euclid_5.miz
begin
reserve x,y,z for
Real,
x3,y3 for
Real,
p for
Point of (
TOP-REAL 3);
theorem ::
EUCLID_5:1
Th1: ex x, y, z st p
=
<*x, y, z*>
proof
the
carrier of (
TOP-REAL 3)
= (
REAL 3) by
EUCLID: 22;
then p is
Element of (3
-tuples_on
REAL ) by
EUCLID:def 1;
then p
in (3
-tuples_on
REAL );
then
reconsider p as
Tuple of 3,
REAL by
FINSEQ_2: 131;
ex x,y,z be
Element of
REAL st p
=
<*x, y, z*> by
FINSEQ_2: 103;
hence thesis;
end;
definition
let p;
::
EUCLID_5:def1
func p
`1 ->
Real equals (p
. 1);
coherence ;
::
EUCLID_5:def2
func p
`2 ->
Real equals (p
. 2);
coherence ;
::
EUCLID_5:def3
func p
`3 ->
Real equals (p
. 3);
coherence ;
end
notation
let x,y,z be
Real;
synonym
|[x,y,z]| for
<*x,y,z*>;
end
definition
let x,y,z be
Real;
:: original:
|[
redefine
func
|[x,y,z]| ->
Point of (
TOP-REAL 3) ;
coherence
proof
reconsider x, y, z as
Element of
REAL by
XREAL_0:def 1;
<*x, y, z*> is
Element of (3
-tuples_on
REAL ) by
FINSEQ_2: 104;
then
<*x, y, z*> is
Element of (
REAL 3) by
EUCLID:def 1;
hence thesis by
EUCLID: 22;
end;
end
theorem ::
EUCLID_5:2
Th2: (
|[x, y, z]|
`1 )
= x & (
|[x, y, z]|
`2 )
= y & (
|[x, y, z]|
`3 )
= z by
FINSEQ_1: 45;
theorem ::
EUCLID_5:3
Th3: p
=
|[(p
`1 ), (p
`2 ), (p
`3 )]|
proof
consider x, y, z such that
A1: p
=
<*x, y, z*> by
Th1;
(p
`1 )
= x & (p
`2 )
= y by
A1,
FINSEQ_1: 45;
hence thesis by
A1,
FINSEQ_1: 45;
end;
theorem ::
EUCLID_5:4
Th4: (
0. (
TOP-REAL 3))
=
|[
0 ,
0 ,
0 ]|
proof
(
0. (
TOP-REAL 3))
= (
0* 3) by
EUCLID: 70
.= (3
|->
0 ) by
EUCLID:def 4
.=
<*
0 ,
0 ,
0 *> by
FINSEQ_2: 62;
hence thesis;
end;
reserve p1,p2,p3,p4 for
Point of (
TOP-REAL 3),
x1,x2,y1,y2,z1,z2 for
Real;
theorem ::
EUCLID_5:5
Th5: (p1
+ p2)
=
|[((p1
`1 )
+ (p2
`1 )), ((p1
`2 )
+ (p2
`2 )), ((p1
`3 )
+ (p2
`3 ))]|
proof
reconsider p19 = p1, p29 = p2 as
Element of (
REAL 3) by
EUCLID: 22;
(
len (p19
+ p29))
= 3 by
CARD_1:def 7;
then
A1: (
dom (p19
+ p29))
= (
Seg 3) by
FINSEQ_1:def 3;
then 2
in (
dom (p19
+ p29)) by
FINSEQ_1: 1;
then ((p19
+ p29)
. 2)
= ((p19
. 2)
+ (p29
. 2)) by
VALUED_1:def 1;
then
A2: ((p1
+ p2)
`2 )
= ((p1
`2 )
+ (p2
`2 ));
3
in (
dom (p19
+ p29)) by
A1,
FINSEQ_1: 1;
then ((p19
+ p29)
. 3)
= ((p19
. 3)
+ (p29
. 3)) by
VALUED_1:def 1;
then
A3: ((p1
+ p2)
`3 )
= ((p1
`3 )
+ (p2
`3 ));
1
in (
dom (p19
+ p29)) by
A1,
FINSEQ_1: 1;
then ((p19
+ p29)
. 1)
= ((p19
. 1)
+ (p29
. 1)) by
VALUED_1:def 1;
then ((p1
+ p2)
`1 )
= ((p1
`1 )
+ (p2
`1 ));
hence thesis by
A2,
A3,
Th3;
end;
theorem ::
EUCLID_5:6
Th6: (
|[x1, y1, z1]|
+
|[x2, y2, z2]|)
=
|[(x1
+ x2), (y1
+ y2), (z1
+ z2)]|
proof
A1: (
|[x1, y1, z1]|
`3 )
= z1 & (
|[x2, y2, z2]|
`1 )
= x2 by
FINSEQ_1: 45;
A2: (
|[x2, y2, z2]|
`2 )
= y2 & (
|[x2, y2, z2]|
`3 )
= z2 by
FINSEQ_1: 45;
(
|[x1, y1, z1]|
`1 )
= x1 & (
|[x1, y1, z1]|
`2 )
= y1 by
