jordan7.miz
begin
reserve p,p1,p2,p3,q for
Point of (
TOP-REAL 2);
Lm1: (2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
Lm2: for i,j,k be
Nat holds (i
-' k)
<= j implies i
<= (j
+ k)
proof
let i,j,k be
Nat;
assume
A1: (i
-' k)
<= j;
per cases ;
suppose
A2: i
>= k;
((i
-' k)
+ k)
<= (j
+ k) by
A1,
XREAL_1: 6;
hence thesis by
A2,
XREAL_1: 235;
end;
suppose
A3: i
<= k;
k
<= (j
+ k) by
NAT_1: 11;
hence thesis by
A3,
XXREAL_0: 2;
end;
end;
Lm3: for i,j,k be
Nat holds (j
+ k)
<= i implies k
<= (i
-' j)
proof
let i,j,k be
Nat;
assume
A1: (j
+ k)
<= i;
per cases by
A1,
XXREAL_0: 1;
suppose (j
+ k)
= i;
hence thesis by
NAT_D: 34;
end;
suppose (j
+ k)
< i;
hence thesis by
Lm2;
end;
end;
theorem ::
JORDAN7:1
Th1: for P be
compact non
empty
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve holds (
W-min P)
in (
Lower_Arc P) & (
E-max P)
in (
Lower_Arc P) & (
W-min P)
in (
Upper_Arc P) & (
E-max P)
in (
Upper_Arc P)
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2);
assume P is
being_simple_closed_curve;
then (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) & (
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
JORDAN6: 50;
hence thesis by
TOPREAL1: 1;
end;
theorem ::
JORDAN7:2
Th2: for P be
compact non
empty
Subset of (
TOP-REAL 2), q st P is
being_simple_closed_curve &
LE (q,(
W-min P),P) holds q
= (
W-min P)
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q;
assume P is
being_simple_closed_curve &
LE (q,(
W-min P),P);
then
LE (q,(
W-min P),(
Upper_Arc P),(
W-min P),(
E-max P)) & (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
JORDAN6:def 8,
JORDAN6:def 10;
hence thesis by
JORDAN6: 54;
end;
theorem ::
JORDAN7:3
Th3: for P be
compact non
empty
Subset of (
TOP-REAL 2), q st P is
being_simple_closed_curve & q
in P holds
LE ((
W-min P),q,P)
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q;
assume that
A1: P is
being_simple_closed_curve and
A2: q
in P;
A3: q
in ((
Upper_Arc P)
\/ (
Lower_Arc P)) by
A1,
A2,
JORDAN6: 50;
A4: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6: 50;
A5: (
W-min P)
in (
Upper_Arc P) by
A1,
Th1;
per cases by
A3,
XBOOLE_0:def 3;
suppose
A6: q
in (
Upper_Arc P);
then
LE ((
W-min P),q,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A4,
JORDAN5C: 10;
hence thesis by
A5,
A6,
JORDAN6:def 10;
end;
suppose
A7: q
in (
Lower_Arc P);
per cases ;
suppose not q
= (
W-min P);
hence thesis by
A5,
A7,
JORDAN6:def 10;
end;
suppose
A8: q
= (
W-min P);
then
LE ((
W-min P),q,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A5,
JORDAN5C: 9;
hence thesis by
A5,
A8,
JORDAN6:def 10;
end;
end;
end;
definition
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2);
::
JORDAN7:def1
func
Segment (q1,q2,P) ->
Subset of (
TOP-REAL 2) equals
:
Def1: { p :
LE (q1,p,P) &
LE (p,q2,P) } if q2
<> (
W-min P)
otherwise { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) };
correctness
proof
ex B be
Subset of (
TOP-REAL 2) st (q2
<> (
W-min P) implies B
= { p :
LE (q1,p,P) &
LE (p,q2,P) }) & ( not q2
<> (
W-min P) implies B
= { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) })
proof
per cases ;
suppose
A1: q2
<> (
W-min P);
defpred
P[
Point of (
TOP-REAL 2)] means
LE (q1,$1,P) &
LE ($1,q2,P);
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider C = { p :
LE (q1,p,P) &
LE (p,q2,P) } as
Subset of (
TOP-REAL 2);
q2
<> (
W-min P) implies C
= { p :
LE (q1,p,P) &
LE (p,q2,P) };
hence thesis by
A1;
end;
suppose
A2: not q2
<> (
W-min P);
defpred
P[
Point of (
TOP-REAL 2)] means
LE (q1,$1,P) or q1
in P & $1
= (
W-min P);
{ p1 :
P[p1] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider C = { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) } as
Subset of (
TOP-REAL 2);
not q2
<> (
W-min P) implies C
= { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) };
hence thesis by
A2;
end;
end;
hence thesis;
end;
end
theorem ::
JORDAN7:4
for P be
compact non
empty
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve holds (
Segment ((
W-min P),(
E-max P),P))
= (
Upper_Arc P) & (
Segment ((
E-max P),(
W-min P),P))
= (
Lower_Arc P)
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2);
assume
A1: P is
being_simple_closed_curve;
then
A2: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
JORDAN6:def 8;
A3: { p1 :
LE ((
E-max P),p1,P) or (
E-max P)
in P & p1
= (
W-min P) }
= (
Lower_Arc P)
proof
A4: { p1 :
LE ((
E-max P),p1,P) or (
E-max P)
in P & p1
= (
W-min P) }
c= (
Lower_Arc P)
proof
let x be
object;
assume x
in { p1 :
LE ((
E-max P),p1,P) or (
E-max P)
in P & p1
= (
W-min P) };
then
consider p1 such that
A5: p1
= x and
A6:
LE ((
E-max P),p1,P) or (
E-max P)
in P & p1
= (
W-min P);
per cases by
A6;
suppose
A7:
LE ((
E-max P),p1,P);
per cases by
A5,
A7,
JORDAN6:def 10;
suppose x
in (
Lower_Arc P);
hence thesis;
end;
suppose
A8: (
E-max P)
in (
Upper_Arc P) & p1
in (
Upper_Arc P) &
LE ((
E-max P),p1,(
Upper_Arc P),(
W-min P),(
E-max P));
A9: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6: 50;
then
LE (p1,(
E-max P),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A8,
JORDAN5C: 10;
then
A10: p1
= (
E-max P) by
A8,
A9,
JORDAN5C: 12;
(
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
JORDAN6:def 9;
hence thesis by
A5,
A10,
TOPREAL1: 1;
end;
end;
suppose (
E-max P)
in P & p1
= (
W-min P);
then x
in
{(
W-min P), (
E-max P)} by
A5,
TARSKI:def 2;
then x
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A1,
JORDAN6:def 9;
hence thesis by
XBOOLE_0:def 4;
end;
end;
(
Lower_Arc P)
c= { p1 :
LE ((
E-max P),p1,P) or (
E-max P)
in P & p1
= (
W-min P) }
proof
let x be
object;
assume
A11: x
in (
Lower_Arc P);
then
reconsider p2 = x as
Point of (
TOP-REAL 2);
(
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6: 50;
then not ((
E-max P)
in P & p2
= (
W-min P)) implies (
E-max P)
in (
Upper_Arc P) & p2
in (
Lower_Arc P) & not p2
= (
W-min P) by
A11,
SPRECT_1: 14,
TOPREAL1: 1;
then
LE ((
E-max P),p2,P) or (
E-max P)
in P & p2
= (
W-min P) by
JORDAN6:def 10;
hence thesis;
end;
hence thesis by
A4;
end;
A12: (
E-max P)
<> (
W-min P) by
A1,
TOPREAL5: 19;
{ p :
LE ((
W-min P),p,P) &
LE (p,(
E-max P),P) }
= (
Upper_Arc P)
proof
A13: { p :
LE ((
W-min P),p,P) &
LE (p,(
E-max P),P) }
c= (
Upper_Arc P)
proof
let x be
object;
assume x
in { p :
LE ((
W-min P),p,P) &
LE (p,(
E-max P),P) };
then
consider p such that
A14: p
= x and
LE ((
W-min P),p,P) and
A15:
LE (p,(
E-max P),P);
per cases by
A15,
JORDAN6:def 10;
suppose p
in (
Upper_Arc P) & (
E-max P)
in (
Lower_Arc P) & not (
E-max P)
= (
W-min P);
hence thesis by
A14;
end;
suppose p
in (
Upper_Arc P) & (
E-max P)
in (
Upper_Arc P) &
LE (p,(
E-max P),(
Upper_Arc P),(
W-min P),(
E-max P));
hence thesis by
A14;
end;
suppose
A16: p
in (
Lower_Arc P) & (
E-max P)
in (
Lower_Arc P) & not (
E-max P)
= (
W-min P) &
LE (p,(
E-max P),(
Lower_Arc P),(
E-max P),(
W-min P));
(
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
JORDAN6:def 9;
then p
= (
E-max P) by
A16,
JORDAN6: 54;
hence thesis by
A2,
A14,
TOPREAL1: 1;
end;
end;
(
Upper_Arc P)
c= { p :
LE ((
W-min P),p,P) &
LE (p,(
E-max P),P) }
proof
let x be
object;
assume
A17: x
in (
Upper_Arc P);
then
reconsider p2 = x as
Point of (
TOP-REAL 2);
(
E-max P)
in (
Lower_Arc P) by
A1,
Th1;
then
A18:
LE (p2,(
E-max P),P) by
A12,
A17,
JORDAN6:def 10;
A19: (
W-min P)
in (
Upper_Arc P) by
A1,
Th1;
LE ((
W-min P),p2,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A2,
A17,
JORDAN5C: 10;
then
LE ((
