valued_1.miz
begin
Lm1: for f be
FinSequence, h be
Function st (
dom h)
= (
dom f) holds h is
FinSequence
proof
let f be
FinSequence, h be
Function such that
A1: (
dom h)
= (
dom f);
h is
FinSequence-like
proof
take (
len f);
thus thesis by
A1,
FINSEQ_1:def 3;
end;
hence thesis;
end;
Lm2: for f,g be
FinSequence, h be
Function st (
dom h)
= ((
dom f)
/\ (
dom g)) holds h is
FinSequence
proof
let f,g be
FinSequence, h be
Function such that
A1: (
dom h)
= ((
dom f)
/\ (
dom g));
consider n be
Nat such that
A2: (
dom f)
= (
Seg n) by
FINSEQ_1:def 2;
consider m be
Nat such that
A3: (
dom g)
= (
Seg m) by
FINSEQ_1:def 2;
h is
FinSequence-like
proof
per cases ;
suppose
A4: n
<= m;
take n;
thus thesis by
A1,
A2,
A3,
A4,
FINSEQ_1: 7;
end;
suppose
A5: m
<= n;
take m;
thus thesis by
A1,
A2,
A3,
A5,
FINSEQ_1: 7;
end;
end;
hence thesis;
end;
registration
cluster
complex-valued for
FinSequence;
existence
proof
take (
<*>
COMPLEX );
thus thesis;
end;
end
registration
let r be
Rational;
cluster
|.r.| ->
rational;
coherence
proof
|.r.|
= (
- r) or
|.r.|
= r by
COMPLEX1: 71;
hence thesis;
end;
end
definition
let f1,f2 be
complex-valued
Function;
deffunc
F(
object) = ((f1
. $1)
+ (f2
. $1));
set X = ((
dom f1)
/\ (
dom f2));
::
VALUED_1:def1
func f1
+ f2 ->
Function means
:
Def1: (
dom it )
= ((
dom f1)
/\ (
dom f2)) & for c be
object st c
in (
dom it ) holds (it
. c)
= ((f1
. c)
+ (f2
. c));
existence
proof
ex f be
Function st (
dom f)
= X & for x be
object st x
in X holds (f
. x)
=
F(x) from
FUNCT_1:sch 3;
hence thesis;
end;
uniqueness
proof
let f,g be
Function such that
A1: (
dom f)
= X and
A2: for c be
object st c
in (
dom f) holds (f
. c)
=
F(c) and
A3: (
dom g)
= X and
A4: for c be
object st c
in (
dom g) holds (g
. c)
=
F(c);
now
let x be
object;
assume
A5: x
in (
dom f);
hence (f
. x)
=
F(x) by
A2
.= (g
. x) by
A1,
A3,
A4,
A5;
end;
hence thesis by
A1,
A3;
end;
commutativity ;
end
registration
let f1,f2 be
complex-valued
Function;
cluster (f1
+ f2) ->
complex-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f1
+ f2));
then ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
Def1;
hence thesis;
end;
end
registration
let f1,f2 be
real-valued
Function;
cluster (f1
+ f2) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f1
+ f2));
then ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
Def1;
hence thesis;
end;
end
registration
let f1,f2 be
RAT
-valued
Function;
cluster (f1
+ f2) ->
RAT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f1
+ f2));
then
consider x be
object such that
A1: x
in (
dom (f1
+ f2)) and
A2: ((f1
+ f2)
. x)
= y by
FUNCT_1:def 3;
((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A1,
Def1;
hence thesis by
A2,
RAT_1:def 2;
end;
end
registration
let f1,f2 be
INT
-valued
Function;
cluster (f1
+ f2) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f1
+ f2));
then
consider x be
object such that
A1: x
in (
dom (f1
+ f2)) and
A2: ((f1
+ f2)
. x)
= y by
FUNCT_1:def 3;
((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A1,
Def1;
hence thesis by
A2,
INT_1:def 2;
end;
end
registration
let f1,f2 be
natural-valued
Function;
cluster (f1
+ f2) ->
natural-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f1
+ f2));
then ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
Def1;
hence thesis;
end;
end
definition
let C be
set;
let D1,D2 be
complex-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
+
redefine
func f1
+ f2 ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
+ f2))
c=
COMPLEX by
Def1,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
real-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
+
redefine
func f1
+ f2 ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
+ f2))
c=
REAL by
Def1,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
rational-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
+
redefine
func f1
+ f2 ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
+ f2))
c=
RAT by
Def1,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
integer-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
+
redefine
func f1
+ f2 ->
PartFunc of C,
INT ;
coherence
proof
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
+ f2))
c=
INT by
Def1,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
natural-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
+
redefine
func f1
+ f2 ->
PartFunc of C,
NAT ;
coherence
proof
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
+ f2))
c=
NAT by
Def1,
VALUED_0:def 6;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
+ f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
+ f2))
= (C
/\ C) by
Def1
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
real-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
+ f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
+ f2))
= (C
/\ C) by
Def1
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
rational-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
+ f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
+ f2))
= (C
/\ C) by
Def1
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
integer-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
+ f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
+ f2))
= (C
/\ C) by
Def1
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
natural-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
+ f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
+ f2))
= (C
/\ C) by
Def1
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
theorem ::
VALUED_1:1
for C be
set, D1,D2 be
complex-membered non
empty
set holds for f1 be
Function of C, D1, f2 be
Function of C, D2 holds for c be
Element of C holds ((f1
+ f2)
. c)
= ((f1
. c)
+ (f2
. c))
proof
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1, f2 be
Function of C, D2;
A1: (
dom (f1
+ f2))
= C by
FUNCT_2:def 1;
let c be
Element of C;
per cases ;
suppose C is non
empty;
hence thesis by
A1,
Def1;
end;
suppose
A2: C is
empty;
then (f1
. c)
=
0 ;
hence thesis by
A2;
end;
end;
registration
let f1,f2 be
complex-valued
FinSequence;
cluster (f1
+ f2) ->
FinSequence-like;
coherence
proof
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
Def1;
hence thesis by
Lm2;
end;
end
begin
definition
let f be
complex-valued
Function, r be
Complex;
deffunc
F(
object) = (r
+ (f
. $1));
::
VALUED_1:def2
func r
+ f ->
Function means
:
Def2: (
dom it )
= (
dom f) & for c be
object st c
in (
dom it ) holds (it
. c)
= (r
+ (f
. c));
existence
proof
ex g be
Function st (
dom g)
= (
dom f) & for x be
object st x
in (
dom f) holds (g
. x)
=
F(x) from
FUNCT_1:sch 3;
hence thesis;
end;
uniqueness
proof
let h,g be
Function such that
A1: (
dom h)
= (
dom f) and
A2: for c be
object st c
in (
dom h) holds (h
. c)
=
F(c) and
A3: (
dom g)
= (
dom f) and
A4: for c be
object st c
in (
dom g) holds (g
. c)
=
F(c);
now
let x be
object;
assume
A5: x
in (
dom h);
hence (h
. x)
=
F(x) by
A2
.= (g
. x) by
A1,
A3,
A4,
A5;
end;
hence thesis by
A1,
A3;
end;
end
notation
let f be
complex-valued
Function, r be
Complex;
synonym f
+ r for r
+ f;
end
registration
let f be
complex-valued
Function, r be
Complex;
cluster (r
+ f) ->
complex-valued;
coherence
proof
let x be
object;
assume x
in (
dom (r
+ f));
then ((r
+ f)
. x)
= (r
+ (f
. x)) by
Def2;
hence thesis;
end;
end
registration
let f be
real-valued
Function, r be
Real;
cluster (r
+ f) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (r
+ f));
then ((r
+ f)
. x)
= (r
+ (f
. x)) by
Def2;
hence thesis;
end;
end
registration
let f be
RAT
-valued
Function, r be
Rational;
cluster (r
+ f) ->
RAT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (r
+ f));
then
consider x be
object such that
A1: x
in (
dom (r
+ f)) and
A2: ((r
+ f)
. x)
= y by
FUNCT_1:def 3;
((r
+ f)
. x)
= (r
+ (f
. x)) by
A1,
Def2;
hence thesis by
A2,
RAT_1:def 2;
end;
end
registration
let f be
INT
-valued
Function, r be
Integer;
cluster (r
+ f) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (r
+ f));
then
consider x be
object such that
A1: x
in (
dom (r
+ f)) and
A2: ((r
+ f)
. x)
= y by
FUNCT_1:def 3;
((r
+ f)
. x)
= (r
+ (f
. x)) by
A1,
Def2;
hence thesis by
A2,
INT_1:def 2;
end;
end
registration
let f be
natural-valued
Function, r be
Nat;
cluster (r
+ f) ->
natural-valued;
coherence
proof
let x be
object;
assume x
in (
dom (r
+ f));
then ((r
+ f)
. x)
= (r
+ (f
. x)) by
Def2;
hence thesis;
end;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
let r be
Complex;
:: original:
+
redefine
func r
+ f ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (r
+ f))
= (
dom f) & (
rng (r
+ f))
c=
COMPLEX by
Def2,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
real-membered
set;
let f be
PartFunc of C, D;
let r be
Real;
:: original:
+
redefine
func r
+ f ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (r
+ f))
= (
dom f) & (
rng (r
+ f))
c=
REAL by
Def2,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
let r be
Rational;
:: original:
+
redefine
func r
+ f ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (r
+ f))
= (
dom f) & (
rng (r
+ f))
c=
RAT by
Def2,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
let r be
Integer;
:: original:
+
redefine
func r
+ f ->
PartFunc of C,
INT ;
coherence
proof
(
dom (r
+ f))
= (
dom f) & (
rng (r
+ f))
c=
INT by
Def2,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
natural-membered
set;
let f be
PartFunc of C, D;
let r be
Nat;
:: original:
+
redefine
func r
+ f ->
PartFunc of C,
NAT ;
coherence
proof
(
dom (r
+ f))
= (
dom f) & (
rng (r
+ f))
c=
NAT by
Def2,
VALUED_0:def 6;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
let r be
Complex;
cluster (r
+ f) ->
total;
coherence
proof
(
dom (r
+ f))
= (
dom f) by
Def2
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
real-membered non
empty
set;
let f be
Function of C, D;
let r be
Real;
cluster (r
+ f) ->
total;
coherence
proof
(
dom (r
+ f))
= (
dom f) by
Def2
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
let r be
Rational;
cluster (r
+ f) ->
total;
coherence
proof
(
dom (r
+ f))
= (
dom f) by
Def2
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
integer-membered non
empty
set;
let f be
Function of C, D;
let r be
Integer;
cluster (r
+ f) ->
total;
coherence
proof
(
dom (r
+ f))
= (
dom f) by
Def2
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
natural-membered non
empty
set;
let f be
Function of C, D;
let r be
Nat;
cluster (r
+ f) ->
total;
coherence
proof
(
dom (r
+ f))
= (
dom f) by
Def2
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
theorem ::
VALUED_1:2
for C be non
empty
set, D be
complex-membered non
empty
set holds for f be
Function of C, D, r be
Complex holds for c be
Element of C holds ((r
+ f)
. c)
= (r
+ (f
. c))
proof
let C be non
empty
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D, r be
Complex;
(
dom (r
+ f))
= C by
FUNCT_2:def 1;
hence thesis by
Def2;
end;
registration
let f be
complex-valued
FinSequence, r be
Complex;
cluster (r
+ f) ->
FinSequence-like;
coherence
proof
(
dom (r
+ f))
= (
dom f) by
Def2;
hence thesis by
Lm1;
end;
end
begin
definition
let f be
complex-valued
Function, r be
Complex;
::
VALUED_1:def3
func f
- r ->
Function equals ((
- r)
+ f);
coherence ;
end
theorem ::
VALUED_1:3
for f be
complex-valued
Function, r be
Complex holds (
dom (f
- r))
= (
dom f) & for c be
object st c
in (
dom f) holds ((f
- r)
. c)
= ((f
. c)
- r)
proof
let f be
complex-valued
Function, r be
Complex;
(
dom (f
- r))
= (
dom f) by
Def2;
hence thesis by
Def2;
end;
registration
let f be
complex-valued
Function, r be
Complex;
cluster (f
- r) ->
complex-valued;
coherence ;
end
registration
let f be
real-valued
Function, r be
Real;
cluster (f
- r) ->
real-valued;
coherence ;
end
registration
let f be
RAT
-valued
Function, r be
Rational;
cluster (f
- r) ->
RAT
-valued;
coherence ;
end
registration
let f be
INT
-valued
Function, r be
Integer;
cluster (f
- r) ->
INT
-valued;
coherence ;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
let r be
Complex;
:: original:
-
redefine
func f
- r ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f
- r))
= (
dom f) & (
rng (f
- r))
c=
COMPLEX by
Def2,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
real-membered
set;
let f be
PartFunc of C, D;
let r be
Real;
:: original:
-
redefine
func f
- r ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f
- r))
= (
dom f) & (
rng (f
- r))
c=
REAL by
Def2,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
let r be
Rational;
:: original:
-
redefine
func f
- r ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f
- r))
= (
dom f) & (
rng (f
- r))
c=
RAT by
Def2,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
let r be
Integer;
:: original:
-
redefine
func f
- r ->
PartFunc of C,
INT ;
coherence
proof
(
dom (f
- r))
= (
dom f) & (
rng (f
- r))
c=
INT by
Def2,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
let r be
Complex;
cluster (f
- r) ->
total;
coherence ;
end
registration
let C be
set;
let D be
real-membered non
empty
set;
let f be
Function of C, D;
let r be
Real;
cluster (f
- r) ->
total;
coherence ;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
let r be
Rational;
cluster (f
- r) ->
total;
coherence ;
end
registration
let C be
set;
let D be
integer-membered non
empty
set;
let f be
Function of C, D;
let r be
Integer;
cluster (f
- r) ->
total;
coherence ;
end
theorem ::
VALUED_1:4
for C be non
empty
set, D be
complex-membered non
empty
set holds for f be
Function of C, D, r be
Complex holds for c be
Element of C holds ((f
- r)
. c)
= ((f
. c)
- r)
proof
let C be non
empty
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D, r be
Complex;
(
dom (f
- r))
= C by
FUNCT_2:def 1;
hence thesis by
Def2;
end;
registration
let f be
complex-valued
FinSequence, r be
Complex;
cluster (f
- r) ->
FinSequence-like;
coherence ;
end
begin
definition
let f1,f2 be
complex-valued
Function;
deffunc
F(
object) = ((f1
. $1)
* (f2
. $1));
set X = ((
dom f1)
/\ (
dom f2));
::
VALUED_1:def4
func f1
(#) f2 ->
Function means
:
Def4: (
dom it )
= ((
dom f1)
/\ (
dom f2)) & for c be
object st c
in (
dom it ) holds (it
. c)
= ((f1
. c)
* (f2
. c));
existence
proof
ex f be
Function st (
dom f)
= X & for x be
object st x
in X holds (f
. x)
=
F(x) from
FUNCT_1:sch 3;
hence thesis;
end;
uniqueness
proof
let f,g be
Function such that
A1: (
dom f)
= X and
A2: for c be
object st c
in (
dom f) holds (f
. c)
=
F(c) and
A3: (
dom g)
= X and
A4: for c be
object st c
in (
dom g) holds (g
. c)
=
F(c);
now
let x be
object;
assume
A5: x
in (
dom f);
hence (f
. x)
=
F(x) by
A2
.= (g
. x) by
A1,
A3,
A4,
A5;
end;
hence thesis by
A1,
A3;
end;
commutativity ;
end
theorem ::
VALUED_1:5
for f1,f2 be
complex-valued
Function holds for c be
object holds ((f1
(#) f2)
. c)
= ((f1
. c)
* (f2
. c))
proof
let f1,f2 be
complex-valued
Function;
let c be
object;
A1: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def4;
per cases ;
suppose c
in (
dom (f1
(#) f2));
hence thesis by
Def4;
end;
suppose
A2: not c
in (
dom (f1
(#) f2));
then not c
in (
dom f1) or not c
in (
dom f2) by
A1,
XBOOLE_0:def 4;
then (f1
. c)
=
0 or (f2
. c)
=
0 by
FUNCT_1:def 2;
hence thesis by
A2,
FUNCT_1:def 2;
end;
end;
registration
let f1,f2 be
complex-valued
Function;
cluster (f1
(#) f2) ->
complex-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f1
(#) f2));
then ((f1
(#) f2)
. x)
= ((f1