FINSEQ_1: 45;
hence thesis by
A1,
A2,
Th5;
end;
theorem ::
EUCLID_5:7
Th7: (x
* p)
=
|[(x
* (p
`1 )), (x
* (p
`2 )), (x
* (p
`3 ))]|
proof
reconsider q = p as
Element of (
REAL 3) by
EUCLID: 22;
((x
* q)
. 2)
= (x
* (q
. 2)) by
RVSUM_1: 44;
then
A1: ((x
* p)
`2 )
= (x
* (p
`2 ));
((x
* q)
. 3)
= (x
* (q
. 3)) by
RVSUM_1: 44;
then
A2: ((x
* p)
`3 )
= (x
* (p
`3 ));
((x
* q)
. 1)
= (x
* (q
. 1)) by
RVSUM_1: 44;
then ((x
* p)
`1 )
= (x
* (p
`1 ));
hence thesis by
A1,
A2,
Th3;
end;
theorem ::
EUCLID_5:8
Th8: (x
*
|[x1, y1, z1]|)
=
|[(x
* x1), (x
* y1), (x
* z1)]|
proof
A1: (
|[x1, y1, z1]|
`3 )
= z1 by
FINSEQ_1: 45;
(
|[x1, y1, z1]|
`1 )
= x1 & (
|[x1, y1, z1]|
`2 )
= y1 by
FINSEQ_1: 45;
hence thesis by
A1,
Th7;
end;
theorem ::
EUCLID_5:9
((x
* p)
`1 )
= (x
* (p
`1 )) & ((x
* p)
`2 )
= (x
* (p
`2 )) & ((x
* p)
`3 )
= (x
* (p
`3 ))
proof
A1: ((x
* p)
`3 )
= (
|[(x
* (p
`1 )), (x
* (p
`2 )), (x
* (p
`3 ))]|
`3 ) by
Th7;
((x
* p)
`1 )
= (
|[(x
* (p
`1 )), (x
* (p
`2 )), (x
* (p
`3 ))]|
`1 ) & ((x
* p)
`2 )
= (
|[(x
* (p
`1 )), (x
* (p
`2 )), (x
* (p
`3 ))]|
`2 ) by
Th7;
hence thesis by
A1,
FINSEQ_1: 45;
end;
theorem ::
EUCLID_5:10
Th10: (
- p)
=
|[(
- (p
`1 )), (
- (p
`2 )), (
- (p
`3 ))]|
proof
thus (
- p)
= ((
- 1)
* p) by
RLVECT_1: 16
.=
|[((
- 1)
* (p
`1 )), ((
- 1)
* (p
`2 )), ((
- 1)
* (p
`3 ))]| by
Th7
.=
|[(
- (p
`1 )), (
- (p
`2 )), (
- (p
`3 ))]|;
end;
theorem ::
EUCLID_5:11
(
-
|[x1, y1, z1]|)
=
|[(
- x1), (
- y1), (
- z1)]|
proof
A1: (
|[x1, y1, z1]|
`3 )
= z1 by
FINSEQ_1: 45;
(
|[x1, y1, z1]|
`1 )
= x1 & (
|[x1, y1, z1]|
`2 )
= y1 by
FINSEQ_1: 45;
hence thesis by
A1,
Th10;
end;
theorem ::
EUCLID_5:12
Th12: (p1
- p2)
=
|[((p1
`1 )
- (p2
`1 )), ((p1
`2 )
- (p2
`2 )), ((p1
`3 )
- (p2
`3 ))]|
proof
A1: (
- p2)
=
|[(
- (p2
`1 )), (
- (p2
`2 )), (
- (p2
`3 ))]| by
Th10;
then
A2: ((
- p2)
`3 )
= (
- (p2
`3 )) by
FINSEQ_1: 45;
((
- p2)
`1 )
= (
- (p2
`1 )) & ((
- p2)
`2 )
= (
- (p2
`2 )) by
A1,
FINSEQ_1: 45;
hence (p1
- p2)
=
|[((p1
`1 )
+ (
- (p2
`1 ))), ((p1
`2 )
+ (
- (p2
`2 ))), ((p1
`3 )
+ (
- (p2
`3 )))]| by
A2,
Th5
.=
|[((p1
`1 )
- (p2
`1 )), ((p1
`2 )
- (p2
`2 )), ((p1
`3 )
- (p2
`3 ))]|;
end;
theorem ::
EUCLID_5:13
Th13: (
|[x1, y1, z1]|
-
|[x2, y2, z2]|)
=
|[(x1
- x2), (y1
- y2), (z1
- z2)]|
proof
A1: (
|[x1, y1, z1]|
`3 )
= z1 & (
|[x2, y2, z2]|
`1 )
= x2 by
FINSEQ_1: 45;
A2: (
|[x2, y2, z2]|
`2 )
= y2 & (
|[x2, y2, z2]|
`3 )
= z2 by
FINSEQ_1: 45;
(
|[x1, y1, z1]|
`1 )
= x1 & (
|[x1, y1, z1]|
`2 )
= y1 by
FINSEQ_1: 45;
hence thesis by
A1,
A2,
Th12;
end;
definition
let p1, p2;
::
EUCLID_5:def4
func p1
<X> p2 ->
Point of (
TOP-REAL 3) equals
|[(((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 ))), (((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 ))), (((p1
`1 )
* (p2
`2 ))
- ((p1
`2 )
* (p2
