gr_cy_2.miz
    
    begin
    
    reserve F,G for
    Group;
    
    reserve G1 for
    Subgroup of G; 
    
    reserve Gc for
    cyclic  
    Group;
    
    reserve H for
    Subgroup of Gc; 
    
    reserve f for
    Homomorphism of G, Gc; 
    
    reserve a,b for
    Element of G; 
    
    reserve g for
    Element of Gc; 
    
    reserve a1 for
    Element of G1; 
    
    reserve k,m,n,p,s for
    Element of 
    NAT ; 
    
    reserve i0,i,i1,i2 for
    Integer;
    
    reserve j,j1 for
    Element of 
    INT.Group ; 
    
    reserve x,y,t for
    set;
    
    theorem :: 
    
    GR_CY_2:1
    
    (
    ord a) 
    > 1 & a 
    = (b 
    |^ k) implies k 
    <>  
    0  
    
    proof
    
      assume that
    
      
    
    A1: ( 
    ord a) 
    > 1 and 
    
      
    
    A2: a 
    = (b 
    |^ k) & k 
    =  
    0 ; 
    
      a
    = ( 
    1_ G) by 
    A2,
    GROUP_1: 25;
    
      hence contradiction by
    A1,
    GROUP_1: 42;
    
    end;
    
    theorem :: 
    
    GR_CY_2:2
    
    
    
    
    
    Th2: a 
    in ( 
    gr  
    {a})
    
    proof
    
      ex i st a
    = (a 
    |^ i) 
    
      proof
    
        reconsider i = 1 as
    Integer;
    
        take i;
    
        thus thesis by
    GROUP_1: 26;
    
      end;
    
      hence thesis by
    GR_CY_1: 5;
    
    end;
    
    theorem :: 
    
    GR_CY_2:3
    
    
    
    
    
    Th3: a 
    = a1 implies ( 
    gr  
    {a})
    = ( 
    gr  
    {a1})
    
    proof
    
      reconsider Gr = (
    gr  
    {a1}) as
    Subgroup of G by 
    GROUP_2: 56;
    
      assume
    
      
    
    A1: a 
    = a1; 
    
      
    
      
    
    A2: for b holds b 
    in Gr implies b 
    in ( 
    gr  
    {a})
    
      proof
    
        let b;
    
        assume
    
        
    
    A3: b 
    in Gr; 
    
        then b
    in G1 by 
    GROUP_2: 40;
    
        then
    
        reconsider b1 = b as
    Element of G1 by 
    STRUCT_0:def 5;
    
        consider i such that
    
        
    
    A4: b1 
    = (a1 
    |^ i) by 
    A3,
    GR_CY_1: 5;
    
        b
    = (a 
    |^ i) by 
    A1,
    A4,
    GROUP_4: 2;
    
        hence thesis by
    GR_CY_1: 5;
    
      end;
    
      for b holds b
    in ( 
    gr  
    {a}) implies b
    in Gr 
    
      proof
    
        let b;
    
        assume b
    in ( 
    gr  
    {a});
    
        then
    
        consider i such that
    
        
    
    A5: b 
    = (a 
    |^ i) by 
    GR_CY_1: 5;
    
        b
    = (a1 
    |^ i) by 
    A1,
    A5,
    GROUP_4: 2;
    
        hence thesis by
    GR_CY_1: 5;
    
      end;
    
      hence thesis by
    A2,
    GROUP_2: 60;
    
    end;
    
    theorem :: 
    
    GR_CY_2:4
    
    
    
    
    
    Th4: ( 
    gr  
    {a}) is
    cyclic  
    Group
    
    proof
    
      ex a1 be
    Element of ( 
    gr  
    {a}) st (
    gr  
    {a})
    = ( 
    gr  
    {a1})
    
      proof
    
        a
    in ( 
    gr  
    {a}) by
    Th2;
    
        then
    
        reconsider a1 = a as
    Element of ( 
    gr  
    {a}) by
    STRUCT_0:def 5;
    
        take a1;
    
        thus thesis by
    Th3;
    
      end;
    
      hence thesis by
    GR_CY_1:def 7;
    
    end;
    
    theorem :: 
    
    GR_CY_2:5
    
    
    
    
    
    Th5: for G be 
    strict  
    Group, b be 
    Element of G holds (for a be 
    Element of G holds ex i st a 
    = (b 
    |^ i)) iff G 
    = ( 
    gr  
    {b})
    
    proof
    
      let G be
    strict  
    Group;
    
      let b be
    Element of G; 
    
      thus (for a be
    Element of G holds ex i st a 
    = (b 
    |^ i)) implies G 
    = ( 
    gr  
    {b})
    
      proof
    
        assume
    
        
    
    A1: for a be 
    Element of G holds ex i st a 
    = (b 
    |^ i); 
    
        for a be
    Element of G holds a 
    in ( 
    gr  
    {b})
    
        proof
    
          let a be
    Element of G; 
    
          ex i st a
    = (b 
    |^ i) by 
    A1;
    
          hence thesis by
    GR_CY_1: 5;
    
        end;
    
        hence thesis by
    GROUP_2: 62;
    
      end;
    
      assume
    
      
    
    A2: G 
    = ( 
    gr  
    {b});
    
      let a be
    Element of G; 
    
      a
    in ( 
    gr  
    {b}) by
    A2,
    STRUCT_0:def 5;
    
      hence thesis by
    GR_CY_1: 5;
    
    end;
    
    theorem :: 
    
    GR_CY_2:6
    
    
    
    
    
    Th6: for G be 
    strict
    finite  
    Group, b be 
    Element of G holds (for a be 
    Element of G holds ex p st a 
    = (b 
    |^ p)) iff G 
    = ( 
    gr  
    {b})
    
    proof
    
      let G be
    strict
    finite  
    Group, b be 
    Element of G; 
    
      reconsider n1 = (
    card G) as 
    Integer;
    
      thus (for a be
    Element of G holds ex p st a 
    = (b 
    |^ p)) implies G 
    = ( 
    gr  
    {b})
    
      proof
    
        assume
    
        
    
    A1: for a be 
    Element of G holds ex p st a 
    = (b 
    |^ p); 
    
        for a be
    Element of G holds ex i st a 
    = (b 
    |^ i) 
    
        proof
    
          let a be
    Element of G; 
    
          consider p such that
    
          
    
    A2: a 
    = (b 
    |^ p) by 
    A1;
    
          reconsider p1 = p as
    Integer;
    
          take p1;
    
          thus thesis by
    A2;
    
        end;
    
        hence thesis by
    Th5;
    
      end;
    
      assume
    
      
    
    A3: G 
    = ( 
    gr  
    {b});
    
      let a be
    Element of G; 
    
      consider i such that
    
      
    
    A4: a 
    = (b 
    |^ i) by 
    A3,
    Th5;
    
      reconsider p = (i
    mod n1) as 
    Element of 
    NAT by 
    INT_1: 3,
    NEWTON: 64;
    
      take p;
    
      a
    = (b 
    |^ (((i 
    div n1) 
    * n1) 
    + (i 
    mod n1))) by 
    A4,
    NEWTON: 66
    
      .= ((b
    |^ ((i 
    div n1) 
    * n1)) 
    * (b 
    |^ (i 
    mod n1))) by 
    GROUP_1: 33
    
      .= (((b
    |^ (i 
    div n1)) 
    |^ ( 
    card G)) 
    * (b 
    |^ (i 
    mod n1))) by 
    GROUP_1: 35
    
      .= ((
    1_ G) 
    * (b 
    |^ (i 
    mod n1))) by 
    GR_CY_1: 9
    
      .= (b
    |^ (i 
    mod n1)) by 
    GROUP_1:def 4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    GR_CY_2:7
    
    
    
    
    
    Th7: for G be 
    strict  
    Group, a be 
    Element of G holds G is 
    finite & G 
    = ( 
    gr  
    {a}) implies for G1 be
    strict  
    Subgroup of G holds ex p st G1 
    = ( 
    gr  
    {(a
    |^ p)}) 
    
    proof
    
      let G be
    strict  
    Group, a be 
    Element of G; 
    
      assume that
    
      
    
    A1: G is 
    finite and 
    
      
    
    A2: G 
    = ( 
    gr  
    {a});
    
      let G1 be
    strict  
    Subgroup of G; 
    