. x)
* (f2
. x)) by
Def4;
hence thesis;
end;
end
registration
let f1,f2 be
real-valued
Function;
cluster (f1
(#) f2) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f1
(#) f2));
then ((f1
(#) f2)
. x)
= ((f1
. x)
* (f2
. x)) by
Def4;
hence thesis;
end;
end
registration
let f1,f2 be
RAT
-valued
Function;
cluster (f1
(#) f2) ->
RAT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f1
(#) f2));
then
consider x be
object such that
A1: x
in (
dom (f1
(#) f2)) and
A2: ((f1
(#) f2)
. x)
= y by
FUNCT_1:def 3;
((f1
(#) f2)
. x)
= ((f1
. x)
* (f2
. x)) by
A1,
Def4;
hence thesis by
A2,
RAT_1:def 2;
end;
end
registration
let f1,f2 be
INT
-valued
Function;
cluster (f1
(#) f2) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f1
(#) f2));
then
consider x be
object such that
A1: x
in (
dom (f1
(#) f2)) and
A2: ((f1
(#) f2)
. x)
= y by
FUNCT_1:def 3;
((f1
(#) f2)
. x)
= ((f1
. x)
* (f2
. x)) by
A1,
Def4;
hence thesis by
A2,
INT_1:def 2;
end;
end
registration
let f1,f2 be
natural-valued
Function;
cluster (f1
(#) f2) ->
natural-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f1
(#) f2));
then ((f1
(#) f2)
. x)
= ((f1
. x)
* (f2
. x)) by
Def4;
hence thesis;
end;
end
definition
let C be
set;
let D1,D2 be
complex-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
(#)
redefine
func f1
(#) f2 ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
(#) f2))
c=
COMPLEX by
Def4,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
real-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
(#)
redefine
func f1
(#) f2 ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
(#) f2))
c=
REAL by
Def4,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
rational-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
(#)
redefine
func f1
(#) f2 ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
(#) f2))
c=
RAT by
Def4,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
integer-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
(#)
redefine
func f1
(#) f2 ->
PartFunc of C,
INT ;
coherence
proof
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
(#) f2))
c=
INT by
Def4,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
natural-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
(#)
redefine
func f1
(#) f2 ->
PartFunc of C,
NAT ;
coherence
proof
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
(#) f2))
c=
NAT by
Def4,
VALUED_0:def 6;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
(#) f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
(#) f2))
= (C
/\ C) by
Def4
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
real-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
(#) f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
(#) f2))
= (C
/\ C) by
Def4
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
rational-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
(#) f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
(#) f2))
= (C
/\ C) by
Def4
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
integer-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
(#) f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
(#) f2))
= (C
/\ C) by
Def4
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D1,D2 be
natural-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
(#) f2) ->
total;
coherence
proof
(
dom f1)
= C & (
dom f2)
= C by
FUNCT_2:def 1;
then (
dom (f1
(#) f2))
= (C
/\ C) by
Def4
.= C;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let f1,f2 be
complex-valued
FinSequence;
cluster (f1
(#) f2) ->
FinSequence-like;
coherence
proof
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def4;
hence thesis by
Lm2;
end;
end
begin
definition
let f be
complex-valued
Function, r be
Complex;
deffunc
F(
object) = (r
* (f
. $1));
::
VALUED_1:def5
func r
(#) f ->
Function means
:
Def5: (
dom it )
= (
dom f) & for c be
object st c
in (
dom it ) holds (it
. c)
= (r
* (f
. c));
existence
proof
ex g be
Function st (
dom g)
= (
dom f) & for x be
object st x
in (
dom f) holds (g
. x)
=
F(x) from
FUNCT_1:sch 3;
hence thesis;
end;
uniqueness
proof
let h,g be
Function such that
A1: (
dom h)
= (
dom f) and
A2: for c be
object st c
in (
dom h) holds (h
. c)
=
F(c) and
A3: (
dom g)
= (
dom f) and
A4: for c be
object st c
in (
dom g) holds (g
. c)
=
F(c);
now
let x be
object;
assume
A5: x
in (
dom h);
hence (h
. x)
=
F(x) by
A2
.= (g
. x) by
A1,
A3,
A4,
A5;
end;
hence thesis by
A1,
A3;
end;
end
notation
let f be
complex-valued
Function, r be
Complex;
synonym f
(#) r for r
(#) f;
end
theorem ::
VALUED_1:6
Th6: for f be
complex-valued
Function, r be
Complex holds for c be
object holds ((r
(#) f)
. c)
= (r
* (f
. c))
proof
let f be
complex-valued
Function, r be
Complex;
let c be
object;
A1: (
dom f)
= (
dom (r
(#) f)) by
Def5;
per cases ;
suppose c
in (
dom f);
hence thesis by
A1,
Def5;
end;
suppose
A2: not c
in (
dom f);
hence ((r
(#) f)
. c)
= (r
*
0 ) by
A1,
FUNCT_1:def 2
.= (r
* (f
. c)) by
A2,
FUNCT_1:def 2;
end;
end;
registration
let f be
complex-valued
Function, r be
Complex;
cluster (r
(#) f) ->
complex-valued;
coherence
proof
let x be
object;
assume x
in (
dom (r
(#) f));
then ((r
(#) f)
. x)
= (r
* (f
. x)) by
Def5;
hence thesis;
end;
end
registration
let f be
real-valued
Function, r be
Real;
cluster (r
(#) f) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (r
(#) f));
then ((r
(#) f)
. x)
= (r
* (f
. x)) by
Def5;
hence thesis;
end;
end
registration
let f be
RAT
-valued
Function, r be
Rational;
cluster (r
(#) f) ->
RAT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (r
(#) f));
then
consider x be
object such that
A1: x
in (
dom (r
(#) f)) and
A2: ((r
(#) f)
. x)
= y by
FUNCT_1:def 3;
((r
(#) f)
. x)
= (r
* (f
. x)) by
A1,
Def5;
hence thesis by
A2,
RAT_1:def 2;
end;
end
registration
let f be
INT
-valued
Function, r be
Integer;
cluster (r
(#) f) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (r
(#) f));
then
consider x be
object such that
A1: x
in (
dom (r
(#) f)) and
A2: ((r
(#) f)
. x)
= y by
FUNCT_1:def 3;
((r
(#) f)
. x)
= (r
* (f
. x)) by
A1,
Def5;
hence thesis by
A2,
INT_1:def 2;
end;
end
registration
let f be
natural-valued
Function, r be
Nat;
cluster (r
(#) f) ->
natural-valued;
coherence
proof
let x be
object;
assume x
in (
dom (r
(#) f));
then ((r
(#) f)
. x)
= (r
* (f
. x)) by
Def5;
hence thesis;
end;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
let r be
Complex;
:: original:
(#)
redefine
func r
(#) f ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (r
(#) f))
= (
dom f) & (
rng (r
(#) f))
c=
COMPLEX by
Def5,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
real-membered
set;
let f be
PartFunc of C, D;
let r be
Real;
:: original:
(#)
redefine
func r
(#) f ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (r
(#) f))
= (
dom f) & (
rng (r
(#) f))
c=
REAL by
Def5,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
let r be
Rational;
:: original:
(#)
redefine
func r
(#) f ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (r
(#) f))
= (
dom f) & (
rng (r
(#) f))
c=
RAT by
Def5,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
let r be
Integer;
:: original:
(#)
redefine
func r
(#) f ->
PartFunc of C,
INT ;
coherence
proof
(
dom (r
(#) f))
= (
dom f) & (
rng (r
(#) f))
c=
INT by
Def5,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
natural-membered
set;
let f be
PartFunc of C, D;
let r be
Nat;
:: original:
(#)
redefine
func r
(#) f ->
PartFunc of C,
NAT ;
coherence
proof
(
dom (r
(#) f))
= (
dom f) & (
rng (r
(#) f))
c=
NAT by
Def5,
VALUED_0:def 6;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
let r be
Complex;
cluster (r
(#) f) ->
total;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def5
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
real-membered non
empty
set;
let f be
Function of C, D;
let r be
Real;
cluster (r
(#) f) ->
total;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def5
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
let r be
Rational;
cluster (r
(#) f) ->
total;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def5
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
integer-membered non
empty
set;
let f be
Function of C, D;
let r be
Integer;
cluster (r
(#) f) ->
total;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def5
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
natural-membered non
empty
set;
let f be
Function of C, D;
let r be
Nat;
cluster (r
(#) f) ->
total;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def5
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
theorem ::
VALUED_1:7
for C be non
empty
set, D be
complex-membered non
empty
set holds for f be
Function of C, D, r be
Complex holds for g be
Function of C,
COMPLEX st for c be
Element of C holds (g
. c)
= (r
* (f
. c)) holds g
= (r
(#) f)
proof
let C be non
empty
set, D be
complex-membered non
empty
set;
let f be
Function of C, D, r be
Complex;
let g be
Function of C,
COMPLEX such that
A1: for c be
Element of C holds (g
. c)
= (r
* (f
. c));
let x be
Element of C;
thus (g
. x)
= (r
* (f
. x)) by
A1
.= ((r
(#) f)
. x) by
Th6;
end;
registration
let f be
complex-valued
FinSequence, r be
Complex;
cluster (r
(#) f) ->
FinSequence-like;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def5;
hence thesis by
Lm1;
end;
end
begin
definition
let f be
complex-valued
Function;
::
VALUED_1:def6
func
- f ->
complex-valued
Function equals ((
- 1)
(#) f);
coherence ;
involutiveness
proof
let r,h be
complex-valued
Function;
assume
A1: r
= ((
- 1)
(#) h);
thus (
dom ((
- 1)
(#) r))
= (
dom r) by
Def5
.= (
dom h) by
A1,
Def5;
let c be
object;
assume c
in (
dom h);
reconsider a = ((
- 1)
* (h
. c)) as
Complex;
thus (h
. c)
= ((
- 1)
* a)
.= ((
- 1)
* (r
. c)) by
A1,
Th6
.= (((
- 1)
(#) r)
. c) by
Th6;
end;
end
theorem ::
VALUED_1:8
Th8: for f be
complex-valued
Function holds (
dom (
- f))
= (
dom f) & for c be
object holds ((
- f)
. c)
= (
- (f
. c))
proof
let f be
complex-valued
Function;
thus
A1: (
dom (
- f))
= (
dom f) by
Def5;
let c be
object;
per cases ;
suppose c
in (
dom f);
hence ((
- f)
. c)
= ((
- 1)
* (f
. c)) by
A1,
Def5
.= (
- (f
. c));
end;
suppose
A2: not c
in (
dom f);
hence ((
- f)
. c)
= (
-
0 qua
Complex) by
A1,
FUNCT_1:def 2
.= (
- (f
. c)) by
A2,
FUNCT_1:def 2;
end;
end;
theorem ::
VALUED_1:9
for f be
complex-valued
Function, g be
Function st (
dom f)
= (
dom g) & for c be
object st c
in (
dom f) holds (g
. c)
= (
- (f
. c)) holds g
= (
- f)
proof
let f be
complex-valued
Function, g be
Function;
assume that
A1: (
dom f)
= (
dom g) and
A2: for c be
object st c
in (
dom f) holds (g
. c)
= (
- (f
. c));
thus (
dom (
- f))
= (
dom g) by
A1,
Def5;
let c be
object;
assume
A3: c
in (
dom g);
thus ((
- f)
. c)
= (
- (f
. c)) by
Th8
.= (g
. c) by
A1,
A2,
A3;
end;
registration
let f be
complex-valued
Function;
cluster (
- f) ->
complex-valued;
coherence ;
end
registration
let f be
real-valued
Function;
cluster (
- f) ->
real-valued;
coherence ;
end
registration
let f be
RAT
-valued
Function;
cluster (
- f) ->
RAT
-valued;
coherence ;
end
registration
let f be
INT
-valued
Function;
cluster (
- f) ->
INT
-valued;
coherence ;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
:: original:
-
redefine
func
- f ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (
- f))
= (
dom f) & (
rng (
- f))
c=
COMPLEX by
Def5,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
real-membered
set;
let f be
PartFunc of C, D;
:: original:
-
redefine
func
- f ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (
- f))
= (
dom f) & (
rng (
- f))
c=
REAL by
Def5,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
:: original:
-
redefine
func
- f ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (
- f))
= (
dom f) & (
rng (
- f))
c=
RAT by
Def5,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
:: original:
-
redefine
func
- f ->
PartFunc of C,
INT ;
coherence
proof
(
dom (
- f))
= (
dom f) & (
rng (
- f))
c=
INT by
Def5,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
cluster (
- f) ->
total;
coherence ;
end
registration
let C be
set;
let D be
real-membered non
empty
set;
let f be
Function of C, D;
cluster (
- f) ->
total;
coherence ;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
cluster (
- f) ->
total;
coherence ;
end
registration
let C be
set;
let D be
integer-membered non
empty
set;
let f be
Function of C, D;
cluster (
- f) ->
total;
coherence ;
end
registration
let f be
complex-valued
FinSequence;
cluster (
- f) ->
FinSequence-like;
coherence ;
end
begin
definition
let f be
complex-valued
Function;
deffunc
F(
object) = ((f
. $1)
" );
::
VALUED_1:def7
func f
" ->
complex-valued
Function means
:
Def7: (
dom it )
= (
dom f) & for c be
object st c
in (
dom it ) holds (it
. c)
= ((f
. c)
" );
existence
proof
consider g be
Function such that
A1: (
dom g)
= (
dom f) & for x be
object st x
in (
dom f) holds (g
. x)
=
F(x) from
FUNCT_1:sch 3;
g is
complex-valued
proof
let x be
object;
assume x
in (
dom g);
then (g
. x)
= ((f
. x)
" ) by
A1;
hence thesis;
end;
hence thesis by
A1;
end;
uniqueness
proof
let h,g be
complex-valued
Function such that
A2: (
dom h)
= (
dom f) and
A3: for c be
object st c
in (
dom h) holds (h
. c)
=
F(c) and
A4: (
dom g)
= (
dom f) and
A5: for c be
object st c
in (
dom g) holds (g
. c)
=
F(c);
now
let x be
object;
assume
A6: x
in (
dom h);
hence (h
. x)
=
F(x) by
A3
.= (g
. x) by
A2,
A4,
A5,
A6;
end;
hence thesis by
A2,
A4;
end;
involutiveness
proof
let r,h be
complex-valued
Function;
assume that
A7: (
dom r)
= (
dom h) and
A8: for c be
object st c
in (
dom r) holds (r
. c)
= ((h
. c)
" );
thus (
dom r)
= (
dom h) by
A7;
let c be
object;
assume
A9: c
in (
dom h);
thus (h
. c)
= (((h
. c)
" )
" )
.= ((r
. c)
" ) by
A7,
A8,
A9;
end;
end
theorem ::
VALUED_1:10
Th10: for f be
complex-valued
Function holds for c be
object holds ((f
" )
. c)
= ((f
. c)
" )
proof
let f be
complex-valued
Function;
let c be
object;
A1: (
dom (f
" ))
= (
dom f) by
Def7;
per cases ;
suppose c
in (
dom f);
hence thesis by
A1,
Def7;
end;
suppose
A2: not c
in (
dom f);
hence ((f
" )
. c)
= (
0 qua
Complex
" ) by
A1,
FUNCT_1:def 2
.= ((f
. c)
" ) by
A2,
FUNCT_1:def 2;
end;
end;
registration
let f be
real-valued
Function;
cluster (f
" ) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (f
" ));
then ((f
" )
. x)
= ((f
. x)
" ) by
Def7;
hence thesis;
end;
end
registration
let f be
RAT
-valued
Function;
cluster (f
" ) ->
RAT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f
" ));
then
consider x be
object such that
A1: x
in (
dom (f
" )) and
A2: ((f
" )
. x)
= y by
FUNCT_1:def 3;
((f
" )
. x)
= ((f
. x)
" ) by
A1,
Def7;
hence thesis by
A2,
RAT_1:def 2;
end;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
:: original:
"
redefine
func f
" ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f
" ))
= (
dom f) & (
rng (f
" ))
c=
COMPLEX by
Def7,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
real-membered
set;
let f be
PartFunc of C, D;
:: original:
"
redefine
func f
" ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f
" ))
= (
dom f) & (
rng (f
" ))
c=
REAL by
Def7,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
:: original:
"
redefine
func f
" ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f
" ))
= (
dom f) & (
rng (f
" ))
c=
RAT by
Def7,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
