,a4) by
ANALMETR: 36;
A50: a2
<> a4
proof
assume a2
= a4;
then (a2,a1)
// (b1,b4) by
A20,
ANALMETR: 59;
then (b1,b4)
// (b2,b1) by
A3,
A12,
A19,
ANALMETR: 60;
then (b1,b4)
// (b1,b2) by
ANALMETR: 59;
then
LIN (b1,b4,b2) by
ANALMETR:def 10;
then
LIN (b19,b49,b29) by
ANALMETR: 40;
then
LIN (b29,b49,b19) by
AFF_1: 6;
hence contradiction by
A9,
A10,
A17,
A21,
A26,
AFF_1: 25;
end;
assume (o9,e19)
// (e29,d19);
then
A51: (o,e1)
// (e2,d1) by
ANALMETR: 36;
(a2,a1)
_|_ (e2,d1) by
A46,
ANALMETR: 61;
then (o,e1)
_|_ (a2,a1) by
A47,
A51,
ANALMETR: 62;
then
A52: (a2,a1)
_|_ (a2,a4) by
A41,
A49,
ANALMETR: 62;
(a3,a1)
_|_ (a2,a4) by
A2,
A3,
A4,
A7,
A8,
ANALMETR: 56;
then (a3,a1)
// (a2,a1) by
A52,
A50,
ANALMETR: 63;
then (a1,a3)
// (a1,a2) by
ANALMETR: 59;
then
LIN (a1,a3,a2) by
ANALMETR:def 10;
then
LIN (a19,a39,a29) by
ANALMETR: 40;
hence contradiction by
A3,
A4,
A12,
A22,
A48,
AFF_1: 25;
end;
then
consider d29 be
Element of the AffinStruct of X such that
A53:
LIN (o9,e19,d29) and
A54:
LIN (e29,d19,d29) by
AFF_1: 60;
reconsider d2 = d29 as
Element of X;
A55: d2
in N by
A21,
A24,
A41,
A42,
A53,
AFF_1: 25;
LIN (d19,d29,e29) by
A54,
AFF_1: 6;
then
LIN (d1,d2,e2) by
ANALMETR: 40;
then (d1,d2)
// (d1,e2) by
ANALMETR:def 10;
then
A56: (d2,d1)
// (e2,d1) by
ANALMETR: 59;
A57: (a2,a1)
_|_ (e2,d1) by
A46,
ANALMETR: 61;
then
A58: (a2,a1)
_|_ (d2,d1) by
A47,
A56,
ANALMETR: 62;
consider e19 be
Element of the AffinStruct of X such that
A59: o9
<> e19 and
A60: e19
in M9 by
A22,
AFF_1: 20;
reconsider e1 = e19 as
Element of X;
consider e2 such that
A61: (a3,a2)
_|_ (d2,e2) and
A62: e2
<> d2 by
ANALMETR: 39;
reconsider e29 = e2 as
Element of the AffinStruct of X;
not (o9,e19)
// (e29,d29)
proof
A63: a29
<> a49
proof
assume a29
= a49;
then (a2,a1)
// (b1,b4) by
A20,
ANALMETR: 59;
then (b1,b4)
// (b2,b1) by
A3,
A12,
A19,
ANALMETR: 60;
then (b1,b4)
// (b1,b2) by
ANALMETR: 59;
then
LIN (b1,b4,b2) by
ANALMETR:def 10;
then
LIN (b19,b49,b29) by
ANALMETR: 40;
then
LIN (b29,b49,b19) by
AFF_1: 6;
hence contradiction by
A9,
A10,
A17,
A21,
A26,
AFF_1: 25;
end;
assume (o9,e19)
// (e29,d29);
then (o,e1)
// (e2,d2) by
ANALMETR: 36;
then (o,e1)
// (d2,e2) by
ANALMETR: 59;
then
A64: (a3,a2)
_|_ (o,e1) by
A61,
A62,
ANALMETR: 62;
(o,e1)
_|_ (a2,a4) by
A2,
A7,
A8,
A23,
A60,
ANALMETR: 56;
then (a3,a2)
// (a2,a4) by
A59,
A64,
ANALMETR: 63;
then (a2,a4)
// (a2,a3) by
ANALMETR: 59;
then
LIN (a2,a4,a3) by
ANALMETR:def 10;
then
LIN (a29,a49,a39) by
ANALMETR: 40;
hence contradiction by
A7,
A8,
A16,
A21,
A63,
AFF_1: 25;
end;
then
consider d39 be
Element of the AffinStruct of X such that
A65:
LIN (o9,e19,d39) and
A66:
LIN (e29,d29,d39) by
AFF_1: 60;
reconsider d3 = d39 as
Element of X;
A67: d3
in M by
A22,
A23,
A59,
A60,
A65,
AFF_1: 25;
then
A68: d3
<> d4 by
A2,
A22,
A21,
A23,
A24,
A30,
A31,
AFF_1: 18;
(a2,a1)
_|_ (d2,d1) by
A47,
A56,
A57,
ANALMETR: 62;
then
A69: (b2,b1)
_|_ (d2,d1) by
A3,
A12,
A19,
ANALMETR: 62;
LIN (d29,d39,e29) by
A66,
AFF_1: 6;
then
LIN (d2,d3,e2) by
ANALMETR: 40;
then (d2,d3)
// (d2,e2) by
ANALMETR:def 10;
then (d3,d2)
// (d2,e2) by
ANALMETR: 59;
then
A70: (a3,a2)
_|_ (d3,d2) by
A61,
A62,
ANALMETR: 62;
then (b3,b2)
_|_ (d3,d2) by
A4,
A12,
A18,
ANALMETR: 62;
then
A71: (b3,b4)
_|_ (d3,d4) by
A1,
A2,
A5,
A6,
A9,
A10,
A13,
A14,
A30,
A43,
A55,
A67,
A45,
A69;
(a1,a4)
_|_ (d1,d4) by
A32,
A33,
A44,
ANALMETR: 62;
then (a3,a4)
_|_ (d3,d4) by
A1,
A2,
A3,
A4,
A7,
A8,
A11,
A12,
A30,
A43,
A55,
A58,
A70,
A67;
hence thesis by
A68,
A71,
ANALMETR: 63;
end;
now
A72: not
LIN (o9,a29,a19) by
A7,
A12,
A15,
A21,
A23,
A24,
AFF_1: 48,
AFF_1:def 1;
A73:
LIN (o9,a19,a39) by
A3,
A4,
A22,
A23,
AFF_1: 21;
assume
A74: b1
= b3;
then (a2,a3)
// (b2,b1) by
A18,
ANALMETR: 59;
then
A75: (a29,a39)
// (b29,b19) by
ANALMETR: 36;
(a29,a19)
// (b29,b19) by
A19,
ANALMETR: 36;
then (a29,a19)
// (a29,a39) by
A5,
A13,
A75,
AFF_1: 5;
hence thesis by
A20,
A74,
A72,
A73,
AFF_1: 14;
end;
hence thesis by
A27;
end;
now
A76: not
LIN (o9,a19,a49)
proof
assume
LIN (o9,a19,a49);
then ex A9 st A9 is
being_line & o9
in A9 & a19
in A9 & a49
in A9 by
AFF_1: 21;
hence contradiction by
A3,
A11,
A15,
A22,
A23,
A24,
AFF_1: 18;
end;
assume
A77: b2
= b4;
(b1,b2)
// (a1,a2) by
A19,
ANALMETR: 59;
then (a1,a4)
// (a1,a2) by
A5,
A13,
A20,
A77,
ANALMETR: 60;
then
A78: (a19,a49)
// (a19,a29) by
ANALMETR: 36;
LIN (o9,a49,a29) by
A7,
A8,
A21,
A24,
AFF_1: 21;
hence thesis by
A18,
A77,
A78,
A76,
AFF_1: 14;
end;
hence thesis by
A25;
end;
theorem ::
CONMETR:10
X is
satisfying_MH2 implies X is
satisfying_OSCH
proof
assume
A1: X is
satisfying_MH2;
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A2: M
_|_ N and
A3: a1
in M and
A4: a3
in M and
A5: b1
in M and
A6: b3
in M and
A7: a2
in N and
A8: a4
in N and
A9: b2
in N and
A10: b4
in N and
A11: not a4
in M and
A12: not a2
in M and
A13: not b2
in M and
A14: not b4
in M and
A15: not a1
in N and
A16: not a3
in N and
A17: not b1
in N and not b3
in N and
A18: (a3,a2)
// (b3,b2) and
A19: (a2,a1)
// (b2,b1) and
A20: (a1,a4)
// (b1,b4);
reconsider M9 = M, N9 = N as
Subset of the AffinStruct of X;
N is
being_line by
A2,
ANALMETR: 44;
then
A21: N9 is
being_line by
ANALMETR: 43;
reconsider b49 = b4, b19 = b1, b29 = b2, b39 = b3, a19 = a1, a29 = a2, a39 = a3, a49 = a4 as
Element of the AffinStruct of X;
M is
being_line by
A2,
ANALMETR: 44;
then
A22: M9 is
being_line by
ANALMETR: 43;
not M9
// N9
proof
assume M9
// N9;
then M
// N by
ANALMETR: 46;
hence contradiction by
A2,
ANALMETR: 52;
end;
then ex o9 be
Element of the AffinStruct of X st o9
in M9 & o9
in N9 by
A22,
A21,
AFF_1: 58;
then
consider o such that
A23: o
in M and
A24: o
in N;
reconsider o9 = o as
Element of the AffinStruct of X;
A25:
now
assume
A26: b2
<> b4;
A27:
now
ex d39 be
Element of the AffinStruct of X st o9
<> d39 & d39
in N9 by
A21,
AFF_1: 20;
then
consider d3 such that
A28: d3
in N and
A29: d3
<> o;
reconsider d39 = d3 as
Element of the AffinStruct of X;
consider e2 such that
A30: (a3,a2)
_|_ (d3,e2) and
A31: d3
<> e2 by
ANALMETR:def 9;
consider e1 such that
A32: (a3,a1)
// (a3,e1) and
A33: a3
<> e1 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
assume
A34: b1
<> b3;
A35: a1
<> a3 & a2
<> a4
proof
assume a1
= a3 or a2
= a4;
then (a2,a1)
// (b3,b2) or (a1,a4)
// (b2,b1) by
A18,
A19,
ANALMETR: 59;
then (b3,b2)
// (b2,b1) or (b2,b1)
// (b1,b4) by
A3,
A11,
A12,
A19,
A20,
ANALMETR: 60;
then (b2,b3)
// (b2,b1) or (b1,b2)
// (b1,b4) by
ANALMETR: 59;
then
LIN (b2,b3,b1) or
LIN (b1,b2,b4) by
ANALMETR:def 10;
then
LIN (b29,b39,b19) or
LIN (b19,b29,b49) by
ANALMETR: 40;
then
LIN (b19,b39,b29) or
LIN (b29,b49,b19) by
AFF_1: 6;
hence contradiction by
A5,
A6,
A9,
A10,
A13,
A17,
A22,
A21,
A26,
A34,
AFF_1: 25;
end;
not (a39,e19)
// (d39,e29)
proof
assume (a39,e19)
// (d39,e29);
then (a3,e1)
// (d3,e2) by
ANALMETR: 36;
then (a3,a1)
// (d3,e2) by
A32,
A33,
ANALMETR: 60;
then
A36: (a3,a2)
_|_ (a3,a1) by
A30,
A31,
ANALMETR: 62;
(a3,a1)
_|_ (a2,a4) by
A2,
A3,
A4,
A7,
A8,
ANALMETR: 56;
then (a3,a2)
// (a2,a4) by
A35,
A36,
ANALMETR: 63;
then (a2,a4)
// (a2,a3) by
ANALMETR: 59;
then
LIN (a2,a4,a3) by
ANALMETR:def 10;
then
LIN (a29,a49,a39) by
ANALMETR: 40;
hence contradiction by
A7,
A8,
A16,
A21,
A35,
AFF_1: 25;
end;
then
consider d29 be
Element of the AffinStruct of X such that
A37:
LIN (a39,e19,d29) and
A38:
LIN (d39,e29,d29) by
AFF_1: 60;
reconsider d2 = d29 as
Element of X;
LIN (d3,e2,d2) by
A38,
ANALMETR: 40;
then (d3,e2)
// (d3,d2) by
ANALMETR:def 10;
then
A39: (a3,a2)
_|_ (d3,d2) by
A30,
A31,
ANALMETR: 62;
LIN (a3,e1,d2) by
A37,
ANALMETR: 40;
then (a3,e1)
// (a3,d2) by
ANALMETR:def 10;
then (a3,a1)
// (a3,d2) by
A32,
A33,
ANALMETR: 60;
then
LIN (a3,a1,d2) by
ANALMETR:def 10;
then
LIN (a39,a19,d29) by
ANALMETR: 40;
then
consider d2 such that
A40: d2
in M and
A41: (a3,a2)
_|_ (d3,d2) by
A3,
A4,
A22,
A35,
A39,
AFF_1: 25;
reconsider d29 = d2 as
Element of the AffinStruct of X;
consider e1 such that
A42: (a2,a4)
// (a2,e1) and
A43: a2
<> e1 by
ANALMETR: 39;
consider e2 such that
A44: (a2,a1)
_|_ (d2,e2) and
A45: d2
<> e2 by
ANALMETR:def 9;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (a29,e19)
// (d29,e29)
proof
assume (a29,e19)
// (d29,e29);
then (a2,e1)
// (d2,e2) by
ANALMETR: 36;
then (a2,a4)
// (d2,e2) by
A42,
A43,
ANALMETR: 60;
then
A46: (a2,a4)
_|_ (a2,a1) by
A44,
A45,
ANALMETR: 62;
(a1,a3)
_|_ (a2,a4) by
A2,
A3,
A4,
A7,
A8,
ANALMETR: 56;
then (a1,a3)
// (a2,a1) by
A35,
A46,
ANALMETR: 63;
then (a1,a3)
// (a1,a2) by
ANALMETR: 59;
then
LIN (a1,a3,a2) by
ANALMETR:def 10;
then
LIN (a19,a39,a29) by
ANALMETR: 40;
hence contradiction by
A3,
A4,
A12,
A22,
A35,
AFF_1: 25;
end;
then
consider d19 be
Element of the AffinStruct of X such that
A47:
LIN (a29,e19,d19) and
A48:
LIN (d29,e29,d19) by
AFF_1: 60;
reconsider d1 = d19 as
Element of X;
A49: (b3,b2)
_|_ (d3,d2) by
A4,
A12,
A18,
A41,
ANALMETR: 62;
LIN (a2,e1,d1) by
A47,
ANALMETR: 40;
then (a2,e1)
// (a2,d1) by
ANALMETR:def 10;
then (a2,a4)
// (a2,d1) by
A42,
A43,
ANALMETR: 60;
then
LIN (a2,a4,d1) by
ANALMETR:def 10;
then
LIN (a29,a49,d19) by
ANALMETR: 40;
then
A50: d1
in N by
A7,
A8,
A21,
A35,
AFF_1: 25;
LIN (d2,e2,d1) by
A48,
ANALMETR: 40;
then (d2,e2)
// (d2,d1) by
ANALMETR:def 10;
then
A51: (a2,a1)
_|_ (d2,d1) by
A44,
A45,
ANALMETR: 62;
then
A52: (b2,b1)
_|_ (d2,d1) by
A3,
A12,
A19,
ANALMETR: 62;
consider e2 such that
A53: (a1,a4)
_|_ (d1,e2) and
A54: d1
<> e2 by
ANALMETR: 39;
consider e1 such that
A55: (a1,a3)
// (a1,e1) and
A56: a1
<> e1 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (a19,e19)
// (d19,e29)
proof
assume (a19,e19)
// (d19,e29);
then (a1,e1)
// (d1,e2) by
ANALMETR: 36;
then (a1,a3)
// (d1,e2) by
A55,
A56,
ANALMETR: 60;
then
A57: (a1,a3)
_|_ (a1,a4) by
A53,
A54,
ANALMETR: 62;
(a1,a3)
_|_ (a2,a4) by
A2,
A3,
A4,
A7,
A8,
ANALMETR: 56;
then (a2,a4)
// (a1,a4) by
A35,
A57,
ANALMETR: 63;
then (a4,a2)
// (a4,a1) by
ANALMETR: 59;
then
LIN (a4,a2,a1) by
ANALMETR:def 10;
then
LIN (a49,a29,a19) by
ANALMETR: 40;
hence contradiction by
A7,
A8,
A15,
A21,
A35,
AFF_1: 25;
end;
then
consider d49 be
Element of the AffinStruct of X such that
A58:
LIN (a19,e19,d49) and
A59:
LIN (d19,e29,d49) by
AFF_1: 60;
reconsider d4 = d49 as
Element of X;
LIN (a1,e1,d4) by
A58,
ANALMETR: 40;
then (a1,e1)
// (a1,d4) by
ANALMETR:def 10;
then (a1,a3)
// (a1,d4) by
A55,
A56,
ANALMETR: 60;
then
LIN (a1,a3,d4) by
ANALMETR:def 10;
then
LIN (a19,a39,d49) by
ANALMETR: 40;
then
A60: d4
in M by
A3,
A4,
A22,
A35,
AFF_1: 25;
then
A61: d3
<> d4 by
A2,
A22,
A21,
A23,
A24,
A28,
A29,
AFF_1: 18;
LIN (d1,e2,d4) by
A59,
ANALMETR: 40;
then (d1,e2)
// (d1,d4) by
ANALMETR:def 10;
then
A62: (a1,a4)
_|_ (d1,d4) by
A53,
A54,
ANALMETR: 62;
then (b1,b4)
_|_ (d1,d4) by
A3,
A11,
A20,
ANALMETR: 62;
then
A63: (b3,b4)
_|_ (d3,d4) by
A1,
A2,
A5,
A6,
A9,
A10,
A13,
A14,
A28,
A40,
A50,
A60,
A49,
A52;
(a3,a4)
_|_ (d3,d4) by
A1,
A2,
A3,
A4,
A7,
A8,
A11,
A12,
A28,
A40,
A41,
A50,
A51,
A60,
A62;
hence thesis by
A63,
A61,
ANALMETR: 63;
end;
now
(o9,a19)
// (o9,a39) by
A3,
A4,
A22,
A23,
AFF_1: 39,
AFF_1: 41;
then
A64:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume
A65: b1
= b3;
then (a2,a1)
// (b3,b2) by
A19,
ANALMETR: 59;
then (a2,a1)
// (a3,a2) by
A6,
A13,
A18,
ANALMETR: 60;
then (a2,a1)
// (a2,a3) by
ANALMETR: 59;
then (a29,a19)
// (a29,a39) by
ANALMETR: 36;
hence thesis by
A7,
A12,
A15,
A20,
A21,
A23,
A24,
A65,
A64,
AFF_1: 14,
AFF_1: 25;
end;
hence thesis by
A27;
end;
now
(o9,a29)
// (o9,a49) by
A7,
A8,
A21,
A24,
AFF_1: 39,
AFF_1: 41;
then
A66:
LIN (o9,a29,a49) by
AFF_1:def 1;
assume
A67: b2
= b4;
then (a1,a4)
// (b2,b1) by
A20,
ANALMETR: 59;
then (a2,a1)
// (a1,a4) by
A5,
A13,
A19,
ANALMETR: 60;
then (a1,a2)
// (a1,a4) by
ANALMETR: 59;
then (a19,a29)
// (a19,a49) by
ANALMETR: 36;
hence thesis by
A3,
A12,
A15,
A18,
A22,
A23,
A24,
A67,
A66,
AFF_1: 14,
AFF_1: 25;
end;
hence thesis by
A25;
end;
theorem ::
CONMETR:11
X is
satisfying_AH implies X is
satisfying_TDES
proof
assume
A1: X is
satisfying_AH;
let o, a, a1, b, b1, c, c1;
assume that
A2: o
<> a and
A3: o
<> a1 and
A4: o
<> b and
A5: o
<> b1 and
A6: o
<> c and
A7: o
<> c1 and
A8: not
LIN (b,b1,a) and
A9: not
LIN (b,b1,c) and
A10:
LIN (o,a,a1) and
A11:
LIN (o,b,b1) and
A12:
LIN (o,c,c1) and
A13: (a,b)
// (a1,b1) and
A14: (a,b)
// (o,c) and
A15: (b,c)
// (b1,c1);
consider e1 such that
A16: (o,b)
_|_ (o,e1) and
A17: o
<> e1 by
ANALMETR:def 9;
consider c2 such that
A18: (o,c)
_|_ (o,c2) and
A19: o
<> c2 by
ANALMETR:def 9;
consider e2 such that
A20: (b,c)
_|_ (c2,e2) and
A21: c2
<> e2 by
ANALMETR:def 9;
reconsider o9 = o, a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1, c29 = c2, e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
A22: b1
<> a1
proof
assume b1
= a1;
then
LIN (o9,b9,a19) by
A11,
ANALMETR: 40;
then (o9,b9)
// (o9,a19) by
AFF_1:def 1;
then (o9,a19)
// (o9,b9) by
AFF_1: 4;
then
A23: (o,a1)
// (o,b) by
ANALMETR: 36;
(o,a)
// (o,a1) by
A10,
ANALMETR:def 10;
then (o9,a9)
// (o9,a19) by
ANALMETR: 36;
then (o9,a19)
// (o9,a9) by
AFF_1: 4;
then (o,a1)
// (o,a) by
ANALMETR: 36;
then (o,a)
// (o,b) by
A3,
A23,
ANALMETR: 60;
then
LIN (o,a,b) by
ANALMETR:def 10;
then
A24:
LIN (o9,a9,b9) by
ANALMETR: 40;
then
LIN (b9,o9,a9) by
AFF_1: 6;
then (b9,o9)
// (b9,a9) by
AFF_1:def 1;
then (o9,b9)
// (a9,b9) by
AFF_1: 4;
then
A25: (o,b)
// (a,b) by
ANALMETR: 36;
A26: a9
<> b9
proof
assume a9
= b9;
then
LIN (b9,b19,a9) by
AFF_1: 7;
hence contradiction by
A8,
ANALMETR: 40;
end;
(o,b)
// (o,b1) by
A11,
ANALMETR:def 10;
then (a,b)
// (o,b1) by
A4,
A25,
ANALMETR: 60;
then
A27: (a9,b9)
// (o9,b19) by
ANALMETR: 36;
LIN (a9,b9,o9) by
A24,
AFF_1: 6;
then
LIN (a9,b9,b19) by
A27,
A26,
AFF_1: 9;
then
LIN (b9,b19,a9) by
AFF_1: 6;