      G is
    cyclic  
    Group by 
    A2,
    GR_CY_1:def 7;
    
      then G1 is
    cyclic  
    Group by 
    A1,
    GR_CY_1: 20;
    
      then
    
      consider b be
    Element of G1 such that 
    
      
    
    A3: G1 
    = ( 
    gr  
    {b}) by
    GR_CY_1:def 7;
    
      reconsider b1 = b as
    Element of G by 
    GROUP_2: 42;
    
      consider p such that
    
      
    
    A4: b1 
    = (a 
    |^ p) by 
    A1,
    A2,
    Th6;
    
      take p;
    
      thus thesis by
    A3,
    A4,
    Th3;
    
    end;
    
    theorem :: 
    
    GR_CY_2:8
    
    
    
    
    
    Th8: for G be 
    finite  
    Group, a be 
    Element of G holds G 
    = ( 
    gr  
    {a}) & (
    card G) 
    = n & n 
    = (p 
    * s) implies ( 
    ord (a 
    |^ p)) 
    = s 
    
    proof
    
      let G be
    finite  
    Group, a be 
    Element of G; 
    
      assume that
    
      
    
    A1: G 
    = ( 
    gr  
    {a}) and
    
      
    
    A2: ( 
    card G) 
    = n and 
    
      
    
    A3: n 
    = (p 
    * s); 
    
      
    
      
    
    A4: not (a 
    |^ p) is 
    being_of_order_0 & s 
    <>  
    0 by 
    A2,
    A3,
    GR_CY_1: 6;
    
      
    
      
    
    A5: p 
    <>  
    0 by 
    A2,
    A3;
    
      
    
      
    
    A6: for k be 
    Nat st ((a 
    |^ p) 
    |^ k) 
    = ( 
    1_ G) & k 
    <>  
    0 holds s 
    <= k 
    
      proof
    
        let k be
    Nat;
    
        assume that
    
        
    
    A7: ((a 
    |^ p) 
    |^ k) 
    = ( 
    1_ G) and 
    
        
    
    A8: k 
    <>  
    0 & s 
    > k; 
    
        
    
        
    
    A9: (a 
    |^ (p 
    * k)) 
    = ( 
    1_ G) by 
    A7,
    GROUP_1: 35;
    
        
    
        
    
    A10: ( 
    ord a) 
    = n & not a is 
    being_of_order_0 by 
    A1,
    A2,
    GR_CY_1: 6,
    GR_CY_1: 7;
    
        (p
    * s) 
    > (p 
    * k) & (p 
    * k) 
    <>  
    0 by 
    A5,
    A8,
    XCMPLX_1: 6,
    XREAL_1: 68;
    
        hence contradiction by
    A3,
    A10,
    A9,
    GROUP_1:def 11;
    
      end;
    
      ((a
    |^ p) 
    |^ s) 
    = (a 
    |^ n) by 
    A3,
    GROUP_1: 35
    
      .= (
    1_ G) by 
    A2,
    GR_CY_1: 9;
    
      hence thesis by
    A4,
    A6,
    GROUP_1:def 11;
    
    end;
    
    theorem :: 
    
    GR_CY_2:9
    
    
    
    
    
    Th9: s 
    divides k implies (a 
    |^ k) 
    in ( 
    gr  
    {(a
    |^ s)}) 
    
    proof
    
      assume s
    divides k; 
    
      then
    
      consider p be
    Nat such that 
    
      
    
    A1: k 
    = (s 
    * p) by 
    NAT_D:def 3;
    
      ex i st (a
    |^ k) 
    = ((a 
    |^ s) 
    |^ i) 
    
      proof
    
        reconsider p9 = p as
    Integer;
    
        take p9;
    
        thus thesis by
    A1,
    GROUP_1: 35;
    
      end;
    
      hence thesis by
    GR_CY_1: 5;
    
    end;
    
    theorem :: 
    
    GR_CY_2:10
    
    
    
    
    
    Th10: for G be 
    finite  
    Group, a be 
    Element of G holds ( 
    card ( 
    gr  
    {(a
    |^ s)})) 
    = ( 
    card ( 
    gr  
    {(a
    |^ k)})) & (a 
    |^ k) 
    in ( 
    gr  
    {(a
    |^ s)}) implies ( 
    gr  
    {(a
    |^ s)}) 
    = ( 
    gr  
    {(a
    |^ k)}) 
    
    proof
    
      let G be
    finite  
    Group, a be 
    Element of G; 
    
      assume
    
      
    
    A1: ( 
    card ( 
    gr  
    {(a
    |^ s)})) 
    = ( 
    card ( 
    gr  
    {(a
    |^ k)})); 
    
      assume (a
    |^ k) 
    in ( 
    gr  
    {(a
    |^ s)}); 
    
      then
    
      reconsider h = (a
    |^ k) as 
    Element of ( 
    gr  
    {(a
    |^ s)}) by 
    STRUCT_0:def 5;
    
      (
    card ( 
    gr  
    {h}))
    = ( 
    card ( 
    gr  
    {(a
    |^ s)})) by 
    A1,
    Th3;
    
      
    
      hence (
    gr  
    {(a
    |^ s)}) 
    = ( 
    gr  
    {h}) by
    GROUP_2: 73
    
      .= (
    gr  
    {(a
    |^ k)}) by 
    Th3;
    
    end;
    
    theorem :: 
    
    GR_CY_2:11
    
    
    
    
    
    Th11: for G be 
    finite  
    Group, G1 be 
    Subgroup of G, a be 
    Element of G holds ( 
    card G) 
    = n & G 
    = ( 
    gr  
    {a}) & (
    card G1) 
    = p & G1 
    = ( 
    gr  
    {(a
    |^ k)}) implies n 
    divides (k 
    * p) 
    
    proof
    
      let G be
    finite  
    Group, G1 be 
    Subgroup of G, a be 
    Element of G; 
    
      assume that
    
      
    
    A1: ( 
    card G) 
    = n and 
    
      
    
    A2: G 
    = ( 
    gr  
    {a}) and
    
      
    
    A3: ( 
    card G1) 
    = p and 
    
      
    
    A4: G1 
    = ( 
    gr  
    {(a
    |^ k)}); 
    
      set z = (k
    * p); 
    
      consider m,l be
    Nat such that 
    
      
    
    A5: z 
    = ((n 
    * m) 
    + l) and 
    
      
    
    A6: l 
    < n by 
    A1,
    NAT_1: 17;
    
      l
    =  
    0  
    
      proof
    
        (a
    |^ k) 
    in ( 
    gr  
    {(a
    |^ k)}) by 
    Th2;
    
        then
    
        reconsider h = (a
    |^ k) as 
    Element of G1 by 
    A4,
    STRUCT_0:def 5;
    
        assume
    
        
    
    A7: l 
    <>  
    0 ; 
    
        (a
    |^ z) 
    = ((a 
    |^ k) 
    |^ p) by 
    GROUP_1: 35
    
        .= (h
    |^ p) by 
    GROUP_4: 1
    
        .= (
    1_ G1) by 
    A3,
    GR_CY_1: 9
    
        .= (
    1_ G) by 
    GROUP_2: 44;
    
        
    
        then
    
        
    
    A8: ( 
    1_ G) 
    = ((a 
    |^ (n 
    * m)) 
    * (a 
    |^ l)) by 
    A5,
    GROUP_1: 33
    
        .= (((a
    |^ n) 
    |^ m) 
    * (a 
    |^ l)) by 
    GROUP_1: 35
    
        .= (((
    1_ G) 
    |^ m) 
    * (a 
    |^ l)) by 
    A1,
    GR_CY_1: 9
    
        .= ((
    1_ G) 
    * (a 
    |^ l)) by 
    GROUP_1: 31
    
        .= (a
    |^ l) by 
    GROUP_1:def 4;
    
         not a is
    being_of_order_0 & ( 
    ord a) 
    = n by 
    A1,
    A2,
    GR_CY_1: 6,
    GR_CY_1: 7;
    
        hence contradiction by
    A6,
    A7,
    A8,
    GROUP_1:def 11;
    
      end;
    
      hence thesis by
    A5,
    NAT_D:def 3;
    
    end;
    
    theorem :: 
    