W-min P),p2,P) by
A17,
A19,
JORDAN6:def 10;
hence thesis by
A18;
end;
hence thesis by
A13;
end;
hence thesis by
A12,
A3,
Def1;
end;
theorem ::
JORDAN7:5
Th5: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) holds q1
in P & q2
in P
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P);
A3: ((
Upper_Arc P)
\/ (
Lower_Arc P))
= P by
A1,
JORDAN6: 50;
per cases by
A2,
JORDAN6:def 10;
suppose q1
in (
Upper_Arc P) & q2
in (
Lower_Arc P);
hence thesis by
A3,
XBOOLE_0:def 3;
end;
suppose q1
in (
Upper_Arc P) & q2
in (
Upper_Arc P);
hence thesis by
A3,
XBOOLE_0:def 3;
end;
suppose q1
in (
Lower_Arc P) & q2
in (
Lower_Arc P);
hence thesis by
A3,
XBOOLE_0:def 3;
end;
end;
theorem ::
JORDAN7:6
Th6: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) holds q1
in (
Segment (q1,q2,P)) & q2
in (
Segment (q1,q2,P))
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P);
hereby
per cases ;
suppose
A3: q2
<> (
W-min P);
q1
in P by
A1,
A2,
Th5;
then
LE (q1,q1,P) by
A1,
JORDAN6: 56;
then q1
in { p :
LE (q1,p,P) &
LE (p,q2,P) } by
A2;
hence q1
in (
Segment (q1,q2,P)) by
A3,
Def1;
end;
suppose
A4: q2
= (
W-min P);
q1
in P by
A1,
A2,
Th5;
then
LE (q1,q1,P) by
A1,
JORDAN6: 56;
then q1
in { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) };
hence q1
in (
Segment (q1,q2,P)) by
A4,
Def1;
end;
end;
per cases ;
suppose
A5: q2
<> (
W-min P);
q2
in P by
A1,
A2,
Th5;
then
LE (q2,q2,P) by
A1,
JORDAN6: 56;
then q2
in { p :
LE (q1,p,P) &
LE (p,q2,P) } by
A2;
hence thesis by
A5,
Def1;
end;
suppose
A6: q2
= (
W-min P);
q2
in { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) } by
A2;
hence thesis by
A6,
Def1;
end;
end;
theorem ::
JORDAN7:7
Th7: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1 be
Point of (
TOP-REAL 2) st q1
in P & P is
being_simple_closed_curve holds q1
in (
Segment (q1,(
W-min P),P))
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1 be
Point of (
TOP-REAL 2) such that
A1: q1
in P;
assume P is
being_simple_closed_curve;
then
LE (q1,q1,P) by
A1,
JORDAN6: 56;
then q1
in { p1 :
LE (q1,p1,P) or q1
in P & p1
= (
W-min P) };
hence thesis by
Def1;
end;
theorem ::
JORDAN7:8
for P be
compact non
empty
Subset of (
TOP-REAL 2), q be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve & q
in P & q
<> (
W-min P) holds (
Segment (q,q,P))
=
{q}
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2: q
in P and
A3: q
<> (
W-min P);
for x be
object holds x
in (
Segment (q,q,P)) iff x
= q
proof
let x be
object;
hereby
assume x
in (
Segment (q,q,P));
then x
in { p :
LE (q,p,P) &
LE (p,q,P) } by
A3,
Def1;
then ex p st p
= x &
LE (q,p,P) &
LE (p,q,P);
hence x
= q by
A1,
JORDAN6: 57;
end;
assume
A4: x
= q;
LE (q,q,P) by
A1,
A2,
JORDAN6: 56;
then x
in { p :
LE (q,p,P) &
LE (p,q,P) } by
A4;
hence thesis by
A3,
Def1;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
JORDAN7:9
for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve & q1
<> (
W-min P) & q2
<> (
W-min P) holds not (
W-min P)
in (
Segment (q1,q2,P))
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2: q1
<> (
W-min P) and
A3: q2
<> (
W-min P);
A4: (
Segment (q1,q2,P))
= { p :
LE (q1,p,P) &
LE (p,q2,P) } by
A3,
Def1;
now
A5: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6:def 8;
assume (
W-min P)
in (
Segment (q1,q2,P));
then
consider p such that
A6: p
= (
W-min P) and
A7:
LE (q1,p,P) and
LE (p,q2,P) by
A4;
LE (q1,p,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A6,
A7,
JORDAN6:def 10;
hence contradiction by
A2,
A6,
A5,
JORDAN6: 54;
end;
hence thesis;
end;
theorem ::
JORDAN7:10
Th10: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2,q3 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) &
LE (q2,q3,P) & not (q1
= q2 & q1
= (
W-min P)) & not (q2
= q3 & q2
= (
W-min P)) holds ((
Segment (q1,q2,P))
/\ (
Segment (q2,q3,P)))
=
{q2}
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2,q3 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P) and
A3:
LE (q2,q3,P) and
A4: not (q1
= q2 & q1
= (
W-min P)) and
A5: not (q2
= q3 & q2
= (
W-min P));
A6: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6:def 8;
thus ((
Segment (q1,q2,P))
/\ (
Segment (q2,q3,P)))
c=
{q2}
proof
let x be
object;
assume
A7: x
in ((
Segment (q1,q2,P))
/\ (
Segment (q2,q3,P)));
then
A8: x
in (
Segment (q2,q3,P)) by
XBOOLE_0:def 4;
A9: x
in (
Segment (q1,q2,P)) by
A7,
XBOOLE_0:def 4;
now
per cases ;
case q3
<> (
W-min P);
then x
in { p :
LE (q2,p,P) &
LE (p,q3,P) } by
A8,
Def1;
then
A10: ex p st p
= x &
LE (q2,p,P) &
LE (p,q3,P);
per cases ;
suppose q2
<> (
W-min P);
then x
in { p2 :
LE (q1,p2,P) &
LE (p2,q2,P) } by
A9,
Def1;
then ex p2 st p2
= x &
LE (q1,p2,P) &
LE (p2,q2,P);
hence x
= q2 by
A1,
A10,
JORDAN6: 57;
end;
suppose
A11: q2
= (
W-min P);
then
LE (q1,q2,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A2,
JORDAN6:def 10;
hence x
= q2 by
A4,
A6,
A11,
JORDAN6: 54;
end;
end;
case
A12: q3
= (
W-min P);
then x
in { p1 :
LE (q2,p1,P) or q2
in P & p1
= (
W-min P) } by
A8,
Def1;
then
consider p1 such that
A13: p1
= x and
A14:
LE (q2,p1,P) or q2
in P & p1
= (
W-min P);
p1
in { p :
LE (q1,p,P) &
LE (p,q2,P) } by
A5,
A9,
A12,
A13,
Def1;
then ex p st p
= p1 &
LE (q1,p,P) &
LE (p,q2,P);
hence x
= q2 by
A1,
A3,
A12,
A13,
A14,
JORDAN6: 57;
end;
end;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{q2};
then x
= q2 by
TARSKI:def 1;
then x
in (
Segment (q1,q2,P)) & x
in (
Segment (q2,q3,P)) by
A1,
A2,
A3,
Th6;
hence thesis by
XBOOLE_0:def 4;
end;
theorem ::
JORDAN7:11
Th11: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) & q1
<> (
W-min P) & q2
<> (
W-min P) holds ((
Segment (q1,q2,P))
/\ (
Segment (q2,(
W-min P),P)))
=
{q2}
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2);
set q3 = (
W-min P);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P) and
A3: q1
<> q3 and
A4: not q2
= (
W-min P);
thus ((
Segment (q1,q2,P))
/\ (
Segment (q2,(
W-min P),P)))
c=
{q2}
proof
let x be
object;
assume
A5: x
in ((
Segment (q1,q2,P))
/\ (
Segment (q2,q3,P)));
then x
in (
Segment (q2,q3,P)) by
XBOOLE_0:def 4;
then x
in { p1 :
LE (q2,p1,P) or q2
in P & p1
= (
W-min P) } by
Def1;
then
consider p1 such that
A6: p1
= x and
A7:
LE (q2,p1,P) or q2
in P & p1
= (
W-min P);
x
in (
Segment (q1,q2,P)) by
A5,
XBOOLE_0:def 4;
then p1
in { p :
LE (q1,p,P) &
LE (p,q2,P) } by
A4,
A6,
Def1;
then
A8: ex p st p
= p1 &
LE (q1,p,P) &
LE (p,q2,P);
per cases by
A7;
suppose
LE (q2,p1,P);
then x
= q2 by
A1,
A6,
A8,
JORDAN6: 57;
hence thesis by
TARSKI:def 1;
end;
suppose q2
in P & p1
= (
W-min P);
hence thesis by
A1,
A3,
A8,
Th2;
end;
end;
let x be
object;
assume x
in
{q2};
then
A9: x
= q2 by
TARSKI:def 1;
q2
in P by
A1,
A2,
Th5;
then
A10: x
in (
Segment (q2,q3,P)) by
A1,
A9,
Th7;
x
in (
Segment (q1,q2,P)) by
A1,
A2,
A9,
Th6;
hence thesis by
A10,
XBOOLE_0:def 4;
end;
theorem ::
JORDAN7:12
Th12: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) & q1
<> q2 & q1
<> (
W-min P) holds ((
Segment (q2,(
W-min P),P))
/\ (
Segment ((
W-min P),q1,P)))
=
{(
W-min P)}
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P) and
A3: q1
<> q2 and
A4: q1
<> (
W-min P);
thus ((
Segment (q2,(
W-min P),P))
/\ (
Segment ((
W-min P),q1,P)))
c=
{(
W-min P)}
proof
let x be
object;
assume
A5: x
in ((
Segment (q2,(
W-min P),P))
/\ (
Segment ((
W-min P),q1,P)));
then x
in (
Segment (q2,(
W-min P),P)) by
XBOOLE_0:def 4;
then x
in { p1 :
LE (q2,p1,P) or q2
in P & p1
= (
W-min P) } by
Def1;
then
consider p1 such that
A6: p1
= x and
A7:
LE (q2,p1,P) or q2
