jordan17.miz
begin
reserve C,P for
Simple_closed_curve,
a,b,c,d,e for
Point of (
TOP-REAL 2);
theorem ::
JORDAN17:1
Th1: for n be
Element of
NAT , a,p1,p2 be
Point of (
TOP-REAL n), P be
Subset of (
TOP-REAL n) st a
in P & P
is_an_arc_of (p1,p2) holds ex f be
Function of
I[01] , ((
TOP-REAL n)
| P), r be
Real st f is
being_homeomorphism & (f
.
0 )
= p1 & (f
. 1)
= p2 &
0
<= r & r
<= 1 & (f
. r)
= a
proof
let n be
Element of
NAT , a,p1,p2 be
Point of (
TOP-REAL n), P be
Subset of (
TOP-REAL n) such that
A1: a
in P;
given f be
Function of
I[01] , ((
TOP-REAL n)
| P) such that
A2: f is
being_homeomorphism and
A3: (f
.
0 )
= p1 & (f
. 1)
= p2;
(
rng f)
= (
[#] ((
TOP-REAL n)
| P)) by
A2,
TOPS_2:def 5
.= the
carrier of ((
TOP-REAL n)
| P)
.= P by
PRE_TOPC: 8;
then
consider r be
object such that
A4: r
in (
dom f) and
A5: a
= (f
. r) by
A1,
FUNCT_1:def 3;
A6: (
dom f)
= (
[#]
I[01] ) by
A2,
TOPS_2:def 5
.=
[.
0 , 1.] by
BORSUK_1: 40;
then
reconsider r as
Real by
A4;
take f, r;
thus f is
being_homeomorphism & (f
.
0 )
= p1 & (f
. 1)
= p2 by
A2,
A3;
thus
0
<= r & r
<= 1 by
A4,
A6,
XXREAL_1: 1;
thus thesis by
A5;
end;
theorem ::
JORDAN17:2
LE ((
W-min P),(
E-max P),P)
proof
A1: (
E-max P)
<> (
W-min P) by
TOPREAL5: 19;
(
W-min P)
in (
Upper_Arc P) & (
E-max P)
in (
Lower_Arc P) by
JORDAN7: 1;
hence thesis by
A1,
JORDAN6:def 10;
end;
theorem ::
JORDAN17:3
LE (a,(
E-max P),P) implies a
in (
Upper_Arc P)
proof
assume
A1:
LE (a,(
E-max P),P);
per cases by
A1,
JORDAN6:def 10;
suppose a
in (
Upper_Arc P) & (
E-max P)
in (
Lower_Arc P) & not (
E-max P)
= (
W-min P) or a
in (
Upper_Arc P) & (
E-max P)
in (
Upper_Arc P) &
LE (a,(
E-max P),(
Upper_Arc P),(
W-min P),(
E-max P));
hence thesis;
end;
suppose that
A2: a
in (
Lower_Arc P) and (
E-max P)
in (
Lower_Arc P) & not (
E-max P)
= (
W-min P) and
A3:
LE (a,(
E-max P),(
Lower_Arc P),(
E-max P),(
W-min P));
(
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
JORDAN6:def 9;
then
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc P)), r be
Real such that
A4: f is
being_homeomorphism and
A5: (f
.
0 )
= (
E-max P) and
A6: (f
. 1)
= (
W-min P) and
A7:
0
<= r and
A8: r
<= 1 and
A9: (f
. r)
= a by
A2,
Th1;
thus thesis
proof
per cases ;
suppose r
=
0 ;
hence thesis by
A5,
A9,
JORDAN7: 1;
end;
suppose r
<>
0 ;
then r
>
0 by
A7,
XXREAL_0: 1;
hence thesis by
A3,
A4,
A5,
A6,
A8,
A9,
JORDAN5C:def 3;
end;
end;
end;
end;
theorem ::
JORDAN17:4
LE ((
E-max P),a,P) implies a
in (
Lower_Arc P)
proof
assume
A1:
LE ((
E-max P),a,P);
per cases by
A1,
JORDAN6:def 10;
suppose (
E-max P)
in (
Upper_Arc P) & a
in (
Lower_Arc P) & not a
= (
W-min P) or (
E-max P)
in (
Lower_Arc P) & a
in (
Lower_Arc P) & not a
= (
W-min P) &
LE ((
E-max P),a,(
Lower_Arc P),(
E-max P),(
W-min P));
hence thesis;
end;
suppose that (
E-max P)
in (
Upper_Arc P) and
A2: a
in (
Upper_Arc P) and
A3:
LE ((
E-max P),a,(
Upper_Arc P),(
W-min P),(
E-max P));
(
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
JORDAN6:def 8;
then
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc P)), r be
Real such that
A4: f is
being_homeomorphism & (f
.
0 )
= (
W-min P) and
A5: (f
. 1)
= (
E-max P) and
A6:
0
<= r and
A7: r
<= 1 and
A8: (f
. r)
= a by
A2,
Th1;
thus thesis
proof
per cases ;
suppose r
= 1;
hence thesis by
A5,
A8,
JORDAN7: 1;
end;
suppose r
<> 1;
then r
< 1 by
A7,
XXREAL_0: 1;
hence thesis by
A3,
A4,
A5,
A6,
A8,
JORDAN5C:def 3;
end;
end;
end;
end;
theorem ::
JORDAN17:5
LE (a,(
W-min P),P) implies a
in (
Lower_Arc P)
proof
assume
A1:
LE (a,(
W-min P),P);
per cases by
A1,
JORDAN6:def 10;
suppose a
in (
Upper_Arc P) & (
W-min P)
in (
Lower_Arc P) & not (
W-min P)
= (
W-min P) or a
in (
Lower_Arc P) & (
W-min P)
in (
Lower_Arc P) & not (
W-min P)
= (
W-min P) &
LE (a,(
W-min P),(
Lower_Arc P),(
E-max P),(
W-min P));
hence thesis;
end;
suppose that
A2: a
in (
Upper_Arc P) and (
W-min P)
in (
Upper_Arc P) and
A3:
LE (a,(
W-min P),(
Upper_Arc P),(
W-min P),(
E-max P));
(
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
JORDAN6:def 8;
then
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc P)), r be
Real such that
A4: f is
being_homeomorphism and
A5: (f
.
0 )
= (
W-min P) and
A6: (f
. 1)
= (
E-max P) and
A7:
0
<= r and
A8: r
<= 1 and
A9: (f
. r)
= a by
A2,
Th1;
thus thesis
proof
per cases ;
suppose r
=
0 ;
hence thesis by
A5,
A9,
JORDAN7: 1;
end;
suppose r
<>
0 ;
then r
>
0 by
A7,
XXREAL_0: 1;
hence thesis by
A3,
A4,
A5,
A6,
A8,
A9,
JORDAN5C:def 3;
end;
end;
end;
end;
theorem ::
JORDAN17:6
Th6: for P be
Subset of (
TOP-REAL 2) st a
<> b & P
is_an_arc_of (c,d) &
LE (a,b,P,c,d) holds ex e st a
<> e & b
<> e &
LE (a,e,P,c,d) &
LE (e,b,P,c,d)
proof
let P be
Subset of (
TOP-REAL 2);
assume that
A1: a
<> b and
A2: P
is_an_arc_of (c,d) and
A3:
LE (a,b,P,c,d);
b
in P by
A3,
JORDAN5C:def 3;
then
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| P), rb be
Real such that
A4: f is
being_homeomorphism and
A5: (f
.