    GR_CY_2:12
    
    for G be
    strict
    finite  
    Group, a be 
    Element of G holds G 
    = ( 
    gr  
    {a}) & (
    card G) 
    = n implies (G 
    = ( 
    gr  
    {(a
    |^ k)}) iff (k 
    gcd n) 
    = 1) 
    
    proof
    
      let G be
    strict
    finite  
    Group, a be 
    Element of G; 
    
      assume that
    
      
    
    A1: G 
    = ( 
    gr  
    {a}) and
    
      
    
    A2: ( 
    card G) 
    = n; 
    
      
    
      
    
    A3: G 
    = ( 
    gr  
    {(a
    |^ k)}) implies (k 
    gcd n) 
    = 1 
    
      proof
    
        set d = (k
    gcd n); 
    
        assume that
    
        
    
    A4: G 
    = ( 
    gr  
    {(a
    |^ k)}) and 
    
        
    
    A5: (k 
    gcd n) 
    <> 1; 
    
        d
    divides n by 
    NAT_D:def 5;
    
        then
    
        consider p be
    Nat such that 
    
        
    
    A6: n 
    = (d 
    * p) by 
    NAT_D:def 3;
    
        
    
        
    
    A7: p 
    <>  
    0 by 
    A2,
    A6;
    
        
    
        
    
    A8: p 
    <> n 
    
        proof
    
          assume p
    = n; 
    
          then (d
    * p) 
    = (p 
    * 1) by 
    A6;
    
          hence contradiction by
    A5,
    A2,
    A6,
    XCMPLX_1: 5;
    
        end;
    
        d
    divides k by 
    NAT_D:def 5;
    
        then
    
        consider l be
    Nat such that 
    
        
    
    A9: k 
    = (d 
    * l) by 
    NAT_D:def 3;
    
        
    
        
    
    A10: not (a 
    |^ k) is 
    being_of_order_0 by 
    GR_CY_1: 6;
    
        ((a
    |^ k) 
    |^ p) 
    = (a 
    |^ ((l 
    * d) 
    * p)) by 
    A9,
    GROUP_1: 35
    
        .= (a
    |^ (n 
    * l)) by 
    A6
    
        .= ((a
    |^ n) 
    |^ l) by 
    GROUP_1: 35
    
        .= ((
    1_ G) 
    |^ l) by 
    A2,
    GR_CY_1: 9
    
        .= (
    1_ G) by 
    GROUP_1: 31;
    
        then
    
        
    
    A11: ( 
    ord (a 
    |^ k)) 
    <= p by 
    A7,
    A10,
    GROUP_1:def 11;
    
        p
    divides n by 
    A6,
    NAT_D:def 3;
    
        then p
    <= n by 
    A2,
    NAT_D: 7;
    
        then p
    < n by 
    A8,
    XXREAL_0: 1;
    
        hence contradiction by
    A2,
    A4,
    A11,
    GR_CY_1: 7;
    
      end;
    
      (k
    gcd n) 
    = 1 implies G 
    = ( 
    gr  
    {(a
    |^ k)}) 
    
      proof
    
        assume (k
    gcd n) 
    = 1; 
    
        then
    
        consider i, i1 such that
    
        
    
    A12: ((i 
    * k) 
    + (i1 
    * n)) 
    = 1 by 
    NEWTON: 67;
    
        for b be
    Element of G holds b 
    in ( 
    gr  
    {(a
    |^ k)}) 
    
        proof
    
          let b be
    Element of G; 
    
          b
    in G by 
    STRUCT_0:def 5;
    
          then
    
          consider i0 such that
    
          
    
    A13: b 
    = (a 
    |^ i0) by 
    A1,
    GR_CY_1: 5;
    
          
    
          
    
    A14: i0 
    = (((k 
    * i) 
    + (n 
    * i1)) 
    * i0) by 
    A12
    
          .= (((k
    * i) 
    * i0) 
    + ((n 
    * i1) 
    * i0)); 
    
          ex i2 st b
    = ((a 
    |^ k) 
    |^ i2) 
    
          proof
    
            take (i
    * i0); 
    
            b
    = ((a 
    |^ ((k 
    * i) 
    * i0)) 
    * (a 
    |^ (n 
    * (i1 
    * i0)))) by 
    A13,
    A14,
    GROUP_1: 33
    
            .= ((a
    |^ ((k 
    * i) 
    * i0)) 
    * ((a 
    |^ n) 
    |^ (i1 
    * i0))) by 
    GROUP_1: 35
    
            .= ((a
    |^ ((k 
    * i) 
    * i0)) 
    * (( 
    1_ G) 
    |^ (i1 
    * i0))) by 
    A2,
    GR_CY_1: 9
    
            .= ((a
    |^ ((k 
    * i) 
    * i0)) 
    * ( 
    1_ G)) by 
    GROUP_1: 31
    
            .= (a
    |^ (k 
    * (i 
    * i0))) by 
    GROUP_1:def 4
    
            .= ((a
    |^ k) 
    |^ (i 
    * i0)) by 
    GROUP_1: 35;
    
            hence thesis;
    
          end;
    
          hence thesis by
    GR_CY_1: 5;
    
        end;
    
        hence thesis by
    GROUP_2: 62;
    
      end;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    GR_CY_2:13
    
    
    
    
    
    Th13: Gc 
    = ( 
    gr  
    {g}) & g
    in H implies the multMagma of Gc 
    = the multMagma of H 
    
    proof
    
      assume that
    
      
    
    A1: Gc 
    = ( 
    gr  
    {g}) and
    
      
    
    A2: g 
    in H; 
    
      reconsider g9 = g as
    Element of H by 
    A2,
    STRUCT_0:def 5;
    
      (
    gr  
    {g9}) is
    Subgroup of H; 
    
      then (
    gr  
    {g}) is
    Subgroup of H by 
    Th3;
    
      hence thesis by
    A1,
    GROUP_2: 55;
    
    end;
    
    theorem :: 
    
    GR_CY_2:14
    
    
    
    
    
    Th14: Gc 
    = ( 
    gr  
    {g}) implies (Gc is
    finite iff ex i, i1 st i 
    <> i1 & (g 
    |^ i) 
    = (g 
    |^ i1)) 
    
    proof
    
      assume
    
      
    
    A1: Gc 
    = ( 
    gr  
    {g});
    
      
    
      
    
    A2: (ex i, i1 st i 
    <> i1 & (g 
    |^ i) 
    = (g 
    |^ i1)) implies Gc is 
    finite
    
      proof
    
        given i, i1 such that
    
        
    
    A3: i 
    <> i1 and 
    
        
    
    A4: (g 
    |^ i) 
    = (g 
    |^ i1); 
    
        now
    
          per cases by
    A3,
    XXREAL_0: 1;
    
            suppose
    
            
    
    A5: i 
    < i1; 
    
            set r = (i1
    - i); 
    
            i1
    > (i 
    +  
    0 ) by 
    A5;
    
            then
    
            
    
    A6: (i1 
    - i) 
    >  
    0 by 
    XREAL_1: 20;
    
            then
    
            reconsider m = r as
    Element of 
    NAT by 
    INT_1: 3;
    
            ((g
    |^ i1) 
    * (g 
    |^ ( 
    - i))) 
    = ((g 
    |^ i) 
    * ((g 
    |^ i) 
    " )) by 
    A4,
    GROUP_1: 36;
    
            then ((g
    |^ i1) 
    * (g 
    |^ ( 
    - i))) 
    = ( 
    1_ Gc) by 
    GROUP_1:def 5;
    
            then
    
            
    
    A7: (g 
    |^ (i1 
    + ( 
    - i))) 
    = ( 
    1_ Gc) by 
    GROUP_1: 33;
    
            
    
            
    
    A8: for i2 holds ex n st (g 
    |^ i2) 
    = (g 
    |^ n) & n 
    >=  
    0 & n 
    < (i1 
    - i) 
    
            proof
    
              let i2;
    
              reconsider m = (i2
    mod r) as 
    Element of 
    NAT by 
    A6,
    INT_1: 3,
    NEWTON: 64;
    
              take m;
    
              (g
    |^ i2) 
    = (g 
    |^ (((i2 
    div r) 
    * r) 
    + (i2 
    mod r))) by 
    A6,
    NEWTON: 66
    
              .= ((g
    |^ (r 
    * (i2 
    div r))) 
    * (g 
    |^ (i2 
    mod r))) by 
    GROUP_1: 33
    
              .= (((
    1_ Gc) 
    |^ (i2 
    div r)) 
    * (g 
    |^ (i2 
    mod r))) by 
    A7,
    GROUP_1: 35
    