cluster (f
" ) ->
total;
coherence
proof
(
dom (f
" ))
= (
dom f) by
Def7
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
real-membered non
empty
set;
let f be
Function of C, D;
cluster (f
" ) ->
total;
coherence
proof
(
dom (f
" ))
= (
dom f) by
Def7
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
cluster (f
" ) ->
total;
coherence
proof
(
dom (f
" ))
= (
dom f) by
Def7
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let f be
complex-valued
FinSequence;
cluster (f
" ) ->
FinSequence-like;
coherence
proof
(
dom (f
" ))
= (
dom f) by
Def7;
hence thesis by
Lm1;
end;
end
begin
definition
let f be
complex-valued
Function;
::
VALUED_1:def8
func f
^2 ->
Function equals (f
(#) f);
coherence ;
end
theorem ::
VALUED_1:11
Th11: for f be
complex-valued
Function holds (
dom (f
^2 ))
= (
dom f) & for c be
object holds ((f
^2 )
. c)
= ((f
. c)
^2 )
proof
let f be
complex-valued
Function;
thus
A1: (
dom (f
^2 ))
= ((
dom f)
/\ (
dom f)) by
Def4
.= (
dom f);
let c be
object;
per cases ;
suppose c
in (
dom f);
hence thesis by
A1,
Def4;
end;
suppose
A2: not c
in (
dom f);
hence ((f
^2 )
. c)
= (
0 qua
Complex
^2 ) by
A1,
FUNCT_1:def 2
.= ((f
. c)
^2 ) by
A2,
FUNCT_1:def 2;
end;
end;
registration
let f be
complex-valued
Function;
cluster (f
^2 ) ->
complex-valued;
coherence ;
end
registration
let f be
real-valued
Function;
cluster (f
^2 ) ->
real-valued;
coherence ;
end
registration
let f be
RAT
-valued
Function;
cluster (f
^2 ) ->
RAT
-valued;
coherence ;
end
registration
let f be
INT
-valued
Function;
cluster (f
^2 ) ->
INT
-valued;
coherence ;
end
registration
let f be
natural-valued
Function;
cluster (f
^2 ) ->
natural-valued;
coherence ;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
:: original:
^2
redefine
func f
^2 ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f
^2 ))
= (
dom f) & (
rng (f
^2 ))
c=
COMPLEX by
Th11,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
real-membered
set;
let f be
PartFunc of C, D;
:: original:
^2
redefine
func f
^2 ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f
^2 ))
= (
dom f) & (
rng (f
^2 ))
c=
REAL by
Th11,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
:: original:
^2
redefine
func f
^2 ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f
^2 ))
= (
dom f) & (
rng (f
^2 ))
c=
RAT by
Th11,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
:: original:
^2
redefine
func f
^2 ->
PartFunc of C,
INT ;
coherence
proof
(
dom (f
^2 ))
= (
dom f) & (
rng (f
^2 ))
c=
INT by
Th11,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
natural-membered
set;
let f be
PartFunc of C, D;
:: original:
^2
redefine
func f
^2 ->
PartFunc of C,
NAT ;
coherence
proof
(
dom (f
^2 ))
= (
dom f) & (
rng (f
^2 ))
c=
NAT by
Th11,
VALUED_0:def 6;
hence thesis by
RELSET_1: 4;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
cluster (f
^2 ) ->
total;
coherence ;
end
registration
let C be
set;
let D be
real-membered non
empty
set;
let f be
Function of C, D;
cluster (f
^2 ) ->
total;
coherence ;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
cluster (f
^2 ) ->
total;
coherence ;
end
registration
let C be
set;
let D be
integer-membered non
empty
set;
let f be
Function of C, D;
cluster (f
^2 ) ->
total;
coherence ;
end
registration
let C be
set;
let D be
natural-membered non
empty
set;
let f be
Function of C, D;
cluster (f
^2 ) ->
total;
coherence ;
end
registration
let f be
complex-valued
FinSequence;
cluster (f
^2 ) ->
FinSequence-like;
coherence ;
end
begin
definition
let f1,f2 be
complex-valued
Function;
::
VALUED_1:def9
func f1
- f2 ->
Function equals (f1
+ (
- f2));
coherence ;
end
registration
let f1,f2 be
complex-valued
Function;
cluster (f1
- f2) ->
complex-valued;
coherence ;
end
registration
let f1,f2 be
real-valued
Function;
cluster (f1
- f2) ->
real-valued;
coherence ;
end
registration
let f1,f2 be
RAT
-valued
Function;
cluster (f1
- f2) ->
RAT
-valued;
coherence ;
end
registration
let f1,f2 be
INT
-valued
Function;
cluster (f1
- f2) ->
INT
-valued;
coherence ;
end
theorem ::
VALUED_1:12
Th12: for f1,f2 be
complex-valued
Function holds (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2))
proof
let f1,f2 be
complex-valued
Function;
thus (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom (
- f2))) by
Def1
.= ((
dom f1)
/\ (
dom f2)) by
Def5;
end;
theorem ::
VALUED_1:13
for f1,f2 be
complex-valued
Function holds for c be
object st c
in (
dom (f1
- f2)) holds ((f1
- f2)
. c)
= ((f1
. c)
- (f2
. c))
proof
let f1,f2 be
complex-valued
Function;
let c be
object;
assume c
in (
dom (f1
- f2));
hence ((f1
- f2)
. c)
= ((f1
. c)
+ ((
- f2)
. c)) by
Def1
.= ((f1
. c)
- (f2
. c)) by
Th8;
end;
theorem ::
VALUED_1:14
for f1,f2 be
complex-valued
Function, f be
Function st (
dom f)
= (
dom (f1
- f2)) & for c be
object st c
in (
dom f) holds (f
. c)
= ((f1
. c)
- (f2
. c)) holds f
= (f1
- f2)
proof
let f1,f2 be
complex-valued
Function, f be
Function such that
A1: (
dom f)
= (
dom (f1
- f2)) and
A2: for c be
object st c
in (
dom f) holds (f
. c)
= ((f1
. c)
- (f2
. c));
thus (
dom f)
= (
dom (f1
- f2)) by
A1;
let c be
object;
assume
A3: c
in (
dom f);
hence (f
. c)
= ((f1
. c)
- (f2
. c)) by
A2
.= ((f1
. c)
+ ((
- f2)
. c)) by
Th8
.= ((f1
- f2)
. c) by
A1,
A3,
Def1;
end;
definition
let C be
set;
let D1,D2 be
complex-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
-
redefine
func f1
- f2 ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
- f2))
c=
COMPLEX by
Th12,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
real-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
-
redefine
func f1
- f2 ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
- f2))
c=
REAL by
Th12,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
rational-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
-
redefine
func f1
- f2 ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
- f2))
c=
RAT by
Th12,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
integer-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
-
redefine
func f1
- f2 ->
PartFunc of C,
INT ;
coherence
proof
(
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
- f2))
c=
INT by
Th12,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
Lm3: for C be
set, D1,D2 be
complex-membered non
empty
set, f1 be
Function of C, D1, f2 be
Function of C, D2 holds (
dom (f1
- f2))
= C
proof
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
thus (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom (
- f2))) by
Def1
.= (C
/\ (
dom (
- f2))) by
FUNCT_2:def 1
.= (C
/\ C) by
FUNCT_2:def 1
.= C;
end;
registration
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
- f2) ->
total;
coherence by
Lm3,
PARTFUN1:def 2;
end
registration
let C be
set;
let D1,D2 be
real-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
- f2) ->
total;
coherence by
Lm3,
PARTFUN1:def 2;
end
registration
let C be
set;
let D1,D2 be
rational-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
- f2) ->
total;
coherence by
Lm3,
PARTFUN1:def 2;
end
registration
let C be
set;
let D1,D2 be
integer-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
- f2) ->
total;
coherence by
Lm3,
PARTFUN1:def 2;
end
theorem ::
VALUED_1:15
for C be
set, D1,D2 be
complex-membered non
empty
set holds for f1 be
Function of C, D1, f2 be
Function of C, D2 holds for c be
Element of C holds ((f1
- f2)
. c)
= ((f1
. c)
- (f2
. c))
proof
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1, f2 be
Function of C, D2;
let c be
Element of C;
A1: (
dom (f1
- f2))
= C by
FUNCT_2:def 1;
per cases ;
suppose C is non
empty;
hence ((f1
- f2)
. c)
= ((f1
. c)
+ ((
- f2)
. c)) by
A1,
Def1
.= ((f1
. c)
- (f2
. c)) by
Th8;
end;
suppose
A2: C is
empty;
then (f2
. c)
=
0 ;
hence thesis by
A2;
end;
end;
registration
let f1,f2 be
complex-valued
FinSequence;
cluster (f1
- f2) ->
FinSequence-like;
coherence ;
end
begin
definition
let f1,f2 be
complex-valued
Function;
::
VALUED_1:def10
func f1
/" f2 ->
Function equals (f1
(#) (f2
" ));
coherence ;
end
theorem ::
VALUED_1:16
Th16: for f1,f2 be
complex-valued
Function holds (
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom f2))
proof
let f1,f2 be
complex-valued
Function;
thus (
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom (f2
" ))) by
Def4
.= ((
dom f1)
/\ (
dom f2)) by
Def7;
end;
theorem ::
VALUED_1:17
for f1,f2 be
complex-valued
Function holds for c be
object holds ((f1
/" f2)
. c)
= ((f1
. c)
/ (f2
. c))
proof
let f1,f2 be
complex-valued
Function;
let c be
object;
A1: (
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom f2)) by
Th16;
per cases ;
suppose c
in (
dom (f1
/" f2));
hence ((f1
/" f2)
. c)
= ((f1
. c)
* ((f2
" )
. c)) by
Def4
.= ((f1
. c)
/ (f2
. c)) by
Th10;
end;
suppose
A2: not c
in (
dom (f1
/" f2));
then not c
in (
dom f1) or not c
in (
dom f2) by
A1,
XBOOLE_0:def 4;
then
A3: (f1
. c)
=
0 or (f2
. c)
=
0 by
FUNCT_1:def 2;
thus ((f1
/" f2)
. c)
= (
0
/
0 ) by
A2,
FUNCT_1:def 2
.= ((f1
. c)
/ (f2
. c)) by
A3;
end;
end;
registration
let f1,f2 be
complex-valued
Function;
cluster (f1
/" f2) ->
complex-valued;
coherence ;
end
registration
let f1,f2 be
real-valued
Function;
cluster (f1
/" f2) ->
real-valued;
coherence ;
end
registration
let f1,f2 be
RAT
-valued
Function;
cluster (f1
/" f2) ->
RAT
-valued;
coherence ;
end
definition
let C be
set;
let D1,D2 be
complex-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
/"
redefine
func f1
/" f2 ->
PartFunc of C,
COMPLEX ;
coherence
proof
(
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
/" f2))
c=
COMPLEX by
Th16,
VALUED_0:def 1;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
real-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
/"
redefine
func f1
/" f2 ->
PartFunc of C,
REAL ;
coherence
proof
(
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
/" f2))
c=
REAL by
Th16,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D1,D2 be
rational-membered
set;
let f1 be
PartFunc of C, D1;
let f2 be
PartFunc of C, D2;
:: original:
/"
redefine
func f1
/" f2 ->
PartFunc of C,
RAT ;
coherence
proof
(
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng (f1
/" f2))
c=
RAT by
Th16,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
Lm4: for C be
set, D1,D2 be
complex-membered non
empty
set holds for f1 be
Function of C, D1, f2 be
Function of C, D2 holds (
dom (f1
/" f2))
= C
proof
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1, f2 be
Function of C, D2;
thus (
dom (f1
/" f2))
= ((
dom f1)
/\ (
dom f2)) by
Th16
.= (C
/\ (
dom f2)) by
FUNCT_2:def 1
.= (C
/\ C) by
FUNCT_2:def 1
.= C;
end;
registration
let C be
set;
let D1,D2 be
complex-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
/" f2) ->
total;
coherence by
Lm4,
PARTFUN1:def 2;
end
registration
let C be
set;
let D1,D2 be
real-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
/" f2) ->
total;
coherence by
Lm4,
PARTFUN1:def 2;
end
registration
let C be
set;
let D1,D2 be
rational-membered non
empty
set;
let f1 be
Function of C, D1;
let f2 be
Function of C, D2;
cluster (f1
/" f2) ->
total;
coherence by
Lm4,
PARTFUN1:def 2;
end
registration
let f1,f2 be
complex-valued
FinSequence;
cluster (f1
/" f2) ->
FinSequence-like;
coherence ;
end
begin
definition
let f be
complex-valued
Function;
deffunc
F(
object) =
|.(f
. $1).|;
::
VALUED_1:def11
func
|.f.| ->
real-valued
Function means
:
Def11: (
dom it )
= (
dom f) & for c be
object st c
in (
dom it ) holds (it
. c)
=
|.(f
. c).|;
existence
proof
consider g be
Function such that
A1: (
dom g)
= (
dom f) & for x be
object st x
in (
dom f) holds (g
. x)
=
F(x) from
FUNCT_1:sch 3;
g is
real-valued
proof
let x be
object;
assume x
in (
dom g);
then (g
. x)
=
|.(f
. x).| by
A1;
hence thesis;
end;
hence thesis by
A1;
end;
uniqueness
proof
let h,g be
real-valued
Function such that
A2: (
dom h)
= (
dom f) and
A3: for c be
object st c
in (
dom h) holds (h
. c)
=
F(c) and
A4: (
dom g)
= (
dom f) and
A5: for c be
object st c
in (
dom g) holds (g
. c)
=
F(c);
now
let x be
object;
assume
A6: x
in (
dom h);
hence (h
. x)
=
F(x) by
A3
.= (g
. x) by
A2,
A4,
A5,
A6;
end;
hence thesis by
A2,
A4;
end;
projectivity
proof
let r be
real-valued
Function;
let h be
complex-valued
Function;
assume that (
dom r)
= (
dom h) and
A7: for c be
object st c
in (
dom r) holds (r
. c)
=
|.(h
. c).|;
thus (
dom r)
= (
dom r);
let c be
object;
assume
A8: c
in (
dom r);
hence (r
. c)
=
|.
|.(h
. c).|.| by
A7
.=
|.(r
. c).| by
A7,
A8;
end;
end
notation
let f be
complex-valued
Function;
synonym
abs f for
|.f.|;
end
theorem ::
VALUED_1:18
for f be
complex-valued
Function holds for c be
object holds (
|.f.|
. c)
=
|.(f
. c).|
proof
let f be
complex-valued
Function;
let c be
object;
A1: (
dom
|.f.|)
= (
dom f) by
Def11;
per cases ;
suppose c
in (
dom f);
hence thesis by
A1,
Def11;
end;
suppose
A2: not c
in (
dom f);
hence (
|.f.|
. c)
=
|.
0 qua
Complex.| by
A1,
COMPLEX1: 44,
FUNCT_1:def 2
.=
|.(f
. c).| by
A2,
FUNCT_1:def 2;
end;
end;
registration
let f be
RAT
-valued
Function;
cluster
|.f.| ->
RAT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng
|.f.|);
then
consider x be
object such that
A1: x
in (
dom
|.f.|) and
A2: (
|.f.|
. x)
= y by
FUNCT_1:def 3;
(
|.f.|
. x)
=
|.(f
. x).| by
A1,
Def11;
hence thesis by
A2,
RAT_1:def 2;
end;
end
registration
let f be
INT
-valued
Function;
cluster
|.f.| ->
natural-valued;
coherence
proof
let x be
object;
|.(f
. x).| is
natural;
hence thesis by
Def11;
end;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
:: original:
|.
redefine
func
|.f.| ->
PartFunc of C,
REAL ;
coherence
proof
(
dom
|.f.|)
= (
dom f) & (
rng
|.f.|)
c=
REAL by
Def11,
VALUED_0:def 3;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
complex-membered
set;
let f be
PartFunc of C, D;
:: original:
abs
redefine
func
abs (f) ->
PartFunc of C,
REAL ;
coherence
proof
(
abs f)
=
|.f.|;
hence thesis;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
:: original:
|.
redefine
func
|.f.| ->
PartFunc of C,
RAT ;
coherence
proof
(
dom
|.f.|)
= (
dom f) & (
rng
|.f.|)
c=
RAT by
Def11,
RELAT_1:def 19;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
rational-membered
set;
let f be
PartFunc of C, D;
:: original:
abs
redefine
func
abs (f) ->
PartFunc of C,
RAT ;
coherence
proof
(
abs f)
=
|.f.|;
hence thesis;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
:: original:
|.
redefine
func
|.f.| ->
PartFunc of C,
NAT ;
coherence
proof
(
dom
|.f.|)
= (
dom f) & (
rng
|.f.|)
c=
NAT by
Def11,
VALUED_0:def 6;
hence thesis by
RELSET_1: 4;
end;
end
definition
let C be
set;
let D be
integer-membered
set;
let f be
PartFunc of C, D;
:: original:
abs
redefine
func
abs (f) ->
PartFunc of C,
NAT ;
coherence
proof
(
abs f)
=
|.f.|;
hence thesis;
end;
end
registration
let C be
set;
let D be
complex-membered non
empty
set;
let f be
Function of C, D;
cluster
|.f.| ->
total;
coherence
proof
(
dom
|.f.|)
= (
dom f) by
Def11
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
rational-membered non
empty
set;
let f be
Function of C, D;
cluster
|.f.| ->
total;
coherence
proof
(
dom
|.f.|)
= (
dom f) by
Def11
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let C be
set;
let D be
integer-membered non
empty
set;
let f be
Function of C, D;
cluster
|.f.| ->
total;
coherence
proof
(
dom
|.f.|)
= (
dom f) by
Def11
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
