fvsum_1.miz
begin
reserve i,j,k for
Nat;
theorem ::
FVSUM_1:1
Th1: for K be
Abelian non
empty
addLoopStr holds the
addF of K is
commutative
proof
let K be
Abelian non
empty
addLoopStr;
now
let a,b be
Element of K;
thus (the
addF of K
. (a,b))
= (a
+ b)
.= (the
addF of K
. (b,a)) by
RLVECT_1: 2;
end;
hence thesis by
BINOP_1:def 2;
end;
theorem ::
FVSUM_1:2
Th2: for K be
add-associative non
empty
addLoopStr holds the
addF of K is
associative
proof
let K be
add-associative non
empty
addLoopStr;
now
let a,b,c be
Element of K;
thus (the
addF of K
. (a,(the
addF of K
. (b,c))))
= (a
+ (b
+ c))
.= ((a
+ b)
+ c) by
RLVECT_1:def 3
.= (the
addF of K
. ((the
addF of K
. (a,b)),c));
end;
hence thesis by
BINOP_1:def 3;
end;
theorem ::
FVSUM_1:3
Th3: for K be
commutative non
empty
multMagma holds the
multF of K is
commutative
proof
let K be
commutative non
empty
multMagma;
now
let a,b be
Element of K;
thus (the
multF of K
. (a,b))
= (a
* b)
.= (b
* a)
.= (the
multF of K
. (b,a));
end;
hence thesis by
BINOP_1:def 2;
end;
registration
let K be
Abelian non
empty
addLoopStr;
cluster the
addF of K ->
commutative;
coherence by
Th1;
end
registration
let K be
add-associative non
empty
addLoopStr;
cluster the
addF of K ->
associative;
coherence by
Th2;
end
registration
let K be
commutative non
empty
multMagma;
cluster the
multF of K ->
commutative;
coherence by
Th3;
end
theorem ::
FVSUM_1:4
Th4: for K be
commutative
left_unital non
empty
multLoopStr holds (
1. K)
is_a_unity_wrt the
multF of K
proof
let K be
commutative
left_unital non
empty
multLoopStr;
set o = the
multF of K;
now
let h be
Element of K;
thus (o
. ((
1. K),h))
= ((
1. K)
* h)
.= h;
thus (o
. (h,(
1. K)))
= (h
* (
1. K))
.= h;
end;
hence thesis by
BINOP_1: 3;
end;
theorem ::
FVSUM_1:5
Th5: for K be
commutative
left_unital non
empty
multLoopStr holds (
the_unity_wrt the
multF of K)
= (
1. K)
proof
let K be
commutative
left_unital non
empty
multLoopStr;
reconsider e = (
1. K) as
Element of K;
e
is_a_unity_wrt the
multF of K by
Th4;
hence thesis by
BINOP_1:def 8;
end;
theorem ::
FVSUM_1:6
Th6: for K be
left_zeroed
right_zeroed non
empty
addLoopStr holds (
0. K)
is_a_unity_wrt the
addF of K
proof
let K be
left_zeroed
right_zeroed non
empty
addLoopStr;
now
let a be
Element of K;
thus (the
addF of K
. ((
0. K),a))
= ((
0. K)
+ a)
.= a by
ALGSTR_1:def 2;
thus (the
addF of K
. (a,(
0. K)))
= (a
+ (
0. K))
.= a by
RLVECT_1:def 4;
end;
hence thesis by
BINOP_1: 3;
end;
theorem ::
FVSUM_1:7
Th7: for K be
left_zeroed
right_zeroed non
empty
addLoopStr holds (
the_unity_wrt the
addF of K)
= (
0. K)
proof
let K be
left_zeroed
right_zeroed non
empty
addLoopStr;
reconsider e = (
0. K) as
Element of K;
e
is_a_unity_wrt the
addF of K by
Th6;
hence thesis by
BINOP_1:def 8;
end;
theorem ::
FVSUM_1:8
Th8: for K be
left_zeroed
right_zeroed non
empty
addLoopStr holds the
addF of K is
having_a_unity
proof
let K be
left_zeroed
right_zeroed non
empty
addLoopStr;
take (
0. K);
thus thesis by
Th6;
end;
theorem ::
FVSUM_1:9
for K be
commutative
left_unital non
empty
multLoopStr holds the
multF of K is
having_a_unity;
theorem ::
FVSUM_1:10
Th10: for K be
distributive non
empty
doubleLoopStr holds the
multF of K
is_distributive_wrt the
addF of K
proof
let K be
distributive non
empty
doubleLoopStr;
now
let a1,a2,a3 be
Element of K;
thus (the
multF of K
. (a1,(the
addF of K
. (a2,a3))))
= (a1
* (a2
+ a3))
.= ((a1
* a2)
+ (a1
* a3)) by
VECTSP_1:def 7
.= (the
addF of K
. ((the
multF of K
. (a1,a2)),(the
multF of K
. (a1,a3))));
thus (the
multF of K
. ((the
addF of K
. (a1,a2)),a3))
= ((a1
+ a2)
* a3)
.= ((a1
* a3)
+ (a2
* a3)) by
VECTSP_1:def 7
.= (the
addF of K
. ((the
multF of K
. (a1,a3)),(the
multF of K
. (a2,a3))));
end;
hence thesis by
BINOP_1: 11;
end;
definition
let K be non
empty
multMagma;
let a be
Element of K;
::
FVSUM_1:def1
func a
multfield ->
UnOp of the
carrier of K equals (the
multF of K
[;] (a,(
id the
carrier of K)));
coherence ;
end
definition
let K be non
empty
addLoopStr;
::
FVSUM_1:def2
func
diffield (K) ->
BinOp of the
carrier of K equals (the
addF of K
* ((
id the
carrier of K),(
comp K)));
correctness ;
end
theorem ::
FVSUM_1:11
Th11: for K be non
empty
addLoopStr, a1,a2 be
Element of K holds ((
diffield K)
. (a1,a2))
= (a1
- a2)
proof
let K be non
empty
addLoopStr, a1,a2 be
Element of K;
thus ((
diffield K)
. (a1,a2))
= (the
addF of K
. (a1,((
comp K)
. a2))) by
FINSEQOP: 82
.= (a1
- a2) by
VECTSP_1:def 13;
end;
Lm1: for K be non
empty
multMagma, a,b be
Element of K holds ((the
multF of K
[;] (b,(
id the
carrier of K)))
. a)
= (b
* a)
proof
let K be non
empty
multMagma, a,b be
Element of K;
thus ((the
multF of K
[;] (b,(
id the
carrier of K)))
. a)
= (the
multF of K
. (b,((
id the
carrier of K)
. a))) by
FUNCOP_1: 53
.= (b
* a);
end;
theorem ::
FVSUM_1:12
Th12: for K be
distributive non
empty
doubleLoopStr, a be
Element of K holds (a
multfield )
is_distributive_wrt the
addF of K by
Th10,
FINSEQOP: 54;
theorem ::
FVSUM_1:13
Th13: for K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr holds (
comp K)
is_an_inverseOp_wrt the
addF of K
proof
let K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr;
now
let a be
Element of K;
thus (the
addF of K
. (a,((
comp K)
. a)))
= (a
+ (
- a)) by
VECTSP_1:def 13
.= (
0. K) by
RLVECT_1: 5
.= (
the_unity_wrt the
addF of K) by
Th7;
thus (the
addF of K
. (((
comp K)
. a),a))
= ((
- a)
+ a) by
VECTSP_1:def 13
.= (
0. K) by
RLVECT_1: 5
.= (
the_unity_wrt the
addF of K) by
Th7;
end;
hence thesis by
FINSEQOP:def 1;
end;
theorem ::
FVSUM_1:14
Th14: for K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr holds the
addF of K is
having_an_inverseOp
proof
let K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr;
(
comp K)
is_an_inverseOp_wrt the
addF of K by
Th13;
hence thesis by
FINSEQOP:def 2;
end;
theorem ::
FVSUM_1:15
Th15: for K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr holds (
the_inverseOp_wrt the
addF of K)
= (
comp K)
proof
let K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr;