              .= ((
    1_ Gc) 
    * (g 
    |^ (i2 
    mod r))) by 
    GROUP_1: 31
    
              .= (g
    |^ (i2 
    mod r)) by 
    GROUP_1:def 4;
    
              hence thesis by
    A6,
    NEWTON: 65;
    
            end;
    
            ex F be
    FinSequence st ( 
    rng F) 
    = the 
    carrier of Gc 
    
            proof
    
              deffunc
    
    F(
    Nat) = (g
    |^ $1); 
    
              consider F be
    FinSequence such that 
    
              
    
    A9: ( 
    len F) 
    = m and 
    
              
    
    A10: for p be 
    Nat holds p 
    in ( 
    dom F) implies (F 
    . p) 
    =  
    F(p) from
    FINSEQ_1:sch 2;
    
              
    
              
    
    A11: ( 
    dom F) 
    = ( 
    Seg m) by 
    A9,
    FINSEQ_1:def 3;
    
              
    
              
    
    A12: the 
    carrier of Gc 
    c= ( 
    rng F) 
    
              proof
    
                let y be
    object;
    
                assume y
    in the 
    carrier of Gc; 
    
                then
    
                reconsider a = y as
    Element of Gc; 
    
                a
    in Gc by 
    STRUCT_0:def 5;
    
                then
    
                
    
    A13: ex i2 st a 
    = (g 
    |^ i2) by 
    A1,
    GR_CY_1: 5;
    
                ex n st n
    in ( 
    dom F) & (F 
    . n) 
    = a 
    
                proof
    
                  consider n such that
    
                  
    
    A14: a 
    = (g 
    |^ n) and n 
    >=  
    0 and 
    
                  
    
    A15: n 
    < (i1 
    - i) by 
    A8,
    A13;
    
                  per cases ;
    
                    suppose
    
                    
    
    A16: n 
    =  
    0 ; 
    
                    
    
                    
    
    A17: m 
    >= ( 
    0  
    + 1) by 
    A6,
    NAT_1: 13;
    
                    then
    
                    
    
    A18: m 
    in ( 
    Seg m) by 
    FINSEQ_1: 1;
    
                    
    
                    
    
    A19: m 
    in ( 
    dom F) by 
    A11,
    A17,
    FINSEQ_1: 1;
    
                    a
    = (g 
    |^ m) by 
    A7,
    A14,
    A16,
    GROUP_1: 25;
    
                    then (F
    . m) 
    = a by 
    A10,
    A11,
    A18;
    
                    hence thesis by
    A19;
    
                  end;
    
                    suppose n
    >  
    0 ; 
    
                    then
    
                    
    
    A20: n 
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
                    then n
    in ( 
    Seg m) by 
    A15,
    FINSEQ_1: 1;
    
                    then
    
                    
    
    A21: (F 
    . n) 
    = a by 
    A10,
    A11,
    A14;
    
                    n
    in ( 
    dom F) by 
    A11,
    A15,
    A20,
    FINSEQ_1: 1;
    
                    hence thesis by
    A21;
    
                  end;
    
                end;
    
                hence thesis by
    FUNCT_1:def 3;
    
              end;
    
              take F;
    
              
    
              
    
    A22: for y st y 
    in ( 
    rng F) holds ex n st y 
    = (g 
    |^ n) 
    
              proof
    
                let y;
    
                assume y
    in ( 
    rng F); 
    
                then
    
                consider x be
    object such that 
    
                
    
    A23: x 
    in ( 
    dom F) and 
    
                
    
    A24: (F 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
                reconsider n = x as
    Element of 
    NAT by 
    A23;
    
                take n;
    
                thus thesis by
    A10,
    A23,
    A24;
    
              end;
    
              (
    rng F) 
    c= the 
    carrier of Gc 
    
              proof
    
                let y be
    object;
    
                assume y
    in ( 
    rng F); 
    
                then ex n st y
    = (g 
    |^ n) by 
    A22;
    
                hence thesis;
    
              end;
    
              hence thesis by
    A12,
    XBOOLE_0:def 10;
    
            end;
    
            hence thesis;
    
          end;
    
            suppose
    
            
    
    A25: i1 
    < i; 
    
            set r = (i
    - i1); 
    
            i
    > (i1 
    +  
    0 ) by 
    A25;
    
            then
    
            
    
    A26: (i 
    - i1) 
    >  
    0 by 
    XREAL_1: 20;
    
            then
    
            reconsider m = r as
    Element of 
    NAT by 
    INT_1: 3;
    
            ((g
    |^ i) 
    * (g 
    |^ ( 
    - i1))) 
    = ((g 
    |^ i1) 
    * ((g 
    |^ i1) 
    " )) by 
    A4,
    GROUP_1: 36;
    
            then ((g
    |^ i) 
    * (g 
    |^ ( 
    - i1))) 
    = ( 
    1_ Gc) by 
    GROUP_1:def 5;
    
            then
    
            
    
    A27: (g 
    |^ (i 
    + ( 
    - i1))) 
    = ( 
    1_ Gc) by 
    GROUP_1: 33;
    
            
    
            
    
    A28: for i2 holds ex n st (g 
    |^ i2) 
    = (g 
    |^ n) & n 
    >=  
    0 & n 
    < (i 
    - i1) 
    
            proof
    
              let i2;
    
              reconsider m = (i2
    mod r) as 
    Element of 
    NAT by 
    A26,
    INT_1: 3,
    NEWTON: 64;
    
              take m;
    
              (g
    |^ i2) 
    = (g 
    |^ (((i2 
    div r) 
    * r) 
    + (i2 
    mod r))) by 
    A26,
    NEWTON: 66
    
              .= ((g
    |^ (r 
    * (i2 
    div r))) 
    * (g 
    |^ (i2 
    mod r))) by 
    GROUP_1: 33
    
              .= (((
    1_ Gc) 
    |^ (i2 
    div r)) 
    * (g 
    |^ (i2 
    mod r))) by 
    A27,
    GROUP_1: 35
    
              .= ((
    1_ Gc) 
    * (g 
    |^ (i2 
    mod r))) by 
    GROUP_1: 31
    
              .= (g
    |^ (i2 
    mod r)) by 
    GROUP_1:def 4;
    
              hence thesis by
    A26,
    NEWTON: 65;
    
            end;
    
            ex F be
    FinSequence st ( 
    rng F) 
    = the 
    carrier of Gc 
    
            proof
    
              deffunc
    
    F(
    Nat) = (g
    |^ $1); 
    
              consider F be
    FinSequence such that 
    
              
    
    A29: ( 
    len F) 
    = m and 
    
              
    
    A30: for p be 
    Nat holds p 
    in ( 
    dom F) implies (F 
    . p) 
    =  
    F(p) from
    FINSEQ_1:sch 2;
    
              
    
              
    
    A31: ( 
    dom F) 
    = ( 
    Seg m) by 
    A29,
    FINSEQ_1:def 3;
    
              
    
              
    
    A32: the 
    carrier of Gc 
    c= ( 
    rng F) 
    
              proof
    
                let y be
    object;
    
                assume y
    in the 
    carrier of Gc; 
    
                then
    
                reconsider a = y as
    Element of Gc; 
    
                a
    in Gc by 
    STRUCT_0:def 5;
    
                then
    
                
    
    A33: ex i2 st a 
    = (g 
    |^ i2) by 
    A1,
    GR_CY_1: 5;
    
                ex n st n
    in ( 
    dom F) & (F 
    . n) 
    = a 
    
                proof
    
                  consider n such that
    
                  
    
    A34: a 
    = (g 
    |^ n) and n 
    >=  
    0 and 
    
                  
    
    A35: n 
    < (i 
    - i1) by 
    A28,
    A33;
    
                  per cases ;
    
                    suppose
    
                    
    
    A36: n 
    =  
    0 ; 
    
                    
    
                    
    
    A37: m 
    >= ( 
    0  
    + 1) by 
    A26,
    NAT_1: 13;
    
                    then
    
                    
    
    A38: m 
    in ( 
    Seg m) by 
    FINSEQ_1: 1;
    
                    
    
                    
    