registration
let f be
complex-valued
FinSequence;
cluster
|.f.| ->
FinSequence-like;
coherence
proof
(
dom (
abs f))
= (
dom f) by
Def11;
hence thesis by
Lm1;
end;
end
theorem ::
VALUED_1:19
for f,g be
FinSequence, h be
Function st (
dom h)
= ((
dom f)
/\ (
dom g)) holds h is
FinSequence by
Lm2;
begin
reserve m,j,p,q,n,l for
Element of
NAT ;
definition
let p be
Function, k be
Nat;
::
VALUED_1:def12
func
Shift (p,k) ->
Function means
:
Def12: (
dom it )
= { (m
+ k) where m be
Nat : m
in (
dom p) } & for m be
Nat st m
in (
dom p) holds (it
. (m
+ k))
= (p
. m);
existence
proof
defpred
P[
object,
object] means ex m be
Nat st $1
= (m
+ k) & $2
= (p
. m);
set A = { (m
+ k) where m be
Nat : m
in (
dom p) };
A1: for e be
object st e
in A holds ex u be
object st
P[e, u]
proof
let e be
object;
assume e
in A;
then
consider m be
Nat such that
A2: e
= (m
+ k) and m
in (
dom p);
take (p
. m);
thus thesis by
A2;
end;
consider f be
Function such that
A3: (
dom f)
= A and
A4: for e be
object st e
in A holds
P[e, (f
. e)] from
CLASSES1:sch 1(
A1);
take f;
thus (
dom f)
= { (m
+ k) where m be
Nat : m
in (
dom p) } by
A3;
let m be
Nat;
assume m
in (
dom p);
then (m
+ k)
in A;
then ex j be
Nat st (m
+ k)
= (j
+ k) & (f
. (m
+ k))
= (p
. j) by
A4;
hence thesis;
end;
uniqueness
proof
let IT1,IT2 be
Function such that
A5: (
dom IT1)
= { (m
+ k) where m be
Nat : m
in (
dom p) } and
A6: for m be
Nat st m
in (
dom p) holds (IT1
. (m
+ k))
= (p
. m) and
A7: (
dom IT2)
= { (m
+ k) where m be
Nat : m
in (
dom p) } and
A8: for m be
Nat st m
in (
dom p) holds (IT2
. (m
+ k))
= (p
. m);
for x be
object st x
in (
dom IT1) holds (IT1
. x)
= (IT2
. x)
proof
let x be
object;
assume x
in (
dom IT1);
then
consider m be
Nat such that
A9: x
= (m
+ k) & m
in (
dom p) by
A5;
thus (IT1
. x)
= (p
. m) by
A6,
A9
.= (IT2
. x) by
A8,
A9;
end;
hence thesis by
A5,
A7;
end;
end
registration
let p be
Function, k be
Nat;
cluster (
Shift (p,k)) ->
NAT
-defined;
coherence
proof
A1: (
dom (
Shift (p,k)))
= { (m
+ k) where m be
Nat : m
in (
dom p) } by
Def12;
(
Shift (p,k)) is
NAT
-defined
proof
let x be
object;
assume x
in (
dom (
Shift (p,k)));
then ex m be
Nat st x
= (m
+ k) & m
in (
dom p) by
A1;
hence thesis by
ORDINAL1:def 12;
end;
hence thesis;
end;
end
theorem ::
VALUED_1:20
for P,Q be
Function, k be
Nat st P
c= Q holds (
Shift (P,k))
c= (
Shift (Q,k))
proof
let P,Q be
Function;
let k be
Nat;
assume
A1: P
c= Q;
then
A2: (
dom P)
c= (
dom Q) by
GRFUNC_1: 2;
A3: (
dom (
Shift (P,k)))
= { (m
+ k) where m be
Nat : m
in (
dom P) } by
Def12;
A4: (
dom (
Shift (Q,k)))
= { (m
+ k) where m be
Nat : m
in (
dom Q) } by
Def12;
A5:
now
let x be
object;
assume x
in (
dom (
Shift (P,k)));
then ex m1 be
Nat st x
= (m1
+ k) & m1
in (
dom P) by
A3;
hence x
in (
dom (
Shift (Q,k))) by
A2,
A4;
end;
now
let x be
object;
assume x
in (
dom (
Shift (P,k)));
then
consider m1 be
Nat such that
A6: x
= (m1
+ k) and
A7: m1
in (
dom P) by
A3;
thus ((
Shift (P,k))
. x)
= ((
Shift (P,k))
. (m1
+ k)) by
A6
.= (P
. m1) by
A7,
Def12
.= (Q
. m1) by
A1,
A7,
GRFUNC_1: 2
.= ((
Shift (Q,k))
. (m1
+ k)) by
A2,
A7,
Def12
.= ((
Shift (Q,k))
. x) by
A6;
end;
hence thesis by
A5,
GRFUNC_1: 2,
TARSKI:def 3;
end;
theorem ::
VALUED_1:21
for n,m be
Nat holds for I be
Function holds (
Shift ((
Shift (I,m)),n))
= (
Shift (I,(m
+ n)))
proof
let n,m be
Nat;
let I be
Function;
set A = { (l
+ m) where l be
Nat : l
in (
dom I) };
A1: (
dom (
Shift (I,m)))
= A by
Def12;
A2:
now
let l be
Nat;
assume
A3: l
in (
dom I);
then
A4: (l
+ m)
in (
dom (
Shift (I,m))) by
A1;
thus ((
Shift ((
Shift (I,m)),n))
. (l
+ (m
+ n)))
= ((
Shift ((
Shift (I,m)),n))
. ((l
+ m)
+ n))
.= ((
Shift (I,m))
. (l
+ m)) by
A4,
Def12
.= (I
. l) by
A3,
Def12;
end;
{ (p
+ n) where p be
Nat : p
in A }
= { (q
+ (m
+ n)) where q be
Nat : q
in (
dom I) }
proof
thus { (p
+ n) where p be
Nat : p
in A }
c= { (q
+ (m
+ n)) where q be
Nat : q
in (
dom I) }
proof
let x be
object;
assume x
in { (p
+ n) where p be
Nat : p
in A };
then
consider p be
Nat such that
A5: x
= (p
+ n) and
A6: p
in A;
consider l be
Nat such that
A7: p
= (l
+ m) and
A8: l
in (
dom I) by
A6;
x
= (l
+ (m
+ n)) by
A5,
A7;
hence thesis by
A8;
end;
let x be
object;
assume x
in { (q
+ (m
+ n)) where q be
Nat : q
in (
dom I) };
then
consider q be
Nat such that
A9: x
= (q
+ (m
+ n)) & q
in (
dom I);
x
= ((q
+ m)
+ n) & (q
+ m)
in A by
A9;
hence thesis;
end;
then (
dom (
Shift ((
Shift (I,m)),n)))
= { (l
+ (m
+ n)) where l be
Nat : l
in (
dom I) } by
A1,
Def12;
hence thesis by
A2,
Def12;
end;
theorem ::
VALUED_1:22
for s,f be
Function holds for n be
Nat holds (
Shift ((f
* s),n))
= (f
* (
Shift (s,n)))
proof
let s,f be
Function;
let n be
Nat;
A1: (
dom (f
* s))
c= (
dom s) by
RELAT_1: 25;
A2: (
dom (
Shift (s,n)))
= { (m
+ n) where m be
Nat : m
in (
dom s) } by
Def12;
now
let e be
object;
thus e
in { (m
+ n) where m be
Nat : m
in (
dom (f
* s)) } implies e
in (
dom (
Shift (s,n))) & ((
Shift (s,n))
. e)
in (
dom f)
proof
assume e
in { (m
+ n) where m be
Nat : m
in (
dom (f
* s)) };
then
consider m be
Nat such that
A3: e
= (m
+ n) and
A4: m
in (
dom (f
* s));
thus e
in (
dom (
Shift (s,n))) by
A2,
A1,
A3,
A4;
((
Shift (s,n))
. e)
= (s
. m) by
A1,
A3,
A4,
Def12;
hence thesis by
A4,
FUNCT_1: 11;
end;
assume e
in (
dom (
Shift (s,n)));
then
consider m0 be
Nat such that
A5: e
= (m0
+ n) and
A6: m0
in (
dom s) by
A2;
assume ((
Shift (s,n))
. e)
in (
dom f);
then (s
. m0)
in (
dom f) by
A5,
A6,
Def12;
then m0
in (
dom (f
* s)) by
A6,
FUNCT_1: 11;
hence e
in { (m
+ n) where m be
Nat : m
in (
dom (f
* s)) } by
A5;
end;
then ((
Shift (s,n))
" (
dom f))
= { (m
+ n) where m be
Nat : m
in (
dom (f
* s)) } by
FUNCT_1:def 7;
then
A7: (
dom (f
* (
Shift (s,n))))
= { (m
+ n) where m be
Nat : m
in (
dom (f
* s)) } by
RELAT_1: 147;
now
let m be
Nat;
assume
A8: m
in (
dom (f
* s));
then (m
+ n)
in (
dom (
Shift (s,n))) by
A2,
A1;
hence ((f
* (
Shift (s,n)))
. (m
+ n))
= (f
. ((
Shift (s,n))
. (m
+ n))) by
FUNCT_1: 13
.= (f
. (s
. m)) by
A1,
A8,
Def12
.= ((f
* s)
. m) by
A8,
FUNCT_1: 12;
end;
hence thesis by
A7,
Def12;
end;
theorem ::
VALUED_1:23
for I,J be
Function, n be
Nat holds (
Shift ((I
+* J),n))
= ((
Shift (I,n))
+* (
Shift (J,n)))
proof
let I,J be
Function, n be
Nat;
A1: (
dom (
Shift (J,n)))
= { (m
+ n) where m be
Nat : m
in (
dom J) } by
Def12;
A2:
now
let m be
Nat such that
A3: m
in (
dom (I
+* J));
per cases ;
suppose
A4: m
in (
dom J);
then (m
+ n)
in (
dom (
Shift (J,n))) by
A1;
hence (((
Shift (I,n))
+* (
Shift (J,n)))
. (m
+ n))
= ((
Shift (J,n))
. (m
+ n)) by
FUNCT_4: 13
.= (J
. m) by
A4,
Def12
.= ((I
+* J)
. m) by
A4,
FUNCT_4: 13;
end;
suppose
A5: not m
in (
dom J);
m
in ((
dom I)
\/ (
dom J)) by
A3,
FUNCT_4:def 1;
then
A6: m
in (
dom I) by
A5,
XBOOLE_0:def 3;
not ex l be
Nat st (m
+ n)
= (l
+ n) & l
in (
dom J) by
A5;
then not (m
+ n)
in (
dom (
Shift (J,n))) by
A1;
hence (((
Shift (I,n))
+* (
Shift (J,n)))
. (m
+ n))
= ((
Shift (I,n))
. (m
+ n)) by
FUNCT_4: 11
.= (I
. m) by
A6,
Def12
.= ((I
+* J)
. m) by
A5,
FUNCT_4: 11;
end;
end;
A7: (
dom (
Shift (I,n)))
= { (m
+ n) where m be
Nat : m
in (
dom I) } by
Def12;
A8: ((
dom (
Shift (I,n)))
\/ (
dom (
Shift (J,n))))
= { (m
+ n) where m be
Nat : m
in ((
dom I)
\/ (
dom J)) }
proof
hereby
let x be
object;
assume x
in ((
dom (
Shift (I,n)))
\/ (
dom (
Shift (J,n))));
then x
in (
dom (
Shift (I,n))) or x
in (
dom (
Shift (J,n))) by
XBOOLE_0:def 3;
then
consider m be
Nat such that
A9: x
= (m
+ n) & m
in (
dom J) or x
= (m
+ n) & m
in (
dom I) by
A1,
A7;
m
in ((
dom I)
\/ (
dom J)) by
A9,
XBOOLE_0:def 3;
hence x
in { (l
+ n) where l be
Nat : l
in ((
dom I)
\/ (
dom J)) } by
A9;
end;
let x be
object;
assume x
in { (m
+ n) where m be
Nat : m
in ((
dom I)
\/ (
dom J)) };
then
consider m be
Nat such that
A10: x
= (m
+ n) and
A11: m
in ((
dom I)
\/ (
dom J));
m
in (
dom I) or m
in (
dom J) by
A11,
XBOOLE_0:def 3;
then x
in (
dom (
Shift (I,n))) or x
in (
dom (
Shift (J,n))) by
A1,
A7,
A10;
hence thesis by
XBOOLE_0:def 3;
end;
(
dom (I
+* J))
= ((
dom I)
\/ (
dom J)) by
FUNCT_4:def 1;
then (
dom ((
Shift (I,n))
+* (
Shift (J,n))))
= { (m
+ n) where m be
Nat : m
in (
dom (I
+* J)) } by
A8,
FUNCT_4:def 1;
hence thesis by
A2,
Def12;
end;
theorem ::
VALUED_1:24
Th24: for p be
Function, k,il be
Nat st il
in (
dom p) holds (il
+ k)
in (
dom (
Shift (p,k)))
proof
let p be
Function, k,il be
Nat such that
A1: il
in (
dom p);
(
dom (
Shift (p,k)))
= { (loc
+ k) where loc be
Nat : loc
in (
dom p) } by
Def12;
hence thesis by
A1;
end;
theorem ::
VALUED_1:25
Th25: for p be
Function, k be
Nat holds (
rng (
Shift (p,k)))
c= (
rng p)
proof
let p be
Function, k be
Nat;
let y be
object;
assume y
in (
rng (
Shift (p,k)));
then
consider x be
object such that
A1: x
in (
dom (
Shift (p,k))) and
A2: y
= ((
Shift (p,k))
. x) by
FUNCT_1:def 3;
x
in { (m
+ k) where m be
Nat : m
in (
dom p) } by
A1,
Def12;
then
consider m be
Nat such that
A3: x
= (m
+ k) and
A4: m
in (
dom p);
(p
. m)
= ((
Shift (p,k))
. x) by
A3,
A4,
Def12;
hence thesis by
A2,
A4,
FUNCT_1:def 3;
end;
theorem ::
VALUED_1:26
for p be
Function st (
dom p)
c=
NAT holds for k be
Nat holds (
rng (
Shift (p,k)))
= (
rng p)
proof
let p be
Function such that
A1: (
dom p)
c=
NAT ;
let k be
Nat;
thus (
rng (
Shift (p,k)))
c= (
rng p) by
Th25;
let y be
object;
assume y
in (
rng p);
then
consider x be
object such that
A2: x
in (
dom p) and
A3: y
= (p
. x) by
FUNCT_1:def 3;
reconsider x as
Element of
NAT by
A1,
A2;
(x
+ k)
in (
dom (
Shift (p,k))) & ((
Shift (p,k))
. (x
+ k))
= y by
A2,
A3,
Def12,
Th24;
hence thesis by
FUNCT_1:def 3;
end;
registration
let p be
finite
Function, k be
Nat;
cluster (
Shift (p,k)) ->
finite;
coherence
proof
deffunc
F(
Nat) = ($1
+ k);
A1: (
dom p) is
finite;
A2: {
F(w) where w be
Element of
NAT : w
in (
dom p) } is
finite from
FRAENKEL:sch 21(
A1);
(
dom (
Shift (p,k)))
c= {
F(w) where w be
Element of
NAT : w
in (
dom p) }
proof
let e be
object;
assume e
in (
dom (
Shift (p,k)));
then e
in {
F(i) where i be
Nat : i
in (
dom p) } by
Def12;
then
consider i be
Nat such that
A3: e
=
F(i) & i
in (
dom p);
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
e
=
F(i) & i
in (
dom p) by
A3;
hence e
in {
F(w) where w be
Element of
NAT : w
in (
dom p) };
end;
hence thesis by
A2,
FINSET_1: 10;
end;
end
reserve e1,e2 for
ExtReal;
definition
let X be non
empty
ext-real-membered
set, s be
sequence of X;
:: original:
increasing
redefine
::
VALUED_1:def13
attr s is
increasing means for n be
Nat holds (s
. n)
< (s
. (n
+ 1));
compatibility
proof
thus s is
increasing implies for n be
Nat holds (s
. n)
< (s
. (n
+ 1))
proof
assume
A1: s is
increasing;
let n be
Nat;
A2: n
< (n
+ 1) by
NAT_1: 13;
(
dom s)
=
NAT & n
in
NAT by
FUNCT_2:def 1,
ORDINAL1:def 12;
hence thesis by
A1,
A2;
end;
assume
A3: for n be
Nat holds (s
. n)
< (s
. (n
+ 1));
let e1, e2;
assume e1
in (
dom s) & e2
in (
dom s);
then
reconsider m = e1, n = e2 as
Nat;
defpred
P[
Nat] means m
< $1 implies (s
. m)
< (s
. $1);
A4: for j be
Nat st
P[j] holds
P[(j
+ 1)]
proof
let j be
Nat such that
A5:
P[j];
assume m
< (j
+ 1);
then m
<= j by
NAT_1: 13;
then (s
. m)
< (s
. j) or m
= j by
A5,
XXREAL_0: 1;
hence thesis by
A3,
XXREAL_0: 2;
end;
assume
A6: e1
< e2;
A7:
P[
0 ];
for j be
Nat holds
P[j] from
NAT_1:sch 2(
A7,
A4);
then (s
. m)
< (s
. n) by
A6;
hence thesis;
end;
:: original:
decreasing
redefine
::
VALUED_1:def14
attr s is
decreasing means for n be
Nat holds (s
. n)
> (s
. (n
+ 1));
compatibility
proof
thus s is
decreasing implies for n be
Nat holds (s
. n)
> (s
. (n
+ 1))
proof
assume
A8: s is
decreasing;
let n be
Nat;
A9: n
< (n
+ 1) by
NAT_1: 13;
(
dom s)
=
NAT & n
in
NAT by
FUNCT_2:def 1,
ORDINAL1:def 12;
hence thesis by
A8,
A9;
end;
assume
A10: for n be
Nat holds (s
. n)
> (s
. (n
+ 1));
let e1, e2;
assume e1
in (
dom s) & e2
in (
dom s);
then
reconsider m = e1, n = e2 as
Nat;
defpred
P[
Nat] means m
< $1 implies (s
. m)
> (s
. $1);
A11: for j be
Nat st
P[j] holds
P[(j
+ 1)]
proof
let j be
Nat such that
A12:
P[j];
assume m
< (j
+ 1);
then m
<= j by
NAT_1: 13;
then (s
. m)
> (s
. j) or m
= j by
A12,
XXREAL_0: 1;
hence thesis by
A10,
XXREAL_0: 2;
end;
assume
A13: e1
< e2;
A14:
P[
0 ];
for j be
Nat holds
P[j] from
NAT_1:sch 2(
A14,
A11);
then (s
. m)
> (s
. n) by
A13;
hence thesis;
end;
:: original:
non-decreasing
redefine
::
VALUED_1:def15
attr s is
non-decreasing means for n be
Nat holds (s
. n)
<= (s
. (n
+ 1));
compatibility
proof
thus s is
non-decreasing implies for n be
Nat holds (s
. n)
<= (s
. (n
+ 1))
proof
assume
A15: s is
non-decreasing;
let n be
Nat;
A16: n
< (n
+ 1) by
NAT_1: 13;
(
dom s)
=
NAT & n
in
NAT by
FUNCT_2:def 1,
ORDINAL1:def 12;
hence thesis by
A15,
A16;
end;
assume
A17: for n be
Nat holds (s
. n)
<= (s
. (n
+ 1));
let e1, e2;
assume e1
in (
dom s) & e2
in (
dom s);
then
reconsider m = e1, n = e2 as
Nat;
defpred
P[
Nat] means m
<= $1 implies (s
. m)
<= (s
. $1);
A18: for j be
Nat st
P[j] holds
P[(j
+ 1)]
proof
let j be
Nat such that
A19:
P[j];
assume m
<= (j
+ 1);
then
A20: m
< (j
+ 1) or m
= (j
+ 1) by
XXREAL_0: 1;
(s
. j)
<= (s
. (j
+ 1)) by
A17;
hence thesis by
A19,
A20,
NAT_1: 13,
XXREAL_0: 2;
end;
assume
A21: e1
<= e2;
A22:
P[
0 ];
for j be
Nat holds
P[j] from
NAT_1:sch 2(
A22,
A18);
then (s
. m)
<= (s
. n) by
A21;
hence thesis;
end;
:: original:
non-increasing
redefine
::
VALUED_1:def16
attr s is
non-increasing means for n be
Nat holds (s
. n)
>= (s
. (n
+ 1));
compatibility
proof
thus s is
non-increasing implies for n be
Nat holds (s
. n)
>= (s
. (n
+ 1))
proof
assume
A23: s is
non-increasing;
let n be
Nat;
A24: n
< (n
+ 1) by
NAT_1: 13;
(
dom s)
=
NAT & n
in
NAT by
FUNCT_2:def 1,
ORDINAL1:def 12;
hence thesis by
A23,
A24;
end;
assume
A25: for n be
Nat holds (s
. n)
>= (s
. (n
+ 1));
let e1, e2;
assume e1
in (
dom s) & e2
in (
dom s);
then
reconsider m = e1, n = e2 as
Nat;
defpred
P[
Nat] means m
<= $1 implies (s
. m)
>= (s
. $1);
A26: for j be
Nat st
P[j] holds
P[(j
+ 1)]
proof
let j be
Nat such that
A27:
P[j];
assume m
<= (j
+ 1);
then
A28: m
< (j
+ 1) or m
= (j
+ 1) by
XXREAL_0: 1;
(s
. j)
>= (s
. (j
+ 1)) by
A25;
hence thesis by
A27,
A28,
NAT_1: 13,
XXREAL_0: 2;
end;
assume
A29: e1
<= e2;
A30:
P[
0 ];
for j be
Nat holds
P[j] from
NAT_1:sch 2(
A30,
A26);
then (s
. m)
>= (s
. n) by
A29;
hence thesis;
end;
end
scheme ::
VALUED_1:sch1
SubSeqChoice { X() -> non
empty
set , S() ->
sequence of X() , P[
set] } :
ex S1 be
subsequence of S() st for n be
Element of
NAT holds P[(S1
. n)]
provided
A1: for n be
Element of
NAT holds ex m be
Element of
NAT st n
<= m & P[(S()
. m)];
defpred
P1[
set,
set,
set] means $3
in
NAT & (for m,k be
Element of
NAT st m
= $2 & k
= $3 holds m
< k & P[(S()
. k)]);
consider n0 be
Element of
NAT such that
0
<= n0 and
A2: P[(S()
. n0)] by
A1;
A3: for n be
Nat holds for x be
set holds ex y be
set st
P1[n, x, y]
proof
let n be
Nat, x be
set;
per cases ;
suppose x
in
NAT ;
then
reconsider mx = x as
Element of
NAT ;
consider my be
Element of
NAT such that
A4: (mx
+ 1)
<= my & P[(S()
. my)] by
A1;
take my;
thus my
in
NAT ;
thus thesis by
A4,
NAT_1: 13;
end;
suppose
A5: not x
in
NAT ;
take
0 ;
set y =
0 ;
thus y
in
NAT ;
let m,k be
Element of
NAT ;
assume that
A6: m
= x and k
= y;
thus thesis by
A5,
A6;
end;
end;
consider g be
Function such that
A7: (
dom g)
=
NAT and
A8: (g
.
