rcomp_1.miz
    
    begin
    
    reserve n,n1,m,k for
    Nat;
    
    reserve x,y for
    set;
    
    reserve s,g,g1,g2,r,p,p2,q,t for
    Real;
    
    reserve s1,s2,s3 for
    Real_Sequence;
    
    reserve Nseq for
    increasing  
    sequence of 
    NAT ; 
    
    reserve X for
    Subset of 
    REAL ; 
    
    definition
    
      let g,s be
    Real;
    
      :: original:
    [.
    
      redefine
    
      :: 
    
    RCOMP_1:def1
    
      func
    
    [.g,s.] ->
    Subset of 
    REAL equals { r : g 
    <= r & r 
    <= s }; 
    
      coherence
    
      proof
    
        now
    
          let x be
    object;
    
          assume x
    in  
    [.g, s.];
    
          then
    
          
    
    A1: ex r be 
    Element of 
    ExtREAL st x 
    = r & g 
    <= r & r 
    <= s; 
    
          g
    in  
    REAL & s 
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence x
    in  
    REAL by 
    A1,
    XXREAL_0: 45;
    
        end;
    
        hence thesis by
    TARSKI:def 3;
    
      end;
    
      compatibility
    
      proof
    
        set Y = { r : g
    <= r & r 
    <= s }; 
    
        let X be
    Subset of 
    REAL ; 
    
        
    
        
    
    A2: 
    [.g, s.]
    c= Y 
    
        proof
    
          let x be
    object;
    
          assume x
    in  
    [.g, s.];
    
          then
    
          consider r be
    Element of 
    ExtREAL such that 
    
          
    
    A3: x 
    = r and 
    
          
    
    A4: g 
    <= r & r 
    <= s; 
    
          g
    in  
    REAL & s 
    in  
    REAL by 
    XREAL_0:def 1;
    
          then r
    in  
    REAL by 
    A4,
    XXREAL_0: 45;
    
          hence thesis by
    A3,
    A4;
    
        end;
    
        Y
    c=  
    [.g, s.]
    
        proof
    
          let x be
    object;
    
          assume x
    in Y; 
    
          then
    
          consider r such that
    
          
    
    A5: x 
    = r & g 
    <= r & r 
    <= s; 
    
          r
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence thesis by
    A5,
    NUMBERS: 31;
    
        end;
    
        hence thesis by
    A2;
    
      end;
    
    end
    
    definition
    
      let g,s be
    ExtReal;
    
      :: original:
    ].
    
      redefine
    
      :: 
    
    RCOMP_1:def2
    
      func
    
    ].g,s.[ ->
    Subset of 
    REAL equals { r : g 
    < r & r 
    < s }; 
    
      coherence
    
      proof
    
        now
    
          let x be
    object;
    
          assume x
    in  
    ].g, s.[;
    
          then ex r be
    Element of 
    ExtREAL st x 
    = r & g 
    < r & r 
    < s; 
    
          hence x
    in  
    REAL by 
    XXREAL_0: 48;
    
        end;
    
        hence thesis by
    TARSKI:def 3;
    
      end;
    
      compatibility
    
      proof
    
        set Y = { r : g
    < r & r 
    < s }; 
    
        let X be
    Subset of 
    REAL ; 
    
        
    
        
    
    A1: Y 
    c=  
    ].g, s.[
    
        proof
    
          let x be
    object;
    
          assume x
    in Y; 
    
          then
    
          consider r such that
    
          
    
    A2: x 
    = r & g 
    < r & r 
    < s; 
    
          r
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence thesis by
    A2,
    NUMBERS: 31;
    
        end;
    
        
    ].g, s.[
    c= Y 
    
        proof
    
          let x be
    object;
    
          assume x
    in  
    ].g, s.[;
    
          then
    
          consider r be
    Element of 
    ExtREAL such that 
    
          
    
    A3: x 
    = r and 
    
          
    
    A4: g 
    < r & r 
    < s; 
    
          r
    in  
    REAL by 
    A4,
    XXREAL_0: 48;
    
          hence thesis by
    A3,
    A4;
    
        end;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    theorem :: 
    
    RCOMP_1:1
    
    
    
    
    
    Th1: r 
    in  
    ].(p
    - g), (p 
    + g).[ iff 
    |.(r
    - p).| 
    < g 
    
    proof
    
      thus r
    in  
    ].(p
    - g), (p 
    + g).[ implies 
    |.(r
    - p).| 
    < g 
    
      proof
    
        assume r
    in  
    ].(p
    - g), (p 
    + g).[; 
    
        then
    
        
    
    A1: ex s st r 
    = s & (p 
    - g) 
    < s & s 
    < (p 
    + g); 
    
        then (p
    + ( 
    - g)) 
    < r; 
    
        then
    
        
    
    A2: ( 
    - g) 
    < (r 
    - p) by 
    XREAL_1: 20;
    
        (r
    - p) 
    < g by 
    A1,
    XREAL_1: 19;
    
        hence thesis by
    A2,
    SEQ_2: 1;
    
      end;
    
      assume
    
      
    
    A3: 
    |.(r
    - p).| 
    < g; 
    
      then (r
    - p) 
    < g by 
    SEQ_2: 1;
    
      then
    
      
    
    A4: r 
    < (p 
    + g) by 
    XREAL_1: 19;
    
      (
    - g) 
    < (r 
    - p) by 
    A3,
    SEQ_2: 1;
    
      then r is
    Real & (p 
    + ( 
    - g)) 
    < r by 
    XREAL_1: 20;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    RCOMP_1:2
    
    r
    in  
    [.p, g.] iff
    |.((p
    + g) 
    - (2 
    * r)).| 
    <= (g 
    - p) 
    
    proof
    
      thus r
    in  
    [.p, g.] implies
    |.((p
    + g) 
    - (2 
    * r)).| 
    <= (g 
    - p) 
    
      proof
    
        assume r
    in  
    [.p, g.];
    
        then
    
        
    
    A1: ex s st s 
    = r & p 
    <= s & s 
    <= g; 
    
        then (2
    * r) 
    <= (2 
    * g) by 
    XREAL_1: 64;
    
        then (
    - (2 
    * r)) 
    >= ( 
    - (2 
    * g)) by 
    XREAL_1: 24;
    
        then ((p
    + g) 
    + ( 
    - (2 
    * r))) 
    >= ((p 
    + g) 
    + ( 
    - (2 
    * g))) by 
    XREAL_1: 7;
    
        then
    
        
    
    A2: ((p 
    + g) 
    - (2 
    * r)) 
    >= ( 
    - (g 
    - p)); 
    
        (2
    * p) 
    <= (2 
    * r) by 
    A1,
    XREAL_1: 64;
    
        then (
    - (2 
    * p)) 
    >= ( 
    - (2 
    * r)) by 
    XREAL_1: 24;
    
        then ((p
    + g) 
    + ( 
    - (2 
    * p))) 
    >= ((p 
    + g) 
    + ( 
    - (2 
    * r))) by 
    XREAL_1: 7;
    
        hence thesis by
    A2,
    ABSVALUE: 5;
    
      end;
    
      assume
    
      
    
    A3: 
    |.((p
    + g) 
    - (2 
    * r)).| 
    <= (g 
    - p); 
    
      then ((p
    + g) 
    - (2 
    * r)) 
    >= ( 
    - (g 
    - p)) by 
    ABSVALUE: 5;
    
      then (p
    + g) 
    >= ((p 
    - g) 
    + (2 
    * r)) by 
    XREAL_1: 19;
    
      then ((p
    + g) 
    - (p 
    - g)) 
    >= (2 
    * r) by 
    XREAL_1: 19;
    
      then
    
      
    
    A4: ((1 
    / 2) 
    * (2 
    * g)) 
    >= ((1 
    / 2) 
    * (2 
    * r)) by 
    XREAL_1: 64;
    
      (g
    - p) 
    >= ((p 
    + g) 
    - (2 
    * r)) by 
    A3,
    ABSVALUE: 5;
    
      then ((2
    * r) 
    + (g 
    - p)) 
    >= (p 
    + g) by 
    XREAL_1: 20;
    
      then (2
    * r) 
    >= ((p 
    + g) 
    - (g 
    - p)) by 
    XREAL_1: 20;
    
      then ((1
    / 2) 
    * (2 
    * r)) 
    >= ((1 
    / 2) 
    * (2 
    * p)) by 
    XREAL_1: 64;
    
      hence r
    in  
    [.p, g.] by
    A4;
    
    end;
    
    theorem :: 
    
    RCOMP_1:3
    
    r
    in  
    ].p, g.[ iff
    |.((p
    + g) 
    - (2 
    * r)).| 
    < (g 
    - p) 
    
    proof
    
      thus r
    in  
    ].p, g.[ implies
    |.((p
    + g) 
    - (2 
    * r)).| 
    < (g 
    - p) 
    
      proof
    
        assume r
    in  
    ].p, g.[;
    
        then
    
        
    
    A1: ex s st s 
    = r & p 
    < s & s 
    < g; 
    
        then (2
    * r) 
    < (2 
    * g) by 
    XREAL_1: 68;
    
        then (
    - (2 
    * r)) 
    > ( 
    - (2 
    * g)) by 
    XREAL_1: 24;
    
        then ((p
    + g) 
    + ( 
    - (2 
    * r))) 
    > ((p 
    + g) 
    + ( 
    - (2 
    * g))) by 
    XREAL_1: 6;
    
        then
    
        
    