in P & p1
= (
W-min P);
A8: x
in (
Segment ((
W-min P),q1,P)) by
A5,
XBOOLE_0:def 4;
now
per cases by
A7;
case
A9:
LE (q2,p1,P);
x
in { p :
LE ((
W-min P),p,P) &
LE (p,q1,P) } by
A4,
A8,
Def1;
then ex p2 st p2
= x &
LE ((
W-min P),p2,P) &
LE (p2,q1,P);
then
LE (q2,q1,P) by
A1,
A6,
A9,
JORDAN6: 58;
hence contradiction by
A1,
A2,
A3,
JORDAN6: 57;
end;
case q2
in P & p1
= (
W-min P);
hence x
= (
W-min P) by
A6;
end;
end;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{(
W-min P)};
then
A10: x
= (
W-min P) by
TARSKI:def 1;
q2
in P by
A1,
A2,
Th5;
then x
in { p1 :
LE (q2,p1,P) or q2
in P & p1
= (
W-min P) } by
A10;
then
A11: x
in (
Segment (q2,(
W-min P),P)) by
Def1;
q1
in P by
A1,
A2,
Th5;
then
LE ((
W-min P),q1,P) by
A1,
Th3;
then x
in (
Segment ((
W-min P),q1,P)) by
A1,
A10,
Th6;
hence thesis by
A11,
XBOOLE_0:def 4;
end;
theorem ::
JORDAN7:13
Th13: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2,q3,q4 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) &
LE (q2,q3,P) &
LE (q3,q4,P) & q1
<> q2 & q2
<> q3 holds (
Segment (q1,q2,P))
misses (
Segment (q3,q4,P))
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2,q3,q4 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P) and
A3:
LE (q2,q3,P) and
A4:
LE (q3,q4,P) and
A5: q1
<> q2 and
A6: q2
<> q3;
set x = the
Element of ((
Segment (q1,q2,P))
/\ (
Segment (q3,q4,P)));
assume
A7: ((
Segment (q1,q2,P))
/\ (
Segment (q3,q4,P)))
<>
{} ;
then
A8: x
in (
Segment (q1,q2,P)) by
XBOOLE_0:def 4;
A9: x
in (
Segment (q3,q4,P)) by
A7,
XBOOLE_0:def 4;
per cases ;
suppose q4
= (
W-min P);
then q3
= (
W-min P) by
A1,
A4,
Th2;
hence contradiction by
A1,
A3,
A6,
Th2;
end;
suppose
A10: q4
<> (
W-min P);
q2
<> (
W-min P) by
A1,
A2,
A5,
Th2;
then x
in { p2 :
LE (q1,p2,P) &
LE (p2,q2,P) } by
A8,
Def1;
then
A11: ex p2 st p2
= x &
LE (q1,p2,P) &
LE (p2,q2,P);
x
in { p1 :
LE (q3,p1,P) &
LE (p1,q4,P) } by
A9,
A10,
Def1;
then ex p1 st p1
= x &
LE (q3,p1,P) &
LE (p1,q4,P);
then
LE (q3,q2,P) by
A1,
A11,
JORDAN6: 58;
hence contradiction by
A1,
A3,
A6,
JORDAN6: 57;
end;
end;
theorem ::
JORDAN7:14
Th14: for P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2,q3 be
Point of (
TOP-REAL 2) st P is
being_simple_closed_curve &
LE (q1,q2,P) &
LE (q2,q3,P) & q1
<> (
W-min P) & q2
<> q3 holds (
Segment (q1,q2,P))
misses (
Segment (q3,(
W-min P),P))
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), q1,q2,q3 be
Point of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2:
LE (q1,q2,P) and
A3:
LE (q2,q3,P) and
A4: q1
<> (
W-min P) and
A5: q2
<> q3;
set x = the
Element of ((
Segment (q1,q2,P))
/\ (
Segment (q3,(
W-min P),P)));
assume
A6: ((
Segment (q1,q2,P))
/\ (
Segment (q3,(
W-min P),P)))
<>
{} ;
then
A7: x
in (
Segment (q1,q2,P)) by
XBOOLE_0:def 4;
x
in (
Segment (q3,(
W-min P),P)) by
A6,
XBOOLE_0:def 4;
then x
in { p1 :
LE (q3,p1,P) or q3
in P & p1
= (
W-min P) } by
Def1;
then
A8: ex p1 st p1
= x & (
LE (q3,p1,P) or q3
in P & p1
= (
W-min P));
q2
<> (
W-min P) by
A1,
A2,
A4,
Th2;
then x
in { p :
LE (q1,p,P) &
LE (p,q2,P) } by
A7,
Def1;
then ex p3 st p3
= x &
LE (q1,p3,P) &
LE (p3,q2,P);
then
LE (q3,q2,P) by
A1,
A4,
A8,
Th2,
JORDAN6: 58;
hence contradiction by
A1,
A3,
A5,
JORDAN6: 57;
end;
begin
reserve n for
Nat;
theorem ::
JORDAN7:15
Th15: for P be non
empty
Subset of (
TOP-REAL n), f be
Function of
I[01] , ((
TOP-REAL n)
| P) st f is
being_homeomorphism holds ex g be
Function of
I[01] , (
TOP-REAL n) st f
= g & g is
continuous & g is
one-to-one
proof
let P be non
empty
Subset of (
TOP-REAL n), f be
Function of
I[01] , ((
TOP-REAL n)
| P);
A1: (
[#] ((
TOP-REAL n)
| P))
= P by
PRE_TOPC:def 5;
the
carrier of ((
TOP-REAL n)
| P)
= (
[#] ((
TOP-REAL n)
| P))
.= P by
PRE_TOPC:def 5;
then
reconsider g1 = f as
Function of
I[01] , (
TOP-REAL n) by
FUNCT_2: 7;
assume
A2: f is
being_homeomorphism;
then
A3: f is
one-to-one by
TOPS_2:def 5;
A4: (
[#] ((
TOP-REAL n)
| P))
<>
{} & f is
continuous by
A2,
TOPS_2:def 5;
A5: for P2 be
Subset of (
TOP-REAL n) st P2 is
open holds (g1
" P2) is
open
proof
let P2 be
Subset of (
TOP-REAL n);
reconsider B1 = (P2
/\ P) as
Subset of ((
TOP-REAL n)
| P) by
A1,
XBOOLE_1: 17;
(f
" (
rng f))
c= (f
" P) by
A1,
RELAT_1: 143;
then
A6: (
dom f)
c= (f
" P) by
RELAT_1: 134;
assume P2 is
open;
then B1 is
open by
A1,
TOPS_2: 24;
then
A7: (f
" B1) is
open by
A4,
TOPS_2: 43;
(f
" P)
c= (
dom f) by
RELAT_1: 132;
then (f
" B1)
= ((f
" P2)
/\ (f
" P)) & (f
" P)
= (
dom f) by
A6,
FUNCT_1: 68;
hence thesis by
A7,
RELAT_1: 132,
XBOOLE_1: 28;
end;
(
[#] (
TOP-REAL n))
<>
{} ;
then g1 is
continuous by
A5,
TOPS_2: 43;
hence thesis by
A3;
end;
theorem ::
JORDAN7:16
Th16: for P be non
empty
Subset of (
TOP-REAL n), g be
Function of
I[01] , (
TOP-REAL n) st g is
continuous
one-to-one & (
rng g)
= P holds ex f be
Function of
I[01] , ((
TOP-REAL n)
| P) st f
= g & f is
being_homeomorphism
proof
let P be non
empty
Subset of (
TOP-REAL n), g be
Function of
I[01] , (
TOP-REAL n);
assume that
A1: g is
continuous
one-to-one and
A2: (
rng g)
= P;
the
carrier of ((
TOP-REAL n)
| P)
= (
[#] ((
TOP-REAL n)
| P));
then
A3: the
carrier of ((
TOP-REAL n)
| P)
= P by
PRE_TOPC:def 5;
then
reconsider f = g as
Function of
I[01] , ((
TOP-REAL n)
| P) by
A2,
FUNCT_2: 6;
take f;
thus f
= g;
A4: (
[#] ((
TOP-REAL n)
| P))
= P by
PRE_TOPC:def 5;
A5: (
dom f)
= the
carrier of
I[01] by
FUNCT_2:def 1
.= (
[#]
I[01] );
A6: (
[#] (
TOP-REAL n))
<>
{} ;
for P2 be
Subset of ((
TOP-REAL n)
| P) st P2 is
open holds (f
" P2) is
open
proof
let P2 be
Subset of ((
TOP-REAL n)
| P);
assume P2 is
open;
then
consider C be
Subset of (
TOP-REAL n) such that
A7: C is
open and
A8: (C
/\ (
[#] ((
TOP-REAL n)
| P)))
= P2 by
TOPS_2: 24;
(g
" P)
= (
[#]
I[01] ) by
A3,
A5,
RELSET_1: 22;
then (f
" P2)
= ((f
" C)
/\ (
[#]
I[01] )) by
A4,
A8,
FUNCT_1: 68
.= (f
" C) by
XBOOLE_1: 28;
hence thesis by
A1,
A6,
A7,
TOPS_2: 43;
end;
then
A9: f is
continuous by
A4,
TOPS_2: 43;
(
rng f)
= (
[#] ((
TOP-REAL n)
| P)) by
A2,
PRE_TOPC:def 5;
hence thesis by
A1,
A9,
COMPTS_1: 17;
end;
Lm4:
now
let h2 be
Nat;
h2
< (h2
+ 1) by
NAT_1: 13;
then
A1: (h2
- 1)
< ((h2
+ 1)
- 1) by
XREAL_1: 9;
then ((h2
- 1)
- 1)
< (h2
- 1) by
XREAL_1: 9;
hence ((h2
- 1)
- 1)
< h2 by
A1,
XXREAL_0: 2;
end;
Lm5:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
Lm6: 1
in
[.
0 , 1.] by
XXREAL_1: 1;
theorem ::
JORDAN7:17
Th17: for A be
Subset of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2) st A
is_an_arc_of (p1,p2) holds ex g be
Function of
I[01] , (
TOP-REAL 2) st g is
continuous
one-to-one & (
rng g)
= A & (g
.
0 )
= p1 & (g
. 1)
= p2
proof
let A be
Subset of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2);
assume
A1: A
is_an_arc_of (p1,p2);
then
reconsider A9 = A as non
empty
Subset of (
TOP-REAL 2) by
TOPREAL1: 1;
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| A9) such that
A2: f is
being_homeomorphism and
A3: (f
.
0 )
= p1 & (f
. 1)
= p2 by
A1,
TOPREAL1:def 1;
consider g be
Function of
I[01] , (
TOP-REAL 2) such that
A4: f
= g and
A5: g is
continuous
one-to-one by
A2,
Th15;
take g;
thus g is
continuous
one-to-one by
A5;
(
rng f)
= (
[#] ((
TOP-REAL 2)
| A9)) by
A2,
TOPS_2:def 5;
hence (
rng g)
= A by
A4,
PRE_TOPC:def 5;
thus thesis by
A3,
A4;
end;
theorem ::
JORDAN7:18
Th18: for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2), g be
Function of
I[01] , (
TOP-REAL 2), s1,s2 be
Real st P
is_an_arc_of (p1,p2) & g is
continuous
one-to-one & (
rng g)
= P & (g
.
