int_8.miz
begin
reserve i,s,t,m,n,k for
Nat,
c,d,e for
Element of
NAT ,
fn for
FinSequence of
NAT ,
x,y for
Integer;
definition
let m be
Nat;
::
INT_8:def1
func
RelPrimes (m) ->
set equals { k where k be
Element of
NAT : (m,k)
are_coprime & 1
<= k & k
<= m };
correctness ;
end
theorem ::
INT_8:1
Th1: (
RelPrimes m)
c= (
Seg m)
proof
let x be
object;
assume x
in (
RelPrimes m);
then ex k be
Element of
NAT st k
= x & (m,k)
are_coprime & k
>= 1 & k
<= m;
hence x
in (
Seg m);
end;
definition
let m be
Nat;
:: original:
RelPrimes
redefine
func
RelPrimes (m) ->
Subset of
NAT ;
coherence
proof
(
RelPrimes m)
c= (
Seg m) by
Th1;
hence thesis by
XBOOLE_1: 1;
end;
end
registration
let m be
Nat;
cluster (
RelPrimes m) ->
finite;
coherence
proof
(
RelPrimes m)
c= (
Seg m) by
Th1;
hence thesis;
end;
end
theorem ::
INT_8:2
1
<= m implies (
RelPrimes m)
<>
{}
proof
assume
A1: 1
<= m;
(m
gcd 1)
= 1 by
NEWTON: 51;
then (m,1)
are_coprime by
INT_2:def 3;
then 1
in (
RelPrimes m) by
A1;
hence thesis;
end;
theorem ::
INT_8:3
Th3: for X be
Subset of
INT , a be
Integer holds x
in (a
** X) iff ex y be
Integer st y
in X & x
= (a
* y)
proof
let X be
Subset of
INT , a be
Integer;
hereby
assume x
in (a
** X);
then
consider z be
Complex such that
A1: x
= (a
* z) and
A2: z
in X by
MEMBER_1: 195;
reconsider z as
Integer by
A2;
take z;
thus z
in X & x
= (a
* z) by
A2,
A1;
end;
given y be
Integer such that
A3: y
in X & x
= (a
* y);
thus thesis by
MEMBER_1: 193,
A3;
end;
theorem ::
INT_8:4
Th4: ex r be
Nat st ((1
+ s)
|^ t)
= (((1
+ (t
* s))
+ ((t
choose 2)
* (s
^2 )))
+ (r
* (s
^3 )))
proof
defpred
P[
Nat] means ex r be
Nat st ((1
+ s)
|^ $1)
= (((1
+ ($1
* s))
+ (($1
choose 2)
* (s
^2 )))
+ (r
* (s
^3 )));
A1: for t be
Nat st
P[t] holds
P[(t
+ 1)]
proof
let t be
Nat;
assume
P[t];
then
consider r1 be
Nat such that
A2: ((1
+ s)
|^ t)
= (((1
+ (t
* s))
+ ((t
choose 2)
* (s
^2 )))
+ (r1
* (s
^3 )));
((1
+ s)
|^ (t
+ 1))
= ((((1
+ (t
* s))
+ ((t
choose 2)
* (s
^2 )))
+ (r1
* (s
^3 )))
* (1
+ s)) by
A2,
NEWTON: 6
.= (((((1
+ ((t
+ 1)
* s))
+ ((t
+ (t
choose 2))
* (s
^2 )))
+ (r1
* (s
^3 )))
+ (((t
choose 2)
* (s
^2 ))
* s))
+ ((r1
* (s
^3 ))
* s))
.= (((((1
+ ((t
+ 1)
* s))
+ ((t
+ ((t
* (t
- 1))
/ 2))
* (s
^2 )))
+ (r1
* (s
^3 )))
+ (((t
choose 2)
* (s
^2 ))
* s))
+ ((r1
* (s
^3 ))
* s)) by
STIRL2_1: 51
.= (((((1
+ ((t
+ 1)
* s))
+ ((((t
+ 1)
* ((t
+ 1)
- 1))
/ 2)
* (s
^2 )))
+ (r1
* (s
^3 )))
+ (((t
choose 2)
* (s
^2 ))
* s))
+ ((r1
* (s
^3 ))
* s))
.= (((((1
+ ((t
+ 1)
* s))
+ (((t
+ 1)
choose 2)
* (s
^2 )))
+ (r1
* (s
^3 )))
+ ((t
choose 2)
* (s
^3 )))
+ ((r1
* (s
^3 ))
* s)) by
STIRL2_1: 51
.= (((1
+ ((t
+ 1)
* s))
+ (((t
+ 1)
choose 2)
* (s
^2 )))
+ (((r1
+ (t
choose 2))
+ (r1
* s))
* (s
^3 )));
hence thesis;
end;
A3:
P[
0 ]
proof
reconsider z =
0 as
Element of
NAT ;
take r =
0 ;
(((1
+ (z
* s))
+ ((z
choose 2)
* (s
^2 )))
+ (r
* (s
^3 )))
= (((1
+ (z
* s))
+ (z
* (s
^2 )))
+ (r
* (s
^3 ))) by
NEWTON:def 3
.= ((1
+ s)
|^ z) by
NEWTON: 4;
hence thesis;
end;
for t be
Nat holds
P[t] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
INT_8:5
Th5: n
> 1 & (i,n)
are_coprime implies i
<>
0
proof
assume
A1: n
> 1 & (i,n)
are_coprime ;
assume i
=
0 ;
then (i
gcd n)
> 1 by
A1,
NEWTON: 52;
hence contradiction by
A1,
INT_2:def 3;
end;
theorem ::
INT_8:6
Th6: for a,b be
Integer, m be
Nat st ((a
* b)
mod m)
= 1 & (a
mod m)
= 1 holds (b
mod m)
= 1
proof
let a,b be
Integer, m be
Nat;
assume
A1: ((a
* b)
mod m)
= 1 & (a
mod m)
= 1;
then
A2: m
<>
0 by
INT_1:def 10;
then (a
mod m)
= (1
mod m) by
A1,
PEPIN: 5,
INT_1: 58;
then ((a
* b),(1
* b))
are_congruent_mod m by
INT_4: 11,
A2,
NAT_D: 64;
hence thesis by
A1,
NAT_D: 64;
end;
Lm1: for x be
Integer holds 2
divides (x
* (x
+ 1))
proof
let x be
Integer;
per cases ;
suppose x is
even;
hence thesis by
ABIAN:def 1;
end;
suppose x is
odd;
then
consider y be
Integer such that
A1: x
= ((2
* y)
+ 1) by
ABIAN: 1;
(x
* (x
+ 1))
= (2
* (((2
* y)
+ 1)
* (y
+ 1))) by
A1;
hence thesis by
INT_1:def 3;
end;
end;
theorem ::
INT_8:7
Th7: for x be
odd
Integer, k be
Nat st k
>= 3 holds ((x
|^ (2
|^ (k
-' 2)))
mod (2
|^ k))
= 1
proof
let x be
odd
Integer, k be
Nat;
assume
A1: k
>= 3;
defpred
X[
Nat] means ((x
|^ (2
|^ ($1
-' 2)))
mod (2
|^ $1))
= 1;
consider y be
Integer such that
A2: x
= ((2
* y)
+ 1) by
ABIAN: 1;
A3:
X[3]
proof
(3
-' 2)
= (3
- 2) by
XREAL_1: 233
.= 1;
then
A4: ((x
|^ (2
|^ (3
-' 2)))
mod (2
|^ 3))
= ((x
|^ 2)
mod (2
|^ 3))
.= ((x
^2 )
mod (2
|^ 3)) by
NEWTON: 81;
A5: ((x
^2 )
- 1)
= ((2
^2 )
* (y
* (y
+ 1))) by
A2;
2
divides (y
* (y
+ 1)) by
Lm1;
then ((2
^2 )
* 2)
divides ((x
^2 )
- 1) by
A5,
INT_4: 7;
then ((2
|^ 2)
* 2)
divides ((x
^2 )
- 1) by
NEWTON: 81;
then (2
|^ (2
+ 1))
divides ((x
^2 )
- 1) by
NEWTON: 6;
then
A6: ((x
^2 ),1)
are_congruent_mod (2
|^ 3) by
INT_2: 15;
((2
* 2)
* 2)
> 1;
then ((2
|^ 2)
* 2)
> 1 by
NEWTON: 81;
then (2
|^ (2
+ 1))
> 1 by
NEWTON: 6;
hence thesis by
A4,
A6,
PEPIN: 39;
end;
A7: for k be
Nat st k
>= 3 &
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume
A8: k
>= 3 &
X[k];
A9: k
>
0 & k
> 1 & k
> 2 by
A8,
XXREAL_0: 2;
A10: ((k
-' 3)
+ 1)
= ((k
+ 1)
-' 3) by
A8,
NAT_D: 38
.= ((k
+ 1)
- 3) by
A8,
NAT_D: 37
.= (k
- 2);
(k
-' 2)
= (k
- 2) by
A9,
XREAL_1: 233;
then
A11: (x
|^ (2
|^ (k
-' 2)))
= (x
|^ ((2
|^ (k
-' 3))
* 2)) by
A10,
NEWTON: 6
.= ((x
|^ 2)
|^ (2
|^ (k
-' 3))) by
NEWTON: 9
.= ((x
^2 )
|^ (2
|^ (k
-' 3))) by
NEWTON: 81;
(2
|^ k)
> 1 by
A8,
PEPIN: 25;
then ((x
|^ (2
|^ (k
-' 2))),1)
are_congruent_mod (2
|^ k) by
A8,
A11,
PEPIN: 39;
then
consider t be
Integer such that
A12: ((x
|^ (2
|^ (k
-' 2)))
- 1)
= ((2
|^ k)
* t) by
INT_1:def 3,
INT_2: 15;
((x
|^ (2
|^ (k
-' 2)))
^2 )
= ((x
|^ (2
|^ (k
-' 2)))
|^ 2) by
NEWTON: 81
.= (x
|^ ((2
|^ (k
-' 2))
* 2)) by
NEWTON: 9
.= (x
|^ (2
|^ ((k
-' 2)
+ 1))) by
NEWTON: 6;
then
A13: (x
|^ (2
|^ ((k
-' 2)
+ 1)))
= (((t
* (2
|^ k))
+ 1)
^2 ) by
A12
.= ((((t
^2 )
* ((2
|^ k)
^2 ))
+ (2
* (t
* (2
|^ k))))
+ 1)
.= ((((t
^2 )
* ((2
|^ k)
|^ 2))
+ (2
* (t
* (2
|^ k))))
+ 1) by
NEWTON: 81
.= ((((t
^2 )
* (2
|^ (2
* k)))
+ ((2
* (2
|^ k))
* t))
+ 1) by
NEWTON: 9
.= ((((t
^2 )
* (2
|^ (2
* k)))
+ ((2
|^ (k
+ 1))
* t))
+ 1) by
NEWTON: 6;
(k
+ k)
> (k
+ 1) by
A9,
XREAL_1: 8;
then
A14: (2
|^ (k
+ 1))
divides ((t
^2 )
* (2
|^ (2
* k))) by
NAT_D: 9,
PEPIN: 31;
(2
|^ (k
+ 1))
divides ((2
|^ (k
+ 1))
* t) by
INT_2: 2;
then
A15: (2
|^ (k
+ 1))
divides (((t
^2 )
* (2
|^ (2
* k)))
+ ((2
|^ (k
+ 1))
* t)) by
A14,
WSIERP_1: 4;
A16: ((((t
^2 )
* (2
|^ (2
* k)))
+ ((2
|^ (k
+ 1))
* t))
mod (2
|^ (k
+ 1)))
=
0 by
A15,
INT_1: 62;
((x
|^ (2
|^ ((k
+ 1)
-' 2)))
mod (2
|^ (k
+ 1)))
= ((x
|^ (2
|^ ((k
-' 2)
+ 1)))
mod (2
|^ (k
+ 1))) by
NAT_D: 38,
A9
.= ((((((t
^2 )
* (2
|^ (2
* k)))
+ ((2
|^ (k
+ 1))
* t))
mod (2
|^ (k
+ 1)))
+ (1
mod (2
|^ (k
+ 1))))
mod (2
|^ (k
+ 1))) by
A13,
NAT_D: 66
.= (1
mod (2
|^ (k
+ 1))) by
A16,
NAT_D: 65
.= 1 by
PEPIN: 5,
PEPIN: 25;
hence thesis;
end;
for k be
Nat st k
>= 3 holds
X[k] from
NAT_1:sch 8(
A3,
A7);
hence thesis by
A1;
end;
reserve p for
Prime;
Lm2: k
<= n implies (m
|^ k)
divides (m
|^ n) by
NEWTON: 89;
theorem ::
INT_8:8
Th8: m
>= 1 implies (
Euler (p
|^ m))
= ((p
|^ m)
- (p
|^ (m
-' 1)))
proof
assume
A1: m
>= 1;
set X = { k where k be
Element of
NAT : ((p
|^ m),k)
are_coprime & k
>= 1 & k
<= (p
|^ m) };
set X1 = { k where k be
Element of
NAT : not ((p
|^ m),k)
are_coprime & k
>= 1 & k
<= (p
|^ m) };
set X2 = { k where k be
Element of
NAT : not (p,k)
are_coprime & k
>= 1 & k
<= (p
|^ m) };
set X3 = { k where k be
Element of
NAT : p
divides k & k
>= 1 & k
<= (p
|^ m) };
reconsider w = (p
|^ (m
-' 1)) as
Element of
NAT by
ORDINAL1:def 12;
A2: X1
= X2
proof
thus X1
c= X2
proof
let a be
object;
assume a
in X1;
then
consider b be
Element of
NAT such that
A3: b
= a & not ((p
|^ m),b)
are_coprime & b
>= 1 & b
<= (p
|^ m);
not (p,b)
are_coprime by
A3,
WSIERP_1: 10;
hence thesis by
A3;
end;
let a be
object;
assume a
in X2;
then
consider k be
Element of
NAT such that
A4: k
= a & not (p,k)
are_coprime & k
>= 1 & k
<= (p
|^ m);
(p
gcd k)
= p by
A4,
PEPIN: 2;
then
A5: p
divides k by
NAT_D:def 5;
(p
|^ 1)
divides (p
|^ m) by
A1,
NEWTON: 89;
then
A6: p
divides (p
|^ m);
now
assume ((p
|^ m),k)
are_coprime ;
then p
= 1 by
A5,
A6,
PYTHTRIP:def 1;
hence contradiction by
INT_2:def 4;
end;
hence thesis by
A4;
end;
A7: X2
= X3
proof
thus X2
c= X3
proof
let x be
object;
assume x
in X2;
then
consider k be
Element of
NAT such that
A8: x
= k & not (p,k)
are_coprime & k
>= 1 & k
<= (p
|^ m);
(p
gcd k)
= p by
A8,
PEPIN: 2;
then p
divides k by
NAT_D:def 5;
hence thesis by
A8;
end;
let x be
object;
assume x
in X3;
then
consider k be
Element of
NAT such that
A9: x
= k & p
divides k & k
>= 1 & k
<= (p
|^ m);
(p
gcd k)
= p by
A9,
NEWTON: 49;
then (p
gcd k)
> 1 by
INT_2:def 4;
then not (p,k)
are_coprime by
INT_2:def 3;
hence thesis by
A9;
end;
X3
c= (
Seg (p
|^ m))
proof
let x be
object;
assume x
in X3;
then ex k be
Element of
NAT st k
= x & p
divides k & k
>= 1 & k
<= (p
|^ m);
hence x
in (
Seg (p
|^ m));
end;
then
reconsider X1, X2, X3 as
finite
Subset of
NAT by
A2,
A7,
XBOOLE_1: 1;
deffunc
F(
Nat) = ($1