0 )
= n0 and
A9: for n be
Nat holds
P1[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 1(
A3);
(
rng g)
c=
NAT
proof
defpred
P[
Nat] means (g
. $1)
in
NAT ;
let y be
object;
assume y
in (
rng g);
then
consider x be
object such that
A10: x
in (
dom g) and
A11: (g
. x)
= y by
FUNCT_1:def 3;
reconsider n = x as
Element of
NAT by
A7,
A10;
A12: for k be
Nat holds
P[k] implies
P[(k
+ 1)] by
A9;
A13:
P[
0 ] by
A8;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A13,
A12);
then (g
. n)
in
NAT ;
hence thesis by
A11;
end;
then
reconsider g as
sequence of
NAT by
A7,
FUNCT_2: 2;
g is
increasing by
A9;
then
reconsider g as
increasing
sequence of
NAT ;
reconsider S1 = (S()
* g) as
sequence of X();
A14: (
dom S1)
=
NAT by
FUNCT_2:def 1;
reconsider S1 as
subsequence of S();
take S1;
thus for n be
Element of
NAT holds P[(S1
. n)]
proof
let n be
Element of
NAT ;
per cases ;
suppose n
=
0 ;
hence thesis by
A2,
A8,
A14,
FUNCT_1: 12;
end;
suppose n
<>
0 ;
then n
>= (
0 qua
Nat
+ 1) by
NAT_1: 13;
then
reconsider n9 = (n
- 1) as
Element of
NAT by
INT_1: 5;
reconsider k = (g
. (n9
+ 1)) as
Element of
NAT ;
for m,k be
Element of
NAT st m
= (g
. n9) & k
= (g
. (n9
+ 1)) holds P[(S()
. k)] by
A9;
then P[(S()
. k)];
hence thesis by
A14,
FUNCT_1: 12;
end;
end;
end;
theorem ::
VALUED_1:27
for k be
Nat holds for F be
NAT
-defined
Function holds ((
dom F),(
dom (
Shift (F,k))))
are_equipotent
proof
let k be
Nat;
let F be
NAT
-defined
Function;
defpred
P[
object,
object] means ex il be
Element of
NAT st $1
= il & $2
= (k
+ il);
A1: for e be
object st e
in (
dom F) holds ex u be
object st
P[e, u]
proof
let e be
object;
assume e
in (
dom F);
then
reconsider e as
Element of
NAT ;
take (k
+ e), e;
thus thesis;
end;
consider f be
Function such that
A2: (
dom f)
= (
dom F) and
A3: for x be
object st x
in (
dom F) holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
take f;
hereby
let x1,x2 be
object such that
A4: x1
in (
dom f) and
A5: x2
in (
dom f) and
A6: (f
. x1)
= (f
. x2);
consider i1 be
Element of
NAT such that
A7: x1
= i1 and
A8: (f
. x1)
= (k
+ i1) by
A2,
A3,
A4;
consider i2 be
Element of
NAT such that
A9: x2
= i2 and
A10: (f
. x2)
= (k
+ i2) by
A2,
A3,
A5;
thus x1
= x2 by
A7,
A6,
A8,
A10,
A9;
end;
thus (
dom f)
= (
dom F) by
A2;
A11: (
dom (
Shift (F,k)))
= { (m
+ k) where m be
Nat : m
in (
dom F) } by
Def12;
hereby
let y be
object;
assume y
in (
rng f);
then
consider x be
object such that
A12: x
in (
dom f) and
A13: (f
. x)
= y by
FUNCT_1:def 3;
consider il be
Element of
NAT such that
A14: x
= il and
A15: (f
. x)
= (k
+ il) by
A2,
A3,
A12;
thus y
in (
dom (
Shift (F,k))) by
A2,
A11,
A12,
A13,
A14,
A15;
end;
let y be
object;
assume y
in (
dom (
Shift (F,k)));
then
consider m be
Nat such that
A16: y
= (m
+ k) and
A17: m
in (
dom F) by
A11;
consider il be
Element of
NAT such that
A18: m
= il and
A19: (f
. m)
= (k
+ il) by
A3,
A17;
thus thesis by
A2,
A16,
A17,
A18,
A19,
FUNCT_1:def 3;
end;
registration
let F be
NAT
-defined
Function;
reduce (
Shift (F,
0 )) to F;
reducibility
proof
A1: (
dom F)
= { (m
+
0 qua
Nat) where m be
Nat : m
in (
dom F) }
proof
hereby
let a be
object;
assume
A2: a
in (
dom F);
then
reconsider l = a as
Element of
NAT ;
a
= (l qua
Nat
+
0 qua
Complex);
hence a
in { (m
+
0 qua
Nat) where m be
Nat : m
in (
dom F) } by
A2;
end;
let a be
object;
assume a
in { (m
+
0 qua
Complex) where m be
Nat : m
in (
dom F) };
then ex m be
Nat st a
= (m
+
0 qua
Complex) & m
in (
dom F);
hence thesis;
end;
for m be
Nat st m
in (
dom F) holds (F
. (m
+
0 qua
Complex))
= (F
. m);
hence thesis by
A1,
Def12;
end;
end
registration
let X be non
empty
set;
let F be X
-valued
Function, k be
Nat;
cluster (
Shift (F,k)) -> X
-valued;
coherence
proof
A1: (
dom (
Shift (F,k)))
= { (m
+ k) where m be
Nat : m
in (
dom F) } by
Def12;
thus (
rng (
Shift (F,k)))
c= X
proof
let x be
object;
assume x
in (
rng (
Shift (F,k)));
then
consider y be
object such that
A2: y
in (
dom (
Shift (F,k))) and
A3: x
= ((
Shift (F,k))
. y) by
FUNCT_1:def 3;
consider m be
Nat such that
A4: y
= (m
+ k) and
A5: m
in (
dom F) by
A2,
A1;
((
Shift (F,k))
. (m
+ k))
= (F
. m) by
A5,
Def12
.= (F
/. m) by
A5,
PARTFUN1:def 6;
hence x
in X by
A3,
A4;
end;
end;
end
registration
cluster non
empty
NAT
-defined for
Function;
existence
proof
take (
id
NAT );
thus thesis;
end;
end
registration
let F be
empty
Function, k be
Nat;
cluster (
Shift (F,k)) ->
empty;
coherence
proof
A1: (
dom (
Shift (F,k)))
= { (m
+ k) where m be
Nat : m
in (
dom F) } by
Def12;
assume (
Shift (F,k)) is non
empty;
then
reconsider f = (
Shift (F,k)) as non
empty
Function;
(
dom f) is non
empty;
then
consider a be
object such that
A2: a
in (
dom (
Shift (F,k)));
ex m be
Nat st a
= (m
+ k) & m
in (
dom F) by
A1,
A2;
hence thesis;
end;
end
registration
let F be non
empty
NAT
-defined
Function, k be
Nat;
cluster (
Shift (F,k)) -> non
empty;
coherence
proof
A1: (
dom (
Shift (F,k)))
= { (m
+ k) where m be
Nat : m
in (
dom F) } by
Def12;
consider a be
object such that
A2: a
in (
dom F) by
XBOOLE_0:def 1;
reconsider a as
Element of
NAT by
A2;
consider m be
Nat such that
A3: a
= m;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
(m
+ k)
in (
dom (
Shift (F,k))) by
A1,
A2,
A3;
hence thesis;
end;
end
::$Canceled
theorem ::
VALUED_1:29
for F be
Function, k be
Nat st k
>
0 holds not
0
in (
dom (
Shift (F,k)))
proof
let F be
Function, k be
Nat such that
A1: k
>
0 and
A2:
0
in (
dom (
Shift (F,k)));
(
dom (
Shift (F,k)))
= { (m
+ k) where m be
Nat : m
in (
dom F) } by
Def12;
then ex m be
Nat st
0
= (m
+ k) & m
in (
dom F) by
A2;
hence contradiction by
A1;
end;
registration
cluster
NAT
-defined
finite non
empty for
Function;
existence
proof
take f = (
0
.-->
0 );
thus (
dom f)
c=
NAT by
ZFMISC_1: 31;
thus thesis;
end;
end
registration
let F be
NAT
-defined
Relation;
cluster (
dom F) ->
natural-membered;
coherence ;
end
definition
let F be non
empty
NAT
-defined
finite
Function;
::
VALUED_1:def17
func
LastLoc F ->
Element of
NAT equals (
max (
dom F));
coherence by
ORDINAL1:def 12;
end
definition
let F be non
empty
NAT
-defined
finite
Function;
::
VALUED_1:def18
func
CutLastLoc F ->
Function equals (F
\ ((
LastLoc F)
.--> (F
. (
LastLoc F))));
coherence ;
end
registration
let F be non
empty
NAT
-defined
finite
Function;
cluster (
CutLastLoc F) ->
NAT
-defined
finite;
coherence ;
end
theorem ::
VALUED_1:30
for F be non
empty
NAT
-defined
finite
Function holds (
LastLoc F)
in (
dom F) by
XXREAL_2:def 8;
theorem ::
VALUED_1:31
for F,G be non
empty
NAT
-defined
finite
Function st F
c= G holds (
LastLoc F)
<= (
LastLoc G) by
RELAT_1: 11,
XXREAL_2: 59;
theorem ::
VALUED_1:32
for F be non
empty
NAT
-defined
finite
Function, l be
Element of
NAT st l
in (
dom F) holds l
<= (
LastLoc F) by
XXREAL_2:def 8;
definition
let F be non
empty
NAT
-defined
Function;
::
VALUED_1:def19
func
FirstLoc F ->
Element of
NAT equals (
min (
dom F));
coherence by
ORDINAL1:def 12;
end
theorem ::
VALUED_1:33
for F be non
empty
NAT
-defined
finite
Function holds (
FirstLoc F)
in (
dom F) by
XXREAL_2:def 7;
theorem ::
VALUED_1:34
for F,G be non
empty
NAT
-defined
finite
Function st F
c= G holds (
FirstLoc G)
<= (
FirstLoc F) by
RELAT_1: 11,
XXREAL_2: 60;
theorem ::
VALUED_1:35
for l1 be
Element of
NAT holds for F be non
empty
NAT
-defined
finite
Function st l1
in (
dom F) holds (
FirstLoc F)
<= l1 by
XXREAL_2:def 7;
theorem ::
VALUED_1:36
Th35: for F be non
empty
NAT
-defined
finite
Function holds (
dom (
CutLastLoc F))
= ((
dom F)
\
{(
LastLoc F)})
proof
let F be non
empty
NAT
-defined
finite
Function;
A1: (
dom ((
LastLoc F)
.--> (F
. (
LastLoc F))))
=
{(
LastLoc F)};
reconsider R =
{
[(
LastLoc F), (F
. (
LastLoc F))]} as
Relation;
A2: R
= ((
LastLoc F)
.--> (F
. (
LastLoc F))) by
FUNCT_4: 82;
then
A3: (
dom R)
=
{(
LastLoc F)};
thus (
dom (
CutLastLoc F))
c= ((
dom F)
\
{(
LastLoc F)})
proof
let x be
object;
assume x
in (
dom (
CutLastLoc F));
then
consider y be
object such that
A4:
[x, y]
in (F
\ R) by
A2,
XTUPLE_0:def 12;
A5: not
[x, y]
in R by
A4,
XBOOLE_0:def 5;
A6: x
in (
dom F) by
A4,
XTUPLE_0:def 12;
per cases by
A5,
TARSKI:def 1;
suppose x
<> (
LastLoc F);
then not x
in (
dom R) by
A3,
TARSKI:def 1;
hence thesis by
A2,
A6,
XBOOLE_0:def 5;
end;
suppose
A7: y
<> (F
. (
LastLoc F));
now
assume x
in (
dom R);
then x
= (
LastLoc F) by
A3,
TARSKI:def 1;
hence contradiction by
A4,
A7,
FUNCT_1: 1;
end;
hence thesis by
A2,
A6,
XBOOLE_0:def 5;
end;
end;
thus thesis by
A1,
XTUPLE_0: 25;
end;
theorem ::
VALUED_1:37
for F be non
empty
NAT
-defined
finite
Function holds (
dom F)
= ((
dom (
CutLastLoc F))
\/
{(
LastLoc F)})
proof
let F be non
empty
NAT
-defined
finite
Function;
(
LastLoc F)
in (
dom F) by
XXREAL_2:def 8;
then
A1:
{(
LastLoc F)}
c= (
dom F) by
ZFMISC_1: 31;
(
dom (
CutLastLoc F))
= ((
dom F)
\
{(
LastLoc F)}) by
Th35;
hence thesis by
A1,
XBOOLE_1: 45;
end;
registration
cluster 1
-element
NAT
-defined
finite for
Function;
existence
proof
take (
0
.-->
0 );
thus thesis;
end;
end
registration
let F be 1
-element
NAT
-defined
finite
Function;
cluster (
CutLastLoc F) ->
empty;
coherence
proof
(
LastLoc F)
in (
dom F) by
XXREAL_2:def 8;
then
A1:
[(
LastLoc F), (F
. (
LastLoc F))]
in F by
FUNCT_1:def 2;
assume not thesis;
then
consider a be
object such that
A2: a
in (
CutLastLoc F);
A3: a
=
[(
LastLoc F), (F
. (
LastLoc F))] by
A1,
A2,
ZFMISC_1:def 10;
not a
in ((
LastLoc F)
.--> (F
. (
LastLoc F))) by
A2,
XBOOLE_0:def 5;
then not a
in
{
[(
LastLoc F), (F
. (
LastLoc F))]} by
FUNCT_4: 82;
hence thesis by
A3,
TARSKI:def 1;
end;
end
theorem ::
VALUED_1:38
Th37: for F be non
empty
NAT
-defined
finite
Function holds (
card (
CutLastLoc F))
= ((
card F)
- 1)
proof
let F be non
empty
NAT
-defined
finite
Function;
((
LastLoc F)
.--> (F
. (
LastLoc F)))
c= F
proof
let a,b be
object;
assume
[a, b]
in ((
LastLoc F)
.--> (F
. (
LastLoc F)));
then
[a, b]
in
{
[(
LastLoc F), (F
. (
LastLoc F))]} by
FUNCT_4: 82;
then
A1:
[a, b]
=
[(
LastLoc F), (F
. (
LastLoc F))] by
TARSKI:def 1;
(
LastLoc F)
in (
dom F) by
XXREAL_2:def 8;
hence thesis by
A1,
FUNCT_1:def 2;
end;
hence (
card (
CutLastLoc F))
= ((
card F)
- (
card ((
LastLoc F)
.--> (F
. (
LastLoc F))))) by
CARD_2: 44
.= ((
card F)
- (
card
{
[(
LastLoc F), (F
. (
LastLoc F))]})) by
FUNCT_4: 82
.= ((
card F)
- 1) by
CARD_1: 30;
end;
begin
registration
let X be
set, f be X
-defined
complex-valued
Function;
cluster (
- f) -> X
-defined;
coherence
proof
A1: (
dom (
- f))
= (
dom f) by
Def5;
thus (
dom (
- f))
c= X by
A1;
end;
cluster (f
" ) -> X
-defined;
coherence
proof
A2: (
dom (f
" ))
= (
dom f) by
Def7;
thus (
dom (f
" ))
c= X by
A2;
end;
cluster (f
^2 ) -> X
-defined;
coherence
proof
A3: (
dom (f
^2 ))
= (
dom f) by
Th11;
thus (
dom (f
^2 ))
c= X by
A3;
end;
cluster
|.f.| -> X
-defined;
coherence
proof
A4: (
dom
|.f.|)
= (
dom f) by
Def11;
thus (
dom
|.f.|)
c= X by
A4;
end;
end
registration
let X be
set;
cluster
total for X
-defined
natural-valued
Function;
existence
proof
take the
total
PartFunc of X,
NAT ;
thus thesis;
end;
end
registration
let X be
set, f be
totalX
-defined
complex-valued
Function;
cluster (
- f) ->
total;
coherence
proof
A1: (
dom (
- f))
= (
dom f) by
Def5;
(
dom f)
= X by
PARTFUN1:def 2;
hence thesis by
A1,
PARTFUN1:def 2;
end;
cluster (f
" ) ->
total;
coherence
proof
A2: (
dom (f
" ))
= (
dom f) by
Def7;
(
dom f)
= X by
PARTFUN1:def 2;
hence thesis by
A2,
PARTFUN1:def 2;
end;
cluster (f
^2 ) ->
total;
coherence
proof
A3: (
dom (f
^2 ))
= (
dom f) by
Th11;
(
dom f)
= X by
PARTFUN1:def 2;
hence thesis by
A3,
PARTFUN1:def 2;
end;
cluster
|.f.| ->
total;
coherence
proof
A4: (
dom
|.f.|)
= (
dom f) by
Def11;
(
dom f)
= X by
PARTFUN1:def 2;
hence thesis by
A4,
PARTFUN1:def 2;
end;
end
registration
let X be
set, f be X
-defined
complex-valued
Function, r be
Complex;
cluster (r
+ f) -> X
-defined;
coherence
proof
A1: (
dom (r
+ f))
= (
dom f) by
Def2;
thus (
dom (r
+ f))
c= X by
A1;
end;
cluster (f
- r) -> X
-defined;
coherence ;
cluster (r
(#) f) -> X
-defined;
coherence
proof
A2: (
dom (r
(#) f))
= (
dom f) by
Def5;
thus (
dom (r
(#) f))
c= X by
A2;
end;
end
registration
let X be
set, f be
totalX
-defined
complex-valued
Function, r be
Complex;
cluster (r
+ f) ->
total;
coherence
proof
A1: (
dom (r
+ f))
= (
dom f) by
Def2;
(
dom f)
= X by
PARTFUN1:def 2;
hence thesis by
A1,
PARTFUN1:def 2;
end;
cluster (f
- r) ->
total;
coherence ;
cluster (r
(#) f) ->
total;
coherence
proof
A2: (
dom (r
(#) f))
= (
dom f) by
Def5;
(
dom f)
= X by
PARTFUN1:def 2;
hence thesis by
A2,
PARTFUN1:def 2;
end;
end
registration
let X be
set, f1 be
complex-valued
Function;
let f2 be X
-defined
complex-valued
Function;
cluster (f1
+ f2) -> X
-defined;
coherence
proof
A1: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
Def1;
thus (
dom (f1
+ f2))
c= X by
A1;
end;
cluster (f1
- f2) -> X
-defined;
coherence ;
cluster (f1
(#) f2) -> X
-defined;
coherence
proof
A2: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def4;
thus (
dom (f1
(#) f2))
c= X by
A2;
end;
cluster (f1
/" f2) -> X
-defined;
coherence ;
end
registration
let X be
set;
let f1,f2 be
totalX
-defined
complex-valued
Function;
cluster (f1
+ f2) ->
total;
coherence
proof
A1: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