`1 )))]|;
correctness ;
end
theorem ::
EUCLID_5:14
p
=
|[x, y, z]| implies (p
`1 )
= x & (p
`2 )
= y & (p
`3 )
= z by
FINSEQ_1: 45;
theorem ::
EUCLID_5:15
Th15: (
|[x1, y1, z1]|
<X>
|[x2, y2, z2]|)
=
|[((y1
* z2)
- (z1
* y2)), ((z1
* x2)
- (x1
* z2)), ((x1
* y2)
- (y1
* x2))]|
proof
consider p1 such that
A1: p1
=
|[x1, y1, z1]|;
A2: (p1
`3 )
= z1 by
A1,
FINSEQ_1: 45;
consider p2 such that
A3: p2
=
|[x2, y2, z2]|;
A4: (p2
`3 )
= z2 by
A3,
FINSEQ_1: 45;
A5: (p2
`1 )
= x2 & (p2
`2 )
= y2 by
A3,
FINSEQ_1: 45;
(p1
`1 )
= x1 & (p1
`2 )
= y1 by
A1,
FINSEQ_1: 45;
hence thesis by
A1,
A2,
A3,
A5,
A4;
end;
theorem ::
EUCLID_5:16
((x
* p1)
<X> p2)
= (x
* (p1
<X> p2)) & ((x
* p1)
<X> p2)
= (p1
<X> (x
* p2))
proof
A1: ((x
* p1)
<X> p2)
= (
|[(x
* (p1
`1 )), (x
* (p1
`2 )), (x
* (p1
`3 ))]|
<X> p2) by
Th7
.= (
|[(x
* (p1
`1 )), (x
* (p1
`2 )), (x
* (p1
`3 ))]|
<X>
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|) by
Th3
.=
|[(((x
* (p1
`2 ))
* (p2
`3 ))
- ((x
* (p1
`3 ))
* (p2
`2 ))), (((x
* (p1
`3 ))
* (p2
`1 ))
- ((x
* (p1
`1 ))
* (p2
`3 ))), (((x
* (p1
`1 ))
* (p2
`2 ))
- ((x
* (p1
`2 ))
* (p2
`1 )))]| by
Th15;
then
A2: ((x
* p1)
<X> p2)
=
|[(x
* (((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 )))), (x
* (((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))), (x
* (((p1
`1 )
* (p2
`2 ))
- ((p1
`2 )
* (p2
`1 ))))]|
.= (x
* (p1
<X> p2)) by
Th8;
((x
* p1)
<X> p2)
=
|[(((p1
`2 )
* (x
* (p2
`3 )))
- ((p1
`3 )
* (x
* (p2
`2 )))), (((p1
`3 )
* (x
* (p2
`1 )))
- ((p1
`1 )
* (x
* (p2
`3 )))), (((p1
`1 )
* (x
* (p2
`2 )))
- ((p1
`2 )
* (x
* (p2
`1 ))))]| by
A1
.= (
|[(p1
`1 ), (p1
`2 ), (p1
`3 )]|
<X>
|[(x
* (p2
`1 )), (x
* (p2
`2 )), (x
* (p2
`3 ))]|) by
Th15
.= (p1
<X>
|[(x
* (p2
`1 )), (x
* (p2
`2 )), (x
* (p2
`3 ))]|) by
Th3
.= (p1
<X> (x
* p2)) by
Th7;
hence thesis by
A2;
end;
theorem ::
EUCLID_5:17
Th17: (p1
<X> p2)
= (
- (p2
<X> p1))
proof
(
- (p2
<X> p1))
= ((
- 1)
* (p2
<X> p1)) by
RLVECT_1: 16
.=
|[((
- 1)
* (((p2
`2 )
* (p1
`3 ))
- ((p2
`3 )
* (p1
`2 )))), ((
- 1)
* (((p2
`3 )
* (p1
`1 ))
- ((p2
`1 )
* (p1
`3 )))), ((
- 1)
* (((p2
`1 )
* (p1
`2 ))
- ((p2
`2 )
* (p1
`1 ))))]| by
Th8
.= (p1
<X> p2);
hence thesis;
end;
theorem ::
EUCLID_5:18
((
- p1)
<X> p2)
= (p1
<X> (
- p2))
proof
((
- p1)
<X> p2)
= (
|[(
- (p1
`1 )), (
- (p1
`2 )), (
- (p1
`3 ))]|
<X> p2) by
Th10
.= (
|[(
- (p1
`1 )), (
- (p1
`2 )), (
- (p1
`3 ))]|
<X>
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|) by
Th3
.=
|[(((
- (p1
`2 ))
* (p2
`3 ))
- ((
- (p1
`3 ))
* (p2
`2 ))), (((
- (p1
`3 ))
* (p2
`1 ))
- ((
- (p1
`1 ))
* (p2
`3 ))), (((
- (p1
`1 ))
* (p2
`2 ))
- ((
- (p1
`2 ))
* (p2
`1 )))]| by
Th15
.=
|[(((p1
`2 )
* (
- (p2
`3 )))
- ((p1
`3 )
* (
- (p2
`2 )))), (((p1
`3 )
* (
- (p2
`1 )))
- ((p1
`1 )
* (
- (p2
`3 )))), (((p1
`1 )
* (