    A39: m 
    in ( 
    dom F) by 
    A31,
    A37,
    FINSEQ_1: 1;
    
                    a
    = (g 
    |^ m) by 
    A27,
    A34,
    A36,
    GROUP_1: 25;
    
                    then (F
    . m) 
    = a by 
    A30,
    A31,
    A38;
    
                    hence thesis by
    A39;
    
                  end;
    
                    suppose n
    >  
    0 ; 
    
                    then
    
                    
    
    A40: n 
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
                    then n
    in ( 
    Seg m) by 
    A35,
    FINSEQ_1: 1;
    
                    then
    
                    
    
    A41: (F 
    . n) 
    = a by 
    A30,
    A31,
    A34;
    
                    n
    in ( 
    dom F) by 
    A31,
    A35,
    A40,
    FINSEQ_1: 1;
    
                    hence thesis by
    A41;
    
                  end;
    
                end;
    
                hence thesis by
    FUNCT_1:def 3;
    
              end;
    
              take F;
    
              
    
              
    
    A42: for y st y 
    in ( 
    rng F) holds ex n st y 
    = (g 
    |^ n) 
    
              proof
    
                let y;
    
                assume y
    in ( 
    rng F); 
    
                then
    
                consider x be
    object such that 
    
                
    
    A43: x 
    in ( 
    dom F) and 
    
                
    
    A44: (F 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
                reconsider n = x as
    Element of 
    NAT by 
    A43;
    
                take n;
    
                thus thesis by
    A30,
    A43,
    A44;
    
              end;
    
              (
    rng F) 
    c= the 
    carrier of Gc 
    
              proof
    
                let y be
    object;
    
                assume y
    in ( 
    rng F); 
    
                then ex n st y
    = (g 
    |^ n) by 
    A42;
    
                hence thesis;
    
              end;
    
              hence thesis by
    A32,
    XBOOLE_0:def 10;
    
            end;
    
            hence thesis;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      Gc is
    finite implies ex i, i1 st i 
    <> i1 & (g 
    |^ i) 
    = (g 
    |^ i1) 
    
      proof
    
        assume Gc is
    finite;
    
        then
    
        reconsider Gc as
    finite
    cyclic  
    Group;
    
        reconsider z =
    0 , i0 = ( 
    card Gc) as 
    Integer;
    
        
    
        
    
    A45: (g 
    |^ z) 
    = ( 
    1_ Gc) by 
    GROUP_1: 25
    
        .= (g
    |^ i0) by 
    GR_CY_1: 9;
    
        thus thesis by
    A45;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    registration
    
      let n be non
    zero  
    Nat;
    
      cluster -> 
    natural for 
    Element of ( 
    INT.Group n); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    GR_CY_2:15
    
    
    
    
    
    Th15: for Gc be 
    strict
    finite
    cyclic  
    Group holds (( 
    INT.Group ( 
    card Gc)),Gc) 
    are_isomorphic  
    
    proof
    
      let Gc be
    strict
    finite
    cyclic  
    Group;
    
      set n = (
    card Gc); 
    
      consider g be
    Element of Gc such that 
    
      
    
    A1: for h be 
    Element of Gc holds ex p be 
    Nat st h 
    = (g 
    |^ p) by 
    GR_CY_1: 18;
    
      for h be
    Element of Gc holds ex i st h 
    = (g 
    |^ i) 
    
      proof
    
        let h be
    Element of Gc; 
    
        consider p be
    Nat such that 
    
        
    
    A2: h 
    = (g 
    |^ p) by 
    A1;
    
        reconsider p1 = p as
    Integer;
    
        take p1;
    
        thus thesis by
    A2;
    
      end;
    
      then
    
      
    
    A3: Gc 
    = ( 
    gr  
    {g}) by
    Th5;
    
      ex h be
    Homomorphism of ( 
    INT.Group n), Gc st h is 
    bijective
    
      proof
    
        deffunc
    
    F(
    Element of ( 
    INT.Group n)) = (g 
    |^ $1); 
    
        consider h be
    Function of the 
    carrier of ( 
    INT.Group n), the 
    carrier of Gc such that 
    
        
    
    A4: for p be 
    Element of ( 
    INT.Group n) holds (h 
    . p) 
    =  
    F(p) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A5: for j,j1 be 
    Element of ( 
    INT.Group n) holds (h 
    . (j 
    * j1)) 
    = ((h 
    . j) 
    * (h 
    . j1)) 
    
        proof
    
          let j,j1 be
    Element of ( 
    INT.Group n); 
    
          reconsider j9 = j, j19 = j1 as
    Element of ( 
    Segm n); 
    
          (j
    * j1) 
    = ((j 
    + j1) 
    mod n) by 
    GR_CY_1:def 4
    
          .= ((j
    + j1) 
    - (n 
    * ((j 
    + j1) 
    div n))) by 
    NEWTON: 63;
    
          
    
          then (h
    . (j 
    * j1)) 
    = (g 
    |^ ((j 
    + j1) 
    + ( 
    - (n 
    * ((j 
    + j1) 
    div n))))) by 
    A4
    
          .= ((g
    |^ (j 
    + j1)) 
    * (g 
    |^ ( 
    - (n 
    * ((j 
    + j1) 
    div n))))) by 
    GROUP_1: 33
    
          .= ((g
    |^ (j 
    + j1)) 
    * ((g 
    |^ (n 
    * ((j 
    + j1) 
    div n))) 
    " )) by 
    GROUP_1: 36
    
          .= ((g
    |^ (j 
    + j1)) 
    * (((g 
    |^ n) 
    |^ ((j 
    + j1) 
    div n)) 
    " )) by 
    GROUP_1: 35
    
          .= ((g
    |^ (j 
    + j1)) 
    * ((( 
    1_ Gc) 
    |^ ((j 
    + j1) 
    div n)) 
    " )) by 
    GR_CY_1: 9
    
          .= ((g
    |^ (j 
    + j1)) 
    * (( 
    1_ Gc) 
    " )) by 
    GROUP_1: 31
    
          .= ((g
    |^ (j 
    + j1)) 
    * ( 
    1_ Gc)) by 
    GROUP_1: 8
    
          .= (g
    |^ (j 
    + j1)) by 
    GROUP_1:def 4
    
          .= ((g
    |^ j) 
    * (g 
    |^ j1)) by 
    GROUP_1: 33
    
          .= ((h
    . j) 
    * (g 
    |^ j1)) by 
    A4
    
          .= ((h
    . j) 
    * (h 
    . j1)) by 
    A4;
    
          hence thesis;
    
        end;
    
        
    
        
    
    A6: h is 
    one-to-one
    
        proof
    
          let x,y be
    object;
    
          assume that
    
          
    
    A7: x 
    in ( 
    dom h) and 
    
          
    
    A8: y 
    in ( 
    dom h) and 
    
          
    
    A9: (h 
    . x) 
    = (h 
    . y) and 
    
          
    
    A10: x 
    <> y; 
    
          reconsider m = y as
    Element of ( 
    INT.Group n) by 
    A8,
    FUNCT_2:def 1;
    
          reconsider p = x as
    Element of ( 
    INT.Group n) by 
    A7,
    FUNCT_2:def 1;
    
          
    
          
    
    A11: (g 
    |^ p) 
    = (h 
    . m) by 
    A4,
    A9
    
          .= (g
    |^ m) by 
    A4;
    
          reconsider p, m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          
    
          
    
    A12: p 
    < n by 
    NAT_1: 44;
    
          
    
          
    
    A13: m 
    < n by 
    NAT_1: 44;
    
          
    
          
    
    A14: ex k st k 
    <>  
    0 & k 
    < n & (g 
    |^ k) 
    = ( 
    1_ Gc) 
    
          proof
    
            per cases by
    A10,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A15: p 
    < m; 
    
              reconsider m1 = m, p1 = p as
    Integer;
    
              reconsider r1 = (m1
    - p1) as 
    Element of 
    NAT by 
    A15,
    INT_1: 5;
    
              per cases ;
    
                suppose
    
                
    
    A16: r1 
    >  
    0 ; 
    
                set z =
    0 ; 
    
                
    
                
    
    A17: r1 
    < n 
    
                proof
    
                  reconsider n1 = n as
    Integer;
    
                  (m1
    + ( 
    - p1)) 
    < (n1 
    +  
    0 ) by 
    A13,
    XREAL_1: 8;
    
                  hence thesis;
    
                end;
    