* p);
consider f be
FinSequence such that
A10: (
len f)
= w & for d be
Nat st d
in (
dom f) holds (f
. d)
=
F(d) from
FINSEQ_1:sch 2;
A11: (
rng f)
= X3
proof
thus (
rng f)
c= X3
proof
let a be
object;
assume a
in (
rng f);
then
consider s be
Nat such that
A12: s
in (
dom f) & (f
. s)
= a by
FINSEQ_2: 10;
A13: a
= (s
* p) by
A12,
A10;
then
reconsider a as
Element of
NAT by
ORDINAL1:def 12;
A14: p
divides a by
A13,
NAT_D:def 3;
s
in (
Seg w) by
A12,
A10,
FINSEQ_1:def 3;
then
A15: s
>= 1 & s
<= w by
FINSEQ_1: 1;
p
> 1 by
INT_2:def 4;
then
A16: (s
* p)
>= (1
* 1) by
A15,
XREAL_1: 66;
(s
* p)
<= (w
* p) by
A15,
XREAL_1: 66;
then
A17: (s
* p)
<= (p
|^ ((m
-' 1)
+ 1)) by
NEWTON: 6;
(p
|^ ((m
-' 1)
+ 1))
= (p
|^ ((m
+ 1)
-' 1)) by
A1,
NAT_D: 38
.= (p
|^ m) by
NAT_D: 34;
hence thesis by
A13,
A14,
A16,
A17;
end;
let a be
object;
assume a
in X3;
then
consider k be
Element of
NAT such that
A18: a
= k & p
divides k & k
>= 1 & k
<= (p
|^ m);
consider t be
Nat such that
A19: k
= (p
* t) by
A18,
NAT_D:def 3;
t
<>
0 by
A19,
A18;
then
A20: t
>= 1 by
NAT_1: 14;
(p
|^ m)
= (p
|^ ((m
+ 1)
-' 1)) by
NAT_D: 34
.= (p
|^ ((m
-' 1)
+ 1)) by
A1,
NAT_D: 38
.= ((p
|^ (m
-' 1))
* p) by
NEWTON: 6;
then ((p
* t)
/ p)
<= (((p
|^ (m
-' 1))
* p)
/ p) by
XREAL_1: 72,
A18,
A19;
then t
<= ((w
* p)
/ p) by
XCMPLX_1: 89;
then t
<= w by
XCMPLX_1: 89;
then t
in (
Seg w) by
A20;
then
A21: t
in (
dom f) by
A10,
FINSEQ_1:def 3;
(f
. t)
= (t
* p) by
A21,
A10;
hence thesis by
A18,
A19,
A21,
FUNCT_1: 3;
end;
for a,b be
object st a
in (
dom f) & b
in (
dom f) & (f
. a)
= (f
. b) holds a
= b
proof
let a,b be
object;
assume
A22: a
in (
dom f) & b
in (
dom f) & (f
. a)
= (f
. b);
then
reconsider a, b as
Element of
NAT ;
(f
. a)
= (a
* p) & (f
. b)
= (b
* p) by
A22,
A10;
hence thesis by
A22,
XCMPLX_1: 5;
end;
then f is
one-to-one by
FUNCT_1:def 4;
then
A23: w
= (
card X1) by
A2,
A7,
A10,
A11,
FINSEQ_4: 62;
A24: X1
c= (
Seg (p
|^ m))
proof
let x be
object;
assume x
in X1;
then
consider k be
Element of
NAT such that
A25: x
= k & not ((p
|^ m),k)
are_coprime & k
>= 1 & k
<= (p
|^ m);
thus thesis by
A25;
end;
A26: X
c= (
Seg (p
|^ m))
proof
let x be
object;
assume x
in X;
then
consider k be
Element of
NAT such that
A27: x
= k & ((p
|^ m),k)
are_coprime & k
>= 1 & k
<= (p
|^ m);
thus thesis by
A27;
end;
then
A28: (X1
\/ X)
c= (
Seg (p
|^ m)) by
A24,
XBOOLE_1: 8;
reconsider X as
finite
Subset of
NAT by
A26,
XBOOLE_1: 1;
(
Seg (p
|^ m))
c= (X1
\/ X)
proof
let x be
object;
assume
A29: x
in (
Seg (p
|^ m));
then
reconsider x as
Element of
NAT ;
A30: x
>= 1 & x
<= (p
|^ m) by
A29,
FINSEQ_1: 1;
per cases ;
suppose ((p
|^ m),x)
are_coprime ;
then x
in X by
A30;
hence thesis by
XBOOLE_0:def 3;
end;
suppose not ((p
|^ m),x)
are_coprime ;
then x
in X1 by
A30;
hence thesis by
XBOOLE_0:def 3;
end;
end;
then
A31: (X1
\/ X)
= (
Seg (p
|^ m)) by
A28;
not ex x be
object st x
in (X1
/\ X)
proof
given x be
object such that
A32: x
in (X1
/\ X);
A33: x
in X1 & x
in X by
A32,
XBOOLE_0:def 4;
then
consider k1 be
Element of
NAT such that
A34: x
= k1 & not ((p
|^ m),k1)
are_coprime & k1
>= 1 & k1
<= (p
|^ m);
consider k2 be
Element of
NAT such that
A35: x
= k2 & ((p
|^ m),k2)
are_coprime & k2
>= 1 & k2
<= (p
|^ m) by
A33;
thus contradiction by
A34,
A35;
end;
then (X1
/\ X)
=
{} by
XBOOLE_0:def 1;
then X1
misses X;
then ((
card X1)
+ (
card X))
= (
card (
Seg (p
|^ m))) by
A31,
CARD_2: 40;
then (w
+ (
card X))
= (p
|^ m) by
A23,
FINSEQ_1: 57;
hence thesis;
end;
theorem ::
INT_8:9
n
> 1 & (i,n)
are_coprime implies (
order (i,n))
divides (
Euler n)
proof
assume
A1: n
> 1 & (i,n)
are_coprime ;
((i
|^ (
Euler n))
mod n)
= 1 by
Th5,
A1,
EULER_2: 18;
hence thesis by
A1,
PEPIN: 47;
end;
theorem ::
INT_8:10
Th10: for i, n st n
> 1 & (i,n)
are_coprime holds ((i
|^ s),(i
|^ t))
are_congruent_mod n iff (s,t)
are_congruent_mod (
order (i,n))
proof
let i, n;
assume
A1: n
> 1 & (i,n)
are_coprime ;
A2: i
<>
0 & n
>
0 by
A1,
Th5;
set R = (
order (i,n));
reconsider RR = R as
Element of
NAT ;
thus ((i
|^ s),(i
|^ t))
are_congruent_mod n implies (s,t)
are_congruent_mod R
proof
assume
A3: ((i
|^ s),(i
|^ t))
are_congruent_mod n;
A4: (i
gcd n)
= 1 by
A1,
INT_2:def 3;
per cases by
XXREAL_0: 1;
suppose s
= t;
hence thesis by
INT_1: 11;
end;
suppose s
> t;
then
consider l be
Nat such that
A5: s
= (t
+ l) by
NAT_1: 10;
n
divides ((i
|^ s)
- (i
|^ t)) by
A3,
INT_2: 15;
then n
divides (((i
|^ t)
* (i
|^ l))
- ((i
|^ t)
* 1)) by
A5,
NEWTON: 8;
then
A6: n
divides ((i
|^ t)
* ((i
|^ l)
- 1));
reconsider ll = ((i
|^ l)
- 1) as
Element of
NAT by
NAT_1: 21,
NAT_1: 14,
A2;
A7: (n
gcd (i
|^ t))
= 1 by
A4,
A2,
NAT_4: 10;
n
divides ll by
A6,
A7,
WSIERP_1: 30;
then ((i
|^ l),1)
are_congruent_mod n by
INT_2: 15;
then ((i
|^ l)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
then R
divides (s
- t) by
A5,
A1,
PEPIN: 47;
hence thesis by
INT_2: 15;
end;
suppose s
< t;
then
consider l be
Nat such that
A8: t
= (s
+ l) by
NAT_1: 10;
((i
|^ t),(i
|^ s))
are_congruent_mod n by
A3,
INT_1: 14;
then n
divides ((i
|^ t)
- (i
|^ s)) by
INT_2: 15;
then n
divides (((i
|^ s)
* (i
|^ l))
- ((i
|^ s)
* 1)) by
A8,
NEWTON: 8;
then
A9: n
divides ((i
|^ s)
* ((i
|^ l)
- 1));
A10: (n
gcd (i
|^ s))
= 1 by
A4,
A2,
NAT_4: 10;
reconsider ll = ((i
|^ l)
- 1) as
Element of
NAT by
NAT_1: 21,
NAT_1: 14,
A2;
n
divides ll by
A10,
A9,
WSIERP_1: 30;
then ((i
|^ l),1)
are_congruent_mod n by
INT_2: 15;
then ((i
|^ l)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
then R
divides (t
- s) by
A1,
A8,
PEPIN: 47;
then (t,s)
are_congruent_mod R by
INT_2: 15;
hence thesis by
INT_1: 14;
end;
end;
assume
A11: (s,t)
are_congruent_mod R;
A12: R
>
0 by
A1,
PEPIN:def 2;
then
A13: s
= (((s
div R)
* R)
+ (s
mod R)) & t
= (((t
div R)
* R)
+ (t
mod R)) by
NEWTON: 66;
then
A14: (i
|^ s)
= ((i
|^ (R
* (s
div R)))
* (i
|^ (s
mod R))) by
NEWTON: 8
.= (((i
|^ R)
|^ (s
div R))
* (i
|^ (s
mod R))) by
NEWTON: 9;
A15: ((i
|^ R)
mod n)
= 1 by
A1,
PEPIN:def 2
.= (1
mod n) by
A1,
PEPIN: 5;
then (((i
|^ R)
|^ (s
div R))
mod n)
= ((1
|^ (s
div R))
mod n) by
INT_4: 8
.= (1
mod n);
then (((i
|^ R)
|^ (s
div R)),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then ((((i
|^ R)
|^ (s
div R))
* (i
|^ (s
mod R))),(1
* (i
|^ (s
mod R))))
are_congruent_mod n by
INT_4: 11;
then
A16: ((i
|^ s)
mod n)
= ((i
|^ (s
mod R))
mod n) by
A14,
NAT_D: 64;
A17: (i
|^ t)
= ((i
|^ (R
* (t
div R)))
* (i
|^ (t
mod R))) by
NEWTON: 8,
A13
.= (((i
|^ R)
|^ (t
div R))
* (i
|^ (t
mod R))) by
NEWTON: 9;
(((i
|^ R)
|^ (t
div R))
mod n)
= ((1
|^ (t
div R))
mod n) by
A15,
INT_4: 8
.= (1
mod n);
then (((i
|^ R)
|^ (t
div R)),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then ((((i
|^ R)
|^ (t
div R))
* (i
|^ (t
mod R))),(1
* (i
|^ (t
mod R))))
are_congruent_mod n by
INT_4: 11;
then
A18: ((i
|^ t)
mod n)
= ((i
|^ (t
mod R))
mod n) by
A17,
NAT_D: 64;
(s
mod R)
= ((s
mod R)
mod R) & (t
mod R)
= ((t
mod R)
mod R) by
EULER_2: 5;
then
A19: (s,(s
mod R))
are_congruent_mod R & (t,(t
mod R))
are_congruent_mod R by
A12,
NAT_D: 64;
then (t,(s
mod R))
are_congruent_mod R by
A11,
PEPIN: 40;
then ((s
mod R),(t
mod R))
are_congruent_mod R by
A19,
PEPIN: 40;
then
A20: R
divides ((s
mod R)
- (t
mod R)) by
INT_2: 15;
now
assume (s
mod R)
<> (t
mod R);
then ((s
mod R)
- (t
mod R))
<>
0 ;
then
|.R.|
<=
|.((s
mod R)
- (t
mod R)).| by
A20,
INT_4: 6;
then
A21: R
<=
|.((s
mod R)
- (t
mod R)).| by
ABSVALUE:def 1;
reconsider sR = (s
mod RR), tR = (t
mod RR) as
Element of
REAL by
XREAL_0:def 1;
reconsider rR = (
- R) as
Element of
REAL by
XREAL_0:def 1;
A22: sR
< RR & sR
>=
0 & tR
< RR & tR
>=
0 by
A12,
NAT_D: 1;
(sR
- tR)
<= sR by
XREAL_1: 43;
then
A23: (sR
- tR)
< RR by
A22,
XXREAL_0: 2;
A24: ((
- 1)
* tR)
> ((
- 1)
* RR) by
XREAL_1: 69,
A22;
(sR
+ (
- tR))
>= (
- tR) by
XREAL_1: 31;
then (sR
+ (
- tR))
> rR by
XXREAL_0: 2,
A24;
hence contradiction by
A21,
SEQ_2: 1,
A23;
end;
hence thesis by
A1,
A16,
A18,
NAT_D: 64;
end;
theorem ::
INT_8:11
for i, n st n
> 1 & (i,n)
are_coprime holds ((i
|^ s),1)
are_congruent_mod n iff (
order (i,n))
divides s
proof
let i, n;
assume
A1: n
> 1 & (i,n)
are_coprime ;
thus ((i
|^ s),1)
are_congruent_mod n implies (
order (i,n))
divides s
proof
assume ((i
|^ s),1)
are_congruent_mod n;
then ((i
|^ s),(i
|^
0 ))
are_congruent_mod n by
NEWTON: 4;
then (s,
0 )
are_congruent_mod (
order (i,n)) by
A1,
Th10;
then (
order (i,n))
divides (s
-
0 ) by
INT_2: 15;
hence thesis;
end;
assume (
order (i,n))
divides s;
then (
order (i,n))
divides (s
-
0 );
then (s,
0 )
are_congruent_mod (
order (i,n)) by
INT_2: 15;
then ((i
|^ s),(i
|^
0 ))
are_congruent_mod n by
A1,
Th10;
hence thesis by
NEWTON: 4;
end;
theorem ::
INT_8:12
n
> 1 & (i,n)
are_coprime & (
len fn)
= (
order (i,n)) & (for d st d
in (
dom fn) holds (fn
. d)
= (i
|^ (d
-' 1))) implies (for d, e st d
in (
dom fn) & e
in (
dom fn) & d
<> e holds not ((fn
. d),(fn
. e))
are_congruent_mod n)
proof
assume
A1: n
> 1 & (i,n)
are_coprime & (
len fn)
= (
order (i,n)) & (for d st d
in (
dom fn) holds (fn
. d)
= (i
|^ (d
-' 1)));
then
A2: i
<>
0 & n
<>
0 by
Th5;
A3: (i
gcd n)
= 1 by
A1,
INT_2:def 3;
assume ex d, e st d