A1: (
comp K)
is_an_inverseOp_wrt the
addF of K by
Th13;
the
addF of K is
having_a_unity & the
addF of K is
having_an_inverseOp by
Th8,
Th14;
hence thesis by
A1,
FINSEQOP:def 3;
end;
theorem ::
FVSUM_1:16
for K be
right_zeroed
add-associative
right_complementable
Abelian non
empty
addLoopStr holds (
comp K)
is_distributive_wrt the
addF of K
proof
let K be
right_zeroed
add-associative
right_complementable
Abelian non
empty
addLoopStr;
the
addF of K is
having_a_unity by
Th8;
then (
the_inverseOp_wrt the
addF of K)
is_distributive_wrt the
addF of K by
Th14,
FINSEQOP: 63;
hence thesis by
Th15;
end;
begin
definition
let K be non
empty
addLoopStr;
let p1,p2 be
FinSequence of the
carrier of K;
::
FVSUM_1:def3
func p1
+ p2 ->
FinSequence of the
carrier of K equals (the
addF of K
.: (p1,p2));
correctness ;
end
theorem ::
FVSUM_1:17
for K be non
empty
addLoopStr, p1,p2 be
FinSequence of the
carrier of K, a1,a2 be
Element of K, i be
Nat st i
in (
dom (p1
+ p2)) & a1
= (p1
. i) & a2
= (p2
. i) holds ((p1
+ p2)
. i)
= (a1
+ a2) by
FUNCOP_1: 22;
definition
let i;
let K be non
empty
addLoopStr;
let R1,R2 be
Element of (i
-tuples_on the
carrier of K);
:: original:
+
redefine
func R1
+ R2 ->
Element of (i
-tuples_on the
carrier of K) ;
coherence by
FINSEQ_2: 120;
end
theorem ::
FVSUM_1:18
for K be non
empty
addLoopStr, a1,a2 be
Element of K, R1,R2 be
Element of (i
-tuples_on the
carrier of K) holds j
in (
Seg i) & a1
= (R1
. j) & a2
= (R2
. j) implies ((R1
+ R2)
. j)
= (a1
+ a2)
proof
let K be non
empty
addLoopStr, a1,a2 be
Element of K, R1,R2 be
Element of (i
-tuples_on the
carrier of K);
assume j
in (
Seg i);
then j
in (
Seg (
len (R1
+ R2))) by
CARD_1:def 7;
then j
in (
dom (R1
+ R2)) by
FINSEQ_1:def 3;
hence thesis by
FUNCOP_1: 22;
end;
theorem ::
FVSUM_1:19
for K be non
empty
addLoopStr, a1,a2 be
Element of K holds (
<*a1*>
+
<*a2*>)
=
<*(a1
+ a2)*> by
FINSEQ_2: 74;
theorem ::
FVSUM_1:20
for K be non
empty
addLoopStr, a1,a2 be
Element of K holds ((i
|-> a1)
+ (i
|-> a2))
= (i
|-> (a1
+ a2)) by
FINSEQOP: 17;
Lm2: for K be
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds (R
+ (i
|-> (
0. K)))
= R
proof
let K be
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
(
the_unity_wrt the
addF of K)
= (
0. K) & the
addF of K is
having_a_unity by
Th7,
Th8;
hence thesis by
FINSEQOP: 56;
end;
theorem ::
FVSUM_1:21
Th21: for K be
Abelian
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds (R
+ (i
|-> (
0. K)))
= R & R
= ((i
|-> (
0. K))
+ R)
proof
let K be
Abelian
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
thus (R
+ (i
|-> (
0. K)))
= R by
Lm2;
hence thesis by
FINSEQOP: 33;
end;
definition
let K be non
empty
addLoopStr;
let p be
FinSequence of the
carrier of K;
::
FVSUM_1:def4
func
- p ->
FinSequence of the
carrier of K equals ((
comp K)
* p);
correctness ;
end
reserve K for non
empty
addLoopStr,
a for
Element of K,
p for
FinSequence of the
carrier of K,
R for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:22
Th22: i
in (
dom (
- p)) & a
= (p
. i) implies ((
- p)
. i)
= (
- a)
proof
assume i
in (
dom (
- p)) & a
= (p
. i);
then ((
- p)
. i)
= ((
comp K)
. a) by
FUNCT_1: 12;
hence thesis by
VECTSP_1:def 13;
end;
definition
let i;
let K be non
empty
addLoopStr;
let R be
Element of (i
-tuples_on the
carrier of K);
:: original:
-
redefine
func
- R ->
Element of (i
-tuples_on the
carrier of K) ;
coherence by
FINSEQ_2: 113;
end
theorem ::
FVSUM_1:23
j
in (
Seg i) & a
= (R
. j) implies ((
- R)
. j)
= (
- a)
proof
assume j
in (
Seg i);
then j
in (
Seg (
len (
- R))) by
CARD_1:def 7;
then j
in (
dom (
- R)) by
FINSEQ_1:def 3;
hence thesis by
Th22;
end;
theorem ::
FVSUM_1:24
(
-
<*a*>)
=
<*(
- a)*>
proof
thus (
-
<*a*>)
=
<*((
comp K)
. a)*> by
FINSEQ_2: 35
.=
<*(
- a)*> by
VECTSP_1:def 13;
end;
theorem ::
FVSUM_1:25
Th25: (
- (i
|-> a))
= (i
|-> (
- a))
proof
thus (
- (i
|-> a))
= (i
|-> ((
comp K)
. a)) by
FINSEQOP: 16
.= (i
|-> (
- a)) by
VECTSP_1:def 13;
end;
Lm3: for K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds (R
+ (
- R))
= (i
|-> (
0. K))
proof
let K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
A1: the
addF of K is
having_an_inverseOp & the
addF of K is
having_a_unity by
Th8,
Th14;
thus (R
+ (
- R))
= (the
addF of K
.: (R,((
the_inverseOp_wrt the
addF of K)
* R))) by
Th15
.= (i
|-> (
the_unity_wrt the
addF of K)) by
A1,
FINSEQOP: 73
.= (i
|-> (
0. K)) by
Th7;
end;
theorem ::
FVSUM_1:26
Th26: for K be
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds (R
+ (
- R))
= (i
|-> (
0. K)) & ((
- R)
+ R)
= (i
|-> (
0. K))
proof
let K be
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
thus (R
+ (
- R))
= (i
|-> (
0. K)) by
Lm3;
hence thesis by
FINSEQOP: 33;
end;
reserve K for
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr,
R,R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:27
Th27: (R1
+ R2)
= (i
|-> (
0. K)) implies R1
= (
- R2) & R2
= (
- R1)
proof
A1: the
addF of K is
having_an_inverseOp & (
the_inverseOp_wrt the
addF of K)
= (
comp K) by
Th14,
Th15;
(
the_unity_wrt the
addF of K)
= (
0. K) & the
addF of K is
having_a_unity by
Th7,
Th8;
hence thesis by
A1,
FINSEQOP: 74;
end;
theorem ::
FVSUM_1:28
Th28: (
- (
- R))
= R
proof
(R
+ (
- R))
= (i
|-> (
0. K)) by
Lm3;
hence thesis by
Th27;
end;
theorem ::
FVSUM_1:29
(
- R1)
= (
- R2) implies R1
= R2
proof
assume (
- R1)
= (
- R2);
hence R1
= (
- (
- R2)) by
Th28
.= R2 by
Th28;
end;
Lm4: (R1
+ R)
= (R2
+ R) implies R1
= R2
proof
assume (R1
+ R)
= (R2
+ R);
then (R1
+ (R
+ (
- R)))
= ((R2
+ R)
+ (
- R)) by
FINSEQOP: 28;
then
A1: (R1
+ (R
+ (
- R)))
= (R2
+ (R
+ (
- R))) by
FINSEQOP: 28;
(R
+ (
- R))
= (i
|-> (
0. K)) by
Lm3;
then R1
= (R2
+ (i
|-> (
0. K))) by
A1,
Lm2;
hence thesis by
Lm2;
end;
theorem ::
FVSUM_1:30
for K be
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R,R1,R2 be
Element of (i
-tuples_on the
carrier of K) holds (R1
+ R)
= (R2
+ R) or (R1
+ R)
= (R
+ R2) implies R1
= R2
proof
let K be
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R,R1,R2 be