0 )
= c & (f
. 1)
= d and
A6:
0
<= rb and
A7: rb
<= 1 and
A8: (f
. rb)
= b by
A2,
Th1;
A9: (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A4,
TOPS_2:def 5
.= the
carrier of ((
TOP-REAL 2)
| P)
.= P by
PRE_TOPC: 8;
a
in P by
A3,
JORDAN5C:def 3;
then
consider ra be
object such that
A10: ra
in (
dom f) and
A11: a
= (f
. ra) by
A9,
FUNCT_1:def 3;
A12: (
dom f)
= (
[#]
I[01] ) by
A4,
TOPS_2:def 5
.=
[.
0 , 1.] by
BORSUK_1: 40;
then
reconsider ra as
Real by
A10;
A13:
0
<= ra by
A10,
A12,
XXREAL_1: 1;
A14: ra
<= 1 by
A10,
A12,
XXREAL_1: 1;
then ra
<= rb by
A3,
A4,
A5,
A6,
A7,
A8,
A11,
A13,
JORDAN5C:def 3;
then ra
< rb by
A1,
A8,
A11,
XXREAL_0: 1;
then
consider re be
Real such that
A15: ra
< re and
A16: re
< rb by
XREAL_1: 5;
set e = (f
. re);
A17: re
<= 1 by
A7,
A16,
XXREAL_0: 2;
A18:
0
<= re by
A13,
A15,
XXREAL_0: 2;
then
A19: re
in (
dom f) by
A12,
A17,
XXREAL_1: 1;
then e
in (
rng f) by
FUNCT_1:def 3;
then
reconsider e as
Point of (
TOP-REAL 2) by
A9;
take e;
now
assume
A20: a
= e or b
= e;
f is
one-to-one & rb
in (
dom f) by
A4,
A6,
A7,
A12,
TOPS_2:def 5,
XXREAL_1: 1;
hence contradiction by
A8,
A10,
A11,
A15,
A16,
A19,
A20,
FUNCT_1:def 4;
end;
hence a
<> e & b
<> e;
thus thesis by
A2,
A4,
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A15,
A16,
A18,
A17,
JORDAN5C: 8;
end;
theorem ::
JORDAN17:7
Th7: a
in P implies ex e st a
<> e &
LE (a,e,P)
proof
assume
A1: a
in P;
A2: (
E-max P)
<> (
W-min P) by
TOPREAL5: 19;
A3: (
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
JORDAN6:def 9;
per cases ;
suppose
A4: a
= (
W-min P);
take (
E-max P);
thus thesis by
A4,
JORDAN7: 3,
SPRECT_1: 14,
TOPREAL5: 19;
end;
suppose
A5: a
<> (
W-min P);
thus thesis
proof
per cases ;
suppose
A6: a
in (
Upper_Arc P);
thus thesis
proof
per cases ;
suppose
A7: a
= (
E-max P);
consider e such that
A8: e
in (
Lower_Arc P) & e
<> (
E-max P) & e
<> (
W-min P) by
A3,
JORDAN6: 42;
take e;
thus thesis by
A6,
A7,
A8,
JORDAN6:def 10;
end;
suppose
A9: a
<> (
E-max P);
take (
E-max P);
(
E-max P)
in (
Lower_Arc P) by
JORDAN7: 1;
hence thesis by
A2,
A6,
A9,
JORDAN6:def 10;
end;
end;
end;
suppose
A10: not a
in (
Upper_Arc P);
((
Upper_Arc P)
\/ (
Lower_Arc P))
= P by
JORDAN6:def 9;
then
A11: a
in (
Lower_Arc P) by
A1,
A10,
XBOOLE_0:def 3;
then
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc P)), r be
Real such that
A12: f is
being_homeomorphism and
A13: (f
.
0 )
= (
E-max P) and
A14: (f
. 1)
= (
W-min P) and
A15:
0
<= r and
A16: r
<= 1 and
A17: (f
. r)
= a by
A3,
Th1;
A18: f is
one-to-one by
A12,
TOPS_2:def 5;
r
< 1 by
A5,
A14,
A16,
A17,
XXREAL_0: 1;
then
consider s be
Real such that
A19: r
< s and
A20: s
< 1 by
XREAL_1: 5;
A21: (
dom f)
= (
[#]
I[01] ) by
A12,
TOPS_2:def 5
.=
[.
0 , 1.] by
BORSUK_1: 40;
A22: (
rng f)
= (
[#] ((
TOP-REAL 2)
| (
Lower_Arc P))) by
A12,
TOPS_2:def 5
.= the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc P))
.= (
Lower_Arc P) by
PRE_TOPC: 8;
A23:
0
<= s by
A15,
A19,
XXREAL_0: 2;
then
A24: s
in (
dom f) by
A21,
A20,
XXREAL_1: 1;
then
A25: (f
. s)
in (
rng f) by
FUNCT_1:def 3;
then
reconsider e = (f
. s) as
Point of (
TOP-REAL 2) by
A22;
1
in (
dom f) by
A21,
XXREAL_1: 1;
then
A26: e
<> (
W-min P) by
A14,
A18,
A20,
A24,
FUNCT_1:def 4;
take e;
r
in (
dom f) by
A15,
A16,
A21,
XXREAL_1: 1;
hence a
<> e by
A17,
A18,
A19,
A24,
FUNCT_1:def 4;
LE (a,e,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A3,
A12,
A13,
A14,
A15,
A16,
A17,
A19,
A20,
A23,
JORDAN5C: 8;
hence thesis by
A11,
A22,
A25,
A26,
JORDAN6:def 10;
end;
end;
end;
end;
theorem ::
JORDAN17:8
Th8: a
<> b &
LE (a,b,P) implies ex c st c
<> a & c
<> b &
LE (a,c,P) &
LE (c,b,P)
proof
assume that
A1: a
<> b and
A2:
LE (a,b,P);
A3: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
JORDAN6:def 8;
A4: (
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
JORDAN6:def 9;
per cases by
A2,
JORDAN6:def 10;
suppose that
A5: a
in (
Upper_Arc P) and
A6: b
in (
Lower_Arc P) and
A7: not b
= (
W-min P);
A8: (
E-max P)
in (
Lower_Arc P) by
JORDAN7: 1;
A9: (
E-max P)
in (
Upper_Arc P) & (
E-max P)
<> (
W-min P) by
JORDAN7: 1,
TOPREAL5: 19;
thus thesis
proof
per cases ;
suppose that
A10: a
<> (
E-max P) & b
<> (
E-max P);
take e = (
E-max P);
thus a
<> e & b
<> e by
A10;
thus thesis by
A5,
A6,
A7,
A8,
A9,
JORDAN6:def 10;
end;
suppose
A11: a
= (
E-max P);
then
LE (a,b,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A4,
A6,
JORDAN5C: 10;
then
consider e such that
A12: a
<> e & b
<> e and
A13:
LE (a,e,(
Lower_Arc P),(
E-max P),(
W-min P)) &
LE (e,b,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A1,
A4,
Th6;
take e;
thus e
<> a & e
<> b by
A12;
e
in (
Lower_Arc P) & e
<> (
W-min P) by
A4,
A7,
A13,
JORDAN5C:def 3,
JORDAN6: 55;
hence thesis by
A6,
A7,
A8,
A11,
A13,
JORDAN6:def 10;
end;
suppose
A14: b
= (
E-max P);
then
LE (a,b,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A5,
JORDAN5C: 10;
then
consider e such that
A15: a
<> e & b
<> e and