0 )
= p1 & (g
. 1)
= p2 & (g
. s1)
= q1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= q2 &
0
<= s2 & s2
<= 1 & s1
<= s2 holds
LE (q1,q2,P,p1,p2)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2), g be
Function of
I[01] , (
TOP-REAL 2), s1,s2 be
Real such that
A1: P
is_an_arc_of (p1,p2) and
A2: g is
continuous
one-to-one & (
rng g)
= P;
ex f be
Function of
I[01] , ((
TOP-REAL 2)
| P) st f
= g & f is
being_homeomorphism by
A2,
Th16;
hence thesis by
A1,
JORDAN5C: 8;
end;
theorem ::
JORDAN7:19
Th19: for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2), g be
Function of
I[01] , (
TOP-REAL 2), s1,s2 be
Real st g is
continuous
one-to-one & (
rng g)
= P & (g
.
0 )
= p1 & (g
. 1)
= p2 & (g
. s1)
= q1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= q2 &
0
<= s2 & s2
<= 1 &
LE (q1,q2,P,p1,p2) holds s1
<= s2
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2), g be
Function of
I[01] , (
TOP-REAL 2), s1,s2 be
Real;
assume g is
continuous
one-to-one & (
rng g)
= P;
then ex f be
Function of
I[01] , ((
TOP-REAL 2)
| P) st f
= g & f is
being_homeomorphism by
Th16;
hence thesis by
JORDAN5C:def 3;
end;
theorem ::
JORDAN7:20
for P be
compact non
empty
Subset of (
TOP-REAL 2), e be
Real st P is
being_simple_closed_curve & e
>
0 holds ex h be
FinSequence of the
carrier of (
TOP-REAL 2) st (h
. 1)
= (
W-min P) & h is
one-to-one & 8
<= (
len h) & (
rng h)
c= P & (for i be
Nat st 1
<= i & i
< (
len h) holds
LE ((h
/. i),(h
/. (i
+ 1)),P)) & (for i be
Nat, W be
Subset of (
Euclid 2) st 1
<= i & i
< (
len h) & W
= (
Segment ((h
/. i),(h
/. (i
+ 1)),P)) holds (
diameter W)
< e) & (for W be
Subset of (
Euclid 2) st W
= (
Segment ((h
/. (
len h)),(h
/. 1),P)) holds (
diameter W)
< e) & (for i be
Nat st 1
<= i & (i
+ 1)
< (
len h) holds ((
Segment ((h
/. i),(h
/. (i
+ 1)),P))
/\ (
Segment ((h
/. (i
+ 1)),(h
/. (i
+ 2)),P)))
=
{(h
/. (i
+ 1))}) & ((
Segment ((h
/. (
len h)),(h
/. 1),P))
/\ (
Segment ((h
/. 1),(h
/. 2),P)))
=
{(h
/. 1)} & ((
Segment ((h
/. ((
len h)
-' 1)),(h
/. (
len h)),P))
/\ (
Segment ((h
/. (
len h)),(h
/. 1),P)))
=
{(h
/. (
len h))} & (
Segment ((h
/. ((
len h)
-' 1)),(h
/. (
len h)),P))
misses (
Segment ((h
/. 1),(h
/. 2),P)) & (for i,j be
Nat st 1
<= i & i
< j & j
< (
len h) & (i,j)
aren't_adjacent holds (
Segment ((h
/. i),(h
/. (i
+ 1)),P))
misses (
Segment ((h
/. j),(h
/. (j
+ 1)),P))) & for i be
Nat st 1
< i & (i
+ 1)
< (
len h) holds (
Segment ((h
/. (
len h)),(h
/. 1),P))
misses (
Segment ((h
/. i),(h
/. (i
+ 1)),P))
proof
let P be
compact non
empty
Subset of (
TOP-REAL 2), e be
Real;
assume that
A1: P is
being_simple_closed_curve and
A2: e
>
0 ;
A3: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6:def 8;
then
consider g1 be
Function of
I[01] , (
TOP-REAL 2) such that
A4: g1 is
continuous
one-to-one and
A5: (
rng g1)
= (
Upper_Arc P) and
A6: (g1
.
0 )
= (
W-min P) and
A7: (g1
. 1)
= (
E-max P) by
Th17;
consider h1 be
FinSequence of
REAL such that
A8: (h1
. 1)
=
0 and
A9: (h1
. (
len h1))
= 1 and
A10: 5
<= (
len h1) and
A11: (
rng h1)
c= the
carrier of
I[01] and
A12: h1 is
increasing and
A13: for i be
Nat, Q be
Subset of
I[01] , W be
Subset of (
Euclid 2) st 1
<= i & i
< (
len h1) & Q
=
[.(h1
/. i), (h1
/. (i
+ 1)).] & W
= (g1
.: Q) holds (
diameter W)
< e by
A2,
A4,
UNIFORM1: 13;
h1 is
FinSequence of the
carrier of
I[01] by
A11,
FINSEQ_1:def 4;
then
reconsider h11 = (g1
* h1) as
FinSequence of the
carrier of (
TOP-REAL 2) by
FINSEQ_2: 32;
A14: 2
< (
len h1) by
A10,
XXREAL_0: 2;
then
A15: 2
in (
dom h1) by
FINSEQ_3: 25;
A16: 1
<= (
len h1) by
A10,
XXREAL_0: 2;
then
A17: 1
in (
dom h1) by
FINSEQ_3: 25;
A18: (1
+ 1)
in (
dom h1) by
A14,
FINSEQ_3: 25;
then
A19: (h1
. (1
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
A20: h11 is
one-to-one by
A4,
A12;
A21: (
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
JORDAN6:def 9;
then
consider g2 be
Function of
I[01] , (
TOP-REAL 2) such that
A22: g2 is
continuous
one-to-one and
A23: (
rng g2)
= (
Lower_Arc P) and
A24: (g2
.
0 )
= (
E-max P) and
A25: (g2
. 1)
= (
W-min P) by
Th17;
consider h2 be
FinSequence of
REAL such that
A26: (h2
. 1)
=
0 and
A27: (h2
. (
len h2))
= 1 and
A28: 5
<= (
len h2) and
A29: (
rng h2)
c= the
carrier of
I[01] and
A30: h2 is
increasing and
A31: for i be
Nat, Q be
Subset of
I[01] , W be
Subset of (
Euclid 2) st 1
<= i & i
< (
len h2) & Q
=
[.(h2
/. i), (h2
/. (i
+ 1)).] & W
= (g2
.: Q) holds (
diameter W)
< e by
A2,
A22,
UNIFORM1: 13;
h2 is
FinSequence of the
carrier of
I[01] by
A29,
FINSEQ_1:def 4;
then
reconsider h21 = (g2
* h2) as
FinSequence of the
carrier of (
TOP-REAL 2) by
FINSEQ_2: 32;
A32: h21 is
one-to-one by
A22,
A30;
A33: 1
<= (
len h2) by
A28,
XXREAL_0: 2;
then
A34: (
len h2)
in (
dom h2) by
FINSEQ_3: 25;
then
A35: (h21
. (
len h2))
= (
W-min P) by
A25,
A27,
FUNCT_1: 13;
reconsider h0 = (h11
^ (
mid (h21,2,((
len h21)
-' 1)))) as
FinSequence of the
carrier of (
TOP-REAL 2);
A36: (
len h0)
= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
FINSEQ_1: 22;
set i = ((
len h0)
-' 1);
take h0;
A37: (
rng h1)
c= (
dom g1) by
A11,
FUNCT_2:def 1;
then
A38: (
dom h1)
= (
dom h11) by
RELAT_1: 27;
then
A39: (
len h1)
= (
len h11) by
FINSEQ_3: 29;
then
A40: (h0
. 2)
= (h11
. 2) by
A14,
FINSEQ_1: 64;
A41: (h0
. (1
+ 1))
= (h11
. (1
+ 1)) by
A39,
A14,
FINSEQ_1: 64;
then
A42: (h0
. (1
+ 1))
= (g1
. (h1
. (1
+ 1))) by
A18,
FUNCT_1: 13;
set k = ((((
len h0)
-' (
len h11))
+ 2)
-' 1);
(
0
+ 2)
<= (((
len h0)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A43: (2
-' 1)
<= ((((
len h0)
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
A44:
0
in (
dom g1) by
Lm5,
BORSUK_1: 40,
FUNCT_2:def 1;
A45: (
len h1)
in (
dom h1) by
A16,
FINSEQ_3: 25;
(
dom g2)
= the
carrier of
I[01] by
FUNCT_2:def 1;
then
A46: (
dom h2)
= (
dom h21) by
A29,
RELAT_1: 27;
then
A47: (
len h2)
= (
len h21) by
FINSEQ_3: 29;
then
A48: 2
<= (
len h21) by
A28,
XXREAL_0: 2;
(
len h21)
<= ((
len h21)
+ 1) by
NAT_1: 12;
then
A49: ((
len h21)
- 1)
<= (((
len h21)
+ 1)
- 1) by
XREAL_1: 9;
then
A50: ((
len h21)
-' 1)
<= (
len h21) by
A28,
A47,
XREAL_0:def 2;
2
<= (
len h21) by
A28,
A47,
XXREAL_0: 2;
then
A51: ((1
+ 1)
- 1)
<= ((
len h21)
- 1) by
XREAL_1: 9;
then
A52: ((
len h21)
-' 1)
= ((
len h21)
- 1) by
XREAL_0:def 2;
3
< (
len h21) by
A28,
A47,
XXREAL_0: 2;
then
A53: ((2
+ 1)
- 1)
< ((
len h21)
- 1) by
XREAL_1: 9;
then
A54: 2
< ((
len h21)
-' 1) by
A51,
NAT_D: 39;
then
A55: (((
len h21)
-' 1)
-' 2)
= (((
len h21)
-' 1)
- 2) by
XREAL_1: 233;
A56: 1
<= ((
len h21)
-' 1) by
A51,
XREAL_0:def 2;
then
A57: (
len (
mid (h21,2,((
len h21)
-' 1))))
= ((((
len h21)
-' 1)
-' 2)
+ 1) by
A48,
A50,
A54,
FINSEQ_6: 118;
((3
+ 2)
- 2)
<= ((
len h2)
- 2) by
A28,
XREAL_1: 9;
then
A58: (5
+ 3)
<= ((
len h1)
+ ((
len h2)
- 2)) by
A10,
XREAL_1: 7;
then
A59: (
len h0)
> ((1
+ 1)
+ 1) by
A39,
A47,
A36,
A52,
A55,
A57,
XXREAL_0: 2;
then
A60: ((
len h0)
-' 1)
> (1
+ 1) by
Lm2;
then
A61: 1
< i by
XXREAL_0: 2;
A62: ((3
+ 2)
- 2)
<= ((
len h2)
- 2) by
A28,
XREAL_1: 9;
then
A63: 1
<= ((
len h2)
- 2) by
XXREAL_0: 2;
then
A64: ((
len h1)
+ 1)
<= (
len h0) by
A39,
A47,
A36,
A52,
A55,
A57,
XREAL_1: 7;
then
A65: (
len h0)
> (
len h1) by
NAT_1: 13;
then
A66: 1
< (
len h0) by
A16,
XXREAL_0: 2;
then
A67: 1
in (
dom h0) by
FINSEQ_3: 25;
then
A68: (h0
/. 1)
= (h0
. 1) by
PARTFUN1:def 6;
A69: (
dom g1)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then
A70: 1
in (
dom (g1
* h1)) by
A8,
A17,
Lm5,
FUNCT_1: 11;
then
A71: (h11
. 1)
= (
W-min P) by
A6,
A8,
FUNCT_1: 12;
hence
A72: (h0
. 1)
= (
W-min P) by
A70,
FINSEQ_1:def 7;
then
A73: (h0
/. 1)
= (
W-min P) by
A67,
PARTFUN1:def 6;
A74: (
len h0)
in (
dom h0) by
A66,
FINSEQ_3: 25;
then
A75: (h0
/. (
len h0))