    A2: ((p 
    + g) 
    - (2 
    * r)) 
    > ( 
    - (g 
    - p)); 
    
        (2
    * p) 
    < (2 
    * r) by 
    A1,
    XREAL_1: 68;
    
        then (
    - (2 
    * p)) 
    > ( 
    - (2 
    * r)) by 
    XREAL_1: 24;
    
        then ((p
    + g) 
    + ( 
    - (2 
    * p))) 
    > ((p 
    + g) 
    + ( 
    - (2 
    * r))) by 
    XREAL_1: 6;
    
        hence thesis by
    A2,
    SEQ_2: 1;
    
      end;
    
      assume
    
      
    
    A3: 
    |.((p
    + g) 
    - (2 
    * r)).| 
    < (g 
    - p); 
    
      then ((p
    + g) 
    - (2 
    * r)) 
    > ( 
    - (g 
    - p)) by 
    SEQ_2: 1;
    
      then (p
    + g) 
    > ((p 
    - g) 
    + (2 
    * r)) by 
    XREAL_1: 20;
    
      then ((p
    + g) 
    - (p 
    - g)) 
    > (2 
    * r) by 
    XREAL_1: 20;
    
      then
    
      
    
    A4: ((1 
    / 2) 
    * (2 
    * g)) 
    > ((1 
    / 2) 
    * (2 
    * r)) by 
    XREAL_1: 68;
    
      (g
    - p) 
    > ((p 
    + g) 
    - (2 
    * r)) by 
    A3,
    SEQ_2: 1;
    
      then ((2
    * r) 
    + (g 
    - p)) 
    > (p 
    + g) by 
    XREAL_1: 19;
    
      then (2
    * r) 
    > ((p 
    + g) 
    - (g 
    - p)) by 
    XREAL_1: 19;
    
      then ((1
    / 2) 
    * (2 
    * r)) 
    > ((1 
    / 2) 
    * (2 
    * p)) by 
    XREAL_1: 68;
    
      hence thesis by
    A4;
    
    end;
    
    definition
    
      let X;
    
      :: 
    
    RCOMP_1:def3
    
      attr X is
    
    compact means for s1 st ( 
    rng s1) 
    c= X holds ex s2 st s2 is 
    subsequence of s1 & s2 is 
    convergent & ( 
    lim s2) 
    in X; 
    
    end
    
    definition
    
      let X;
    
      :: 
    
    RCOMP_1:def4
    
      attr X is
    
    closed means for s1 st ( 
    rng s1) 
    c= X & s1 is 
    convergent holds ( 
    lim s1) 
    in X; 
    
    end
    
    definition
    
      let X;
    
      :: 
    
    RCOMP_1:def5
    
      attr X is
    
    open means 
    
      :
    
    Def5: (X 
    ` ) is 
    closed;
    
    end
    
    theorem :: 
    
    RCOMP_1:4
    
    
    
    
    
    Th4: for s1 st ( 
    rng s1) 
    c=  
    [.s, g.] holds s1 is
    bounded
    
    proof
    
      let s1 such that
    
      
    
    A1: ( 
    rng s1) 
    c=  
    [.s, g.];
    
      thus s1 is
    bounded_above
    
      proof
    
        take r = (g
    + 1); 
    
        
    
        
    
    A2: for t st t 
    in ( 
    rng s1) holds t 
    < r 
    
        proof
    
          let t;
    
          assume t
    in ( 
    rng s1); 
    
          then t
    in  
    [.s, g.] by
    A1;
    
          then
    
          
    
    A3: ex p st t 
    = p & s 
    <= p & p 
    <= g; 
    
          g
    < r by 
    XREAL_1: 29;
    
          hence thesis by
    A3,
    XXREAL_0: 2;
    
        end;
    
        let n;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
        then (s1
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
        hence thesis by
    A2;
    
      end;
    
      take r = (s
    - 1); 
    
      
    
      
    
    A4: (r 
    + 1) 
    = (s 
    - (1 
    - 1)); 
    
      
    
      
    
    A5: for t st t 
    in ( 
    rng s1) holds r 
    < t 
    
      proof
    
        let t;
    
        assume t
    in ( 
    rng s1); 
    
        then t
    in  
    [.s, g.] by
    A1;
    
        then
    
        
    
    A6: ex p st t 
    = p & s 
    <= p & p 
    <= g; 
    
        r
    < s by 
    A4,
    XREAL_1: 29;
    
        hence thesis by
    A6,
    XXREAL_0: 2;
    
      end;
    
      let n;
    
      n
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
      then (s1
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
      hence thesis by
    A5;
    
    end;
    
    theorem :: 
    
    RCOMP_1:5
    
    
    
    
    
    Th5: 
    [.s, g.] is
    closed
    
    proof
    
      for s1 st (
    rng s1) 
    c=  
    [.s, g.] & s1 is
    convergent holds ( 
    lim s1) 
    in  
    [.s, g.]
    
      proof
    
        let s1;
    
        assume that
    
        
    
    A1: ( 
    rng s1) 
    c=  
    [.s, g.] and
    
        
    
    A2: s1 is 
    convergent;
    
        
    
        
    
    A3: s 
    <= ( 
    lim s1) 
    
        proof
    
          set s2 = (
    seq_const s); 
    
          
    
    A4: 
    
          now
    
            let n;
    
            n
    in  
    NAT by 
    ORDINAL1:def 12;
    
            then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
            then (s1
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
            then (s1
    . n) 
    in  
    [.s, g.] by
    A1;
    
            then ex p st (s1
    . n) 
    = p & s 
    <= p & p 
    <= g; 
    
            hence (s2
    . n) 
    <= (s1 
    . n) by 
    SEQ_1: 57;
    
          end;
    
          (s2
    .  
    0 ) 
    = s by 
    SEQ_1: 57;
    
          then (
    lim s2) 
    = s by 
    SEQ_4: 25;
    
          hence thesis by
    A2,
    A4,
    SEQ_2: 18;
    
        end;
    
        (
    lim s1) 
    <= g 
    
        proof
    
          set s2 = (
    seq_const g); 
    
          
    
    A5: 
    
          now
    
            let n;
    
            n
    in  
    NAT by 
    ORDINAL1:def 12;
    
            then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
            then (s1
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
            then (s1
    . n) 
    in  
    [.s, g.] by
    A1;
    
            then ex p st (s1
    . n) 
    = p & s 
    <= p & p 
    <= g; 
    
            hence (s1
    . n) 
    <= (s2 
    . n) by 
    SEQ_1: 57;
    
          end;
    
          (s2
    .  
    0 ) 
    = g by 
    SEQ_1: 57;
    
          then (
    lim s2) 
    = g by 
    SEQ_4: 25;
    
          hence thesis by
    A2,
    A5,
    SEQ_2: 18;
    
        end;
    
        hence thesis by
    A3;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RCOMP_1:6
    
    
    [.s, g.] is
    compact
    
    proof
    
      for s1 st (
    rng s1) 
    c=  
    [.s, g.] holds ex s2 st s2 is
    subsequence of s1 & s2 is 
    convergent & ( 
    lim s2) 
    in  
    [.s, g.]
    
      proof
    
        let s1;
    
        
    
        
    
    A1: 
    [.s, g.] is
    closed by 
    Th5;
    
        assume
    
        
    
    A2: ( 
    rng s1) 
    c=  
    [.s, g.];
    
        then
    
        consider s2 be
    Real_Sequence such that 
    
        
    
    A3: s2 is 
    subsequence of s1 and 
    
        
    
    A4: s2 is 
    convergent by 
    Th4,
    SEQ_4: 40;
    
        take s2;
    
        ex Nseq st s2
    = (s1 
    * Nseq) by 
    A3,
    VALUED_0:def 17;
    
        then (
    rng s2) 
    c= ( 
    rng s1) by 
    RELAT_1: 26;
    
        then (
    rng s2) 
    c=  
    [.s, g.] by
    A2;
    
        hence thesis by
    A3,
    A4,
    A1;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RCOMP_1:7
    
    
    
    
    
    Th7: 
    ].p, q.[ is
    open
    
    proof
    
      defpred
    
    P[
    Real] means $1
    <= p or q 
    <= $1; 
    
      consider X such that
    
      
    
    A1: for r be 
    Element of 
    REAL holds r 
    in X iff 
    P[r] from
    SUBSET_1:sch 3;
    
      now
    
        let s1 such that
    
        
    
    A2: ( 
    rng s1) 
    c= X and 
    
        
    
    A3: s1 is 
    convergent;
    
        
    
        
    
    A4: ( 
    lim s1) 
    in  
    REAL by 
    XREAL_0:def 1;
    
        (
    lim s1) 
    <= p or q 
    <= ( 
    lim s1) 
    
        proof
    
          assume
    
          
    
    A5: not thesis; 
    
          then
    0  
    < (( 
    lim s1) 
    - p) by 
    XREAL_1: 50;
    
          then
    
          consider n1 such that
    
          
    