hence contradiction by
A8,
ANALMETR: 40;
end;
A28:
now
not (o9,e19)
// (c29,e29)
proof
assume (o9,e19)
// (c29,e29);
then (o,e1)
// (c2,e2) by
ANALMETR: 36;
then (c2,e2)
_|_ (o,b) by
A16,
A17,
ANALMETR: 62;
then (c2,e2)
_|_ (b,o) by
ANALMETR: 61;
then (b,c)
// (b,o) by
A20,
A21,
ANALMETR: 63;
then
LIN (b,c,o) by
ANALMETR:def 10;
then
LIN (b9,c9,o9) by
ANALMETR: 40;
then
LIN (b9,o9,c9) by
AFF_1: 6;
then
LIN (b,o,c) by
ANALMETR: 40;
then
A29: (b,o)
// (b,c) by
ANALMETR:def 10;
LIN (o9,b9,b19) by
A11,
ANALMETR: 40;
then
LIN (b9,o9,b19) by
AFF_1: 6;
then
LIN (b,o,b1) by
ANALMETR: 40;
then (b,o)
// (b,b1) by
ANALMETR:def 10;
then (b,b1)
// (b,c) by
A4,
A29,
ANALMETR: 60;
hence contradiction by
A9,
ANALMETR:def 10;
end;
then
consider b29 such that
A30:
LIN (o9,e19,b29) and
A31:
LIN (c29,e29,b29) by
AFF_1: 60;
reconsider b2 = b29 as
Element of X;
LIN (o,e1,b2) by
A30,
ANALMETR: 40;
then (o,e1)
// (o,b2) by
ANALMETR:def 10;
then
A32: (o,b)
_|_ (o,b2) by
A16,
A17,
ANALMETR: 62;
(o,b)
// (o,b1) by
A11,
ANALMETR:def 10;
then
A33: (o,b1)
_|_ (o,b2) by
A4,
A32,
ANALMETR: 62;
assume
A34: not
LIN (a,b,c);
A35: b
<> a
proof
assume b
= a;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A34,
ANALMETR: 40;
end;
A36: not (o,c)
// (o,b)
proof
assume (o,c)
// (o,b);
then
LIN (o,c,b) by
ANALMETR:def 10;
then
LIN (o9,c9,b9) by
ANALMETR: 40;
then
LIN (c9,o9,b9) by
AFF_1: 6;
then (c9,o9)
// (c9,b9) by
AFF_1:def 1;
then (o9,c9)
// (b9,c9) by
AFF_1: 4;
then
A37: (o,c)
// (b,c) by
ANALMETR: 36;
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then (o9,c9)
// (b9,a9) by
AFF_1: 4;
then (o,c)
// (b,a) by
ANALMETR: 36;
then (b,a)
// (b,c) by
A6,
A37,
ANALMETR: 60;
then
LIN (b,a,c) by
ANALMETR:def 10;
then
LIN (b9,a9,c9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A34,
ANALMETR: 40;
end;
A38: not (o,a)
// (o,c)
proof
assume (o,a)
// (o,c);
then
LIN (o,a,c) by
ANALMETR:def 10;
then
LIN (o9,a9,c9) by
ANALMETR: 40;
then
LIN (c9,o9,a9) by
AFF_1: 6;
then
LIN (c,o,a) by
ANALMETR: 40;
then
A39: (c,o)
// (c,a) by
ANALMETR:def 10;
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then (c9,o9)
// (a9,b9) by
AFF_1: 4;
then (c,o)
// (a,b) by
ANALMETR: 36;
then (a,b)
// (c,a) by
A6,
A39,
ANALMETR: 60;
then (a9,b9)
// (c9,a9) by
ANALMETR: 36;
then (a9,b9)
// (a9,c9) by
AFF_1: 4;
then (a,b)
// (a,c) by
ANALMETR: 36;
hence contradiction by
A34,
ANALMETR:def 10;
end;
LIN (c2,e2,b2) by
A31,
ANALMETR: 40;
then (c2,e2)
// (c2,b2) by
ANALMETR:def 10;
then
A40: (b,c)
_|_ (c2,b2) by
A20,
A21,
ANALMETR: 62;
consider e1 such that
A41: (o,a)
_|_ (o,e1) and
A42: o
<> e1 by
ANALMETR:def 9;
consider e2 such that
A43: (a,c)
_|_ (c2,e2) and
A44: c2
<> e2 by
ANALMETR:def 9;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (o9,e19)
// (c29,e29)
proof
assume (o9,e19)
// (c29,e29);
then (o,e1)
// (c2,e2) by
ANALMETR: 36;
then (c2,e2)
_|_ (o,a) by
A41,
A42,
ANALMETR: 62;
then (a,c)
// (o,a) by
A43,
A44,
ANALMETR: 63;
then (a9,c9)
// (o9,a9) by
ANALMETR: 36;
then (a9,c9)
// (a9,o9) by
AFF_1: 4;
then
LIN (a9,c9,o9) by
AFF_1:def 1;
then
LIN (c9,o9,a9) by
AFF_1: 6;
then
LIN (c,o,a) by
ANALMETR: 40;
then
A45: (c,o)
// (c,a) by
ANALMETR:def 10;
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then (c9,o9)
// (a9,b9) by
AFF_1: 4;
then (c,o)
// (a,b) by
ANALMETR: 36;
then (a,b)
// (c,a) by
A6,
A45,
ANALMETR: 60;
then (a9,b9)
// (c9,a9) by
ANALMETR: 36;
then (a9,b9)
// (a9,c9) by
AFF_1: 4;
then (a,b)
// (a,c) by
ANALMETR: 36;
hence contradiction by
A34,
ANALMETR:def 10;
end;
then
consider a29 such that
A46:
LIN (o9,e19,a29) and
A47:
LIN (c29,e29,a29) by
AFF_1: 60;
reconsider a2 = a29 as
Element of X;
LIN (o,e1,a2) by
A46,
ANALMETR: 40;
then (o,e1)
// (o,a2) by
ANALMETR:def 10;
then
A48: (o,a)
_|_ (o,a2) by
A41,
A42,
ANALMETR: 62;
A49: c2
<> a2
proof
assume c2
= a2;
then (o,c)
// (o,a) by
A18,
A19,
A48,
ANALMETR: 63;
then
LIN (o,c,a) by
ANALMETR:def 10;
then
LIN (o9,c9,a9) by
ANALMETR: 40;
then
LIN (c9,a9,o9) by
AFF_1: 6;
then (c9,a9)
// (c9,o9) by
AFF_1:def 1;
then (o9,c9)
// (a9,c9) by
AFF_1: 4;
then (o,c)
// (a,c) by
ANALMETR: 36;
then (a,b)
// (a,c) by
A6,
A14,
ANALMETR: 60;
hence contradiction by
A34,
ANALMETR:def 10;
end;
LIN (c2,e2,a2) by
A47,
ANALMETR: 40;
then (c2,e2)
// (c2,a2) by
ANALMETR:def 10;
then (a,c)
_|_ (c2,a2) by
A43,
A44,
ANALMETR: 62;
then
A50: (c,a)
_|_ (c2,a2) by
ANALMETR: 61;
A51: not
LIN (o9,b29,a29)
proof
A52: o
<> b2
proof
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then (o9,c9)
// (b9,a9) by
AFF_1: 4;
then
A53: (o,c)
// (b,a) by
ANALMETR: 36;
assume o
= b2;
then (o,c2)
_|_ (b,c) by
A40,
ANALMETR: 61;
then (o,c)
// (b,c) by
A18,
A19,
ANALMETR: 63;
then (b,a)
// (b,c) by
A6,
A53,
ANALMETR: 60;
then
LIN (b,a,c) by
ANALMETR:def 10;
then
LIN (b9,a9,c9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A34,
ANALMETR: 40;
end;
A54: o
<> a2
proof
assume
A55: o
= a2;
(c2,o)
_|_ (o,c) by
A18,
ANALMETR: 61;
then (o,c)
// (c,a) by
A19,
A50,
A55,
ANALMETR: 63;
then (a,b)
// (c,a) by
A6,
A14,
ANALMETR: 60;
then (a9,b9)
// (c9,a9) by
ANALMETR: 36;
then (a9,b9)
// (a9,c9) by
AFF_1: 4;
then (a,b)
// (a,c) by
ANALMETR: 36;
hence contradiction by
A34,
ANALMETR:def 10;
end;
assume
LIN (o9,b29,a29);
then
LIN (o,b2,a2) by
ANALMETR: 40;
then (o,b2)
// (o,a2) by
ANALMETR:def 10;
then (o,a2)
_|_ (o,b) by
A32,
A52,
ANALMETR: 62;
then (o,a)
// (o,b) by
A48,
A54,
ANALMETR: 63;
then
LIN (o,a,b) by
ANALMETR:def 10;
then
LIN (o9,a9,b9) by
ANALMETR: 40;
then
A56:
LIN (a9,b9,o9) by
AFF_1: 6;
A57: a9
<> b9
proof
assume a9
= b9;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A34,
ANALMETR: 40;
end;
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then
LIN (a9,b9,c9) by
A56,
A57,
AFF_1: 9;
hence contradiction by
A34,
ANALMETR: 40;
end;
consider e1 such that
A58: (o,a1)
_|_ (o,e1) and
A59: o
<> e1 by
ANALMETR:def 9;
consider e2 such that
A60: (a1,c1)
_|_ (c2,e2) and
A61: c2
<> e2 by
ANALMETR:def 9;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (o9,e19)
// (c29,e29)
proof
assume (o9,e19)
// (c29,e29);
then (o,e1)
// (c2,e2) by
ANALMETR: 36;
then (c2,e2)
_|_ (o,a1) by
A58,
A59,
ANALMETR: 62;
then (a1,c1)
// (o,a1) by
A60,
A61,
ANALMETR: 63;
then (a19,c19)
// (o9,a19) by
ANALMETR: 36;
then (a19,c19)
// (a19,o9) by
AFF_1: 4;
then
LIN (a19,c19,o9) by
AFF_1:def 1;
then
LIN (o9,c19,a19) by
AFF_1: 6;
then (o9,c19)
// (o9,a19) by
AFF_1:def 1;
then
A62: (o,c1)
// (o,a1) by
ANALMETR: 36;
LIN (o9,a9,a19) by
A10,
ANALMETR: 40;
then (o9,a9)
// (o9,a19) by
AFF_1:def 1;
then (o9,a19)
// (o9,a9) by
AFF_1: 4;
then
A63: (o,a1)
// (o,a) by
ANALMETR: 36;
LIN (o9,c9,c19) by
A12,
ANALMETR: 40;
then (o9,c9)
// (o9,c19) by
AFF_1:def 1;
then (o9,c19)
// (o9,c9) by
AFF_1: 4;
then (o,c1)
// (o,c) by
ANALMETR: 36;
then (o,a1)
// (o,c) by
A7,
A62,
ANALMETR: 60;
then (o,a)
// (o,c) by
A3,
A63,
ANALMETR: 60;
then
LIN (o,a,c) by
ANALMETR:def 10;
then
LIN (o9,a9,c9) by
ANALMETR: 40;
then
LIN (c9,o9,a9) by
AFF_1: 6;
then (c9,o9)
// (c9,a9) by
AFF_1:def 1;
then (o9,c9)
// (a9,c9) by
AFF_1: 4;
then (o,c)
// (a,c) by
ANALMETR: 36;
then (a,b)
// (a,c) by
A6,
A14,
ANALMETR: 60;
hence contradiction by
A34,
ANALMETR:def 10;
end;
then
consider a39 such that
A64:
LIN (o9,e19,a39) and
A65:
LIN (c29,e29,a39) by
AFF_1: 60;
reconsider a3 = a39 as
Element of X;
LIN (o,e1,a3) by
A64,
ANALMETR: 40;
then (o,e1)
// (o,a3) by
ANALMETR:def 10;
then
A66: (o,a1)
_|_ (o,a3) by
A58,
A59,
ANALMETR: 62;
b
<> c
proof
assume b
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A34,
ANALMETR: 40;
end;
then (c2,b2)
_|_ (b1,c1) by
A15,
A40,
ANALMETR: 62;
then
A67: (c1,b1)
_|_ (c2,b2) by
ANALMETR: 61;
A68: not (o,a1)
// (o,c1)
proof
(o,a)
// (o,a1) by
A10,
ANALMETR:def 10;
then (o9,a9)
// (o9,a19) by
ANALMETR: 36;
then (o9,a19)
// (o9,a9) by
AFF_1: 4;
then
A69: (o,a1)
// (o,a) by
ANALMETR: 36;
assume (o,a1)
// (o,c1);
then (o9,a19)
// (o9,c19) by
ANALMETR: 36;
then (o9,c19)
// (o9,a19) by
AFF_1: 4;
then
A70: (o,c1)
// (o,a1) by
ANALMETR: 36;
(o,c)
// (o,c1) by
A12,
ANALMETR:def 10;
then (o9,c9)
// (o9,c19) by
ANALMETR: 36;
then (o9,c19)
// (o9,c9) by
AFF_1: 4;
then (o,c1)
// (o,c) by
ANALMETR: 36;
then (o,a1)
// (o,c) by
A7,
A70,
ANALMETR: 60;
then (o,a)
// (o,c) by
A3,
A69,
ANALMETR: 60;
then
LIN (o,a,c) by
ANALMETR:def 10;
then
LIN (o9,a9,c9) by
ANALMETR: 40;
then
LIN (c9,a9,o9) by
AFF_1: 6;
then (c9,a9)
// (c9,o9) by
AFF_1:def 1;
then (o9,c9)
// (a9,c9) by
AFF_1: 4;
then (o,c)
// (a,c) by
ANALMETR: 36;
then (a,b)
// (a,c) by
A6,
A14,
ANALMETR: 60;
hence contradiction by
A34,
ANALMETR:def 10;
end;
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then (o9,c9)
// (b9,a9) by
AFF_1: 4;
then
A71: (o,c)
// (b,a) by
ANALMETR: 36;
A72: not (o,c1)
// (o,b1)
proof
(o,b)
// (o,b1) by
A11,
ANALMETR:def 10;
then (o9,b9)
// (o9,b19) by
ANALMETR: 36;
then (o9,b19)
// (o9,b9) by
AFF_1: 4;
then
A73: (o,b1)
// (o,b) by
ANALMETR: 36;
(o,c)
// (o,c1) by
A12,
ANALMETR:def 10;
then (o9,c9)
// (o9,c19) by
ANALMETR: 36;
then (o9,c19)
// (o9,c9) by
AFF_1: 4;
then
A74: (o,c1)
// (o,c) by
ANALMETR: 36;
assume (o,c1)
// (o,b1);
then (o,b1)
// (o,c) by
A7,
A74,
ANALMETR: 60;
then (o,b)
// (o,c) by
A5,
A73,
ANALMETR: 60;
then
LIN (o,b,c) by
ANALMETR:def 10;
then
LIN (o9,b9,c9) by
ANALMETR: 40;
then
LIN (c9,o9,b9) by
AFF_1: 6;
then (c9,o9)
// (c9,b9) by
AFF_1:def 1;
then (o9,c9)
// (b9,c9) by
AFF_1: 4;
then
A75: (o,c)
// (b,c) by
ANALMETR: 36;
(a9,b9)
// (o9,c9) by
A14,
ANALMETR: 36;
then (o9,c9)
// (b9,a9) by
AFF_1: 4;
then (o,c)
// (b,a) by
ANALMETR: 36;
then (b,a)
// (b,c) by
A6,
A75,
ANALMETR: 60;
then
LIN (b,a,c) by
ANALMETR:def 10;
then
LIN (b9,a9,c9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A34,
ANALMETR: 40;
end;
a
<> b
proof
assume a
= b;
then
LIN (b9,b19,a9) by
AFF_1: 7;
hence contradiction by
A8,
ANALMETR: 40;
end;
then (o,c)
// (a1,b1) by
A13,
A14,
ANALMETR: 60;
then (o9,c9)
// (a19,b19) by
ANALMETR: 36;
then (o9,c9)
// (b19,a19) by
AFF_1: 4;
then
A76: (o,c)
// (b1,a1) by
ANALMETR: 36;
(o,c)
// (o,c1) by
A12,
ANALMETR:def 10;
then
A77: (o,c1)
// (b1,a1) by
A6,
A76,
ANALMETR: 60;
(o,c)
// (o,c1) by
A12,
ANALMETR:def 10;
then
A78: (o,c1)
_|_ (o,c2) by
A6,
A18,
ANALMETR: 62;
(c,b)
_|_ (c2,b2) by
A40,
ANALMETR: 61;
then (b,a)
_|_ (b2,a2) by
A1,
A18,
A32,
A48,
A71,
A50,
A38,
A36,
CONAFFM:def 2;
then (b2,a2)
_|_ (a,b) by
ANALMETR: 61;
then (b2,a2)
_|_ (a1,b1) by
A13,
A35,
ANALMETR: 62;
then
A79: (b1,a1)
_|_ (b2,a2) by
ANALMETR: 61;
(o,a)
// (o,a1) by
A10,
ANALMETR:def 10;
then (o,a1)
_|_ (o,a2) by
A2,
A48,
ANALMETR: 62;
then (o,a2)
// (o,a3) by
A3,
A66,
ANALMETR: 63;
then
LIN (o,a2,a3) by
ANALMETR:def 10;
then
A80:
LIN (o9,a29,a39) by
ANALMETR: 40;
LIN (c2,e2,a3) by
A65,
ANALMETR: 40;
then (c2,e2)
// (c2,a3) by
ANALMETR:def 10;
then
A81: (a1,c1)
_|_ (c2,a3) by
A60,
A61,
ANALMETR: 62;
then (c1,a1)
_|_ (c2,a3) by
ANALMETR: 61;
then (b1,a1)
_|_ (b2,a3) by
A1,
A66,
A78,
A33,
A67,
A77,
A68,
A72,
CONAFFM:def 2;
then (b2,a3)
// (b2,a2) by
A22,
A79,
ANALMETR: 63;
then (b29,a39)
// (b29,a29) by
ANALMETR: 36;
then (b29,a29)
// (b29,a39) by
AFF_1: 4;
then a29
= a39 by
A51,
A80,
AFF_1: 14;
then (c,a)
// (a1,c1) by
A50,
A81,
A49,
ANALMETR: 63;
then (c9,a9)
// (a19,c19) by
ANALMETR: 36;
then (a9,c9)
// (a19,c19) by
AFF_1: 4;
hence thesis by
ANALMETR: 36;
end;
now
assume
A82:
LIN (a,b,c);
then
A83:
LIN (a9,b9,c9) by
ANALMETR: 40;
A84: a
<> b
proof
assume a
= b;
then
LIN (b9,b19,a9) by
AFF_1: 7;
hence contradiction by
A8,
ANALMETR: 40;
end;
A85:
now
assume (a1,c1)
// (a,b);
then (a19,c19)
// (a9,b9) by
ANALMETR: 36;
then (a9,b9)
// (a19,c19) by
AFF_1: 4;
then
A86: (a,b)
// (a1,c1) by
ANALMETR: 36;
(a,b)
// (a,c) by
A82,
ANALMETR:def 10;
hence thesis by
A84,
A86,
ANALMETR: 60;
end;
A87: b
<> c
proof
assume b
= c;
then
LIN (b9,b19,c9) by
AFF_1: 7;
hence contradiction by
A9,
ANALMETR: 40;
end;
A88:
now
LIN (c9,b9,a9) by
A83,
AFF_1: 6;
then (c9,b9)
// (c9,a9) by
AFF_1:def 1;
then (b9,c9)
// (a9,c9) by
AFF_1: 4;
then
A89: (b,c)
// (a,c) by
ANALMETR: 36;
assume a1
= b1;
hence thesis by
A15,
A87,
A89,
ANALMETR: 60;
end;
LIN (b9,a9,c9) by
A83,
AFF_1: 6;
then (b9,a9)
// (b9,c9) by
AFF_1:def 1;
then (a9,b9)
// (b9,c9) by
AFF_1: 4;
then (a,b)
// (b,c) by
ANALMETR: 36;
then (b,c)
// (a1,b1) by
A13,
A84,
ANALMETR: 60;
then (b1,c1)
// (a1,b1) by
A15,
A87,
ANALMETR: 60;
then (b19,c19)
// (a19,b19) by
ANALMETR: 36;
then (b19,a19)
// (b19,c19) by
AFF_1: 4;
then
LIN (b19,a19,c19) by
AFF_1:def 1;
then
LIN (a19,b19,c19) by
AFF_1: 6;
then
LIN (a1,b1,c1) by
ANALMETR: 40;
then
A90: (a1,b1)
// (a1,c1) by
ANALMETR:def 10;
(a9,b9)
// (a19,b19) by
A13,
ANALMETR: 36;
then (a19,b19)
// (a9,b9) by
AFF_1: 4;
then (a1,b1)
// (a,b) by
ANALMETR: 36;
hence thesis by
A90,
A85,
A88,
ANALMETR: 60;
end;
hence thesis by
A28;
end;
theorem ::
CONMETR:12
X is
satisfying_OSCH & X is
satisfying_TDES implies X is
satisfying_SCH
proof
assume that
A1: X is
satisfying_OSCH and
A2: X is
satisfying_TDES;
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A3: M is
being_line and
A4: N is
being_line and
A5: a1
in M and
A6: a3
in M and
A7: b1
in M and
A8: b3
in M and
A9: a2
in N and
A10: a4
in N and
A11: b2
in N and
A12: b4
in N and
A13: not a4
in M and
A14: not a2
in M and
A15: not b2
in M and
A16: not b4
in M and
A17: not a1
in N and
A18: not a3
in N and
A19: not b1
in N and
A20: not b3
in N and
A21: (a3,a2)
// (b3,b2) and
A22: (a2,a1)
// (b2,b1) and
A23: (a1,a4)
// (b1,b4);
reconsider a19 = a1, a29 = a2, a39 = a3, a49 = a4, b19 = b1, b29 = b2, b39 = b3, b49 = b4 as
Element of the AffinStruct of X;
reconsider M9 = M, N9 = N as
Subset of the AffinStruct of X;
A24: M9 is
being_line by
A3,
ANALMETR: 43;
A25: N9 is
being_line by
A4,
ANALMETR: 43;
A26: a1