A16:
LE (a,e,(
Upper_Arc P),(
W-min P),(
E-max P)) and
LE (e,b,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A1,
A3,
Th6;
take e;
thus e
<> a & e
<> b by
A15;
e
in (
Upper_Arc P) by
A16,
JORDAN5C:def 3;
hence thesis by
A5,
A7,
A8,
A14,
A16,
JORDAN6:def 10;
end;
end;
end;
suppose that
A17: a
in (
Upper_Arc P) & b
in (
Upper_Arc P) and
A18:
LE (a,b,(
Upper_Arc P),(
W-min P),(
E-max P));
consider e such that
A19: a
<> e & b
<> e and
A20:
LE (a,e,(
Upper_Arc P),(
W-min P),(
E-max P)) and
A21:
LE (e,b,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A1,
A3,
A18,
Th6;
take e;
thus e
<> a & e
<> b by
A19;
e
in (
Upper_Arc P) by
A20,
JORDAN5C:def 3;
hence thesis by
A17,
A20,
A21,
JORDAN6:def 10;
end;
suppose that
A22: a
in (
Lower_Arc P) & b
in (
Lower_Arc P) and
A23: not b
= (
W-min P) and
A24:
LE (a,b,(
Lower_Arc P),(
E-max P),(
W-min P));
consider e such that
A25: a
<> e & b
<> e and
A26:
LE (a,e,(
Lower_Arc P),(
E-max P),(
W-min P)) and
A27:
LE (e,b,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A1,
A4,
A24,
Th6;
take e;
thus e
<> a & e
<> b by
A25;
A28: e
in (
Lower_Arc P) by
A26,
JORDAN5C:def 3;
e
<> (
W-min P) by
A4,
A23,
A27,
JORDAN6: 55;
hence thesis by
A22,
A23,
A26,
A27,
A28,
JORDAN6:def 10;
end;
end;
definition
let P be
Subset of (
TOP-REAL 2), a,b,c,d be
Point of (
TOP-REAL 2);
::
JORDAN17:def1
pred a,b,c,d
are_in_this_order_on P means
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
end
theorem ::
JORDAN17:9
a
in P implies (a,a,a,a)
are_in_this_order_on P by
JORDAN6: 56;
theorem ::
JORDAN17:10
(a,b,c,d)
are_in_this_order_on P implies (b,c,d,a)
are_in_this_order_on P;
theorem ::
JORDAN17:11
(a,b,c,d)
are_in_this_order_on P implies (c,d,a,b)
are_in_this_order_on P;
theorem ::
JORDAN17:12
(a,b,c,d)
are_in_this_order_on P implies (d,a,b,c)
are_in_this_order_on P;
theorem ::
JORDAN17:13
a
<> b & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> a & e
<> b & (a,e,b,c)
are_in_this_order_on P
proof
assume that
A1: a
<> b and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose
A3:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
then
consider e such that
A4: e
<> a & e
<> b &
LE (a,e,P) &
LE (e,b,P) by
A1,
Th8;
take e;
thus thesis by
A3,
A4;
end;
suppose that
A5:
LE (b,c,P) and
A6:
LE (c,d,P) and
A7:
LE (d,a,P);
thus thesis
proof
A8:
LE (c,a,P) by
A6,
A7,
JORDAN6: 58;
per cases ;
suppose
A9: b
= (
W-min P);
a
in P by
A7,
JORDAN7: 5;
then
consider e such that
A10: e
<> a and
A11:
LE (a,e,P) by
Th7;
take e;
thus e
<> a by
A10;
thus e
<> b by
A1,
A9,
A11,
JORDAN7: 2;
thus thesis by
A5,
A8,
A11;
end;
suppose
A12: b
<> (
W-min P);
take e = (
W-min P);
b
in P by
A5,
JORDAN7: 5;
then
A13:
LE (e,b,P) by
JORDAN7: 3;
now
LE (b,d,P) by
A5,
A6,
JORDAN6: 58;
then
A14:
LE (b,a,P) by
A7,
JORDAN6: 58;
assume e
= a;
hence contradiction by
A1,
A13,
A14,
JORDAN6: 57;
end;
hence e
<> a;
thus e
<> b by
A12;
thus thesis by
A5,
A8,
A13;
end;
end;
end;
suppose that
A15:
LE (c,d,P) and
A16:
LE (d,a,P) &
LE (a,b,P);
consider e such that
A17: e
<> a & e
<> b &
LE (a,e,P) &
LE (e,b,P) by
A1,
A16,
Th8;
take e;
LE (c,a,P) by
A15,
A16,
JORDAN6: 58;
hence thesis by
A17;
end;
suppose that
A18:
LE (d,a,P) &
LE (a,b,P) and
A19:
LE (b,c,P);
consider e such that
A20: e
<> a & e
<> b &
LE (a,e,P) &
LE (e,b,P) by
A1,
A18,
Th8;
take e;
thus thesis by
A19,
A20;
end;
end;
theorem ::
JORDAN17:14
a
<> b & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> a & e
<> b & (a,e,b,d)
are_in_this_order_on P
proof
assume that
A1: a
<> b and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose that
A3:
LE (a,b,P) and
A4:
LE (b,c,P) &
LE (c,d,P);
consider e such that
A5: e
<> a & e
<> b &
LE (a,e,P) &
LE (e,b,P) by
A1,
A3,
Th8;
take e;
LE (b,d,P) by
A4,
JORDAN6: 58;
hence thesis by
A5;
end;
suppose that
A6:
LE (b,c,P) and
A7:
LE (c,d,P) and
A8:
LE (d,a,P);
thus thesis
proof
A9:
LE (b,d,P) by
A6,
A7,
JORDAN6: 58;
per cases ;
suppose
A10: b
= (
W-min P);
a
in P by
A8,
JORDAN7: 5;
then
consider e such that
A11: e
<> a and
A12:
LE (a,e,P) by
Th7;
take e;
thus e
<> a by
A11;
thus e
<> b by
A1,
A10,
A12,
JORDAN7: 2;
thus thesis by
A8,
A9,
A12;
end;
suppose
A13: b
<> (
W-min P);
take e = (
W-min P);
b
in P by
A6,
JORDAN7: 5;
then
A14:
LE (e,b,P) by
JORDAN7: 3;
now
LE (b,d,P) by
A6,
A7,
JORDAN6: 58;
then
A15:
LE (b,a,P) by
A8,
JORDAN6: 58;
assume e
= a;
hence contradiction by
A1,
A14,
A15,
JORDAN6: 57;
end;
hence e
<> a;
thus e
<> b by
A13;
thus thesis by
A8,
A9,
A14;
end;
end;
end;
suppose that
LE (c,d,P) and
A16:
LE (d,a,P) and
A17:
LE (a,b,P);
consider e such that
A18: e
<> a & e
<> b &
LE (a,e,P) &
LE (e,b,P) by
A1,
A17,
Th8;
take e;
thus thesis by
A16,
A18;
end;
suppose that
A19:
LE (d,a,P) and
A20:
LE (a,b,P) and
LE (b,c,P);
consider e such that
A21: e
<> a & e
<> b &
LE (a,e,P) &
LE (e,b,P) by
A1,
A20,
Th8;
take e;
thus thesis by
A19,
A21;
end;
end;
theorem ::
JORDAN17:15
b
<> c & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> b & e