                ((g
    |^ m1) 
    * (g 
    |^ ( 
    - p1))) 
    = (g 
    |^ (p1 
    + ( 
    - p1))) by 
    A11,
    GROUP_1: 33;
    
                then (g
    |^ (m1 
    + ( 
    - p1))) 
    = (g 
    |^ z) by 
    GROUP_1: 33;
    
                hence thesis by
    A16,
    A17,
    GROUP_1: 25;
    
              end;
    
                suppose r1
    =  
    0 ; 
    
                hence thesis by
    A10;
    
              end;
    
            end;
    
              suppose
    
              
    
    A18: m 
    < p; 
    
              reconsider m1 = m, p1 = p as
    Integer;
    
              reconsider r1 = (p1
    - m1) as 
    Element of 
    NAT by 
    A18,
    INT_1: 5;
    
              per cases ;
    
                suppose
    
                
    
    A19: r1 
    >  
    0 ; 
    
                set z =
    0 ; 
    
                
    
                
    
    A20: r1 
    < n 
    
                proof
    
                  reconsider n1 = n as
    Integer;
    
                  (p1
    + ( 
    - m1)) 
    < (n1 
    +  
    0 ) by 
    A12,
    XREAL_1: 8;
    
                  hence thesis;
    
                end;
    
                ((g
    |^ p1) 
    * (g 
    |^ ( 
    - m1))) 
    = (g 
    |^ (m1 
    + ( 
    - m1))) by 
    A11,
    GROUP_1: 33;
    
                then (g
    |^ (p1 
    + ( 
    - m1))) 
    = (g 
    |^ z) by 
    GROUP_1: 33;
    
                hence thesis by
    A19,
    A20,
    GROUP_1: 25;
    
              end;
    
                suppose r1
    =  
    0 ; 
    
                hence thesis by
    A10;
    
              end;
    
            end;
    
          end;
    
           not g is
    being_of_order_0 & ( 
    ord g) 
    = n by 
    A3,
    GR_CY_1: 6,
    GR_CY_1: 7;
    
          hence contradiction by
    A14,
    GROUP_1:def 11;
    
        end;
    
        
    
        
    
    A21: ( 
    dom h) 
    = the 
    carrier of ( 
    INT.Group n) by 
    FUNCT_2:def 1;
    
        
    
        
    
    A22: the 
    carrier of Gc 
    c= ( 
    rng h) 
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of Gc; 
    
          then
    
          reconsider z = x as
    Element of Gc; 
    
          consider p be
    Nat such that 
    
          
    
    A23: z 
    = (g 
    |^ p) by 
    A1;
    
          set t = (p
    mod n); 
    
          t
    < n by 
    NAT_D: 1;
    
          then
    
          reconsider t9 = t as
    Element of ( 
    INT.Group n) by 
    NAT_1: 44;
    
          z
    = (g 
    |^ ((n 
    * (p 
    div n)) 
    + (p 
    mod n))) by 
    A23,
    NAT_D: 2
    
          .= ((g
    |^ (n 
    * (p 
    div n))) 
    * (g 
    |^ (p 
    mod n))) by 
    GROUP_1: 33
    
          .= (((g
    |^ n) 
    |^ (p 
    div n)) 
    * (g 
    |^ (p 
    mod n))) by 
    GROUP_1: 35
    
          .= (((
    1_ Gc) 
    |^ (p 
    div n)) 
    * (g 
    |^ (p 
    mod n))) by 
    GR_CY_1: 9
    
          .= ((
    1_ Gc) 
    * (g 
    |^ (p 
    mod n))) by 
    GROUP_1: 31
    
          .= (g
    |^ (p 
    mod n)) by 
    GROUP_1:def 4;
    
          then t9
    in ( 
    dom h) & x 
    = (h 
    . t9) by 
    A4,
    A21;
    
          hence thesis by
    FUNCT_1:def 3;
    
        end;
    
        (
    rng h) 
    c= the 
    carrier of Gc by 
    RELAT_1:def 19;
    
        then
    
        
    
    A24: ( 
    rng h) 
    = the 
    carrier of Gc by 
    A22,
    XBOOLE_0:def 10;
    
        reconsider h as
    Homomorphism of ( 
    INT.Group n), Gc by 
    A5,
    GROUP_6:def 6;
    
        take h;
    
        h is
    onto by 
    A24,
    FUNCT_2:def 3;
    
        hence thesis by
    A6,
    FUNCT_2:def 4;
    
      end;
    
      hence thesis by
    GROUP_6:def 11;
    
    end;
    
    theorem :: 
    
    GR_CY_2:16
    
    for Gc be
    strict
    cyclic  
    Group st Gc is 
    infinite holds ( 
    INT.Group ,Gc) 
    are_isomorphic  
    
    proof
    
      let Gc be
    strict
    cyclic  
    Group;
    
      consider g be
    Element of Gc such that 
    
      
    
    A1: for h be 
    Element of Gc holds ex i st h 
    = (g 
    |^ i) by 
    GR_CY_1: 17;
    
      assume
    
      
    
    A2: Gc is 
    infinite;
    
      ex h be
    Homomorphism of 
    INT.Group , Gc st h is 
    bijective
    
      proof
    
        deffunc
    
    F(
    Element of 
    INT.Group ) = (g 
    |^ ( 
    @' $1)); 
    
        consider h be
    Function of the 
    carrier of 
    INT.Group , the 
    carrier of Gc such that 
    
        
    
    A3: for j1 be 
    Element of 
    INT.Group holds (h 
    . j1) 
    =  
    F(j1) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A4: Gc 
    = ( 
    gr  
    {g}) by
    A1,
    Th5;
    
        
    
        
    
    A5: h is 
    one-to-one
    
        proof
    
          let x,y be
    object;
    
          assume that
    
          
    
    A6: x 
    in ( 
    dom h) and 
    
          
    
    A7: y 
    in ( 
    dom h) and 
    
          
    
    A8: (h 
    . x) 
    = (h 
    . y) and 
    
          
    
    A9: x 
    <> y; 
    
          reconsider y9 = y as
    Element of 
    INT.Group by 
    A7,
    FUNCT_2:def 1;
    
          reconsider x9 = x as
    Element of 
    INT.Group by 
    A6,
    FUNCT_2:def 1;
    
          (g
    |^ ( 
    @' x9)) 
    = (h 
    . y9) by 
    A3,
    A8
    
          .= (g
    |^ ( 
    @' y9)) by 
    A3;
    
          hence contradiction by
    A2,
    A4,
    A9,
    Th14;
    
        end;
    
        
    
        
    
    A10: ( 
    dom h) 
    = the 
    carrier of 
    INT.Group by 
    FUNCT_2:def 1;
    
        
    
        
    
    A11: the 
    carrier of Gc 
    c= ( 
    rng h) 
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of Gc; 
    
          then
    
          reconsider z = x as
    Element of Gc; 
    
          consider i such that
    
          
    
    A12: z 
    = (g 
    |^ i) by 
    A1;
    
          reconsider i9 = i as
    Element of 
    INT.Group by 
    INT_1:def 2;
    
          i
    = ( 
    @' i9); 
    
          then x
    = (h 
    . i9) by 
    A3,
    A12;
    
          hence thesis by
    A10,
    FUNCT_1:def 3;
    
        end;
    
        (
    rng h) 
    c= the 
    carrier of Gc by 
    RELAT_1:def 19;
    
        then
    
        
    
    A13: ( 
    rng h) 
    = the 
    carrier of Gc by 
    A11,
    XBOOLE_0:def 10;
    
        for j, j1 holds (h
    . (j 
    * j1)) 
    = ((h 
    . j) 
    * (h 
    . j1)) 
    
        proof
    
          let j, j1;
    
          (
    @' (j 
    * j1)) 
    = (( 
    @' j) 
    + ( 
    @' j1)); 
    
          
    
          then (h
    . (j 
    * j1)) 
    = (g 
    |^ (( 
    @' j) 
    + ( 
    @' j1))) by 
    A3
    
          .= ((g
    |^ ( 
    @' j)) 
    * (g 
    |^ ( 
    @' j1))) by 
    GROUP_1: 33
    