= (h0
. (
len h0)) by
PARTFUN1:def 6;
A76: 1
in (
dom h2) by
A33,
FINSEQ_3: 25;
then
A77: (h21
. 1)
= (
E-max P) by
A24,
A26,
FUNCT_1: 13;
thus
A78: h0 is
one-to-one
proof
let x,y be
object;
assume that
A79: x
in (
dom h0) and
A80: y
in (
dom h0) and
A81: (h0
. x)
= (h0
. y);
reconsider nx = x, ny = y as
Nat by
A79,
A80;
A82: 1
<= nx by
A79,
FINSEQ_3: 25;
A83: nx
<= (
len h0) by
A79,
FINSEQ_3: 25;
A84: 1
<= ny by
A80,
FINSEQ_3: 25;
A85: ny
<= (
len h0) by
A80,
FINSEQ_3: 25;
per cases ;
suppose nx
<= (
len h1);
then
A86: nx
in (
dom h1) by
A82,
FINSEQ_3: 25;
then
A87: (h1
. nx)
in (
rng h1) by
FUNCT_1:def 3;
A88: (h0
. nx)
= (h11
. nx) by
A38,
A86,
FINSEQ_1:def 7
.= (g1
. (h1
. nx)) by
A38,
A86,
FUNCT_1: 12;
then
A89: (h0
. nx)
in (
Upper_Arc P) by
A5,
A37,
A87,
FUNCT_1:def 3;
per cases ;
suppose ny
<= (
len h1);
then
A90: ny
in (
dom h1) by
A84,
FINSEQ_3: 25;
then
A91: (h1
. ny)
in (
rng h1) by
FUNCT_1:def 3;
(h0
. ny)
= (h11
. ny) by
A38,
A90,
FINSEQ_1:def 7
.= (g1
. (h1
. ny)) by
A90,
FUNCT_1: 13;
then (h1
. nx)
= (h1
. ny) by
A4,
A37,
A81,
A87,
A88,
A91;
hence thesis by
A12,
A86,
A90,
FUNCT_1:def 4;
end;
suppose
A92: ny
> (
len h1);
A93: (
0
+ 2)
<= ((ny
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A94: 1
<= (((ny
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
((
len h1)
+ 1)
<= ny by
A92,
NAT_1: 13;
then
A95: (((
len h1)
+ 1)
- (
len h1))
<= (ny
- (
len h1)) by
XREAL_1: 9;
then 1
<= (ny
-' (
len h11)) by
A39,
A92,
XREAL_1: 233;
then (1
+ 1)
<= ((((ny
-' (
len h11))
+ 1)
+ 1)
- 1) by
XREAL_1: 6;
then
A96: 2
<= (((ny
-' (
len h11))
+ 2)
-' 1) by
A93,
Lm1,
NAT_D: 39,
NAT_D: 42;
A97: (ny
- (
len h11))
= (ny
-' (
len h11)) by
A39,
A92,
XREAL_1: 233;
(ny
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A85,
XREAL_1: 9;
then
A98: ((ny
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A97,
XREAL_1: 6;
then (((ny
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A99: (((ny
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A94,
FINSEQ_3: 25;
(((ny
-' (
len h11))
+ 2)
- 1)
<= ((
len h2)
- 1) by
A98,
XREAL_1: 9;
then
A100: (((ny
-' (
len h11))
+ 2)
-' 1)
<= ((
len h2)
- 1) by
A93,
Lm1,
NAT_D: 39,
NAT_D: 42;
A101: ny
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A85,
FINSEQ_1: 22;
then
A102: (ny
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
XREAL_1: 9;
((
len h11)
+ 1)
<= ny by
A39,
A92,
NAT_1: 13;
then
A103: (h0
. ny)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (ny
- (
len h11))) by
A101,
FINSEQ_1: 23;
then
A104: (h0
. ny)
= (h21
. (((ny
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A97,
A102,
A95,
FINSEQ_6: 118;
then (h0
. ny)
in (
rng h21) by
A99,
FUNCT_1:def 3;
then (h0
. ny)
in (
rng g2) by
FUNCT_1: 14;
then (h0
. nx)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A23,
A81,
A89,
XBOOLE_0:def 4;
then
A105: (h0
. nx)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6: 50;
per cases by
A105,
TARSKI:def 2;
suppose (h0
. nx)
= (
W-min P);
then (h21
. (((ny
-' (
len h11))
+ 2)
-' 1))
= (
W-min P) by
A39,
A48,
A56,
A50,
A54,
A81,
A103,
A97,
A102,
A95,
FINSEQ_6: 118;
then (
len h21)
= (((ny
-' (
len h11))
+ 2)
-' 1) by
A46,
A47,
A34,
A35,
A32,
A99;
then ((
len h21)
+ 1)
<= (((
len h21)
- 1)
+ 1) by
A47,
A100,
XREAL_1: 6;
then (((
len h21)
+ 1)
- (
len h21))
<= ((
len h21)
- (
len h21)) by
XREAL_1: 9;
then (((
len h21)
+ 1)
- (
len h21))
<=
0 ;
hence thesis;
end;
suppose (h0
. nx)
= (
E-max P);
then 1
= (((ny
-' (
len h11))
+ 2)
-' 1) by
A46,
A76,
A77,
A32,
A81,
A104,
A99;
hence thesis by
A96;
end;
end;
end;
suppose
A106: nx
> (
len h1);
then ((
len h1)
+ 1)
<= nx by
NAT_1: 13;
then
A107: (((
len h1)
+ 1)
- (
len h1))
<= (nx
- (
len h1)) by
XREAL_1: 9;
then 1
<= (nx
-' (
len h11)) by
A39,
A106,
XREAL_1: 233;
then
A108: (1
+ 1)
<= ((((nx
-' (
len h11))
+ 1)
+ 1)
- 1) by
XREAL_1: 6;
A109: nx
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A83,
FINSEQ_1: 22;
then
A110: (nx
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
XREAL_1: 9;
A111: (nx
- (
len h11))
= (nx
-' (
len h11)) by
A39,
A106,
XREAL_1: 233;
(nx
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A83,
XREAL_1: 9;
then
A112: ((nx
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A111,
XREAL_1: 6;
then
A113: (((nx
-' (
len h11))
+ 2)
- 1)
<= ((
len h2)
- 1) by
XREAL_1: 9;
A114: (((nx
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
A112,
NAT_D: 44;
A115: (
0
+ 2)
<= ((nx
-' (
len h11))
+ 2) by
XREAL_1: 6;
then 1
<= (((nx
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
then
A116: (((nx
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A114,
FINSEQ_3: 25;
((
len h11)
+ 1)
<= nx by
A39,
A106,
NAT_1: 13;
then
A117: (h0
. nx)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (nx
- (
len h11))) by
A109,
FINSEQ_1: 23;
then
A118: (h0
. nx)
= (h21
. (((nx
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A111,
A110,
A107,
FINSEQ_6: 118;
then (h0
. nx)
in (
rng h21) by
A116,
FUNCT_1:def 3;
then
A119: (h0
. nx)
in (
Lower_Arc P) by
A23,
FUNCT_1: 14;
per cases ;
suppose ny
<= (
len h1);
then
A120: ny
in (
dom h1) by
A84,
FINSEQ_3: 25;
then
A121: (h1
. ny)
in (
rng h1) by
FUNCT_1:def 3;
(h0
. ny)
= (h11
. ny) by
A38,
A120,
FINSEQ_1:def 7
.= (g1
. (h1
. ny)) by
A38,
A120,
FUNCT_1: 12;
then (h0
. ny)
in (
rng g1) by
A37,
A121,
FUNCT_1:def 3;
then (h0
. ny)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A5,
A81,
A119,
XBOOLE_0:def 4;
then
A122: (h0
. ny)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6: 50;
A123: (((nx
-' (
len h11))
+ 2)
-' 1)
<= ((
len h2)
- 1) by
A115,
A113,
Lm1,
NAT_D: 39,
NAT_D: 42;
A124: 2
<= (((nx
-' (
len h11))
+ 2)
-' 1) by
A108,
A115,
Lm1,
NAT_D: 39,
NAT_D: 42;
per cases by
A122,
TARSKI:def 2;
suppose (h0
. ny)
= (
W-min P);
then (
len h21)
= (((nx
-' (
len h11))
+ 2)
-' 1) by
A46,
A47,
A34,
A35,
A32,
A81,
A118,
A116;
then ((
len h21)
+ 1)
<= (((
len h21)
- 1)
+ 1) by
A47,
A123,
XREAL_1: 6;
then (((
len h21)
+ 1)
- (
len h21))
<= ((
len h21)
- (
len h21)) by
XREAL_1: 9;
then (((
len h21)
+ 1)
- (
len h21))
<=
0 ;
hence thesis;
end;
suppose (h0
. ny)
= (
E-max P);
then (h21
. (((nx
-' (
len h11))
+ 2)
-' 1))
= (
E-max P) by
A39,
A48,
A56,
A50,
A54,
A81,
A117,
A111,
A110,
A107,
FINSEQ_6: 118;
then 1
= (((nx
-' (
len h11))
+ 2)
-' 1) by
A46,
A76,
A77,
A32,
A116;
hence thesis by
A124;
end;
end;
suppose
A125: ny
> (
len h1);
then
A126: (ny
- (
len h11))
= (ny
-' (
len h11)) by
A39,
XREAL_1: 233;
((
len h1)
+ 1)
<= ny by
A125,
NAT_1: 13;
then
A127: (h0
. ny)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (ny
- (
len h11))) & (((
len h1)
+ 1)
- (
len h1))
<= (ny
- (
len h1)) by
A39,
A36,
A85,
FINSEQ_1: 23,
XREAL_1: 9;
(
0
+ 2)
<= ((ny
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A128: 1
<= (((ny
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
(ny
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A85,
XREAL_1: 9;
then
A129: (h0
. ny)
= (h21
. (((ny
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A126,
A127,
FINSEQ_6: 118;
(ny
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A85,
XREAL_1: 9;
then ((ny
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A126,
XREAL_1: 6;
then (((ny
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then (((ny
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A128,
FINSEQ_3: 25;
then (((nx
-' (
len h1))
+ 2)
-' 1)
= (((ny
-' (
len h1))
+ 2)
-' 1) by
A39,
A32,
A81,
A118,
A116,
A129;
then (((nx
-' (
len h1))
+ 2)
- 1)
= (((ny
-' (
len h1))
+ 2)
-' 1) by
A39,
A115,
Lm1,
NAT_D: 39,
NAT_D: 42;
then ((nx
-' (
len h1))
+ (2
- 1))
= (((ny
-' (
len h1))
+ 2)
- 1) by
A39,
A128,
NAT_D: 39;
then (((
len h1)
+ nx)
- (
len h1))
= ((
len h1)
+ (ny
- (
len h1))) by
A39,
A111,
A126,