Element of (i
-tuples_on the
carrier of K);
(R1
+ R)
= (R2
+ R) iff (R1
+ R)
= (R
+ R2) by
FINSEQOP: 33;
hence thesis by
Lm4;
end;
theorem ::
FVSUM_1:31
Th31: for K be
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R1,R2 be
Element of (i
-tuples_on the
carrier of K) holds (
- (R1
+ R2))
= ((
- R1)
+ (
- R2))
proof
let K be
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R1,R2 be
Element of (i
-tuples_on the
carrier of K);
((R1
+ R2)
+ ((
- R1)
+ (
- R2)))
= (((R1
+ R2)
+ (
- R1))
+ (
- R2)) by
FINSEQOP: 28
.= (((R2
+ R1)
+ (
- R1))
+ (
- R2)) by
FINSEQOP: 33
.= ((R2
+ (R1
+ (
- R1)))
+ (
- R2)) by
FINSEQOP: 28
.= ((R2
+ (i
|-> (
0. K)))
+ (
- R2)) by
Lm3
.= (R2
+ (
- R2)) by
Lm2
.= (i
|-> (
0. K)) by
Lm3;
hence thesis by
Th27;
end;
definition
let K be non
empty
addLoopStr;
let p1,p2 be
FinSequence of the
carrier of K;
::
FVSUM_1:def5
func p1
- p2 ->
FinSequence of the
carrier of K equals ((
diffield K)
.: (p1,p2));
correctness ;
end
reserve K for non
empty
addLoopStr,
a1,a2 for
Element of K,
p1,p2 for
FinSequence of the
carrier of K,
R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:32
Th32: i
in (
dom (p1
- p2)) & a1
= (p1
. i) & a2
= (p2
. i) implies ((p1
- p2)
. i)
= (a1
- a2)
proof
assume i
in (
dom (p1
- p2)) & a1
= (p1
. i) & a2
= (p2
. i);
then ((p1
- p2)
. i)
= ((
diffield K)
. (a1,a2)) by
FUNCOP_1: 22;
hence thesis by
Th11;
end;
definition
let i;
let K be non
empty
addLoopStr;
let R1,R2 be
Element of (i
-tuples_on the
carrier of K);
:: original:
-
redefine
func R1
- R2 ->
Element of (i
-tuples_on the
carrier of K) ;
coherence by
FINSEQ_2: 120;
end
theorem ::
FVSUM_1:33
j
in (
Seg i) & a1
= (R1
. j) & a2
= (R2
. j) implies ((R1
- R2)
. j)
= (a1
- a2)
proof
assume j
in (
Seg i);
then j
in (
Seg (
len (R1
- R2))) by
CARD_1:def 7;
then j
in (
dom (R1
- R2)) by
FINSEQ_1:def 3;
hence thesis by
Th32;
end;
theorem ::
FVSUM_1:34
(
<*a1*>
-
<*a2*>)
=
<*(a1
- a2)*>
proof
thus (
<*a1*>
-
<*a2*>)
=
<*((
diffield K)
. (a1,a2))*> by
FINSEQ_2: 74
.=
<*(a1
- a2)*> by
Th11;
end;
theorem ::
FVSUM_1:35
((i
|-> a1)
- (i
|-> a2))
= (i
|-> (a1
- a2))
proof
thus ((i
|-> a1)
- (i
|-> a2))
= (i
|-> ((
diffield K)
. (a1,a2))) by
FINSEQOP: 17
.= (i
|-> (a1
- a2)) by
Th11;
end;
theorem ::
FVSUM_1:36
for K be
add-associative
right_complementable
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds (R
- (i
|-> (
0. K)))
= R
proof
let K be
add-associative
right_complementable
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
thus (R
- (i
|-> (
0. K)))
= (R
+ (
- (i
|-> (
0. K)))) by
FINSEQOP: 84
.= (R
+ (i
|-> (
- (
0. K)))) by
Th25
.= (R
+ (i
|-> (
0. K))) by
RLVECT_1: 12
.= R by
Lm2;
end;
theorem ::
FVSUM_1:37
for K be
Abelian
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds ((i
|-> (
0. K))
- R)
= (
- R)
proof
let K be
Abelian
left_zeroed
right_zeroed non
empty
addLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
thus ((i
|-> (
0. K))
- R)
= ((i
|-> (
0. K))
+ (
- R)) by
FINSEQOP: 84
.= (
- R) by
Th21;
end;
theorem ::
FVSUM_1:38
for K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R1,R2 be
Element of (i
-tuples_on the
carrier of K) holds (R1
- (
- R2))
= (R1
+ R2)
proof
let K be
left_zeroed
right_zeroed
add-associative
right_complementable non
empty
addLoopStr, R1,R2 be
Element of (i
-tuples_on the
carrier of K);
thus (R1
- (
- R2))
= (R1
+ (
- (
- R2))) by
FINSEQOP: 84
.= (R1
+ R2) by
Th28;
end;
reserve K for
Abelian
right_zeroed
add-associative
right_complementable non
empty
addLoopStr,
R,R1,R2,R3 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:39
(
- (R1
- R2))
= (R2
- R1)
proof
thus (
- (R1
- R2))
= (
- (R1
+ (
- R2))) by
FINSEQOP: 84
.= ((
- R1)
+ (
- (
- R2))) by
Th31
.= ((
- R1)
+ R2) by
Th28
.= (R2
+ (
- R1)) by
FINSEQOP: 33
.= (R2
- R1) by
FINSEQOP: 84;
end;
theorem ::
FVSUM_1:40
Th40: (
- (R1
- R2))
= ((
- R1)
+ R2)
proof
thus (
- (R1
- R2))
= (
- (R1
+ (
- R2))) by
FINSEQOP: 84
.= ((
- R1)
+ (
- (
- R2))) by
Th31
.= ((
- R1)
+ R2) by
Th28;
end;
theorem ::
FVSUM_1:41
Th41: (R
- R)
= (i
|-> (
0. K))
proof
thus (R
- R)
= (R
+ (
- R)) by
FINSEQOP: 84
.= (i
|-> (
0. K)) by
Lm3;
end;
theorem ::
FVSUM_1:42
(R1
- R2)
= (i
|-> (
0. K)) implies R1
= R2
proof
assume (R1
- R2)
= (i
|-> (
0. K));
then (R1
+ (
- R2))
= (i
|-> (
0. K)) by
FINSEQOP: 84;
then R1
= (
- (
- R2)) by
Th27;
hence thesis by
Th28;
end;
theorem ::
FVSUM_1:43
((R1
- R2)
- R3)
= (R1
- (R2
+ R3))
proof
thus ((R1
- R2)
- R3)
= ((R1
- R2)
+ (
- R3)) by
FINSEQOP: 84
.= ((R1
+ (
- R2))
+ (
- R3)) by
FINSEQOP: 84
.= (R1
+ ((
- R2)
+ (
- R3))) by
FINSEQOP: 28
.= (R1
+ (
- (R2
+ R3))) by
Th31
.= (R1
- (R2
+ R3)) by
FINSEQOP: 84;
end;
theorem ::
FVSUM_1:44
Th44: (R1
+ (R2
- R3))
= ((R1
+ R2)
- R3)
proof
thus (R1
+ (R2
- R3))
= (R1
+ (R2
+ (
- R3))) by
FINSEQOP: 84
.= ((R1
+ R2)
+ (
- R3)) by
FINSEQOP: 28
.= ((R1
+ R2)
- R3) by
FINSEQOP: 84;
end;
theorem ::
FVSUM_1:45
(R1
- (R2
- R3))
= ((R1
- R2)
+ R3)
proof
thus (R1
- (R2
- R3))
= (R1
+ (
- (R2
- R3))) by
FINSEQOP: 84
.= (R1
+ ((
- R2)
+ R3)) by
Th40
.= ((R1
+ (
- R2))
+ R3) by
FINSEQOP: 28
.= ((R1
- R2)
+ R3) by
FINSEQOP: 84;
end;
theorem ::
FVSUM_1:46
R1
= ((R1
+ R)
- R)
proof
thus R1
= (R1
+ (i
|-> (
0. K))) by
Lm2
.= (R1
+ (R
- R)) by
Th41
.= ((R1
+ R)
- R) by
Th44;
end;
theorem ::
FVSUM_1:47
R1
= ((R1
- R)
+ R)
proof
thus R1
= (R1
+ (i
|-> (
0. K))) by
Lm2
.= (R1
+ ((
- R)
+ R)) by
Th26
.= ((R1
+ (
- R))
+ R) by
FINSEQOP: 28
.= ((R1
- R)
+ R) by
FINSEQOP: 84;
end;
reserve K for non
empty
multMagma,
a,a9,a1,a2 for
Element of K,
p for
FinSequence of the
carrier of K,
R for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:48
Th48: for a,b be
Element of K holds ((the
multF of K
[;] (a,(
id the
carrier of K)))
. b)
= (a
* b)
proof
let a,b be
Element of K;
thus ((the
multF of K
[;] (a,(
id the
carrier of K)))
. b)
= (the
multF of K
. (a,((
id the
carrier of K)
. b))) by
FUNCOP_1: 53
.= (a
* b);
end;
theorem ::
FVSUM_1:49
for a,b be
Element of K holds ((a
multfield )
. b)
= (a
* b) by