in (
dom fn) & e
in (
dom fn) & d
<> e & ((fn
. d),(fn
. e))
are_congruent_mod n;
then
consider d, e such that
A4: d
in (
dom fn) & e
in (
dom fn) & d
<> e & ((fn
. d),(fn
. e))
are_congruent_mod n;
A5: d
>= 1 & d
<= (
order (i,n)) & e
>= 1 & e
<= (
order (i,n)) by
A4,
A1,
FINSEQ_3: 25;
then ((d
-' 1)
+ 1)
= ((d
+ 1)
-' 1) by
NAT_D: 38
.= ((d
+ 1)
- 1) by
NAT_D: 37
.= ((d
- 1)
+ 1);
then
A6: (d
-' 1)
= (d
- 1);
((e
-' 1)
+ 1)
= ((e
+ 1)
-' 1) by
NAT_D: 38,
A5
.= ((e
+ 1)
- 1) by
NAT_D: 37
.= ((e
- 1)
+ 1);
then
A7: (d
- 1)
= (d
-' 1) & (e
- 1)
= (e
-' 1) by
A6;
per cases by
A4,
XXREAL_0: 1;
suppose d
> e;
then
A8: (e
-' 1)
< (d
-' 1) by
A7,
XREAL_1: 9;
then
consider k be
Nat such that
A9: (d
-' 1)
= ((e
-' 1)
+ k) by
NAT_1: 10;
reconsider ll = ((i
|^ k)
- 1) as
Element of
NAT by
A2,
NAT_1: 21,
NAT_1: 14;
A10: ((i
|^ (d
-' 1))
- (i
|^ (e
-' 1)))
= (((i
|^ (e
-' 1))
* (i
|^ k))
- ((i
|^ (e
-' 1))
* 1)) by
A9,
NEWTON: 8
.= ((i
|^ (e
-' 1))
* ll);
A11: ((i
|^ (e
-' 1))
gcd n)
= 1 by
A2,
A3,
NAT_4: 10;
((i
|^ (d
-' 1)),(fn
. e))
are_congruent_mod n by
A1,
A4;
then ((i
|^ (d
-' 1)),(i
|^ (e
-' 1)))
are_congruent_mod n by
A1,
A4;
then n
divides ((i
|^ (d
-' 1))
- (i
|^ (e
-' 1))) by
INT_2: 15;
then n
divides ll by
A10,
A11,
WSIERP_1: 30;
then ((i
|^ k),1)
are_congruent_mod n by
INT_2: 15;
then
A12: ((i
|^ k)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
A13: ((d
-' 1)
- (e
-' 1))
>
0 by
A8,
XREAL_1: 50;
A14: (
order (i,n))
<= k by
A13,
A9,
NAT_D: 7,
A1,
A12,
PEPIN: 47;
(d
- e)
<= ((
order (i,n))
- 1) by
A5,
XREAL_1: 13;
hence contradiction by
A7,
A9,
A14,
XXREAL_0: 2,
XREAL_1: 146;
end;
suppose e
> d;
then
A15: (e
-' 1)
> (d
-' 1) by
A7,
XREAL_1: 9;
then
consider k be
Nat such that
A16: (e
-' 1)
= ((d
-' 1)
+ k) by
NAT_1: 10;
reconsider ll = ((i
|^ k)
- 1) as
Element of
NAT by
A2,
NAT_1: 21,
NAT_1: 14;
A17: ((i
|^ (e
-' 1))
- (i
|^ (d
-' 1)))
= (((i
|^ (d
-' 1))
* (i
|^ k))
- ((i
|^ (d
-' 1))
* 1)) by
A16,
NEWTON: 8
.= ((i
|^ (d
-' 1))
* ll);
A18: ((i
|^ (d
-' 1))
gcd n)
= 1 by
A2,
A3,
NAT_4: 10;
((i
|^ (d
-' 1)),(fn
. e))
are_congruent_mod n by
A1,
A4;
then ((i
|^ (d
-' 1)),(i
|^ (e
-' 1)))
are_congruent_mod n by
A1,
A4;
then ((i
|^ (e
-' 1)),(i
|^ (d
-' 1)))
are_congruent_mod n by
INT_1: 14;
then n
divides ((i
|^ (e
-' 1))
- (i
|^ (d
-' 1))) by
INT_2: 15;
then n
divides ll by
A17,
A18,
WSIERP_1: 30;
then ((i
|^ k),1)
are_congruent_mod n by
INT_2: 15;
then
A19: ((i
|^ k)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
A20: ((e
-' 1)
- (d
-' 1))
>
0 by
A15,
XREAL_1: 50;
A21: (
order (i,n))
<= k by
A16,
A20,
NAT_D: 7,
A1,
A19,
PEPIN: 47;
(e
- d)
<= ((
order (i,n))
- 1) by
A5,
XREAL_1: 13;
hence contradiction by
A16,
A21,
A7,
XXREAL_0: 2,
XREAL_1: 146;
end;
end;
theorem ::
INT_8:13
n
> 1 & (i,n)
are_coprime & (
len fn)
= (
order (i,n)) & (for d st d
in (
dom fn) holds (fn
. d)
= (i
|^ (d
-' 1))) implies (for d st d
in (
dom fn) holds (((fn
. d)
|^ (
order (i,n)))
mod n)
= 1)
proof
assume
A1: n
> 1 & (i,n)
are_coprime & (
len fn)
= (
order (i,n)) & (for d st d
in (
dom fn) holds (fn
. d)
= (i
|^ (d
-' 1)));
set K = (
order (i,n));
let d;
assume d
in (
dom fn);
then
A2: (fn
. d)
= (i
|^ (d
-' 1)) by
A1;
A3: (((fn
. d)
|^ (
order (i,n)))
mod n)
= ((i
|^ (K
* (d
-' 1)))
mod n) by
NEWTON: 9,
A2
.= (((i
|^ K)
|^ (d
-' 1))
mod n) by
NEWTON: 9;
((i
|^ (
order (i,n)))
mod n)
= 1 by
A1,
PEPIN:def 2
.= (1
mod n) by
A1,
PEPIN: 5;
then (((i
|^ K)
|^ (d
-' 1))
mod n)
= ((1
|^ (d
-' 1))
mod n) by
INT_4: 8
.= (1
mod n)
.= 1 by
A1,
PEPIN: 5;
hence thesis by
A3;
end;
theorem ::
INT_8:14
Th14: n
> 1 & (i,n)
are_coprime implies (
order ((i
|^ s),n))
= ((
order (i,n))
div ((
order (i,n))
gcd s))
proof
assume
A1: n
> 1 & (i,n)
are_coprime ;
then
A2: i
<>
0 & n
<>
0 by
Th5;
(i
gcd n)
= 1 by
A1,
INT_2:def 3;
then ((i
|^ s)
gcd n)
= 1 by
A2,
NAT_4: 10;
then
A3: ((i
|^ s),n)
are_coprime by
INT_2:def 3;
A4: (
order (i,n))
>
0 by
A1,
PEPIN:def 2;
set K1 = ((
order (i,n))
gcd s), K2 = ((
order (i,n))
div K1);
per cases ;
suppose
A5: s
=
0 ;
then K1
= (
order (i,n)) by
NEWTON: 52;
then
A6: K2
= 1 by
A4,
NAT_2: 3;
(i
|^ s)
= 1 by
A5,
NEWTON: 4;
hence thesis by
A1,
A6,
PEPIN: 46;
end;
suppose
A7: s
>
0 ;
K1
divides (
order (i,n)) & K1
divides s by
NAT_D:def 5;
then
A8: (
order (i,n))
= (K2
* K1) & s
= ((s
div K1)
* K1) by
NAT_D: 3;
then
A9: K2
<>
0 & K1
<>
0 & (s
div K1)
<>
0 by
A1,
A7,
PEPIN:def 2;
A10: (K2,(s
div K1))
are_coprime by
A8,
A9,
EULER_1: 6;
(s
* K2)
= ((s
div K1)
* (
order (i,n))) by
A8;
then (
order (i,n))
divides (s
* K2) by
NAT_D:def 3;
then ((i
|^ (s
* K2))
mod n)
= 1 by
A1,
PEPIN: 48;
then
A11: (((i
|^ s)
|^ K2)
mod n)
= 1 by
NEWTON: 9;
for k be
Nat st k
>
0 & (((i
|^ s)
|^ k)
mod n)
= 1 holds
0
< K2 & K2
<= k
proof
let k be
Nat;
reconsider k1 = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A12: k
>
0 & (((i
|^ s)
|^ k)
mod n)
= 1;
then ((i
|^ (s
* k))
mod n)
= 1 by
NEWTON: 9;
then (K2
* K1)
divides (((s
div K1)
* k1)
* K1) by
A8,
A1,
PEPIN: 47;
then K2
divides ((s
div K1)
* k1) by
A9,
PYTHTRIP: 7;
hence thesis by
A9,
A12,
A10,
PEPIN: 3,
NAT_D: 7;
end;
hence thesis by
A1,
A3,
A9,
A11,
PEPIN:def 2;
end;
end;
theorem ::
INT_8:15
for i, n st n
> 1 & (i,n)
are_coprime holds ((
order (i,n)),s)
are_coprime iff (
order ((i
|^ s),n))
= (
order (i,n))
proof
let i, n;
assume
A1: n
> 1 & (i,n)
are_coprime ;
thus ((
order (i,n)),s)
are_coprime implies (
order ((i
|^ s),n))
= (
order (i,n))
proof
assume ((
order (i,n)),s)
are_coprime ;
then ((
order (i,n))
gcd s)
= 1 by
INT_2:def 3;
then ((
order (i,n))
div ((
order (i,n))
gcd s))
= (
order (i,n)) by
NAT_2: 4;
hence thesis by
A1,
Th14;
end;
assume (
order ((i
|^ s),n))
= (
order (i,n));
then
A2: ((
order (i,n))
div ((
order (i,n))
gcd s))
= (
order (i,n)) by
A1,
Th14;
set d = ((
order (i,n))
gcd s);
A3: d
divides (
order (i,n)) by
NAT_D:def 5;
then
A4: (((
order (i,n))
div d)
* 1)
= (((
order (i,n))
div d)
* d) by
A2,
NAT_D: 3;
A5: (
order (i,n))
>
0 by
A1,
PEPIN:def 2;
then
A6: d
<= (
order (i,n)) by
A3,
NAT_D: 7;
d
<>
0 by
A5,
INT_2: 5;
then ((
order (i,n))
div d)
<>
0 by
A6,
NAT_2: 13;
then d
= 1 by
A4,
XCMPLX_1: 5;
hence thesis by
INT_2:def 3;
end;
theorem ::
INT_8:16
n
> 1 & (i,n)
are_coprime & (
order (i,n))
= (s
* t) implies (
order ((i
|^ s),n))
= t
proof
assume
A1: n
> 1 & (i,n)
are_coprime & (
order (i,n))
= (s
* t);
then
A2: i
<>
0 by
Th5;
A3: t
<>
0 & s
<>
0 by
A1,
PEPIN:def 2;
(i
gcd n)
= 1 by
A1,
INT_2:def 3;
then ((i
|^ s)
gcd n)
= 1 by
A2,
A1,
NAT_4: 10;
then
A4: ((i
|^ s),n)
are_coprime by
INT_2:def 3;
A5: (((i
|^ s)
|^ t)
mod n)
= ((i
|^ (
order (i,n)))
mod n) by
A1,
NEWTON: 9
.= 1 by
A1,
PEPIN:def 2;
A6: for k be
Nat st k
>
0 & (((i
|^ s)
|^ k)
mod n)
= 1 holds
0
< t & t
<= k
proof
let k be
Nat;
assume
A7: k
>
0 & (((i
|^ s)
|^ k)
mod n)
= 1;
then
A8: ((i
|^ (s
* k))
mod n)
= 1 by
NEWTON: 9;
reconsider t, s, k as
Element of
NAT by
ORDINAL1:def 12;
(t
* s)
divides (k
* s) by
A8,
A1,
PEPIN: 47;
then t
divides k by
A3,
PYTHTRIP: 7;
hence thesis by
A3,
A7,
NAT_D: 7;
end;
t is
Element of
NAT by
ORDINAL1:def 12;
hence thesis by
A1,
A4,
A3,
A6,
A5,
PEPIN:def 2;
end;
theorem ::
INT_8:17
Th17: n
> 1 & (s,n)
are_coprime & (t,n)
are_coprime & ((
order (s,n)),(
order (t,n)))
are_coprime implies (
order ((s
* t),n))
= ((
order (s,n))
* (
order (t,n)))
proof
assume
A1: n
> 1 & (s,n)
are_coprime & (t,n)
are_coprime & ((
order (s,n)),(
order (t,n)))
are_coprime ;
then (s
gcd n)
= 1 & (t
gcd n)
= 1 by
INT_2:def 3;
then ((s
* t)
gcd n)
= 1 by
WSIERP_1: 7;
then
A2: ((s
* t),n)
are_coprime by
INT_2:def 3;
set L = ((
order (s,n))
* (
order (t,n)));
A3: (((s
* t)
|^ (
order ((s
* t),n)))
mod n)
= 1 by
A1,
A2,
PEPIN:def 2
.= (1
mod n) by
A1,
PEPIN: 5;
then ((((s
* t)
|^ (
order ((s
* t),n)))
|^ (
order (s,n)))
mod n)
= ((1
|^ (
order (s,n)))
mod n) by
INT_4: 8;
then (((s
* t)
|^ ((
order ((s
* t),n))
* (
order (s,n))))
mod n)
= ((1
|^ (
order (s,n)))
mod n) by
NEWTON: 9
.= (1
mod n)
.= 1 by
A1,
PEPIN: 5;
then ((((s
* t)
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))
mod n)
= 1 by
NEWTON: 9;
then ((((s
|^ (
order (s,n)))
* (t
|^ (
order (s,n))))
|^ (
order ((s
* t),n)))
mod n)
= 1 by
NEWTON: 7;
then
A4: ((((s
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))
* ((t
|^ (
order (s,n)))
|^ (
order ((s
* t),n))))
mod n)
= 1 by
NEWTON: 7;
((s
|^ (
order (s,n)))
mod n)
= 1 by
A1,
PEPIN:def 2
.= (1
mod n) by
A1,
PEPIN: 5;
then (((s
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))
mod n)
= ((1
|^ (
order ((s
* t),n)))
mod n) by
INT_4: 8
.= (1
mod n);
then (((s
|^ (
order (s,n)))
|^ (
order ((s
* t),n))),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then ((((s
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))
* ((t
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))),(1
* ((t
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))))
are_congruent_mod n by
INT_4: 11;
then (((t
|^ (
order (s,n)))
|^ (
order ((s
* t),n)))
mod n)
= 1 by
A4,
NAT_D: 64;
then
A5: ((t
|^ ((
order (s,n))
* (
order ((s
* t),n))))
mod n)
= 1 by
NEWTON: 9;
A6: (
order (t,n))
divides (
order ((s
* t),n)) by
A1,
A5,
PEPIN: 47,