Def1;
(
dom f1)
= X & (
dom f2)
= X by
PARTFUN1:def 2;
hence thesis by
A1,
PARTFUN1:def 2;
end;
cluster (f1
- f2) ->
total;
coherence ;
cluster (f1
(#) f2) ->
total;
coherence
proof
A2: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def4;
(
dom f1)
= X & (
dom f2)
= X by
PARTFUN1:def 2;
hence thesis by
A2,
PARTFUN1:def 2;
end;
cluster (f1
/" f2) ->
total;
coherence ;
end
registration
let X be non
empty
set;
let F be X
-valued non
empty
NAT
-defined
finite
Function;
cluster (
CutLastLoc F) -> X
-valued;
coherence ;
end
theorem ::
VALUED_1:39
for f be
Function holds for i,n be
Nat st i
in (
dom (
Shift (f,n))) holds ex j be
Nat st j
in (
dom f) & i
= (j
+ n)
proof
let f be
Function;
let i,n be
Nat;
A1: (
dom (
Shift (f,n)))
= { (m
+ n) where m be
Nat : m
in (
dom f) } by
Def12;
assume i
in (
dom (
Shift (f,n)));
then ex m be
Nat st i
= (m
+ n) & m
in (
dom f) by
A1;
hence ex j be
Nat st j
in (
dom f) & i
= (j
+ n);
end;
registration
let p be
FinSubsequence;
let i be
Nat;
cluster (
Shift (p,i)) ->
FinSubsequence-like;
coherence
proof
set X = { (k
+ i) where k be
Nat : k
in (
dom p) }, f = (
Shift (p,i));
consider K be
Nat such that
A1: (
dom p)
c= (
Seg K) by
FINSEQ_1:def 12;
A2: (
dom f)
= X by
Def12;
X
c= (
Seg (i
+ K))
proof
let x be
object;
assume x
in X;
then
consider k be
Nat such that
A3: x
= (k
+ i) and
A4: k
in (
dom p);
A5: (i
+ k)
>= k by
NAT_1: 11;
A6: k
>= 1 by
A1,
A4,
FINSEQ_1: 1;
A7: k
<= K by
A1,
A4,
FINSEQ_1: 1;
(i
+ k)
>= 1 by
A5,
A6,
XXREAL_0: 2;
hence thesis by
A3,
A7,
FINSEQ_1: 1,
XREAL_1: 6;
end;
hence f is
FinSubsequence-like by
A2;
end;
end
reserve i for
Nat,
k,k1,k2,j1 for
Element of
NAT ,
x,x1,x2,y for
set;
theorem ::
VALUED_1:40
Th39: for p be
FinSequence holds (
dom (
Shift (p,i)))
= { j1 where j1 be
Nat : (i
+ 1)
<= j1 & j1
<= (i
+ (
len p)) }
proof
let p be
FinSequence;
A1: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3
.= { k where k be
Nat : 1
<= k & k
<= (
len p) };
set X = { j1 where j1 be
Nat : (i
+ 1)
<= j1 & j1
<= (i
+ (
len p)) };
A2: (
dom (
Shift (p,i)))
= { (k1
+ i) where k1 be
Nat : k1
in (
dom p) } by
Def12;
thus (
dom (
Shift (p,i)))
c= X
proof
let x be
object;
assume x
in (
dom (
Shift (p,i)));
then
consider k1 be
Nat such that
A3: x
= (k1
+ i) and
A4: k1
in (
dom p) by
A2;
consider k be
Nat such that
A5: k1
= k and
A6: 1
<= k and
A7: k
<= (
len p) by
A1,
A4;
A8: (i
+ 1)
<= (i
+ k) by
A6,
XREAL_1: 7;
(i
+ k)
<= (i
+ (
len p)) by
A7,
XREAL_1: 7;
hence thesis by
A3,
A5,
A8;
end;
let x be
object;
assume x
in X;
then
consider j1 be
Nat such that
A9: x
= j1 and
A10: (i
+ 1)
<= j1 and
A11: j1
<= (i
+ (
len p));
(i
+
0 qua
Nat)
<= (i
+ 1) by
XREAL_1: 7;
then
consider k2 be
Nat such that
A12: j1
= (i
+ k2) by
A10,
NAT_1: 10,
XXREAL_0: 2;
A13: 1
<= k2 by
A10,
A12,
XREAL_1: 6;
k2
<= (
len p) by
A11,
A12,
XREAL_1: 6;
then k2
in (
dom p) by
A1,
A13;
hence thesis by
A2,
A9,
A12;
end;
theorem ::
VALUED_1:41
Th40: for q be
FinSubsequence holds ex ss be
FinSubsequence st (
dom ss)
= (
dom q) & (
rng ss)
= (
dom (
Shift (q,i))) & (for k st k
in (
dom q) holds (ss
. k)
= (i
+ k)) & ss is
one-to-one
proof
let q be
FinSubsequence;
consider n be
Nat such that
A1: (
dom q)
c= (
Seg n) by
FINSEQ_1:def 12;
defpred
P[
object,
object] means ex k st k
= $1 & $2
= (i
+ k);
A2: for x be
object st x
in (
dom q) holds ex y be
object st
P[x, y]
proof
let x be
object;
assume x
in (
dom q);
then
reconsider x as
Element of
NAT ;
take (i
+ x);
thus thesis;
end;
consider f be
Function such that
A3: (
dom f)
= (
dom q) and
A4: for x be
object st x
in (
dom q) holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A2);
reconsider ss = f as
FinSubsequence by
A1,
A3,
FINSEQ_1:def 12;
A5: (
dom (
Shift (q,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q) } by
Def12;
A6: (
rng ss)
= (
dom (
Shift (q,i)))
proof
thus (
rng ss)
c= (
dom (
Shift (q,i)))
proof
let y be
object;
assume y
in (
rng ss);
then
consider x be
object such that
A7: x
in (
dom ss) and
A8: y
= (ss
. x) by
FUNCT_1:def 3;
ex k1 st (k1
= x) & ((ss
. x)
= (i
+ k1)) by
A3,
A4,
A7;
hence thesis by
A3,
A5,
A7,
A8;
end;
let y be
object;
assume y
in (
dom (
Shift (q,i)));
then
consider k2 be
Nat such that
A9: y
= (k2
+ i) and
A10: k2
in (
dom q) by
A5;
ex k3 be
Element of
NAT st (k3
= k2) & ((ss
. k2)
= (i
+ k3)) by
A4,
A10;
hence thesis by
A3,
A9,
A10,
FUNCT_1:def 3;
end;
A11: for k st k
in (
dom q) holds (ss
. k)
= (i
+ k)
proof
let k;
assume k
in (
dom q);
then ex k1 st (k1
= k) & ((ss
. k)
= (i
+ k1)) by
A4;
hence thesis;
end;
for x1,x2 be
object st x1
in (
dom ss) & x2
in (
dom ss) & (ss
. x1)
= (ss
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A12: x1
in (
dom ss) and
A13: x2
in (
dom ss) and
A14: (ss
. x1)
= (ss
. x2);
A15: ex k1 st (k1
= x1) & ((ss
. x1)
= (i
+ k1)) by
A3,
A4,
A12;
ex k2 st (k2
= x2) & ((ss
. x2)
= (i
+ k2)) by
A3,
A4,
A13;
hence thesis by
A14,
A15;
end;
then ss is
one-to-one;
hence thesis by
A3,
A6,
A11;
end;
Lm5: for p be
FinSequence holds ex fs be
FinSequence st (
dom fs)
= (
dom p) & (
rng fs)
= (
dom (
Shift (p,i))) & (for k st k
in (
dom p) holds (fs
. k)
= (i
+ k)) & fs is
one-to-one
proof
let p be
FinSequence;
consider ss be
FinSubsequence such that
A1: (
dom ss)
= (
dom p) and
A2: (
rng ss)
= (
dom (
Shift (p,i))) and
A3: for k st k
in (
dom p) holds (ss
. k)
= (i
+ k) and
A4: ss is
one-to-one by
Th40;
(
dom ss)
= (
Seg (
len p)) by
A1,
FINSEQ_1:def 3;
then
reconsider fs = ss as
FinSequence by
FINSEQ_1:def 2;
(
dom fs)
= (
dom p) by
A1;
hence thesis by
A2,
A3,
A4;
end;
theorem ::
VALUED_1:42
Th41: for q be
FinSubsequence holds (
card q)
= (
card (
Shift (q,i)))
proof
let q be
FinSubsequence;
ex ss be
FinSubsequence st ((
dom ss)
= (
dom q)) & ((
rng ss)
= (
dom (
Shift (q,i)))) & (for k st k
in (
dom q) holds (ss
. k)
= (i
+ k)) & (ss is
one-to-one) by
Th40;
then
A1: ((
dom q),(
dom (
Shift (q,i))))
are_equipotent ;
A2: (
card (
dom q))
= (
card q) by
CARD_1: 62;
(
card (
dom (
Shift (q,i))))
= (
card (
Shift (q,i))) by
CARD_1: 62;
hence thesis by
A1,
A2,
CARD_1: 5;
end;
theorem ::
VALUED_1:43
Th42: for p be
FinSequence holds (
dom p)
= (
dom (
Seq (
Shift (p,i))))
proof
let p be
FinSequence;
A1: (
rng (
Sgm (
dom (
Shift (p,i)))))
= (
dom (
Shift (p,i))) by
FINSEQ_1: 50;
A2: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A3: (
dom (
Sgm (
dom (
Shift (p,i)))))
= (
Seg (
len (
Sgm (
dom (
Shift (p,i)))))) by
FINSEQ_1:def 3;
ex k be
Nat st ((
dom (
Shift (p,i)))
c= (
Seg k)) by
FINSEQ_1:def 12;
then
A4: (
len (
Sgm (
dom (
Shift (p,i)))))
= (
card (
dom (
Shift (p,i)))) by
FINSEQ_3: 39;
(
card (
dom (
Shift (p,i))))
= (
card (
Shift (p,i))) by
CARD_1: 62;
then (
card (
dom (
Shift (p,i))))
= (
len p) by
Th41;
hence thesis by
A1,
A2,
A3,
A4,
RELAT_1: 27;
end;
theorem ::
VALUED_1:44
Th43: for p be
FinSequence st k
in (
dom p) holds ((
Sgm (
dom (
Shift (p,i))))
. k)
= (i
+ k)
proof
let p be
FinSequence;
assume
A1: k
in (
dom p);
consider fs be
FinSequence such that
A2: (
dom fs)
= (
dom p) and
A3: (
rng fs)
= (
dom (
Shift (p,i))) and
A4: for j st j
in (
dom p) holds (fs
. j)
= (i
+ j) and fs is
one-to-one by
Lm5;
A5: ex l be
Nat st ((
dom (
Shift (p,i)))
c= (
Seg l)) by
FINSEQ_1:def 12;
reconsider fs as
FinSequence of
NAT by
A3,
FINSEQ_1:def 4;
for n,m,k1,k2 be
Nat st 1
<= n & n
< m & m
<= (
len fs) & k1
= (fs
. n) & k2
= (fs
. m) holds k1
< k2
proof
let n,m,k1,k2 be
Nat;
assume that
A6: 1
<= n and
A7: n
< m and
A8: m
<= (
len fs) and
A9: k1
= (fs
. n) and
A10: k2
= (fs
. m);
reconsider n, m as
Element of
NAT by
ORDINAL1:def 12;
A11: (
dom fs)
= (
Seg (
len fs)) by
FINSEQ_1:def 3
.= { n1 where n1 be
Nat : 1
<= n1 & n1
<= (
len fs) };
(n
+ 1)
<= m by
A7,
INT_1: 7;
then (n
+ 1)
<= (
len fs) by
A8,
XXREAL_0: 2;
then
A12: n
<= ((
len fs)
- 1) by
XREAL_1: 19;
((
len fs)
+
0 qua
Nat)
<= ((
len fs)
+ 1) by
XREAL_1: 7;
then ((
len fs)
- 1)
<= (
len fs) by
XREAL_1: 20;
then n
<= (
len fs) by
A12,
XXREAL_0: 2;
then
A13: n
in (
dom p) by
A2,
A6,
A11;
1
<= m by
A6,
A7,
XXREAL_0: 2;
then
A14: m
in (
dom p) by
A2,
A8,
A11;
A15: k1
= (i
+ n) by
A4,
A9,
A13;
k2
= (i
+ m) by
A4,
A10,
A14;
hence thesis by
A7,
A15,
XREAL_1: 8;
end;
then fs
= (
Sgm (
dom (
Shift (p,i)))) by
A3,
A5,
FINSEQ_1:def 13;
hence thesis by
A1,
A4;
end;
theorem ::
VALUED_1:45
Th44: for p be
FinSequence st k
in (
dom p) holds ((
Seq (
Shift (p,i)))
. k)
= (p
. k)
proof
let p be
FinSequence;
assume
A1: k
in (
dom p);
then
A2: k
in (
dom (
Seq (
Shift (p,i)))) by
Th42;
(((
Shift (p,i))
* (
Sgm (
dom (
Shift (p,i)))))
. k)
= ((
Shift (p,i))
. ((
Sgm (
dom (
Shift (p,i))))
. k)) by
A2,
FUNCT_1: 12
.= ((
Shift (p,i))
. (i
+ k)) by
A1,
Th43;
hence thesis by
A1,
Def12;
end;
theorem ::
VALUED_1:46
for p be
FinSequence holds (
Seq (
Shift (p,i)))
= p
proof
let p be
FinSequence;
A1: (
dom (
Seq (
Shift (p,i))))
= (
dom p) by
Th42;
for x be
object holds x
in (
dom p) implies ((
Seq (
Shift (p,i)))
. x)
= (p
. x) by
Th44;
hence thesis by
A1;
end;
reserve p1,p2 for
FinSequence;
Lm6: for j,k,l be
Nat st 1
<= j & j
<= l or (l
+ 1)
<= j & j
<= (l
+ k) holds 1
<= j & j
<= (l
+ k)
proof
let j,k,l be
Nat;
assume that
A1: 1
<= j & j
<= l or (l
+ 1)
<= j & j
<= (l
+ k);
per cases by
A1;
suppose
A2: 1
<= j & j
<= l;
(l
+
0 qua
Nat)
<= (l
+ k) by
XREAL_1: 7;
hence thesis by
A2,
XXREAL_0: 2;
end;
suppose
A3: (l
+ 1)
<= j & j
<= (l
+ k);
(
0 qua
Nat
+ 1)
<= (l
+ 1) by
XREAL_1: 7;
hence thesis by
A3,
XXREAL_0: 2;
end;
end;
theorem ::
VALUED_1:47
Th46: (
dom (p1
\/ (
Shift (p2,(
len p1)))))
= (
Seg ((
len p1)
+ (
len p2)))
proof
A1: (
dom (p1
\/ (
Shift (p2,(
len p1)))))
= ((
dom p1)
\/ (
dom (
Shift (p2,(
len p1))))) by
XTUPLE_0: 23;
A2: (
dom p1)
= (
Seg (
len p1)) by
FINSEQ_1:def 3
.= { k where k be
Nat : 1
<= k & k
<= (
len p1) };
A3: (
dom (
Shift (p2,(
len p1))))
= { k1 where k1 be
Nat : ((
len p1)
+ 1)
<= k1 & k1
<= ((
len p1)
+ (
len p2)) } by
Th39;
thus (
dom (p1
\/ (
Shift (p2,(
len p1)))))
c= (
Seg ((
len p1)
+ (
len p2)))
proof
let x be
object;
assume x
in (
dom (p1
\/ (
Shift (p2,(
len p1)))));
then
A4: x
in (
dom p1) or x
in (
dom (
Shift (p2,(
len p1)))) by
A1,
XBOOLE_0:def 3;
then
A5: ex k3 be
Nat st x
= k3 & 1
<= k3 & k3
<= (
len p1) or x
= k3 & ((
len p1)
+ 1)
<= k3 & k3
<= ((
len p1)
+ (
len p2)) by
A2,
A3;
reconsider x as
Nat by
A4;
A6: 1
<= x by
A5,
Lm6;
x
<= ((
len p1)
+ (
len p2)) by
A5,
Lm6;
hence thesis by
A6;
end;
let x be
object;
assume x
in (
Seg ((
len p1)
+ (
len p2)));
then
consider j be
Nat such that
A7: x
= j and
A8: 1
<= j and
A9: j
<= ((
len p1)
+ (
len p2));
reconsider i0 = (
len p1) as
Integer;
1
<= j & j
<= i0 or (i0
+ 1)
<= j & j
<= (i0
+ (
len p2)) by
A8,
A9,
INT_1: 7;
then x
in (
dom p1) or x
in (
dom (
Shift (p2,(
len p1)))) by
A2,
A3,
A7;
hence thesis by
A1,
XBOOLE_0:def 3;
end;
theorem ::
VALUED_1:48
Th47: for p1 be
FinSequence, p2 be
FinSubsequence st (
len p1)
<= i holds (
dom p1)
misses (
dom (
Shift (p2,i)))
proof
let p1 be
FinSequence, p2 be
FinSubsequence;
assume
A1: (
len p1)
<= i;
A2: (
dom p1)
= (
Seg (
len p1)) by
FINSEQ_1:def 3
.= { k where k be
Nat : 1
<= k & k
<= (
len p1) };
A3: (
dom (
Shift (p2,i)))
= { (k
+ i) where k be
Nat : k
in (
dom p2) } by
Def12;
not ex x be
object st x
in ((
dom p1)
/\ (
dom (
Shift (p2,i))))
proof
given x be
object such that
A4: x
in ((
dom p1)
/\ (
dom (
Shift (p2,i))));
A5: x
in (
dom p1) by
A4,
XBOOLE_0:def 4;
A6: x
in (
dom (
Shift (p2,i))) by
A4,
XBOOLE_0:def 4;
A7: ex k1 be
Nat st (x
= k1) & (1
<= k1) & (k1
<= (
len p1)) by
A2,
A5;
consider k2 be
Nat such that
A8: x
= (k2
+ i) and
A9: k2
in (
dom p2) by
A3,
A6;
consider n be
Nat such that
A10: (
dom p2)
c= (
Seg n) by
FINSEQ_1:def 12;
A11: k2
in (
Seg n) by
A9,
A10;
A12: ex m be
Nat st k2
= m & 1
<= m & m
<= n by
A11;
reconsider x as
Element of
NAT by
A4;
((
len p1)
+ k2)
<= (i
+ k2) by
A1,
XREAL_1: 7;
then (((
len p1)
+ k2)
- k2)
< (x
-
0 ) by
A8,
A12,
XREAL_1: 15;
hence contradiction by
A7;
end;
hence ((
dom p1)
/\ (
dom (
Shift (p2,i))))
=
{} by
XBOOLE_0:def 1;
end;
theorem ::
VALUED_1:49
for p1,p2 be
FinSequence holds (p1
^ p2)
= (p1
\/ (
Shift (p2,(
len p1))))
proof
let p1, p2;
A1: (
dom (p1
\/ (
Shift (p2,(
len p1)))))
= (
Seg ((
len p1)
+ (
len p2))) by
Th46;
(
dom p1)
misses (
dom (
Shift (p2,(
len p1)))) by
Th47;
then
reconsider p = (p1
\/ (
Shift (p2,(
len p1)))) as
FinSequence by
A1,
FINSEQ_1:def 2,
GRFUNC_1: 13;
A2: (
dom p)
= (
Seg ((
len p1)
+ (
len p2))) by
Th46;
A3: for k be
Nat st k
in (
dom p1) holds (p
. k)
= (p1
. k)
proof
let k be
Nat;
assume k
in (
dom p1);
then
[k, (p1
. k)]
in p1 by
FUNCT_1:def 2;
then
[k, (p1
. k)]
in p by
XBOOLE_0:def 3;
hence thesis by
FUNCT_1: 1;
end;
for k be
Nat st k
in (
dom p2) holds (p
. ((
len p1)
+ k))
= (p2
. k)
proof
let k be
Nat;
assume
A4: k
in (
dom p2);
(
dom (
Shift (p2,(
len p1))))
= { (j
+ (
len p1)) where j be
Nat : j
in (
dom p2) } by
Def12;
then ((
len p1)
+ k)
in (
dom (
Shift (p2,(
len p1)))) by
A4;
then
[((
len p1)
+ k), ((
Shift (p2,(
len p1)))
. ((
len p1)
+ k))]
in (
Shift (p2,(
len p1))) by
FUNCT_1:def 2;
then
[((
len p1)
+ k), ((
Shift (p2,(
len p1)))
. ((
len p1)
+ k))]
in p by
XBOOLE_0:def 3;
then (p
. ((
len p1)
+ k))
= ((
Shift (p2,(
len p1)))
. ((
len p1)
+ k)) by
FUNCT_1: 1;