<> c & (a,b,e,c)
are_in_this_order_on P
proof
assume that
A1: b
<> c and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose
A3:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
then
consider e such that
A4: e
<> b & e
<> c &
LE (b,e,P) &
LE (e,c,P) by
A1,
Th8;
take e;
thus thesis by
A3,
A4;
end;
suppose that
A5:
LE (b,c,P) and
A6:
LE (c,d,P) &
LE (d,a,P);
consider e such that
A7: e
<> b & e
<> c &
LE (b,e,P) &
LE (e,c,P) by
A1,
A5,
Th8;
take e;
LE (c,a,P) by
A6,
JORDAN6: 58;
hence thesis by
A7;
end;
suppose that
A8:
LE (c,d,P) and
A9:
LE (d,a,P) and
A10:
LE (a,b,P);
thus thesis
proof
A11:
LE (c,a,P) by
A8,
A9,
JORDAN6: 58;
per cases ;
suppose
A12: c
= (
W-min P);
b
in P by
A10,
JORDAN7: 5;
then
consider e such that
A13: e
<> b and
A14:
LE (b,e,P) by
Th7;
take e;
thus e
<> b by
A13;
thus e
<> c by
A1,
A12,
A14,
JORDAN7: 2;
thus thesis by
A10,
A11,
A14;
end;
suppose
A15: c
<> (
W-min P);
take e = (
W-min P);
c
in P by
A8,
JORDAN7: 5;
then
A16:
LE (e,c,P) by
JORDAN7: 3;
now
LE (c,a,P) by
A8,
A9,
JORDAN6: 58;
then
A17:
LE (c,b,P) by
A10,
JORDAN6: 58;
assume e
= b;
hence contradiction by
A1,
A16,
A17,
JORDAN6: 57;
end;
hence e
<> b;
thus e
<> c by
A15;
thus thesis by
A10,
A11,
A16;
end;
end;
end;
suppose that
LE (d,a,P) and
A18:
LE (a,b,P) &
LE (b,c,P);
consider e such that
A19: e
<> b & e
<> c &
LE (b,e,P) &
LE (e,c,P) by
A1,
A18,
Th8;
take e;
thus thesis by
A18,
A19;
end;
end;
theorem ::
JORDAN17:16
b
<> c & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> b & e
<> c & (b,e,c,d)
are_in_this_order_on P
proof
assume that
A1: b
<> c and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose
A3:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
then
consider e such that
A4: e
<> b & e
<> c &
LE (b,e,P) &
LE (e,c,P) by
A1,
Th8;
take e;
thus thesis by
A3,
A4;
end;
suppose
A5:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
then
consider e such that
A6: e
<> b & e
<> c &
LE (b,e,P) &
LE (e,c,P) by
A1,
Th8;
take e;
thus thesis by
A5,
A6;
end;
suppose that
A7:
LE (c,d,P) and
A8:
LE (d,a,P) and
A9:
LE (a,b,P);
thus thesis
proof
A10:
LE (d,b,P) by
A8,
A9,
JORDAN6: 58;
per cases ;
suppose
A11: c
= (
W-min P);
b
in P by
A9,
JORDAN7: 5;
then
consider e such that
A12: e
<> b and
A13:
LE (b,e,P) by
Th7;
take e;
thus e
<> b by
A12;
thus e
<> c by
A1,
A11,
A13,
JORDAN7: 2;
thus thesis by
A7,
A10,
A13;
end;
suppose
A14: c
<> (
W-min P);
take e = (
W-min P);
c
in P by
A7,
JORDAN7: 5;
then
A15:
LE (e,c,P) by
JORDAN7: 3;
now
LE (c,a,P) by
A7,
A8,
JORDAN6: 58;
then
A16:
LE (c,b,P) by
A9,
JORDAN6: 58;
assume e
= b;
hence contradiction by
A1,
A15,
A16,
JORDAN6: 57;
end;
hence e
<> b;
thus e
<> c by
A14;
thus thesis by
A7,
A10,
A15;
end;
end;
end;
suppose that
A17:
LE (d,a,P) &
LE (a,b,P) and
A18:
LE (b,c,P);
consider e such that
A19: e
<> b & e
<> c and
A20:
LE (b,e,P) &
LE (e,c,P) by
A1,
A18,
Th8;
take e;
thus e
<> b & e
<> c by
A19;
LE (d,b,P) by
A17,
JORDAN6: 58;
hence thesis by
A20;
end;
end;
theorem ::
JORDAN17:17
c
<> d & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> c & e
<> d & (a,c,e,d)
are_in_this_order_on P
proof
assume that
A1: c
<> d and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose that
A3:
LE (a,b,P) &
LE (b,c,P) and
A4:
LE (c,d,P);
consider e such that
A5: e
<> c & e
<> d &
LE (c,e,P) &
LE (e,d,P) by
A1,
A4,
Th8;
take e;
LE (a,c,P) by
A3,
JORDAN6: 58;
hence thesis by
A5;
end;
suppose that
A6:
LE (b,c,P) &
LE (c,d,P) and
A7:
LE (d,a,P);
consider e such that
A8: e
<> c & e
<> d &
LE (c,e,P) &
LE (e,d,P) by
A1,
A6,
Th8;
take e;
thus thesis by
A7,
A8;
end;
suppose that
A9:
LE (c,d,P) and
A10:
LE (d,a,P) and
LE (a,b,P);
consider e such that
A11: e
<> c & e
<> d &
LE (c,e,P) &
LE (e,d,P) by
A1,
A9,
Th8;
take e;
thus thesis by
A10,
A11;
end;
suppose that
A12:
LE (d,a,P) and
A13:
LE (a,b,P) and
A14:
LE (b,c,P);
thus thesis
proof
A15:
LE (a,c,P) by
A13,
A14,
JORDAN6: 58;
per cases ;
suppose
A16: d
= (
W-min P);
c
in P by
A14,
JORDAN7: 5;
then
consider e such that
A17: e
<> c and
A18:
LE (c,e,P) by
Th7;
take e;
thus e
<> c by
A17;
thus e
<> d by
A1,
A16,
A18,
JORDAN7: 2;
thus thesis by
A12,
A15,
A18;
end;
suppose
A19: d
<> (
W-min P);
take e = (
W-min P);
d
in P by
A12,
JORDAN7: 5;
then
A20:
LE (e,d,P) by
JORDAN7: 3;
now
LE (d,b,P) by
A12,
A13,
JORDAN6: 58;
then
A21:
LE (d,c,P) by
A14,
JORDAN6: 58;
assume e
= c;
hence contradiction by
A1,
A20,
A21,
JORDAN6: 57;
end;
hence e
<> c;
thus e
<> d by
A19;
thus thesis by
A12,
A15,
A20;
end;
end;
end;
end;
theorem ::
JORDAN17:18
c
<> d & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> c & e
<> d & (b,c,e,d)
are_in_this_order_on P
proof
assume that
A1: c
<> d and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose that
A3:
LE (a,b,P) &
LE (b,c,P) and
A4:
LE (c,d,P);
consider e such that
A5: e
<> c & e
<> d &
LE (c,e,P) &
LE (e,d,P) by
A1,
A4,
Th8;
take e;
thus thesis by
A3,
A5;
end;
suppose that
A6:
LE (b,c,P) and
A7:
LE (c,d,P) and
LE (d,a,P);
consider e such that
A8: e
<> c & e
<> d &
LE (c,e,P) &
LE (e,d,P) by
A1,
A7,
Th8;
take e;
thus thesis by
A6,
A8;
end;
suppose that
A9:
LE (c,d,P) and
A10:
LE (d,a,P) &
LE (a,b,P);
consider e such that
A11: e
<> c & e
<> d &
LE (c,e,P) &
LE (e,d,P) by
A1,
A9,
Th8;
take e;
LE (d,b,P) by
A10,
JORDAN6: 58;
hence thesis by
A11;
end;
suppose that
A12:
LE (d,a,P) and
A13:
LE (a,b,P) and
A14:
LE (b,c,P);
thus thesis
proof
A15:
LE (d,b,P) by
A12,
A13,
JORDAN6: 58;
per cases ;
suppose
A16: d
= (
W-min P);
c
in P by
A14,
JORDAN7: 5;
then
consider e such that
A17: e
<> c and
A18:
LE (c,e,P) by
Th7;
take e;
thus e
<> c by
A17;
thus e
<> d by
A1,
A16,
A18,
JORDAN7: 2;
thus thesis by
A14,
A15,
A18;
end;
suppose
A19: d
<> (
W-min P);
take e = (
W-min P);
d
in P by
A12,
JORDAN7: 5;
then
A20:
LE (e,d,P) by
JORDAN7: 3;
now
assume
A21: e
= c;
LE (d,c,P) by
A14,
A15,
JORDAN6: 58;
hence contradiction by
A1,
A20,
A21,
JORDAN6: 57;
end;
hence e
<> c;
thus e
<> d by
A19;
thus thesis by
A14,
A15,
A20;
end;
end;
end;
end;
theorem ::
JORDAN17:19
d
<> a & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> d & e
<> a & (a,b,d,e)
are_in_this_order_on P
proof
assume that
A1: d
<> a and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose that
A3:
LE (a,b,P) and
A4:
LE (b,c,P) and
A5:
LE (c,d,P);
thus thesis
proof
A6:
LE (b,d,P) by
A4,
A5,
JORDAN6: 58;
per cases ;
suppose
A7: a
= (
W-min P);
d
in P by
A5,
JORDAN7: 5;
then
consider e such that
A8: e
<> d and
A9:
LE (d,e,P) by
Th7;
take e;
thus e
<> d by
A8;
thus e
<> a by
A1,
A7,
A9,
JORDAN7: 2;
thus thesis by
A3,
A6,
A9;
end;
suppose
A10: a
<> (
W-min P);
take e = (
W-min P);
a
in P by
A3,
JORDAN7: 5;
then
A11:
LE (e,a,P) by
JORDAN7: 3;
now
LE (a,c,P) by
A3,
A4,
JORDAN6: 58;
then
A12:
LE (a,d,P) by
A5,
JORDAN6: 58;
assume e
= d;
hence contradiction by
A1,
A11,
A12,
JORDAN6: 57;
end;
hence e
<> d;
thus e
<> a by
A10;
thus thesis by
A3,
A6,
A11;
end;
end;
end;
suppose that
A13:
LE (b,c,P) &
LE (c,d,P) and
A14:
LE (d,a,P);
consider e such that
A15: e
<> d & e
<> a &
LE (d,e,P) &
LE (e,a,P) by
A1,
A14,
Th8;
take e;
LE (b,d,P) by
A13,
JORDAN6: 58;
hence thesis by
A15;
end;
suppose that
LE (c,d,P) and
A16:
LE (d,a,P) and
A17:
LE (a,b,P);
consider e such that
A18: e
<> d & e
<> a &
LE (d,e,P) &
LE (e,a,P) by
A1,
A16,
Th8;
take e;
thus thesis by
A17,
A18;
end;
suppose that
A19:
LE (d,a,P) and
A20:
LE (a,b,P) and
LE (b,c,P);
consider e such that
A21: e
<> d & e
<> a &
LE (d,e,P) &
LE (e,a,P) by
A1,
A19,
Th8;
take e;
thus thesis by
A20,
A21;
end;
end;
theorem ::
JORDAN17:20
d
<> a & (a,b,c,d)
are_in_this_order_on P implies ex e st e
<> d & e
<> a & (a,c,d,e)
are_in_this_order_on P
proof
assume that
A1: d
<> a and
A2:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P) or
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P) or
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P) or
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
per cases by
A2;
suppose that
A3:
LE (a,b,P) and
A4:
LE (b,c,P) and
A5:
LE (c,d,P);
thus thesis
proof
A6:
LE (a,c,P) by
A3,
A4,
JORDAN6: 58;
per cases ;
suppose
A7: a
= (
W-min P);
d
in P by
A5,
JORDAN7: 5;
then
consider e such that
A8: e
<> d and
A9:
LE (d,e,P) by
Th7;
take e;
thus e
<> d by
A8;
thus e
<> a by
A1,
A7,
A9,
JORDAN7: 2;
thus thesis by
A5,
A6,
A9;
end;
suppose
A10: a
<> (
W-min P);
take e = (
W-min P);
a
in P by
A3,
JORDAN7: 5;
then
A11:
LE (e,a,P) by
JORDAN7: 3;
now
assume
A12: e
= d;
LE (a,d,P) by
A5,
A6,
JORDAN6: 58;
hence contradiction by
A1,
A11,
A12,
JORDAN6: 57;
end;
hence e
<> d;
thus e
<> a by
A10;
thus thesis by
A5,
A6,
A11;
end;
end;
end;
suppose that
LE (b,c,P) and
A13:
LE (c,d,P) and
A14:
LE (d,a,P);
consider e such that
A15: e
<> d & e
<> a &
LE (d,e,P) &
LE (e,a,P) by
A1,
A14,
Th8;
take e;
thus thesis by
A13,
A15;
end;
suppose that
A16:
LE (c,d,P) and
A17:
LE (d,a,P) and
LE (a,b,P);
consider e such that
A18: e
<> d & e
<> a &
LE (d,e,P) &
LE (e,a,P) by
A1,
A17,
Th8;
take e;
thus thesis by
A16,
A18;
end;
suppose that
A19:
LE (d,a,P) and
A20:
LE (a,b,P) &
LE (b,c,P);
consider e such that
A21: e
<> d & e
<> a &
LE (d,e,P) &
LE (e,a,P) by
A1,
A19,
Th8;
take e;
LE (a,c,P) by
A20,
JORDAN6: 58;
hence thesis by
A21;
end;
end;
theorem ::
JORDAN17:21
a
<> c & a
<> d & b
<> d & (a,b,c,d)
are_in_this_order_on P & (b,a,c,d)
are_in_this_order_on P implies a
= b
proof
assume that
A1: a
<> c and
A2: a
<> d and
A3: b
<> d and
A4: (a,b,c,d)
are_in_this_order_on P and
A5: (b,a,c,d)
are_in_this_order_on P;
per cases by
A4;
suppose
A6:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
then
A7:
LE (b,d,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (b,a,P) &
LE (a,c,P) &
LE (c,d,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
LE (a,c,P) &
LE (c,d,P) &
LE (d,b,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
suppose
LE (c,d,P) &
LE (d,b,P) &
LE (b,a,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