Th48;
definition
let K be non
empty
multMagma;
let p be
FinSequence of the
carrier of K;
let a be
Element of K;
::
FVSUM_1:def6
func a
* p ->
FinSequence of the
carrier of K equals ((a
multfield )
* p);
correctness ;
end
theorem ::
FVSUM_1:50
Th50: i
in (
dom (a
* p)) & a9
= (p
. i) implies ((a
* p)
. i)
= (a
* a9)
proof
assume
A1: i
in (
dom (a
* p)) & a9
= (p
. i);
then
A2: a9
in (
dom (the
multF of K
[;] (a,(
id the
carrier of K)))) by
FUNCT_1: 11;
thus ((a
* p)
. i)
= ((the
multF of K
[;] (a,(
id the
carrier of K)))
. a9) by
A1,
FUNCT_1: 12
.= (the
multF of K
. (a,((
id the
carrier of K)
. a9))) by
A2,
FUNCOP_1: 32
.= (a
* a9);
end;
definition
let i;
let K be non
empty
multMagma;
let R be
Element of (i
-tuples_on the
carrier of K);
let a be
Element of K;
:: original:
*
redefine
func a
* R ->
Element of (i
-tuples_on the
carrier of K) ;
coherence by
FINSEQ_2: 113;
end
theorem ::
FVSUM_1:51
j
in (
Seg i) & a9
= (R
. j) implies ((a
* R)
. j)
= (a
* a9)
proof
assume j
in (
Seg i);
then j
in (
Seg (
len (a
* R))) by
CARD_1:def 7;
then j
in (
dom (a
* R)) by
FINSEQ_1:def 3;
hence thesis by
Th50;
end;
theorem ::
FVSUM_1:52
(a
*
<*a1*>)
=
<*(a
* a1)*>
proof
thus (a
*
<*a1*>)
=
<*((the
multF of K
[;] (a,(
id the
carrier of K)))
. a1)*> by
FINSEQ_2: 35
.=
<*(a
* a1)*> by
Th48;
end;
theorem ::
FVSUM_1:53
Th53: (a1
* (i
|-> a2))
= (i
|-> (a1
* a2))
proof
thus (a1
* (i
|-> a2))
= (i
|-> ((the
multF of K
[;] (a1,(
id the
carrier of K)))
. a2)) by
FINSEQOP: 16
.= (i
|-> (a1
* a2)) by
Th48;
end;
theorem ::
FVSUM_1:54
for K be
associative non
empty
multMagma, a1,a2 be
Element of K, R be
Element of (i
-tuples_on the
carrier of K) holds ((a1
* a2)
* R)
= (a1
* (a2
* R))
proof
let K be
associative non
empty
multMagma, a1,a2 be
Element of K, R be
Element of (i
-tuples_on the
carrier of K);
set F = the
multF of K;
set f = (
id the
carrier of K);
thus ((a1
* a2)
* R)
= ((F
[;] (a1,(F
[;] (a2,f))))
* R) by
FUNCOP_1: 62
.= (((the
multF of K
[;] (a1,(
id the
carrier of K)))
* (the
multF of K
[;] (a2,(
id the
carrier of K))))
* R) by
FUNCOP_1: 55
.= (a1
* (a2
* R)) by
RELAT_1: 36;
end;
reserve K for
distributive non
empty
doubleLoopStr,
a,a1,a2 for
Element of K,
R,R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:55
((a1
+ a2)
* R)
= ((a1
* R)
+ (a2
* R))
proof
thus ((a1
+ a2)
* R)
= ((the
addF of K
.: ((the
multF of K
[;] (a1,(
id the
carrier of K))),(the
multF of K
[;] (a2,(
id the
carrier of K)))))
* R) by
Th10,
FINSEQOP: 35
.= ((a1
* R)
+ (a2
* R)) by
FUNCOP_1: 25;
end;
theorem ::
FVSUM_1:56
(a
* (R1
+ R2))
= ((a
* R1)
+ (a
* R2)) by
Th12,
FINSEQOP: 51;
theorem ::
FVSUM_1:57
for K be
distributive
commutative
left_unital non
empty
doubleLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds ((
1. K)
* R)
= R
proof
let K be
distributive
commutative
left_unital non
empty
doubleLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
A1: (
rng R)
c= the
carrier of K by
FINSEQ_1:def 4;
(
the_unity_wrt the
multF of K)
= (
1. K) by
Th5;
hence ((
1. K)
* R)
= ((
id the
carrier of K)
* R) by
FINSEQOP: 44
.= R by
A1,
RELAT_1: 53;
end;
theorem ::
FVSUM_1:58
for K be
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds ((
0. K)
* R)
= (i
|-> (
0. K))
proof
let K be
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
A1: (
rng R)
c= the
carrier of K by
FINSEQ_1:def 4;
A2: the
addF of K is
having_an_inverseOp by
Th14;
A3: (
the_unity_wrt the
addF of K)
= (
0. K) & the
addF of K is
having_a_unity by
Th7,
Th8;
thus ((
0. K)
* R)
= (the
multF of K
[;] ((
0. K),((
id the
carrier of K)
* R))) by
FUNCOP_1: 34
.= (the
multF of K
[;] ((
0. K),R)) by
A1,
RELAT_1: 53
.= (i
|-> (
0. K)) by
A3,
A2,
Th10,
FINSEQOP: 76;
end;
theorem ::
FVSUM_1:59
for K be
add-associative
right_zeroed
right_complementable
commutative
left_unital
distributive non
empty
doubleLoopStr, R be
Element of (i
-tuples_on the
carrier of K) holds ((
- (
1. K))
* R)
= (
- R)
proof
let K be
add-associative
right_zeroed
right_complementable
commutative
left_unital
distributive non
empty
doubleLoopStr, R be
Element of (i
-tuples_on the
carrier of K);
A1: ((
comp K)
. (
1. K))
= (
- (
1. K)) & (
the_unity_wrt the
multF of K)
= (
1. K) by
Th5,
VECTSP_1:def 13;
A2: the
addF of K is
having_an_inverseOp & (
the_inverseOp_wrt the
addF of K)
= (
comp K) by
Th14,
Th15;
the
multF of K is
having_a_unity & the
addF of K is
having_a_unity by
Th8;
hence thesis by
A1,
A2,
Th10,
FINSEQOP: 68;
end;
definition
let M be non
empty
multMagma, p1,p2 be
FinSequence of the
carrier of M;
::
FVSUM_1:def7
func
mlt (p1,p2) ->
FinSequence of the
carrier of M equals (the
multF of M
.: (p1,p2));
correctness ;
end
reserve K for non
empty
multMagma,
a1,a2,b1,b2 for
Element of K,
p1,p2 for
FinSequence of the
carrier of K,
R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:60
i
in (
dom (
mlt (p1,p2))) & a1
= (p1
. i) & a2
= (p2
. i) implies ((
mlt (p1,p2))
. i)
= (a1
* a2) by
FUNCOP_1: 22;
definition
let i;
let K be non
empty
multMagma;
let R1,R2 be
Element of (i
-tuples_on the
carrier of K);
:: original:
mlt
redefine
func
mlt (R1,R2) ->
Element of (i
-tuples_on the
carrier of K) ;
coherence by
FINSEQ_2: 120;
end
theorem ::
FVSUM_1:61
j
in (
Seg i) & a1
= (R1
. j) & a2
= (R2
. j) implies ((
mlt (R1,R2))
. j)
= (a1
* a2)
proof
assume j
in (
Seg i);
then j
in (
Seg (
len (
mlt (R1,R2)))) by
CARD_1:def 7;
then j
in (
dom (
mlt (R1,R2))) by
FINSEQ_1:def 3;
hence thesis by
FUNCOP_1: 22;
end;
theorem ::
FVSUM_1:62
(
mlt (
<*a1*>,
<*a2*>))
=
<*(a1
* a2)*> by
FINSEQ_2: 74;
Lm5: (
mlt (
<*a1, a2*>,
<*b1, b2*>))
=
<*(a1
* b1), (a2
* b2)*>
proof
<*a1, a2*>
= (
<*a1*>
^
<*a2*>) &
<*b1, b2*>
= (
<*b1*>
^
<*b2*>) by
FINSEQ_1:def 9;
hence (
mlt (
<*a1, a2*>,
<*b1, b2*>))
= ((
mlt (
<*a1*>,
<*b1*>))
^
<*(a2
* b2)*>) by
FINSEQOP: 10
.= (
<*(a1
* b1)*>
^
<*(a2
* b2)*>) by
FINSEQ_2: 74
.=
<*(a1
* b1), (a2
* b2)*> by
FINSEQ_1:def 9;
end;
reserve K for
commutative non
empty
multMagma,
p,q for
FinSequence of the
carrier of K,
R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:63