hence thesis by
A4,
Def12;
end;
hence thesis by
A2,
A3,
FINSEQ_1:def 7;
end;
theorem ::
VALUED_1:50
for p1 be
FinSequence, p2 be
FinSubsequence st i
>= (
len p1) holds p1
misses (
Shift (p2,i))
proof
let p1 be
FinSequence, p2 be
FinSubsequence;
assume i
>= (
len p1);
then (
dom p1)
misses (
dom (
Shift (p2,i))) by
Th47;
hence thesis by
RELAT_1: 179;
end;
theorem ::
VALUED_1:51
for F be
total
NAT
-defined
Function, p be
NAT
-defined
Function, n be
Element of
NAT st (
Shift (p,n))
c= F holds for i be
Element of
NAT st i
in (
dom p) holds (F
. (n
+ i))
= (p
. i)
proof
let F be
total
NAT
-defined
Function, p be
NAT
-defined
Function, n be
Element of
NAT such that
A1: (
Shift (p,n))
c= F;
let i be
Element of
NAT ;
assume
A2: i
in (
dom p);
then (n
+ i)
in (
dom (
Shift (p,n))) by
Th24;
hence (F
. (n
+ i))
= ((
Shift (p,n))
. (n
+ i)) by
A1,
GRFUNC_1: 2
.= (p
. i) by
A2,
Def12;
end;
theorem ::
VALUED_1:52
Th51: for p,q be
FinSubsequence st q
c= p holds (
Shift (q,i))
c= (
Shift (p,i))
proof
let p,q be
FinSubsequence;
assume
A1: q
c= p;
A2: (
dom (
Shift (q,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q) } by
Def12;
A3: (
dom (
Shift (p,i)))
= { (k
+ i) where k be
Nat : k
in (
dom p) } by
Def12;
let x,y be
object;
assume
A4:
[x, y]
in (
Shift (q,i));
then
A5: x
in (
dom (
Shift (q,i))) by
FUNCT_1: 1;
A6: y
= ((
Shift (q,i))
. x) by
A4,
FUNCT_1: 1;
consider k be
Nat such that
A7: x
= (k
+ i) and
A8: k
in (
dom q) by
A2,
A5;
A9: (
dom q)
c= (
dom p) by
A1,
GRFUNC_1: 2;
then
A10: x
in (
dom (
Shift (p,i))) by
A3,
A7,
A8;
y
= (q
. k) by
A6,
A7,
A8,
Def12
.= (p
. k) by
A1,
A8,
GRFUNC_1: 2
.= ((
Shift (p,i))
. x) by
A7,
A8,
A9,
Def12;
hence thesis by
A10,
FUNCT_1: 1;
end;
theorem ::
VALUED_1:53
for p1,p2 be
FinSequence holds (
Shift (p2,(
len p1)))
c= (p1
^ p2)
proof
let p1,p2 be
FinSequence;
A1: (
dom (
Shift (p2,(
len p1))))
= { (k
+ (
len p1)) where k be
Nat : k
in (
dom p2) } by
Def12;
A2: (
dom (
Shift (p2,(
len p1))))
= { k where k be
Nat : ((
len p1)
+ 1)
<= k & k
<= ((
len p1)
+ (
len p2)) } by
Th39;
A3: (
dom (p1
^ p2))
= (
Seg ((
len p1)
+ (
len p2))) by
FINSEQ_1:def 7
.= { k where k be
Nat : 1
<= k & k
<= ((
len p1)
+ (
len p2)) };
let x,y be
object;
assume
A4:
[x, y]
in (
Shift (p2,(
len p1)));
then
A5: x
in (
dom (
Shift (p2,(
len p1)))) by
FUNCT_1: 1;
A6: y
= ((
Shift (p2,(
len p1)))
. x) by
A4,
FUNCT_1: 1;
consider k be
Nat such that
A7: x
= k and
A8: ((
len p1)
+ 1)
<= k and
A9: k
<= ((
len p1)
+ (
len p2)) by
A2,
A5;
1
<= ((
len p1)
+ 1) by
INT_1: 6;
then 1
<= k by
A8,
XXREAL_0: 2;
then
A10: x
in (
dom (p1
^ p2)) by
A3,
A7,
A9;
consider j be
Nat such that
A11: x
= (j
+ (
len p1)) and
A12: j
in (
dom p2) by
A1,
A5;
y
= (p2
. j) by
A6,
A11,
A12,
Def12
.= ((p1
^ p2)
. x) by
A11,
A12,
FINSEQ_1:def 7;
hence thesis by
A10,
FUNCT_1: 1;
end;
reserve q,q1,q2,q3,q4 for
FinSubsequence,
p1,p2 for
FinSequence;
theorem ::
VALUED_1:54
Th53: (
dom q1)
misses (
dom q2) implies (
dom (
Shift (q1,i)))
misses (
dom (
Shift (q2,i)))
proof
assume
A1: (
dom q1)
misses (
dom q2);
A2: (
dom (
Shift (q1,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q1) } by
Def12;
A3: (
dom (
Shift (q2,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q2) } by
Def12;
now
given x be
object such that
A4: x
in ((
dom (
Shift (q1,i)))
/\ (
dom (
Shift (q2,i))));
A5: x
in (
dom (
Shift (q1,i))) by
A4,
XBOOLE_0:def 4;
A6: x
in (
dom (
Shift (q2,i))) by
A4,
XBOOLE_0:def 4;
A7: ex k1 be
Nat st (x
= (k1
+ i)) & (k1
in (
dom q1)) by
A2,
A5;
consider k2 be
Nat such that
A8: x
= (k2
+ i) and
A9: k2
in (
dom q2) by
A3,
A6;
k2
in ((
dom q1)
/\ (
dom q2)) by
A7,
A8,
A9,
XBOOLE_0:def 4;
hence contradiction by
A1;
end;
hence ((
dom (
Shift (q1,i)))
/\ (
dom (
Shift (q2,i))))
=
{} by
XBOOLE_0:def 1;
end;
theorem ::
VALUED_1:55
for q,q1,q2 be
FinSubsequence st q
= (q1
\/ q2) & q1
misses q2 holds ((
Shift (q1,i))
\/ (
Shift (q2,i)))
= (
Shift (q,i))
proof
let q,q1,q2 be
FinSubsequence such that
A1: q
= (q1
\/ q2) and
A2: q1
misses q2;
A3: (
dom (
Shift (q,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q) } by
Def12;
A4: (
dom (
Shift (q1,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q1) } by
Def12;
A5: (
dom (
Shift (q2,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q2) } by
Def12;
A6: q1
c= q by
A1,
XBOOLE_1: 7;
A7: q2
c= q by
A1,
XBOOLE_1: 7;
A8: (
Shift (q1,i))
c= (
Shift (q,i)) by
A1,
Th51,
XBOOLE_1: 7;
A9: (
Shift (q2,i))
c= (
Shift (q,i)) by
A1,
Th51,
XBOOLE_1: 7;
(
dom q1)
misses (
dom q2) by
A2,
A6,
A7,
FUNCT_1: 112;
then (
dom (
Shift (q1,i)))
misses (
dom (
Shift (q2,i))) by
Th53;
then
reconsider q3 = ((
Shift (q1,i))
\/ (
Shift (q2,i))) as
Function by
GRFUNC_1: 13;
let x,y be
object;
thus
[x, y]
in ((
Shift (q1,i))
\/ (
Shift (q2,i))) implies
[x, y]
in (
Shift (q,i))
proof
assume
A10:
[x, y]
in ((
Shift (q1,i))
\/ (
Shift (q2,i)));
then x
in (
dom q3) by
FUNCT_1: 1;
then
A11: x
in ((
dom (
Shift (q1,i)))
\/ (
dom (
Shift (q2,i)))) by
XTUPLE_0: 23;
A12:
now
assume
A13: x
in (
dom (
Shift (q1,i)));
A14: (
dom (
Shift (q1,i)))
c= (
dom (
Shift (q,i))) by
A8,
GRFUNC_1: 2;
((
Shift (q1,i))
. x)
= ((
Shift (q,i))
. x) by
A8,
A13,
GRFUNC_1: 2;
then
[x, ((
Shift (q,i))
. x)]
in (
Shift (q1,i)) by
A13,
FUNCT_1:def 2;
then
[x, ((
Shift (q,i))
. x)]
in q3 by
XBOOLE_0:def 3;
hence x
in (
dom (
Shift (q,i))) & y
= ((
Shift (q,i))
. x) by
A10,
A13,
A14,
FUNCT_1:def 1;
end;
now
assume
A15: x
in (
dom (
Shift (q2,i)));
A16: (
dom (
Shift (q2,i)))
c= (
dom (
Shift (q,i))) by
A9,
GRFUNC_1: 2;
((
Shift (q2,i))
. x)
= ((
Shift (q,i))
. x) by
A9,
A15,
GRFUNC_1: 2;
then
[x, ((
Shift (q,i))
. x)]
in (
Shift (q2,i)) by
A15,
FUNCT_1:def 2;
then
[x, ((
Shift (q,i))
. x)]
in q3 by
XBOOLE_0:def 3;
hence x
in (
dom (
Shift (q,i))) & y
= ((
Shift (q,i))
. x) by
A10,
A15,
A16,
FUNCT_1:def 1;
end;
hence thesis by
A11,
A12,
FUNCT_1: 1,
XBOOLE_0:def 3;
end;
assume
A17:
[x, y]
in (
Shift (q,i));
then
A18: x
in (
dom (
Shift (q,i))) by
FUNCT_1: 1;
A19: y
= ((
Shift (q,i))
. x) by
A17,
FUNCT_1: 1;
consider k be
Nat such that
A20: x
= (k
+ i) and
A21: k
in (
dom q) by
A3,
A18;
(
dom q)
= ((
dom q1)
\/ (
dom q2)) by
A1,
XTUPLE_0: 23;
then
A22: k
in (
dom q1) or k
in (
dom q2) by
A21,
XBOOLE_0:def 3;
then x
in (
dom (
Shift (q1,i))) or x
in (
dom (
Shift (q2,i))) by
A4,
A5,
A20;
then x
in ((
dom (
Shift (q1,i)))
\/ (
dom (
Shift (q2,i)))) by
XBOOLE_0:def 3;
then
A23: x
in (
dom q3) by
XTUPLE_0: 23;
A24:
now
assume
A25: x
in (
dom (
Shift (q1,i)));
then
A26: ex k1 be
Nat st (x
= (k1
+ i)) & (k1
in (
dom q1)) by
A4;
thus y
= (q
. k) by
A19,
A20,
A21,
Def12
.= (q1
. k) by
A1,
A20,
A26,
GRFUNC_1: 15
.= ((
Shift (q1,i))
. x) by
A20,
A26,
Def12
.= (q3
. x) by
A25,
GRFUNC_1: 15;
end;
now
assume
A27: x
in (
dom (
Shift (q2,i)));
then
A28: ex k2 be
Nat st (x
= (k2
+ i)) & (k2
in (
dom q2)) by
A5;
thus y
= (q
. k) by
A19,
A20,
A21,
Def12
.= (q2
. k) by
A1,
A20,
A28,
GRFUNC_1: 15
.= ((
Shift (q2,i))
. x) by
A20,
A28,
Def12
.= (q3
. x) by
A27,
GRFUNC_1: 15;
end;
hence thesis by
A4,
A5,
A20,
A22,
A23,
A24,
FUNCT_1: 1;
end;
theorem ::
VALUED_1:56
Th55: for q be
FinSubsequence holds (
dom (
Seq q))
= (
dom (
Seq (
Shift (q,i))))
proof
let q be
FinSubsequence;
A1: (
len (
Seq q))
= (
card q) by
FINSEQ_3: 158;
A2: (
len (
Seq (
Shift (q,i))))
= (
card (
Shift (q,i))) by
FINSEQ_3: 158;
thus (
dom (
Seq q))
= (
Seg (
len (
Seq q))) by
FINSEQ_1:def 3
.= (
dom (
Seq (
Shift (q,i)))) by
Th41,
A1,
A2,
FINSEQ_1:def 3;
end;
reserve l1 for
Nat,
j2 for
Element of
NAT ;
theorem ::
VALUED_1:57
Th56: for q be
FinSubsequence st k
in (
dom (
Seq q)) holds ex j st j
= ((
Sgm (
dom q))
. k) & ((
Sgm (
dom (
Shift (q,i))))
. k)
= (i
+ j)
proof
let q be
FinSubsequence such that
A1: k
in (
dom (
Seq q));
consider ss be
FinSubsequence such that
A2: (
dom ss)
= (
dom q) and
A3: (
rng ss)
= (
dom (
Shift (q,i))) and
A4: for l st l
in (
dom q) holds (ss
. l)
= (i
+ l) and ss is
one-to-one by
Th40;
A5: (
rng (
Seq ss))
= (
dom (
Shift (q,i))) by
A3,
FINSEQ_1: 101;
A6: (
rng (
Sgm (
dom q)))
= (
dom q) by
FINSEQ_1: 50;
A7: (
dom (
Seq q))
= (
dom (q
* (
Sgm (
dom q))))
.= (
dom (
Sgm (
dom q))) by
A6,
RELAT_1: 27;
A8: for l1 st l1
in (
dom (
Seq q)) holds ex j1 st j1
= ((
Sgm (
dom q))
. l1) & ((
Seq ss)
. l1)
= (i
+ j1)
proof
let l1 such that
A9: l1
in (
dom (
Seq q));
A10: ((
Sgm (
dom q))
. l1)
in (
rng (
Sgm (
dom q))) by
A7,
A9,
FUNCT_1:def 3;
then
A11: ((
Sgm (
dom q))
. l1)
in (
dom q) by
FINSEQ_1: 50;
reconsider j1 = ((
Sgm (
dom q))
. l1) as
Element of
NAT by
A10;
((
Seq ss)
. l1)
= ((ss
* (
Sgm (
dom ss)))
. l1)
.= (ss
. j1) by
A2,
A7,
A9,
FUNCT_1: 13
.= (i
+ j1) by
A4,
A11;
hence thesis;
end;
A12: (
rng ss)
= (
rng (
Sgm (
dom (
Shift (q,i))))) by
A3,
FINSEQ_1: 50;
(
rng (
Sgm (
dom (
Shift (q,i)))))
c=
NAT ;
then (
rng (
Seq ss))
c=
NAT by
A12,
FINSEQ_1: 101;
then
reconsider fs = (
Seq ss) as
FinSequence of
NAT by
FINSEQ_1:def 4;
A13: ex l2 be
Nat st ((
dom (
Shift (q,i)))
c= (
Seg l2)) by
FINSEQ_1:def 12;
A14: (
dom (
Seq ss))
= (
dom (ss
* (
Sgm (
dom ss))))
.= (
dom (
Sgm (
dom q))) by
A2,
A6,
RELAT_1: 27;
for n,m,k1,k2 be
Nat st 1
<= n & n
< m & m
<= (
len fs) & k1
= (fs
. n) & k2
= (fs
. m) holds k1
< k2
proof
let n,m,k1,k2 be
Nat;
assume that
A15: 1
<= n and
A16: n
< m and
A17: m
<= (
len fs) and
A18: k1
= (fs
. n) and
A19: k2
= (fs
. m);
reconsider n, m as
Element of
NAT by
ORDINAL1:def 12;
A20: (
dom fs)
= (
Seg (
len fs)) by
FINSEQ_1:def 3
.= { l3 where l3 be
Nat : 1
<= l3 & l3
<= (
len fs) };
(n
+ 1)
<= m by
A16,
INT_1: 7;
then (n
+ 1)
<= (
len fs) by
A17,
XXREAL_0: 2;
then
A21: n
<= ((
len fs)
- 1) by
XREAL_1: 19;
((
len fs)
+
0 qua
Nat)
<= ((
len fs)
+ 1) by
XREAL_1: 7;
then ((
len fs)
- 1)
<= (
len fs) by
XREAL_1: 20;
then n
<= (
len fs) by
A21,
XXREAL_0: 2;
then
A22: n
in (
dom (
Seq q)) by
A7,
A14,
A15,
A20;
1
<= m by
A15,
A16,
XXREAL_0: 2;
then
A23: m
in (
dom (
Seq q)) by
A7,
A14,
A17,
A20;
consider j2 be
Element of
NAT such that
A24: j2
= ((
Sgm (
dom q))
. n) and
A25: (fs
. n)
= (i
+ j2) by
A8,
A22;
consider j3 be
Element of
NAT such that
A26: j3
= ((
Sgm (
dom q))
. m) and
A27: (fs
. m)
= (i
+ j3) by
A8,
A23;
A28: ex l3 be
Nat st ((
dom q)
c= (
Seg l3)) by
FINSEQ_1:def 12;
(
dom (
Seq ss))
= (
Seg (
len fs)) by
FINSEQ_1:def 3;
then (
len fs)
= (
len (
Sgm (
dom q))) by
A14,
FINSEQ_1:def 3;
then j2
< j3 by
A15,
A16,
A17,
A24,
A26,
A28,
FINSEQ_1:def 13;
hence thesis by
A18,
A19,
A25,
A27,
XREAL_1: 8;
end;
then fs
= (
Sgm (
dom (
Shift (q,i)))) by
A5,
A13,
FINSEQ_1:def 13;
hence thesis by
A1,
A8;
end;
theorem ::
VALUED_1:58
Th57: for q be
FinSubsequence st k
in (
dom (
Seq q)) holds ((
Seq (
Shift (q,i)))
. k)
= ((
Seq q)
. k)
proof
let q be
FinSubsequence;
assume
A1: k
in (
dom (
Seq q));
then
consider j such that
A2: j
= ((
Sgm (
dom q))
. k) and
A3: ((
Sgm (
dom (
Shift (q,i))))
. k)
= (i
+ j) by
Th56;
A4: (
rng (
Sgm (
dom q)))
= (
dom q) by
FINSEQ_1: 50;
A5: (
dom (
Seq q))
= (
dom (
Seq (
Shift (q,i)))) by
Th55
.= (
dom ((
Shift (q,i))
* (
Sgm (
dom (
Shift (q,i))))));
A6: (
dom (
Seq q))
= (
dom (q
* (
Sgm (
dom q))))
.= (
dom (
Sgm (
dom q))) by
A4,
RELAT_1: 27;
then j
in (
rng (
Sgm (
dom q))) by
A1,
A2,
FUNCT_1:def 3;
then
A7: j
in (
dom q) by
FINSEQ_1: 50;
((
Seq (
Shift (q,i)))
. k)
= (((
Shift (q,i))
* (
Sgm (
dom (
Shift (q,i)))))
. k)
.= ((
Shift (q,i))
. ((
Sgm (
dom (
Shift (q,i))))
. k)) by
A1,
A5,
FUNCT_1: 12
.= (q
. j) by
A3,
A7,
Def12
.= ((q
* (
Sgm (
dom q)))
. k) by
A1,
A2,
A6,
FUNCT_1: 13
.= ((
Seq q)
. k);
hence thesis;
end;
theorem ::
VALUED_1:59
for q be
FinSubsequence holds (
Seq q)
= (
Seq (
Shift (q,i)))
proof
let q be
FinSubsequence;
A1: (
dom (
Seq q))
= (
dom (
Seq (
Shift (q,i)))) by
Th55;
for x be
object holds x
in (
dom (
Seq q)) implies ((
Seq (
Shift (q,i)))
. x)
= ((
Seq q)
. x) by
Th57;
hence thesis by
A1;
end;
theorem ::
VALUED_1:60
Th59: for q be
FinSubsequence st (
dom q)
c= (
Seg k) holds (
dom (
Shift (q,i)))
c= (
Seg (i
+ k))
proof
let q be
FinSubsequence;
assume
A1: (
dom q)
c= (
Seg k);
A2: (
dom (
Shift (q,i)))
= { (j
+ i) where j be
Nat : j
in (
dom q) } by
Def12;
let x be
object;
assume x
in (
dom (
Shift (q,i)));
then
consider j1 be
Nat such that
A3: x
= (j1
+ i) and
A4: j1
in (
dom q) by
A2;
j1
in (
Seg k) by
A1,
A4;
then
A5: ex j2 be
Nat st (j1
= j2) & (1
<= j2) & (j2
<= k);
A6: (
0 qua
Nat
+ 1)
<= (i
+ j1) by
A5,
XREAL_1: 7;
(i
+ j1)
<= (i
+ k) by
A5,
XREAL_1: 7;
hence thesis by
A3,
A6;
end;
theorem ::
VALUED_1:61
Th60: for p be
FinSequence, q1,q2 be
FinSubsequence st q1
c= p holds ex ss be
FinSubsequence st ss
= (q1
\/ (
Shift (q2,(
len p))))
proof
let p be
FinSequence, q1,q2 be
FinSubsequence;
assume q1
c= p;
then
A1: (
dom q1)
c= (
dom p) by
GRFUNC_1: 2;
(
dom p)
misses (
dom (
Shift (q2,(
len p)))) by
Th47;
then
reconsider ss = (q1
\/ (
Shift (q2,(
len p)))) as
Function by
A1,
GRFUNC_1: 13,
XBOOLE_1: 63;
A2: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
consider k be
Nat such that
A3: (
dom q2)
c= (
Seg k) by
FINSEQ_1:def 12;
k
in
NAT by
ORDINAL1:def 12;
then
A4: (
dom (
Shift (q2,(
len p))))
c= (
Seg ((
len p)
+ k)) by
A3,
Th59;
((
len p)
+
0 qua
Nat)
<= ((
len p)
+ k) by
XREAL_1: 7;
then (
Seg (
len p))
c= (
Seg ((
len p)
+ k)) by
FINSEQ_1: 5;
then (
dom q1)
c= (
Seg ((