PEPIN: 3;
((((s
* t)
|^ (
order ((s
* t),n)))
|^ (
order (t,n)))
mod n)
= ((1
|^ (
order (t,n)))
mod n) by
A3,
INT_4: 8;
then (((s
* t)
|^ ((
order ((s
* t),n))
* (
order (t,n))))
mod n)
= ((1
|^ (
order (t,n)))
mod n) by
NEWTON: 9
.= (1
mod n)
.= 1 by
A1,
PEPIN: 5;
then ((((s
* t)
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))
mod n)
= 1 by
NEWTON: 9;
then ((((s
|^ (
order (t,n)))
* (t
|^ (
order (t,n))))
|^ (
order ((s
* t),n)))
mod n)
= 1 by
NEWTON: 7;
then
A7: ((((s
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))
* ((t
|^ (
order (t,n)))
|^ (
order ((s
* t),n))))
mod n)
= 1 by
NEWTON: 7;
((t
|^ (
order (t,n)))
mod n)
= 1 by
A1,
PEPIN:def 2
.= (1
mod n) by
A1,
PEPIN: 5;
then (((t
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))
mod n)
= ((1
|^ (
order ((s
* t),n)))
mod n) by
INT_4: 8
.= (1
mod n);
then (((t
|^ (
order (t,n)))
|^ (
order ((s
* t),n))),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then ((((t
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))
* ((s
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))),(1
* ((s
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))))
are_congruent_mod n by
INT_4: 11;
then (((s
|^ (
order (t,n)))
|^ (
order ((s
* t),n)))
mod n)
= 1 by
A7,
NAT_D: 64;
then ((s
|^ ((
order (t,n))
* (
order ((s
* t),n))))
mod n)
= 1 by
NEWTON: 9;
then (
order (s,n))
divides (
order ((s
* t),n)) by
A1,
PEPIN: 3,
PEPIN: 47;
then
A8: L
divides (
order ((s
* t),n)) by
A6,
A1,
PEPIN: 4;
(
order (s,n))
divides L & (
order (t,n))
divides L by
NAT_D:def 3;
then ((s
|^ L)
mod n)
= 1 & ((t
|^ L)
mod n)
= 1 by
A1,
PEPIN: 48;
then ((s
|^ L),1)
are_congruent_mod n & ((t
|^ L),1)
are_congruent_mod n by
A1,
PEPIN: 39;
then (((s
|^ L)
* (t
|^ L)),(1
* 1))
are_congruent_mod n by
INT_1: 18;
then (((s
* t)
|^ L),1)
are_congruent_mod n by
NEWTON: 7;
then (((s
* t)
|^ L)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
then (
order ((s
* t),n))
divides L by
A1,
A2,
PEPIN: 47;
hence thesis by
A8,
NAT_D: 5;
end;
reserve fp,fr for
FinSequence of
NAT ;
theorem ::
INT_8:18
n
> 1 & (s,n)
are_coprime & (t,n)
are_coprime & (
order ((s
* t),n))
= ((
order (s,n))
* (
order (t,n))) implies ((
order (s,n)),(
order (t,n)))
are_coprime
proof
assume
A1: n
> 1 & (s,n)
are_coprime & (t,n)
are_coprime & (
order ((s
* t),n))
= ((
order (s,n))
* (
order (t,n)));
then (s
gcd n)
= 1 & (t
gcd n)
= 1 by
INT_2:def 3;
then ((s
* t)
gcd n)
= 1 by
WSIERP_1: 7;
then
A2: ((s
* t),n)
are_coprime by
INT_2:def 3;
set L = ((
order (s,n))
lcm (
order (t,n)));
(
order (s,n))
>
0 & (
order (t,n))
>
0 by
A1,
PEPIN:def 2;
then
A3: L
<>
0 by
INT_2: 4;
(
order (s,n))
divides (
order ((s
* t),n)) & (
order (t,n))
divides (
order ((s
* t),n)) by
A1,
NAT_D:def 3;
then
A4: L
divides (
order ((s
* t),n)) by
NAT_D:def 4;
A5: (
order (s,n))
divides L & (
order (t,n))
divides L by
NAT_D:def 4;
then ((s
|^ ((
order (s,n))
lcm (
order (t,n))))
mod n)
= 1 by
A1,
PEPIN: 48
.= (1
mod n) by
A1,
PEPIN: 5;
then
A6: ((s
|^ ((
order (s,n))
lcm (
order (t,n)))),1)
are_congruent_mod n by
A1,
NAT_D: 64;
((t
|^ L)
mod n)
= 1 by
A1,
A5,
PEPIN: 48
.= (1
mod n) by
A1,
PEPIN: 5;
then ((t
|^ L),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then
A7: (((t
|^ ((
order (s,n))
lcm (
order (t,n))))
* (s
|^ ((
order (s,n))
lcm (
order (t,n))))),(1
* 1))
are_congruent_mod n by
A6,
INT_1: 18;
set B = (s
* t);
((B
|^ ((
order (s,n))
lcm (
order (t,n)))),(1
* 1))
are_congruent_mod n by
A7,
NEWTON: 7;
then
A8: ((B
|^ ((
order (s,n))
lcm (
order (t,n))))
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
(
order (B,n))
divides L by
A8,
A1,
A2,
PEPIN: 47;
then L
= ((
order (s,n))
* (
order (t,n))) by
A1,
A4,
NAT_D: 5;
then (L
* ((
order (s,n))
gcd (
order (t,n))))
= (L
* 1) by
NAT_D: 29;
then ((
order (s,n))
gcd (
order (t,n)))
= 1 by
A3,
XCMPLX_1: 5;
hence thesis by
INT_2:def 3;
end;
theorem ::
INT_8:19
n
> 1 & (s,n)
are_coprime & ((s
* t)
mod n)
= 1 implies (
order (s,n))
= (
order (t,n))
proof
assume
A1: n
> 1 & (s,n)
are_coprime & ((s
* t)
mod n)
= 1;
set f = (t
gcd n);
A2:
now
assume not (t,n)
are_coprime ;
then
A3: f
<> 1 by
INT_2:def 3;
f
<>
0 by
A1,
INT_2: 5;
then
A4: f
> 1 by
A3,
NAT_1: 25;
A5: n
divides ((s
* t)
- 1) by
A1,
PEPIN: 8;
A6: f
divides t & f
divides n by
NAT_D:def 5;
then
A7: f
divides ((s
* t)
- 1) by
A5,
INT_2: 9;
f
divides (s
* t) by
A6,
NAT_D: 9;
hence contradiction by
A4,
A7,
INT_5: 2,
NAT_D: 7;
end;
A8: (
order (s,n))
>
0 by
A1,
PEPIN:def 2;
set M = (s
* t);
A9: (M
mod n)
= (1
mod n) by
A1,
PEPIN: 5;
then ((M
|^ (
order (s,n)))
mod n)
= ((1
|^ (
order (s,n)))
mod n) by
INT_4: 8
.= (1
mod n)
.= 1 by
A1,
PEPIN: 5;
then
A10: (((s
|^ (
order (s,n)))
* (t
|^ (
order (s,n))))
mod n)
= 1 by
NEWTON: 7;
((s
|^ (
order (s,n)))
mod n)
= 1 by
A1,
PEPIN:def 2;
then
A11: ((t
|^ (
order (s,n)))
mod n)
= 1 by
A10,
Th6;
for k be
Nat st k
>
0 & ((t
|^ k)
mod n)
= 1 holds
0
< (
order (s,n)) & (
order (s,n))
<= k
proof
let k be
Nat;
assume
A12: k
>
0 & ((t
|^ k)
mod n)
= 1;
k is
Element of
NAT by
ORDINAL1:def 12;
then ((M
|^ k)
mod n)
= ((1
|^ k)
mod n) by
A9,
INT_4: 8
.= (1
mod n)
.= 1 by
A1,
PEPIN: 5;
then (((s
|^ k)
* (t
|^ k))
mod n)
= 1 by
NEWTON: 7;
then ((s
|^ k)
mod n)
= 1 by
A12,
Th6;
hence thesis by
A1,
A12,
PEPIN:def 2;
end;
hence thesis by
A11,
A8,
A2,
A1,
PEPIN:def 2;
end;
theorem ::
INT_8:20
Th20: n
> 1 & m
> 1 & (i,n)
are_coprime & m
divides n implies (
order (i,m))
divides (
order (i,n))
proof
assume
A1: n
> 1 & m
> 1 & (i,n)
are_coprime & m
divides n;
(i
gcd n)
= 1 by
A1,
INT_2:def 3;
then (i
gcd m)
= 1 by
A1,
WSIERP_1: 16;
then
A2: (i,m)
are_coprime by
INT_2:def 3;
((i
|^ (
order (i,n)))
mod n)
= 1 by
A1,
PEPIN:def 2
.= (1
mod n) by
A1,
PEPIN: 5;
then ((i
|^ (
order (i,n))),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then n
divides ((i
|^ (
order (i,n)))
- 1) by
INT_2: 15;
then m
divides ((i
|^ (
order (i,n)))
- 1) by
A1,
INT_2: 9;
then ((i
|^ (
order (i,n))),1)
are_congruent_mod m by
INT_2: 15;
then ((i
|^ (
order (i,n)))
mod m)
= (1
mod m) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
hence thesis by
A1,
A2,
PEPIN: 47;
end;
theorem ::
INT_8:21
n
> 1 & m
> 1 & (m,n)
are_coprime & (i,(m
* n))
are_coprime implies (
order (i,(m
* n)))
= ((
order (i,m))
lcm (
order (i,n)))
proof
assume
A1: n
> 1 & m
> 1 & (m,n)
are_coprime & (i,(m
* n))
are_coprime ;
then
A2: (m
* n)
> (1
* 1) by
XREAL_1: 98;
then i
<>
0 by
A1,
Th5;
then
A3: i
>
0 ;
set K = ((
order (i,m))
lcm (
order (i,n)));
A4: m
divides (m
* n) & n
divides (m
* n) by
NAT_D:def 3;
then (
order (i,m))
divides (
order (i,(m
* n))) & (
order (i,n))
divides (
order (i,(m
* n))) by
A1,
A2,
Th20;
then
A5: K
divides (
order (i,(m
* n))) by
NAT_D:def 4;
(i
gcd (m
* n))
= 1 by
A1,
INT_2:def 3;
then (i
gcd m)
= 1 & (i
gcd n)
= 1 by
A4,
WSIERP_1: 16;
then
A6: (i,m)
are_coprime & (i,n)
are_coprime by
INT_2:def 3;
((i
|^ K)
- 1)
>=
0 by
NAT_1: 14,
XREAL_1: 48,
A3;
then
A7: ((i
|^ K)
- 1) is
Element of
NAT by
INT_1: 3;
(
order (i,m))
divides K & (
order (i,n))
divides K by
NAT_D:def 4;
then ((i
|^ K)
mod m)
= 1 & ((i
|^ K)
mod n)
= 1 by
A1,
A6,
PEPIN: 48;
then ((i
|^ K),1)
are_congruent_mod m & ((i
|^ K),1)
are_congruent_mod n by
A1,
PEPIN: 39;
then m
divides ((i
|^ K)
- 1) & n
divides ((i
|^ K)
- 1) by
INT_2: 15;
then (m
* n)
divides ((i
|^ K)
- 1) by
A1,
A7,
PEPIN: 4;
then ((i
|^ K),1)
are_congruent_mod (m
* n) by
INT_2: 15;
then
A8: ((i
|^ K)
mod (m
* n))
= 1 by
A2,
PEPIN: 39;
(
order (i,(m
* n)))
divides K by
A1,
A2,
A8,
PEPIN: 47;
hence thesis by
A5,
NAT_D: 5;
end;
definition
let X be
set, m be
Nat;
::
INT_8:def2
pred X
is_RRS_of m means ex fp be
FinSequence of
INT st (
len fp)
= (
len (
Sgm (
RelPrimes m))) & (for d st d
in (
dom fp) holds (fp
. d)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. d)))) & X
= (
rng fp);
end
theorem ::
INT_8:22
Th22: (
RelPrimes m)
is_RRS_of m
proof
A1: (
RelPrimes m)
c= (
Seg m) by
Th1;
A2: (
rng (
Sgm (
RelPrimes m)))
= (
RelPrimes m) & (
len (
Sgm (
RelPrimes m)))
= (
len (
Sgm (
RelPrimes m))) by
A1,
FINSEQ_1:def 13;
(
rng (
Sgm (
RelPrimes m)))
c=
INT ;
then
A3: (
Sgm (
RelPrimes m)) is
FinSequence of
INT by
FINSEQ_1:def 4;
for a be
Nat st a
in (
dom (
Sgm (
RelPrimes m))) holds ((
Sgm (
RelPrimes m))
. a)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. a)))
proof
let a be
Nat;
assume a
in (
dom (
Sgm (
RelPrimes m)));
(((
Sgm (
RelPrimes m))
. a),((
Sgm (
RelPrimes m))
. a))
are_congruent_mod m by
INT_1: 11;
then
[((
Sgm (
RelPrimes m))
. a), ((
Sgm (
RelPrimes m))
. a)]
in (
Cong m) by
INT_4:def 1;
hence thesis by
EQREL_1: 18;
end;
then for d st d
in (
dom (
Sgm (
RelPrimes m))) holds ((
Sgm (
RelPrimes m))
. d)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. d)));
hence thesis by
A2,
A3;
end;
theorem ::
INT_8:23
Th23: d
in (
dom (
Sgm (
RelPrimes m))) & e
in (
dom (
Sgm (
RelPrimes m))) & d
<> e implies not (((
Sgm (
RelPrimes m))
. d),((
Sgm (
RelPrimes m))
. e))
are_congruent_mod m
proof
assume
A1: d
in (
dom (
Sgm (
RelPrimes m))) & e
in (
dom (
Sgm (
RelPrimes m))) & d
<> e;
A2: (
RelPrimes m)
c= (
Seg m) by
Th1;
(
rng (
Sgm (
RelPrimes m)))