    A6: for m st n1 
    <= m holds 
    |.((s1
    . m) 
    - ( 
    lim s1)).| 
    < (( 
    lim s1) 
    - p) by 
    A3,
    SEQ_2:def 7;
    
          
    0  
    < (q 
    - ( 
    lim s1)) by 
    A5,
    XREAL_1: 50;
    
          then
    
          consider n such that
    
          
    
    A7: for m st n 
    <= m holds 
    |.((s1
    . m) 
    - ( 
    lim s1)).| 
    < (q 
    - ( 
    lim s1)) by 
    A3,
    SEQ_2:def 7;
    
          consider k such that
    
          
    
    A8: ( 
    max (n,n1)) 
    < k by 
    SEQ_4: 3;
    
          n1
    <= ( 
    max (n,n1)) by 
    XXREAL_0: 25;
    
          then n1
    <= k by 
    A8,
    XXREAL_0: 2;
    
          then
    
          
    
    A9: 
    |.((s1
    . k) 
    - ( 
    lim s1)).| 
    < (( 
    lim s1) 
    - p) by 
    A6;
    
          (
    -  
    |.((s1
    . k) 
    - ( 
    lim s1)).|) 
    <= ((s1 
    . k) 
    - ( 
    lim s1)) by 
    ABSVALUE: 4;
    
          then (
    - ((s1 
    . k) 
    - ( 
    lim s1))) 
    <= ( 
    - ( 
    -  
    |.((s1
    . k) 
    - ( 
    lim s1)).|)) by 
    XREAL_1: 24;
    
          then (
    - ((s1 
    . k) 
    - ( 
    lim s1))) 
    < (( 
    lim s1) 
    - p) by 
    A9,
    XXREAL_0: 2;
    
          then (
    - (( 
    lim s1) 
    - p)) 
    < ( 
    - ( 
    - ((s1 
    . k) 
    - ( 
    lim s1)))) by 
    XREAL_1: 24;
    
          then (p
    - ( 
    lim s1)) 
    < ((s1 
    . k) 
    - ( 
    lim s1)); 
    
          then
    
          
    
    A10: p 
    < (s1 
    . k) by 
    XREAL_1: 9;
    
          n
    <= ( 
    max (n,n1)) by 
    XXREAL_0: 25;
    
          then n
    <= k by 
    A8,
    XXREAL_0: 2;
    
          then ((s1
    . k) 
    - ( 
    lim s1)) 
    <=  
    |.((s1
    . k) 
    - ( 
    lim s1)).| & 
    |.((s1
    . k) 
    - ( 
    lim s1)).| 
    < (q 
    - ( 
    lim s1)) by 
    A7,
    ABSVALUE: 4;
    
          then ((s1
    . k) 
    - ( 
    lim s1)) 
    < (q 
    - ( 
    lim s1)) by 
    XXREAL_0: 2;
    
          then
    
          
    
    A11: (s1 
    . k) 
    < q by 
    XREAL_1: 9;
    
          
    
          
    
    A12: k 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          
    
          
    
    A13: (s1 
    . k) 
    in  
    REAL by 
    XREAL_0:def 1;
    
          (
    dom s1) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          then (s1
    . k) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3,
    A12;
    
          hence contradiction by
    A1,
    A2,
    A11,
    A10,
    A13;
    
        end;
    
        hence (
    lim s1) 
    in X by 
    A1,
    A4;
    
      end;
    
      then
    
      
    
    A14: X is 
    closed;
    
      now
    
        let r;
    
        
    
        
    
    A15: r 
    in  
    REAL by 
    XREAL_0:def 1;
    
        assume r
    in ( 
    ].p, q.[
    ` ); 
    
        then not r
    in  
    ].p, q.[ by
    XBOOLE_0:def 5;
    
        then r
    <= p or q 
    <= r; 
    
        hence r
    in X by 
    A1,
    A15;
    
      end;
    
      then
    
      
    
    A16: ( 
    ].p, q.[
    ` ) 
    c= X; 
    
      now
    
        let r;
    
        assume r
    in X; 
    
        then not ex s st s
    = r & p 
    < s & s 
    < q by 
    A1;
    
        then r
    in  
    REAL & not r 
    in  
    ].p, q.[ by
    XREAL_0:def 1;
    
        hence r
    in ( 
    ].p, q.[
    ` ) by 
    XBOOLE_0:def 5;
    
      end;
    
      then X
    c= ( 
    ].p, q.[
    ` ); 
    
      then (
    ].p, q.[
    ` ) 
    = X by 
    A16;
    
      hence thesis by
    A14;
    
    end;
    
    registration
    
      let p,q be
    Real;
    
      cluster 
    ].p, q.[ ->
    open;
    
      coherence by
    Th7;
    
      cluster 
    [.p, q.] ->
    closed;
    
      coherence by
    Th5;
    
    end
    
    theorem :: 
    
    RCOMP_1:8
    
    
    
    
    
    Th8: X is 
    compact implies X is 
    closed
    
    proof
    
      assume
    
      
    
    A1: X is 
    compact;
    
      assume not X is
    closed;
    
      then
    
      consider s1 such that
    
      
    
    A2: ( 
    rng s1) 
    c= X and 
    
      
    
    A3: s1 is 
    convergent & not ( 
    lim s1) 
    in X; 
    
      ex s2 st s2 is
    subsequence of s1 & s2 is 
    convergent & ( 
    lim s2) 
    in X by 
    A1,
    A2;
    
      hence contradiction by
    A3,
    SEQ_4: 17;
    
    end;
    
    registration
    
      cluster 
    compact -> 
    closed for 
    Subset of 
    REAL ; 
    
      coherence by
    Th8;
    
    end
    
    theorem :: 
    
    RCOMP_1:9
    
    
    
    
    
    Th9: (for p st p 
    in X holds ex r, n st 
    0  
    < r & (for m st n 
    < m holds r 
    <  
    |.((s1
    . m) 
    - p).|)) implies for s2 st s2 is 
    subsequence of s1 holds not (s2 is 
    convergent & ( 
    lim s2) 
    in X) 
    
    proof
    
      assume that
    
      
    
    A1: for p st p 
    in X holds ex r, n st 
    0  
    < r & for m st n 
    < m holds r 
    <  
    |.((s1
    . m) 
    - p).| and 
    
      
    
    A2: not for s2 st s2 is 
    subsequence of s1 holds not (s2 is 
    convergent & ( 
    lim s2) 
    in X); 
    
      consider s2 such that
    
      
    
    A3: s2 is 
    subsequence of s1 and 
    
      
    
    A4: s2 is 
    convergent and 
    
      
    
    A5: ( 
    lim s2) 
    in X by 
    A2;
    
      consider r, n such that
    
      
    
    A6: 
    0  
    < r and 
    
      
    
    A7: for m st n 
    < m holds r 
    <  
    |.((s1
    . m) 
    - ( 
    lim s2)).| by 
    A1,
    A5;
    
      consider n1 such that
    
      
    
    A8: for m st n1 
    <= m holds 
    |.((s2
    . m) 
    - ( 
    lim s2)).| 
    < r by 
    A4,
    A6,
    SEQ_2:def 7;
    
      consider NS be
    increasing  
    sequence of 
    NAT such that 
    
      
    
    A9: s2 
    = (s1 
    * NS) by 
    A3,
    VALUED_0:def 17;
    
      reconsider k = ((n
    + 1) 
    + n1) as 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      
    |.(((s1
    * NS) 
    . k) 
    - ( 
    lim s2)).| 
    < r by 
    A8,
    A9,
    NAT_1: 11;
    
      then
    
      
    
    A10: 
    |.((s1
    . (NS 
    . k)) 
    - ( 
    lim s2)).| 
    < r by 
    FUNCT_2: 15;
    
      (n
    + 1) 
    <= k by 
    NAT_1: 11;
    
      then
    
      
    
    A11: n 
    < k by 
    NAT_1: 13;
    
      k
    <= (NS 
    . k) by 
    SEQM_3: 14;
    
      then n
    < (NS 
    . k) by 
    A11,
    XXREAL_0: 2;
    
      hence contradiction by
    A7,
    A10;
    
    end;
    
    theorem :: 
    
    RCOMP_1:10
    
    
    
    
    
    Th10: X is 
    compact implies X is 
    real-bounded
    
    proof
    
      assume
    
      
    
    A1: X is 
    compact;
    
      assume
    
      
    
    A2: not X is 
    real-bounded;
    
      per cases by
    A2;
    
        suppose
    
        
    
    A3: not X is 
    bounded_above;
    
        defpred
    
    P[
    Element of 
    NAT , 
    Element of 
    REAL ] means ex q st q 
    = $2 & q 
    in X & $1 
    < q; 
    
        
    
        
    
    A4: for n be 
    Element of 
    NAT holds ex p be 
    Element of 
    REAL st 
    P[n, p]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
           not n is
    UpperBound of X by 
    A3,
    XXREAL_2:def 10;
    
          then
    
          consider t be
    ExtReal such that 
    
          
    
    A5: t 
    in X & n 
    < t by 
    XXREAL_2:def 1;
    
          take t;
    
          thus thesis by
    A5;
    
        end;
    
        consider f be
    sequence of 
    REAL such that 
    
        
    