len p)
+ k)) by
A1,
A2;
then ((
dom q1)
\/ (
dom (
Shift (q2,(
len p)))))
c= (
Seg ((
len p)
+ k)) by
A4,
XBOOLE_1: 8;
then (
dom (q1
\/ (
Shift (q2,(
len p)))))
c= (
Seg ((
len p)
+ k)) by
XTUPLE_0: 23;
then
reconsider ss as
FinSubsequence by
FINSEQ_1:def 12;
take ss;
thus thesis;
end;
Lm7: for p,q be
FinSubsequence st q
c= p holds (
dom (
Shift (q,i)))
c= (
dom (
Shift (p,i)))
proof
let p,q be
FinSubsequence;
assume
A1: q
c= p;
A2: (
dom (
Shift (q,i)))
= { (k
+ i) where k be
Nat : k
in (
dom q) } by
Def12;
A3: (
dom (
Shift (p,i)))
= { (k
+ i) where k be
Nat : k
in (
dom p) } by
Def12;
A4: (
dom q)
c= (
dom p) by
A1,
GRFUNC_1: 2;
let x be
object;
assume x
in (
dom (
Shift (q,i)));
then ex k1 be
Nat st (x
= (k1
+ i)) & (k1
in (
dom q)) by
A2;
hence thesis by
A3,
A4;
end;
Lm8: for p1,p2 be
FinSequence, q1,q2 be
FinSubsequence st q1
c= p1 & q2
c= p2 holds (
Sgm ((
dom q1)
\/ (
dom (
Shift (q2,(
len p1))))))
= ((
Sgm (
dom q1))
^ (
Sgm (
dom (
Shift (q2,(
len p1))))))
proof
let p1,p2 be
FinSequence, q1,q2 be
FinSubsequence;
assume that
A1: q1
c= p1 and
A2: q2
c= p2;
A3: ex k1 be
Nat st ((
dom q1)
c= (
Seg k1)) by
FINSEQ_1:def 12;
A4: ex k2 be
Nat st ((
dom (
Shift (q2,(
len p1))))
c= (
Seg k2)) by
FINSEQ_1:def 12;
for m,n be
Nat st m
in (
dom q1) & n
in (
dom (
Shift (q2,(
len p1)))) holds m
< n
proof
let m,n be
Nat such that
A5: m
in (
dom q1) and
A6: n
in (
dom (
Shift (q2,(
len p1))));
A7: (
dom p1)
= (
Seg (
len p1)) by
FINSEQ_1:def 3
.= { k where k be
Nat : 1
<= k & k
<= (
len p1) };
A8: (
dom (
Shift (p2,(
len p1))))
= { k where k be
Nat : ((
len p1)
+ 1)
<= k & k
<= ((
len p1)
+ (
len p2)) } by
Th39;
A9: (
dom q1)
c= (
dom p1) by
A1,
GRFUNC_1: 2;
A10: (
dom (
Shift (q2,(
len p1))))
c= (
dom (
Shift (p2,(
len p1)))) by
A2,
Lm7;
A11: m
in (
dom p1) by
A5,
A9;
A12: n
in (
dom (
Shift (p2,(
len p1)))) by
A6,
A10;
consider k3 be
Nat such that
A13: k3
= m and 1
<= k3 and
A14: k3
<= (
len p1) by
A7,
A11;
consider k4 be
Nat such that
A15: k4
= n and
A16: ((
len p1)
+ 1)
<= k4 and k4
<= ((
len p1)
+ (
len p2)) by
A8,
A12;
(
len p1)
< ((
len p1)
+ 1) by
XREAL_1: 29;
then k3
<= ((
len p1)
+ 1) by
A14,
XXREAL_0: 2;
then
A17: k3
<= k4 by
A16,
XXREAL_0: 2;
k3
<> k4 by
A5,
A6,
A9,
A13,
A15,
Th47,
XBOOLE_0: 3;
hence thesis by
A13,
A15,
A17,
XXREAL_0: 1;
end;
hence thesis by
A3,
A4,
FINSEQ_3: 42;
end;
theorem ::
VALUED_1:62
Th61: for p1,p2 be
FinSequence, q1,q2 be
FinSubsequence st q1
c= p1 & q2
c= p2 holds ex ss be
FinSubsequence st ss
= (q1
\/ (
Shift (q2,(
len p1)))) & (
dom (
Seq ss))
= (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2))))
proof
let p1,p2 be
FinSequence, q1,q2 be
FinSubsequence;
assume that
A1: q1
c= p1 and
A2: q2
c= p2;
consider ss be
FinSubsequence such that
A3: ss
= (q1
\/ (
Shift (q2,(
len p1)))) by
A1,
Th60;
A4: ex k1 be
Nat st ((
dom q1)
c= (
Seg k1)) by
FINSEQ_1:def 12;
A5: ex k2 be
Nat st ((
dom (
Shift (q2,(
len p1))))
c= (
Seg k2)) by
FINSEQ_1:def 12;
A6: (
rng (
Sgm (
dom ss)))
= (
dom ss) by
FINSEQ_1: 50;
A7: (
dom (
Seq ss))
= (
dom (
Sgm (
dom ss))) by
A6,
RELAT_1: 27
.= (
dom (
Sgm ((
dom q1)
\/ (
dom (
Shift (q2,(
len p1))))))) by
A3,
XTUPLE_0: 23
.= (
dom ((
Sgm (
dom q1))
^ (
Sgm (
dom (
Shift (q2,(
len p1))))))) by
A1,
A2,
Lm8
.= (
Seg ((
len (
Sgm (
dom q1)))
+ (
len (
Sgm (
dom (
Shift (q2,(
len p1)))))))) by
FINSEQ_1:def 7;
A8: (
len (
Sgm (
dom (
Shift (q2,(
len p1))))))
= (
card (
dom (
Shift (q2,(
len p1))))) by
A5,
FINSEQ_3: 39;
A9: (
len (
Sgm (
dom q1)))
= (
card (
dom q1)) by
A4,
FINSEQ_3: 39;
(
len (
Sgm (
dom (
Shift (q2,(
len p1))))))
= (
card (
Shift (q2,(
len p1)))) by
A8,
CARD_1: 62;
then
A10: (
len (
Sgm (
dom (
Shift (q2,(
len p1))))))
= (
card q2) by
Th41;
A11: (
len (
Sgm (
dom q1)))
= (
card q1) by
A9,
CARD_1: 62;
A12: (
len (
Sgm (
dom (
Shift (q2,(
len p1))))))
= (
len (
Seq q2)) by
A10,
FINSEQ_3: 158;
(
len (
Sgm (
dom q1)))
= (
len (
Seq q1)) by
A11,
FINSEQ_3: 158;
hence thesis by
A3,
A7,
A12;
end;
theorem ::
VALUED_1:63
Th62: for p1,p2 be
FinSequence, q1,q2 be
FinSubsequence st q1
c= p1 & q2
c= p2 holds ex ss be
FinSubsequence st ss
= (q1
\/ (
Shift (q2,(
len p1)))) & (
dom (
Seq ss))
= (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2)))) & (
Seq ss)
= ((
Seq q1)
\/ (
Shift ((
Seq q2),(
len (
Seq q1)))))
proof
let p1,p2 be
FinSequence, q1,q2 be
FinSubsequence;
assume that
A1: q1
c= p1 and
A2: q2
c= p2;
consider ss be
FinSubsequence such that
A3: ss
= (q1
\/ (
Shift (q2,(
len p1)))) and
A4: (
dom (
Seq ss))
= (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2)))) by
A1,
A2,
Th61;
A5: (
dom (
Seq q1))
= (
Seg (
len (
Seq q1))) by
FINSEQ_1:def 3
.= { k where k be
Nat : 1
<= k & k
<= (
len (
Seq q1)) };
A6: (
dom (
Shift ((
Seq q2),(
len (
Seq q1)))))
= { k where k be
Nat : ((
len (
Seq q1))
+ 1)
<= k & k
<= ((
len (
Seq q1))
+ (
len (
Seq q2))) } by
Th39;
A7: (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2))))
= ((
dom (
Seq q1))
\/ (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))))
proof
thus (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2))))
c= ((
dom (
Seq q1))
\/ (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))))
proof
let x be
object;
assume x
in (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2))));
then
consider k1 be
Nat such that
A8: x
= k1 and
A9: 1
<= k1 and
A10: k1
<= ((
len (
Seq q1))
+ (
len (
Seq q2)));
A11: 1
<= k1 & k1
<= (
len (
Seq q1)) implies k1
in (
dom (
Seq q1)) by
A5;
((
len (
Seq q1))
+ 1)
<= k1 & k1
<= ((
len (
Seq q1))
+ (
len (
Seq q2))) implies k1
in (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))) by
A6;
hence thesis by
A8,
A9,
A10,
A11,
INT_1: 7,
XBOOLE_0:def 3;
end;
let x be
object;
assume
A12: x
in ((
dom (
Seq q1))
\/ (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))));
A13:
now
assume x
in (
dom (
Seq q1));
then
consider k1 be
Nat such that
A14: x
= k1 and
A15: 1
<= k1 and
A16: k1
<= (
len (
Seq q1)) by
A5;
((
len (
Seq q1))
+
0 qua
Nat)
<= ((
len (
Seq q1))
+ (
len (
Seq q2))) by
XREAL_1: 7;
then k1
<= ((
len (
Seq q1))
+ (
len (
Seq q2))) by
A16,
XXREAL_0: 2;
hence thesis by
A14,
A15;
end;
now
assume x
in (
dom (
Shift ((
Seq q2),(
len (
Seq q1)))));
then
consider k2 be
Nat such that
A17: x
= k2 and
A18: ((
len (
Seq q1))
+ 1)
<= k2 and
A19: k2
<= ((
len (
Seq q1))
+ (
len (
Seq q2))) by
A6;
(
0 qua
Nat
+ 1)
<= ((
len (
Seq q1))
+ 1) by
XREAL_1: 7;
then 1
<= k2 by
A18,
XXREAL_0: 2;
hence thesis by
A17,
A19;
end;
hence thesis by
A12,
A13,
XBOOLE_0:def 3;
end;
A20: ((
dom (
Seq q1))
\/ (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))))
= (
dom ((
Seq q1)
\/ (
Shift ((
Seq q2),(
len (
Seq q1)))))) by
XTUPLE_0: 23;
(
dom (
Seq q1))
misses (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))) by
Th47;
then
reconsider ss1 = ((
Seq q1)
\/ (
Shift ((
Seq q2),(
len (
Seq q1))))) as
Function by
GRFUNC_1: 13;
for x be
object st x
in (
dom (
Seq ss)) holds ((
Seq ss)
. x)
= (ss1
. x)
proof
let x be
object;
assume
A21: x
in (
dom (
Seq ss));
A22: ((
Seq ss)
. x)
= ((ss
* (
Sgm (
dom ss)))
. x)
.= (ss
. ((
Sgm (
dom ss))
. x)) by
A21,
FUNCT_1: 12
.= (ss
. ((
Sgm ((
dom q1)
\/ (
dom (
Shift (q2,(
len p1))))))
. x)) by
A3,
XTUPLE_0: 23
.= (ss
. (((
Sgm (
dom q1))
^ (
Sgm (
dom (
Shift (q2,(
len p1))))))
. x)) by
A1,
A2,
Lm8;
A23:
now
assume
A24: x
in (
dom (
Seq q1));
then
A25: x
in (
dom (
Sgm (
dom q1))) by
FINSEQ_1: 100;
then ((
Sgm (
dom q1))
. x)
in (
rng (
Sgm (
dom q1))) by
FUNCT_1:def 3;
then
A26: ((
Sgm (
dom q1))
. x)
in (
dom q1) by
FINSEQ_1: 50;
((
Seq ss)
. x)
= (ss
. ((
Sgm (
dom q1))
. x)) by
A22,
A25,
FINSEQ_1:def 7
.= (q1
. ((
Sgm (
dom q1))
. x)) by
A3,
A26,
GRFUNC_1: 15
.= ((q1
* (
Sgm (
dom q1)))
. x) by
A25,
FUNCT_1: 13
.= ((
Seq q1)
. x);
hence thesis by
A24,
GRFUNC_1: 15;
end;
now
assume
A27: x
in (
dom (
Shift ((
Seq q2),(
len (
Seq q1)))));
(
dom (
Shift ((
Seq q2),(
len (
Seq q1)))))
= { (j
+ (
len (
Seq q1))) where j be
Nat : j
in (
dom (
Seq q2)) } by
Def12;
then
consider j be
Nat such that
A28: x
= (j
+ (
len (
Seq q1))) and
A29: j
in (
dom (
Seq q2)) by
A27;
A30: (ss1
. x)
= ((
Shift ((
Seq q2),(
len (
Seq q1))))
. x) by
A27,
GRFUNC_1: 15
.= ((
Seq q2)
. j) by
A28,
A29,
Def12;
A31: ex l1 be
Nat st ((
dom q1)
c= (
Seg l1)) by
FINSEQ_1:def 12;
A32: ex l2 be
Nat st ((
dom (
Shift (q2,(
len p1))))
c= (
Seg l2)) by
FINSEQ_1:def 12;
(
card (
dom q1))
= (
len (
Sgm (
dom q1))) by
A31,
FINSEQ_3: 39;
then
A33: (
card q1)
= (
len (
Sgm (
dom q1))) by
CARD_1: 62;
A34: (
len (
Seq q1))
= (
card q1) by
FINSEQ_3: 158;
A35: (
dom (
Seq q2))
= (
Seg (
len (
Seq q2))) by
FINSEQ_1:def 3;
(
card q2)
= (
len (
Seq q2)) by
FINSEQ_3: 158;
then
A36: (
card (
Shift (q2,(
len p1))))
= (
len (
Seq q2)) by
Th41;
then
A37: (
card (
dom (
Shift (q2,(
len p1)))))
= (
len (
Seq q2)) by
CARD_1: 62;
A38: (
card (
dom (
Shift (q2,(
len p1)))))
= (
len (
Sgm (
dom (
Shift (q2,(
len p1)))))) by
A32,
FINSEQ_3: 39;
A39: (
len (
Sgm (
dom (
Shift (q2,(
len p1))))))
= (
len (
Seq q2)) by
A32,
A37,
FINSEQ_3: 39;
A40: (
dom (
Seq q2))
= (
dom (
Sgm (
dom (
Shift (q2,(
len p1)))))) by
A35,
A36,
A38,
CARD_1: 62,
FINSEQ_1:def 3;
A41: j
in (
dom (
Sgm (
dom (
Shift (q2,(
len p1)))))) by
A29,
A35,
A39,
FINSEQ_1:def 3;
((
Sgm (
dom (
Shift (q2,(
len p1)))))
. j)
in (
rng (
Sgm (
dom (
Shift (q2,(
len p1)))))) by
A29,
A40,
FUNCT_1:def 3;
then
A42: ((
Sgm (
dom (
Shift (q2,(
len p1)))))
. j)
in (
dom (
Shift (q2,(
len p1)))) by
FINSEQ_1: 50;
((
Seq ss)
. x)
= (ss
. ((
Sgm (
dom (
Shift (q2,(
len p1)))))
. j)) by
A22,
A28,
A33,
A34,
A41,
FINSEQ_1:def 7
.= ((
Shift (q2,(
len p1)))
. ((
Sgm (
dom (
Shift (q2,(
len p1)))))
. j)) by
A3,
A42,
GRFUNC_1: 15
.= (((
Shift (q2,(
len p1)))
* (
Sgm (
dom (
Shift (q2,(
len p1))))))
. j) by
A29,
A40,
FUNCT_1: 13
.= ((
Seq (
Shift (q2,(
len p1))))
. j)
.= ((
Seq q2)
. j) by
A29,
Th57;
hence thesis by
A30;
end;
hence thesis by
A4,
A7,
A21,
A23,
XBOOLE_0:def 3;
end;
then (
Seq ss)
= ss1 by
A4,
A7,
A20;
hence thesis by
A3,
A4;
end;
theorem ::
VALUED_1:64
for p1,p2 be
FinSequence, q1,q2 be
FinSubsequence st q1
c= p1 & q2
c= p2 holds ex ss be
FinSubsequence st ss
= (q1
\/ (
Shift (q2,(
len p1)))) & ((
Seq q1)
^ (
Seq q2))
= (
Seq ss)
proof
let p1,p2 be
FinSequence, q1,q2 be
FinSubsequence;
assume that
A1: q1
c= p1 and
A2: q2
c= p2;
consider ss be
FinSubsequence such that
A3: ss
= (q1
\/ (
Shift (q2,(
len p1)))) and
A4: (
dom (
Seq ss))
= (
Seg ((
len (
Seq q1))
+ (
len (
Seq q2)))) and
A5: (
Seq ss)
= ((
Seq q1)
\/ (
Shift ((
Seq q2),(
len (
Seq q1))))) by
A1,
A2,
Th62;
A6: for j1 be
Nat st j1
in (
dom (
Seq q1)) holds ((
Seq ss)
. j1)
= ((
Seq q1)
. j1) by
A5,
GRFUNC_1: 15;
for j2 be
Nat st j2
in (
dom (
Seq q2)) holds ((
Seq ss)
. ((
len (
Seq q1))
+ j2))
= ((
Seq q2)
. j2)
proof
let j2 be
Nat;
assume
A7: j2
in (
dom (
Seq q2));
(
dom (
Shift ((
Seq q2),(
len (
Seq q1)))))
= { (k
+ (
len (
Seq q1))) where k be
Nat : k
in (
dom (
Seq q2)) } by
Def12;
then ((
len (
Seq q1))
+ j2)
in (
dom (
Shift ((
Seq q2),(
len (
Seq q1))))) by
A7;
hence ((
Seq ss)
. ((
len (
Seq q1))
+ j2))
= ((
Shift ((
Seq q2),(
len (
Seq q1))))
. ((
len (
Seq q1))
+ j2)) by
A5,
GRFUNC_1: 15
.= ((
Seq q2)
. j2) by
A7,
Def12;
end;
then (
Seq ss)
= ((
Seq q1)
^ (
Seq q2)) by
A4,
A6,
FINSEQ_1:def 7;
hence thesis by
A3;
end;
theorem ::
VALUED_1:65
for F be non
empty
NAT
-defined
finite
Function holds (
card (
CutLastLoc F))
= ((
card F)
-' 1)
proof
let F be non
empty
NAT
-defined
finite
Function;
A1: (
card F)
>= (
0
+ 1) by
NAT_1: 13;
thus (
card (
CutLastLoc F))
= ((
card F)
- 1) by
Th37
.= ((
card F)
-' 1) by
A1,
XREAL_1: 233;
end;
theorem ::
VALUED_1:66
for F,G be non
empty
NAT
-defined
finite
Function st (
dom F)
= (
dom G) holds (
LastLoc F)
= (
LastLoc G);
theorem ::
VALUED_1:67
for f be non
empty
NAT
-defined
finite
Function holds (
Shift ((f
+~ (x,y)),i))
= ((
Shift (f,i))
+~ (x,y))
proof
let f be non
empty
NAT
-defined
finite
Function;
A1: (
dom f)
= (
dom (f
+~ (x,y))) by
FUNCT_4: 99;
A2: (
dom ((
Shift (f,i))
+~ (x,y)))
= (
dom (
Shift (f,i))) by
FUNCT_4: 99
.= { (m
+ i) where m be
Nat : m
in (
dom (f
+~ (x,y))) } by
A1,
Def12;
for m be
Nat st m
in (
dom (f
+~ (x,y))) holds (((
Shift (f,i))
+~ (x,y))
. (m
+ i))
= ((f
+~ (x,y))
. m)
proof
let m be
Nat;
assume m
in (
dom (f
+~ (x,y)));
then
A3: (m
+ i)
in (
dom ((
Shift (f,i))
+~ (x,y))) by
A2;
then
A4: (m
+ i)
in (
dom (
Shift (f,i))) by
FUNCT_4: 99;
consider mm be
Nat such that
A5: (m
+ i)
= (mm
+ i) and
A6: mm
in (
dom (f
+~ (x,y))) by
A2,
A3;
m
= mm by
A5;
then m
in (
dom (f
+~ (x,y))) by
A6;
then
A7: m
in (
dom f) by
FUNCT_4: 99;
then
A8: ((
Shift (f,i))
. (m
+ i))
= (f
. m) by
Def12;
per cases ;
suppose
A9: ((
Shift (f,i))
. (m
+ i))
= x;
hence (((
Shift (f,i))
+~ (x,y))
. (m
+ i))
= y by
A4,
FUNCT_4: 106
.= ((f
+~ (x,y))
. m) by
A7,
FUNCT_4: 106,
A9,
A8;
end;
suppose
A10: ((
Shift (f,i))
. (m
+ i))
<> x;
hence (((
Shift (f,i))
+~ (x,y))
. (m
+ i))
= ((
Shift (f,i))
. (m
+ i)) by
FUNCT_4: 105
.= ((f
+~ (x,y))
. m) by
A10,
A8,
FUNCT_4: 105;
end;
end;
hence (
Shift ((f
+~ (x,y)),i))
= ((
Shift (f,i))
+~ (x,y)) by
A2,
Def12;
end;
theorem ::
VALUED_1:68
for F,G be non
empty
NAT
-defined
finite
Function st (
dom F)
c= (
dom G) holds (
LastLoc F)
<= (
LastLoc G) by
XXREAL_2: 59;