<> b1 implies a2
<> b2 & a3
<> b3 & a4
<> b4
proof
assume
A27: a1
<> b1;
A28:
now
assume a4
= b4;
then (a4,a1)
// (a4,b1) by
A23,
ANALMETR: 59;
then
LIN (a4,a1,b1) by
ANALMETR:def 10;
then
LIN (a49,a19,b19) by
ANALMETR: 40;
then
LIN (a19,b19,a49) by
AFF_1: 6;
hence contradiction by
A5,
A7,
A13,
A24,
A27,
AFF_1: 25;
end;
A29:
now
assume a2
= b2;
then
LIN (a2,a1,b1) by
A22,
ANALMETR:def 10;
then
LIN (a29,a19,b19) by
ANALMETR: 40;
then
LIN (a19,b19,a29) by
AFF_1: 6;
hence contradiction by
A5,
A7,
A14,
A24,
A27,
AFF_1: 25;
end;
A30:
now
assume a3
= b3;
then
LIN (a3,a2,b2) by
A21,
ANALMETR:def 10;
then
LIN (a39,a29,b29) by
ANALMETR: 40;
then
LIN (a29,b29,a39) by
AFF_1: 6;
hence contradiction by
A9,
A11,
A18,
A25,
A29,
AFF_1: 25;
end;
assume a2
= b2 or a3
= b3 or a4
= b4;
hence contradiction by
A29,
A28,
A30;
end;
A31:
now
assume
A32: a1
<> b1;
A33:
now
A34: not
LIN (a29,b19,b29)
proof
assume
LIN (a29,b19,b29);
then
LIN (a29,b29,b19) by
AFF_1: 6;
hence contradiction by
A9,
A11,
A19,
A25,
A26,
A32,
AFF_1: 25;
end;
assume
A35: a2
= a4;
then (a2,a1)
// (b1,b4) by
A23,
ANALMETR: 59;
then (b2,b1)
// (b1,b4) by
A5,
A14,
A22,
ANALMETR: 60;
then (b1,b2)
// (b1,b4) by
ANALMETR: 59;
then
A36: (b19,b29)
// (b19,b49) by
ANALMETR: 36;
(a29,b29)
// (a29,b49) by
A9,
A11,
A12,
A25,
AFF_1: 39,
AFF_1: 41;
then
LIN (a29,b29,b49) by
AFF_1:def 1;
hence thesis by
A21,
A35,
A34,
A36,
AFF_1: 14;
end;
A37:
now
assume that
A38: a2
<> a4 and
A39: a1
<> a3;
A40:
now
consider e1 be
Element of X such that
A41: (b1,b2)
// (b1,e1) and
A42: b1
<> e1 by
ANALMETR: 39;
consider x be
Element of X such that
A43:
LIN (a1,a2,x) and
A44: a1
<> x and
A45: a2
<> x by
Th2;
reconsider x9 = x as
Element of the AffinStruct of X;
consider e2 be
Element of X such that
A46: (a1,b1)
// (x,e2) and
A47: x
<> e2 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (b19,e19)
// (x9,e29)
proof
assume (b19,e19)
// (x9,e29);
then (b1,e1)
// (x,e2) by
ANALMETR: 36;
then (b1,b2)
// (x,e2) by
A41,
A42,
ANALMETR: 60;
then (b1,b2)
// (a1,b1) by
A46,
A47,
ANALMETR: 60;
then (b1,a1)
// (b1,b2) by
ANALMETR: 59;
then
LIN (b1,a1,b2) by
ANALMETR:def 10;
then
LIN (b19,a19,b29) by
ANALMETR: 40;
hence contradiction by
A5,
A7,
A15,
A24,
A32,
AFF_1: 25;
end;
then
consider y9 be
Element of the AffinStruct of X such that
A48:
LIN (b19,e19,y9) and
A49:
LIN (x9,e29,y9) by
AFF_1: 60;
reconsider y = y9 as
Element of X;
A50: (a1,a2)
// (a1,x) by
A43,
ANALMETR:def 10;
A51: not
LIN (a2,b2,x)
proof
A52: a2
<> b2
proof
assume a2
= b2;
then
LIN (a2,a1,b1) by
A22,
ANALMETR:def 10;
then
LIN (a29,a19,b19) by
ANALMETR: 40;
then
LIN (a19,b19,a29) by
AFF_1: 6;
hence contradiction by
A5,
A7,
A14,
A24,
A32,
AFF_1: 25;
end;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
A53:
LIN (a29,x9,a19) by
AFF_1: 6;
assume
LIN (a2,b2,x);
then
LIN (a29,b29,x9) by
ANALMETR: 40;
then x9
in N9 by
A9,
A11,
A25,
A52,
AFF_1: 25;
hence contradiction by
A9,
A17,
A25,
A45,
A53,
AFF_1: 25;
end;
A54: not
LIN (a1,b1,a4)
proof
assume
LIN (a1,b1,a4);
then
LIN (a19,b19,a49) by
ANALMETR: 40;
hence contradiction by
A5,
A7,
A13,
A24,
A32,
AFF_1: 25;
end;
A55: not
LIN (a1,b1,x)
proof
assume
LIN (a1,b1,x);
then
LIN (a19,b19,x9) by
ANALMETR: 40;
then
A56: x9
in M9 by
A5,
A7,
A24,
A32,
AFF_1: 25;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (a19,x9,a29) by
AFF_1: 6;
hence contradiction by
A5,
A14,
A24,
A44,
A56,
AFF_1: 25;
end;
assume
A57: M
// N;
then M9
// N9 by
ANALMETR: 46;
then (a39,b39)
// (a29,b29) by
A6,
A8,
A9,
A11,
AFF_1: 39;
then (a3,b3)
// (a2,b2) by
ANALMETR: 36;
then
A58: (a2,b2)
// (a3,b3) by
ANALMETR: 59;
LIN (x,e2,y) by
A49,
ANALMETR: 40;
then (x,e2)
// (x,y) by
ANALMETR:def 10;
then
A59: (a1,b1)
// (x,y) by
A46,
A47,
ANALMETR: 60;
A60: b1
<> y
proof
assume b1
= y;
then (b1,a1)
// (b1,x) by
A59,
ANALMETR: 59;
then
LIN (b1,a1,x) by
ANALMETR:def 10;
then
LIN (b19,a19,x9) by
ANALMETR: 40;
then
A61: x9
in M9 by
A5,
A7,
A24,
A32,
AFF_1: 25;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (a19,x9,a29) by
AFF_1: 6;
hence contradiction by
A5,
A14,
A24,
A44,
A61,
AFF_1: 25;
end;
LIN (b1,e1,y) by
A48,
ANALMETR: 40;
then (b1,e1)
// (b1,y) by
ANALMETR:def 10;
then
A62: (b1,b2)
// (b1,y) by
A41,
A42,
ANALMETR: 60;
then
LIN (b1,b2,y) by
ANALMETR:def 10;
then
LIN (b19,b29,y9) by
ANALMETR: 40;
then
LIN (y9,b19,b29) by
AFF_1: 6;
then
LIN (y,b1,b2) by
ANALMETR: 40;
then (y,b1)
// (y,b2) by
ANALMETR:def 10;
then
A63: (b1,y)
// (b2,y) by
ANALMETR: 59;
(a1,a2)
// (b1,b2) by
A22,
ANALMETR: 59;
then (a1,a2)
// (b1,y) by
A7,
A15,
A62,
ANALMETR: 60;
then
A64: (a1,x)
// (b1,y) by
A5,
A14,
A50,
ANALMETR: 60;
A65: not
LIN (x,y,a3)
proof
A66: x
<> y
proof
assume x
= y;
then (x,a1)
// (x,b1) by
A64,
ANALMETR: 59;
then
LIN (x,a1,b1) by
ANALMETR:def 10;
then
LIN (x9,a19,b19) by
ANALMETR: 40;
then
LIN (a19,b19,x9) by
AFF_1: 6;
then
A67: x9
in M9 by
A5,
A7,
A24,
A32,
AFF_1: 25;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (x9,a19,a29) by
AFF_1: 6;
hence contradiction by
A5,
A14,
A24,
A44,
A67,
AFF_1: 25;
end;
(a19,a39)
// (a19,b19) by
A5,
A6,
A7,
A24,
AFF_1: 39,
AFF_1: 41;
then (a1,a3)
// (a1,b1) by
ANALMETR: 36;
then
A68: (x,y)
// (a1,a3) by
A32,
A59,
ANALMETR: 60;
assume
LIN (x,y,a3);
then (x,y)
// (x,a3) by
ANALMETR:def 10;
then (x,a3)
// (a1,a3) by
A66,
A68,
ANALMETR: 60;
then (a3,a1)
// (a3,x) by
ANALMETR: 59;
then
LIN (a3,a1,x) by
ANALMETR:def 10;
then
LIN (a39,a19,x9) by
ANALMETR: 40;
then
A69: x9
in M9 by
A5,
A6,
A24,
A39,
AFF_1: 25;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (a19,x9,a29) by
AFF_1: 6;
hence contradiction by
A5,
A14,
A24,
A44,
A69,
AFF_1: 25;
end;
A70: not
LIN (x,y,a4)
proof
A71: x
<> y
proof
assume x
= y;
then (x,a1)
// (x,b1) by
A64,
ANALMETR: 59;
then
LIN (x,a1,b1) by
ANALMETR:def 10;
then
LIN (x9,a19,b19) by
ANALMETR: 40;
then
LIN (a19,b19,x9) by
AFF_1: 6;
then
A72: x9
in M9 by
A5,
A7,
A24,
A32,
AFF_1: 25;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (x9,a19,a29) by
AFF_1: 6;
hence contradiction by
A5,
A14,
A24,
A44,
A72,
AFF_1: 25;
end;
M9
// N9 by
A57,
ANALMETR: 46;
then (a19,b19)
// (a29,a49) by
A5,
A7,
A9,
A10,
AFF_1: 39;
then (a1,b1)
// (a2,a4) by
ANALMETR: 36;
then
A73: (a2,a4)
// (x,y) by
A32,
A59,
ANALMETR: 60;
assume
LIN (x,y,a4);
then (x,y)
// (x,a4) by
ANALMETR:def 10;
then (a2,a4)
// (x,a4) by
A71,
A73,
ANALMETR: 60;
then (a4,a2)
// (a4,x) by
ANALMETR: 59;
then
LIN (a4,a2,x) by
ANALMETR:def 10;
then
LIN (a49,a29,x9) by
ANALMETR: 40;
then
A74: x9
in N9 by
A9,
A10,
A25,
A38,
AFF_1: 25;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (a29,x9,a19) by
AFF_1: 6;
hence contradiction by
A9,
A17,
A25,
A45,
A74,
AFF_1: 25;
end;
A75: not
LIN (a2,b2,a3)
proof
A76: a2
<> b2
proof
assume a2
= b2;
then
LIN (a2,a1,b1) by
A22,
ANALMETR:def 10;
then
LIN (a29,a19,b19) by
ANALMETR: 40;
then
LIN (a19,b19,a29) by
AFF_1: 6;
hence contradiction by
A5,
A7,
A14,
A24,
A32,
AFF_1: 25;
end;
assume
LIN (a2,b2,a3);
then
LIN (a29,b29,a39) by
ANALMETR: 40;
hence contradiction by
A9,
A11,
A18,
A25,
A76,
AFF_1: 25;
end;
A77: X is
satisfying_TDES implies X is
satisfying_des
proof
assume X is
satisfying_TDES;
then the AffinStruct of X is
Moufangian by
Th7;
then the AffinStruct of X is
translational by
AFF_2: 14;
hence thesis by
Th8;
end;
LIN (a19,a29,x9) by
A43,
ANALMETR: 40;
then
LIN (x9,a19,a29) by
AFF_1: 6;
then
LIN (x,a1,a2) by
ANALMETR: 40;
then (x,a1)
// (x,a2) by
ANALMETR:def 10;
then (a1,x)
// (a2,x) by
ANALMETR: 59;
then (a2,x)
// (b1,y) by
A44,
A64,
ANALMETR: 60;
then
A78: (a2,x)
// (b2,y) by
A60,
A63,
ANALMETR: 60;
(a19,b19)
// (a39,b39) by
A5,
A6,
A7,
A8,
A24,
AFF_1: 39,
AFF_1: 41;
then (a1,b1)
// (a3,b3) by
ANALMETR: 36;
then
A79: (x,y)
// (a3,b3) by
A32,
A59,
ANALMETR: 60;
M9
// N9 by
A57,
ANALMETR: 46;
then (a19,b19)
// (a49,b49) by
A5,
A7,
A10,
A12,
AFF_1: 39;
then (a1,b1)
// (a4,b4) by
ANALMETR: 36;
then
A80: (x,y)
// (a4,b4) by
A32,
A59,
ANALMETR: 60;
M9
// N9 by
A57,
ANALMETR: 46;
then (a19,b19)
// (a29,b29) by
A5,
A7,
A9,
A11,
AFF_1: 39;
then (a1,b1)
// (a2,b2) by
ANALMETR: 36;
then
A81: (a2,b2)
// (x,y) by
A32,
A59,
ANALMETR: 60;
(a2,a3)
// (b2,b3) by
A21,
ANALMETR: 59;
then
A82: (x,a3)
// (y,b3) by
A2,
A77,
A51,
A75,
A81,
A58,
A78;
M9
// N9 by
A57,
ANALMETR: 46;
then (a19,b19)
// (a49,b49) by
A5,
A7,
A10,
A12,
AFF_1: 39;
then (a1,b1)
// (a4,b4) by
ANALMETR: 36;
then (x,a4)
// (y,b4) by
A2,
A23,
A59,
A77,
A55,
A54,
A64;
hence thesis by
A2,
A77,
A82,
A65,
A70,
A79,
A80;
end;
now
assume not M
// N;
then not M9
// N9 by
ANALMETR: 46;
then
consider o9 be
Element of the AffinStruct of X such that
A83: o9
in M9 and
A84: o9
in N9 by
A24,
A25,
AFF_1: 58;
reconsider o = o9 as
Element of X;
consider K such that
A85: o
in K and
A86: N
_|_ K by
A4,
Th3;
reconsider K9 = K as
Subset of the AffinStruct of X;
A87: K is
being_line by
A86,
ANALMETR: 44;
then
A88: K9 is
being_line by
ANALMETR: 43;
now
A89: not a2
in K & not a4
in K & not b2
in K & not b4
in K
proof
A90:
now
let x be
Element of X;
assume that
A91: x
in N and
A92: o
<> x;
assume x
in K;
then (o,x)
_|_ (o,x) by
A84,
A85,
A86,
A91,
ANALMETR: 56;
hence contradiction by
A92,
ANALMETR: 39;
end;
assume not thesis;
hence contradiction by
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A83,
A90;
end;
A93:
LIN (o,a2,b2) by
A4,
A9,
A11,
A84,
Th4;
A94:
now
assume
LIN (a1,b1,a4);
then
LIN (a19,b19,a49) by
ANALMETR: 40;
hence contradiction by
A5,
A7,
A13,
A24,
A32,
AFF_1: 25;
end;
A95:
LIN (o,a3,b3) by
A3,
A6,
A8,
A83,
Th4;
A96:
now
assume
LIN (a3,b3,a2);
then
LIN (a39,b39,a29) by
ANALMETR: 40;
hence contradiction by
A6,
A8,
A14,
A24,
A26,
A32,
AFF_1: 25;
end;
A97:
LIN (o,a1,b1) by
A3,
A5,
A7,
A83,
Th4;
A98:
now
let x9 be
Element of the AffinStruct of X;
consider D9 be
Subset of the AffinStruct of X such that
A99: x9
in D9 and
A100: N9
// D9 by
A25,
AFF_1: 49;
reconsider D = D9 as
Subset of the
carrier of X;
N
// D by
A100,
ANALMETR: 46;
then K
_|_ D by
A86,
ANALMETR: 52;
then
consider y be
Element of X such that
A101: y
in K and
A102: y
in D by
ANALMETR: 66;
reconsider y9 = y as
Element of the AffinStruct of X;
take y9;
thus y9
in K9 & (x9,y9)
// N9 by
A99,
A100,
A101,
A102,
AFF_1: 40;
end;
then
consider d19 be
Element of the AffinStruct of X such that
A103: d19
in K9 and
A104: (a19,d19)
// N9;
consider e19 be
Element of the AffinStruct of X such that
A105: e19
in K9 and
A106: (b19,e19)
// N9 by
A98;
consider d39 be
Element of the AffinStruct of X such that
A107: d39
in K9 and
A108: (a39,d39)
// N9 by
A98;
consider e39 be
Element of the AffinStruct of X such that
A109: e39
in K9 and
A110: (b39,e39)
// N9 by
A98;
reconsider d1 = d19, d3 = d39, e1 = e19, e3 = e39 as
Element of X;
A111:
LIN (o,d1,e1) by
A85,
A87,
A103,
A105,
Th4;
A112: o
<> e1 & o
<> e3 & o
<> d1 & o
<> d3
proof
A113:
now
let x,y be
Element of X, x9,y9 be
Element of the AffinStruct of X;
assume that
A114: (x9,y9)
// N9 and
A115: x
= x9 and
A116: y
= y9 and x
in M and y
in K and
A117: not x
in N;
assume o
= y;
then (o9,x9)
// N9 by
A114,
A116,
AFF_1: 34;
hence contradiction by
A25,
A84,
A115,
A117,
AFF_1: 23;
end;
assume not thesis;
hence contradiction by
A5,
A6,
A7,
A8,
A17,
A18,
A19,
A20,
A103,
A104,
A107,
A108,
A109,
A110,
A105,
A106,
A113;
end;
(a1,d1)
// (o,a2) by
A9,
A84,
A104,
Th6;
then
A118: (d1,a1)
// (o,a2) by
ANALMETR: 59;
A119: not e1
in N by
A19,
A106,
AFF_1: 35;
A120: not d3
in N by
A18,
A108,
AFF_1: 35;
(a19,d19)
// (b19,e19) by
A25,
A104,
A106,
AFF_1: 31;
then (a1,d1)
// (b1,e1) by
ANALMETR: 36;
then
A121: (d1,a1)
// (e1,b1) by
ANALMETR: 59;
assume
A122: K
<> M;
A123:
now
assume
LIN (a3,b3,d3);
then
LIN (a39,b39,d39) by
ANALMETR: 40;
then d3
in M by
A6,
A8,
A24,
A26,
A32,
AFF_1: 25;
hence contradiction by
A3,
A83,
A85,
A87,
A122,
A107,
A112,
Th5;
end;
A124:
now
assume
LIN (a1,b1,d1);
then
LIN (a19,b19,d19) by
ANALMETR: 40;
then d1
in M by
A5,
A7,
A24,
A32,
AFF_1: 25;
hence contradiction by
A3,
A83,
A85,
A87,
A122,
A103,
A112,
Th5;
end;
(a39,d39)
// (b39,e39) by
A25,
A108,
A110,
AFF_1: 31;
then
A125: (a3,d3)
// (b3,e3) by
ANALMETR: 36;
then
A126: (d3,a3)
// (e3,b3) by
ANALMETR: 59;
A127: not
LIN (d3,e3,a3) & not
LIN (d3,e3,a4)
proof
A128: d3
<> e3
proof
assume not thesis;
then
LIN (e3,a3,b3) by
A126,
ANALMETR:def 10;
then
LIN (e39,a39,b39) by
ANALMETR: 40;
then
LIN (a39,b39,e39) by
AFF_1: 6;
then e39
in M9 by
A6,
A8,
A24,
A26,
A32,
AFF_1: 25;
hence contradiction by
A24,
A83,
A85,
A88,
A122,
A109,
A112,
AFF_1: 18;
end;
assume not thesis;
then
LIN (d39,e39,a39) or
LIN (d39,e39,a49) by
ANALMETR: 40;
then a39
in K9 or a49
in K9 by
A88,
A107,
A109,
A128,
AFF_1: 25;
hence contradiction by
A6,
A10,
A13,
A18,
A24,
A25,
A83,
A84,
A85,
A86,
A88,
A122,
AFF_1: 18;
end;
A129:
now
assume
LIN (a1,b1,a2);
then
LIN (a19,b19,a29) by
ANALMETR: 40;
hence contradiction by
A5,
A7,
A14,
A24,
A32,
AFF_1: 25;
end;
A130:
LIN (o,a4,b4) by
A4,
A10,
A12,
A84,
Th4;
(a1,a2)
// (b1,b2) by
A22,
ANALMETR: 59;
then (d1,a2)
// (e1,b2) by
A2,
A14,
A15,
A17,
A19,
A83,
A84,
A112,
A93,
A97,
A111,
A124,
A129,
A121,
A118;
then
A131: (a2,d1)
// (b2,e1) by
ANALMETR: 59;
A132: not e3
in N by
A20,
A110,
AFF_1: 35;
A133:
LIN (o,d3,e3) by
A85,
A87,
A107,
A109,
Th4;
(a1,d1)
// (o,a4) by
A10,
A84,
A104,
Th6;
then (d1,a1)
// (o,a4) by
ANALMETR: 59;
then
A134: (d1,a4)
// (e1,b4) by
A2,
A13,
A16,
A17,
A19,
A23,
A83,
A84,
A112,
A97,
A130,
A111,
A124,
A94,
A121;
A135: (a3,d3)
// (o,a4) by
A10,
A84,
A108,
Th6;
A136: not d1
in N by
A17,
A104,
AFF_1: 35;
(a3,d3)
// (o,a2) by
A9,
A84,
A108,
Th6;
then (d3,a3)
// (o,a2) by
ANALMETR: 59;
then (d3,a2)
// (e3,b2) by
A2,
A14,
A15,
A18,
A20,
A21,
A83,
A84,
A112,
A93,
A95,
A133,
A123,
A96,
A126;
then (d3,a4)
// (e3,b4) by
A1,
A9,
A10,
A11,
A12,
A86,
A103,