LE (d,b,P) &
LE (b,a,P) &
LE (a,c,P);
hence thesis by
A6,
JORDAN6: 57;
end;
end;
end;
suppose
A8:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
then
A9:
LE (b,d,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
A10:
LE (b,a,P) &
LE (a,c,P) &
LE (c,d,P);
LE (c,a,P) by
A8,
JORDAN6: 58;
hence thesis by
A1,
A10,
JORDAN6: 57;
end;
suppose
LE (a,c,P) &
LE (c,d,P) &
LE (d,b,P);
hence thesis by
A3,
A9,
JORDAN6: 57;
end;
suppose
LE (c,d,P) &
LE (d,b,P) &
LE (b,a,P);
hence thesis by
A3,
A9,
JORDAN6: 57;
end;
suppose
LE (d,b,P) &
LE (b,a,P) &
LE (a,c,P);
hence thesis by
A3,
A9,
JORDAN6: 57;
end;
end;
end;
suppose
A11:
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P);
then
A12:
LE (c,a,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (b,a,P) &
LE (a,c,P) &
LE (c,d,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (a,c,P) &
LE (c,d,P) &
LE (d,b,P);
hence thesis by
A1,
A12,
JORDAN6: 57;
end;
suppose
LE (c,d,P) &
LE (d,b,P) &
LE (b,a,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (d,b,P) &
LE (b,a,P) &
LE (a,c,P);
hence thesis by
A11,
JORDAN6: 57;
end;
end;
end;
suppose
A13:
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
thus thesis
proof
per cases by
A5;
suppose
LE (b,a,P) &
LE (a,c,P) &
LE (c,d,P);
hence thesis by
A13,
JORDAN6: 57;
end;
suppose
LE (a,c,P) &
LE (c,d,P) &
LE (d,b,P);
then
LE (a,d,P) by
JORDAN6: 58;
hence thesis by
A2,
A13,
JORDAN6: 57;
end;
suppose
LE (c,d,P) &
LE (d,b,P) &
LE (b,a,P);
hence thesis by
A13,
JORDAN6: 57;
end;
suppose
LE (d,b,P) &
LE (b,a,P) &
LE (a,c,P);
hence thesis by
A13,
JORDAN6: 57;
end;
end;
end;
end;
theorem ::
JORDAN17:22
a
<> b & b
<> c & c
<> d & (a,b,c,d)
are_in_this_order_on P & (c,b,a,d)
are_in_this_order_on P implies a
= c
proof
assume that
A1: a
<> b and
A2: b
<> c and
A3: c
<> d and
A4: (a,b,c,d)
are_in_this_order_on P and
A5: (c,b,a,d)
are_in_this_order_on P;
per cases by
A4;
suppose
A6:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
thus thesis
proof
per cases by
A5;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A1,
A6,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A3,
A6,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A3,
A6,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A3,
A6,
JORDAN6: 57;
end;
end;
end;
suppose
A7:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
thus thesis
proof
per cases by
A5;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A2,
A7,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
end;
end;
suppose
A8:
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P);
thus thesis
proof
per cases by
A5;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A1,
A8,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A3,
A8,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A3,
A8,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A3,
A8,
JORDAN6: 57;
end;
end;
end;
suppose
A9:
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
thus thesis
proof
per cases by
A5;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A2,
A9,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A1,
A9,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A2,
A9,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A1,
A9,
JORDAN6: 57;
end;
end;
end;
end;
theorem ::
JORDAN17:23
a
<> b & a
<> c & b
<> d & (a,b,c,d)
are_in_this_order_on P & (d,b,c,a)
are_in_this_order_on P implies a
= d
proof
assume that
A1: a
<> b and
A2: a
<> c and
A3: b
<> d and
A4: (a,b,c,d)
are_in_this_order_on P and
A5: (d,b,c,a)
are_in_this_order_on P;
per cases by
A4;
suppose
A6:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
then
A7:
LE (a,c,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (d,b,P) &
LE (b,c,P) &
LE (c,a,P);
hence thesis by
A2,
A7,
JORDAN6: 57;
end;
suppose
LE (b,c,P) &
LE (c,a,P) &
LE (a,d,P);
hence thesis by
A2,
A7,
JORDAN6: 57;
end;
suppose
LE (c,a,P) &
LE (a,d,P) &
LE (d,b,P);
hence thesis by
A2,
A7,
JORDAN6: 57;
end;
suppose
A8:
LE (a,d,P) &
LE (d,b,P) &
LE (b,c,P);
LE (b,d,P) by
A6,
JORDAN6: 58;
hence thesis by
A3,
A8,
JORDAN6: 57;
end;
end;
end;
suppose
A9:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
then
A10:
LE (b,d,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (d,b,P) &
LE (b,c,P) &
LE (c,a,P);
hence thesis by
A3,
A10,
JORDAN6: 57;
end;
suppose
LE (b,c,P) &
LE (c,a,P) &
LE (a,d,P);
hence thesis by
A9,
JORDAN6: 57;
end;
suppose
LE (c,a,P) &
LE (a,d,P) &
LE (d,b,P);
hence thesis by
A9,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,b,P) &
LE (b,c,P);
hence thesis by
A9,
JORDAN6: 57;
end;
end;
end;
suppose
A11:
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P);
thus thesis
proof
per cases by
A5;
suppose
LE (d,b,P) &
LE (b,c,P) &
LE (c,a,P);
then
LE (b,a,P) by
JORDAN6: 58;
hence thesis by
A1,
A11,
JORDAN6: 57;
end;
suppose
LE (b,c,P) &
LE (c,a,P) &
LE (a,d,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (c,a,P) &
LE (a,d,P) &
LE (d,b,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,b,P) &