    A6: for n be 
    Element of 
    NAT holds 
    P[n, (f
    . n)] from 
    FUNCT_2:sch 3(
    A4);
    
        
    
    A7: 
    
        now
    
          let n;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          then ex q st q
    = (f 
    . n) & q 
    in X & n 
    < q by 
    A6;
    
          hence (f
    . n) 
    in X & n 
    < (f 
    . n); 
    
        end;
    
        
    
        
    
    A8: for p st p 
    in X holds ex r, n st 
    0  
    < r & for m st n 
    < m holds r 
    <  
    |.((f
    . m) 
    - p).| 
    
        proof
    
          let p such that p
    in X; 
    
          consider q such that
    
          
    
    A9: q 
    = 1; 
    
          take r = q;
    
          consider k such that
    
          
    
    A10: (p 
    + 1) 
    < k by 
    SEQ_4: 3;
    
          take n = k;
    
          thus
    0  
    < r by 
    A9;
    
          let m;
    
          assume n
    < m; 
    
          then (p
    + 1) 
    < m by 
    A10,
    XXREAL_0: 2;
    
          then (p
    + 1) 
    < (f 
    . m) by 
    A7,
    XXREAL_0: 2;
    
          then 1
    < ((f 
    . m) 
    - p) by 
    XREAL_1: 20;
    
          hence thesis by
    A9,
    ABSVALUE:def 1;
    
        end;
    
        (
    rng f) 
    c= X 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    rng f); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A11: y 
    in ( 
    dom f) and 
    
          
    
    A12: x 
    = (f 
    . y) by 
    FUNCT_1:def 3;
    
          reconsider y as
    Element of 
    NAT by 
    A11,
    FUNCT_2:def 1;
    
          (f
    . y) 
    in X by 
    A7;
    
          hence thesis by
    A12;
    
        end;
    
        then ex s2 st s2 is
    subsequence of f & s2 is 
    convergent & ( 
    lim s2) 
    in X by 
    A1;
    
        hence contradiction by
    A8,
    Th9;
    
      end;
    
        suppose
    
        
    
    A13: not X is 
    bounded_below;
    
        defpred
    
    P[
    Element of 
    NAT , 
    Element of 
    REAL ] means ex q st q 
    = $2 & q 
    in X & q 
    < ( 
    - $1); 
    
        
    
        
    
    A14: for n be 
    Element of 
    NAT holds ex p be 
    Element of 
    REAL st 
    P[n, p]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
           not (
    - n) is 
    LowerBound of X by 
    A13,
    XXREAL_2:def 9;
    
          then
    
          consider t be
    ExtReal such that 
    
          
    
    A15: t 
    in X & t 
    < ( 
    - n) by 
    XXREAL_2:def 2;
    
          take t;
    
          thus thesis by
    A15;
    
        end;
    
        consider f be
    sequence of 
    REAL such that 
    
        
    
    A16: for n be 
    Element of 
    NAT holds 
    P[n, (f
    . n)] from 
    FUNCT_2:sch 3(
    A14);
    
        
    
    A17: 
    
        now
    
          let n;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          then ex q st q
    = (f 
    . n) & q 
    in X & q 
    < ( 
    - n) by 
    A16;
    
          hence (f
    . n) 
    in X & (f 
    . n) 
    < ( 
    - n); 
    
        end;
    
        
    
        
    
    A18: for p st p 
    in X holds ex r, n st 
    0  
    < r & for m st n 
    < m holds r 
    <  
    |.((f
    . m) 
    - p).| 
    
        proof
    
          let p such that p
    in X; 
    
          consider q such that
    
          
    
    A19: q 
    = 1; 
    
          take r = q;
    
          consider k such that
    
          
    
    A20: 
    |.(p
    - 1).| 
    < k by 
    SEQ_4: 3;
    
          take n = k;
    
          thus
    0  
    < r by 
    A19;
    
          let m;
    
          assume n
    < m; 
    
          then
    
          
    
    A21: ( 
    - m) 
    < ( 
    - n) by 
    XREAL_1: 24;
    
          (
    - k) 
    < (p 
    - 1) by 
    A20,
    SEQ_2: 1;
    
          then (
    - m) 
    < (p 
    - 1) by 
    A21,
    XXREAL_0: 2;
    
          then (f
    . m) 
    < (p 
    - 1) by 
    A17,
    XXREAL_0: 2;
    
          then ((f
    . m) 
    + 1) 
    < p by 
    XREAL_1: 20;
    
          then 1
    < (p 
    - (f 
    . m)) by 
    XREAL_1: 20;
    
          then r
    <  
    |.(
    - ((f 
    . m) 
    - p)).| by 
    A19,
    ABSVALUE:def 1;
    
          hence thesis by
    COMPLEX1: 52;
    
        end;
    
        (
    rng f) 
    c= X 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    rng f); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A22: y 
    in ( 
    dom f) and 
    
          
    
    A23: x 
    = (f 
    . y) by 
    FUNCT_1:def 3;
    
          reconsider y as
    Element of 
    NAT by 
    A22,
    FUNCT_2:def 1;
    
          (f
    . y) 
    in X by 
    A17;
    
          hence thesis by
    A23;
    
        end;
    
        then ex s2 st s2 is
    subsequence of f & s2 is 
    convergent & ( 
    lim s2) 
    in X by 
    A1;
    
        hence contradiction by
    A18,
    Th9;
    
      end;
    
    end;
    
    theorem :: 
    
    RCOMP_1:11
    
    X is
    real-bounded
    closed implies X is 
    compact
    
    proof
    
      assume that
    
      
    
    A1: X is 
    real-bounded and 
    
      
    
    A2: X is 
    closed;
    
      now
    
        let s1 such that
    
        
    
    A3: ( 
    rng s1) 
    c= X; 
    
        
    
        
    
    A4: s1 is 
    bounded_below
    
        proof
    
          consider p such that
    
          
    
    A5: p is 
    LowerBound of X by 
    A1,
    XXREAL_2:def 9;
    
          
    
          
    
    A6: for q st q 
    in X holds p 
    <= q by 
    A5,
    XXREAL_2:def 2;
    
          take r = (p
    - 1); 
    
          
    
          
    
    A7: (r 
    + 1) 
    = (p 
    - (1 
    - 1)); 
    
          
    
          
    
    A8: for t st t 
    in ( 
    rng s1) holds r 
    < t 
    
          proof
    
            let t;
    
            assume t
    in ( 
    rng s1); 
    
            then
    
            
    
    A9: p 
    <= t by 
    A3,
    A6;
    
            r
    < p by 
    A7,
    XREAL_1: 29;
    
            hence thesis by
    A9,
    XXREAL_0: 2;
    
          end;
    
          for n holds r
    < (s1 
    . n) 
    
          proof
    
            let n;
    
            n
    in  
    NAT by 
    ORDINAL1:def 12;
    
            then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
            then (s1
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
            hence thesis by
    A8;
    
          end;
    
          hence thesis;
    
        end;
    
        s1 is
    bounded_above
    
        proof
    
          consider p such that
    
          
    
    A10: p is 
    UpperBound of X by 
    A1,
    XXREAL_2:def 10;
    
          
    
          
    
    A11: for q st q 
    in X holds q 
    <= p by 
    A10,
    XXREAL_2:def 1;
    
          take r = (p
    + 1); 
    
          
    
          
    
    A12: for t st t 
    in ( 
    rng s1) holds t 
    < r 
    
          proof
    
            let t;
    
            assume t
    in ( 
    rng s1); 
    
            then
    
            
    
    A13: t 
    <= p by 
    A3,
    A11;
    
            p
    < r by 
    XREAL_1: 29;
    
            hence thesis by
    A13,
    XXREAL_0: 2;
    
          end;
    
          for n holds (s1
    . n) 
    < r 
    
          proof
    
            let n;
    
            n
    in  
    NAT by 
    ORDINAL1:def 12;
    
            then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
            then (s1
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
            hence thesis by
    A12;
    
          end;
    
          hence thesis;
    
        end;
    
        then s1 is
    bounded by 
    A4;
    
        then
    
        consider s2 be
    Real_Sequence such that 
    
        
    
    A14: s2 is 
    subsequence of s1 and 
    
        
    
    A15: s2 is 
    convergent by 
    SEQ_4: 40;
    
        ex Nseq st s2
    = (s1 
    * Nseq) by 
    A14,
    VALUED_0:def 17;
    
        then (
    rng s2) 
    c= ( 
    rng s1) by 
    RELAT_1: 26;
    
        then (
    rng s2) 
    c= X by 
    A3;
    
        then (
    lim s2) 
    in X by 
    A2,
    A15;
    
        hence ex s2 st s2 is
    subsequence of s1 & s2 is 
    convergent & ( 
    lim s2) 
    in X by 
    A14,
    A15;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RCOMP_1:12
    
    
    
    
    
    Th12: for X st X 
    <>  
    {} & X is 
    closed & X is 
    bounded_above holds ( 
    upper_bound X) 
    in X 
    
    proof
    
      let X such that
    
      
    
    A1: X 
    <>  
    {} and 
    
      
    
    A2: X is 
    closed and 
    
      
    
    A3: X is 
    bounded_above and 
    
      
    