- (p2
`2 )))
- ((p1
`2 )
* (
- (p2
`1 ))))]|
.= (
|[(p1
`1 ), (p1
`2 ), (p1
`3 )]|
<X>
|[(
- (p2
`1 )), (
- (p2
`2 )), (
- (p2
`3 ))]|) by
Th15
.= (
|[(p1
`1 ), (p1
`2 ), (p1
`3 )]|
<X> (
- p2)) by
Th10;
hence thesis by
Th3;
end;
theorem ::
EUCLID_5:19
(
|[
0 ,
0 ,
0 ]|
<X>
|[x, y, z]|)
= (
0. (
TOP-REAL 3))
proof
(
|[
0 ,
0 ,
0 ]|
<X>
|[x, y, z]|)
=
|[((
0
* z)
- (
0
* y)), ((
0
* x)
- (
0
* z)), ((
0
* y)
- (
0
* x))]| by
Th15
.=
|[(
0
* (z
- y)), (
0
* (x
- z)), (
0
* (y
- x))]|
.= (
0
*
|[(z
- y), (x
- z), (y
- x)]|) by
Th8;
hence thesis by
RLVECT_1: 10;
end;
theorem ::
EUCLID_5:20
(
|[x1,
0 ,
0 ]|
<X>
|[x2,
0 ,
0 ]|)
= (
0. (
TOP-REAL 3))
proof
(
|[x1,
0 ,
0 ]|
<X>
|[x2,
0 ,
0 ]|)
=
|[((
0
*
0 )
- (
0
*
0 )), ((
0
* x2)
- (x1
*
0 )), ((x1
*
0 )
- (
0
* x2))]| by
Th15
.=
|[(
0
* (
0
-
0 )), (
0
* (x2
- x1)), (
0
* (x1
- x2))]|
.= (
0
*
|[(
0
-
0 ), (x2
- x1), (x1
- x2)]|) by
Th8
.= (
0. (
TOP-REAL 3)) by
RLVECT_1: 10;
hence thesis;
end;
theorem ::
EUCLID_5:21
(
|[
0 , y1,
0 ]|
<X>
|[
0 , y2,
0 ]|)
= (
0. (
TOP-REAL 3))
proof
(
|[
0 , y1,
0 ]|
<X>
|[
0 , y2,
0 ]|)
=
|[((y1
*
0 )
- (
0
* y2)), ((
0
*
0 )
- (
0
*
0 )), ((
0
* y2)
- (y1
*
0 ))]| by
Th15
.=
|[(
0
* (y1
- y2)), (
0
* (
0
-
0 )), (
0
* (y2
- y1))]|
.= (
0
*
|[(y1
- y2), (
0
-
0 ), (y2
- y1)]|) by
Th8
.= (
0. (
TOP-REAL 3)) by
RLVECT_1: 10;
hence thesis;
end;
theorem ::
EUCLID_5:22
(
|[
0 ,
0 , z1]|
<X>
|[
0 ,
0 , z2]|)
= (
0. (
TOP-REAL 3))
proof
(
|[
0 ,
0 , z1]|
<X>
|[
0 ,
0 , z2]|)
=
|[((
0
* z2)
- (z1
*
0 )), ((z1
*
0 )
- (
0
* z2)), ((
0
*
0 )
- (
0
*
0 ))]| by
Th15
.=
|[(
0
* (z2
- z1)), (
0
* (z1
- z2)), (
0
* (
0
*
0 ))]|
.= (
0
*
|[(z2
- z1), (z1
- z2), (
0
-
0 )]|) by
Th8
.= (
0. (
TOP-REAL 3)) by
RLVECT_1: 10;
hence thesis;
end;
theorem ::
EUCLID_5:23
Th23: (p1
<X> (p2
+ p3))
= ((p1
<X> p2)
+ (p1
<X> p3))
proof
A1: ((p1
<X> p2)
+ (p1
<X> p3))
=
|[((((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 )))
+ (((p1
`2 )
* (p3
`3 ))
- ((p1
`3 )
* (p3
`2 )))), ((((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))
+ (((p1
`3 )
* (p3
`1 ))
- ((p1
`1 )
* (p3
`3 )))), ((((p1
`1 )
* (p2
`2 ))
- ((p1
`2 )
* (p2
`1 )))
+ (((p1
`1 )
* (p3
`2 ))
- ((p1
`2 )
* (p3
`1 ))))]| by
Th6
.=
|[(((((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 )))
+ ((p1
`2 )
* (p3
`3 )))
- ((p1
`3 )
* (p3
`2 ))), (((((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))
+ ((p1
`3 )
* (p3
`1 )))
- ((p1
`1 )
* (p3
`3 ))), (((((p1
`1 )
* (p2
`2 ))
- ((p1
`2 )
* (p2
`1 )))
+ ((p1
`1 )
* (p3
`2 )))
- ((p1
`2 )
* (p3
`1 )))]|;
A2: (p2
+ p3)
=
|[((p2
`1 )
+ (p3
`1 )), ((p2
`2 )
+ (p3
`2 )), ((p2
`3 )
+ (p3
`3 ))]| by
Th5;
then
A3: ((p2
+ p3)
`3 )
= ((p2
`3 )
+ (p3
`3 )) by
FINSEQ_1: 45;
((p2
+ p3)
`1 )
= ((p2
`1 )
+ (p3
`1 )) & ((p2
+ p3)
`2 )
= ((p2
`2 )
+ (p3
`2 )) by