XCMPLX_1: 29;
hence thesis;
end;
end;
end;
then
A130: (h0
/. (
len h0))
<> (
W-min P) by
A16,
A72,
A65,
A74,
A75,
A67;
A131: (
dom g2)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
thus 8
<= (
len h0) by
A38,
A47,
A36,
A52,
A55,
A57,
A58,
FINSEQ_3: 29;
(
rng (
mid (h21,2,((
len h21)
-' 1))))
c= (
rng h21) & (
rng (g2
* h2))
c= (
rng g2) by
FINSEQ_6: 119,
RELAT_1: 26;
then (
rng (g1
* h1))
c= (
rng g1) & (
rng (
mid (h21,2,((
len h21)
-' 1))))
c= (
rng g2) by
RELAT_1: 26;
then ((
rng h11)
\/ (
rng (
mid (h21,2,((
len h21)
-' 1)))))
c= ((
Upper_Arc P)
\/ (
Lower_Arc P)) by
A5,
A23,
XBOOLE_1: 13;
then (
rng h0)
c= ((
Upper_Arc P)
\/ (
Lower_Arc P)) by
FINSEQ_1: 31;
hence (
rng h0)
c= P by
A1,
JORDAN6:def 9;
A132: (
dom g1)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
thus for i be
Nat st 1
<= i & i
< (
len h0) holds
LE ((h0
/. i),(h0
/. (i
+ 1)),P)
proof
let i be
Nat;
assume that
A133: 1
<= i and
A134: i
< (
len h0);
A135: (i
+ 1)
<= (
len h0) by
A134,
NAT_1: 13;
A136: i
< (i
+ 1) by
NAT_1: 13;
A137: 1
< (i
+ 1) by
A133,
NAT_1: 13;
per cases ;
suppose
A138: i
< (
len h1);
then
A139: (i
+ 1)
<= (
len h1) by
NAT_1: 13;
then
A140: (i
+ 1)
in (
dom h1) by
A137,
FINSEQ_3: 25;
then
A141: (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A142: (h1
. (i
+ 1))
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
(h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A137,
A139,
FINSEQ_1: 64;
then
A143: (h0
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
A140,
FUNCT_1: 13;
then
A144: (h0
. (i
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A141,
BORSUK_1: 40,
FUNCT_1:def 3;
i
in (
dom h0) by
A133,
A134,
FINSEQ_3: 25;
then
A145: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
A146: i
in (
dom h1) by
A133,
A138,
FINSEQ_3: 25;
then
A147: (h1
. i)
in (
rng h1) by
FUNCT_1:def 3;
then
A148:
0
<= (h1
. i) & (h1
. i)
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
A149: (g1
. (h1
. i))
in (
rng g1) by
A132,
A11,
A147,
BORSUK_1: 40,
FUNCT_1:def 3;
(h0
. i)
= (h11
. i) by
A39,
A133,
A138,
FINSEQ_1: 64;
then
A150: (h0
. i)
= (g1
. (h1
. i)) by
A146,
FUNCT_1: 13;
(i
+ 1)
in (
dom h0) by
A135,
A137,
FINSEQ_3: 25;
then
A151: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
(h1
. i)
< (h1
. (i
+ 1)) by
A12,
A136,
A146,
A140,
SEQM_3:def 1;
then
LE ((h0
/. i),(h0
/. (i
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A4,
A5,
A6,
A7,
A150,
A148,
A143,
A142,
A145,
A151,
Th18;
hence thesis by
A5,
A150,
A145,
A151,
A149,
A144,
JORDAN6:def 10;
end;
suppose
A152: i
>= (
len h1);
per cases by
A152,
XXREAL_0: 1;
suppose
A153: i
> (
len h1);
then ((
len h11)
+ 1)
<= i by
A39,
NAT_1: 13;
then
A154: (h0
. i)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (i
- (
len h11))) by
A36,
A134,
FINSEQ_1: 23;
A155: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A135,
XREAL_1: 9;
(i
+ 1)
> (
len h11) by
A39,
A153,
NAT_1: 13;
then
A156: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
XREAL_1: 233;
A157: ((
len h1)
+ 1)
<= i by
A153,
NAT_1: 13;
then
A158: (((
len h1)
+ 1)
- (
len h1))
<= (i
- (
len h1)) by
XREAL_1: 9;
A159: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A153,
XREAL_1: 233;
A160: ((
len h1)
+ 1)
<= (i
+ 1) by
A157,
NAT_1: 13;
then
A161: (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
XREAL_1: 9;
then
A162: 1
< (((i
+ 1)
-' (
len h11))
+ (2
- 1)) by
A39,
A156,
NAT_1: 13;
then
A163:
0
< ((((i
+ 1)
-' (
len h11))
+ 2)
- 1);
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A39,
A36,
A135,
A160,
FINSEQ_1: 23;
then
A164: (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A156,
A155,
A161,
FINSEQ_6: 118;
set j = (((i
-' (
len h11))
+ 2)
-' 1);
(
len h2)
< ((
len h2)
+ 1) by
NAT_1: 13;
then
A165: ((
len h2)
- 1)
< (((
len h2)
+ 1)
- 1) by
XREAL_1: 9;
A166: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A167: 1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
then
A168: 1
< (j
+ 1) by
NAT_1: 13;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A134,
XREAL_1: 9;
then
A169: ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A159,
XREAL_1: 6;
then (((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A170: j
in (
dom h2) by
A46,
A167,
FINSEQ_3: 25;
(i
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A134,
XREAL_1: 9;
then (h0
. i)
= (h21
. (((i
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A154,
A159,
A158,
FINSEQ_6: 118;
then
A171: (h0
. i)
= (g2
. (h2
. j)) by
A170,
FUNCT_1: 13;
A172: (h2
. j)
in (
rng h2) by
A170,
FUNCT_1:def 3;
then
A173: (h0
. i)
in (
Lower_Arc P) by
A23,
A131,
A29,
A171,
BORSUK_1: 40,
FUNCT_1:def 3;
(i
+ 1)
in (
dom h0) by
A135,
A137,
FINSEQ_3: 25;
then
A174: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
(j
+ 1)
= (((((i
-' (
len h11))
+ 1)
+ 1)
- 1)
+ 1) by
A166,
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((i
-' (
len h11))
+ 2);
then
A175: (j
+ 1)
in (
dom h2) by
A169,
A168,
FINSEQ_3: 25;
then
A176: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
then
A177: (h2
. (j
+ 1))
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
A178: (j
+ 1)
= ((((i
- (
len h11))
+ 2)
- 1)
+ 1) by
A159,
A166,
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A156,
A163,
XREAL_0:def 2;
then
A179: (h0
. (i
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A164,
A175,
FUNCT_1: 13;
then
A180: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A176,
BORSUK_1: 40,
FUNCT_1:def 3;
A181: ((((i
+ 1)
-' (
len h11))
+ 2)
- 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A162,
XREAL_0:def 2;
((i
+ 1)
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A135,
XREAL_1: 9;
then
A182: (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A156,
XREAL_1: 6;
then ((((i
+ 1)
-' (
len h11))
+ 2)
- 1)
<= ((
len h2)
- 1) by
XREAL_1: 9;
then ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
< (
len h2) by
A181,
A165,
XXREAL_0: 2;
then
A183: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
in (
dom h2) by
A178,
A168,
FINSEQ_3: 25;
A184:
now
assume (h0
/. (i
+ 1))
= (
W-min P);
then (
len h21)
= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A46,
A47,
A34,
A35,
A32,
A164,
A174,
A183;
then (((
len h21)
+ 1)
- (
len h21))
<= ((
len h21)
- (
len h21)) by
A47,
A181,
A182,
XREAL_1: 9;
then (((
len h21)
+ 1)
- (
len h21))
<=
0 ;
hence contradiction;
end;
j
< (j
+ 1) by
NAT_1: 13;
then
A185: (h2
. j)
< (h2
. (j
+ 1)) by
A30,
A170,
A175,
SEQM_3:def 1;
i
in (
dom h0) by
A133,
A134,
FINSEQ_3: 25;
then
A186: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
0
<= (h2
. j) & (h2
. j)
<= 1 by
A29,
A172,
BORSUK_1: 40,
XXREAL_1: 1;
then
LE ((h0
/. i),(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A171,
A179,
A177,
A185,
A186,
A174,
Th18;
hence thesis by
A186,
A174,
A173,
A180,
A184,
JORDAN6:def 10;
end;
suppose
A187: i
= (
len h1);
then (h0
. i)
= (h11
. i) & i
in (
dom h1) by
A39,
A133,
FINSEQ_1: 64,
FINSEQ_3: 25;
then
A188: (h0
. i)
= (
E-max P) by
A7,
A9,
A187,
FUNCT_1: 13;
i
in (
dom h0) by
A133,
A134,
FINSEQ_3: 25;
then (h0
/. i)
= (
E-max P) by
A188,
PARTFUN1:def 6;
then
A189: (h0
/. i)
in (
Upper_Arc P) by
A1,
Th1;
(i
+ 1)
in (
dom h0) by
A135,
A137,
FINSEQ_3: 25;
then
A190: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
set j = (((i
-' (
len h11))
+ 2)
-' 1);
((
len h11)
-' (
len h11))
= ((
len h11)
- (
len h11)) by
XREAL_1: 233
.=
0 ;
then
A191: j
= (2
- 1) by
A39,
A187,
XREAL_1: 233;
then (j
+ 1)
<= (
len h2) by
A28,
XXREAL_0: 2;
then
A192: (j
+ 1)
in (
dom h2) by
A191,
FINSEQ_3: 25;
then
A193: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
2
<= (
len h21) by
A28,
A47,
XXREAL_0: 2;
then
A194: 2
in (
dom h21) by
FINSEQ_3: 25;
A195: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A135,
XREAL_1: 9;