= (
RelPrimes m) by
A2,
FINSEQ_1:def 13;
then
A3: ((
Sgm (
RelPrimes m))
. d)
in (
RelPrimes m) & ((
Sgm (
RelPrimes m))
. e)
in (
RelPrimes m) by
A1,
FUNCT_1:def 3;
then
consider k1 be
Element of
NAT such that
A4: k1
= ((
Sgm (
RelPrimes m))
. d) & (m,k1)
are_coprime & k1
>= 1 & k1
<= m;
consider k2 be
Element of
NAT such that
A5: k2
= ((
Sgm (
RelPrimes m))
. e) & (m,k2)
are_coprime & k2
>= 1 & k2
<= m by
A3;
A6: (((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e))
<= (m
- 1) & (1
- m)
<= (((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e)) by
A4,
A5,
XREAL_1: 13;
A7: (m
- 1)
< m by
XREAL_1: 146;
A8: (((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e))
< m by
A6,
XXREAL_0: 2,
XREAL_1: 146;
(
- m)
< (
- (m
- 1)) by
A7,
XREAL_1: 24;
then (
- m)
< (((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e)) by
A6,
XXREAL_0: 2;
then
A9:
|.(((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e)).|
< m by
A8,
SEQ_2: 1;
now
assume (((
Sgm (
RelPrimes m))
. d),((
Sgm (
RelPrimes m))
. e))
are_congruent_mod m;
then
A10: m
divides (((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e)) by
INT_2: 15;
(
Sgm (
RelPrimes m)) is
one-to-one by
A2,
FINSEQ_3: 92;
then (((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e))
<>
0 by
A1,
FUNCT_1:def 4;
then
|.m.|
<=
|.(((
Sgm (
RelPrimes m))
. d)
- ((
Sgm (
RelPrimes m))
. e)).| by
A10,
INT_4: 6;
hence contradiction by
A9,
ABSVALUE:def 1;
end;
hence thesis;
end;
theorem ::
INT_8:24
Th24: for X be
finite
set st X
is_RRS_of m holds (
card X)
= (
Euler m) & (for x,y be
Integer st x
in X & y
in X & x
<> y holds not (x,y)
are_congruent_mod m) & (for x be
Integer st x
in X holds (x,m)
are_coprime )
proof
let X be
finite
set;
assume X
is_RRS_of m;
then
consider fp be
FinSequence of
INT such that
A1: (
len fp)
= (
len (
Sgm (
RelPrimes m))) & (for d st d
in (
dom fp) holds (fp
. d)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. d)))) & X
= (
rng fp);
A2: (
dom fp)
= (
dom (
Sgm (
RelPrimes m))) by
A1,
FINSEQ_3: 29;
for a,b be
object st a
in (
dom fp) & b
in (
dom fp) & (fp
. a)
= (fp
. b) holds a
= b
proof
let a,b be
object;
assume
A3: a
in (
dom fp) & b
in (
dom fp) & (fp
. a)
= (fp
. b);
reconsider a, b as
Element of
NAT by
A3;
reconsider l = (fp
. a), ll = (fp
. b) as
Element of
INT by
A3,
FINSEQ_2: 11;
l
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. a))) & ll
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. b))) by
A1,
A3;
then
[((
Sgm (
RelPrimes m))
. a), l]
in (
Cong m) &
[((
Sgm (
RelPrimes m))
. b), ll]
in (
Cong m) by
EQREL_1: 18;
then
A4: (((
Sgm (
RelPrimes m))
. a),l)
are_congruent_mod m & (((
Sgm (
RelPrimes m))
. b),ll)
are_congruent_mod m by
INT_4:def 1;
then (l,((
Sgm (
RelPrimes m))
. b))
are_congruent_mod m by
A3,
INT_1: 14;
hence thesis by
Th23,
A3,
A2,
A4,
INT_1: 15;
end;
then
A5: fp is
one-to-one by
FUNCT_1:def 4;
A6: (
RelPrimes m)
c= (
Seg m) by
Th1;
A7: (
card X)
= (
len (
Sgm (
RelPrimes m))) by
A1,
FINSEQ_4: 62,
A5
.= (
Euler m) by
A6,
FINSEQ_3: 39;
A8: for x,y be
Integer st x
in X & y
in X & x
<> y holds not (x,y)
are_congruent_mod m
proof
let x,y be
Integer;
assume
A9: x
in X & y
in X & x
<> y;
then
consider d be
Nat such that
A10: d
in (
dom fp) & (fp
. d)
= x by
A1,
FINSEQ_2: 10;
consider e be
Nat such that
A11: e
in (
dom fp) & (fp
. e)
= y by
A1,
A9,
FINSEQ_2: 10;
A12: d
in (
dom (
Sgm (
RelPrimes m))) & e
in (
dom (
Sgm (
RelPrimes m))) by
A10,
A11,
A1,
FINSEQ_3: 29;
reconsider d, e as
Element of
NAT by
A10,
A11;
(fp
. d)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. d))) & (fp
. e)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. e))) by
A10,
A11,
A1;
then
[((
Sgm (
RelPrimes m))
. d), (fp
. d)]
in (
Cong m) &
[((
Sgm (
RelPrimes m))
. e), (fp
. e)]
in (
Cong m) by
EQREL_1: 18;
then
A13: (((
Sgm (
RelPrimes m))
. d),(fp
. d))
are_congruent_mod m & (((
Sgm (
RelPrimes m))
. e),(fp
. e))
are_congruent_mod m by
INT_4:def 1;
now
assume ((fp
. d),(fp
. e))
are_congruent_mod m;
then (((
Sgm (
RelPrimes m))
. d),(fp
. e))
are_congruent_mod m by
A13,
INT_1: 15;
then ((fp
. e),((
Sgm (
RelPrimes m))
. d))
are_congruent_mod m by
INT_1: 14;
hence contradiction by
A12,
A10,
A11,
A9,
Th23,
A13,
INT_1: 15;
end;
hence thesis by
A10,
A11;
end;
for x be
Integer st x
in X holds (x,m)
are_coprime
proof
let x be
Integer;
assume x
in X;
then
consider d be
Nat such that
A14: d
in (
dom fp) & (fp
. d)
= x by
A1,
FINSEQ_2: 10;
reconsider d as
Element of
NAT by
A14;
(fp
. d)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. d))) by
A1,
A14;
then
[((
Sgm (
RelPrimes m))
. d), (fp
. d)]
in (
Cong m) by
EQREL_1: 18;
then (((
Sgm (
RelPrimes m))
. d),(fp
. d))
are_congruent_mod m by
INT_4:def 1;
then
A15: (((
Sgm (
RelPrimes m))
. d)
gcd m)
= ((fp
. d)
gcd m) by
WSIERP_1: 43;
(
RelPrimes m)
c= (
Seg m) by
Th1;
then (
rng (
Sgm (
RelPrimes m)))
= (
RelPrimes m) by
FINSEQ_1:def 13;
then ((
Sgm (
RelPrimes m))
. d)
in (
RelPrimes m) by
A2,
A14,
FUNCT_1:def 3;
then
consider k be
Element of
NAT such that
A16: ((
Sgm (
RelPrimes m))
. d)
= k & (m,k)
are_coprime & k
>= 1 & k
<= m;
((fp
. d)
gcd m)
= 1 by
A15,
A16,
INT_2:def 3;
hence thesis by
A14,
INT_2:def 3;
end;
hence thesis by
A7,
A8;
end;
Lm3: for X be
finite
set st (
card X)
=
0 holds X
=
{} ;
theorem ::
INT_8:25
{}
is_RRS_of m iff m
=
0
proof
thus
{}
is_RRS_of m implies m
=
0
proof
assume
{}
is_RRS_of m;
then (
Euler m)
= (
card
{} ) by
Th24;
hence thesis by
PEPIN: 42;
end;
assume
A1: m
=
0 ;
reconsider fp = (
<*>
INT ) as
FinSequence of
INT ;
(
RelPrimes m)
c= (
Seg m) by
Th1;
then (
card (
RelPrimes m))
<= (
card (
Seg m)) by
NAT_1: 43;
then (
card (
RelPrimes m))
<=
0 by
A1;
then (
card (
RelPrimes m))
=
0 ;
then
A2: (
len (
Sgm (
RelPrimes m)))
= (
len fp) by
Lm3,
FINSEQ_3: 43;
(for d st d
in (
dom fp) holds (fp
. d)
in (
Class ((
Cong m),((
Sgm (
RelPrimes m))
. d))));
hence thesis by
RELAT_1: 38,
A2;
end;
theorem ::
INT_8:26
Th26: for X be
finite
Subset of
INT st (1
< m & (
card X)
= (
Euler m) & (for x,y be
Integer st x
in X & y
in X & x
<> y holds not (x,y)
are_congruent_mod m) & (for x be
Integer st x
in X holds (x,m)
are_coprime )) holds X
is_RRS_of m
proof
let X be
finite
Subset of
INT ;
assume
A1: (1
< m & (
card X)
= (
Euler m) & (for x,y be
Integer st x
in X & y
in X & x
<> y holds not (x,y)
are_congruent_mod m) & (for x be
Integer st x
in X holds (x,m)
are_coprime ));
then (
card X)
<>
0 by
PEPIN: 42;
then
reconsider X as non
empty
finite
Subset of
INT ;
set Y = (
RelPrimes m);
A2: Y
c= (
Seg m) by
Th1;
reconsider Y as
finite
set;
(m
gcd 1)
= 1 by
NEWTON: 51;
then (m,1)
are_coprime by
INT_2:def 3;
then 1
in Y by
A1;
then
reconsider Y as non
empty
finite
set;
reconsider Y as non
empty
finite
Subset of
INT by
NUMBERS: 17,
XBOOLE_1: 1;
A3: Y
is_RRS_of m by
Th22;
defpred
P[
Nat,
set] means $2
in (
Class ((
Cong m),((
Sgm Y)
. $1)));
A4: for a be
Nat st a
in (
Seg (
Euler m)) holds ex y be
Element of X st
P[a, y]
proof
let a be
Nat;
assume
A5: a
in (
Seg (
Euler m));
consider fp be
FinSequence such that
A6: (
len fp)
= (
Euler m) & (for d st d
in (
dom fp) holds (fp
. d)
in X) & fp is
one-to-one by
A1,
INT_4: 51;
for d be
Nat st d
in (
dom fp) holds (fp
. d)
in X by
A6;
then
reconsider fp as
FinSequence of X by
FINSEQ_2: 12;
A7: (
card (
rng fp))
= (
card X) by
A1,
A6,
FINSEQ_4: 62;
(
rng fp)
c= X by
FINSEQ_1:def 4;
then
A8: (
rng fp)
= X by
A7,
CARD_2: 102;
defpred
PP[
Nat,
set] means (fp
. $1)
in (
Class ((
Cong m),$2));
A9: for c be
Nat st c
in (
Seg (
Euler m)) holds ex r be
Element of Y st
PP[c, r]
proof
let c be
Nat;
assume c
in (
Seg (
Euler m));
then c
in (
dom fp) by
A6,
FINSEQ_1:def 3;
then
A10: ((fp
. c),m)
are_coprime by
A1,
A6;
set r = ((fp
. c)
mod m);
A11: ((fp
. c)
mod m)
= (((((fp
. c)
div m)
* m)
+ r)
mod m) by
A1,
INT_1: 59
.= (r
mod m) by
EULER_1: 12;
then ((fp
. c),r)
are_congruent_mod m by
A1,
NAT_D: 64;
then
A12: (r
gcd m)
= ((fp
. c)
gcd m) by
WSIERP_1: 43
.= 1 by
A10,
INT_2:def 3;
then
A13: (r,m)
are_coprime by
INT_2:def 3;
reconsider r as
Element of
NAT by
INT_1: 3,
INT_1: 57;
reconsider zz =
0 , j = 1 as
Real;
now
assume r
=
0 ;
then
|.m.|
= 1 by
A12,
WSIERP_1: 8;
hence contradiction by
A1,
ABSVALUE:def 1;
end;
then (r
- 1)
>=
0 by
INT_1: 52;
then
A14: ((r
- 1)
+ j)
>= (zz
+ j) by
XREAL_1: 7;
r
<= m by
A1,
INT_1: 58;
then
A15: r
in Y by
A14,
A13;
(r,(fp
. c))
are_congruent_mod m by
A11,
A1,
NAT_D: 64;
then
[r, (fp
. c)]
in (
Cong m) by
INT_4:def 1;
then (fp
. c)
in (
Class ((
Cong m),r)) by
EQREL_1: 18;
hence thesis by
A15;
end;
consider fr be
FinSequence of Y such that
A16: (
dom fr)
= (
Seg (
Euler m)) & for c be
Nat st c
in (
Seg (
Euler m)) holds
PP[c, (fr
. c)] from
FINSEQ_1:sch 5(
A9);
for x1,x2 be
object st x1
in (
dom fr) & x2
in (
dom fr) & (fr
. x1)
= (fr
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume
A17: x1
in (
dom fr) & x2
in (
dom fr) & (fr
. x1)
= (fr
. x2);
then
reconsider x1, x2 as
Element of
NAT ;
(fp
. x1)
in (
Class ((
Cong m),(fr
. x1))) & (fp
. x2)
in (
Class ((
Cong m),(fr
. x2))) by
A17,
A16;
then
[(fr
. x1), (fp
. x1)]
in (
Cong m) &
[(fr