(
mlt (R1,R2))
= (
mlt (R2,R1)) by
FINSEQOP: 33;
theorem ::
FVSUM_1:64
Th64: (
mlt (p,q))
= (
mlt (q,p))
proof
reconsider r = (
mlt (p,q)) as
FinSequence of the
carrier of K;
reconsider s = (
mlt (q,p)) as
FinSequence of the
carrier of K;
reconsider k = (
min ((
len p),(
len q))) as
Element of
NAT by
XXREAL_0: 15;
A1: (
len r)
= (
min ((
len p),(
len q))) by
FINSEQ_2: 71;
then
A2: (
dom r)
= (
Seg k) by
FINSEQ_1:def 3;
(
min ((
len p),(
len q)))
<= (
len q) by
XXREAL_0: 17;
then (
Seg k)
c= (
Seg (
len q)) by
FINSEQ_1: 5;
then
A3: (
Seg k)
c= (
dom q) by
FINSEQ_1:def 3;
(
min ((
len p),(
len q)))
<= (
len p) by
XXREAL_0: 17;
then (
Seg k)
c= (
Seg (
len p)) by
FINSEQ_1: 5;
then
A4: (
Seg k)
c= (
dom p) by
FINSEQ_1:def 3;
A5: (
len s)
= (
min ((
len q),(
len p))) by
FINSEQ_2: 71;
then
A6: (
dom s)
= (
Seg k) by
FINSEQ_1:def 3;
A7: (
dom r)
= (
Seg k) by
A1,
FINSEQ_1:def 3;
now
let i be
Nat;
assume
A8: i
in (
dom r);
then
reconsider d1 = (p
. i), d2 = (q
. i) as
Element of K by
A4,
A3,
A2,
FINSEQ_2: 11;
thus (r
. i)
= (d1
* d2) by
A8,
FUNCOP_1: 22
.= (d2
* d1)
.= (s
. i) by
A7,
A6,
A8,
FUNCOP_1: 22;
end;
hence thesis by
A1,
A5,
FINSEQ_2: 9;
end;
theorem ::
FVSUM_1:65
for K be
associative non
empty
multMagma, R1,R2,R3 be
Element of (i
-tuples_on the
carrier of K) holds (
mlt (R1,(
mlt (R2,R3))))
= (
mlt ((
mlt (R1,R2)),R3)) by
FINSEQOP: 28;
reserve K for
commutative
associative non
empty
multMagma,
a,a1,a2 for
Element of K,
R for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:66
Th66: (
mlt ((i
|-> a),R))
= (a
* R) & (
mlt (R,(i
|-> a)))
= (a
* R)
proof
thus (
mlt ((i
|-> a),R))
= (the
multF of K
[;] (a,R)) by
FINSEQOP: 20
.= (a
* R) by
FINSEQOP: 22;
hence thesis by
FINSEQOP: 33;
end;
theorem ::
FVSUM_1:67
(
mlt ((i
|-> a1),(i
|-> a2)))
= (i
|-> (a1
* a2))
proof
thus (
mlt ((i
|-> a1),(i
|-> a2)))
= (a1
* (i
|-> a2)) by
Th66
.= (i
|-> (a1
* a2)) by
Th53;
end;
theorem ::
FVSUM_1:68
for K be
associative non
empty
multMagma, a be
Element of K, R1,R2 be
Element of (i
-tuples_on the
carrier of K) holds (a
* (
mlt (R1,R2)))
= (
mlt ((a
* R1),R2)) by
FINSEQOP: 26;
reserve K for
commutative
associative non
empty
multMagma,
a for
Element of K,
R,R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:69
(a
* (
mlt (R1,R2)))
= (
mlt ((a
* R1),R2)) & (a
* (
mlt (R1,R2)))
= (
mlt (R1,(a
* R2)))
proof
thus (a
* (
mlt (R1,R2)))
= (
mlt ((a
* R1),R2)) by
FINSEQOP: 26;
thus (a
* (
mlt (R1,R2)))
= (a
* (
mlt (R2,R1))) by
FINSEQOP: 33
.= (
mlt ((a
* R2),R1)) by
FINSEQOP: 26
.= (
mlt (R1,(a
* R2))) by
FINSEQOP: 33;
end;
theorem ::
FVSUM_1:70
(a
* R)
= (
mlt ((i
|-> a),R)) by
Th66;
begin
registration
cluster
Abelian
right_zeroed ->
left_zeroed for non
empty
addLoopStr;
coherence
proof
let L be non
empty
addLoopStr such that
A1: L is
Abelian and
A2: L is
right_zeroed;
let x be
Element of L;
thus ((
0. L)
+ x)
= (x
+ (
0. L)) by
A1,
RLVECT_1:def 2
.= x by
A2,
RLVECT_1:def 4;
end;
end
definition
let K be
Abelian
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p be
FinSequence of the
carrier of K;
:: original:
Sum
redefine
::
FVSUM_1:def8
func
Sum (p) equals (the
addF of K
$$ p);
compatibility
proof
set q = (
<*> the
carrier of K);
deffunc
F(
Nat) = (the
addF of K
$$ (p
| $1));
let s be
Element of K;
consider f be
sequence of the
carrier of K such that
A1: for i be
Element of
NAT holds (f
. i)
=
F(i) from
FUNCT_2:sch 4;
A2: for i be
Nat holds (f
. i)
=
F(i)
proof
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
hereby
defpred
P[
set,
set] means ex q be
FinSequence of the
carrier of K st q
= (p
* (
Sgm (
dom (p
| $1)))) & $2
= (
Sum q);
assume
A3: s
= (
Sum p);
A4: for x be
Element of (
Fin
NAT ) holds ex y be
Element of K st
P[x, y]
proof
let B be
Element of (
Fin
NAT );
per cases ;
suppose
A5: (
dom p)
=
{} ;
reconsider u = (
Sum (
<*> the
carrier of K)) as
Element of K;
reconsider q = (
<*> the
carrier of K) as
FinSequence of the
carrier of K;
take u, q;
p
=
{} by
A5;
hence q
= (p
* (
Sgm (
dom (p
| B))));
thus thesis;
end;
suppose (
dom p)
<>
{} ;
then
reconsider domp = (
dom p) as non
empty
set;
reconsider p9 = p as
Function of domp, the
carrier of K by
FINSEQ_2: 26;
A6: (
dom (p
| B))
c= (
dom p) by
RELAT_1: 60;
reconsider pB = (p
| B) as
FinSubsequence;
(
rng (
Sgm (
dom pB)))
= (
dom pB) by
FINSEQ_1: 50;
then
reconsider p99 = (
Sgm (
dom (p
| B))) as
FinSequence of domp by
A6,
FINSEQ_1:def 4;
reconsider q = (p9
* p99) as
FinSequence of the
carrier of K;
reconsider u = (
Sum q) as
Element of K;
take u, q;
thus thesis;
end;
end;
consider G be
Function of (
Fin
NAT ), the
carrier of K such that
A7: for B be
Element of (
Fin
NAT ) holds
P[B, (G
. B)] from
FUNCT_2:sch 3(
A4);
A8:
now
let B9 be
Element of (
Fin
NAT ) such that B9
c= (
dom p) and B9
<>
{} ;
let x be
Element of
NAT ;
set f2 = (
Sgm (
dom (p
| (B9
\/
{x})))), f3 = (f2
-| x), f4 = (f2
|-- x);
reconsider Y = ((
finSeg (
len f2))
\ (f2
"
{x})) as
finite
set;
A9: (
Seg (
len f2))
= (
dom f2) by
FINSEQ_1:def 3;
set R = (
rng (f2
| Y));
set M = (f2
* (
Sgm Y));
A10: (
rng (
Sgm Y))
= Y by
FINSEQ_1:def 13;
(
dom (
Sgm Y))
= (
finSeg (
card Y)) by
FINSEQ_3: 40;
then (
dom M)
= (
Seg (
card Y)) by
A9,
A10,
RELAT_1: 27;
then
reconsider M as
FinSequence by
FINSEQ_1:def 2;
(
rng f2)
c=
NAT & (
rng M)
c= (
rng f2) by
FINSEQ_1:def 4,
RELAT_1: 26;
then (
rng M)
c=
NAT by
XBOOLE_1: 1;
then
reconsider L = (f2
* (
Sgm Y)) as
FinSequence of
NAT by
FINSEQ_1:def 4;
now
let y be
object;
hereby
assume y
in (
rng L);
then
consider x be
object such that
A11: x
in (
dom L) and
A12: y
= (L
. x) by
FUNCT_1:def 3;
x
in (
dom (
Sgm Y)) by
A11,
FUNCT_1: 11;
then
A13: ((
Sgm Y)
. x)
in Y by
A10,
FUNCT_1:def 3;
y
= (f2
. ((
Sgm Y)
. x)) by
A11,
A12,
FUNCT_1: 12;
hence y
in R by
A9,
A13,
FUNCT_1: 50;
end;
assume y
in R;
then
consider x be
object such that
A14: x
in (
dom (f2
| Y)) and
A15: y
= ((f2
| Y)
. x) by
FUNCT_1:def 3;
A16: x
in ((
dom f2)
/\ Y) by
A14,
RELAT_1: 61;
then
A17: x
in Y by
XBOOLE_0:def 4;
then