A196: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
= ((1
+ 2)
-' 1) by
A39,
A187,
NAT_D: 34
.= 2 by
NAT_D: 34;
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) & ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A36,
A135,
A136,
A187,
FINSEQ_1: 23,
XREAL_1: 233;
then
A197: (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A187,
A195,
FINSEQ_6: 118;
then (h0
. (i
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A191,
A196,
A192,
FUNCT_1: 13;
then
A198: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A193,
BORSUK_1: 40,
FUNCT_1:def 3;
(
len h21)
<> ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A28,
A47,
A196;
then (h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A47,
A34,
A35,
A32,
A197,
A196,
A190,
A194;
hence thesis by
A189,
A190,
A198,
JORDAN6:def 10;
end;
end;
end;
A199: i
< (
len h0) by
A66,
JORDAN5B: 1;
then
A200: (i
+ 1)
<= (
len h0) by
NAT_1: 13;
A201: (1
+ 1)
<= (
len h0) by
A65,
A14,
XXREAL_0: 2;
then
A202: 1
<= i by
Lm3;
then
A203: i
in (
dom h0) by
A199,
FINSEQ_3: 25;
then
A204: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
A205: (1
+ 1)
<= (
len h0) by
A66,
NAT_1: 13;
then (1
+ 1)
in (
dom h0) by
FINSEQ_3: 25;
then
A206: (h0
/. (1
+ 1))
= (h0
. (1
+ 1)) by
PARTFUN1:def 6;
A207:
now
A208: (1
+ 1)
in (
dom h1) by
A14,
FINSEQ_3: 25;
then
A209: (h1
. (1
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
A210: (h0
. (1
+ 1))
= (h11
. (1
+ 1)) by
A39,
A14,
FINSEQ_1: 64;
then (h0
. (1
+ 1))
= (g1
. (h1
. (1
+ 1))) by
A208,
FUNCT_1: 13;
then
A211: (h0
. (1
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A209,
BORSUK_1: 40,
FUNCT_1:def 3;
assume
A212: (h0
/. (1
+ 1))
= (h0
/. i);
per cases ;
suppose i
<= (
len h1);
then (h0
. i)
= (h11
. i) & i
in (
dom h1) by
A39,
A202,
FINSEQ_1: 64,
FINSEQ_3: 25;
hence contradiction by
A38,
A20,
A60,
A204,
A206,
A212,
A208,
A210;
end;
suppose
A213: i
> (
len h1);
i
in (
dom h0) by
A202,
A199,
FINSEQ_3: 25;
then
A214: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
A215: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A213,
XREAL_1: 233;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A199,
XREAL_1: 9;
then ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A215,
XREAL_1: 6;
then
A216: (((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A199,
XREAL_1: 9;
then
A217: ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A215,
XREAL_1: 6;
set k = (((i
-' (
len h11))
+ 2)
-' 1);
A218: (i
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A199,
XREAL_1: 9;
A219: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A220: (((i
-' (
len h11))
+ 2)
-' 1)
= (((i
-' (
len h11))
+ 2)
- 1) by
Lm1,
NAT_D: 39,
NAT_D: 42;
1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A219,
Lm1,
NAT_D: 42;
then
A221: k
in (
dom h2) by
A46,
A216,
FINSEQ_3: 25;
then (h2
. k)
in (
rng h2) by
FUNCT_1:def 3;
then
A222: (g2
. (h2
. k))
in (
rng g2) by
A131,
A29,
BORSUK_1: 40,
FUNCT_1:def 3;
A223: ((
len h1)
+ 1)
<= i by
A213,
NAT_1: 13;
then (h0
. i)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (i
- (
len h11))) & (((
len h1)
+ 1)
- (
len h1))
<= (i
- (
len h1)) by
A39,
A36,
A199,
FINSEQ_1: 23,
XREAL_1: 9;
then
A224: (h0
. i)
= (h21
. (((i
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A215,
A218,
FINSEQ_6: 118;
then (h0
. i)
= (g2
. (h2
. k)) by
A221,
FUNCT_1: 13;
then (h0
. i)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A23,
A206,
A212,
A211,
A214,
A222,
XBOOLE_0:def 4;
then (h0
. i)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
then
A225: (h0
. i)
= (
W-min P) or (h0
. i)
= (
E-max P) by
TARSKI:def 2;
(((
len h11)
+ 1)
- (
len h11))
<= (i
- (
len h11)) by
A39,
A223,
XREAL_1: 9;
then 1
<= (i
-' (
len h11)) by
NAT_D: 39;
then (1
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then ((1
+ 2)
- 1)
<= (((i
-' (
len h11))
+ 2)
- 1) by
XREAL_1: 9;
then
A226: 1
< k by
A220,
XXREAL_0: 2;
(((i
-' (
len h11))
+ 2)
-' 1)
< ((((i
-' (
len h11))
+ 2)
- 1)
+ 1) by
A220,
NAT_1: 13;
hence contradiction by
A46,
A76,
A34,
A77,
A35,
A32,
A224,
A217,
A226,
A221,
A225;
end;
end;
A227: 1
in (
dom g2) by
Lm6,
BORSUK_1: 40,
FUNCT_2:def 1;
A228: (((
len h2)
- 1)
- 1)
< (
len h2) by
Lm4;
A229:
now
per cases ;
case
A230: i
<= (
len h1);
A231: (h0
/. (1
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A206,
A42,
A19,
BORSUK_1: 40,
FUNCT_1:def 3;
A232:
0
<= (h1
. (1
+ 1)) & (h1
. (1
+ 1))
<= 1 by
A11,
A19,
BORSUK_1: 40,
XXREAL_1: 1;
A233: i
in (
dom h1) by
A61,
A230,
FINSEQ_3: 25;
then
A234: (h1
. i)
in (
rng h1) by
FUNCT_1:def 3;
then
A235: (h1
. i)
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
(h0
. i)
= (h11
. i) by
A39,
A61,
A230,
FINSEQ_1: 64;
then
A236: (h0
. i)
= (g1
. (h1
. i)) by
A233,
FUNCT_1: 13;
then
A237: (h0
/. i)
in (
Upper_Arc P) by
A5,
A132,
A11,
A204,
A234,
BORSUK_1: 40,
FUNCT_1:def 3;
(h1
. (1
+ 1))
< (h1
. i) by
A12,
A60,
A18,
A233,
SEQM_3:def 1;
then
LE ((h0
/. (1
+ 1)),(h0
/. i),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A4,
A5,
A6,
A7,
A204,
A206,
A42,
A236,
A235,
A232,
Th18;
hence
LE ((h0
/. (1
+ 1)),(h0
/. i),P) by
A231,
A237,
JORDAN6:def 10;
end;
case
A238: i
> (
len h1);
(1
+ 1)
in (
dom h1) by
A14,
FINSEQ_3: 25;
then
A239: (h11
. (1
+ 1))
= (g1
. (h1
. (1
+ 1))) by
FUNCT_1: 13;
A240: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A238,
XREAL_1: 233;
((i
+ 1)
- 1)
<= (((
len h1)
+ ((
len h2)
- 2))
- 1) by
A39,
A47,
A36,
A52,
A55,
A57,
A200,
XREAL_1: 9;
then (i
- (
len h11))
<= (((
len h1)
+ (((
len h2)
- 2)
- 1))
- (
len h11)) by
XREAL_1: 9;
then ((i
-' (
len h11))
+ 2)
<= ((((
len h2)
- 2)
- 1)
+ 2) by
A39,
A240,
XREAL_1: 6;
then
A241: (((i
-' (
len h11))
+ 2)
- 1)
<= (((
len h2)
- 1)
- 1) by
XREAL_1: 9;
A242: ((
len h1)
+ 1)
<= i by
A238,
NAT_1: 13;
then
A243: (((
len h1)
+ 1)
- (
len h1))
<= (i
- (
len h1)) by
XREAL_1: 9;
(h1
. (1
+ 1))
in (
rng h1) by
A15,
FUNCT_1:def 3;
then
A244: (g1
. (h1
. (1
+ 1)))
in (
rng g1) by
A132,
A11,
BORSUK_1: 40,
FUNCT_1:def 3;
(
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A245: (2
-' 1)
<= (((i
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
set k = (((i
-' (
len h11))
+ 2)
-' 1);
(
0
+ 1)
<= ((((i
-' (
len h11))
+ 1)
+ 1)
- 1) by
XREAL_1: 6;
then
A246: (((i
-' (
len h11))
+ 2)
-' 1)
= (((i
-' (
len h11))
+ 2)
- 1) by
NAT_D: 39;
A247: (i
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A199,
XREAL_1: 9;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A199,
XREAL_1: 9;
then ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A240,
XREAL_1: 6;
then (((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A248: (((i
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A245,
Lm1,
FINSEQ_3: 25;
A249: (h0
. i)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (i
- (
len h11))) by
A39,
A36,
A199,
A242,
FINSEQ_1: 23;
then (h0
. i)
= (h21
. (((i
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A240,
A247,
A243,
FINSEQ_6: 118;
then
A250: (h0
. i)
= (g2
. (h2
. k)) by
A46,
A248,
FUNCT_1: 13;
(h2
. k)
in (
rng h2) by
A46,
A248,
FUNCT_1:def 3;
then
A251: (h0
. i)
in (
Lower_Arc P) by
A23,
A131,
A29,
A250,
BORSUK_1: 40,
FUNCT_1:def 3;
1
<= (i
- (
len h11)) by
A38,
A243,
FINSEQ_3: 29;
then (h0
. i)
= (h21
. k) by
A48,
A56,
A50,
A54,
A240,
A247,
A249,
FINSEQ_6: 118;
then (h0
/. i)
<> (
W-min P) by
A228,
A46,
A34,
A35,
A32,
A204,
A246,
A248,
A241;
hence
LE ((h0
/. (1
+ 1)),(h0
/. i),P) by
A5,
A204,
A206,
A41,
A239,
A244,
A251,
JORDAN6:def 10;
end;
end;
A252: ((
len h0)
- (
len h11))
= ((
len h0)
-' (
len h11)) by
A39,
A65,
XREAL_1: 233;
then ((((
len h0)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A36,
A52,
A55,
A57,
NAT_D: 44;
then ((((
len h0)
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A43,