A2,
FINSEQ_1: 45;
hence thesis by
A3,
A1;
end;
theorem ::
EUCLID_5:24
Th24: ((p1
+ p2)
<X> p3)
= ((p1
<X> p3)
+ (p2
<X> p3))
proof
((p1
+ p2)
<X> p3)
= (
- (p3
<X> (p1
+ p2))) by
Th17
.= (
- ((p3
<X> p1)
+ (p3
<X> p2))) by
Th23
.= (
- ((p3
<X> p1)
- (p2
<X> p3))) by
Th17
.= ((
- (p3
<X> p1))
+ (p2
<X> p3)) by
RLVECT_1: 33;
hence thesis by
Th17;
end;
theorem ::
EUCLID_5:25
(p1
<X> p1)
= (
0. (
TOP-REAL 3)) by
Th4;
theorem ::
EUCLID_5:26
((p1
+ p2)
<X> (p3
+ p4))
= ((((p1
<X> p3)
+ (p1
<X> p4))
+ (p2
<X> p3))
+ (p2
<X> p4))
proof
((p1
+ p2)
<X> (p3
+ p4))
= ((p1
<X> (p3
+ p4))
+ (p2
<X> (p3
+ p4))) by
Th24
.= (((p1
<X> p3)
+ (p1
<X> p4))
+ (p2
<X> (p3
+ p4))) by
Th23
.= (((p1
<X> p3)
+ (p1
<X> p4))
+ ((p2
<X> p3)
+ (p2
<X> p4))) by
Th23;
hence thesis by
RLVECT_1:def 3;
end;
theorem ::
EUCLID_5:27
Th27: p
=
<*(p
`1 ), (p
`2 ), (p
`3 )*>
proof
reconsider f = p as
FinSequence;
consider x,y,z be
Real such that
A1: p
=
<*x, y, z*> by
Th1;
<*x, y, z*>
=
<*(f
. 1), y, z*> by
A1,
FINSEQ_1: 45
.=
<*(f
. 1), (f
. 2), z*> by
A1,
FINSEQ_1: 45
.=
<*(p
`1 ), (p
`2 ), (p
`3 )*> by
A1,
FINSEQ_1: 45;
hence thesis by
A1;
end;
theorem ::
EUCLID_5:28
Th28: for f1,f2 be
FinSequence of
REAL st (
len f1)
= 3 & (
len f2)
= 3 holds (
mlt (f1,f2))
=
<*((f1
. 1)
* (f2
. 1)), ((f1
. 2)
* (f2
. 2)), ((f1
. 3)
* (f2
. 3))*>
proof
let f1,f2 be
FinSequence of
REAL such that
A1: (
len f1)
= 3 and
A2: (
len f2)
= 3;
A3: f2
=
<*(f2
. 1), (f2
. 2), (f2
. 3)*> by
A2,
FINSEQ_1: 45;
reconsider f11 = (f1
. 1), f12 = (f1
. 2), f13 = (f1
. 3), f21 = (f2
. 1), f22 = (f2
. 2), f23 = (f2
. 3) as
Element of
REAL by
XREAL_0:def 1;
(
mlt (f1,f2))
= (
multreal
.: (f1,f2)) by
RVSUM_1:def 9
.= (
multreal
.: (
<*f11, f12, f13*>,
<*f21, f22, f23*>)) by
A1,
A3,
FINSEQ_1: 45
.=
<*(
multreal
. ((f1
. 1),(f2
. 1))), (
multreal
. ((f1
. 2),(f2
. 2))), (
multreal
. ((f1
. 3),(f2
. 3)))*> by
FINSEQ_2: 76
.=
<*((f1
. 1)
* (f2
. 1)), (
multreal
. ((f1
. 2),(f2
. 2))), (
multreal
. ((f1
. 3),(f2
. 3)))*> by
BINOP_2:def 11
.=
<*((f1
. 1)
* (f2
. 1)), ((f1
. 2)
* (f2
. 2)), (
multreal
. ((f1
. 3),(f2
. 3)))*> by
BINOP_2:def 11;
hence thesis by
BINOP_2:def 11;
end;
theorem ::
EUCLID_5:29
Th29:
|(p1, p2)|
= ((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
proof
reconsider f1 = p1, f2 = p2 as
FinSequence of
REAL by
EUCLID: 24;
A1: (
len f1)
= (
len
<*(p1
`1 ), (p1
`2 ), (p1
`3 )*>) by
Th27
.= 3 by
FINSEQ_1: 45;
A2: (
len f2)
= (
len
<*(p2
`1 ), (p2
`2 ), (p2
`3 )*>) by
Th27
.= 3 by
FINSEQ_1: 45;
|(p1, p2)|
= (
Sum (
mlt (f1,f2))) by
RVSUM_1:def 16
.= (
Sum
<*((f1
. 1)
* (f2
. 1)), ((f1
. 2)
* (f2
. 2)), ((f1
. 3)
* (f2
. 3))*>) by
A1,
A2,
Th28
.= ((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (f2
. 3))) by
RVSUM_1: 78;
hence thesis;
end;
theorem ::
EUCLID_5:30
Th30:
|(
|[x1, x2, x3]|,
|[y1, y2, y3]|)|
= (((x1
* y1)
+ (x2
* y2))
+ (x3
* y3))
proof
consider p1 such that
A1: p1
=
|[x1, x2, x3]|;
A2: (p1
`3 )
= x3 by
A1,
FINSEQ_1: 45;
consider p2 such that
A3: p2
=
|[y1, y2, y3]|;
A4: (p2
`3 )
= y3 by
A3,
FINSEQ_1: 45;
A5: (p2
`1 )
= y1 & (p2
`2 )
= y2 by
A3,
FINSEQ_1: 45;
(p1
`1 )
= x1 & (p1
`2 )
= x2 by
A1,
FINSEQ_1: 45;
hence thesis by
A1,
A2,
A3,
A5,
A4,
Th29;
end;
definition
let p1, p2, p3;
::
EUCLID_5:def5
func
|{p1,p2,p3}| ->
Real equals
|(p1, (p2
<X> p3))|;
coherence ;
end
theorem ::
EUCLID_5:31
|{p1, p1, p2}|
=
0 &
|{p2, p1, p2}|
=
0
proof
A1:
|{p2, p1, p2}|
= ((((p2
`1 )
* ((p1
<X> p2)
`1 ))
+ ((p2
`2 )
* ((p1
<X> p2)
`2 )))
+ ((p2
`3 )
* ((p1
<X> p2)
`3 ))) by
Th29
.= ((((p2
`1 )
* (((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 ))))
+ ((p2
`2 )
* ((p1
<X> p2)
`2 )))
+ ((p2
`3 )
* ((p1
<X> p2)
`3 ))) by
FINSEQ_1: 45
.= ((((p2
`1 )
* (((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 ))))
+ ((p2
`2 )
* (((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))))
+ ((p2
`3 )
* ((p1
<X> p2)
`3 ))) by
FINSEQ_1: 45
.= (((((p2
`1 )
* ((p1
`2 )
* (p2
`3 )))
- ((p2
`1 )
* ((p1
`3 )
* (p2
`2 ))))
+ ((p2
`2 )
* (((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))))
+ ((p2
`3 )
* (((p1
`1 )
* (p2
`2 ))
- ((p1
`2 )
* (p2
`1 ))))) by
FINSEQ_1: 45
.= ((
0
- ((p2
`2 )
* ((p1
`1 )
* (p2
`3 ))))
+ ((p2
`2 )
* ((p1
`1 )
* (p2
`3 ))));
|{p1, p1, p2}|
= ((((p1
`1 )
* ((p1
<X> p2)
`1 ))
+ ((p1
`2 )
* ((p1
<X> p2)
`2 )))
+ ((p1
`3 )
* ((p1
<X> p2)
`3 ))) by
Th29
.= ((((p1
`1 )
* (((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 ))))
+ ((p1
`2 )
* ((p1
<X> p2)
`2 )))
+ ((p1
`3 )
* ((p1
<X> p2)
`3 ))) by
FINSEQ_1: 45
.= ((((p1
`1 )
* (((p1
`2 )
* (p2
`3 ))
- ((p1
`3 )
* (p2
`2 ))))
+ ((p1
`2 )
* (((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))))
+ ((p1
`3 )
* ((p1
<X> p2)
`3 ))) by
FINSEQ_1: 45
.= (((((p1
`1 )
* ((p1
`2 )
* (p2
`3 )))
- ((p1
`1 )
* ((p1
`3 )
* (p2
`2 ))))
+ ((p1
`2 )
* (((p1
`3 )
* (p2
`1 ))
- ((p1
`1 )
* (p2
`3 )))))
+ ((p1
`3 )
* (((p1
`1 )
* (p2
`2 ))
- ((p1
`2 )
* (p2
`1 ))))) by
FINSEQ_1: 45
.=
0 ;
hence thesis by
A1;
end;
theorem ::
EUCLID_5:32
(p1
<X> (p2
<X> p3))
= ((
|(p1, p3)|
* p2)
- (
|(p1, p2)|
* p3))
proof
A1: (((p1
`2 )
* (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 ))))
- ((p1
`3 )
* (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 )))))
= ((((((p1
`2 )
* (p3
`2 ))
+ ((p1
`3 )
* (p3
`3 )))
+ ((p1
`1 )
* (p3
`1 )))
* (p2
`1 ))
- (((((p1
`2 )
* (p2
`2 ))
+ ((p1
`3 )
* (p2
`3 )))
+ ((p1
`1 )
* (p2
`1 )))
* (p3
`1 ))) & (((p1
`3 )
* (((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))))
- ((p1
`1 )
* (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 )))))
= ((((((p1
`3 )
* (p3
`3 ))
+ ((p1
`1 )
* (p3