consider z be
object such that
A18: z
in (
dom (
Sgm Y)) and
A19: x
= ((
Sgm Y)
. z) by
A10,
FUNCT_1:def 3;
x
in (
dom f2) by
A16,
XBOOLE_0:def 4;
then
A20: z
in (
dom (f2
* (
Sgm Y))) by
A18,
A19,
FUNCT_1: 11;
then (L
. z)
= (f2
. ((
Sgm Y)
. z)) by
FUNCT_1: 12
.= y by
A15,
A17,
A19,
FUNCT_1: 49;
hence y
in (
rng L) by
A20,
FUNCT_1:def 3;
end;
then
A21: (
rng L)
= R by
TARSKI: 2;
x
in
{x} by
TARSKI:def 1;
then
A22: x
in (B9
\/
{x}) by
XBOOLE_0:def 3;
(
dom (p
| (B9
\/
{x})))
= ((
dom p)
/\ (B9
\/
{x})) by
RELAT_1: 61;
then (
dom (p
| (B9
\/
{x})))
c= (
dom p) by
XBOOLE_1: 17;
then
A23: (
dom (p
| (B9
\/
{x})))
c= (
Seg (
len p)) by
FINSEQ_1:def 3;
reconsider pB9x = (p
| (B9
\/
{x})) as
FinSubsequence;
(
rng f2)
c= (
Seg (
len p)) by
A23,
FINSEQ_1:def 13;
then
A24: (
rng f2)
c= (
dom p) by
FINSEQ_1:def 3;
R
c= (
rng f2) by
RELAT_1: 70;
then R
c= (
dom p) by
A24,
XBOOLE_1: 1;
then
A25: R
c= (
Seg (
len p)) by
FINSEQ_1:def 3;
reconsider pp = (p
| (B9
\/
{x})) as
FinSubsequence;
A26: (
dom (p
| B9))
= ((
dom p)
/\ B9) by
RELAT_1: 61;
A27:
now
let l,m,k1,k2 be
Nat;
assume that
A28: 1
<= l and
A29: l
< m and
A30: m
<= (
len L) and
A31: k1
= (L
. l) & k2
= (L
. m);
l
<= (
len L) by
A29,
A30,
XXREAL_0: 2;
then
A32: l
in (
dom L) by
A28,
FINSEQ_3: 25;
then
A33: (L
. l)
= (f2
. ((
Sgm Y)
. l)) by
FUNCT_1: 12;
A34: ((
Sgm Y)
. l)
in (
dom f2) by
A32,
FUNCT_1: 11;
1
<= m by
A28,
A29,
XXREAL_0: 2;
then
A35: m
in (
dom L) by
A30,
FINSEQ_3: 25;
then
A36: (L
. m)
= (f2
. ((
Sgm Y)
. m)) by
FUNCT_1: 12;
m
in (
dom (
Sgm Y)) by
A35,
FUNCT_1: 11;
then
A37: m
<= (
len (
Sgm Y)) by
FINSEQ_3: 25;
A38: ((
Sgm Y)
. m)
in (
dom f2) by
A35,
FUNCT_1: 11;
reconsider l, m as
Element of
NAT by
ORDINAL1:def 12;
reconsider K1 = ((
Sgm Y)
. l), K2 = ((
Sgm Y)
. m) as
Element of
NAT by
A34,
A38;
A39: 1
<= K1 by
A34,
FINSEQ_3: 25;
A40: K2
<= (
len f2) by
A38,
FINSEQ_3: 25;
K1
< K2 by
A28,
A29,
A37,
FINSEQ_1:def 13;
hence k1
< k2 by
A23,
A31,
A33,
A36,
A39,
A40,
FINSEQ_1:def 13;
end;
assume
A41: x
in ((
dom p)
\ B9);
then
A42: x
in (
dom p) by
XBOOLE_0:def 5;
then
reconsider D = (
dom p), E = (
rng p) as non
empty
set by
RELAT_1: 42;
x
in (
dom p) by
A41,
XBOOLE_0:def 5;
then
A43:
{x}
c= (
dom p) by
ZFMISC_1: 31;
(p
. x)
= (p
/. x) by
A42,
PARTFUN1:def 6;
then
reconsider px = (p
. x) as
Element of K;
A44: (
dom
<*px*>)
= (
Seg 1) by
FINSEQ_1: 38;
(
rng
<*x*>)
=
{x} by
FINSEQ_1: 38;
then (
dom
<*x*>)
= (
Seg 1) & (
rng
<*x*>)
c= (
dom p) by
A42,
FINSEQ_1: 38,
ZFMISC_1: 31;
then
A45: (
dom (p
*
<*x*>))
= (
dom
<*px*>) by
A44,
RELAT_1: 27;
A46:
now
let e be
object;
assume
A47: e
in (
dom
<*px*>);
then
A48: e
= 1 by
A44,
FINSEQ_1: 2,
TARSKI:def 1;
thus ((p
*
<*x*>)
. e)
= (p
. (
<*x*>
. e)) by
A45,
A47,
FUNCT_1: 12
.= (p
. x) by
A48,
FINSEQ_1: 40
.= (
<*px*>
. e) by
A48,
FINSEQ_1: 40;
end;
reconsider x9 = x as
Element of D by
A41,
XBOOLE_0:def 5;
reconsider p9 = p as
Function of D, E by
FUNCT_2: 1;
A49: E
c= the
carrier of K by
FINSEQ_1:def 4;
not x
in B9 by
A41,
XBOOLE_0:def 5;
then
A50: not x
in (
dom (p
| B9)) by
A26,
XBOOLE_0:def 4;
A51: (
rng (
Sgm (
dom pp)))
= (
dom pp) by
FINSEQ_1: 50;
then
A52: (
rng f2)
c= (
dom p) by
RELAT_1: 60;
(
dom pp)
= ((
dom p)
/\ (B9
\/
{x})) by
RELAT_1: 61;
then
A53: x
in (
rng f2) by
A51,
A42,
A22,
XBOOLE_0:def 4;
then (
rng f4)
c= (
rng f2) by
FINSEQ_4: 44;
then
A54: (
rng f4)
c= D by
A52,
XBOOLE_1: 1;
(
rng f3)
c= (
rng f2) by
A53,
FINSEQ_4: 39;
then (
rng f3)
c= D by
A52,
XBOOLE_1: 1;
then
reconsider f39 = f3, f49 = f4 as
FinSequence of D by
A54,
FINSEQ_1:def 4;
consider q2 be
FinSequence of the
carrier of K such that
A55: q2
= (p
* (
Sgm (
dom (p
| (B9
\/
{x}))))) and
A56: (G
. (B9
\/
{.x.}))
= (
Sum q2) by
A7;
reconsider p3 = (p9
* f39), p4 = (p9
* f49) as
FinSequence of E;
(
rng p3)
c= E by
FINSEQ_1:def 4;
then
A57: (
rng p3)
c= the
carrier of K by
A49,
XBOOLE_1: 1;
(
rng p4)
c= E by
FINSEQ_1:def 4;
then (
rng p4)
c= the
carrier of K by
A49,
XBOOLE_1: 1;
then
reconsider p3, p4 as
FinSequence of the
carrier of K by
A57,
FINSEQ_1:def 4;
consider q1 be
FinSequence of the
carrier of K such that
A58: q1
= (p
* (
Sgm (
dom (p
| B9)))) and
A59: (G
. B9)
= (
Sum q1) by
A7;
A60: f2 is
one-to-one by
A23,
FINSEQ_3: 92;
(
rng ((
Sgm (
dom (p
| (B9
\/
{x}))))
| ((
Seg (
len f2))
\ (f2
"
{x}))))
= ((
Sgm (
dom (p
| (B9
\/
{x}))))
.: ((
Seg (
len f2))
\ (f2
"
{x}))) by
RELAT_1: 115
.= ((
Sgm (
dom (p
| (B9
\/
{x}))))
.: ((
dom f2)
\ (f2
"
{x}))) by
FINSEQ_1:def 3
.= (((
Sgm (
dom (p
| (B9
\/
{x}))))
.: (
dom f2))
\
{x}) by
SETWISEO: 6
.= ((
rng (
Sgm (
dom pB9x)))
\
{x}) by
RELAT_1: 113
.= ((
dom (p
| (B9
\/
{x})))
\
{x}) by
FINSEQ_1: 50
.= (((
dom p)
/\ (B9
\/
{x}))
\
{x}) by
RELAT_1: 61
.= ((((
dom p)
/\ B9)
\/ ((
dom p)
/\
{x}))
\
{x}) by
XBOOLE_1: 23
.= ((((
dom p)
/\ B9)
\/
{x})
\
{x}) by
A43,
XBOOLE_1: 28
.= ((
dom (p
| B9))
\
{x}) by
A26,
XBOOLE_1: 40
.= (
dom (p
| B9)) by
A50,
ZFMISC_1: 57;
then (
Sgm (
dom (p
| B9)))
= (f2
* (
Sgm ((
Seg (
len f2))
\ (f2
"
{x})))) by
A25,
A21,
A27,
FINSEQ_1:def 13
.= (f2
* (
Sgm ((
dom f2)
\ (f2
"
{x})))) by
FINSEQ_1:def 3
.= (f2
-
{x}) by
FINSEQ_3:def 1
.= (f3
^ f4) by
A53,
A60,
FINSEQ_4: 55;
then
A61: q1
= (p3
^ p4) by
A58,
FINSEQOP: 9;
q2
= (p9
* ((f39
^
<*x9*>)
^ f49)) by
A55,
A53,
FINSEQ_4: 51
.= ((p9
* (f39
^
<*x9*>))
^ (p9
* f49)) by
FINSEQOP: 9
.= (((p9
* f39)
^ (p9
*
<*x9*>))
^ (p9
* f49)) by
FINSEQOP: 9
.= ((p3
^
<*px*>)
^ p4) by
A45,
A46,
FUNCT_1: 2;
hence (G
. (B9
\/
{x}))
= ((
Sum (p3
^
<*px*>))
+ (
Sum p4)) by
A56,
RLVECT_1: 41
.= (((
Sum p3)
+ (
Sum
<*px*>))
+ (
Sum p4)) by
RLVECT_1: 41
.= (((
Sum p3)
+ (
Sum p4))
+ (
Sum
<*px*>)) by
RLVECT_1:def 3
.= ((
Sum q1)
+ (
Sum
<*px*>)) by
A61,
RLVECT_1: 41
.= (the
addF of K
. ((
Sum q1),px)) by
RLVECT_1: 44
.= (the
addF of K
. ((G
. B9),((
[#] (p,(
the_unity_wrt the
addF of K)))
. x))) by
A59,
A42,
SETWOP_2: 20;
end;
A62:
now
let x be
Element of
NAT ;
consider q be
FinSequence of the
carrier of K such that
A63: q
= (p
* (
Sgm (
dom (p
|
{x})))) and
A64: (G
.