          .= ((h
    . j) 
    * (g 
    |^ ( 
    @' j1))) by 
    A3
    
          .= ((h
    . j) 
    * (h 
    . j1)) by 
    A3;
    
          hence thesis;
    
        end;
    
        then
    
        reconsider h as
    Homomorphism of 
    INT.Group , Gc by 
    GROUP_6:def 6;
    
        take h;
    
        h is
    onto by 
    A13,
    FUNCT_2:def 3;
    
        hence thesis by
    A5,
    FUNCT_2:def 4;
    
      end;
    
      hence thesis by
    GROUP_6:def 11;
    
    end;
    
    theorem :: 
    
    GR_CY_2:17
    
    
    
    
    
    Th17: for Gc,Hc be 
    strict
    finite
    cyclic  
    Group st ( 
    card Hc) 
    = ( 
    card Gc) holds (Hc,Gc) 
    are_isomorphic  
    
    proof
    
      let Gc,Hc be
    strict
    finite
    cyclic  
    Group;
    
      set p = (
    card Hc); 
    
      assume (
    card Hc) 
    = ( 
    card Gc); 
    
      then
    
      
    
    A1: (( 
    INT.Group p),Gc) 
    are_isomorphic by 
    Th15;
    
      ((
    INT.Group p),Hc) 
    are_isomorphic by 
    Th15;
    
      hence thesis by
    A1,
    GROUP_6: 67;
    
    end;
    
    theorem :: 
    
    GR_CY_2:18
    
    
    
    
    
    Th18: for F,G be 
    strict
    finite  
    Group st ( 
    card F) 
    = p & ( 
    card G) 
    = p & p is 
    prime holds (F,G) 
    are_isomorphic  
    
    proof
    
      let F,G be
    strict
    finite  
    Group;
    
      assume that
    
      
    
    A1: ( 
    card F) 
    = p & ( 
    card G) 
    = p and 
    
      
    
    A2: p is 
    prime;
    
      F is
    cyclic  
    Group & G is 
    cyclic  
    Group by 
    A1,
    A2,
    GR_CY_1: 21;
    
      hence thesis by
    A1,
    Th17;
    
    end;
    
    theorem :: 
    
    GR_CY_2:19
    
    for F,G be
    strict
    finite  
    Group st ( 
    card F) 
    = 2 & ( 
    card G) 
    = 2 holds (F,G) 
    are_isomorphic by 
    Th18,
    INT_2: 28;
    
    theorem :: 
    
    GR_CY_2:20
    
    for G be
    strict
    finite  
    Group holds ( 
    card G) 
    = 2 implies for H be 
    strict  
    Subgroup of G holds H 
    = ( 
    (1). G) or H 
    = G by 
    GR_CY_1: 12,
    INT_2: 28;
    
    theorem :: 
    
    GR_CY_2:21
    
    for G be
    strict
    finite  
    Group st ( 
    card G) 
    = 2 holds G is 
    cyclic  
    Group by 
    GR_CY_1: 21,
    INT_2: 28;
    
    theorem :: 
    
    GR_CY_2:22
    
    for G be
    strict
    finite  
    Group st G is 
    cyclic & ( 
    card G) 
    = n holds for p st p 
    divides n holds ex G1 be 
    strict  
    Subgroup of G st ( 
    card G1) 
    = p & for G2 be 
    strict  
    Subgroup of G st ( 
    card G2) 
    = p holds G2 
    = G1 
    
    proof
    
      let G be
    strict
    finite  
    Group;
    
      assume that
    
      
    
    A1: G is 
    cyclic and 
    
      
    
    A2: ( 
    card G) 
    = n; 
    
      let p such that
    
      
    
    A3: p 
    divides n; 
    
      ex G1 be
    strict  
    Subgroup of G st ( 
    card G1) 
    = p & for G2 be 
    strict  
    Subgroup of G st ( 
    card G2) 
    = p holds G2 
    = G1 
    
      proof
    
        consider s be
    Nat such that 
    
        
    
    A4: n 
    = (p 
    * s) by 
    A3,
    NAT_D:def 3;
    
        consider a be
    Element of G such that 
    
        
    
    A5: G 
    = ( 
    gr  
    {a}) by
    A1;
    
        take (
    gr  
    {(a
    |^ s)}); 
    
        
    
        
    
    A6: s 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then
    
        
    
    A7: ( 
    ord (a 
    |^ s)) 
    = p by 
    A2,
    A5,
    A4,
    Th8;
    
        then
    
        
    
    A8: ( 
    card ( 
    gr  
    {(a
    |^ s)})) 
    = p by 
    GR_CY_1: 7;
    
        for G2 be
    strict  
    Subgroup of G st ( 
    card G2) 
    = p holds G2 
    = ( 
    gr  
    {(a
    |^ s)}) 
    
        proof
    
          let G2 be
    strict  
    Subgroup of G such that 
    
          
    
    A9: ( 
    card G2) 
    = p; 
    
          consider k such that
    
          
    
    A10: G2 
    = ( 
    gr  
    {(a
    |^ k)}) by 
    A5,
    Th7;
    
          n
    divides (k 
    * p) by 
    A2,
    A5,
    A9,
    A10,
    Th11;
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A11: (k 
    * p) 
    = (n 
    * m) by 
    NAT_D:def 3;
    
          ex l be
    Nat st k 
    = (s 
    * l) 
    
          proof
    
            take m;
    
            reconsider p1 = p as
    Integer;
    
            
    
            
    
    A12: p 
    <>  
    0 by 
    A2,
    A4;
    
            (((1
    / p1) 
    * p1) 
    * k) 
    = ((1 
    / p1) 
    * ((p1 
    * s) 
    * m)) by 
    A4,
    A11,
    XCMPLX_1: 4;
    
            then (1
    * k) 
    = (((p1 
    * (1 
    / p1)) 
    * s) 
    * m) by 
    A12,
    XCMPLX_1: 106;
    
            then k
    = ((1 
    * s) 
    * m) by 
    A12,
    XCMPLX_1: 106;
    
            hence thesis;
    
          end;
    
          then s
    divides k by 
    NAT_D:def 3;
    
          hence thesis by
    A6,
    A8,
    A9,
    A10,
    Th9,
    Th10;
    
        end;
    
        hence thesis by
    A7,
    GR_CY_1: 7;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    GR_CY_2:23
    
    Gc
    = ( 
    gr  
    {g}) implies for G, f holds g
    in ( 
    Image f) implies f is 
    onto
    
    proof
    
      assume
    
      
    
    A1: Gc 
    = ( 
    gr  
    {g});
    
      let G, f;
    
      assume g
    in ( 
    Image f); 
    
      then (
    Image f) 
    = Gc by 
    A1,
    Th13;
    
      hence thesis by
    GROUP_6: 57;
    
    end;
    
    theorem :: 
    
    GR_CY_2:24
    
    
    
    
    
    Th24: for Gc be 
    strict
    finite
    cyclic  
    Group st (ex k st ( 
    card Gc) 
    = (2 
    * k)) holds ex g1 be 
    Element of Gc st ( 
    ord g1) 
    = 2 & for g2 be 
    Element of Gc st ( 
    ord g2) 
    = 2 holds g1 
    = g2 
    
    proof
    
      let Gc be
    strict
    finite
    cyclic  
    Group;
    
      set n = (
    card Gc); 
    
      given k such that
    
      
    
    A1: n 
    = (2 
    * k); 
    
      consider g be
    Element of Gc such that 
    
      
    
    A2: Gc 
    = ( 
    gr  
    {g}) by
    GR_CY_1:def 7;
    
      
    
      
    
    A3: ( 
    ord g) 
    = n by 
    A2,
    GR_CY_1: 7;
    
      take (g
    |^ k); 
    
      
    
      
    
    A4: ((g 
    |^ k) 
    |^ 2) 
    = (g 
    |^ ( 
    card Gc)) by 
    A1,
    GROUP_1: 35
    
      .= (
    1_ Gc) by 
    GR_CY_1: 9;
    
      
    
      
    
    A5: k 
    <>  
    0 by 
    A1;
    
      
    
      
    
    A6: for p be 
    Nat st ((g 
    |^ k) 
    |^ p) 
    = ( 
    1_ Gc) & p 
    <>  
    0 holds 2 
    <= p 
    
      proof
    
        let p be
    Nat;
    
        assume that
    
        
    
    A7: ((g 
    |^ k) 
    |^ p) 
    = ( 
    1_ Gc) and 
    
        
    
    A8: p 
    <>  
    0 & 2 
    > p; 
    
        
    
        
    