. x2), (fp
. x2)]
in (
Cong m) by
EQREL_1: 18;
then ((fr
. x1),(fp
. x1))
are_congruent_mod m & ((fr
. x2),(fp
. x2))
are_congruent_mod m by
INT_4:def 1;
then
A18: ((fp
. x1),(fp
. x2))
are_congruent_mod m by
A17,
PEPIN: 40;
A19: x1
in (
dom fp) & x2
in (
dom fp) by
A17,
A6,
A16,
FINSEQ_1:def 3;
then (fp
. x1)
in X & (fp
. x2)
in X by
A8,
FUNCT_1:def 3;
then (fp
. x1)
= (fp
. x2) by
A1,
A18;
hence thesis by
A19,
A6,
FUNCT_1:def 4;
end;
then fr is
one-to-one by
FUNCT_1:def 4;
then
A20: (
card (
rng fr))
= (
len fr) by
FINSEQ_4: 62
.= (
card Y) by
A16,
FINSEQ_1:def 3;
(
rng fr)
c= Y by
FINSEQ_1:def 4;
then
A21: (
rng fr)
= Y by
A20,
CARD_2: 102;
(
len (
Sgm Y))
= (
Euler m) by
A2,
FINSEQ_3: 39;
then a
in (
dom (
Sgm Y)) by
A5,
FINSEQ_1:def 3;
then ((
Sgm Y)
. a)
in (
rng (
Sgm Y)) by
FUNCT_1:def 3;
then ((
Sgm Y)
. a)
in (
rng fr) by
A21,
A2,
FINSEQ_1:def 13;
then
consider i be
Nat such that
A22: i
in (
dom fr) & (fr
. i)
= ((
Sgm Y)
. a) by
FINSEQ_2: 10;
i
in (
dom fp) by
A22,
A6,
A16,
FINSEQ_1:def 3;
then (fp
. i) is
Element of X by
A8,
FUNCT_1:def 3;
hence thesis by
A22,
A16;
end;
consider f be
FinSequence of X such that
A23: (
dom f)
= (
Seg (
Euler m)) & for a be
Nat st a
in (
Seg (
Euler m)) holds
P[a, (f
. a)] from
FINSEQ_1:sch 5(
A4);
A24: (
len f)
= (
Euler m) by
A23,
FINSEQ_1:def 3;
for a,b be
object st a
in (
dom f) & b
in (
dom f) & (f
. a)
= (f
. b) holds a
= b
proof
let a,b be
object;
assume
A25: a
in (
dom f) & b
in (
dom f) & (f
. a)
= (f
. b);
then
reconsider a, b as
Element of
NAT ;
(f
. a)
in (
Class ((
Cong m),((
Sgm Y)
. a))) & (f
. b)
in (
Class ((
Cong m),((
Sgm Y)
. b))) by
A25,
A23;
then
[((
Sgm Y)
. a), (f
. a)]
in (
Cong m) &
[((
Sgm Y)
. b), (f
. b)]
in (
Cong m) by
EQREL_1: 18;
then
A26: (((
Sgm Y)
. a),(f
. a))
are_congruent_mod m & (((
Sgm Y)
. b),(f
. b))
are_congruent_mod m by
INT_4:def 1;
then ((f
. b),((
Sgm Y)
. b))
are_congruent_mod m by
INT_1: 14;
then
A27: (((
Sgm Y)
. a),((
Sgm Y)
. b))
are_congruent_mod m by
A26,
A25,
INT_1: 15;
now
assume
A28: a
<> b;
(
len (
Sgm Y))
= (
Euler m) by
A2,
FINSEQ_3: 39;
then
A29: a
in (
dom (
Sgm Y)) & b
in (
dom (
Sgm Y)) by
A25,
A23,
FINSEQ_1:def 3;
(
Sgm Y) is
one-to-one by
A2,
FINSEQ_3: 92;
then
A30: ((
Sgm Y)
. a)
<> ((
Sgm Y)
. b) by
A28,
A29,
FUNCT_1:def 4;
((
Sgm Y)
. a)
in (
rng (
Sgm Y)) & ((
Sgm Y)
. b)
in (
rng (
Sgm Y)) by
A29,
FUNCT_1:def 3;
then ((
Sgm Y)
. a)
in Y & ((
Sgm Y)
. b)
in Y by
A2,
FINSEQ_1:def 13;
hence contradiction by
A27,
A30,
A3,
Th24;
end;
hence thesis;
end;
then f is
one-to-one by
FUNCT_1:def 4;
then
A31: (
card X)
= (
card (
rng f)) by
A1,
A24,
FINSEQ_4: 62;
A32: (
rng f)
c= X by
FINSEQ_1:def 4;
take f;
thus thesis by
A2,
A23,
A24,
A32,
A31,
CARD_2: 102,
FINSEQ_3: 39;
end;
theorem ::
INT_8:27
for X be
finite
Subset of
INT , a be
Integer st (m
> 1 & (a,m)
are_coprime & X
is_RRS_of m) holds (a
** X)
is_RRS_of m
proof
let X be
finite
Subset of
INT , a be
Integer;
assume
A1: m
> 1 & (a,m)
are_coprime & X
is_RRS_of m;
then
A2: (
card X)
= (
Euler m) & (for x,y be
Integer st x
in X & y
in X & x
<> y holds not (x,y)
are_congruent_mod m) & (for x be
Integer st x
in X holds (x,m)
are_coprime ) by
Th24;
A3: (a
** X)
c=
INT by
INT_1:def 2;
a
<>
0 by
A1,
Th5;
then
A4: (
card (a
** X))
= (
Euler m) by
A2,
INT_4: 5;
A5: for x,y be
Integer st x
in (a
** X) & y
in (a
** X) & x
<> y holds not (x,y)
are_congruent_mod m
proof
let x,y be
Integer;
assume
A6: x
in (a
** X) & y
in (a
** X) & x
<> y;
then
consider z1 be
Integer such that
A7: z1
in X & x
= (a
* z1) by
Th3;
consider z2 be
Integer such that
A8: z2
in X & y
= (a
* z2) by
A6,
Th3;
not (z1,z2)
are_congruent_mod m by
A7,
A6,
A8,
A1,
Th24;
hence thesis by
A7,
A8,
A1,
INT_4: 9;
end;
for x be
Integer st x
in (a
** X) holds (x,m)
are_coprime
proof
let x be
Integer;
assume x
in (a
** X);
then
consider y such that
A9: y
in X & x
= (a
* y) by
Th3;
(y,m)
are_coprime by
A9,
A1,
Th24;
hence thesis by
A9,
A1,
INT_2: 26;
end;
hence thesis by
A1,
A3,
A4,
A5,
Th26;
end;
definition
let i, n;
::
INT_8:def3
pred i
is_primitive_root_of n means (
order (i,n))
= (
Euler n);
end
theorem ::
INT_8:28
n
> 1 & (i,n)
are_coprime implies (i
is_primitive_root_of n iff for fn st (
len fn)
= (
Euler n) & (for d be
Nat st d
in (
dom fn) holds (fn
. d)
= (i
|^ d)) holds (
rng fn)
is_RRS_of n)
proof
assume
A1: n
> 1 & (i,n)
are_coprime ;
then
A2: i
<>
0 by
Th5;
reconsider z =
0 , j = 1 as
Element of
REAL by
XREAL_0:def 1;
(i
- 1)
>=
0 by
A2,
INT_1: 52;
then
A3: ((i
- 1)
+ j)
>= (z
+ j) by
XREAL_1: 7;
A4: (i
gcd n)
= 1 by
A1,
INT_2:def 3;
thus i
is_primitive_root_of n implies for fn st (
len fn)
= (
Euler n) & (for d be
Nat st d
in (
dom fn) holds (fn
. d)
= (i
|^ d)) holds (
rng fn)
is_RRS_of n
proof
assume i
is_primitive_root_of n;
then
A5: (
order (i,n))
= (
Euler n);
for fn st (
len fn)
= (
Euler n) & (for d be
Nat st d
in (
dom fn) holds (fn
. d)
= (i
|^ d)) holds (
rng fn)
is_RRS_of n
proof
let fn;
assume
A6: (
len fn)
= (
Euler n) & (for d be
Nat st d
in (
dom fn) holds (fn
. d)
= (i
|^ d));
fn is
one-to-one
proof
per cases by
A3,
XXREAL_0: 1;
suppose
A7: i
= 1;
reconsider fn as
FinSequence of
REAL by
FINSEQ_2: 24,
NUMBERS: 19;
fn
=
<*(fn
. 1)*> by
FINSEQ_5: 14,
A6,
A5,
A1,
PEPIN: 46,
A7;
hence thesis;
end;
suppose
A8: i
> 1;
for x1,x2 be
object st x1
in (
dom fn) & x2
in (
dom fn) & (fn
. x1)
= (fn
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume
A9: x1
in (
dom fn) & x2
in (
dom fn) & (fn
. x1)
= (fn
. x2);
then
reconsider x1, x2 as
Element of
NAT ;
(i
|^ x1)
= (fn
. x2) by
A9,
A6
.= (i
|^ x2) by
A9,
A6;
hence thesis by
A8,
PEPIN: 30;
end;
hence thesis by
FUNCT_1:def 4;
end;
end;
then
A10: (
card (
rng fn))
= (
Euler n) by
A6,
FINSEQ_4: 62;
A11: for x,y be
Integer st x
in (
rng fn) & y
in (
rng fn) & x
<> y holds not (x,y)
are_congruent_mod n
proof
let x,y be
Integer;
assume
A12: x
in (
rng fn) & y
in (
rng fn) & x
<> y & (x,y)
are_congruent_mod n;
then
consider s such that
A13: s
in (
dom fn) & (fn
. s)
= x by
FINSEQ_2: 10;
consider t such that
A14: t
in (
dom fn) & (fn
. t)
= y by
A12,
FINSEQ_2: 10;
A15: x
= (i
|^ s) & y
= (i
|^ t) by
A13,
A14,
A6;
A16: 1
<= s & s
<= (
order (i,n)) & 1
<= t & t
<= (
order (i,n)) by
A13,
A14,
A5,
A6,
FINSEQ_3: 25;
per cases by
A12,
A13,
A14,
XXREAL_0: 1;
suppose s
> t;
then
A17: (s
- t)
>
0 by
XREAL_1: 50;
then
reconsider k = (s
- t) as
Element of
NAT by
INT_1: 3;
((i
|^ s)
- (i
|^ t))
= ((i
|^ (t
+ k))
- (i
|^ t))
.= (((i
|^ t)
* (i
|^ k))
- ((i
|^ t)
* 1)) by
NEWTON: 8
.= ((i
|^ t)
* ((i
|^ k)
- 1));
then
A18: n
divides ((i
|^ t)
* ((i
|^ k)
- 1)) by
A15,
A12,
INT_2: 15;
((i
|^ t)
gcd n)
= 1 by
A2,
A4,
A1,
NAT_4: 10;
then n
divides ((i
|^ k)
- 1) by
A18,
WSIERP_1: 29;
then ((i
|^ k),1)
are_congruent_mod n by
INT_2: 15;
then ((i
|^ k)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
then
A19: (
order (i,n))
<= k by
A17,
A1,
PEPIN: 47,
NAT_D: 7;
k
<= ((
order (i,n))
- 1) & ((
order (i,n))
- 1)
< (
order (i,n)) by
A16,
XREAL_1: 13,
XREAL_1: 146;
hence contradiction by
A19,
XXREAL_0: 2;
end;
suppose s
< t;
then
A20: (t
- s)
>
0 by
XREAL_1: 50;
then
reconsider k = (t
- s) as
Element of
NAT by
INT_1: 3;
A21: ((i
|^ t)
- (i
|^ s))
= ((i
|^ (s
+ k))
- (i
|^ s))
.= (((i
|^ s)
* (i
|^ k))
- ((i
|^ s)
* 1)) by
NEWTON: 8
.= ((i
|^ s)
* ((i
|^ k)
- 1));
((i
|^ t),(i
|^ s))
are_congruent_mod n by
A15,
A12,
INT_1: 14;
then
A22: n
divides ((i
|^ s)
* ((i
|^ k)
- 1)) by
A21,
INT_2: 15;
((i
|^ s)
gcd n)
= 1 by
A2,
A4,
A1,
NAT_4: 10;
then n
divides ((i
|^ k)
- 1) by
A22,
WSIERP_1: 29;
then ((i
|^ k),1)
are_congruent_mod n by
INT_2: 15;
then ((i
|^ k)
mod n)
= (1
mod n) by
NAT_D: 64
.= 1 by
A1,
PEPIN: 5;
then
A23: (
order (i,n))
<= k by
A20,
A1,
PEPIN: 47,
NAT_D: 7;
k
<= ((
order (i,n))
- 1) & ((
order (i,n))
- 1)
< (
order (i,n)) by
A16,
XREAL_1: 13,
XREAL_1: 146;
hence contradiction by
A23,
XXREAL_0: 2;
end;
end;
A24: for x be
Integer st x
in (
rng fn) holds (x,n)
are_coprime
proof
let x be
Integer;
assume x
in (
rng fn);
then
consider s such that
A25: s
in (
dom fn) & (fn
. s)
= x by
FINSEQ_2: 10;
A26: x
= (i
|^ s) by
A25,
A6;
((i
|^ s)
gcd n)
= 1 by
A2,
A4,
A1,
NAT_4: 10;
hence thesis by
A26,
INT_2:def 3;
end;
thus thesis by
A1,
A10,
A11,
A24,
Th26;
end;
hence thesis;
end;
assume
A27: for fn st (
len fn)
= (
Euler n) & (for d be
Nat st d
in (
dom fn) holds (fn
. d)
= (i
|^ d)) holds (
rng fn)
is_RRS_of n;
deffunc
G(
Nat) = (i
|^ $1);
consider f be
FinSequence such that
A28: (
len f)
= (
Euler n) & for d be
Nat st d
in (
dom f) holds (f
. d)
=
G(d) from
FINSEQ_1:sch 2;
for s st s
in (
dom f) holds (f
. s)
in
NAT
proof
let s;
assume
A29: s
in (
dom f);
(f
. s)
= (i
|^ s) by
A28,
A29;
hence thesis by
ORDINAL1:def 12;
end;
then
reconsider f as
FinSequence of
NAT by
FINSEQ_2: 12;
A30: (
rng f)
is_RRS_of n by
A28,
A27;
then (
card (
rng f))
= (
Euler n) & (for x,y be
Integer st x
in (
rng f) & y
in (
rng f) & x
<> y holds not (x,y)
are_congruent_mod n) by
Th24;
then
A31: f is
one-to-one by
A28,
FINSEQ_4: 62;
A32: (
Euler n)
<>
0 by
A1,
PEPIN: 42;
then
A33: (
Euler n)
>
0 ;
A34: (
Euler n)
>= 1 by
A1,
PEPIN: 42,