`1 )))
+ ((p1
`2 )
* (p3
`2 )))
* (p2
`2 ))
- (((((p1
`3 )
* (p2
`3 ))
+ ((p1
`1 )
* (p2
`1 )))
+ ((p1
`2 )
* (p2
`2 )))
* (p3
`2 )));
A2: (((p1
`1 )
* (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 ))))
- ((p1
`2 )
* (((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 )))))
= ((((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
+ ((p1
`3 )
* (p3
`3 )))
* (p2
`3 ))
- (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`3 )));
(p1
<X> (p2
<X> p3))
= (
|[(p1
`1 ), (p1
`2 ), (p1
`3 )]|
<X>
|[(((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))), (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 ))), (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 )))]|) by
Th3
.=
|[(((p1
`2 )
* (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 ))))
- ((p1
`3 )
* (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 ))))), (((p1
`3 )
* (((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))))
- ((p1
`1 )
* (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 ))))), (((p1
`1 )
* (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 ))))
- ((p1
`2 )
* (((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 )))))]| by
Th15;
then (p1
<X> (p2
<X> p3))
= (
|[(((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
+ ((p1
`3 )
* (p3
`3 )))
* (p2
`1 )), (((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
+ ((p1
`3 )
* (p3
`3 )))
* (p2
`2 )), (((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
+ ((p1
`3 )
* (p3
`3 )))
* (p2
`3 ))]|
-
|[(((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`1 )), (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`2 )), (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`3 ))]|) by
A1,
A2,
Th13
.= ((((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
+ ((p1
`3 )
* (p3
`3 )))
*
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|)
-
|[(((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`1 )), (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`2 )), (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
* (p3
`3 ))]|) by
Th8
.= ((((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
+ ((p1
`3 )
* (p3
`3 )))
*
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|)
- (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
*
|[(p3
`1 ), (p3
`2 ), (p3
`3 )]|)) by
Th8
.= ((
|(p1, p3)|
*
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|)
- (((((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 )))
+ ((p1
`3 )
* (p2
`3 )))
*
|[(p3
`1 ), (p3
`2 ), (p3
`3 )]|)) by
Th29
.= ((
|(p1, p3)|
*
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|)
- (
|(p1, p2)|
*
|[(p3
`1 ), (p3
`2 ), (p3
`3 )]|)) by
Th29
.= ((
|(p1, p3)|
* p2)
- (
|(p1, p2)|
*
|[(p3
`1 ), (p3
`2 ), (p3
`3 )]|)) by
Th3;
hence thesis by
Th3;
end;
theorem ::
EUCLID_5:33