LE (b,c,P);
hence thesis by
A11,
JORDAN6: 57;
end;
end;
end;
suppose
A12:
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
thus thesis
proof
per cases by
A5;
suppose
A13:
LE (d,b,P) &
LE (b,c,P) &
LE (c,a,P);
LE (a,c,P) by
A12,
JORDAN6: 58;
hence thesis by
A2,
A13,
JORDAN6: 57;
end;
suppose
LE (b,c,P) &
LE (c,a,P) &
LE (a,d,P);
hence thesis by
A12,
JORDAN6: 57;
end;
suppose
LE (c,a,P) &
LE (a,d,P) &
LE (d,b,P);
hence thesis by
A12,
JORDAN6: 57;
end;
suppose
LE (a,d,P) &
LE (d,b,P) &
LE (b,c,P);
hence thesis by
A12,
JORDAN6: 57;
end;
end;
end;
end;
theorem ::
JORDAN17:24
a
<> c & a
<> d & b
<> d & (a,b,c,d)
are_in_this_order_on P & (a,c,b,d)
are_in_this_order_on P implies b
= c
proof
assume that
A1: a
<> c and
A2: a
<> d and
A3: b
<> d and
A4: (a,b,c,d)
are_in_this_order_on P and
A5: (a,c,b,d)
are_in_this_order_on P;
per cases by
A4;
suppose
A6:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
then
A7:
LE (b,d,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (a,c,P) &
LE (c,b,P) &
LE (b,d,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,d,P) &
LE (d,a,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
A8:
LE (b,d,P) &
LE (d,a,P) &
LE (a,c,P);
LE (a,d,P) by
A6,
A7,
JORDAN6: 58;
hence thesis by
A2,
A8,
JORDAN6: 57;
end;
suppose
LE (d,a,P) &
LE (a,c,P) &
LE (c,b,P);
hence thesis by
A6,
JORDAN6: 57;
end;
end;
end;
suppose
A9:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
then
A10:
LE (c,a,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (a,c,P) &
LE (c,b,P) &
LE (b,d,P);
hence thesis by
A9,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,d,P) &
LE (d,a,P);
hence thesis by
A9,
JORDAN6: 57;
end;
suppose
LE (b,d,P) &
LE (d,a,P) &
LE (a,c,P);
hence thesis by
A1,
A10,
JORDAN6: 57;
end;
suppose
LE (d,a,P) &
LE (a,c,P) &
LE (c,b,P);
hence thesis by
A9,
JORDAN6: 57;
end;
end;
end;
suppose
A11:
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P);
then
A12:
LE (c,a,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (a,c,P) &
LE (c,b,P) &
LE (b,d,P);
hence thesis by
A1,
A12,
JORDAN6: 57;
end;
suppose
A13:
LE (c,b,P) &
LE (b,d,P) &
LE (d,a,P);
LE (d,b,P) by
A11,
JORDAN6: 58;
hence thesis by
A3,
A13,
JORDAN6: 57;
end;
suppose
LE (b,d,P) &
LE (d,a,P) &
LE (a,c,P);
hence thesis by
A1,
A12,
JORDAN6: 57;
end;
suppose
LE (d,a,P) &
LE (a,c,P) &
LE (c,b,P);
hence thesis by
A1,
A12,
JORDAN6: 57;
end;
end;
end;
suppose
A14:
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
thus thesis
proof
per cases by
A5;
suppose
LE (a,c,P) &
LE (c,b,P) &
LE (b,d,P);
hence thesis by
A14,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,d,P) &
LE (d,a,P);
hence thesis by
A14,
JORDAN6: 57;
end;
suppose
A15:
LE (b,d,P) &
LE (d,a,P) &
LE (a,c,P);
LE (d,b,P) by
A14,
JORDAN6: 58;
hence thesis by
A3,
A15,
JORDAN6: 57;
end;
suppose
LE (d,a,P) &
LE (a,c,P) &
LE (c,b,P);
hence thesis by
A14,
JORDAN6: 57;
end;
end;
end;
end;
theorem ::
JORDAN17:25
a
<> b & b
<> c & c
<> d & (a,b,c,d)
are_in_this_order_on P & (a,d,c,b)
are_in_this_order_on P implies b
= d
proof
assume that
A1: a
<> b and
A2: b
<> c and
A3: c
<> d and
A4: (a,b,c,d)
are_in_this_order_on P and
A5: (a,d,c,b)
are_in_this_order_on P;
per cases by
A4;
suppose
A6:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
thus thesis
proof
per cases by
A5;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A2,
A6,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A3,
A6,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A2,
A6,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A3,
A6,
JORDAN6: 57;
end;
end;
end;
suppose
A7:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
thus thesis
proof
per cases by
A5;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A2,
A7,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A3,
A7,
JORDAN6: 57;
end;
end;
end;
suppose
A8:
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P);
thus thesis
proof
per cases by
A5;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A3,
A8,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A1,
A8,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A1,
A8,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A1,
A8,
JORDAN6: 57;
end;
end;
end;
suppose
A9:
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
thus thesis
proof
per cases by
A5;
suppose
LE (a,d,P) &
LE (d,c,P) &
LE (c,b,P);
hence thesis by
A2,
A9,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,b,P) &
LE (b,a,P);
hence thesis by
A2,
A9,
JORDAN6: 57;
end;
suppose
LE (c,b,P) &
LE (b,a,P) &
LE (a,d,P);
hence thesis by
A2,
A9,
JORDAN6: 57;
end;
suppose
LE (b,a,P) &
LE (a,d,P) &
LE (d,c,P);
hence thesis by
A1,
A9,
JORDAN6: 57;
end;
end;
end;
end;
theorem ::
JORDAN17:26
a
<> b & a
<> c & b
<> d & (a,b,c,d)
are_in_this_order_on P & (a,b,d,c)
are_in_this_order_on P implies c
= d
proof
assume that
A1: a
<> b and
A2: a
<> c and
A3: b
<> d and
A4: (a,b,c,d)
are_in_this_order_on P and