    A4: not ( 
    upper_bound X) 
    in X; 
    
      set s1 = (
    upper_bound X); 
    
      defpred
    
    P[
    Element of 
    NAT , 
    Element of 
    REAL ] means ex q st q 
    = $2 & q 
    in X & (s1 
    - q) 
    < (1 
    / ($1 
    + 1)); 
    
      
    
      
    
    A5: for n be 
    Element of 
    NAT holds ex p be 
    Element of 
    REAL st 
    P[n, p]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        
    0  
    < ((n 
    + 1) 
    " ); 
    
        then
    0  
    < (1 
    / (n 
    + 1)) by 
    XCMPLX_1: 215;
    
        then
    
        consider t such that
    
        
    
    A6: t 
    in X and 
    
        
    
    A7: (s1 
    - (1 
    / (n 
    + 1))) 
    < t by 
    A1,
    A3,
    SEQ_4:def 1;
    
        take t;
    
        s1
    < (t 
    + (1 
    / (n 
    + 1))) by 
    A7,
    XREAL_1: 19;
    
        then (s1
    - t) 
    < (1 
    / (n 
    + 1)) by 
    XREAL_1: 19;
    
        hence thesis by
    A6;
    
      end;
    
      consider f be
    sequence of 
    REAL such that 
    
      
    
    A8: for n be 
    Element of 
    NAT holds 
    P[n, (f
    . n)] from 
    FUNCT_2:sch 3(
    A5);
    
      
    
    A9: 
    
      now
    
        let n;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then ex q st q
    = (f 
    . n) & q 
    in X & (s1 
    - q) 
    < (1 
    / (n 
    + 1)) by 
    A8;
    
        hence (f
    . n) 
    in X & (s1 
    - (f 
    . n)) 
    < (1 
    / (n 
    + 1)); 
    
      end;
    
      
    
      
    
    A10: ( 
    rng f) 
    c= X 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng f); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A11: y 
    in ( 
    dom f) and 
    
        
    
    A12: x 
    = (f 
    . y) by 
    FUNCT_1:def 3;
    
        reconsider y as
    Element of 
    NAT by 
    A11,
    FUNCT_2:def 1;
    
        (f
    . y) 
    in X by 
    A9;
    
        hence thesis by
    A12;
    
      end;
    
      
    
    A13: 
    
      now
    
        let s;
    
        assume
    
        
    
    A14: 
    0  
    < s; 
    
        consider n such that
    
        
    
    A15: (s 
    " ) 
    < n by 
    SEQ_4: 3;
    
        take k = n;
    
        let m;
    
        assume k
    <= m; 
    
        then (k
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        then
    
        
    
    A16: (1 
    / (m 
    + 1)) 
    <= (1 
    / (k 
    + 1)) by 
    XREAL_1: 118;
    
        (f
    . m) 
    in X by 
    A9;
    
        then (f
    . m) 
    <= s1 by 
    A3,
    SEQ_4:def 1;
    
        then
    
        
    
    A17: 
    0  
    <= (s1 
    - (f 
    . m)) by 
    XREAL_1: 48;
    
        ((s
    " ) 
    +  
    0 ) 
    < (n 
    + 1) by 
    A15,
    XREAL_1: 8;
    
        then (1
    / (n 
    + 1)) 
    < (1 
    / (s 
    " )) by 
    A14,
    XREAL_1: 76;
    
        then (1
    / (n 
    + 1)) 
    < s by 
    XCMPLX_1: 216;
    
        then (1
    / (m 
    + 1)) 
    < s by 
    A16,
    XXREAL_0: 2;
    
        then (s1
    - (f 
    . m)) 
    < s by 
    A9,
    XXREAL_0: 2;
    
        then
    |.(
    - ((f 
    . m) 
    - s1)).| 
    < s by 
    A17,
    ABSVALUE:def 1;
    
        hence
    |.((f
    . m) 
    - s1).| 
    < s by 
    COMPLEX1: 52;
    
      end;
    
      then
    
      
    
    A18: f is 
    convergent;
    
      then (
    lim f) 
    = s1 by 
    A13,
    SEQ_2:def 7;
    
      hence contradiction by
    A2,
    A4,
    A18,
    A10;
    
    end;
    
    theorem :: 
    
    RCOMP_1:13
    
    
    
    
    
    Th13: for X st X 
    <>  
    {} & X is 
    closed & X is 
    bounded_below holds ( 
    lower_bound X) 
    in X 
    
    proof
    
      let X such that
    
      
    
    A1: X 
    <>  
    {} and 
    
      
    
    A2: X is 
    closed and 
    
      
    
    A3: X is 
    bounded_below and 
    
      
    
    A4: not ( 
    lower_bound X) 
    in X; 
    
      set i1 = (
    lower_bound X); 
    
      defpred
    
    P[
    Element of 
    NAT , 
    Element of 
    REAL ] means ex q st q 
    = $2 & q 
    in X & (q 
    - i1) 
    < (1 
    / ($1 
    + 1)); 
    
      
    
      
    
    A5: for n be 
    Element of 
    NAT holds ex p be 
    Element of 
    REAL st 
    P[n, p]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        
    0  
    < ((n 
    + 1) 
    " ); 
    
        then
    0  
    < (1 
    / (n 
    + 1)) by 
    XCMPLX_1: 215;
    
        then
    
        consider t such that
    
        
    
    A6: t 
    in X and 
    
        
    
    A7: t 
    < (i1 
    + (1 
    / (n 
    + 1))) by 
    A1,
    A3,
    SEQ_4:def 2;
    
        take t;
    
        (t
    - i1) 
    < (1 
    / (n 
    + 1)) by 
    A7,
    XREAL_1: 19;
    
        hence thesis by
    A6;
    
      end;
    
      consider f be
    sequence of 
    REAL such that 
    
      
    
    A8: for n be 
    Element of 
    NAT holds 
    P[n, (f
    . n)] from 
    FUNCT_2:sch 3(
    A5);
    
      
    
    A9: 
    
      now
    
        let n;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then ex q st q
    = (f 
    . n) & q 
    in X & (q 
    - i1) 
    < (1 
    / (n 
    + 1)) by 
    A8;
    
        hence (f
    . n) 
    in X & ((f 
    . n) 
    - i1) 
    < (1 
    / (n 
    + 1)); 
    
      end;
    
      
    
      
    
    A10: ( 
    rng f) 
    c= X 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng f); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A11: y 
    in ( 
    dom f) and 
    
        
    
    A12: x 
    = (f 
    . y) by 
    FUNCT_1:def 3;
    
        reconsider y as
    Element of 
    NAT by 
    A11,
    FUNCT_2:def 1;
    
        (f
    . y) 
    in X by 
    A9;
    
        hence thesis by
    A12;
    
      end;
    
      
    
    A13: 
    
      now
    
        let s;
    
        assume
    
        
    
    A14: 
    0  
    < s; 
    
        consider n such that
    
        
    
    A15: (s 
    " ) 
    < n by 
    SEQ_4: 3;
    
        take k = n;
    
        let m;
    
        assume k
    <= m; 
    
        then (k
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        then
    
        
    
    A16: (1 
    / (m 
    + 1)) 
    <= (1 
    / (k 
    + 1)) by 
    XREAL_1: 118;
    
        (f
    . m) 
    in X by 
    A9;
    
        then i1
    <= (f 
    . m) by 
    A3,
    SEQ_4:def 2;
    
        then
    
        
    
    A17: 
    0  
    <= ((f 
    . m) 
    - i1) by 
    XREAL_1: 48;
    
        ((s
    " ) 
    +  
    0 ) 
    < (n 
    + 1) by 
    A15,
    XREAL_1: 8;
    
        then (1
    / (n 
    + 1)) 
    < (1 
    / (s 
    " )) by 
    A14,
    XREAL_1: 76;
    
        then (1
    / (n 
    + 1)) 
    < s by 
    XCMPLX_1: 216;
    
        then (1
    / (m 
    + 1)) 
    < s by 
    A16,
    XXREAL_0: 2;
    
        then ((f
    . m) 
    - i1) 
    < s by 
    A9,
    XXREAL_0: 2;
    
        hence
    |.((f
    . m) 
    - i1).| 
    < s by 
    A17,
    ABSVALUE:def 1;
    
      end;
    
      then
    
      
    
    A18: f is 
    convergent;
    
      then (
    lim f) 
    = i1 by 
    A13,
    SEQ_2:def 7;
    
      hence contradiction by
    A2,
    A4,
    A18,
    A10;
    
    end;
    
    theorem :: 
    
    RCOMP_1:14
    
    for X st X
    <>  
    {} & X is 
    compact holds ( 
    upper_bound X) 
    in X & ( 
    lower_bound X) 
    in X 
    
    proof
    
      let X such that
    
      
    
    A1: X 
    <>  
    {} and 
    
      
    
    A2: X is 
    compact;
    
      X is
    real-bounded
    closed by 
    A2,
    Th10;
    
      hence thesis by
    A1,
    Th12,
    Th13;
    
    end;
    
    theorem :: 
    
    RCOMP_1:15
    
    X is
    compact & (for g1, g2 st g1 
    in X & g2 
    in X holds 
    [.g1, g2.]
    c= X) implies ex p, g st X 
    =  
    [.p, g.]
    
    proof
    
      assume that
    
      
    
    A1: X is 
    compact and 
    
      
    