A107,
A109,
A105,
A131,
A134,
A136,
A120,
A119,
A132,
A89;
hence thesis by
A2,
A13,
A16,
A18,
A20,
A83,
A84,
A112,
A130,
A95,
A133,
A125,
A127,
A135;
end;
hence thesis by
A1,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A21,
A22,
A23,
A86;
end;
hence thesis by
A40;
end;
now
A137: not
LIN (a19,b29,b19)
proof
assume
LIN (a19,b29,b19);
then
LIN (a19,b19,b29) by
AFF_1: 6;
hence contradiction by
A5,
A7,
A15,
A24,
A32,
AFF_1: 25;
end;
(a19,b19)
// (a19,b39) by
A5,
A7,
A8,
A24,
AFF_1: 39,
AFF_1: 41;
then
A138:
LIN (a19,b19,b39) by
AFF_1:def 1;
assume
A139: a1
= a3;
then (a2,a1)
// (b2,b3) by
A21,
ANALMETR: 59;
then (b2,b1)
// (b2,b3) by
A5,
A14,
A22,
ANALMETR: 60;
then (b29,b19)
// (b29,b39) by
ANALMETR: 36;
hence thesis by
A23,
A139,
A137,
A138,
AFF_1: 14;
end;
hence thesis by
A33,
A37;
end;
A140: a1
= b1 implies a2
= b2 & a3
= b3 & a4
= b4
proof
assume
A141: a1
= b1;
A142:
now
LIN (a1,a4,b4) by
A23,
A141,
ANALMETR:def 10;
then
LIN (a19,a49,b49) by
ANALMETR: 40;
then
A143:
LIN (a49,b49,a19) by
AFF_1: 6;
assume a4
<> b4;
hence contradiction by
A10,
A12,
A17,
A25,
A143,
AFF_1: 25;
end;
A144:
now
(a1,a2)
// (a1,b2) by
A22,
A141,
ANALMETR: 59;
then
LIN (a1,a2,b2) by
ANALMETR:def 10;
then
LIN (a19,a29,b29) by
ANALMETR: 40;
then
A145:
LIN (a29,b29,a19) by
AFF_1: 6;
assume a2
<> b2;
hence contradiction by
A9,
A11,
A17,
A25,
A145,
AFF_1: 25;
end;
A146:
now
(a2,a3)
// (a2,b3) by
A21,
A144,
ANALMETR: 59;
then
LIN (a2,a3,b3) by
ANALMETR:def 10;
then
LIN (a29,a39,b39) by
ANALMETR: 40;
then
A147:
LIN (a39,b39,a29) by
AFF_1: 6;
assume a3
<> b3;
hence contradiction by
A6,
A8,
A14,
A24,
A147,
AFF_1: 25;
end;
assume a2
<> b2 or a3
<> b3 or a4
<> b4;
hence contradiction by
A144,
A142,
A146;
end;
now
assume a1
= b1;
then (a39,a49)
// (b39,b49) by
A140,
AFF_1: 2;
hence thesis by
ANALMETR: 36;
end;
hence thesis by
A31;
end;
theorem ::
CONMETR:13
X is
satisfying_OPAP & X is
satisfying_DES implies X is
satisfying_PAP
proof
assume that
A1: X is
satisfying_OPAP and
A2: X is
satisfying_DES;
let o, a1, a2, a3, b1, b2, b3, M, N;
assume that
A3: M is
being_line and
A4: N is
being_line and
A5: o
in M and
A6: a1
in M and
A7: a2
in M and
A8: a3
in M and
A9: o
in N and
A10: b1
in N and
A11: b2
in N and
A12: b3
in N and
A13: not b2
in M and
A14: not a3
in N and
A15: o
<> a1 and
A16: o
<> a2 and o
<> a3 and
A17: o
<> b1 and o
<> b2 and
A18: o
<> b3 and
A19: (a3,b2)
// (a2,b1) and
A20: (a3,b3)
// (a1,b1);
reconsider o9 = o, a19 = a1, a29 = a2, a39 = a3, b19 = b1, b29 = b2, b39 = b3 as
Element of the AffinStruct of X;
reconsider M9 = M, N9 = N as
Subset of the AffinStruct of X;
A21: M9 is
being_line by
A3,
ANALMETR: 43;
A22: N9 is
being_line by
A4,
ANALMETR: 43;
now
assume
A23: not M
_|_ N;
A24:
now
assume that
A25: a1
<> a2 and
A26: a2
<> a3 and
A27: a1
<> a3;
A28: b1
<> b2 & b2
<> b3 & b1
<> b3
proof
A29:
now
A30: not
LIN (o9,b19,a19)
proof
(o9,a19)
// (o9,a39) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
A31:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume
LIN (o9,b19,a19);
then a19
in N9 by
A9,
A10,
A17,
A22,
AFF_1: 25;
hence contradiction by
A9,
A14,
A15,
A22,
A31,
AFF_1: 25;
end;
assume b1
= b3;
then (b1,a1)
// (b1,a3) by
A20,
ANALMETR: 59;
then
A32: (b19,a19)
// (b19,a39) by
ANALMETR: 36;
(o9,a19)
// (o9,a39) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a19,a39) by
AFF_1:def 1;
hence contradiction by
A27,
A30,
A32,
AFF_1: 14;
end;
A33:
now
A34: not
LIN (o9,b19,a19)
proof
(o9,a19)
// (o9,a39) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
A35:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume
LIN (o9,b19,a19);
then a19
in N9 by
A9,
A10,
A17,
A22,
AFF_1: 25;
hence contradiction by
A9,
A14,
A15,
A22,
A35,
AFF_1: 25;
end;
assume b2
= b3;
then (a1,b1)
// (a2,b1) by
A8,
A13,
A19,
A20,
ANALMETR: 60;
then (b1,a1)
// (b1,a2) by
ANALMETR: 59;
then
A36: (b19,a19)
// (b19,a29) by
ANALMETR: 36;
(o9,a19)
// (o9,a29) by
A5,
A6,
A7,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a19,a29) by
AFF_1:def 1;
hence contradiction by
A25,
A34,
A36,
AFF_1: 14;
end;
A37:
now
A38: not
LIN (o9,b29,a29)
proof
assume
LIN (o9,b29,a29);
then
LIN (o9,a29,b29) by
AFF_1: 6;
hence contradiction by
A5,
A7,
A13,
A16,
A21,
AFF_1: 25;
end;
assume b1
= b2;
then (b2,a2)
// (b2,a3) by
A19,
ANALMETR: 59;
then
A39: (b29,a29)
// (b29,a39) by
ANALMETR: 36;
(o9,a29)
// (o9,a39) by
A5,
A7,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a29,a39) by
AFF_1:def 1;
hence contradiction by
A26,
A38,
A39,
AFF_1: 14;
end;
assume b1
= b2 or b2
= b3 or b1
= b3;
hence contradiction by
A37,
A33,
A29;
end;
A40:
now
A41: not
LIN (b3,b1,a3)
proof
assume
LIN (b3,b1,a3);
then
LIN (b39,b19,a39) by
ANALMETR: 40;
hence contradiction by
A10,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
(o9,b29)
// (o9,b39) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b29,b39) by
AFF_1:def 1;
then
A42:
LIN (o,b2,b3) by
ANALMETR: 40;
A43: not
LIN (b2,b1,a3)
proof
assume
LIN (b2,b1,a3);
then
LIN (b29,b19,a39) by
ANALMETR: 40;
hence contradiction by
A10,
A11,
A14,
A22,
A28,
AFF_1: 25;
end;
(o9,a39)
// (o9,a19) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a39,a19) by
AFF_1:def 1;
then
A44:
LIN (o,a3,a1) by
ANALMETR: 40;
consider x be
Element of X such that
A45: (o,b2)
_|_ (o,x) and
A46: o
<> x by
ANALMETR: 39;
A47: (o,x)
_|_ N by
A4,
A5,
A9,
A11,
A13,
A45,
ANALMETR: 55;
consider e19 be
Element of the AffinStruct of X such that
A48: (a39,b39)
// (b29,e19) and
A49: b29
<> e19 by
DIRAF: 40;
reconsider x9 = x as
Element of the AffinStruct of X;
LIN (o9,x9,x9) by
AFF_1: 7;
then
consider A9 be
Subset of the AffinStruct of X such that
A50: A9 is
being_line and
A51: o9
in A9 and
A52: x9
in A9 and x9
in A9 by
AFF_1: 21;
reconsider A = A9 as
Subset of X;
A53: for e1 holds e1
in A implies
LIN (o,x,e1)
proof
let e1 such that
A54: e1
in A;
reconsider e19 = e1 as
Element of the AffinStruct of X;
(o9,x9)
// (o9,e19) by
A50,
A51,
A52,
A54,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,x9,e19) by
AFF_1:def 1;
hence thesis by
ANALMETR: 40;
end;
for e1 holds
LIN (o,x,e1) implies e1
in A
proof
let e1 such that
A55:
LIN (o,x,e1);
reconsider e19 = e1 as
Element of the AffinStruct of X;
LIN (o9,x9,e19) by
A55,
ANALMETR: 40;
hence thesis by
A46,
A50,
A51,
A52,
AFF_1: 25;
end;
then A
= (
Line (o,x)) by
A53,
ANALMETR:def 11;
then
A56: A
_|_ N by
A46,
A47,
ANALMETR:def 14;
A57: not b2
in A
proof
A58: (o9,b29)
// (o9,b29) by
AFF_1: 2;
assume b2
in A;
then A9
// N9 by
A5,
A9,
A11,
A13,
A22,
A50,
A51,
A58,
AFF_1: 38;
then A
// N by
ANALMETR: 46;
hence contradiction by
A56,
ANALMETR: 52;
end;
assume
A59: not (a3,b3)
_|_ (o,b2);
not (b29,e19)
// A9
proof
assume
A60: (b29,e19)
// A9;
consider d19,d29 be
Element of the AffinStruct of X such that
A61: d19
<> d29 and
A62: A9
= (
Line (d19,d29)) by
A50,
AFF_1:def 3;
A63: d29
in A9 by
A62,
AFF_1: 15;
reconsider d1 = d19, d2 = d29 as
Element of X;
(d19,d29)
// (d19,d29) by
AFF_1: 2;
then (d19,d29)
// A9 by
A61,
A62,
AFF_1:def 4;
then (b29,e19)
// (d19,d29) by
A50,
A60,
AFF_1: 31;
then (a39,b39)
// (d19,d29) by
A48,
A49,
AFF_1: 5;
then
A64: (a3,b3)
// (d1,d2) by
ANALMETR: 36;
d19
in A9 by
A62,
AFF_1: 15;
then (d1,d2)
_|_ (o,b2) by
A9,
A11,
A56,
A63,
ANALMETR: 56;
hence contradiction by
A59,
A61,
A64,
ANALMETR: 62;
end;
then
consider c39 be
Element of the AffinStruct of X such that
A65: c39
in A9 and
A66:
LIN (b29,e19,c39) by
A50,
AFF_1: 59;
(b29,e19)
// (b29,c39) by
A66,
AFF_1:def 1;
then
A67: (a39,b39)
// (b29,c39) by
A48,
A49,
AFF_1: 5;
consider e19 be
Element of the AffinStruct of X such that
A68: (c39,a39)
// (a19,e19) and
A69: a19
<> e19 by
DIRAF: 40;
not (a19,e19)
// A9
proof
A70: c39
<> o9
proof
assume c39
= o9;
then
A71: (a3,b3)
// (b2,o) by
A67,
ANALMETR: 36;
(b29,o9)
// (b29,b39) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then (b2,o)
// (b2,b3) by
ANALMETR: 36;
then (a3,b3)
// (b2,b3) by
A5,
A13,
A71,
ANALMETR: 60;
then (b3,b2)
// (b3,a3) by
ANALMETR: 59;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
assume
A72: (a19,e19)
// A9;
A73: (o9,a39)
// (o9,a39) by
AFF_1: 2;
(o9,c39)
// A9 by
A50,
A51,
A65,
AFF_1: 40,
AFF_1: 41;
then (a19,e19)
// (o9,c39) by
A50,
A72,
AFF_1: 31;
then (c39,a39)
// (o9,c39) by
A68,
A69,
AFF_1: 5;
then (c39,o9)
// (c39,a39) by
AFF_1: 4;
then
LIN (c39,o9,a39) by
AFF_1:def 1;
then a39
in A9 by
A50,
A51,
A65,
A70,
AFF_1: 25;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A50,
A51,
A73,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
then
consider c19 be
Element of the AffinStruct of X such that
A74: c19
in A9 and
A75:
LIN (a19,e19,c19) by
A50,
AFF_1: 59;
reconsider c1 = c19 as
Element of X;
reconsider c3 = c39 as
Element of X;
(a19,e19)
// (a19,c19) by
A75,
AFF_1:def 1;
then
A76: (c39,a39)
// (a19,c19) by
A68,
A69,
AFF_1: 5;
then
A77: (c3,a3)
// (a1,c1) by
ANALMETR: 36;
consider e19 be
Element of the AffinStruct of X such that
A78: (c39,a39)
// (a29,e19) and
A79: a29
<> e19 by
DIRAF: 40;
not (a29,e19)
// A9
proof
A80: c39
<> o9
proof
assume c39
= o9;
then
A81: (a3,b3)
// (b2,o) by
A67,
ANALMETR: 36;
(b29,o9)
// (b29,b39) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then (b2,o)
// (b2,b3) by
ANALMETR: 36;
then (a3,b3)
// (b2,b3) by
A5,
A13,
A81,
ANALMETR: 60;
then (b3,b2)
// (b3,a3) by
ANALMETR: 59;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
assume
A82: (a29,e19)
// A9;
A83: (o9,a39)
// (o9,a39) by
AFF_1: 2;
(o9,c39)
// A9 by
A50,
A51,
A65,
AFF_1: 40,
AFF_1: 41;
then (a29,e19)
// (o9,c39) by
A50,
A82,
AFF_1: 31;
then (c39,a39)
// (o9,c39) by
A78,
A79,
AFF_1: 5;
then (c39,o9)
// (c39,a39) by
AFF_1: 4;
then
LIN (c39,o9,a39) by
AFF_1:def 1;
then a39
in A9 by
A50,
A51,
A65,
A80,
AFF_1: 25;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A50,
A51,
A83,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
then
consider c29 be
Element of the AffinStruct of X such that
A84: c29
in A9 and
A85:
LIN (a29,e19,c29) by
A50,
AFF_1: 59;
reconsider c2 = c29 as
Element of X;
(a29,e19)
// (a29,c29) by
A85,
AFF_1:def 1;
then
A86: (c39,a39)
// (a29,c29) by
A78,
A79,
AFF_1: 5;
then
A87: (c3,a3)
// (a2,c2) by
ANALMETR: 36;
A88: o
<> c3 & o
<> c2 & o
<> c1
proof
A89:
now
assume
A90: o
= c3;
(b29,o9)
// (b39,b29) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then (a39,b39)
// (b39,b29) by
A5,
A13,
A67,
A90,
AFF_1: 5;
then (b39,b29)
// (b39,a39) by
AFF_1: 4;
then
LIN (b39,b29,a39) by
AFF_1:def 1;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
A91:
now
(a19,o9)
// (a19,a39) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
A92: (a1,o)
// (a1,a3) by
ANALMETR: 36;
assume o
= c2 or o
= c1;
then
A93: (c3,a3)
// (a1,o) or (c3,a3)
// (a2,o) by
A76,
A86,
ANALMETR: 36;
(a29,o9)
// (a19,a39) by
A5,
A6,
A7,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then (a2,o)
// (a1,a3) by
ANALMETR: 36;
then (c3,a3)
// (a1,a3) by
A15,
A16,
A93,
A92,
ANALMETR: 60;
then (a3,a1)
// (a3,c3) by
ANALMETR: 59;
then
LIN (a3,a1,c3) by
ANALMETR:def 10;
then
LIN (a39,a19,c39) by
ANALMETR: 40;
then
A94: c39
in M9 by
A6,
A8,
A21,
A27,
AFF_1: 25;
(o9,c39)
// (o9,c39) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A50,
A51,
A65,
A89,
A94,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
assume o
= c3 or o
= c2 or o
= c1;
hence contradiction by
A89,
A91;
end;
A95: not c3
in N
proof
A96: (o9,c39)
// (o9,c39) by
AFF_1: 2;
assume c3
in N;
then A9
// N9 by
A9,
A22,
A50,
A51,
A65,
A88,
A96,
AFF_1: 38;
then A
// N by
ANALMETR: 46;
hence contradiction by
A56,
ANALMETR: 52;
end;
A97: not
LIN (a3,a2,c3)
proof
assume
LIN (a3,a2,c3);
then
LIN (a39,a29,c39) by
ANALMETR: 40;
then
A98: c39
in M9 by
A7,
A8,
A21,
A26,
AFF_1: 25;
(o9,c39)
// (o9,c39) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A50,
A51,
A65,
A88,
A98,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
A99: not
LIN (a3,a1,c3)
proof
assume
LIN (a3,a1,c3);
then
LIN (a39,a19,c39) by
ANALMETR: 40;
then
A100: c39
in M9 by
A6,
A8,
A21,
A27,
AFF_1: 25;
(o9,c39)
// (o9,c39) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A50,
A51,
A65,
A88,
A100,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
A101: not
LIN (a1,a2,c1)
proof
assume
LIN (a1,a2,c1);
then
LIN (a19,a29,c19) by
ANALMETR: 40;
then
A102: c19
in M9 by
A6,
A7,
A21,
A25,
AFF_1: 25;
(o9,c19)
// (o9,c19) by
AFF_1: 2;
then M9
// A9 by
A5,
A21,
A50,
A51,
A74,
A88,
A102,
AFF_1: 38;
then M
// A by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
(o9,a19)
// (o9,a29) by
A5,
A6,
A7,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a19,a29) by
AFF_1:def 1;
then
A103:
LIN (o,a1,a2) by
ANALMETR: 40;
(o9,b29)
// (o9,b19) by
A9,
A10,
A11,
A22,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b29,b19) by
AFF_1:def 1;
then
A104:
LIN (o,b2,b1) by
ANALMETR: 40;
(o9,c19)
// (o9,c29) by
A50,
A51,
A74,
A84,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c19,c29) by
AFF_1:def 1;
then
A105:
LIN (o,c1,c2) by
ANALMETR: 40;
(o9,c39)
// (o9,c29) by
A50,
A51,
A65,
A84,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c39,c29) by
AFF_1:def 1;
then
A106:
LIN (o,c3,c2) by
ANALMETR: 40;
(o9,c39)
// (o9,c19) by
A50,
A51,
A65,
A74,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c39,c19) by
AFF_1:def 1;
then
A107:
LIN (o,c3,c1) by
ANALMETR: 40;
c3
<> a3
proof
A108: (o9,a39)
// (o9,a39) by
AFF_1: 2;
assume c3
= a3;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A50,
A51,
A65,
A108,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
then (a1,c1)
// (a2,c2) by
A77,
A87,
ANALMETR: 60;
then
A109: (c1,a1)
// (c2,a2) by
ANALMETR: 59;
A110: not
LIN (c1,c2,b2)
proof
A111: c19
<> c29
proof
A112: c3
<> a3
proof
A113: (o9,c39)
// (o9,c39) by
AFF_1: 2;
assume c3