{.x.})
= (
Sum q) by
A7;
A65:
{}
c= (
Seg
0 );
per cases ;
suppose
A66: not x
in (
dom p);
then (
dom p)
misses
{x} by
ZFMISC_1: 50;
then ((
dom p)
/\
{x})
=
{} by
XBOOLE_0:def 7;
then q
= (p
* (
Sgm
{} )) by
A63,
RELAT_1: 61
.= (p
*
{} ) by
A65,
FINSEQ_1: 51
.= (
<*> the
carrier of K);
hence (G
.
{x})
= (
0. K) by
A64,
RLVECT_1: 43
.= (
the_unity_wrt the
addF of K) by
Th7
.= ((
[#] (p,(
the_unity_wrt the
addF of K)))
. x) by
A66,
SETWOP_2: 20;
end;
suppose
A67: x
in (
dom p);
then (p
. x)
= (p
/. x) by
PARTFUN1:def 6;
then
reconsider px = (p
. x) as
Element of K;
A68: (
dom
<*px*>)
= (
Seg 1) by
FINSEQ_1: 38;
(
rng
<*x*>)
=
{x} by
FINSEQ_1: 38;
then (
dom
<*x*>)
= (
Seg 1) & (
rng
<*x*>)
c= (
dom p) by
A67,
FINSEQ_1: 38,
ZFMISC_1: 31;
then
A69: (
dom (p
*
<*x*>))
= (
dom
<*px*>) by
A68,
RELAT_1: 27;
A70:
now
let e be
object;
assume
A71: e
in (
dom
<*px*>);
then
A72: e
= 1 by
A68,
FINSEQ_1: 2,
TARSKI:def 1;
thus ((p
*
<*x*>)
. e)
= (p
. (
<*x*>
. e)) by
A69,
A71,
FUNCT_1: 12
.= (p
. x) by
A72,
FINSEQ_1: 40
.= (
<*px*>
. e) by
A72,
FINSEQ_1: 40;
end;
A73: x
<>
0 by
A67,
FINSEQ_3: 25;
q
= (p
* (
Sgm ((
dom p)
/\
{x}))) by
A63,
RELAT_1: 61
.= (p
* (
Sgm
{x})) by
A67,
ZFMISC_1: 46
.= (p
*
<*x*>) by
A73,
FINSEQ_3: 44
.=
<*px*> by
A69,
A70,
FUNCT_1: 2;
hence (G
.
{x})
= px by
A64,
RLVECT_1: 44
.= ((
[#] (p,(
the_unity_wrt the
addF of K)))
. x) by
A67,
SETWOP_2: 20;
end;
end;
A74:
now
let e be
Element of K;
assume
A75: e
is_a_unity_wrt the
addF of K;
(
0. K)
is_a_unity_wrt the
addF of K by
Th6;
then
A76: e
= (
0. K) by
A75,
BINOP_1: 10;
A77:
{}
c= (
Seg
0 );
consider q be
FinSequence of the
carrier of K such that
A78: q
= (p
* (
Sgm (
dom (p
| (
{}.
NAT ) qua
set)))) and
A79: (G
. (
{}.
NAT ))
= (
Sum q) by
A7;
q
= (p
* (
Sgm (
dom
{} ))) by
A78
.= (p
*
{} ) by
A77,
FINSEQ_1: 51
.= (
<*> the
carrier of K);
hence e
= (G
.
{} ) by
A79,
A76,
RLVECT_1: 43;
end;
consider q1 be
FinSequence of the
carrier of K such that
A80: q1
= (p
* (
Sgm (
dom (p
| (
dom p))))) and
A81: (G
. (
findom p))
= (
Sum q1) by
A7;
A82: the
addF of K is
having_a_unity by
Th8;
q1
= (p
* (
Sgm (
dom p))) by
A80
.= (p
* (
Sgm (
Seg (
len p)))) by
FINSEQ_1:def 3
.= (p
* (
idseq (
len p))) by
FINSEQ_3: 48
.= p by
FINSEQ_2: 54;
hence s
= (the
addF of K
$$ ((
findom p),(
[#] (p,(
the_unity_wrt the
addF of K))))) by
A3,
A82,
A81,
A74,
A62,
A8,
SETWISEO:def 3
.= (the
addF of K
$$ p) by
Th8,
SETWOP_2:def 2;
end;
A83: (p
| (
len p))
= (p
| (
Seg (
len p))) by
FINSEQ_1:def 15
.= (p
| (
dom p)) by
FINSEQ_1:def 3
.= p;
A84:
now
let j be
Nat;
let a be
Element of K;
assume that
A85: j
< (
len p) and
A86: a
= (p
. (j
+ 1));
A87: (j
+ 1)
<= (
len p) by
A85,
NAT_1: 13;
then
A88: (
len (p
| (j
+ 1)))
= (j
+ 1) by
FINSEQ_1: 59;
j
<= (j
+ 1) by
NAT_1: 11;
then
A89: (
Seg j)
c= (
Seg (j
+ 1)) by
FINSEQ_1: 5;
A90: (p
| j)
= (p
| (
Seg j)) by
FINSEQ_1:def 15
.= ((p
| (
Seg (j
+ 1)))
| (
Seg j)) by
A89,
RELAT_1: 74
.= ((p
| (j
+ 1))
| (
Seg j)) by
FINSEQ_1:def 15;
A91: 1
<= (j
+ 1) by
NAT_1: 11;
then
A92: (j
+ 1)
in (
dom (p
| (j
+ 1))) by
A88,
FINSEQ_3: 25;
(j
+ 1)
in (
dom p) by
A87,
A91,
FINSEQ_3: 25;
then a
= (p
/. (j
+ 1)) by
A86,
PARTFUN1:def 6
.= ((p
| (j
+ 1))
/. (j
+ 1)) by
A92,
FINSEQ_4: 70
.= ((p
| (j
+ 1))
. (j
+ 1)) by
A92,
PARTFUN1:def 6;
then (p
| (j
+ 1))
= ((p
| j)
^
<*a*>) by
A88,
A90,
FINSEQ_3: 55;
hence (f
. (j
+ 1))
= (the
addF of K
$$ ((p
| j)
^
<*a*>)) by
A2
.= (the
addF of K
. ((the
addF of K
$$ (p
| j)),a)) by
Th8,
FINSOP_1: 4
.= ((f
. j)
+ a) by
A2;
end;
(p
|
0 )
= q;
then
A93: (f
.
0 )
= (the
addF of K
$$ q) by
A2
.= (
the_unity_wrt the
addF of K) by
Th8,
FINSOP_1: 10
.= (
0. K) by
Th7;
assume s
= (the
addF of K
$$ p);
then s
= (f
. (
len p)) by
A2,
A83;
hence thesis by
A93,
A84,
RLVECT_1:def 12;
end;
end
reserve K for
add-associative
right_zeroed
right_complementable non
empty
addLoopStr,
a for
Element of K,
p for
FinSequence of the
carrier of K;
theorem ::
FVSUM_1:71
(
Sum (p
^
<*a*>))
= ((
Sum p)
+ a)
proof
thus (
Sum (p
^
<*a*>))
= ((
Sum p)
+ (
Sum
<*a*>)) by
RLVECT_1: 41
.= ((
Sum p)
+ a) by
RLVECT_1: 44;
end;
theorem ::
FVSUM_1:72
(
Sum (
<*a*>
^ p))
= (a
+ (
Sum p))
proof
thus (
Sum (
<*a*>
^ p))
= ((
Sum
<*a*>)
+ (
Sum p)) by
RLVECT_1: 41
.= (a
+ (
Sum p)) by
RLVECT_1: 44;
end;
theorem ::
FVSUM_1:73
for K be
Abelian
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr, a be
Element of K, p be
FinSequence of the
carrier of K holds (
Sum (a
* p))
= (a
* (
Sum p))
proof
let K be
Abelian
add-associative
right_zeroed
distributive
right_complementable non
empty
doubleLoopStr, a be
Element of K, p be
FinSequence of the
carrier of K;
set rM = (the
multF of K
[;] (a,(
id the
carrier of K)));
the
addF of K is
having_a_unity & the
multF of K
is_distributive_wrt the
addF of K by
Th8,
Th10;
hence (
Sum (a
* p))
= (rM
. (
Sum p)) by
Th14,
SETWOP_2: 30
.= (a
* (
Sum p)) by
Lm1;
end;
theorem ::
FVSUM_1:74
for K be non
empty
addLoopStr holds for R be
Element of (
0
-tuples_on the
carrier of K) holds (
Sum R)
= (
0. K)
proof
let K be non
empty
addLoopStr, R be
Element of (
0
-tuples_on the
carrier of K);
R
= (
<*> the
carrier of K);
hence thesis by
RLVECT_1: 43;
end;
reserve K for
Abelian
add-associative
right_zeroed
right_complementable non
empty
addLoopStr,
p for
FinSequence of the
carrier of K,
R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:75
(
Sum (
- p))
= (
- (
Sum p))
proof
the
addF of K is
having_an_inverseOp & (
the_inverseOp_wrt the
addF of K)
= (
comp K) by
Th14,
Th15;
hence (
Sum (
- p))
= ((
comp K)
. (
Sum p)) by
Th8,
SETWOP_2: 31
.= (
- (
Sum p)) by
VECTSP_1:def 13;
end;
theorem ::
FVSUM_1:76
(
Sum (R1
+ R2))
= ((
Sum R1)
+ (
Sum R2)) by
Th8,
SETWOP_2: 35;
theorem ::
FVSUM_1:77
(
Sum (R1
- R2))
= ((
Sum R1)
- (
Sum R2))
proof
the
addF of K is
having_an_inverseOp & (
the_inverseOp_wrt the
addF of K)