    A2: for g1, g2 st g1 
    in X & g2 
    in X holds 
    [.g1, g2.]
    c= X; 
    
      per cases ;
    
        suppose
    
        
    
    A3: X 
    =  
    {} ; 
    
        take 1;
    
        take
    0 ; 
    
        thus thesis by
    A3,
    XXREAL_1: 29;
    
      end;
    
        suppose
    
        
    
    A4: X 
    <>  
    {} ; 
    
        take p = (
    lower_bound X), g = ( 
    upper_bound X); 
    
        
    
        
    
    A5: X is 
    real-bounded
    closed by 
    A1,
    Th10;
    
        now
    
          let r be
    Element of 
    REAL ; 
    
          assume r
    in X; 
    
          then r
    <= g & p 
    <= r by 
    A5,
    SEQ_4:def 1,
    SEQ_4:def 2;
    
          hence r
    in  
    [.p, g.];
    
        end;
    
        then
    
        
    
    A6: X 
    c=  
    [.p, g.];
    
        (
    upper_bound X) 
    in X & ( 
    lower_bound X) 
    in X by 
    A4,
    A5,
    Th12,
    Th13;
    
        then
    [.p, g.]
    c= X by 
    A2;
    
        hence thesis by
    A6;
    
      end;
    
    end;
    
    registration
    
      cluster 
    open for 
    Subset of 
    REAL ; 
    
      existence
    
      proof
    
        take
    ].
    0 , 1.[; 
    
        thus thesis;
    
      end;
    
    end
    
    definition
    
      let r be
    Real;
    
      :: 
    
    RCOMP_1:def6
    
      mode
    
    Neighbourhood of r -> 
    Subset of 
    REAL means 
    
      :
    
    Def6: ex g st 
    0  
    < g & it 
    =  
    ].(r
    - g), (r 
    + g).[; 
    
      existence
    
      proof
    
        take
    ].(r
    - 1), (r 
    + 1).[; 
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      let r be
    Real;
    
      cluster -> 
    open for 
    Neighbourhood of r; 
    
      coherence
    
      proof
    
        let A be
    Neighbourhood of r; 
    
        ex g st
    0  
    < g & A 
    =  
    ].(r
    - g), (r 
    + g).[ by 
    Def6;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    RCOMP_1:16
    
    for N be
    Neighbourhood of r holds r 
    in N 
    
    proof
    
      let N be
    Neighbourhood of r; 
    
      (ex g st
    0  
    < g & N 
    =  
    ].(r
    - g), (r 
    + g).[) & 
    |.(r
    - r).| 
    =  
    0 by 
    Def6,
    ABSVALUE: 2;
    
      hence thesis by
    Th1;
    
    end;
    
    theorem :: 
    
    RCOMP_1:17
    
    for r holds for N1,N2 be
    Neighbourhood of r holds ex N be 
    Neighbourhood of r st N 
    c= N1 & N 
    c= N2 
    
    proof
    
      let r;
    
      let N1,N2 be
    Neighbourhood of r; 
    
      consider g1 such that
    
      
    
    A1: 
    0  
    < g1 and 
    
      
    
    A2: 
    ].(r
    - g1), (r 
    + g1).[ 
    = N1 by 
    Def6;
    
      consider g2 such that
    
      
    
    A3: 
    0  
    < g2 and 
    
      
    
    A4: 
    ].(r
    - g2), (r 
    + g2).[ 
    = N2 by 
    Def6;
    
      set g = (
    min (g1,g2)); 
    
      
    0  
    < g by 
    A1,
    A3,
    XXREAL_0: 15;
    
      then
    
      reconsider N =
    ].(r
    - g), (r 
    + g).[ as 
    Neighbourhood of r by 
    Def6;
    
      take N;
    
      
    
      
    
    A5: g 
    <= g1 by 
    XXREAL_0: 17;
    
      then
    
      
    
    A6: (r 
    + g) 
    <= (r 
    + g1) by 
    XREAL_1: 7;
    
      (
    - g1) 
    <= ( 
    - g) by 
    A5,
    XREAL_1: 24;
    
      then
    
      
    
    A7: (r 
    + ( 
    - g1)) 
    <= (r 
    + ( 
    - g)) by 
    XREAL_1: 7;
    
      
    
      
    
    A8: g 
    <= g2 by 
    XXREAL_0: 17;
    
      then (
    - g2) 
    <= ( 
    - g) by 
    XREAL_1: 24;
    
      then
    
      
    
    A9: (r 
    + ( 
    - g2)) 
    <= (r 
    + ( 
    - g)) by 
    XREAL_1: 7;
    
      
    
      
    
    A10: (r 
    + g) 
    <= (r 
    + g2) by 
    A8,
    XREAL_1: 7;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A11: g1 
    <= g2; 
    
          
    
    A12: 
    
          now
    
            let y be
    object;
    
            assume
    
            
    
    A13: y 
    in  
    ].(r
    - g), (r 
    + g).[; 
    
            then
    
            reconsider x1 = y as
    Real;
    
            ex p2 st y
    = p2 & (r 
    - g) 
    < p2 & p2 
    < (r 
    + g) by 
    A13;
    
            then x1
    < (r 
    + g2) & (r 
    - g2) 
    < x1 by 
    A10,
    A9,
    XXREAL_0: 2;
    
            hence y
    in  
    ].(r
    - g2), (r 
    + g2).[; 
    
          end;
    
          g1
    = g by 
    A11,
    XXREAL_0:def 9;
    
          hence
    ].(r
    - g), (r 
    + g).[ 
    c= N1 & 
    ].(r
    - g), (r 
    + g).[ 
    c= N2 by 
    A2,
    A4,
    A12;
    
        end;
    
          suppose
    
          
    
    A14: g2 
    <= g1; 
    
          
    
    A15: 
    
          now
    
            let y be
    object;
    
            assume
    
            
    
    A16: y 
    in  
    ].(r
    - g), (r 
    + g).[; 
    
            then
    
            reconsider x1 = y as
    Real;
    
            ex p2 st y
    = p2 & (r 
    - g) 
    < p2 & p2 
    < (r 
    + g) by 
    A16;
    
            then x1
    < (r 
    + g1) & (r 
    - g1) 
    < x1 by 
    A6,
    A7,
    XXREAL_0: 2;
    
            hence y
    in  
    ].(r
    - g1), (r 
    + g1).[; 
    
          end;
    
          g2
    = g by 
    A14,
    XXREAL_0:def 9;
    
          hence
    ].(r
    - g), (r 
    + g).[ 
    c= N1 & 
    ].(r
    - g), (r 
    + g).[ 
    c= N2 by 
    A2,
    A4,
    A15;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RCOMP_1:18
    
    
    
    
    
    Th18: for X be 
    open  
    Subset of 
    REAL , r st r 
    in X holds ex N be 
    Neighbourhood of r st N 
    c= X 
    
    proof
    
      let X be
    open  
    Subset of 
    REAL , r; 
    
      assume that
    
      
    
    A1: r 
    in X and 
    
      
    
    A2: for N be 
    Neighbourhood of r holds not N 
    c= X; 
    
      defpred
    
    P[
    Nat, 
    Real] means $2
    in  
    ].(r
    - (1 
    / ($1 
    + 1))), (r 
    + (1 
    / ($1 
    + 1))).[ & $2 
    in (X 
    ` ); 
    
      
    
    A3: 
    
      now
    
        let N be
    Neighbourhood of r; 
    
        consider g such that
    0  
    < g and 
    
        
    
    A4: N 
    =  
    ].(r
    - g), (r 
    + g).[ by 
    Def6;
    
         not N
    c= X by 
    A2;
    
        then
    
        consider x be
    object such that 
    
        
    
    A5: x 
    in N and 
    
        
    
    A6: not x 
    in X; 
    
        consider s such that
    
        
    
    A7: x 
    = s and (r 
    - g) 
    < s and s 
    < (r 
    + g) by 
    A5,
    A4;
    
        reconsider s as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        take s;
    
        thus s
    in N by 
    A5,
    A7;
    
        thus s
    in (X 
    ` ) by 
    A6,
    A7,
    XBOOLE_0:def 5;
    
      end;
    
      
    
      
    
    A8: for n be 
    Element of 
    NAT holds ex s be 
    Element of 
    REAL st 
    P[n, s]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        
    0  
    < (1 
    * ((n 
    + 1) 
    " )); 
    
        then
    0  
    < (1 
    / (n 
    + 1)) by 
    XCMPLX_0:def 9;
    
        then
    
        reconsider N =
    ].(r
    - (1 
    / (n 
    + 1))), (r 
    + (1 
    / (n 
    + 1))).[ as 
    Neighbourhood of r by 
    Def6;
    
        ex s be
    Element of 
    REAL st s 
    in N & s 
    in (X 
    ` ) by 
    A3;
    
        hence thesis;
    
      end;
    
      consider s3 such that
    
      
    
    A9: for n be 
    Element of 
    NAT holds 
    P[n, (s3
    . n)] from 
    FUNCT_2:sch 3(
    A8);
    
      deffunc
    
    G(
    Nat) = (r
    + (1 
    / ($1 
    + 1))); 
    
      deffunc
    
    F(
    Nat) = (r
    - (1 
    / ($1 
    + 1))); 
    
      consider s1 be
    Real_Sequence such that 
    
      
    