= a3;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A50,
A51,
A65,
A113,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
assume c19
= c29;
then (a1,c1)
// (a2,c1) by
A77,
A87,
A112,
ANALMETR: 60;
then (c1,a2)
// (c1,a1) by
ANALMETR: 59;
then
LIN (c1,a2,a1) by
ANALMETR:def 10;
then
LIN (c19,a29,a19) by
ANALMETR: 40;
then
LIN (a19,a29,c19) by
AFF_1: 6;
then
A114: c19
in M9 by
A6,
A7,
A21,
A25,
AFF_1: 25;
(o9,c19)
// (o9,c19) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A50,
A51,
A74,
A88,
A114,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A56,
ANALMETR: 52;
end;
assume
LIN (c1,c2,b2);
then
LIN (c19,c29,b29) by
ANALMETR: 40;
then b29
in A9 by
A50,
A74,
A84,
A111,
AFF_1: 25;
then A9
= N9 by
A5,
A9,
A11,
A13,
A22,
A50,
A51,
AFF_1: 18;
then A9
// N9 by
A22,
AFF_1: 41;
then A
// N by
ANALMETR: 46;
hence contradiction by
A56,
ANALMETR: 52;
end;
(o9,a39)
// (o9,a29) by
A5,
A7,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a39,a29) by
AFF_1:def 1;
then
A115:
LIN (o,a3,a2) by
ANALMETR: 40;
(o9,b39)
// (o9,b19) by
A9,
A10,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b39,b19) by
AFF_1:def 1;
then
A116:
LIN (o,b3,b1) by
ANALMETR: 40;
(a3,c3)
// (a1,c1) by
A77,
ANALMETR: 59;
then (b3,c3)
// (b1,c1) by
A2,
A9,
A14,
A15,
A17,
A18,
A20,
A88,
A99,
A41,
A44,
A116,
A107,
CONAFFM:def 1;
then
A117: (c3,b3)
// (c1,b1) by
ANALMETR: 59;
(a3,c3)
// (a2,c2) by
A87,
ANALMETR: 59;
then (b2,c3)
// (b1,c2) by
A2,
A5,
A9,
A13,
A14,
A16,
A17,
A19,
A88,
A115,
A104,
A106,
A43,
A97,
CONAFFM:def 1;
then (c3,b2)
// (c2,b1) by
ANALMETR: 59;
then (c1,b2)
// (c2,b3) by
A1,
A9,
A10,
A11,
A12,
A17,
A18,
A51,
A56,
A65,
A74,
A84,
A88,
A117,
A57,
A95;
hence thesis by
A2,
A5,
A13,
A15,
A16,
A18,
A88,
A103,
A42,
A105,
A101,
A110,
A109,
CONAFFM:def 1;
end;
now
(o9,a19)
// (o9,a29) by
A5,
A6,
A7,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a19,a29) by
AFF_1:def 1;
then
A118:
LIN (o,a1,a2) by
ANALMETR: 40;
(o9,b29)
// (o9,b19) by
A9,
A10,
A11,
A22,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b29,b19) by
AFF_1:def 1;
then
A119:
LIN (o,b2,b1) by
ANALMETR: 40;
(o9,b29)
// (o9,b39) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b29,b39) by
AFF_1:def 1;
then
A120:
LIN (o,b2,b3) by
ANALMETR: 40;
A121: not
LIN (b3,b1,a3) & not
LIN (b2,b1,a3)
proof
assume
LIN (b3,b1,a3) or
LIN (b2,b1,a3);
then
LIN (b39,b19,a39) or
LIN (b29,b19,a39) by
ANALMETR: 40;
hence contradiction by
A10,
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
(o9,a39)
// (o9,a29) by
A5,
A7,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a39,a29) by
AFF_1:def 1;
then
A122:
LIN (o,a3,a2) by
ANALMETR: 40;
(o9,b39)
// (o9,b19) by
A9,
A10,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b39,b19) by
AFF_1:def 1;
then
A123:
LIN (o,b3,b1) by
ANALMETR: 40;
(o9,a39)
// (o9,a19) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a39,a19) by
AFF_1:def 1;
then
A124:
LIN (o,a3,a1) by
ANALMETR: 40;
consider x be
Element of X such that
A125: (o,b2)
_|_ (o,x) and
A126: o
<> x by
ANALMETR: 39;
A127: (o,x)
_|_ N by
A4,
A5,
A9,
A11,
A13,
A125,
ANALMETR: 55;
consider e19 be
Element of the AffinStruct of X such that
A128: (a39,b29)
// (b39,e19) and
A129: b39
<> e19 by
DIRAF: 40;
reconsider x9 = x as
Element of the AffinStruct of X;
LIN (o9,x9,x9) by
AFF_1: 7;
then
consider A9 be
Subset of the AffinStruct of X such that
A130: A9 is
being_line and
A131: o9
in A9 and
A132: x9
in A9 and x9
in A9 by
AFF_1: 21;
reconsider A = A9 as
Subset of X;
A133: for e1 holds e1
in A implies
LIN (o,x,e1)
proof
let e1 such that
A134: e1
in A;
reconsider e19 = e1 as
Element of the AffinStruct of X;
(o9,x9)
// (o9,e19) by
A130,
A131,
A132,
A134,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,x9,e19) by
AFF_1:def 1;
hence thesis by
ANALMETR: 40;
end;
for e1 holds
LIN (o,x,e1) implies e1
in A
proof
let e1 such that
A135:
LIN (o,x,e1);
reconsider e19 = e1 as
Element of the AffinStruct of X;
LIN (o9,x9,e19) by
A135,
ANALMETR: 40;
hence thesis by
A126,
A130,
A131,
A132,
AFF_1: 25;
end;
then A
= (
Line (o,x)) by
A133,
ANALMETR:def 11;
then
A136: A
_|_ N by
A126,
A127,
ANALMETR:def 14;
assume
A137: (a3,b3)
_|_ (o,b2);
not (b39,e19)
// A9
proof
assume
A138: (b39,e19)
// A9;
consider d19,d29 be
Element of the AffinStruct of X such that
A139: d19
<> d29 and
A140: A9
= (
Line (d19,d29)) by
A130,
AFF_1:def 3;
A141: d29
in A9 by
A140,
AFF_1: 15;
reconsider d1 = d19, d2 = d29 as
Element of X;
(d19,d29)
// (d19,d29) by
AFF_1: 2;
then (d19,d29)
// A9 by
A139,
A140,
AFF_1:def 4;
then (b39,e19)
// (d19,d29) by
A130,
A138,
AFF_1: 31;
then (a39,b29)
// (d19,d29) by
A128,
A129,
AFF_1: 5;
then
A142: (a3,b2)
// (d1,d2) by
ANALMETR: 36;
d19
in A9 by
A140,
AFF_1: 15;
then (d1,d2)
_|_ (o,b2) by
A9,
A11,
A136,
A141,
ANALMETR: 56;
then (a3,b2)
_|_ (o,b2) by
A139,
A142,
ANALMETR: 62;
then (a3,b2)
// (a3,b3) by
A5,
A13,
A137,
ANALMETR: 63;
then
LIN (a3,b2,b3) by
ANALMETR:def 10;
then
LIN (a39,b29,b39) by
ANALMETR: 40;
then
LIN (b29,b39,a39) by
AFF_1: 6;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
then
consider c39 be
Element of the AffinStruct of X such that
A143: c39
in A9 and
A144:
LIN (b39,e19,c39) by
A130,
AFF_1: 59;
A145: (b39,e19)
// (b39,c39) by
A144,
AFF_1:def 1;
consider e19 be
Element of the AffinStruct of X such that
A146: (c39,a39)
// (a29,e19) and
A147: a29
<> e19 by
DIRAF: 40;
not (a29,e19)
// A9
proof
A148: c39
<> o9
proof
assume c39
= o9;
then
A149: (a39,b29)
// (b39,o9) by
A128,
A129,
A145,
AFF_1: 5;
(b39,o9)
// (b39,b29) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then (a39,b29)
// (b39,b29) by
A18,
A149,
AFF_1: 5;
then (b29,b39)
// (b29,a39) by
AFF_1: 4;
then
LIN (b29,b39,a39) by
AFF_1:def 1;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
assume
A150: (a29,e19)
// A9;
A151: (o9,a39)
// (o9,a39) by
AFF_1: 2;
(o9,c39)
// A9 by
A130,
A131,
A143,
AFF_1: 40,
AFF_1: 41;
then (a29,e19)
// (o9,c39) by
A130,
A150,
AFF_1: 31;
then (c39,a39)
// (o9,c39) by
A146,
A147,
AFF_1: 5;
then (c39,o9)
// (c39,a39) by
AFF_1: 4;
then
LIN (c39,o9,a39) by
AFF_1:def 1;
then a39
in A9 by
A130,
A131,
A143,
A148,
AFF_1: 25;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A130,
A131,
A151,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
then
consider c29 be
Element of the AffinStruct of X such that
A152: c29
in A9 and
A153:
LIN (a29,e19,c29) by
A130,
AFF_1: 59;
reconsider c3 = c39 as
Element of X;
reconsider c2 = c29 as
Element of X;
(a29,e19)
// (a29,c29) by
A153,
AFF_1:def 1;
then (c39,a39)
// (a29,c29) by
A146,
A147,
AFF_1: 5;
then
A154: (c3,a3)
// (a2,c2) by
ANALMETR: 36;
then
A155: (a3,c3)
// (a2,c2) by
ANALMETR: 59;
consider e19 be
Element of the AffinStruct of X such that
A156: (c39,a39)
// (a19,e19) and
A157: a19
<> e19 by
DIRAF: 40;
not (a19,e19)
// A9
proof
A158: c39
<> o9
proof
assume c39
= o9;
then
A159: (a39,b29)
// (b39,o9) by
A128,
A129,
A145,
AFF_1: 5;
(b39,o9)
// (b39,b29) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then (a39,b29)
// (b39,b29) by
A18,
A159,
AFF_1: 5;
then (b29,b39)
// (b29,a39) by
AFF_1: 4;
then
LIN (b29,b39,a39) by
AFF_1:def 1;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
assume
A160: (a19,e19)
// A9;
A161: (o9,a39)
// (o9,a39) by
AFF_1: 2;
(o9,c39)
// A9 by
A130,
A131,
A143,
AFF_1: 40,
AFF_1: 41;
then (a19,e19)
// (o9,c39) by
A130,
A160,
AFF_1: 31;
then (c39,a39)
// (o9,c39) by
A156,
A157,
AFF_1: 5;
then (c39,o9)
// (c39,a39) by
AFF_1: 4;
then
LIN (c39,o9,a39) by
AFF_1:def 1;
then a39
in A9 by
A130,
A131,
A143,
A158,
AFF_1: 25;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A130,
A131,
A161,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
then
consider c19 be
Element of the AffinStruct of X such that
A162: c19
in A9 and
A163:
LIN (a19,e19,c19) by
A130,
AFF_1: 59;
reconsider c1 = c19 as
Element of X;
(a19,e19)
// (a19,c19) by
A163,
AFF_1:def 1;
then (c39,a39)
// (a19,c19) by
A156,
A157,
AFF_1: 5;
then
A164: (c3,a3)
// (a1,c1) by
ANALMETR: 36;
then
A165: (a3,c3)
// (a1,c1) by
ANALMETR: 59;
A166: (a39,b29)
// (b39,c39) by
A128,
A129,
A145,
AFF_1: 5;
A167: o
<> c3 & o
<> c2 & o
<> c1
proof
A168:
now
assume o
= c3;
then
A169: (a3,b2)
// (b3,o) by
A166,
ANALMETR: 36;
(b39,o9)
// (b29,b39) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then (b3,o)
// (b2,b3) by
ANALMETR: 36;
then (a3,b2)
// (b2,b3) by
A18,
A169,
ANALMETR: 60;
then (b2,b3)
// (b2,a3) by
ANALMETR: 59;
then
LIN (b2,b3,a3) by
ANALMETR:def 10;
then
LIN (b29,b39,a39) by
ANALMETR: 40;
hence contradiction by
A11,
A12,
A14,
A22,
A28,
AFF_1: 25;
end;
A170:
now
(a29,o9)
// (a29,a39) by
A5,
A7,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
A171: (a2,o)
// (a2,a3) by
ANALMETR: 36;
assume o
= c2 or o
= c1;
then
A172: (a3,c3)
// (a2,o) or (a3,c3)
// (a1,o) by
A154,
A164,
ANALMETR: 59;
(a19,o9)
// (a29,a39) by
A5,
A6,
A7,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then (a1,o)
// (a2,a3) by
ANALMETR: 36;
then (a3,c3)
// (a2,a3) by
A15,
A16,
A172,
A171,
ANALMETR: 60;
then (a3,a2)
// (a3,c3) by
ANALMETR: 59;
then
LIN (a3,a2,c3) by
ANALMETR:def 10;
then
LIN (a39,a29,c39) by
ANALMETR: 40;
then
A173: c39
in M9 by
A7,
A8,
A21,
A26,
AFF_1: 25;
(o9,c39)
// (o9,c39) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A130,
A131,
A143,
A168,
A173,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
assume o
= c3 or o
= c2 or o
= c1;
hence contradiction by
A168,
A170;
end;
A174: not c3
in N
proof
A175: (o9,c39)
// (o9,c39) by
AFF_1: 2;
assume c3
in N;
then A9
// N9 by
A9,
A22,
A130,
A131,
A143,
A167,
A175,
AFF_1: 38;
then A
// N by
ANALMETR: 46;
hence contradiction by
A136,
ANALMETR: 52;
end;
A176: not
LIN (a1,a2,c1)
proof
assume
LIN (a1,a2,c1);
then
LIN (a19,a29,c19) by
ANALMETR: 40;
then
A177: c19
in M9 by
A6,
A7,
A21,
A25,
AFF_1: 25;
(o9,c19)
// (o9,c19) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A130,
A131,
A162,
A167,
A177,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
A178: not
LIN (a3,a1,c3) & not
LIN (a3,a2,c3)
proof
assume
LIN (a3,a1,c3) or
LIN (a3,a2,c3);
then
LIN (a39,a19,c39) or
LIN (a39,a29,c39) by
ANALMETR: 40;
then
A179: c39
in M9 or c39
in M9 by
A6,
A7,
A8,
A21,
A26,
A27,
AFF_1: 25;
(o9,c39)
// (o9,c39) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A130,
A131,
A143,
A167,
A179,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
A180: not b2
in A
proof
A181: (o9,b29)
// (o9,b29) by
AFF_1: 2;
assume b2
in A;
then A9
// N9 by
A5,
A9,
A11,
A13,
A22,
A130,
A131,
A181,
AFF_1: 38;
then A
// N by
ANALMETR: 46;
hence contradiction by
A136,
ANALMETR: 52;
end;
A182: not
LIN (c1,c2,b2)
proof
A183: c19
<> c29
proof
A184: a3
<> c3
proof
A185: (o9,c39)
// (o9,c39) by
AFF_1: 2;
assume a3
= c3;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A130,
A131,
A143,
A185,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
assume c19
= c29;
then (a2,c1)
// (a1,c1) by
A155,
A165,
A184,
ANALMETR: 60;
then (c1,a1)
// (c1,a2) by
ANALMETR: 59;
then
LIN (c1,a1,a2) by
ANALMETR:def 10;
then
LIN (c19,a19,a29) by
ANALMETR: 40;
then
LIN (a19,a29,c19) by
AFF_1: 6;
then
A186: c19
in M9 by
A6,
A7,
A21,
A25,
AFF_1: 25;
(o9,c19)
// (o9,c19) by
AFF_1: 2;
then A9
// M9 by
A5,
A21,
A130,
A131,
A162,
A167,
A186,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
assume
LIN (c1,c2,b2);
then
LIN (c19,c29,b29) by
ANALMETR: 40;
hence contradiction by
A130,
A152,
A162,
A180,
A183,
AFF_1: 25;
end;
(o9,c19)
// (o9,c29) by
A130,
A131,
A152,
A162,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c19,c29) by
AFF_1:def 1;
then
A187:
LIN (o,c1,c2) by
ANALMETR: 40;
a3
<> c3
proof
A188: (o9,a39)
// (o9,a39) by
AFF_1: 2;
assume a3
= c3;
then A9
// M9 by
A5,
A8,
A9,
A14,
A21,
A130,
A131,
A143,
A188,
AFF_1: 38;
then A
// M by
ANALMETR: 46;
hence contradiction by
A23,
A136,
ANALMETR: 52;
end;
then (a2,c2)
// (a1,c1) by
A155,
A165,
ANALMETR: 60;
then
A189: (c1,a1)
// (c2,a2) by
ANALMETR: 59;
(o9,c39)
// (o9,c19) by
A130,
A131,
A143,
A162,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c39,c19) by
AFF_1:def 1;
then
LIN (o,c3,c1) by
ANALMETR: 40;
then (b3,c3)
// (b1,c1) by
A2,
A9,
A14,
A15,
A17,
A18,
A20,
A165,
A167,
A121,
A178,
A124,
A123,
CONAFFM:def 1;
then
A190: (c3,b3)
// (c1,b1) by
ANALMETR: 59;
(o9,c39)
// (o9,c29) by
A130,
A131,
A143,
A152,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c39,c29) by
AFF_1:def 1;
then
LIN (o,c3,c2) by
ANALMETR: 40;
then (b2,c3)
// (b1,c2) by
A2,
A5,
A9,
A13,
A14,
A16,
A17,
A19,
A155,
A167,
A121,
A178,
A122,
A119,
CONAFFM:def 1;
then (c3,b2)
// (c2,b1) by
ANALMETR: 59;
then (c1,b2)
// (c2,b3) by
A1,
A9,
A10,
A11,
A12,
A17,
A18,
A131,
A136,
A143,
A152,
A162,
A167,
A190,
A180,
A174;
hence thesis by
A2,
A5,
A13,
A15,
A16,
A18,
A167,
A118,
A120,
A187,
A176,
A182,
A189,
CONAFFM:def 1;
end;
hence thesis by
A40;
end;
A191:
now
A192: not
LIN (o9,a39,b39)
proof
assume
LIN (o9,a39,b39);
then
LIN (o9,b39,a39) by
AFF_1: 6;
hence contradiction by
A9,
A12,
A14,
A18,
A22,
AFF_1: 25;
end;
(o9,b39)
// (o9,b19) by
A9,
A10,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then
A193:
LIN (o9,b39,b19) by
AFF_1:def 1;
assume
A194: a1
= a3;
then (a39,b39)
// (a39,b19) by
A20,
ANALMETR: 36;
hence thesis by
A19,
A194,
A192,
A193,
AFF_1: 14;
end;
A195:
now
(o9,b29)
// (o9,b39) by
A9,
A11,
A12,
A22,
AFF_1: 39,
AFF_1: 41;
then
A196:
LIN (o9,b29,b39) by
AFF_1:def 1;
assume
A197: a1
= a2;
a1
<> b1
proof
(o9,a19)
// (o9,a39) by
A5,
A6,
A8,
A21,
AFF_1: 39,
AFF_1: 41;
then
A198:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A9,
A10,
A14,
A15,
A22,
A198,
AFF_1: 25;
end;
then (a3,b2)
// (a3,b3) by
A19,
A20,
A197,
ANALMETR: 60;
then (a39,b29)
// (a39,b39) by
ANALMETR: 36;
then b29
= b39 by
A5,
A8,
A9,
A13,
A14,
A21,
A196,