A5: (a,b,d,c)
are_in_this_order_on P;
per cases by
A4;
suppose
A6:
LE (a,b,P) &
LE (b,c,P) &
LE (c,d,P);
thus thesis
proof
per cases by
A5;
suppose
LE (a,b,P) &
LE (b,d,P) &
LE (d,c,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
LE (b,d,P) &
LE (d,c,P) &
LE (c,a,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,a,P) &
LE (a,b,P);
hence thesis by
A6,
JORDAN6: 57;
end;
suppose
A7:
LE (c,a,P) &
LE (a,b,P) &
LE (b,d,P);
LE (a,c,P) by
A6,
JORDAN6: 58;
hence thesis by
A2,
A7,
JORDAN6: 57;
end;
end;
end;
suppose
A8:
LE (b,c,P) &
LE (c,d,P) &
LE (d,a,P);
then
A9:
LE (c,a,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (a,b,P) &
LE (b,d,P) &
LE (d,c,P);
hence thesis by
A8,
JORDAN6: 57;
end;
suppose
LE (b,d,P) &
LE (d,c,P) &
LE (c,a,P);
hence thesis by
A8,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,a,P) &
LE (a,b,P);
hence thesis by
A8,
JORDAN6: 57;
end;
suppose
A10:
LE (c,a,P) &
LE (a,b,P) &
LE (b,d,P);
LE (b,a,P) by
A8,
A9,
JORDAN6: 58;
hence thesis by
A1,
A10,
JORDAN6: 57;
end;
end;
end;
suppose
A11:
LE (c,d,P) &
LE (d,a,P) &
LE (a,b,P);
then
A12:
LE (d,b,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (a,b,P) &
LE (b,d,P) &
LE (d,c,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (b,d,P) &
LE (d,c,P) &
LE (c,a,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (d,c,P) &
LE (c,a,P) &
LE (a,b,P);
hence thesis by
A11,
JORDAN6: 57;
end;
suppose
LE (c,a,P) &
LE (a,b,P) &
LE (b,d,P);
hence thesis by
A3,
A12,
JORDAN6: 57;
end;
end;
end;
suppose
A13:
LE (d,a,P) &
LE (a,b,P) &
LE (b,c,P);
then
A14:
LE (d,b,P) by
JORDAN6: 58;
thus thesis
proof
per cases by
A5;
suppose
LE (a,b,P) &
LE (b,d,P) &
LE (d,c,P);
hence thesis by
A3,
A14,
JORDAN6: 57;
end;
suppose
LE (b,d,P) &
LE (d,c,P) &
LE (c,a,P);
hence thesis by
A3,
A14,
JORDAN6: 57;
end;
suppose
A15:
LE (d,c,P) &
LE (c,a,P) &
LE (a,b,P);
LE (a,c,P) by
A13,
JORDAN6: 58;
hence thesis by
A2,
A15,
JORDAN6: 57;
end;
suppose
LE (c,a,P) &
LE (a,b,P) &
LE (b,d,P);
hence thesis by
A3,
A14,
JORDAN6: 57;
end;
end;
end;
end;
theorem ::
JORDAN17:27
a
in C & b
in C & c
in C & d
in C implies (a,b,c,d)
are_in_this_order_on C or (a,b,d,c)
are_in_this_order_on C or (a,c,b,d)
are_in_this_order_on C or (a,c,d,b)
are_in_this_order_on C or (a,d,b,c)
are_in_this_order_on C or (a,d,c,b)
are_in_this_order_on C
proof
assume that
A1: a
in C and
A2: b
in C and
A3: c
in C and
A4: d
in C;
per cases ;
suppose
LE (a,b,C) &
LE (b,c,C) &
LE (c,d,C);
hence thesis;
end;
suppose
A5:
LE (a,b,C) &
LE (b,c,C) & not
LE (c,d,C);
then
A6:
LE (d,c,C) by
A3,
A4,
JORDAN16: 7;
thus thesis
proof
per cases by
A1,
A4,
JORDAN16: 7;
suppose
A7:
LE (a,d,C);
LE (b,d,C) or
LE (d,b,C) by
A2,
A4,
JORDAN16: 7;
hence thesis by
A5,
A6,
A7;
end;
suppose
LE (d,a,C);
hence thesis by
A5;
end;
end;
end;
suppose
A8:
LE (a,b,C) & not
LE (b,c,C) &
LE (c,d,C);
then
A9:
LE (c,b,C) by
A2,
A3,
JORDAN16: 7;
thus thesis
proof
per cases by
A2,
A4,
JORDAN16: 7;
suppose
A10:
LE (b,d,C);
LE (a,c,C) or
LE (c,a,C) by
A1,
A3,
JORDAN16: 7;
hence thesis by
A8,
A9,
A10;
end;
suppose
A11:
LE (d,b,C);
thus thesis
proof
per cases by
A1,
A3,
JORDAN16: 7;
suppose
LE (a,c,C);
hence thesis by
A8,
A11;
end;
suppose
A12:
LE (c,a,C);
LE (a,d,C) or
LE (d,a,C) by
A1,
A4,
JORDAN16: 7;
hence thesis by
A8,
A11,
A12;
end;
end;
end;
end;
end;
suppose
A13:
LE (a,b,C) & not
LE (b,c,C) & not
LE (c,d,C);
then
A14:
LE (d,c,C) by
A3,
A4,
JORDAN16: 7;
A15:
LE (c,b,C) by
A2,
A3,
A13,
JORDAN16: 7;
thus thesis
proof
per cases by
A1,
A3,
JORDAN16: 7;
suppose
A16:
LE (a,c,C);
LE (a,d,C) or
LE (d,a,C) by
A1,
A4,
JORDAN16: 7;
hence thesis by
A15,
A14,
A16;
end;
suppose
LE (c,a,C);
hence thesis by
A13,
A14;
end;
end;
end;
suppose
A17: not
LE (a,b,C) &
LE (b,c,C) &
LE (c,d,C);
then
A18:
LE (b,a,C) by
A1,
A2,
JORDAN16: 7;
thus thesis
proof
per cases by
A1,
A4,
JORDAN16: 7;
suppose
A19:
LE (a,d,C);
LE (a,c,C) or
LE (c,a,C) by
A1,
A3,
JORDAN16: 7;
hence thesis by
A17,
A18,
A19;
end;
suppose
LE (d,a,C);
hence thesis by
A17;
end;
end;
end;
suppose
A20: not
LE (a,b,C) &
LE (b,c,C) & not
LE (c,d,C);
then
A21:
LE (b,a,C) &
LE (d,c,C) by
A1,
A2,
A3,
A4,
JORDAN16: 7;
thus thesis
proof
per cases by
A1,
A4,
JORDAN16: 7;
suppose
LE (a,d,C);
hence thesis by
A21;
end;
suppose
A22:
LE (d,a,C);
A23:
LE (b,d,C) or
LE (d,b,C) by
A2,
A4,
JORDAN16: 7;
LE (a,c,C) or
LE (c,a,C) by
A1,
A3,
JORDAN16: 7;
hence thesis by
A20,
A21,
A22,
A23;
end;
end;
end;
suppose
A24: not
LE (a,b,C) & not
LE (b,c,C) &
LE (c,d,C);
then
A25:
LE (b,a,C) &
LE (c,b,C) by
A1,
A2,
A3,
JORDAN16: 7;
thus thesis
proof
per cases by
A1,
A4,
JORDAN16: 7;
suppose
LE (a,d,C);
hence thesis by
A25;
end;
suppose
A26:
LE (d,a,C);
LE (b,d,C) or
LE (d,b,C) by
A2,
A4,
JORDAN16: 7;
hence thesis by
A24,
A25,
A26;
end;
end;
end;
suppose
A27: not
LE (a,b,C) & not
LE (b,c,C) & not
LE (c,d,C);
then
A28:
LE (d,c,C) by
A3,
A4,
JORDAN16: 7;
LE (b,a,C) &
LE (c,b,C) by
A1,
A2,
A3,
A27,
JORDAN16: 7;
hence thesis by
A28;
end;
end;