    A10: for n holds (s1 
    . n) 
    =  
    F(n) from
    SEQ_1:sch 1;
    
      consider s2 be
    Real_Sequence such that 
    
      
    
    A11: for n holds (s2 
    . n) 
    =  
    G(n) from
    SEQ_1:sch 1;
    
      
    
      
    
    A12: for n holds (s1 
    . n) 
    <= (s3 
    . n) & (s3 
    . n) 
    <= (s2 
    . n) 
    
      proof
    
        let n;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then (s3
    . n) 
    in  
    ].(r
    - (1 
    / (n 
    + 1))), (r 
    + (1 
    / (n 
    + 1))).[ by 
    A9;
    
        then
    
        
    
    A13: ex s st s 
    = (s3 
    . n) & (r 
    - (1 
    / (n 
    + 1))) 
    < s & s 
    < (r 
    + (1 
    / (n 
    + 1))); 
    
        hence (s1
    . n) 
    <= (s3 
    . n) by 
    A10;
    
        thus thesis by
    A11,
    A13;
    
      end;
    
      
    
      
    
    A14: ( 
    rng s3) 
    c= (X 
    ` ) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng s3); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A15: y 
    in ( 
    dom s3) and 
    
        
    
    A16: (s3 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
        reconsider y as
    Element of 
    NAT by 
    A15,
    FUNCT_2:def 1;
    
        (s3
    . y) 
    in (X 
    ` ) by 
    A9;
    
        hence thesis by
    A16;
    
      end;
    
      
    
      
    
    A17: (X 
    ` ) is 
    closed by 
    Def5;
    
      
    
    A18: 
    
      now
    
        let s;
    
        assume
    
        
    
    A19: 
    0  
    < s; 
    
        consider n such that
    
        
    
    A20: (s 
    " ) 
    < n by 
    SEQ_4: 3;
    
        take n;
    
        let m;
    
        assume n
    <= m; 
    
        then (n
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        then
    
        
    
    A21: (1 
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    XREAL_1: 118;
    
        ((s
    " ) 
    +  
    0 ) 
    < (n 
    + 1) by 
    A20,
    XREAL_1: 8;
    
        then (1
    / (n 
    + 1)) 
    < (1 
    / (s 
    " )) by 
    A19,
    XREAL_1: 76;
    
        then
    
        
    
    A22: (1 
    / (n 
    + 1)) 
    < s by 
    XCMPLX_1: 216;
    
        
    |.((s2
    . m) 
    - r).| 
    =  
    |.((r
    + (1 
    / (m 
    + 1))) 
    - r).| by 
    A11
    
        .= (1
    / (m 
    + 1)) by 
    ABSVALUE:def 1;
    
        hence
    |.((s2
    . m) 
    - r).| 
    < s by 
    A22,
    A21,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A23: s2 is 
    convergent;
    
      then
    
      
    
    A24: ( 
    lim s2) 
    = r by 
    A18,
    SEQ_2:def 7;
    
      
    
    A25: 
    
      now
    
        let s;
    
        assume
    
        
    
    A26: 
    0  
    < s; 
    
        consider n such that
    
        
    
    A27: (s 
    " ) 
    < n by 
    SEQ_4: 3;
    
        take n;
    
        let m;
    
        assume n
    <= m; 
    
        then (n
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        then
    
        
    
    A28: (1 
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    XREAL_1: 118;
    
        ((s
    " ) 
    +  
    0 ) 
    < (n 
    + 1) by 
    A27,
    XREAL_1: 8;
    
        then (1
    / (n 
    + 1)) 
    < (1 
    / (s 
    " )) by 
    A26,
    XREAL_1: 76;
    
        then
    
        
    
    A29: (1 
    / (n 
    + 1)) 
    < s by 
    XCMPLX_1: 216;
    
        
    |.((s1
    . m) 
    - r).| 
    =  
    |.((r
    - (1 
    / (m 
    + 1))) 
    - r).| by 
    A10
    
        .=
    |.(
    - (1 
    / (m 
    + 1))).| 
    
        .=
    |.(1
    / (m 
    + 1)).| by 
    COMPLEX1: 52
    
        .= (1
    / (m 
    + 1)) by 
    ABSVALUE:def 1;
    
        hence
    |.((s1
    . m) 
    - r).| 
    < s by 
    A29,
    A28,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A30: s1 is 
    convergent;
    
      then (
    lim s1) 
    = r by 
    A25,
    SEQ_2:def 7;
    
      then s3 is
    convergent & ( 
    lim s3) 
    = r by 
    A30,
    A23,
    A24,
    A12,
    SEQ_2: 19,
    SEQ_2: 20;
    
      then r
    in (X 
    ` ) by 
    A14,
    A17;
    
      hence contradiction by
    A1,
    XBOOLE_0:def 5;
    
    end;
    
    theorem :: 
    
    RCOMP_1:19
    
    for X be
    open  
    Subset of 
    REAL , r st r 
    in X holds ex g st 
    0  
    < g & 
    ].(r
    - g), (r 
    + g).[ 
    c= X 
    
    proof
    
      let X be
    open  
    Subset of 
    REAL , r; 
    
      assume r
    in X; 
    
      then
    
      consider N be
    Neighbourhood of r such that 
    
      
    
    A1: N 
    c= X by 
    Th18;
    
      consider g such that
    
      
    
    A2: 
    0  
    < g & N 
    =  
    ].(r
    - g), (r 
    + g).[ by 
    Def6;
    
      take g;
    
      thus thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    RCOMP_1:20
    
    (for r be
    Element of 
    REAL st r 
    in X holds ex N be 
    Neighbourhood of r st N 
    c= X) implies X is 
    open
    
    proof
    
      assume that
    
      
    
    A1: for r be 
    Element of 
    REAL st r 
    in X holds ex N be 
    Neighbourhood of r st N 
    c= X and 
    
      
    
    A2: not X is 
    open;
    
       not (X
    ` ) is 
    closed by 
    A2;
    
      then
    
      consider s1 such that
    
      
    
    A3: ( 
    rng s1) 
    c= (X 
    ` ) and 
    
      
    
    A4: s1 is 
    convergent and 
    
      
    
    A5: not ( 
    lim s1) 
    in (X 
    ` ); 
    
      reconsider ls = (
    lim s1) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      consider N be
    Neighbourhood of ls such that 
    
      
    
    A6: N 
    c= X by 
    A1,
    A5,
    SUBSET_1: 29;
    
      consider g such that
    
      
    
    A7: 
    0  
    < g and 
    
      
    
    A8: 
    ].((
    lim s1) 
    - g), (( 
    lim s1) 
    + g).[ 
    = N by 
    Def6;
    
      consider n such that
    
      
    
    A9: for m st n 
    <= m holds 
    |.((s1
    . m) 
    - ( 
    lim s1)).| 
    < g by 
    A4,
    A7,
    SEQ_2:def 7;
    
      n
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then n
    in ( 
    dom s1) by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A10: (s1 
    . n) 
    in ( 
    rng s1) by 
    FUNCT_1:def 3;
    
      
    
      
    
    A11: 
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < g by 
    A9;
    
      then ((s1
    . n) 
    - ( 
    lim s1)) 
    < g by 
    SEQ_2: 1;
    
      then
    
      
    
    A12: (s1 
    . n) 
    < (( 
    lim s1) 
    + g) by 
    XREAL_1: 19;
    
      (
    - g) 
    < ((s1 
    . n) 
    - ( 
    lim s1)) by 
    A11,
    SEQ_2: 1;
    
      then ((
    lim s1) 
    + ( 
    - g)) 
    < (( 
    lim s1) 
    + ((s1 
    . n) 
    - ( 
    lim s1))) by 
    XREAL_1: 6;
    
      then (s1
    . n) 
    in { s : (( 
    lim s1) 
    - g) 
    < s & s 
    < (( 
    lim s1) 
    + g) } by 
    A12;
    
      hence contradiction by
    A3,
    A6,
    A8,
    A10,
    XBOOLE_0:def 5;
    
    end;
    
    theorem :: 
    
    RCOMP_1:21
    
    
    
    
    
    Th21: X is 
    open
    bounded_above implies not ( 
    upper_bound X) 
    in X 
    
    proof
    
      assume that
    
      
    
    A1: X is 
    open and 
    
      
    
    A2: X is 
    bounded_above;
    
      assume (
    upper_bound X) 
    in X; 
    
      then
    
      consider N be
    Neighbourhood of ( 
    upper_bound X) such that 
    
      
    
    A3: N 
    c= X by 
    A1,
    Th18;
    
      consider t such that
    
      
    
    A4: t 
    >  
    0 and 
    
      
    
    A5: N 
    =  
    ].((
    upper_bound X) 
    - t), (( 
    upper_bound X) 
    + t).[ by 
    Def6;
    
      
    
      
    
    A6: (( 
    upper_bound X) 
    + (t 
    / 2)) 
    > ( 
    upper_bound X) by 
    A4,
    XREAL_1: 29,
    XREAL_1: 215;
    
      
    
      
    