AFF_1: 14,
AFF_1: 25;
then (a19,b29)
// (a29,b39) by
A197,
AFF_1: 2;
hence thesis by
ANALMETR: 36;
end;
now
(o9,b29)
// (o9,b19) by
A9,
A10,
A11,
A22,
AFF_1: 39,
AFF_1: 41;
then
A199:
LIN (o9,b29,b19) by
AFF_1:def 1;
assume
A200: a2
= a3;
then (a39,b29)
// (a39,b19) by
A19,
ANALMETR: 36;
then b29
= b19 by
A5,
A8,
A9,
A13,
A14,
A21,
A199,
AFF_1: 14,
AFF_1: 25;
hence thesis by
A20,
A200,
ANALMETR: 59;
end;
hence thesis by
A195,
A191,
A24;
end;
hence thesis by
A1,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20;
end;
theorem ::
CONMETR:14
X is
satisfying_MH1 & X is
satisfying_MH2 implies X is
satisfying_OPAP
proof
assume
A1: X is
satisfying_MH1;
assume
A2: X is
satisfying_MH2;
let o, a1, a2, a3, b1, b2, b3, M, N;
assume that
A3: o
in M and
A4: a1
in M and
A5: a2
in M and
A6: a3
in M and
A7: o
in N and
A8: b1
in N and
A9: b2
in N and
A10: b3
in N and
A11: not b2
in M and
A12: not a3
in N and
A13: M
_|_ N and
A14: o
<> a1 and
A15: o
<> a2 and o
<> a3 and
A16: o
<> b1 and o
<> b2 and
A17: o
<> b3 and
A18: (a3,b2)
// (a2,b1) and
A19: (a3,b3)
// (a1,b1);
reconsider o9 = o, a19 = a1, a29 = a2, a39 = a3, b19 = b1, b29 = b2, b39 = b3 as
Element of the AffinStruct of X;
reconsider M9 = M, N9 = N as
Subset of the AffinStruct of X;
N is
being_line by
A13,
ANALMETR: 44;
then
A20: N9 is
being_line by
ANALMETR: 43;
M is
being_line by
A13,
ANALMETR: 44;
then
A21: M9 is
being_line by
ANALMETR: 43;
A22:
now
consider e1 be
Element of X such that
A23: (o,a3)
// (o,e1) and
A24: o
<> e1 by
ANALMETR: 39;
consider d1 such that
A25: (o,b3)
// (o,d1) and
A26: o
<> d1 by
ANALMETR: 39;
reconsider d19 = d1 as
Element of the AffinStruct of X;
consider e2 be
Element of X such that
A27: (a1,b3)
_|_ (d1,e2) and
A28: d1
<> e2 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
assume that
A29: a1
<> a2 and a2
<> a3 and
A30: a1
<> a3;
A31:
LIN (o,b3,d1) by
A25,
ANALMETR:def 10;
then
A32:
LIN (o9,b39,d19) by
ANALMETR: 40;
N is
being_line by
A13,
ANALMETR: 44;
then
A33: N9 is
being_line by
ANALMETR: 43;
then
A34: (o9,b29)
// (o9,b39) by
A7,
A9,
A10,
AFF_1: 39,
AFF_1: 41;
then (o,b2)
// (o,b3) by
ANALMETR: 36;
then
A35:
LIN (o,b2,b3) by
ANALMETR:def 10;
A36: b2
<> b3
proof
A37: not
LIN (o9,b19,a29)
proof
(o9,a29)
// (o9,a39) by
A3,
A5,
A6,
A21,
AFF_1: 39,
AFF_1: 41;
then
A38:
LIN (o9,a29,a39) by
AFF_1:def 1;
assume
LIN (o9,b19,a29);
then a29
in N9 by
A7,
A8,
A16,
A20,
AFF_1: 25;
hence contradiction by
A7,
A12,
A15,
A20,
A38,
AFF_1: 25;
end;
assume b2
= b3;
then (a1,b1)
// (a2,b1) by
A6,
A11,
A18,
A19,
ANALMETR: 60;
then (b1,a2)
// (b1,a1) by
ANALMETR: 59;
then
A39: (b19,a29)
// (b19,a19) by
ANALMETR: 36;
(o9,a29)
// (o9,a19) by
A3,
A4,
A5,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a29,a19) by
AFF_1:def 1;
hence contradiction by
A29,
A37,
A39,
AFF_1: 14;
end;
A40: not
LIN (b2,a3,b3)
proof
assume
LIN (b2,a3,b3);
then
LIN (b29,a39,b39) by
ANALMETR: 40;
then
LIN (b29,b39,a39) by
AFF_1: 6;
hence contradiction by
A9,
A10,
A12,
A36,
A33,
AFF_1: 25;
end;
A41: a3
<> b3
proof
assume a3
= b3;
then
LIN (b29,a39,b39) by
AFF_1: 7;
hence contradiction by
A40,
ANALMETR: 40;
end;
(b29,b39)
// (b29,b19) by
A8,
A9,
A10,
A33,
AFF_1: 39,
AFF_1: 41;
then (b2,b3)
// (b2,b1) by
ANALMETR: 36;
then
A42:
LIN (b2,b3,b1) by
ANALMETR:def 10;
M is
being_line by
A13,
ANALMETR: 44;
then
A43: M9 is
being_line by
ANALMETR: 43;
then (o9,a39)
// (o9,a19) by
A3,
A4,
A6,
AFF_1: 39,
AFF_1: 41;
then
A44: (o,a3)
// (o,a1) by
ANALMETR: 36;
then
A45:
LIN (o,a3,a1) by
ANALMETR:def 10;
A46: not
LIN (a3,a1,b2)
proof
assume
LIN (a3,a1,b2);
then
LIN (a39,a19,b29) by
ANALMETR: 40;
hence contradiction by
A4,
A6,
A11,
A30,
A43,
AFF_1: 25;
end;
A47: a3
<> b2
proof
assume a3
= b2;
then
LIN (a39,a19,b29) by
AFF_1: 7;
hence contradiction by
A46,
ANALMETR: 40;
end;
A48: (o,a3)
_|_ (o,b3) by
A3,
A6,
A7,
A10,
A13,
ANALMETR: 56;
not (o,e1)
// (d1,e2)
proof
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
assume (o,e1)
// (d1,e2);
then (o9,e19)
// (d19,e29) by
ANALMETR: 36;
then (d19,e29)
// (o9,e19) by
AFF_1: 4;
then (d1,e2)
// (o,e1) by
ANALMETR: 36;
then (o,e1)
_|_ (a1,b3) by
A27,
A28,
ANALMETR: 62;
then (o,a3)
_|_ (a1,b3) by
A23,
A24,
ANALMETR: 62;
then (o,b3)
// (a1,b3) by
A7,
A12,
A48,
ANALMETR: 63;
then (o9,b39)
// (a19,b39) by
ANALMETR: 36;
then (b39,o9)
// (b39,a19) by
AFF_1: 4;
then
LIN (b39,o9,a19) by
AFF_1:def 1;
then
LIN (o9,b39,a19) by
AFF_1: 6;
then
A49: (o9,b39)
// (o9,a19) by
AFF_1:def 1;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then (o9,b29)
// (o9,b39) by
AFF_1:def 1;
then (o9,b39)
// (o9,b29) by
AFF_1: 4;
then (o9,a19)
// (o9,b29) by
A17,
A49,
DIRAF: 40;
then
LIN (o9,a19,b29) by
AFF_1:def 1;
then
LIN (a19,o9,b29) by
AFF_1: 6;
then
A50: (a19,o9)
// (a19,b29) by
AFF_1:def 1;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a19,o9,a39) by
AFF_1: 6;
then (a19,o9)
// (a19,a39) by
AFF_1:def 1;
then (a19,b29)
// (a19,a39) by
A14,
A50,
DIRAF: 40;
then
LIN (a19,b29,a39) by
AFF_1:def 1;
then
LIN (a39,a19,b29) by
AFF_1: 6;
hence contradiction by
A46,
ANALMETR: 40;
end;
then not (o9,e19)
// (d19,e29) by
ANALMETR: 36;
then
consider d29 be
Element of the AffinStruct of X such that
A51:
LIN (o9,e19,d29) and
A52:
LIN (d19,e29,d29) by
AFF_1: 60;
reconsider d2 = d29 as
Element of X;
LIN (d1,e2,d2) by
A52,
ANALMETR: 40;
then
A53: (d1,e2)
// (d1,d2) by
ANALMETR:def 10;
then
A54: (a1,b3)
_|_ (d1,d2) by
A27,
A28,
ANALMETR: 62;
then
A55: (d1,d2)
_|_ (b3,a1) by
ANALMETR: 61;
LIN (o,e1,d2) by
A51,
ANALMETR: 40;
then (o,e1)
// (o,d2) by
ANALMETR:def 10;
then
A56: (o,a3)
// (o,d2) by
A23,
A24,
ANALMETR: 60;
then
A57:
LIN (o,a3,d2) by
ANALMETR:def 10;
then
A58:
LIN (o9,a39,d29) by
ANALMETR: 40;
consider e1 be
Element of X such that
A59: (o,b3)
// (o,e1) and
A60: o
<> e1 by
ANALMETR: 39;
consider e2 be
Element of X such that
A61: (b3,a3)
_|_ (d2,e2) and
A62: d2
<> e2 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (o,e1)
// (d2,e2)
proof
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
assume (o,e1)
// (d2,e2);
then (o9,e19)
// (d29,e29) by
ANALMETR: 36;
then (d29,e29)
// (o9,e19) by
AFF_1: 4;
then (d2,e2)
// (o,e1) by
ANALMETR: 36;
then (o,e1)
_|_ (b3,a3) by
A61,
A62,
ANALMETR: 62;
then (o,b3)
_|_ (b3,a3) by
A59,
A60,
ANALMETR: 62;
then (b3,a3)
// (o,a3) by
A17,
A48,
ANALMETR: 63;
then (b39,a39)
// (o9,a39) by
ANALMETR: 36;
then (a39,b39)
// (a39,o9) by
AFF_1: 4;
then
LIN (a39,b39,o9) by
AFF_1:def 1;
then
LIN (b39,o9,a39) by
AFF_1: 6;
then
A63: (b39,o9)
// (b39,a39) by
AFF_1:def 1;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b39,o9,b29) by
AFF_1: 6;
then (b39,o9)
// (b39,b29) by
AFF_1:def 1;
then (b39,a39)
// (b39,b29) by
A17,
A63,
DIRAF: 40;
then
LIN (b39,a39,b29) by
AFF_1:def 1;
then
LIN (b29,a39,b39) by
AFF_1: 6;
hence contradiction by
A40,
ANALMETR: 40;
end;
then not (o9,e19)
// (d29,e29) by
ANALMETR: 36;
then
consider d39 be
Element of the AffinStruct of X such that
A64:
LIN (o9,e19,d39) and
A65:
LIN (d29,e29,d39) by
AFF_1: 60;
reconsider d3 = d39 as
Element of X;
LIN (d2,e2,d3) by
A65,
ANALMETR: 40;
then
A66: (d2,e2)
// (d2,d3) by
ANALMETR:def 10;
then
A67: (b3,a3)
_|_ (d2,d3) by
A61,
A62,
ANALMETR: 62;
then (d2,d3)
_|_ (a3,b3) by
ANALMETR: 61;
then
A68: (d2,d3)
_|_ (a1,b1) by
A19,
A41,
ANALMETR: 62;
LIN (o,e1,d3) by
A64,
ANALMETR: 40;
then (o,e1)
// (o,d3) by
ANALMETR:def 10;
then
A69: (o,b3)
// (o,d3) by
A59,
A60,
ANALMETR: 60;
then
A70:
LIN (o,b3,d3) by
ANALMETR:def 10;
then
A71:
LIN (o9,b39,d39) by
ANALMETR: 40;
consider e2 be
Element of X such that
A72: (a3,b2)
_|_ (d3,e2) and
A73: d3
<> e2 by
ANALMETR: 39;
consider e1 be
Element of X such that
A74: (o,a3)
// (o,e1) and
A75: o
<> e1 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (o,e1)
// (d3,e2)
proof
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b29,o9,b39) by
AFF_1: 6;
then
A76: (b29,o9)
// (b29,b39) by
AFF_1:def 1;
assume (o,e1)
// (d3,e2);
then (o9,e19)
// (d39,e29) by
ANALMETR: 36;
then (d39,e29)
// (o9,e19) by
AFF_1: 4;
then (d3,e2)
// (o,e1) by
ANALMETR: 36;
then (o,e1)
_|_ (a3,b2) by
A72,
A73,
ANALMETR: 62;
then (o,a3)
_|_ (a3,b2) by
A74,
A75,
ANALMETR: 62;
then
A77: (o,b3)
// (a3,b2) by
A7,
A12,
A48,
ANALMETR: 63;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (o9,b39,b29) by
AFF_1: 6;
then
LIN (o,b3,b2) by
ANALMETR: 40;
then (o,b3)
// (o,b2) by
ANALMETR:def 10;
then (o,b2)
// (a3,b2) by
A17,
A77,
ANALMETR: 60;
then (o9,b29)
// (a39,b29) by
ANALMETR: 36;
then (b29,o9)
// (b29,a39) by
AFF_1: 4;
then (b29,a39)
// (b29,b39) by
A3,
A11,
A76,
DIRAF: 40;
then
LIN (b29,a39,b39) by
AFF_1:def 1;
hence contradiction by
A40,
ANALMETR: 40;
end;
then not (o9,e19)
// (d39,e29) by
ANALMETR: 36;
then
consider d49 be
Element of the AffinStruct of X such that
A78:
LIN (o9,e19,d49) and
A79:
LIN (d39,e29,d49) by
AFF_1: 60;
reconsider d4 = d49 as
Element of X;
LIN (d3,e2,d4) by
A79,
ANALMETR: 40;
then
A80: (d3,e2)
// (d3,d4) by
ANALMETR:def 10;
then
A81: (d3,d4)
_|_ (a3,b2) by
A72,
A73,
ANALMETR: 62;
LIN (o,e1,d4) by
A78,
ANALMETR: 40;
then (o,e1)
// (o,d4) by
ANALMETR:def 10;
then
A82: (o,a3)
// (o,d4) by
A74,
A75,
ANALMETR: 60;
then
A83:
LIN (o,a3,d4) by
ANALMETR:def 10;
then
A84:
LIN (o9,a39,d49) by
ANALMETR: 40;
A85: (a3,b2)
_|_ (d3,d4) by
A72,
A73,
A80,
ANALMETR: 62;
then (d3,d4)
_|_ (a2,b1) or a3
= b2 by
A18,
ANALMETR: 62;
then
A86: (d3,d4)
_|_ (b1,a2) by
A47,
ANALMETR: 61;
A87: d2
<> o
proof
(o,a3)
_|_ (o,d1) by
A17,
A48,
A25,
ANALMETR: 62;
then
A88: (d1,o)
_|_ (o,a3) by
ANALMETR: 61;
assume d2
= o;
then (d1,o)
_|_ (a1,b3) by
A27,
A28,
A53,
ANALMETR: 62;
then (o,a3)
// (a1,b3) by
A26,
A88,
ANALMETR: 63;
then (a1,b3)
// (o,a1) by
A7,
A12,
A44,
ANALMETR: 60;
then (a19,b39)
// (o9,a19) by
ANALMETR: 36;
then (a19,b39)
// (a19,o9) by
AFF_1: 4;
then
LIN (a19,b39,o9) by
AFF_1:def 1;
then
LIN (o9,b39,a19) by
AFF_1: 6;
then
A89: (o9,b39)
// (o9,a19) by
AFF_1:def 1;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (o9,b39,b29) by
AFF_1: 6;
then (o9,b39)
// (o9,b29) by
AFF_1:def 1;
then (o9,a19)
// (o9,b29) by
A17,
A89,
DIRAF: 40;
then
LIN (o9,a19,b29) by
AFF_1:def 1;
then
LIN (a19,o9,b29) by
AFF_1: 6;
then
A90: (a19,o9)
// (a19,b29) by
AFF_1:def 1;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a19,o9,a39) by
AFF_1: 6;
then (a19,o9)
// (a19,a39) by
AFF_1:def 1;
then (a19,b29)
// (a19,a39) by
A14,
A90,
DIRAF: 40;
then
LIN (a19,b29,a39) by
AFF_1:def 1;
then
LIN (a39,a19,b29) by
AFF_1: 6;
hence contradiction by
A46,
ANALMETR: 40;
end;
A91: not
LIN (d1,d2,d3)
proof
A92: d2
<> d3
proof
assume d2
= d3;
then (o9,b39)
// (o9,d29) by
A69,
ANALMETR: 36;
then (o9,d29)
// (o9,b39) by
AFF_1: 4;
then (o,d2)
// (o,b3) by
ANALMETR: 36;
then (o,b3)
// (o,a3) by
A56,
A87,
ANALMETR: 60;
then (o9,b39)
// (o9,a39) by
ANALMETR: 36;
then
LIN (o9,b39,a39) by
AFF_1:def 1;
then
LIN (b39,o9,a39) by
AFF_1: 6;
then (b39,o9)
// (b39,a39) by
AFF_1:def 1;
then
A93: (b3,o)
// (b3,a3) by
ANALMETR: 36;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b39,o9,b29) by
AFF_1: 6;
then (b39,o9)
// (b39,b29) by
AFF_1:def 1;
then (b3,o)
// (b3,b2) by
ANALMETR: 36;
then (b3,b2)
// (b3,a3) by
A17,
A93,
ANALMETR: 60;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
then
LIN (b29,a39,b39) by
AFF_1: 6;
hence contradiction by
A40,
ANALMETR: 40;
end;
A94: d1
<> d2
proof
assume d1
= d2;
then (o9,a39)
// (o9,d19) by
A56,
ANALMETR: 36;
then (o9,d19)
// (o9,a39) by
AFF_1: 4;
then (o,d1)
// (o,a3) by
ANALMETR: 36;
then (o,b3)
// (o,a3) by
A25,
A26,
ANALMETR: 60;
then (o9,b39)
// (o9,a39) by
ANALMETR: 36;
then
LIN (o9,b39,a39) by
AFF_1:def 1;
then
LIN (b39,o9,a39) by
AFF_1: 6;
then (b39,o9)
// (b39,a39) by
AFF_1:def 1;
then
A95: (b3,o)
// (b3,a3) by
ANALMETR: 36;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b39,o9,b29) by
AFF_1: 6;
then (b39,o9)
// (b39,b29) by
AFF_1:def 1;
then (b3,o)
// (b3,b2) by
ANALMETR: 36;
then (b3,b2)
// (b3,a3) by
A17,
A95,
ANALMETR: 60;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
then
LIN (b29,a39,b39) by
AFF_1: 6;
hence contradiction by
A40,
ANALMETR: 40;
end;
assume
LIN (d1,d2,d3);
then
LIN (d19,d29,d39) by
ANALMETR: 40;
then
LIN (d29,d19,d39) by
AFF_1: 6;
then (d29,d19)
// (d29,d39) by
AFF_1:def 1;
then (d19,d29)
// (d29,d39) by
AFF_1: 4;
then (d1,d2)
// (d2,d3) by
ANALMETR: 36;
then (d2,d3)
_|_ (a1,b3) by
A54,
A94,
ANALMETR: 62;
then (a1,b3)
// (b3,a3) by
A67,
A92,
ANALMETR: 63;
then (a19,b39)
// (b39,a39) by
ANALMETR: 36;
then (b39,a19)
// (b39,a39) by
AFF_1: 4;
then
LIN (b39,a19,a39) by
AFF_1:def 1;
then
LIN (a19,a39,b39) by
AFF_1: 6;
then (a19,a39)
// (a19,b39) by
AFF_1:def 1;
then
A96: (a1,a3)
// (a1,b3) by
ANALMETR: 36;
A97: a1
<> a3
proof
assume a1
= a3;
then
LIN (a39,a19,b29) by
AFF_1: 7;
hence contradiction by
A46,
ANALMETR: 40;
end;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a19,a39,o9) by
AFF_1: 6;
then (a19,a39)
// (a19,o9) by
AFF_1:def 1;
then (a1,a3)
// (a1,o) by
ANALMETR: 36;
then (a1,o)
// (a1,b3) by
A97,
A96,
ANALMETR: 60;
then
LIN (a1,o,b3) by
ANALMETR:def 10;
then
LIN (a19,o9,b39) by
ANALMETR: 40;
then
LIN (o9,b39,a19) by
AFF_1: 6;
then
A98: (o9,b39)
// (o9,a19) by
AFF_1:def 1;
(o9,b39)
// (o9,b29) by
A34,
AFF_1: 4;
then (o9,a19)
// (o9,b29) by
A17,
A98,
DIRAF: 40;
then
LIN (o9,a19,b29) by
AFF_1:def 1;
then
LIN (a19,o9,b29) by
AFF_1: 6;
then (a19,o9)
// (a19,b29) by
AFF_1:def 1;
then
A99: (a1,o)
// (a1,b2) by
ANALMETR: 36;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a19,o9,a39) by
AFF_1: 6;
then (a19,o9)
// (a19,a39) by
AFF_1:def 1;
then (a1,o)
// (a1,a3) by
ANALMETR: 36;
then (a1,b2)
// (a1,a3) by
A14,
A99,
ANALMETR: 60;
then
LIN (a1,b2,a3) by
ANALMETR:def 10;
then
LIN (a19,b29,a39) by
ANALMETR: 40;
then
LIN (a39,a19,b29) by