= (
comp K) by
Th14,
Th15;
hence (
Sum (R1
- R2))
= ((
diffield K)
. ((
Sum R1),(the
addF of K
$$ R2))) by
Th8,
SETWOP_2: 37
.= ((
Sum R1)
- (
Sum R2)) by
Th11;
end;
begin
Lm6: for K be
commutative
well-unital non
empty
multLoopStr holds (
Product (
<*> the
carrier of K))
= (
1. K)
proof
let K be
commutative
well-unital non
empty
multLoopStr;
(
1. K)
= (
1_ K);
hence thesis by
GROUP_4: 8;
end;
reserve K for
commutative
associative
well-unital non
empty
doubleLoopStr,
a,a1,a2,a3 for
Element of K,
p1 for
FinSequence of the
carrier of K,
R1,R2 for
Element of (i
-tuples_on the
carrier of K);
theorem ::
FVSUM_1:78
(
Product (
<*a*>
^ p1))
= (a
* (
Product p1))
proof
thus (
Product (
<*a*>
^ p1))
= ((
Product
<*a*>)
* (
Product p1)) by
GROUP_4: 5
.= (a
* (
Product p1)) by
FINSOP_1: 11;
end;
theorem ::
FVSUM_1:79
(
Product
<*a1, a2, a3*>)
= ((a1
* a2)
* a3)
proof
thus (
Product
<*a1, a2, a3*>)
= (
Product (
<*a1, a2*>
^
<*a3*>)) by
FINSEQ_1: 43
.= ((
Product
<*a1, a2*>)
* a3) by
GROUP_4: 6
.= ((a1
* a2)
* a3) by
FINSOP_1: 12;
end;
theorem ::
FVSUM_1:80
for R be
Element of (
0
-tuples_on the
carrier of K) holds (
Product R)
= (
1. K)
proof
let R be
Element of (
0
-tuples_on the
carrier of K);
R
= (
<*> the
carrier of K);
hence thesis by
Lm6;
end;
theorem ::
FVSUM_1:81
(
Product (i
|-> (
1_ K)))
= (
1_ K)
proof
(
the_unity_wrt the
multF of K)
= (
1_ K) by
Th5;
hence thesis by
SETWOP_2: 25;
end;
theorem ::
FVSUM_1:82
for K be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr holds for p be
FinSequence of the
carrier of K holds (ex k st k
in (
dom p) & (p
. k)
= (
0. K)) iff (
Product p)
= (
0. K)
proof
let K be
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr;
let p be
FinSequence of the
carrier of K;
defpred
P[
Nat] means for p be
FinSequence of the
carrier of K st (
len p)
= $1 holds (ex k st k
in (
Seg $1) & (p
. k)
= (
0. K)) iff (
Product p)
= (
0. K);
A1: for i st
P[i] holds
P[(i
+ 1)]
proof
let i such that
A2: for p be
FinSequence of the
carrier of K st (
len p)
= i holds (ex k st k
in (
Seg i) & (p
. k)
= (
0. K)) iff (
Product p)
= (
0. K);
let p be
FinSequence of the
carrier of K;
assume
A3: (
len p)
= (i
+ 1);
then
consider p9 be
FinSequence of the
carrier of K, a be
Element of K such that
A4: p
= (p9
^
<*a*>) by
FINSEQ_2: 19;
A5: (i
+ 1)
= ((
len p9)
+ 1) by
A3,
A4,
FINSEQ_2: 16;
then
A6: i
= (
len p9) by
XCMPLX_1: 2;
A7: (
Product p)
= ((
Product p9)
* a) by
A4,
GROUP_4: 6;
thus (ex k st k
in (
Seg (i
+ 1)) & (p
. k)
= (
0. K)) implies (
Product p)
= (
0. K)
proof
given k such that
A8: k
in (
Seg (i
+ 1)) and
A9: (p
. k)
= (
0. K);
now
per cases by
A8,
FINSEQ_2: 7;
suppose
A10: k
in (
Seg i);
then k
in (
dom p9) by
A6,
FINSEQ_1:def 3;
then (p9
. k)
= (p
. k) by
A4,
FINSEQ_1:def 7;
then (
Product p9)
= (
0. K) by
A2,
A6,
A9,
A10;
hence thesis by
A7;
end;
suppose k
= (i
+ 1);
then a
= (
0. K) by
A4,
A5,
A9,
FINSEQ_1: 42;
hence thesis by
A7;
end;
end;
hence thesis;
end;
assume
A11: (
Product p)
= (
0. K);
per cases by
A7,
A11,
VECTSP_1: 12;
suppose (
Product p9)
= (
0. K);
then
consider k such that
A12: k
in (
Seg i) and
A13: (p9
. k)
= (
0. K) by
A2,
A6;
k
in (
dom p9) by
A6,
A12,
FINSEQ_1:def 3;
then (p
. k)
= (
0. K) by
A4,
A13,
FINSEQ_1:def 7;
hence thesis by
A12,
FINSEQ_2: 8;
end;
suppose a
= (
0. K);
then (p
. (i
+ 1))
= (
0. K) by
A4,
A5,
FINSEQ_1: 42;
hence thesis by
FINSEQ_1: 4;
end;
end;
A14: (
Seg (
len p))
= (
dom p) by
FINSEQ_1:def 3;
A15:
P[
0 ]
proof
let p be
FinSequence of the
carrier of K;
assume (
len p)
=
0 ;
then p
= (
<*> the
carrier of K);
then
A16: (
Product p)
= (
1. K) by
Lm6;
thus (ex k st k
in (
Seg
0 ) & (p
. k)
= (
0. K)) implies (
Product p)
= (
0. K);
assume (
Product p)
= (
0. K);
hence thesis by
A16;
end;
for i holds
P[i] from
NAT_1:sch 2(
A15,
A1);
hence thesis by
A14;
end;
theorem ::
FVSUM_1:83
(
Product ((i
+ j)
|-> a))
= ((
Product (i
|-> a))
* (
Product (j
|-> a))) by
SETWOP_2: 26;
theorem ::
FVSUM_1:84
(
Product ((i
* j)
|-> a))
= (
Product (j
|-> (
Product (i
|-> a)))) by
SETWOP_2: 27;
theorem ::
FVSUM_1:85
(
Product (i
|-> (a1
* a2)))
= ((
Product (i
|-> a1))
* (
Product (i
|-> a2))) by
SETWOP_2: 36;
theorem ::
FVSUM_1:86
Th86: (
Product (
mlt (R1,R2)))
= ((
Product R1)
* (
Product R2)) by
SETWOP_2: 35;
theorem ::
FVSUM_1:87
(
Product (a
* R1))
= ((
Product (i
|-> a))
* (
Product R1))
proof
thus (
Product (a
* R1))
= (
Product (
mlt ((i
|-> a),R1))) by
Th66
.= ((
Product (i
|-> a))
* (
Product R1)) by
Th86;
end;
begin
definition
let K be non
empty
doubleLoopStr;
let p,q be
FinSequence of the
carrier of K;
::
FVSUM_1:def9
func p
"*" q ->
Element of K equals (
Sum (
mlt (p,q)));
coherence ;
end
theorem ::
FVSUM_1:88
for K be
commutative
associative
left_unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
doubleLoopStr holds for a,b be
Element of K holds (
<*a*>
"*"
<*b*>)
= (a
* b)
proof
let K be
commutative
associative
left_unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
doubleLoopStr;
let a,b be
Element of K;
set p =
<*a*>, q =
<*b*>;
set m = (
mlt (p,q));
m
=
<*(a
* b)*> by
FINSEQ_2: 74;
then m
= (1
|-> (a
* b)) by
FINSEQ_2: 59;
hence thesis by
FINSOP_1: 16;
end;
theorem ::
FVSUM_1:89
for K be
commutative
associative
left_unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
doubleLoopStr holds for a1,a2,b1,b2 be
Element of K holds (
<*a1, a2*>
"*"
<*b1, b2*>)
= ((a1
* b1)
+ (a2
* b2))
proof
let K be
commutative
associative
left_unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
doubleLoopStr;
let a1,a2,b1,b2 be
Element of K;
set p =
<*a1, a2*>;
set q =
<*b1, b2*>;
(the
addF of K
$$ (
mlt (p,q)))
= (the
addF of K
$$
<*(a1
* b1), (a2
* b2)*>) by
Lm5
.= ((a1
* b1)
+ (a2
* b2)) by
FINSOP_1: 12;
hence thesis;
end;
theorem ::
FVSUM_1:90
for p,q be
FinSequence of the
carrier of K holds (p
"*" q)
= (q
"*" p) by
Th64;