    A7: ((( 
    upper_bound X) 
    + (t 
    / 2)) 
    + (t 
    / 2)) 
    > (( 
    upper_bound X) 
    + (t 
    / 2)) by 
    A4,
    XREAL_1: 29,
    XREAL_1: 215;
    
      ((
    upper_bound X) 
    - t) 
    < ( 
    upper_bound X) by 
    A4,
    XREAL_1: 44;
    
      then ((
    upper_bound X) 
    - t) 
    < (( 
    upper_bound X) 
    + (t 
    / 2)) by 
    A6,
    XXREAL_0: 2;
    
      then ((
    upper_bound X) 
    + (t 
    / 2)) 
    in { s : (( 
    upper_bound X) 
    - t) 
    < s & s 
    < (( 
    upper_bound X) 
    + t) } by 
    A7;
    
      hence contradiction by
    A2,
    A3,
    A5,
    A6,
    SEQ_4:def 1;
    
    end;
    
    theorem :: 
    
    RCOMP_1:22
    
    
    
    
    
    Th22: X is 
    open
    bounded_below implies not ( 
    lower_bound X) 
    in X 
    
    proof
    
      assume that
    
      
    
    A1: X is 
    open and 
    
      
    
    A2: X is 
    bounded_below;
    
      assume (
    lower_bound X) 
    in X; 
    
      then
    
      consider N be
    Neighbourhood of ( 
    lower_bound X) such that 
    
      
    
    A3: N 
    c= X by 
    A1,
    Th18;
    
      consider t such that
    
      
    
    A4: t 
    >  
    0 and 
    
      
    
    A5: N 
    =  
    ].((
    lower_bound X) 
    - t), (( 
    lower_bound X) 
    + t).[ by 
    Def6;
    
      
    
      
    
    A6: (( 
    lower_bound X) 
    - (t 
    / 2)) 
    < ( 
    lower_bound X) by 
    A4,
    XREAL_1: 44,
    XREAL_1: 215;
    
      
    
      
    
    A7: ((( 
    lower_bound X) 
    - (t 
    / 2)) 
    - (t 
    / 2)) 
    < (( 
    lower_bound X) 
    - (t 
    / 2)) by 
    A4,
    XREAL_1: 44,
    XREAL_1: 215;
    
      (
    lower_bound X) 
    < (( 
    lower_bound X) 
    + t) by 
    A4,
    XREAL_1: 29;
    
      then ((
    lower_bound X) 
    - (t 
    / 2)) 
    < (( 
    lower_bound X) 
    + t) by 
    A6,
    XXREAL_0: 2;
    
      then ((
    lower_bound X) 
    - (t 
    / 2)) 
    in { s : (( 
    lower_bound X) 
    - t) 
    < s & s 
    < (( 
    lower_bound X) 
    + t) } by 
    A7;
    
      hence contradiction by
    A2,
    A3,
    A5,
    A6,
    SEQ_4:def 2;
    
    end;
    
    theorem :: 
    
    RCOMP_1:23
    
    X is
    open
    real-bounded & (for g1, g2 st g1 
    in X & g2 
    in X holds 
    [.g1, g2.]
    c= X) implies ex p, g st X 
    =  
    ].p, g.[
    
    proof
    
      assume that
    
      
    
    A1: X is 
    open and 
    
      
    
    A2: X is 
    real-bounded and 
    
      
    
    A3: for g1, g2 st g1 
    in X & g2 
    in X holds 
    [.g1, g2.]
    c= X; 
    
      per cases ;
    
        suppose
    
        
    
    A4: X 
    =  
    {} ; 
    
        take 1;
    
        take
    0 ; 
    
        thus thesis by
    A4,
    XXREAL_1: 28;
    
      end;
    
        suppose
    
        
    
    A5: X 
    <>  
    {} ; 
    
        take p = (
    lower_bound X), g = ( 
    upper_bound X); 
    
        now
    
          let r be
    Element of 
    REAL ; 
    
          thus r
    in X implies r 
    in  
    ].p, g.[
    
          proof
    
            assume
    
            
    
    A6: r 
    in X; 
    
            then p
    <> r & p 
    <= r by 
    A1,
    A2,
    Th22,
    SEQ_4:def 2;
    
            then
    
            
    
    A7: p 
    < r by 
    XXREAL_0: 1;
    
            g
    <> r & r 
    <= g by 
    A1,
    A2,
    A6,
    Th21,
    SEQ_4:def 1;
    
            then r
    < g by 
    XXREAL_0: 1;
    
            hence thesis by
    A7;
    
          end;
    
          assume r
    in  
    ].p, g.[;
    
          then
    
          
    
    A8: ex s st s 
    = r & p 
    < s & s 
    < g; 
    
          then (g
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then
    
          consider g2 such that
    
          
    
    A9: g2 
    in X & (g 
    - (g 
    - r)) 
    < g2 by 
    A2,
    A5,
    SEQ_4:def 1;
    
          (r
    - p) 
    >  
    0 by 
    A8,
    XREAL_1: 50;
    
          then
    
          consider g1 such that
    
          
    
    A10: g1 
    in X & g1 
    < (p 
    + (r 
    - p)) by 
    A2,
    A5,
    SEQ_4:def 2;
    
          reconsider g1, g2 as
    Real;
    
          r
    in { s : g1 
    <= s & s 
    <= g2 } & 
    [.g1, g2.]
    c= X by 
    A3,
    A9,
    A10;
    
          hence r
    in X; 
    
        end;
    
        hence thesis by
    SUBSET_1: 3;
    
      end;
    
    end;
    
    definition
    
      let g be
    Real, s be 
    ExtReal;
    
      :: original:
    [.
    
      redefine
    
      :: 
    
    RCOMP_1:def7
    
      func
    
    [.g,s.[ ->
    Subset of 
    REAL equals { r : g 
    <= r & r 
    < s }; 
    
      coherence
    
      proof
    
        now
    
          let e be
    object;
    
          assume e
    in  
    [.g, s.[;
    
          then
    
          
    
    A1: ex r be 
    Element of 
    ExtREAL st e 
    = r & g 
    <= r & r 
    < s; 
    
          g
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence e
    in  
    REAL by 
    A1,
    XXREAL_0: 46;
    
        end;
    
        hence thesis by
    TARSKI:def 3;
    
      end;
    
      compatibility
    
      proof
    
        set Y = { r : g
    <= r & r 
    < s }; 
    
        let X be
    Subset of 
    REAL ; 
    
        
    
        
    
    A2: 
    [.g, s.[
    c= Y 
    
        proof
    
          let e be
    object;
    
          assume e
    in  
    [.g, s.[;
    
          then
    
          consider r be
    Element of 
    ExtREAL such that 
    
          
    
    A3: e 
    = r and 
    
          
    
    A4: g 
    <= r & r 
    < s; 
    
          g
    in  
    REAL by 
    XREAL_0:def 1;
    
          then r
    in  
    REAL by 
    A4,
    XXREAL_0: 46;
    
          hence thesis by
    A3,
    A4;
    
        end;
    
        Y
    c=  
    [.g, s.[
    
        proof
    
          let e be
    object;
    
          assume e
    in Y; 
    
          then
    
          consider r such that
    
          
    
    A5: e 
    = r & g 
    <= r & r 
    < s; 
    
          r
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence thesis by
    A5,
    NUMBERS: 31;
    
        end;
    
        hence thesis by
    A2;
    
      end;
    
    end
    
    definition
    
      let g be
    ExtReal, s be 
    Real;
    
      :: original:
    ].
    
      redefine
    
      :: 
    
    RCOMP_1:def8
    
      func
    
    ].g,s.] ->
    Subset of 
    REAL equals { r : g 
    < r & r 
    <= s }; 
    
      coherence
    
      proof
    
        now
    
          let e be
    object;
    
          assume e
    in  
    ].g, s.];
    
          then
    
          
    
    A1: ex r be 
    Element of 
    ExtREAL st e 
    = r & g 
    < r & r 
    <= s; 
    
          s
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence e
    in  
    REAL by 
    A1,
    XXREAL_0: 47;
    
        end;
    
        hence thesis by
    TARSKI:def 3;
    
      end;
    
      compatibility
    
      proof
    
        set Y = { r : g
    < r & r 
    <= s }; 
    
        let X be
    Subset of 
    REAL ; 
    
        
    
        
    
    A2: 
    ].g, s.]
    c= Y 
    
        proof
    
          let e be
    object;
    
          assume e
    in  
    ].g, s.];
    
          then
    
          consider r be
    Element of 
    ExtREAL such that 
    
          
    
    A3: e 
    = r and 
    
          
    
    A4: g 
    < r & r 
    <= s; 
    
          s
    in  
    REAL by 
    XREAL_0:def 1;
    
          then r
    in  
    REAL by 
    A4,
    XXREAL_0: 47;
    
          hence thesis by
    A3,
    A4;
    
        end;
    
        Y
    c=  
    ].g, s.]
    
        proof
    
          let e be
    object;
    
          assume e
    in Y; 
    
          then
    
          consider r such that
    
          
    
    A5: e 
    = r & g 
    < r & r 
    <= s; 
    
          r
    in  
    REAL by 
    XREAL_0:def 1;
    
          hence thesis by
    A5,
    NUMBERS: 31;
    
        end;
    
        hence thesis by
    A2;
    
      end;
    
    end