NAT_1: 14;
A35: ((i
|^ (
Euler n))
mod n)
= 1 by
A1,
Th5,
EULER_2: 18;
for s st s
>
0 & ((i
|^ s)
mod n)
= 1 holds
0
< (
Euler n) & (
Euler n)
<= s
proof
let s;
assume
A36: s
>
0 & ((i
|^ s)
mod n)
= 1;
now
assume s
< (
Euler n);
then
A37: ((
Euler n)
- s)
>
0 by
XREAL_1: 50;
then
reconsider k = ((
Euler n)
- s) as
Element of
NAT by
INT_1: 3;
A38: k
< (
Euler n) & k
>= 1 by
A36,
A37,
XREAL_1: 44,
NAT_1: 14;
then
A39: k
in (
dom f) & (
Euler n)
in (
dom f) by
A28,
A34,
FINSEQ_3: 25;
then
A40: (f
. k)
in (
rng f) & (f
. (
Euler n))
in (
rng f) by
FUNCT_1: 3;
(f
. k)
<> (f
. (
Euler n)) by
A39,
A31,
A38,
FUNCT_1:def 4;
then not ((f
. k),(f
. (
Euler n)))
are_congruent_mod n by
A40,
A30,
Th24;
then not ((i
|^ k),(f
. (
Euler n)))
are_congruent_mod n by
A39,
A28;
then
A41: not ((i
|^ k),(i
|^ (
Euler n)))
are_congruent_mod n by
A39,
A28;
((i
|^ (
Euler n)),(i
|^ s))
are_congruent_mod n by
A36,
A35,
A1,
NAT_D: 64;
then
A42: n
divides ((i
|^ (
Euler n))
- (i
|^ s)) by
INT_2: 15;
A43: ((i
|^ (
Euler n))
- (i
|^ s))
= ((i
|^ (s
+ k))
- (i
|^ s))
.= (((i
|^ s)
* (i
|^ k))
- ((i
|^ s)
* 1)) by
NEWTON: 8
.= ((i
|^ s)
* ((i
|^ k)
- 1));
((i
|^ s)
gcd n)
= 1 by
A2,
A4,
A1,
NAT_4: 10;
then
A44: n
divides ((i
|^ k)
- 1) by
A42,
A43,
WSIERP_1: 29;
((i
|^ (
Euler n))
mod n)
= (1
mod n) by
A1,
A35,
PEPIN: 5;
then ((i
|^ (
Euler n)),1)
are_congruent_mod n by
A1,
NAT_D: 64;
then n
divides ((i
|^ (
Euler n))
- 1) by
INT_2: 15;
then n
divides (((i
|^ k)
- 1)
- ((i
|^ (
Euler n))
- 1)) by
A44,
INT_5: 1;
then n
divides ((i
|^ k)
- (i
|^ (
Euler n)));
hence contradiction by
A41,
INT_2: 15;
end;
hence thesis by
A32;
end;
then (
order (i,n))
= (
Euler n) by
A1,
A33,
A35,
PEPIN:def 2;
hence thesis;
end;
theorem ::
INT_8:29
p
> 2 & (i,p)
are_coprime & i
is_primitive_root_of p implies (for k be
Nat holds not (i
|^ ((2
* k)
+ 1))
is_quadratic_residue_mod p)
proof
assume
A1: p
> 2 & (i,p)
are_coprime & i
is_primitive_root_of p;
A2: (
order (i,p))
= (
Euler p) by
A1
.= (p
- 1) by
EULER_1: 20;
A3: p
> 1 by
INT_2:def 4;
then
A4: ((p
-' 1)
+ 1)
= ((p
+ 1)
-' 1) by
NAT_D: 38
.= ((p
+ 1)
- 1) by
NAT_D: 37
.= ((p
- 1)
+ 1);
now
assume ex k be
Nat st (i
|^ ((2
* k)
+ 1))
is_quadratic_residue_mod p;
then
consider k be
Nat such that
A5: (i
|^ ((2
* k)
+ 1))
is_quadratic_residue_mod p;
set L = ((2
* k)
+ 1);
set Q = (p
-' 1);
((i
|^ ((2
* k)
+ 1)),p)
are_coprime by
A1,
WSIERP_1: 10;
then ((i
|^ ((2
* k)
+ 1))
gcd p)
= 1 by
INT_2:def 3;
then 1
= (((i
|^ L)
|^ (Q
div 2))
mod p) by
A1,
A5,
INT_5: 17
.= ((i
|^ (((2
* k)
+ 1)
* ((p
-' 1)
div 2)))
mod p) by
NEWTON: 9
.= ((i
|^ (((2
* k)
* ((p
-' 1)
div 2))
+ (1
* ((p
-' 1)
div 2))))
mod p)
.= (((i
|^ ((2
* k)
* ((p
-' 1)
div 2)))
* (i
|^ ((p
-' 1)
div 2)))
mod p) by
NEWTON: 8;
then
A6: (((i
|^ ((2
* k)
* ((p
-' 1)
div 2)))
* (i
|^ ((p
-' 1)
div 2))),1)
are_congruent_mod p by
A3,
PEPIN: 39;
p is
odd by
A1,
PEPIN: 17;
then 2
divides (p
-' 1) by
PEPIN: 22,
A4;
then
A7: (p
-' 1)
= (2
* ((p
-' 1)
div 2)) by
NAT_D: 3;
((i
|^ (p
-' 1))
mod p)
= 1 by
A1,
PEPIN: 37;
then (((i
|^ Q)
|^ k)
mod p)
= 1 by
A3,
PEPIN: 35;
then (((i
|^ Q)
|^ k),1)
are_congruent_mod p by
A3,
PEPIN: 39;
then ((i
|^ (k
* (p
-' 1))),1)
are_congruent_mod p by
NEWTON: 9;
then (((i
|^ (k
* (p
-' 1)))
* (i
|^ ((p
-' 1)
div 2))),(1
* (i
|^ ((p
-' 1)
div 2))))
are_congruent_mod p by
INT_4: 11;
then ((i
|^ ((p
-' 1)
div 2)),1)
are_congruent_mod p by
A6,
A7,
PEPIN: 40;
then
A8: ((i
|^ ((p
-' 1)
div 2))
mod p)
= 1 by
A3,
PEPIN: 39;
(p
- 1)
>= 2 by
A1,
INT_1: 52;
then
A9: ((p
-' 1)
div 2)
>= (2
div 2) by
A4,
NAT_2: 24;
A10: (p
-' 1)
divides ((p
-' 1)
div 2) by
A8,
A3,
A1,
A2,
A4,
PEPIN: 47;
((p
-' 1)
div 2)
divides (p
-' 1) by
A7,
NAT_D:def 3;
then (2
* ((p
-' 1)
div 2))
= (1
* ((p
-' 1)
div 2)) by
A7,
A10,
NAT_D: 5;
hence contradiction by
A9,
PEPIN: 44;
end;
hence thesis;
end;
theorem ::
INT_8:30
for k be
Nat st k
>= 3 holds (for m st (m,(2
|^ k))
are_coprime holds not m
is_primitive_root_of (2
|^ k))
proof
let k be
Nat;
assume
A1: k
>= 3;
now
assume ex m st (m,(2
|^ k))
are_coprime & m
is_primitive_root_of (2
|^ k);
then
consider m such that
A2: (m,(2
|^ k))
are_coprime & m
is_primitive_root_of (2
|^ k);
now
assume m is
even;
then
A3: 2
divides m by
PEPIN: 22;
(2
|^ 1)
divides (2
|^ k) by
A1,
XXREAL_0: 2,
NEWTON: 89;
then 2
divides (2
|^ k);
hence contradiction by
A2,
A3,
PYTHTRIP:def 1;
end;
then
A4: ((m
|^ (2
|^ (k
-' 2)))
mod (2
|^ k))
= 1 by
A1,
Th7;
A5: (2
|^ k)
> 1 by
A1,
PEPIN: 25;
(
order (m,(2
|^ k)))
<= (2
|^ (k
-' 2)) by
A2,
A4,
A5,
PEPIN:def 2;
then
A6: (
Euler (2
|^ k))
<= (2
|^ (k
-' 2)) by
A2;
A7: k
> 1 by
XXREAL_0: 2,
A1;
k
= ((k
-' 1)
+ 1) by
A7,
XREAL_1: 235;
then
A8: (
Euler (2
|^ k))
= ((2
|^ ((k
-' 1)
+ 1))
- (2
|^ (k
-' 1))) by
A1,
XXREAL_0: 2,
Th8,
INT_2: 28
.= (((2
|^ (k
-' 1))
* 2)
- ((2
|^ (k
-' 1))
* 1)) by
NEWTON: 6
.= (2
|^ (k
-' 1));
(k
-' 1)
= (((k
- 1)
- 1)
+ 1) by
A7,
XREAL_1: 233
.= ((k
- 2)
+ 1)
.= ((k
-' 2)
+ 1) by
A1,
XXREAL_0: 2,
XREAL_1: 233;
then ((2
|^ (k
-' 2))
* 2)
<= (2
|^ (k
-' 2)) by
A6,
A8,
NEWTON: 6;
then (((2
|^ (k
-' 2))
* 2)
/ (2
|^ (k
-' 2)))
<= ((2
|^ (k
-' 2))
/ (2
|^ (k
-' 2))) by
XREAL_1: 72;
then 2
<= ((2
|^ (k
-' 2))
/ (2
|^ (k
-' 2))) by
XCMPLX_1: 89;
then 2
<= 1 by
XCMPLX_1: 60;
hence contradiction;
end;
hence thesis;
end;
theorem ::
INT_8:31
p
> 2 & k
>= 2 & (i,p)
are_coprime & i
is_primitive_root_of p & ((i
|^ (p
-' 1))
mod (p
^2 ))
<> 1 implies ((i
|^ (
Euler (p
|^ (k
-' 1))))
mod (p
|^ k))
<> 1
proof
assume
A1: p
> 2 & k
>= 2 & (i,p)
are_coprime & i
is_primitive_root_of p & ((i
|^ (p
-' 1))
mod (p
^2 ))
<> 1;
A2: p
> 1 by
INT_2:def 4;
defpred
P[
Nat] means ((i
|^ (
Euler (p
|^ ($1
-' 1))))
mod (p
|^ $1))
<> 1;
A3:
P[2]
proof
(2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
then
A4: ((i
|^ (
Euler (p
|^ (2
-' 1))))
mod (p
|^ 2))
= ((i
|^ (
Euler p))
mod (p
|^ 2));
(
Euler p)
= (p
- 1) by
EULER_1: 20
.= (p
-' 1) by
A2,
XREAL_1: 233;
hence thesis by
A1,
A4,
NEWTON: 81;
end;
A5: for k be
Nat st k
>= 2 &
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A6: k
>= 2 &
P[k];
A7: i
<>
0 by
A1,
A2,
Th5;
A8: (i,(p
|^ (k
-' 1)))
are_coprime by
A1,
WSIERP_1: 10;
A9: k
> 1 & k
>
0 by
A6,
XXREAL_0: 2;
then (k
- 1)
>
0 by
XREAL_1: 50;
then
A10: (k
-' 1)
>
0 by
A6,
XXREAL_0: 2,
XREAL_1: 233;
then
A11: (p
|^ (k
-' 1))
> 1 by
A2,
PEPIN: 25;
((i
|^ (
Euler (p
|^ (k
-' 1))))
mod (p
|^ (k
-' 1)))
= 1 by
A7,
A8,
A10,
A2,
PEPIN: 25,
EULER_2: 18;
then ((i
|^ (
Euler (p
|^ (k
-' 1)))),1)
are_congruent_mod (p
|^ (k
-' 1)) by
A11,
PEPIN: 39;
then (p
|^ (k
-' 1))
divides ((i
|^ (
Euler (p
|^ (k
-' 1))))
- 1) by
INT_2: 15;
then
consider s be
Integer such that
A12: ((i
|^ (
Euler (p
|^ (k
-' 1))))
- 1)
= ((p
|^ (k
-' 1))
* s) by
INT_1:def 3;
A13: (p
|^ k)
> 1 by
A2,
A6,
PEPIN: 25;
A14: ((p
|^ (k
-' 1))
* s)
>=
0 by
A12,
XREAL_1: 48,
NAT_1: 14,
A7;
s
>=
0 by
A14;
then
reconsider s as
Element of
NAT by
INT_1: 3;
reconsider M = (s
^3 ) as
Element of
NAT by
ORDINAL1:def 12;
A15: (p
|^ (k
-' 1)) is
Element of
NAT & p is
Element of
NAT by
ORDINAL1:def 12;
A16:
now
assume p
divides s;
then ((p
|^ (k
-' 1))
* p)
divides ((p
|^ (k
-' 1))
* s) by
A15,
PYTHTRIP: 7;
then
A17: (p
|^ ((k
-' 1)
+ 1))
divides ((p
|^ (k
-' 1))
* s) by
NEWTON: 6;
(p
|^ ((k
-' 1)
+ 1))
= (p
|^ ((k
+ 1)
-' 1)) by
A9,
NAT_D: 38
.= (p
|^ k) by
NAT_D: 34;
then ((i
|^ (
Euler (p
|^ (k
-' 1)))),1)
are_congruent_mod (p
|^ k) by
INT_2: 15,
A17,
A12;
hence contradiction by
A6,
A13,
PEPIN: 39;
end;
A18: (k
-' 1)
>= 1 by
A10,
NAT_1: 14;
A19: (
Euler (p
|^ k))
= ((p
|^ k)
- (p
|^ (k
-' 1))) by
A6,
XXREAL_0: 2,
Th8
.= ((p
|^ ((k
+ 1)
-' 1))
- (p
|^ (k
-' 1))) by
NAT_D: 34
.= ((p
|^ ((k
-' 1)
+ 1))
- (p
|^ (k
-' 1))) by
A6,
XXREAL_0: 2,
NAT_D: 38
.= (((p
|^ (k
-' 1))
* p)
- (p
|^ (k
-' 1))) by
NEWTON: 6
.= (((p
|^ (k
-' 1))
* p)
- (p
|^ (((k
-' 1)
+ 1)
-' 1))) by
NAT_D: 34
.= (((p
|^ (k
-' 1))
* p)
- (p
|^ (((k
-' 1)
-' 1)
+ 1))) by
NAT_D: 38,
A10,
NAT_1: 14
.= (((p
|^ (k
-' 1))
* p)
- ((p
|^ ((k
-' 1)
-' 1))
* p)) by
NEWTON: 6
.= (((p
|^ (k
-' 1))
- (p
|^ ((k
-' 1)
-' 1)))
* p)
.= ((
Euler (p
|^ (k
-' 1)))
* p) by
A10,
NAT_1: 14,
Th8;
consider t be
Nat such that
A20: ((1
+ ((p
|^ (k
-' 1))
* s))
|^ p)
= (((1
+ (p
* ((p
|^ (k
-' 1))
* s)))
+ ((p
choose 2)
* (((p
|^ (k
-' 1))
* s)
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
Th4;
A21: p is
odd by
A1,
PEPIN: 17;
A22: (p
-' 1)
= (p
- 1) by
A2,
XREAL_1: 233;
then 2
divides (p
-' 1) by
A21,
PEPIN: 22;
then ((p
-' 1)
mod 2)
=
0 by
PEPIN: 6;
then
A23: ((p
-' 1)
div 2)
= ((p
- 1)
/ 2) by
A22,
PEPIN: 63;
A24: ((1
+ ((p
|^ (k
-' 1))
* s))
|^ p)
= (((1
+ ((p
* (p
|^ (k
-' 1)))
* s))
+ ((p
choose 2)
* (((p
|^ (k
-' 1))
* s)
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
A20
.= (((1
+ ((p
|^ ((k
-' 1)
+ 1))
* s))
+ ((p
choose 2)
* (((p
|^ (k
-' 1))
* s)
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
NEWTON: 6
.= (((1
+ ((p
|^ ((k
+ 1)
-' 1))
* s))
+ ((p
choose 2)
* (((p
|^ (k
-' 1))
* s)
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
A9,
NAT_D: 38
.= (((1
+ ((p
|^ k)
* s))
+ ((p
choose 2)
* (((p
|^ (k
-' 1))
* s)
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