AFF_1: 6;
hence contradiction by
A46,
ANALMETR: 40;
end;
A100: d2
<> d4
proof
A101: d2
<> d3
proof
assume d2
= d3;
then
LIN (d19,d29,d39) by
AFF_1: 7;
hence contradiction by
A91,
ANALMETR: 40;
end;
assume d2
= d4;
then (a3,b2)
_|_ (d2,d3) by
A85,
ANALMETR: 61;
then (a3,b2)
// (b3,a3) by
A67,
A101,
ANALMETR: 63;
then (a3,b2)
// (a3,b3) by
ANALMETR: 59;
then
LIN (a3,b2,b3) by
ANALMETR:def 10;
then
LIN (a39,b29,b39) by
ANALMETR: 40;
then
LIN (b29,b39,a39) by
AFF_1: 6;
hence contradiction by
A9,
A10,
A12,
A20,
A36,
AFF_1: 25;
end;
LIN (o9,b39,b39) by
AFF_1: 7;
then
A102:
LIN (d19,d39,b39) by
A17,
A32,
A71,
AFF_1: 8;
then
consider A9 such that
A103: A9 is
being_line and
A104: d19
in A9 and
A105: d39
in A9 and
A106: b39
in A9 by
AFF_1: 21;
reconsider A = A9 as
Subset of X;
A107: d19
<> d39
proof
assume d19
= d39;
then
LIN (d19,d29,d39) by
AFF_1: 7;
hence contradiction by
A91,
ANALMETR: 40;
end;
then A9
= (
Line (d19,d39)) by
A103,
A104,
A105,
AFF_1: 24;
then
A108: A
= (
Line (d1,d3)) by
ANALMETR: 41;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
A109:
LIN (o9,b39,b29) by
AFF_1: 6;
then
A110: b2
in A by
A17,
A32,
A71,
A103,
A104,
A105,
A107,
AFF_1: 8,
AFF_1: 25;
A111: o
<> d3
proof
assume d3
= o;
then
A112: (d2,o)
_|_ (b3,a3) by
A61,
A62,
A66,
ANALMETR: 62;
(o,b3)
_|_ (o,d2) by
A7,
A12,
A48,
A56,
ANALMETR: 62;
then (d2,o)
_|_ (o,b3) by
ANALMETR: 61;
then (o,b3)
// (b3,a3) by
A87,
A112,
ANALMETR: 63;
then (o9,b39)
// (b39,a39) by
ANALMETR: 36;
then
A113: (b39,o9)
// (b39,a39) by
AFF_1: 4;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b39,o9,b29) by
AFF_1: 6;
then (b39,o9)
// (b39,b29) by
AFF_1:def 1;
then (b39,a39)
// (b39,b29) by
A17,
A113,
DIRAF: 40;
then
LIN (b39,a39,b29) by
AFF_1:def 1;
then
LIN (b29,a39,b39) by
AFF_1: 6;
hence contradiction by
A40,
ANALMETR: 40;
end;
A114: o
<> d4
proof
(o,a3)
_|_ (o,d3) by
A17,
A48,
A69,
ANALMETR: 62;
then
A115: (d3,o)
_|_ (o,a3) by
ANALMETR: 61;
assume d4
= o;
then (d3,o)
_|_ (a3,b2) by
A72,
A73,
A80,
ANALMETR: 62;
then (o,a3)
// (a3,b2) by
A111,
A115,
ANALMETR: 63;
then (o9,a39)
// (a39,b29) by
ANALMETR: 36;
then
A116: (a39,o9)
// (a39,b29) by
AFF_1: 4;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a39,o9,a19) by
AFF_1: 6;
then (a39,o9)
// (a39,a19) by
AFF_1:def 1;
then (a39,b29)
// (a39,a19) by
A7,
A12,
A116,
DIRAF: 40;
then
LIN (a39,b29,a19) by
AFF_1:def 1;
then
LIN (a39,a19,b29) by
AFF_1: 6;
hence contradiction by
A46,
ANALMETR: 40;
end;
A117: not
LIN (d1,d4,d3)
proof
A118: d1
<> d3
proof
A119: d1
<> d2
proof
assume d1
= d2;
then (o9,a39)
// (o9,d19) by
A56,
ANALMETR: 36;
then (o9,d19)
// (o9,a39) by
AFF_1: 4;
then (o,d1)
// (o,a3) by
ANALMETR: 36;
then (o,b3)
// (o,a3) by
A25,
A26,
ANALMETR: 60;
then (o9,b39)
// (o9,a39) by
ANALMETR: 36;
then
LIN (o9,b39,a39) by
AFF_1:def 1;
then
LIN (b39,o9,a39) by
AFF_1: 6;
then (b39,o9)
// (b39,a39) by
AFF_1:def 1;
then
A120: (b3,o)
// (b3,a3) by
ANALMETR: 36;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b39,o9,b29) by
AFF_1: 6;
then (b39,o9)
// (b39,b29) by
AFF_1:def 1;
then (b3,o)
// (b3,b2) by
ANALMETR: 36;
then (b3,b2)
// (b3,a3) by
A17,
A120,
ANALMETR: 60;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
then
LIN (b29,a39,b39) by
AFF_1: 6;
hence contradiction by
A40,
ANALMETR: 40;
end;
assume d1
= d3;
then (a3,b3)
_|_ (d1,d2) by
A67,
ANALMETR: 61;
then (a1,b3)
// (a3,b3) by
A54,
A119,
ANALMETR: 63;
then (a19,b39)
// (a39,b39) by
ANALMETR: 36;
then (b39,a19)
// (b39,a39) by
AFF_1: 4;
then
LIN (b39,a19,a39) by
AFF_1:def 1;
then
LIN (a19,a39,b39) by
AFF_1: 6;
then (a19,a39)
// (a19,b39) by
AFF_1:def 1;
then
A121: (a1,a3)
// (a1,b3) by
ANALMETR: 36;
A122: a1
<> a3
proof
assume a1
= a3;
then
LIN (a39,a19,b29) by
AFF_1: 7;
hence contradiction by
A46,
ANALMETR: 40;
end;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a19,a39,o9) by
AFF_1: 6;
then (a19,a39)
// (a19,o9) by
AFF_1:def 1;
then (a1,a3)
// (a1,o) by
ANALMETR: 36;
then (a1,o)
// (a1,b3) by
A122,
A121,
ANALMETR: 60;
then
LIN (a1,o,b3) by
ANALMETR:def 10;
then
LIN (a19,o9,b39) by
ANALMETR: 40;
then
LIN (o9,b39,a19) by
AFF_1: 6;
then
A123: (o9,b39)
// (o9,a19) by
AFF_1:def 1;
(o9,b39)
// (o9,b29) by
A34,
AFF_1: 4;
then (o9,a19)
// (o9,b29) by
A17,
A123,
DIRAF: 40;
then
LIN (o9,a19,b29) by
AFF_1:def 1;
then
LIN (a19,o9,b29) by
AFF_1: 6;
then (a19,o9)
// (a19,b29) by
AFF_1:def 1;
then
A124: (a1,o)
// (a1,b2) by
ANALMETR: 36;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a19,o9,a39) by
AFF_1: 6;
then (a19,o9)
// (a19,a39) by
AFF_1:def 1;
then (a1,o)
// (a1,a3) by
ANALMETR: 36;
then (a1,b2)
// (a1,a3) by
A14,
A124,
ANALMETR: 60;
then
LIN (a1,b2,a3) by
ANALMETR:def 10;
then
LIN (a19,b29,a39) by
ANALMETR: 40;
then
LIN (a39,a19,b29) by
AFF_1: 6;
hence contradiction by
A46,
ANALMETR: 40;
end;
assume
LIN (d1,d4,d3);
then
LIN (d19,d49,d39) by
ANALMETR: 40;
then
A125:
LIN (d19,d39,d49) by
AFF_1: 6;
A126: b29
<> b39
proof
assume b29
= b39;
then
LIN (b29,a39,b39) by
AFF_1: 7;
hence contradiction by
A40,
ANALMETR: 40;
end;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b29,b39,o9) by
AFF_1: 6;
then
A127: (b29,b39)
// (b29,o9) by
AFF_1:def 1;
LIN (d19,d39,b29) by
A17,
A32,
A71,
A109,
AFF_1: 8;
then
LIN (b29,b39,d49) by
A102,
A118,
A125,
AFF_1: 8;
then (b29,b39)
// (b29,d49) by
AFF_1:def 1;
then (b29,o9)
// (b29,d49) by
A127,
A126,
DIRAF: 40;
then
LIN (b29,o9,d49) by
AFF_1:def 1;
then
LIN (o9,d49,b29) by
AFF_1: 6;
then
A128: (o9,d49)
// (o9,b29) by
AFF_1:def 1;
(o9,a39)
// (o9,d49) by
A82,
ANALMETR: 36;
then (o9,d49)
// (o9,a39) by
AFF_1: 4;
then (o9,b29)
// (o9,a39) by
A114,
A128,
DIRAF: 40;
then
LIN (o9,b29,a39) by
AFF_1:def 1;
then
LIN (b29,o9,a39) by
AFF_1: 6;
then
A129: (b29,o9)
// (b29,a39) by
AFF_1:def 1;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b29,o9,b39) by
AFF_1: 6;
then (b29,o9)
// (b29,b39) by
AFF_1:def 1;
then (b29,a39)
// (b29,b39) by
A3,
A11,
A129,
DIRAF: 40;
then
LIN (b29,a39,b39) by
AFF_1:def 1;
hence contradiction by
A40,
ANALMETR: 40;
end;
A130: not d4
in A
proof
assume d4
in A;
then (d19,d49)
// (d19,d39) by
A103,
A104,
A105,
AFF_1: 39,
AFF_1: 41;
then
LIN (d19,d49,d39) by
AFF_1:def 1;
hence contradiction by
A117,
ANALMETR: 40;
end;
A131: (d2,d3)
_|_ (b3,a3) by
A61,
A62,
A66,
ANALMETR: 62;
take d4;
LIN (o9,b39,d19) by
A31,
ANALMETR: 40;
then
A132: (o9,b39)
// (o9,d19) by
AFF_1:def 1;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
A133:
LIN (d29,d49,a19) by
A7,
A12,
A58,
A84,
AFF_1: 8;
then
consider K9 such that
A134: K9 is
being_line and
A135: d29
in K9 and
A136: d49
in K9 and
A137: a19
in K9 by
AFF_1: 21;
reconsider K = K9 as
Subset of X;
LIN (o9,a39,a39) by
AFF_1: 7;
then
A138: a3
in K by
A7,
A12,
A58,
A84,
A100,
A134,
A135,
A136,
AFF_1: 8,
AFF_1: 25;
(a39,a19)
// (a39,a29) by
A4,
A5,
A6,
A43,
AFF_1: 39,
AFF_1: 41;
then (a3,a1)
// (a3,a2) by
ANALMETR: 36;
then
A139:
LIN (a3,a1,a2) by
ANALMETR:def 10;
A140:
LIN (d1,d3,b3) &
LIN (d1,d3,b1) &
LIN (d2,d4,a1) &
LIN (d2,d4,a2)
proof
A141: b39
<> b29
proof
assume b39
= b29;
then
LIN (b29,a39,b39) by
AFF_1: 7;
hence contradiction by
A40,
ANALMETR: 40;
end;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
LIN (b39,b29,o9) by
AFF_1: 6;
then
A142: (b39,b29)
// (b39,o9) by
AFF_1:def 1;
LIN (b29,b39,b19) by
A42,
ANALMETR: 40;
then
LIN (b39,b29,b19) by
AFF_1: 6;
then (b39,b29)
// (b39,b19) by
AFF_1:def 1;
then (b39,b19)
// (b39,o9) by
A142,
A141,
DIRAF: 40;
then
LIN (b39,b19,o9) by
AFF_1:def 1;
then
A143:
LIN (o9,b39,b19) by
AFF_1: 6;
A144:
LIN (o9,b39,d39) by
A70,
ANALMETR: 40;
LIN (o9,b39,d19) by
A31,
ANALMETR: 40;
then
A145:
LIN (d19,d39,b19) by
A17,
A143,
A144,
AFF_1: 8;
reconsider o9 = o, a19 = a1, a29 = a2, a39 = a3, d29 = d2, d49 = d4 as
Element of the AffinStruct of X;
A146: a39
<> a19
proof
assume a19
= a39;
then
LIN (a39,a19,b29) by
AFF_1: 7;
hence contradiction by
A46,
ANALMETR: 40;
end;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a39,a19,o9) by
AFF_1: 6;
then
A147: (a39,a19)
// (a39,o9) by
AFF_1:def 1;
LIN (a39,a19,a29) by
A139,
ANALMETR: 40;
then (a39,a19)
// (a39,a29) by
AFF_1:def 1;
then (a39,a29)
// (a39,o9) by
A147,
A146,
DIRAF: 40;
then
LIN (a39,a29,o9) by
AFF_1:def 1;
then
A148:
LIN (o9,a39,a29) by
AFF_1: 6;
A149:
LIN (o9,a39,d49) by
A83,
ANALMETR: 40;
LIN (o9,a39,d29) by
A57,
ANALMETR: 40;
then
LIN (d29,d49,a29) by
A7,
A12,
A148,
A149,
AFF_1: 8;
hence thesis by
A102,
A133,
A145,
ANALMETR: 40;
end;
LIN (o9,b39,d39) by
A70,
ANALMETR: 40;
then (o9,b39)
// (o9,d39) by
AFF_1:def 1;
then (o9,d19)
// (o9,d39) by
A17,
A132,
DIRAF: 40;
then
LIN (o9,d19,d39) by
AFF_1:def 1;
then
LIN (d19,o9,d39) by
AFF_1: 6;
then (d19,o9)
// (d19,d39) by
AFF_1:def 1;
then (o9,d19)
// (d19,d39) by
AFF_1: 4;
then
A150: (o,d1)
// (d1,d3) by
ANALMETR: 36;
(o,b3)
// (o,d1) by
A132,
ANALMETR: 36;
then (o,d1)
_|_ (o,a3) by
A17,
A48,
ANALMETR: 62;
then
A151: (o,a3)
_|_ (d1,d3) by
A26,
A150,
ANALMETR: 62;
LIN (o9,a39,d29) by
A57,
ANALMETR: 40;
then
A152: (o9,a39)
// (o9,d29) by
AFF_1:def 1;
then (o,a3)
// (o,d2) by
ANALMETR: 36;
then
A153: (o,d2)
_|_ (d1,d3) by
A7,
A12,
A151,
ANALMETR: 62;
A154: not d2
in A
proof
assume d2
in A;
then (d19,d29)
// (d19,d39) by
A103,
A104,
A105,
AFF_1: 39,
AFF_1: 41;
then
LIN (d19,d29,d39) by
AFF_1:def 1;
hence contradiction by
A91,
ANALMETR: 40;
end;
LIN (o9,a39,d49) by
A83,
ANALMETR: 40;
then (o9,a39)
// (o9,d49) by
AFF_1:def 1;
then (o9,d29)
// (o9,d49) by
A7,
A12,
A152,
DIRAF: 40;
then
LIN (o9,d29,d49) by
AFF_1:def 1;
then
LIN (d29,o9,d49) by
AFF_1: 6;
then (d29,o9)
// (d29,d49) by
AFF_1:def 1;
then (o9,d29)
// (d29,d49) by
AFF_1: 4;
then (o,d2)
// (d2,d4) by
ANALMETR: 36;
then
A155: (d1,d3)
_|_ (d2,d4) by
A87,
A153,
ANALMETR: 62;
K9
= (
Line (d29,d49)) by
A100,
A134,
A135,
A136,
AFF_1: 24;
then K
= (
Line (d2,d4)) by
ANALMETR: 41;
then
A156: A
_|_ K by
A155,
A100,
A107,
A108,
ANALMETR: 45;
reconsider d19 = d1, d29 = d2, d39 = d3, d49 = d4, b39 = b3, a19 = a1, b19 = b1, a29 = a2 as
Element of the AffinStruct of X;
LIN (d19,d39,b39) by
A140,
ANALMETR: 40;
then
consider A9 such that
A157: A9 is
being_line and
A158: d19
in A9 and
A159: d39
in A9 and
A160: b39
in A9 by
AFF_1: 21;
A161: d19
<> d39
proof
assume d19
= d39;
then
LIN (d19,d29,d39) by
AFF_1: 7;
hence contradiction by
A91,
ANALMETR: 40;
end;
reconsider A = A9 as
Subset of X;
LIN (d19,d39,b19) by
A140,
ANALMETR: 40;
then
A162: b1
in A by
A157,
A158,
A159,
A161,
AFF_1: 25;
A163: not d2
in A
proof
assume d2
in A;
then (d19,d29)
// (d19,d39) by
A157,
A158,
A159,
AFF_1: 39,
AFF_1: 41;
then (d1,d2)
// (d1,d3) by
ANALMETR: 36;
hence contradiction by
A91,
ANALMETR:def 10;
end;
A164: d1
<> d4
proof
LIN (o9,a39,d49) by
A83,
ANALMETR: 40;
then
A165:
LIN (o9,d49,a39) by
AFF_1: 6;
LIN (o9,d49,o9) by
AFF_1: 7;
then
A166: (o9,d49)
// (o9,a39) by
A165,
AFF_1: 10;
A167:
LIN (o9,b39,o9) by
AFF_1: 7;
LIN (o9,b29,b39) by
A35,
ANALMETR: 40;
then
A168:
LIN (o9,b39,b29) by
AFF_1: 6;
LIN (o9,b39,d19) by
A31,
ANALMETR: 40;
then
LIN (o9,d19,b29) by
A17,
A167,
A168,
AFF_1: 8;
then
A169: (o9,d19)
// (o9,b29) by
AFF_1:def 1;
assume d1
= d4;
then (o9,a39)
// (o9,b29) by
A114,
A169,
A166,
DIRAF: 40;
then
LIN (o9,a39,b29) by
AFF_1:def 1;
then
LIN (a39,b29,o9) by
AFF_1: 6;
then (a39,b29)
// (a39,o9) by
AFF_1:def 1;
then
A170: (a39,o9)
// (a39,b29) by
AFF_1: 4;
LIN (o9,a39,a19) by
A45,
ANALMETR: 40;
then
LIN (a39,o9,a19) by
AFF_1: 6;
then (a39,o9)
// (a39,a19) by
AFF_1:def 1;
then (a39,b29)
// (a39,a19) by
A7,
A12,
A170,
DIRAF: 40;
then
LIN (a39,b29,a19) by
AFF_1:def 1;
then
LIN (a39,a19,b29) by
AFF_1: 6;
hence contradiction by
A46,
ANALMETR: 40;
end;
A171: not d4
in A
proof
assume d4
in A;
then (d19,d49)
// (d19,d39) by
A157,
A158,
A159,
AFF_1: 39,
AFF_1: 41;
then (d1,d4)
// (d1,d3) by
ANALMETR: 36;
hence contradiction by
A117,
ANALMETR:def 10;
end;
LIN (d29,d49,a19) by
A140,
ANALMETR: 40;
then
consider K9 such that
A172: K9 is
being_line and
A173: d29
in K9 and
A174: d49
in K9 and
A175: a19
in K9 by
AFF_1: 21;
reconsider K = K9 as
Subset of X;
LIN (d29,d49,a29) by
A140,
ANALMETR: 40;
then
A176: a2
in K by
A100,
A172,
A173,
A174,
AFF_1: 25;
K9
= (
Line (d29,d49)) by
A100,
A172,
A173,
A174,
AFF_1: 24;
then
A177: K
= (
Line (d2,d4)) by
ANALMETR: 41;
A9
= (
Line (d19,d39)) by
A157,
A158,
A159,
A161,
AFF_1: 24;
then A
= (
Line (d1,d3)) by
ANALMETR: 41;
then A
_|_ K by
A155,
A100,
A161,
A177,
ANALMETR: 45;
then
A178: (d1,d4)
_|_ (b3,a2) by
A1,
A68,
A86,
A55,
A158,
A159,
A160,
A173,
A174,
A175,
A163,
A171,
A162,
A176;
(d1,d2)
_|_ (a1,b3) by
A27,
A28,
A53,
ANALMETR: 62;
then (d1,d4)
_|_ (a1,b2) by
A2,
A131,
A81,
A104,
A105,
A106,
A135,
A136,
A137,
A154,
A130,
A156,
A110,
A138;
then (a1,b2)
// (b3,a2) or d1
= d4 by
A178,
ANALMETR: 63;
then (a19,b29)
// (b39,a29) by
A164,
ANALMETR: 36;
then (a19,b29)
// (a29,b39) by
AFF_1: 4;
hence thesis by
ANALMETR: 36;
end;
now
A179:
now
(o9,b29)
// (o9,b39) by
A7,
A9,
A10,
A20,
AFF_1: 39,
AFF_1: 41;
then
A180:
LIN (o9,b29,b39) by
AFF_1:def 1;
assume
A181: a1
= a2;
a1
<> b1
proof
(o9,a19)
// (o9,a39) by
A3,
A4,
A6,
A21,
AFF_1: 39,
AFF_1: 41;
then
A182:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A7,
A8,
A12,
A14,
A20,
A182,
AFF_1: 25;
end;
then (a3,b2)
// (a3,b3) by
A18,
A19,
A181,
ANALMETR: 60;
then (a39,b29)
// (a39,b39) by
ANALMETR: 36;
then b29
= b39 by
A3,
A6,
A7,
A11,
A12,
A21,
A180,
AFF_1: 14,
AFF_1: 25;
then (a19,b29)
// (a29,b39) by
A181,
AFF_1: 2;
hence thesis by
ANALMETR: 36;
end;
A183:
now
A184: not
LIN (o9,a39,b19)
proof
assume
LIN (o9,a39,b19);
then
LIN (o9,b19,a39) by
AFF_1: 6;
hence contradiction by
A7,
A8,
A12,
A16,
A20,
AFF_1: 25;
end;
(o9,b19)
// (o9,b39) by
A7,
A8,
A10,
A20,
AFF_1: 39,
AFF_1: 41;
then
A185:
LIN (o9,b19,b39) by