    A9: not g is 
    being_of_order_0 & ( 
    1_ Gc) 
    = (g 
    |^ (k 
    * p)) by 
    A7,
    GROUP_1: 35,
    GR_CY_1: 6;
    
        n
    > (k 
    * p) & (k 
    * p) 
    <>  
    0 by 
    A1,
    A5,
    A8,
    XCMPLX_1: 6,
    XREAL_1: 68;
    
        hence contradiction by
    A3,
    A9,
    GROUP_1:def 11;
    
      end;
    
       not (g
    |^ k) is 
    being_of_order_0 by 
    GR_CY_1: 6;
    
      hence (
    ord (g 
    |^ k)) 
    = 2 by 
    A4,
    A6,
    GROUP_1:def 11;
    
      let g2 be
    Element of Gc; 
    
      consider k1 be
    Element of 
    NAT such that 
    
      
    
    A10: g2 
    = (g 
    |^ k1) by 
    A2,
    Th6;
    
      assume that
    
      
    
    A11: ( 
    ord g2) 
    = 2 and 
    
      
    
    A12: (g 
    |^ k) 
    <> g2; 
    
      now
    
        
    
        
    
    A13: not g is 
    being_of_order_0 by 
    GR_CY_1: 6;
    
        consider t,t1 be
    Nat such that 
    
        
    
    A14: k1 
    = ((k 
    * t) 
    + t1) and 
    
        
    
    A15: t1 
    < k by 
    A5,
    NAT_1: 17;
    
        
    
        
    
    A16: (2 
    * t1) 
    < n by 
    A1,
    A15,
    XREAL_1: 68;
    
        t1
    <>  
    0  
    
        proof
    
          assume t1
    =  
    0 ; 
    
          
    
          then
    
          
    
    A17: (g 
    |^ k1) 
    = (g 
    |^ (k 
    * ((2 
    * (t 
    div 2)) 
    + (t 
    mod 2)))) by 
    A14,
    NAT_D: 2
    
          .= (g
    |^ (((k 
    * 2) 
    * (t 
    div 2)) 
    + (k 
    * (t 
    mod 2)))) 
    
          .= ((g
    |^ ((k 
    * 2) 
    * (t 
    div 2))) 
    * (g 
    |^ (k 
    * (t 
    mod 2)))) by 
    GROUP_1: 33
    
          .= (((g
    |^ (k 
    * 2)) 
    |^ (t 
    div 2)) 
    * (g 
    |^ (k 
    * (t 
    mod 2)))) by 
    GROUP_1: 35
    
          .= (((
    1_ Gc) 
    |^ (t 
    div 2)) 
    * (g 
    |^ (k 
    * (t 
    mod 2)))) by 
    A4,
    GROUP_1: 35
    
          .= ((
    1_ Gc) 
    * (g 
    |^ (k 
    * (t 
    mod 2)))) by 
    GROUP_1: 31
    
          .= (g
    |^ (k 
    * (t 
    mod 2))) by 
    GROUP_1:def 4;
    
          per cases by
    NAT_D: 12;
    
            suppose (t
    mod 2) 
    =  
    0 ; 
    
            then (g
    |^ k1) 
    = ( 
    1_ Gc) by 
    A17,
    GROUP_1: 25;
    
            hence contradiction by
    A11,
    A10,
    GROUP_1: 42;
    
          end;
    
            suppose (t
    mod 2) 
    = 1; 
    
            hence contradiction by
    A12,
    A10,
    A17;
    
          end;
    
        end;
    
        then
    
        
    
    A18: (2 
    * t1) 
    <>  
    0 ; 
    
        (
    1_ Gc) 
    = ((g 
    |^ k1) 
    |^ 2) by 
    A11,
    A10,
    GROUP_1: 41
    
        .= (g
    |^ (((k 
    * t) 
    + t1) 
    * 2)) by 
    A14,
    GROUP_1: 35
    
        .= (g
    |^ ((n 
    * t) 
    + (t1 
    * 2))) by 
    A1
    
        .= ((g
    |^ (n 
    * t)) 
    * (g 
    |^ (t1 
    * 2))) by 
    GROUP_1: 33
    
        .= (((g
    |^ ( 
    ord g)) 
    |^ t) 
    * (g 
    |^ (t1 
    * 2))) by 
    A3,
    GROUP_1: 35
    
        .= (((
    1_ Gc) 
    |^ t) 
    * (g 
    |^ (t1 
    * 2))) by 
    GROUP_1: 41
    
        .= ((
    1_ Gc) 
    * (g 
    |^ (t1 
    * 2))) by 
    GROUP_1: 31
    
        .= (g
    |^ (2 
    * t1)) by 
    GROUP_1:def 4;
    
        hence contradiction by
    A3,
    A18,
    A16,
    A13,
    GROUP_1:def 11;
    
      end;
    
      hence thesis;
    
    end;
    
    registration
    
      let G;
    
      cluster ( 
    center G) -> 
    normal;
    
      coherence by
    GROUP_5: 78;
    
    end
    
    theorem :: 
    
    GR_CY_2:25
    
    for Gc be
    strict
    finite
    cyclic  
    Group st ex k st ( 
    card Gc) 
    = (2 
    * k) holds ex H be 
    Subgroup of Gc st ( 
    card H) 
    = 2 & H is 
    cyclic  
    Group
    
    proof
    
      let Gc be
    strict
    finite
    cyclic  
    Group;
    
      set n = (
    card Gc); 
    
      assume ex k st n
    = (2 
    * k); 
    
      then
    
      consider g1 be
    Element of Gc such that 
    
      
    
    A1: ( 
    ord g1) 
    = 2 and for g2 be 
    Element of Gc st ( 
    ord g2) 
    = 2 holds g1 
    = g2 by 
    Th24;
    
      take (
    gr  
    {g1});
    
      thus thesis by
    A1,
    Th4,
    GR_CY_1: 7;
    
    end;
    
    theorem :: 
    
    GR_CY_2:26
    
    
    
    
    
    Th26: for G be 
    strict  
    Group holds for g be 
    Homomorphism of G, F st G is 
    cyclic holds ( 
    Image g) is 
    cyclic
    
    proof
    
      let G be
    strict  
    Group;
    
      let g be
    Homomorphism of G, F; 
    
      assume G is
    cyclic;
    
      then
    
      consider a be
    Element of G such that 
    
      
    
    A1: G 
    = ( 
    gr  
    {a});
    
      ex f1 be
    Element of ( 
    Image g) st ( 
    Image g) 
    = ( 
    gr  
    {f1})
    
      proof
    
        (g
    . a) 
    in ( 
    Image g) by 
    GROUP_6: 45;
    
        then
    
        reconsider f = (g
    . a) as 
    Element of ( 
    Image g) by 
    STRUCT_0:def 5;
    
        take f;
    
        for d be
    Element of ( 
    Image g) holds ex i st d 
    = (f 
    |^ i) 
    
        proof
    
          let d be
    Element of ( 
    Image g); 
    
          d
    in ( 
    Image g) by 
    STRUCT_0:def 5;
    
          then
    
          consider b be
    Element of G such that 
    
          
    
    A2: d 
    = (g 
    . b) by 
    GROUP_6: 45;
    
          b
    in ( 
    gr  
    {a}) by
    A1,
    STRUCT_0:def 5;
    
          then
    
          consider i such that
    
          
    
    A3: b 
    = (a 
    |^ i) by 
    GR_CY_1: 5;
    
          take i;
    
          d
    = ((g 
    . a) 
    |^ i) by 
    A2,
    A3,
    GROUP_6: 37
    
          .= (f
    |^ i) by 
    GROUP_4: 2;
    
          hence thesis;
    
        end;
    
        hence thesis by
    Th5;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    GR_CY_2:27
    
    for G,F be
    strict  
    Group st (G,F) 
    are_isomorphic & G is 
    cyclic holds F is 
    cyclic
    
    proof
    
      let G,F be
    strict  
    Group;
    
      assume that
    
      
    
    A1: (G,F) 
    are_isomorphic and 
    
      
    
    A2: G is 
    cyclic;
    
      consider h be
    Homomorphism of G, F such that 
    
      
    
    A3: h is 
    bijective by 
    A1,
    GROUP_6:def 11;
    
      h is
    onto by 
    A3,
    FUNCT_2:def 4;
    
      then (
    Image h) 
    = F by 
    GROUP_6: 57;
    
      hence thesis by
    A2,
    Th26;
    
    end;