NAT_D: 34
.= (((1
+ ((p
|^ k)
* s))
+ (((p
* (p
- 1))
/ 2)
* (((p
|^ (k
-' 1))
* s)
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
STIRL2_1: 51
.= (((1
+ ((p
|^ k)
* s))
+ (((((p
-' 1)
div 2)
* ((p
|^ (k
-' 1))
* p))
* (p
|^ (k
-' 1)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
A23
.= (((1
+ ((p
|^ k)
* s))
+ (((((p
-' 1)
div 2)
* (p
|^ ((k
-' 1)
+ 1)))
* (p
|^ (k
-' 1)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
NEWTON: 6
.= (((1
+ ((p
|^ k)
* s))
+ (((((p
-' 1)
div 2)
* (p
|^ ((k
+ 1)
-' 1)))
* (p
|^ (k
-' 1)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
NAT_D: 38,
A9
.= (((1
+ ((p
|^ k)
* s))
+ (((((p
-' 1)
div 2)
* (p
|^ k))
* (p
|^ (k
-' 1)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
NAT_D: 34
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* ((p
|^ (k
-' 1))
* (p
|^ k)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 )))
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((k
-' 1)
+ k)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
NEWTON: 8
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((k
+ k)
-' 1)))
* (s
^2 )))
+ (t
* (((p
|^ (k
-' 1))
* s)
^3 ))) by
A9,
NAT_D: 38
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((2
* k)
-' 1)))
* (s
^2 )))
+ (((t
* ((p
|^ (k
-' 1))
* (p
|^ (k
-' 1))))
* (p
|^ (k
-' 1)))
* (s
^3 )))
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((2
* k)
-' 1)))
* (s
^2 )))
+ (((t
* (p
|^ ((k
-' 1)
+ (k
-' 1))))
* (p
|^ (k
-' 1)))
* M)) by
NEWTON: 8
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((2
* k)
-' 1)))
* (s
^2 )))
+ ((t
* ((p
|^ ((k
-' 1)
+ (k
-' 1)))
* (p
|^ (k
-' 1))))
* M))
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((2
* k)
-' 1)))
* (s
^2 )))
+ ((t
* (p
|^ (((k
-' 1)
+ (k
-' 1))
+ (k
-' 1))))
* M)) by
NEWTON: 8
.= (((1
+ ((p
|^ k)
* s))
+ ((((p
-' 1)
div 2)
* (p
|^ ((2
* k)
-' 1)))
* (s
^2 )))
+ ((t
* M)
* (p
|^ (3
* (k
-' 1)))));
((k
-' 1)
+ k)
>= (1
+ k) by
A18,
XREAL_1: 6;
then
A25: ((k
+ k)
-' 1)
>= (k
+ 1) by
A6,
XXREAL_0: 2,
NAT_D: 38;
then
A26: (p
|^ (k
+ 1))
divides ((((p
-' 1)
div 2)
* (s
^2 ))
* (p
|^ ((2
* k)
-' 1))) by
Lm2,
NAT_D: 9;
(k
+ (2
* k))
>= (2
+ (2
* k)) by
A6,
XREAL_1: 6;
then
A27: ((3
* k)
- 3)
>= (((2
* k)
+ 2)
- 3) by
XREAL_1: 9;
(2
* k)
> (2
* 1) by
A9,
XREAL_1: 68;
then ((2
* k)
-' 1)
= ((2
* k)
- 1) by
XXREAL_0: 2,
XREAL_1: 233;
then (3
* (k
- 1))
>= (k
+ 1) by
A25,
A27,
XXREAL_0: 2;
then (3
* (k
-' 1))
>= (k
+ 1) by
A6,
XXREAL_0: 2,
XREAL_1: 233;
then (p
|^ (k
+ 1))
divides ((t
* M)
* (p
|^ (3
* (k
-' 1)))) by
Lm2,
NAT_D: 9;
then
A28: (p
|^ (k
+ 1))
divides (((((p
-' 1)
div 2)
* (p
|^ ((2
* k)
-' 1)))
* (s
^2 ))
+ ((t
* M)
* (p
|^ (3
* (k
-' 1))))) by
A26,
NAT_D: 8;
(i
|^ (
Euler (p
|^ k)))
= ((1
+ ((p
|^ (k
-' 1))
* s))
|^ p) by
A12,
A19,
NEWTON: 9;
then
A29: (p
|^ (k
+ 1))
divides (((i
|^ (
Euler (p
|^ k)))
- 1)
- ((p
|^ k)
* s)) by
A24,
A28;
now
assume
A30: ((i
|^ (
Euler (p
|^ ((k
+ 1)
-' 1))))
mod (p
|^ (k
+ 1)))
= 1;
(p
|^ (k
+ 1))
> 1 by
A2,
PEPIN: 25;
then ((i
|^ (
Euler (p
|^ ((k
+ 1)
-' 1)))),1)
are_congruent_mod (p
|^ (k
+ 1)) by
A30,
PEPIN: 39;
then (p
|^ (k
+ 1))
divides ((i
|^ (
Euler (p
|^ ((k
+ 1)
-' 1))))
- 1) by
INT_2: 15;
then (p
|^ (k
+ 1))
divides ((i
|^ (
Euler (p
|^ k)))
- 1) by
NAT_D: 34;
then (p
|^ (k
+ 1))
divides ((p
|^ k)
* s) by
A29,
INT_5: 2;
then
A31: ((p
|^ k)
* p)
divides ((p
|^ k)
* s) by
NEWTON: 6;
(p
|^ k) is
Element of
NAT by
ORDINAL1:def 12;
hence contradiction by
A16,
A15,
A31,
PYTHTRIP: 7;
end;
hence thesis;
end;
for k be
Nat st k
>= 2 holds
P[k] from
NAT_1:sch 8(
A3,
A5);
hence thesis by
A1;
end;
theorem ::
INT_8:32
n
> 1 & (
len fp)
>= 2 & (for d st d
in (
dom fp) holds ((fp
. d),n)
are_coprime ) implies for fr st (
len fr)
= (
len fp) & (for d st d
in (
dom fr) holds (fr
. d)
= (
order ((fp
. d),n))) & (for d, e st d
in (
dom fr) & e
in (
dom fr) & d
<> e holds ((fr
. d),(fr
. e))
are_coprime ) holds (
order ((
Product fp),n))
= (
Product fr)
proof
defpred
RP[
FinSequence of
NAT ] means for d st d
in (
dom $1) holds (($1
. d),n)
are_coprime ;
defpred
CC[
FinSequence of
NAT ] means for fr st (
len fr)
= (
len $1) & (for d st d
in (
dom fr) holds (fr
. d)
= (
order (($1
. d),n))) & (for d, e st d
in (
dom fr) & e
in (
dom fr) & d
<> e holds ((fr
. d),(fr
. e))
are_coprime ) holds (
order ((
Product $1),n))
= (
Product fr);
defpred
TH[
FinSequence of
NAT ] means (n
> 1 & (
len $1)
>= 2 &
RP[$1]) implies
CC[$1];
A1:
TH[(
<*>
NAT ) qua
FinSequence of
NAT ];
A2: for fp, c st
TH[fp] holds
TH[(fp
^
<*c*>)]
proof
let fp, c;
assume
A3:
TH[fp];
set fp1 = (fp
^
<*c*>);
TH[fp1]
proof
assume
A4: n
> 1 & (
len fp1)
>= 2 &
RP[fp1];
A5: (
len fp1)
= ((
len fp)
+ 1) by
FINSEQ_2: 16;
per cases by
A4,
XXREAL_0: 1;
suppose
A6: (
len fp1)
= 2;
then fp1
=
<*(fp1
. 1), (fp1
. 2)*> by
FINSEQ_1: 44;
then
A7: (
Product fp1)
= ((fp1
. 1)
* (fp1
. 2)) by
RVSUM_1: 99;
(
dom fp1)
= (
Seg 2) by
A6,
FINSEQ_1:def 3;
then
A8: 1
in (
dom fp1) & 2
in (
dom fp1);
then
A9: ((fp1
. 1),n)
are_coprime & ((fp1
. 2),n)
are_coprime by
A4;
CC[fp1]
proof
let fr;
assume
A10: (
len fr)
= (
len fp1) & (for d st d
in (
dom fr) holds (fr
. d)
= (
order ((fp1
. d),n))) & (for d, e st d
in (
dom fr) & e
in (
dom fr) & d
<> e holds ((fr
. d),(fr
. e))
are_coprime );
then
A11: 1
in (
dom fr) & 2
in (
dom fr) by
A8,
FINSEQ_3: 29;
then ((fr
. 1),(fr
. 2))
are_coprime by
A10;
then ((
order ((fp1
. 1),n)),(fr
. 2))
are_coprime by
A10,
A11;
then
A12: ((
order ((fp1
. 1),n)),(
order ((fp1
. 2),n)))
are_coprime by
A10,
A11;
fr
=
<*(fr
. 1), (fr
. 2)*> by
A6,
A10,
FINSEQ_1: 44;
then (
Product fr)
= ((fr
. 1)
* (fr
. 2)) by
RVSUM_1: 99
.= ((
order ((fp1
. 1),n))
* (fr
. 2)) by
A10,
A11
.= ((
order ((fp1
. 1),n))
* (
order ((fp1
. 2),n))) by
A10,
A11;
hence thesis by
A12,
A4,
A7,
A9,
Th17;
end;
hence thesis;
end;
suppose (
len fp1)
> 2;
then ((
len fp)
+ 1)
> 2 by
FINSEQ_2: 16;
then
A13: (((
len fp)
+ 1)
- 1)
>= 2 by
INT_1: 52;
A14:
RP[fp]
proof
let d;
assume
A15: d
in (
dom fp);
then (fp1
. d)
= (fp
. d) by
FINSEQ_1:def 7;
hence thesis by
A4,
A15,
FINSEQ_2: 15;
end;
CC[fp1]
proof
let fr;
assume
A16: (
len fr)
= (
len fp1) & (for d st d
in (
dom fr) holds (fr
. d)
= (
order ((fp1
. d),n))) & (for d, e st d
in (
dom fr) & e
in (
dom fr) & d
<> e holds ((fr
. d),(fr
. e))
are_coprime );
then
consider f be
FinSequence of
NAT , l be
Element of
NAT such that
A17: fr
= (f
^
<*l*>) by
FINSEQ_2: 19;
A18: ((
len f)
+ 1)
= ((
len fp)
+ 1) by
A5,
A16,
A17,
FINSEQ_2: 16;
A19: for d st d
in (
dom f) holds (f
. d)
= (
order ((fp
. d),n))
proof
let d;
assume
A20: d
in (
dom f);
then
A21: (f
. d)
= (fr
. d) by
A17,
FINSEQ_1:def 7;
A22: d
in (
dom fr) by
A20,
A17,
FINSEQ_2: 15;
(
dom f)
= (
dom fp) by
A18,
FINSEQ_3: 29;
then (fp
. d)
= (fp1
. d) by
A20,
FINSEQ_1:def 7;
hence thesis by
A22,
A16,
A21;
end;
for d, e st d
in (
dom f) & e
in (
dom f) & d
<> e holds ((f
. d),(f
. e))
are_coprime
proof
let d, e;
assume
A23: d
in (
dom f) & e
in (
dom f) & d
<> e;
then
A24: (f
. d)
= (fr
. d) & (f
. e)
= (fr
. e) by
A17,
FINSEQ_1:def 7;
d
in (
dom fr) & e
in (
dom fr) by
A23,
A17,
FINSEQ_2: 15;
hence thesis by
A23,
A16,
A24;
end;
then
A25: (
order ((
Product fp),n))
= (
Product f) by
A18,
A19,
A14,
A3,
A4,
A13;
A26: for d be
Nat st d
in (
dom fp) holds ((fp
. d)
gcd n)
= 1 by
A14,
INT_2:def 3;
((
Product fp)
gcd n)
= 1 by
A26,
WSIERP_1: 36;
then
A27: ((
Product fp),n)
are_coprime by
INT_2:def 3;
reconsider z =
0 , j = 1 as
Element of
NAT ;
((
len fp)
+ j)
>= (z
+ j) by
XREAL_1: 7;
then ((
len fp)
+ 1)
in (
dom fp1) by
A5,
FINSEQ_3: 25;
then ((fp1
. ((
len fp)
+ 1)),n)
are_coprime by
A4;
then
A28: (c,n)
are_coprime by
FINSEQ_1: 42;
((
len f)
+ j)
>= (z
+ j) by
XREAL_1: 7;
then (
len fr)
>= j by
A17,
FINSEQ_2: 16;
then
A29: (
len fr)
in (
dom fr) by
FINSEQ_3: 25;
then (fr
. (
len fr))
= (
order ((fp1
. (
len fr)),n)) by
A16
.= (
order ((fp1
. ((
len fp)
+ 1)),n)) by
A16,
FINSEQ_2: 16
.= (
order (c,n)) by
FINSEQ_1: 42;
then
A30: (fr
. ((
len f)
+ 1))
= (
order (c,n)) by
A17,
FINSEQ_2: 16;
A31: (
Product fp1)
= ((
Product fp)
* c) & (
Product fr)
= ((
Product f)
* l) by
A17,
RVSUM_1: 96;
for d be
Nat st d
in (
dom f) holds ((f
. d)
gcd (fr
. ((
len f)
+ 1)))
= 1
proof
let d be
Nat;
assume
A32: d
in (
dom f);
then
A33: d
in (
dom fr) by
A17,
FINSEQ_2: 15;
d
<= (
len f) by
A32,
FINSEQ_3: 25;
then
A34: d
< ((
len f)
+ 1) by
XREAL_1: 145;
((
len f)
+ 1)
in (
dom fr) by
A17,
A29,
FINSEQ_2: 16;
then ((fr
. d),(fr
. ((
len f)
+ 1)))
are_coprime by
A16,
A33,
A34;
then ((f
. d),(fr
. ((
len f)
+ 1)))
are_coprime by
A17,
A32,
FINSEQ_1:def 7;
hence thesis by
INT_2:def 3;
end;
then ((
Product f)
gcd (fr
. ((
len f)
+ 1)))
= 1 by
WSIERP_1: 36;
then ((
Product f),(
order (c,n)))
are_coprime by
A30,
INT_2:def 3;
then (
order (((
Product fp)
* c),n))
= ((
order ((
Product fp),n))
* (
order (c,n))) by
A4,
A28,
A27,
A25,
Th17;
hence (
order ((
Product fp1),n))
= (
Product fr) by
A31,
A30,
A17,
A25,
FINSEQ_1: 42;
end;
hence thesis;
end;
end;
hence thesis;
end;
for fp be
FinSequence of
NAT holds
TH[fp] from
FINSEQ_2:sch 2(
A1,
A2);
hence thesis;
end;