AFF_1:def 1;
assume
A186: a1
= a3;
then (a3,b1)
// (a3,b3) by
A19,
ANALMETR: 59;
then (a39,b19)
// (a39,b39) by
ANALMETR: 36;
hence thesis by
A18,
A186,
A184,
A185,
AFF_1: 14;
end;
A187:
now
A188: not
LIN (o9,a39,b19)
proof
assume
LIN (o9,a39,b19);
then
LIN (o9,b19,a39) by
AFF_1: 6;
hence contradiction by
A7,
A8,
A12,
A16,
A20,
AFF_1: 25;
end;
(o9,b19)
// (o9,b29) by
A7,
A8,
A9,
A20,
AFF_1: 39,
AFF_1: 41;
then
A189:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume
A190: a2
= a3;
then (a3,b1)
// (a3,b2) by
A18,
ANALMETR: 59;
then (a39,b19)
// (a39,b29) by
ANALMETR: 36;
then (a2,b3)
// (a1,b2) by
A19,
A190,
A188,
A189,
AFF_1: 14;
hence thesis by
ANALMETR: 59;
end;
assume a1
= a2 or a2
= a3 or a1
= a3;
hence thesis by
A179,
A187,
A183;
end;
hence thesis by
A22;
end;
theorem ::
CONMETR:15
X is
satisfying_3H implies X is
satisfying_OPAP
proof
assume
A1: X is
satisfying_3H;
let o, a1, a2, a3, b1, b2, b3, M, N;
assume that
A2: o
in M and
A3: a1
in M and
A4: a2
in M and
A5: a3
in M and
A6: o
in N and
A7: b1
in N and
A8: b2
in N and
A9: b3
in N and
A10: not b2
in M and
A11: not a3
in N and
A12: M
_|_ N and
A13: o
<> a1 and
A14: o
<> a2 and o
<> a3 and
A15: o
<> b1 and o
<> b2 and
A16: o
<> b3 and
A17: (a3,b2)
// (a2,b1) and
A18: (a3,b3)
// (a1,b1);
reconsider o9 = o, a19 = a1, a29 = a2, a39 = a3, b19 = b1, b29 = b2, b39 = b3 as
Element of the AffinStruct of X;
reconsider M9 = M, N9 = N as
Subset of the AffinStruct of X;
N is
being_line by
A12,
ANALMETR: 44;
then
A19: N9 is
being_line by
ANALMETR: 43;
M is
being_line by
A12,
ANALMETR: 44;
then
A20: M9 is
being_line by
ANALMETR: 43;
A21:
now
A22: not
LIN (o9,b19,a19)
proof
(o9,a19)
// (o9,a39) by
A2,
A3,
A5,
A20,
AFF_1: 39,
AFF_1: 41;
then
A23:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume
LIN (o9,b19,a19);
then a19
in N9 by
A6,
A7,
A15,
A19,
AFF_1: 25;
hence contradiction by
A6,
A11,
A13,
A19,
A23,
AFF_1: 25;
end;
A24: (b1,a2)
// (a3,b2) by
A17,
ANALMETR: 59;
(o9,a19)
// (o9,a29) by
A2,
A3,
A4,
A20,
AFF_1: 39,
AFF_1: 41;
then
A25:
LIN (o9,a19,a29) by
AFF_1:def 1;
assume
A26: b2
= b3;
then (b1,a1)
// (a3,b2) by
A18,
ANALMETR: 59;
then (b1,a1)
// (b1,a2) by
A5,
A10,
A24,
ANALMETR: 60;
then (b19,a19)
// (b19,a29) by
ANALMETR: 36;
then a19
= a29 by
A22,
A25,
AFF_1: 14;
then (a19,b29)
// (a29,b39) by
A26,
AFF_1: 2;
hence thesis by
ANALMETR: 36;
end;
A27:
LIN (a,b,c) implies
LIN (a,c,b) &
LIN (b,a,c) &
LIN (b,c,a) &
LIN (c,a,b) &
LIN (c,b,a)
proof
reconsider a9 = a, b9 = b, c9 = c as
Element of the AffinStruct of X;
assume
LIN (a,b,c);
then
A28:
LIN (a9,b9,c9) by
ANALMETR: 40;
then
A29:
LIN (b9,a9,c9) by
AFF_1: 6;
A30:
LIN (c9,a9,b9) by
A28,
AFF_1: 6;
A31:
LIN (b9,c9,a9) by
A28,
AFF_1: 6;
A32:
LIN (c9,b9,a9) by
A28,
AFF_1: 6;
LIN (a9,c9,b9) by
A28,
AFF_1: 6;
hence thesis by
A29,
A31,
A30,
A32,
ANALMETR: 40;
end;
A33:
now
(o9,a39)
// (o9,a19) by
A2,
A3,
A5,
A20,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,a39,a19) by
AFF_1:def 1;
then
A34:
LIN (o,a3,a1) by
ANALMETR: 40;
(a39,a19)
// (a39,a29) by
A3,
A4,
A5,
A20,
AFF_1: 39,
AFF_1: 41;
then
LIN (a39,a19,a29) by
AFF_1:def 1;
then
A35:
LIN (a3,a1,a2) by
ANALMETR: 40;
(o9,b29)
// (o9,b39) by
A6,
A8,
A9,
A19,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b29,b39) by
AFF_1:def 1;
then
A36:
LIN (o,b2,b3) by
ANALMETR: 40;
assume that
A37: a1
<> a3 and
A38: b2
<> b3;
A39: not
LIN (a3,a1,b2) & not
LIN (b2,a3,b3)
proof
assume
LIN (a3,a1,b2) or
LIN (b2,a3,b3);
then
LIN (a39,a19,b29) or
LIN (b29,a39,b39) by
ANALMETR: 40;
then
LIN (a39,a19,b29) or
LIN (b29,b39,a39) by
AFF_1: 6;
hence contradiction by
A3,
A5,
A8,
A9,
A10,
A11,
A20,
A19,
A37,
A38,
AFF_1: 25;
end;
(b29,b39)
// (b29,b19) by
A7,
A8,
A9,
A19,
AFF_1: 39,
AFF_1: 41;
then
LIN (b29,b39,b19) by
AFF_1:def 1;
then
A40:
LIN (b2,b3,b1) by
ANALMETR: 40;
A41:
now
assume
A42: b2
<> b1;
not
LIN (a2,a3,b3)
proof
A43: a3
<> a2
proof
assume a3
= a2;
then
LIN (a3,b2,b1) by
A17,
ANALMETR:def 10;
then
LIN (b2,b1,a3) by
A27;
then
A44: (b2,b1)
// (b2,a3) by
ANALMETR:def 10;
LIN (b2,b1,b3) by
A27,
A40;
then (b2,b1)
// (b2,b3) by
ANALMETR:def 10;
then (b2,a3)
// (b2,b3) by
A42,
A44,
ANALMETR: 60;
hence contradiction by
A39,
ANALMETR:def 10;
end;
LIN (a3,a1,o) by
A27,
A34;
then
A45: (a3,a1)
// (a3,o) by
ANALMETR:def 10;
A46: a3
<> a1
proof
assume a3
= a1;
then
LIN (a39,a19,b29) by
AFF_1: 7;
hence contradiction by
A39,
ANALMETR: 40;
end;
assume
LIN (a2,a3,b3);
then
LIN (a3,a2,b3) by
A27;
then
A47: (a3,a2)
// (a3,b3) by
ANALMETR:def 10;
LIN (a3,a2,a1) by
A27,
A35;
then (a3,a2)
// (a3,a1) by
ANALMETR:def 10;
then (a3,a1)
// (a3,b3) by
A47,
A43,
ANALMETR: 60;
then (a3,o)
// (a3,b3) by
A46,
A45,
ANALMETR: 60;
then (a39,o9)
// (a39,b39) by
ANALMETR: 36;
then
A48: (a39,b39)
// (a39,o9) by
AFF_1: 4;
LIN (b2,b3,o) by
A27,
A36;
then
A49:
LIN (b29,b39,o9) by
ANALMETR: 40;
not
LIN (b29,a39,b39) by
A39,
ANALMETR: 40;
hence contradiction by
A16,
A48,
A49,
AFF_1: 14;
end;
then
consider c1 such that
A50: (c1,a2)
_|_ (a3,b3) and
A51: (c1,a3)
_|_ (a2,b3) and
A52: (c1,b3)
_|_ (a2,a3) by
A1,
CONAFFM:def 3;
reconsider c19 = c1 as
Element of the AffinStruct of X;
A53:
now
A54: a2
<> a3
proof
A55: not
LIN (o9,a39,b19)
proof
assume
LIN (o9,a39,b19);
then
LIN (o9,b19,a39) by
AFF_1: 6;
hence contradiction by
A6,
A7,
A11,
A15,
A19,
AFF_1: 25;
end;
assume a2
= a3;
then (a39,b29)
// (a39,b19) by
A17,
ANALMETR: 36;
then
A56: (a39,b19)
// (a39,b29) by
AFF_1: 4;
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b19,b29) by
AFF_1:def 1;
hence contradiction by
A42,
A55,
A56,
AFF_1: 14;
end;
(a2,a3)
_|_ (b2,b3) by
A4,
A5,
A8,
A9,
A12,
ANALMETR: 56;
then (b2,b3)
// (c1,b3) by
A52,
A54,
ANALMETR: 63;
then (b3,b2)
// (b3,c1) by
ANALMETR: 59;
then
LIN (b3,b2,c1) by
ANALMETR:def 10;
then
LIN (b39,b29,c19) by
ANALMETR: 40;
then
A57: c1
in N by
A8,
A9,
A19,
A38,
AFF_1: 25;
A58: not
LIN (o9,a29,c19)
proof
A59: o9
<> c19
proof
assume
A60: o9
= c19;
(o,a2)
_|_ (b3,b2) by
A2,
A4,
A8,
A9,
A12,
ANALMETR: 56;
then (b3,b2)
// (a3,b3) by
A14,
A50,
A60,
ANALMETR: 63;
then (b3,b2)
// (b3,a3) by
ANALMETR: 59;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
hence contradiction by
A8,
A9,
A11,
A19,
A38,
AFF_1: 25;
end;
(o9,a29)
// (o9,a39) by
A2,
A4,
A5,
A20,
AFF_1: 39,
AFF_1: 41;
then
A61:
LIN (o9,a29,a39) by
AFF_1:def 1;
assume
LIN (o9,a29,c19);
then
LIN (o9,c19,a29) by
AFF_1: 6;
then a29
in N9 by
A6,
A19,
A57,
A59,
AFF_1: 25;
hence contradiction by
A6,
A11,
A14,
A19,
A61,
AFF_1: 25;
end;
A62: a1
<> b1
proof
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
A63:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A2,
A3,
A10,
A13,
A20,
A63,
AFF_1: 25;
end;
assume
A64: a2
<> a1;
A65: a1
<> b1
proof
LIN (a1,a2,a3) by
A27,
A35;
then (a1,a2)
// (a1,a3) by
ANALMETR:def 10;
then
A66: (a2,a1)
// (a3,a1) by
ANALMETR: 59;
assume a1
= b1;
then (a3,a1)
// (a3,b2) by
A17,
A64,
A66,
ANALMETR: 60;
hence contradiction by
A39,
ANALMETR:def 10;
end;
not
LIN (a2,a1,b1)
proof
assume
LIN (a2,a1,b1);
then
LIN (b1,a1,a2) by
A27;
then (b1,a1)
// (b1,a2) by
ANALMETR:def 10;
then (a1,b1)
// (a2,b1) by
ANALMETR: 59;
then
A67: (a2,b1)
// (a3,b3) by
A18,
A65,
ANALMETR: 60;
a2
<> b1
proof
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
A68:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume a2
= b1;
hence contradiction by
A2,
A4,
A10,
A14,
A20,
A68,
AFF_1: 25;
end;
then (a3,b3)
// (a3,b2) by
A17,
A67,
ANALMETR: 60;
then
LIN (a3,b3,b2) by
ANALMETR:def 10;
hence contradiction by
A27,
A39;
end;
then
consider c2 such that
A69: (c2,a2)
_|_ (a1,b1) and
A70: (c2,a1)
_|_ (a2,b1) and
A71: (c2,b1)
_|_ (a2,a1) by
A1,
CONAFFM:def 3;
reconsider c29 = c2 as
Element of the AffinStruct of X;
(a1,b1)
_|_ (c1,a2) by
A9,
A11,
A18,
A50,
ANALMETR: 62;
then (c2,a2)
// (c1,a2) by
A69,
A62,
ANALMETR: 63;
then (a2,c1)
// (a2,c2) by
ANALMETR: 59;
then
A72: (a29,c19)
// (a29,c29) by
ANALMETR: 36;
(a2,a1)
_|_ (b1,b2) by
A3,
A4,
A7,
A8,
A12,
ANALMETR: 56;
then (b1,b2)
// (c2,b1) by
A64,
A71,
ANALMETR: 63;
then (b1,b2)
// (b1,c2) by
ANALMETR: 59;
then
LIN (b1,b2,c2) by
ANALMETR:def 10;
then
LIN (b19,b29,c29) by
ANALMETR: 40;
then
A73: c29
in N9 by
A7,
A8,
A19,
A42,
AFF_1: 25;
A74: not
LIN (o9,a19,c29)
proof
A75: o9
<> c29
proof
A76: a2
<> b1
proof
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
A77:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume a2
= b1;
hence contradiction by
A2,
A4,
A10,
A14,
A20,
A77,
AFF_1: 25;
end;
assume o9
= c29;
then
A78: (o,a1)
_|_ (a3,b2) by
A17,
A70,
A76,
ANALMETR: 62;
(o,a1)
_|_ (b3,b2) by
A2,
A3,
A8,
A9,
A12,
ANALMETR: 56;
then (b3,b2)
// (a3,b2) by
A13,
A78,
ANALMETR: 63;
then (b2,b3)
// (b2,a3) by
ANALMETR: 59;
then
LIN (b2,b3,a3) by
ANALMETR:def 10;
then
LIN (b29,b39,a39) by
ANALMETR: 40;
hence contradiction by
A8,
A9,
A11,
A19,
A38,
AFF_1: 25;
end;
(o9,a19)
// (o9,a39) by
A2,
A3,
A5,
A20,
AFF_1: 39,
AFF_1: 41;
then
A79:
LIN (o9,a19,a39) by
AFF_1:def 1;
assume
LIN (o9,a19,c29);
then
LIN (o9,c29,a19) by
AFF_1: 6;
then a19
in N9 by
A6,
A19,
A73,
A75,
AFF_1: 25;
hence contradiction by
A6,
A11,
A13,
A19,
A79,
AFF_1: 25;
end;
not
LIN (a3,a1,b2)
proof
assume
LIN (a3,a1,b2);
then
LIN (a39,a19,b29) by
ANALMETR: 40;
hence contradiction by
A3,
A5,
A10,
A20,
A37,
AFF_1: 25;
end;
then
consider c3 such that
A80: (c3,a3)
_|_ (a1,b2) and
A81: (c3,a1)
_|_ (a3,b2) and
A82: (c3,b2)
_|_ (a3,a1) by
A1,
CONAFFM:def 3;
reconsider c39 = c3 as
Element of the AffinStruct of X;
a2
<> b1
proof
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
A83:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume a2
= b1;
hence contradiction by
A2,
A4,
A10,
A14,
A20,
A83,
AFF_1: 25;
end;
then (a3,b2)
_|_ (c2,a1) by
A17,
A70,
ANALMETR: 62;
then (c2,a1)
// (c3,a1) by
A5,
A10,
A81,
ANALMETR: 63;
then (a1,c2)
// (a1,c3) by
ANALMETR: 59;
then
A84: (a19,c29)
// (a19,c39) by
ANALMETR: 36;
(a2,a1)
_|_ (b2,b1) by
A3,
A4,
A7,
A8,
A12,
ANALMETR: 56;
then (b2,b1)
// (c2,b1) by
A64,
A71,
ANALMETR: 63;
then (b1,b2)
// (b1,c2) by
ANALMETR: 59;
then
LIN (b1,b2,c2) by
ANALMETR:def 10;
then
LIN (b19,b29,c29) by
ANALMETR: 40;
then c2
in N by
A7,
A8,
A19,
A42,
AFF_1: 25;
then (o9,c19)
// (o9,c29) by
A6,
A19,
A57,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c19,c29) by
AFF_1:def 1;
then
A85: c1
= c2 by
A58,
A72,
AFF_1: 14;
A86: c1
<> a3
proof
A87: a2
<> a3
proof
A88: not
LIN (o9,a39,b19)
proof
assume
LIN (o9,a39,b19);
then
LIN (o9,b19,a39) by
AFF_1: 6;
hence contradiction by
A6,
A7,
A11,
A15,
A19,
AFF_1: 25;
end;
assume a2
= a3;
then (a39,b29)
// (a39,b19) by
A17,
ANALMETR: 36;
then
A89: (a39,b19)
// (a39,b29) by
AFF_1: 4;
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,b19,b29) by
AFF_1:def 1;
hence contradiction by
A42,
A88,
A89,
AFF_1: 14;
end;
assume
A90: c1
= a3;
(a2,a3)
_|_ (b2,b3) by
A4,
A5,
A8,
A9,
A12,
ANALMETR: 56;
then (a3,b3)
// (b2,b3) by
A52,
A90,
A87,
ANALMETR: 63;
then (b3,b2)
// (b3,a3) by
ANALMETR: 59;
then
LIN (b3,b2,a3) by
ANALMETR:def 10;
then
LIN (b39,b29,a39) by
ANALMETR: 40;
hence contradiction by
A8,
A9,
A11,
A19,
A38,
AFF_1: 25;
end;
(a3,a1)
_|_ (b2,b3) by
A3,
A5,
A8,
A9,
A12,
ANALMETR: 56;
then (c3,b2)
// (b2,b3) by
A37,
A82,
ANALMETR: 63;
then (b2,b3)
// (b2,c3) by
ANALMETR: 59;
then
LIN (b2,b3,c3) by
ANALMETR:def 10;
then
LIN (b29,b39,c39) by
ANALMETR: 40;
then c39
in N9 by
A8,
A9,
A19,
A38,
AFF_1: 25;
then (o9,c29)
// (o9,c39) by
A6,
A19,
A73,
AFF_1: 39,
AFF_1: 41;
then
LIN (o9,c29,c39) by
AFF_1:def 1;
then c2
= c3 by
A74,
A84,
AFF_1: 14;
hence thesis by
A51,
A85,
A80,
A86,
ANALMETR: 63;
end;
now
(o9,b29)
// (o9,b39) by
A6,
A8,
A9,
A19,
AFF_1: 39,
AFF_1: 41;
then
A91:
LIN (o9,b29,b39) by
AFF_1:def 1;
assume
A92: a2
= a1;
a1
<> b1
proof
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
A93:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A2,
A3,
A10,
A13,
A20,
A93,
AFF_1: 25;
end;
then (a3,b2)
// (a3,b3) by
A17,
A18,
A92,
ANALMETR: 60;
then (a39,b29)
// (a39,b39) by
ANALMETR: 36;
then b29
= b39 by
A2,
A5,
A6,
A10,
A11,
A20,
A91,
AFF_1: 14,
AFF_1: 25;
then (a19,b29)
// (a29,b39) by
A92,
AFF_1: 2;
hence thesis by
ANALMETR: 36;
end;
hence thesis by
A53;
end;
now
A94: not
LIN (o9,b29,a39)
proof
assume
LIN (o9,b29,a39);
then
LIN (o,b2,a3) by
ANALMETR: 40;
then
LIN (b2,o,a3) by
A27;
then
A95: (b2,o)
// (b2,a3) by
ANALMETR:def 10;
LIN (b2,o,b3) by
A27,
A36;
then (b2,o)
// (b2,b3) by
ANALMETR:def 10;
then (b2,a3)
// (b2,b3) by
A2,
A10,
A95,
ANALMETR: 60;
hence contradiction by
A39,
ANALMETR:def 10;
end;
LIN (a3,a1,o) by
A27,
A34;
then
A96: (a3,a1)
// (a3,o) by
ANALMETR:def 10;
A97: a3
<> a1
proof
assume a3
= a1;
then
LIN (a39,a19,b29) by
AFF_1: 7;
hence contradiction by
A39,
ANALMETR: 40;
end;
(a3,a1)
// (a3,a2) by
A35,
ANALMETR:def 10;
then (a3,o)
// (a3,a2) by
A96,
A97,
ANALMETR: 60;
then
LIN (a3,o,a2) by
ANALMETR:def 10;
then
LIN (o,a3,a2) by
A27;
then
A98:
LIN (o9,a39,a29) by
ANALMETR: 40;
assume
A99: b2
= b1;
then (b2,a3)
// (b2,a2) by
A17,
ANALMETR: 59;
then (b29,a39)
// (b29,a29) by
ANALMETR: 36;
then a39
= a29 by
A98,
A94,
AFF_1: 14;
hence thesis by
A18,
A99,
ANALMETR: 59;
end;
hence thesis by
A41;
end;
now
A100: not
LIN (o9,a19,b19)
proof
(o9,b19)
// (o9,b29) by
A6,
A7,
A8,
A19,
AFF_1: 39,
AFF_1: 41;
then
A101:
LIN (o9,b19,b29) by
AFF_1:def 1;
assume
LIN (o9,a19,b19);
then b19
in M9 by
A2,
A3,
A13,
A20,
AFF_1: 25;
hence contradiction by
A2,
A10,
A15,
A20,
A101,
AFF_1: 25;
end;
(o9,b19)
// (o9,b39) by
A6,
A7,
A9,
A19,
AFF_1: 39,
AFF_1: 41;
then
A102:
LIN (o9,b19,b39) by
AFF_1:def 1;
assume
A103: a1
= a3;
then (a1,b1)
// (a1,b3) by
A18,
ANALMETR: 59;
then (a19,b19)
// (a19,b39) by
ANALMETR: 36;
hence thesis by
A17,
A103,
A100,
A102,
AFF_1: 14;
end;
hence thesis by
A21,
A33;
end;