Th33:
|{p1, p2, p3}|
=
|{p2, p3, p1}|
proof
|{p1, p2, p3}|
=
|(
|[(p1
`1 ), (p1
`2 ), (p1
`3 )]|,
|[(((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))), (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 ))), (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 )))]|)| by
Th3
.= ((((p1
`1 )
* (((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))))
+ ((p1
`2 )
* (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 )))))
+ ((p1
`3 )
* (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 ))))) by
Th30
.= ((((p2
`1 )
* (((p3
`2 )
* (p1
`3 ))
- ((p3
`3 )
* (p1
`2 ))))
+ ((p2
`2 )
* (((p3
`3 )
* (p1
`1 ))
- ((p3
`1 )
* (p1
`3 )))))
+ ((p2
`3 )
* (((p3
`1 )
* (p1
`2 ))
- ((p3
`2 )
* (p1
`1 )))))
.=
|(
|[(p2
`1 ), (p2
`2 ), (p2
`3 )]|,
|[(((p3
`2 )
* (p1
`3 ))
- ((p3
`3 )
* (p1
`2 ))), (((p3
`3 )
* (p1
`1 ))
- ((p3
`1 )
* (p1
`3 ))), (((p3
`1 )
* (p1
`2 ))
- ((p3
`2 )
* (p1
`1 )))]|)| by
Th30
.=
|(p2, (p3
<X> p1))| by
Th3;
hence thesis;
end;
theorem ::
EUCLID_5:34
|{p1, p2, p3}|
=
|{p3, p1, p2}| by
Th33;
theorem ::
EUCLID_5:35
|{p1, p2, p3}|
=
|((p1
<X> p2), p3)|
proof
|{p1, p2, p3}|
=
|(
|[(p1
`1 ), (p1
`2 ), (p1
`3 )]|,
|[(((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))), (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 ))), (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 )))]|)| by
Th3
.= ((((p1
`1 )
* (((p2
`2 )
* (p3
`3 ))
- ((p2
`3 )
* (p3
`2 ))))
+ ((p1
`2 )
* (((p2
`3 )
* (p3
`1 ))
- ((p2
`1 )
* (p3
`3 )))))
+ ((p1
`3 )
* (((p2
`1 )
* (p3
`2 ))
- ((p2
`2 )
* (p3
`1 ))))) by
Th30
.= (((((p2
`2 )
* ((p1
`1 )
* (p3
`3 )))
- ((p2
`3 )
* ((p1
`1 )
* (p3
`2 ))))
+ (((p2
`3 )
* ((p1
`2 )
* (p3
`1 )))
- ((p2
`1 )
* ((p1
`2 )
* (p3
`3 )))))
+ (((p2
`1 )
* ((p1
`3 )
* (p3
`2 )))
- ((p2
`2 )
* ((p1
`3 )
* (p3
`1 )))));
then
|{p1, p2, p3}|
= ((((((p2
`3 )
* (p1
`2 ))
- ((p2
`2 )
* (p1
`3 )))
* (p3
`1 ))
+ ((((p2
`1 )
* (p1
`3 ))
- ((p2
`3 )
* (p1
`1 )))
* (p3
`2 )))
+ ((((p2
`2 )
* (p1
`1 ))
- ((p2
`1 )
* (p1
`2 )))
* (p3
`3 )))
.=
|((p1
<X> p2),
|[(p3
`1 ), (p3
`2 ), (p3
`3 )]|)| by
Th30
.=
|((p1
<X> p2), p3)| by
Th3;
hence thesis;
end;
registration
cluster (
TOP-REAL 3) ->
up-3-dimensional;
coherence
proof
take u =
|[1,
0 ,
0 ]|, v =
|[
0 , 1,
0 ]|, w =
|[
0 ,
0 , 1]|;
let a,b,c be
Real such that
A1: (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. (
TOP-REAL 3));
A2: (
|[a, b, c]|
`1 )
= a & (
|[a, b, c]|
`2 )
= b & (
|[a, b, c]|
`3 )
= c by
Th2;
A3: (c
* w)
=
|[(c
*
0 ), (c
*
0 ), (c
* 1)]| by
Th8;
(a
* u)
=
|[(a
* 1), (a
*
0 ), (a
*
0 )]| & (b
* v)
=
|[(b
*
0 ), (b
* 1), (b
*
0 )]| by
Th8;
then (((a
* u)
+ (b
* v))
+ (c
* w))
= (
|[(a
+
0 ), (
0
+ b), (
0
+
0 )]|
+ (c
* w)) by
Th6
.=
|[(a
+
0 ), (b
+
0 ), (
0
+ c)]| by
A3,
Th6;
hence thesis by
A1,
A2,
Th2,
Th4;
end;
end