Lm1,
FINSEQ_3: 25;
then
A253: (h21
. k)
= (g2
. (h2
. k)) & (h2
. k)
in (
rng h2) by
A46,
FUNCT_1: 13,
FUNCT_1:def 3;
(h1
. (
len h1))
in (
dom g1) by
A9,
A69,
XXREAL_1: 1;
then
A254: (
len h1)
in (
dom (g1
* h1)) by
A45,
FUNCT_1: 11;
then
A255: (h11
. (
len h1))
= (
E-max P) by
A7,
A9,
FUNCT_1: 12;
A256: for i be
Nat st 1
<= i & (i
+ 1)
<= (
len h0) holds
LE ((h0
/. i),(h0
/. (i
+ 1)),P) & (h0
/. (i
+ 1))
<> (
W-min P) & (h0
/. i)
<> (h0
/. (i
+ 1))
proof
let i be
Nat such that
A257: 1
<= i and
A258: (i
+ 1)
<= (
len h0);
A259: i
< (i
+ 1) by
NAT_1: 13;
A260: 1
< (i
+ 1) by
A257,
NAT_1: 13;
then (i
+ 1)
in (
dom h0) by
A258,
FINSEQ_3: 25;
then
A261: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A262: i
< (
len h0) by
A258,
NAT_1: 13;
then i
in (
dom h0) by
A257,
FINSEQ_3: 25;
then
A263: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
per cases ;
suppose
A264: i
< (
len h1);
then
A265: (i
+ 1)
<= (
len h1) by
NAT_1: 13;
then
A266: (i
+ 1)
in (
dom h1) by
A260,
FINSEQ_3: 25;
then
A267: (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A268: (h1
. (i
+ 1))
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
A269: (i
+ 1)
<> 1 & (i
+ 1)
<> i by
A257,
NAT_1: 13;
A270: i
in (
dom h1) by
A257,
A264,
FINSEQ_3: 25;
then
A271: (h1
. i)
in (
rng h1) by
FUNCT_1:def 3;
then
A272:
0
<= (h1
. i) & (h1
. i)
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
A273: (h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A260,
A265,
FINSEQ_1: 64;
then
A274: (h0
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
A266,
FUNCT_1: 13;
then
A275: (h0
. (i
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A267,
BORSUK_1: 40,
FUNCT_1:def 3;
A276: (h0
. i)
= (h11
. i) by
A39,
A257,
A264,
FINSEQ_1: 64;
then
A277: (g1
. (h1
. i))
= (h0
/. i) by
A263,
A270,
FUNCT_1: 13;
(g1
. (h1
. i))
in (
rng g1) by
A132,
A11,
A271,
BORSUK_1: 40,
FUNCT_1:def 3;
then
A278: (h0
. i)
in (
Upper_Arc P) by
A5,
A276,
A270,
FUNCT_1: 13;
(h1
. i)
< (h1
. (i
+ 1)) by
A12,
A259,
A270,
A266,
SEQM_3:def 1;
then
LE ((h0
/. i),(h0
/. (i
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A4,
A5,
A6,
A7,
A261,
A274,
A277,
A272,
A268,
Th18;
hence thesis by
A38,
A17,
A71,
A20,
A263,
A261,
A276,
A270,
A273,
A266,
A278,
A275,
A269,
JORDAN6:def 10;
end;
suppose
A279: i
>= (
len h1);
per cases by
A279,
XXREAL_0: 1;
suppose
A280: i
> (
len h1);
(i
- (
len h11))
< (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A262,
XREAL_1: 9;
then
A281: ((i
- (
len h11))
+ 2)
< (((
len h2)
- 2)
+ 2) by
XREAL_1: 6;
(i
+ 1)
> (
len h11) by
A39,
A280,
NAT_1: 13;
then
A282: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
XREAL_1: 233;
set j = (((i
-' (
len h11))
+ 2)
-' 1);
A283: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A258,
XREAL_1: 9;
A284: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A285: (j
+ 1)
= ((((i
-' (
len h11))
+ (1
+ 1))
- 1)
+ 1) by
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((i
-' (
len h11))
+ (1
+ 1));
A286: ((
len h1)
+ 1)
<= i by
A280,
NAT_1: 13;
then
A287: (((
len h1)
+ 1)
- (
len h1))
<= (i
- (
len h1)) by
XREAL_1: 9;
(i
+ 1)
in (
dom h0) by
A258,
A260,
FINSEQ_3: 25;
then
A288: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A289: ((
len h1)
+ 1)
<= (i
+ 1) by
A286,
NAT_1: 13;
then
A290: (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
XREAL_1: 9;
then 1
< (((i
+ 1)
-' (
len h11))
+ (2
- 1)) by
A39,
A282,
NAT_1: 13;
then
A291:
0
< ((((i
+ 1)
-' (
len h11))
+ 2)
- 1);
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A39,
A36,
A258,
A289,
FINSEQ_1: 23;
then
A292: (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A282,
A283,
A290,
FINSEQ_6: 118;
A293: i
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A262,
FINSEQ_1: 22;
((
len h11)
+ 1)
<= i by
A39,
A280,
NAT_1: 13;
then
A294: (h0
. i)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (i
- (
len h11))) by
A293,
FINSEQ_1: 23;
A295: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A280,
XREAL_1: 233;
A296: 1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A284,
Lm1,
NAT_D: 42;
then 1
< (j
+ 1) by
NAT_1: 13;
then
A297: (j
+ 1)
in (
dom h2) by
A295,
A281,
A285,
FINSEQ_3: 25;
then
A298: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
then
A299: (h2
. (j
+ 1))
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A262,
XREAL_1: 9;
then ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A295,
XREAL_1: 6;
then (((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A300: j
in (
dom h2) by
A46,
A296,
FINSEQ_3: 25;
j
< (j
+ 1) by
NAT_1: 13;
then
A301: (h2
. j)
< (h2
. (j
+ 1)) by
A30,
A300,
A297,
SEQM_3:def 1;
i
in (
dom h0) by
A257,
A262,
FINSEQ_3: 25;
then
A302: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
(i
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A293,
XREAL_1: 9;
then
A303: (h0
. i)
= (h21
. (((i
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A294,
A295,
A287,
FINSEQ_6: 118;
then
A304: (h0
. i)
= (g2
. (h2
. j)) by
A300,
FUNCT_1: 13;
A305: (j
+ 1)
= ((((i
- (
len h11))
+ 2)
- 1)
+ 1) by
A295,
A284,
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A282,
A291,
XREAL_0:def 2;
then
A306: (h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A295,
A292,
A281,
A285,
A297,
A288;
A307: (h0
. (i
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A292,
A305,
A297,
FUNCT_1: 13;
then
A308: (h0
/. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A298,
A288,
BORSUK_1: 40,
FUNCT_1:def 3;
A309: (h2
. j)
in (
rng h2) by
A300,
FUNCT_1:def 3;
then
A310: j
< (j
+ 1) & (h0
/. i)
in (
Lower_Arc P) by
A23,
A131,
A29,
A304,
A302,
BORSUK_1: 40,
FUNCT_1:def 3,
NAT_1: 13;
0
<= (h2
. j) & (h2
. j)
<= 1 by
A29,
A309,
BORSUK_1: 40,
XXREAL_1: 1;
then
LE ((h0
/. i),(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A304,
A307,
A301,
A302,
A288,
A299,
Th18;
hence thesis by
A46,
A32,
A303,
A292,
A305,
A300,
A297,
A302,
A288,
A306,
A310,
A308,
JORDAN6:def 10;
end;
suppose
A311: i
= (
len h1);
then
A312: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
XREAL_1: 233;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A262,
XREAL_1: 9;
then
A313: ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A312,
XREAL_1: 6;
then
A314: (((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
set j = (((i
-' (
len h11))
+ 2)
-' 1);
A315: (j
+ 1)
<> j;
A316: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A317: (j
+ 1)
= ((((i
-' (
len h11))
+ (1
+ 1))
- 1)
+ 1) by
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((i
-' (
len h11))
+ 2);
(2
-' 1)
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A316,
NAT_D: 42;
then 1
< (j
+ 1) by
Lm1,
NAT_1: 13;
then
A318: (j
+ 1)
in (
dom h2) by
A313,
A317,
FINSEQ_3: 25;
then
A319: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
(i
+ 1)
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A258,
FINSEQ_1: 22;
then
A320: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
XREAL_1: 9;
A321: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A259,
A311,
XREAL_1: 233;
then
A322:
0
< ((((i
+ 1)
-' (
len h11))
+ 2)
- 1) by
A39,
A311;
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A39,
A36,
A258,
A311,
FINSEQ_1: 23;
then
A323: (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A311,
A321,
A320,
FINSEQ_6: 118;
A324: (h0
. i)
= (
E-max P) by
A39,
A255,
A257,
A311,
FINSEQ_1: 64;
then
A325: (h0
. i)
in (
Upper_Arc P) by
A1,
Th1;
((
len h1)
-' (
len h11))
= ((
len h11)
- (
len h11)) by
A39,
XREAL_0:def 2;
then ((
0
+ 2)
- 1)
= ((((
len h1)
-' (
len h11))
+ 2)
- 1);
then
A326: (h0
. i)
= (g2
. (h2
. j)) by
A24,
A26,
A311,
A324,
NAT_D: 39;
1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A316,
Lm1,
NAT_D: 42;
then
A327: j
in (
dom h2) by
A46,
A314,
FINSEQ_3: 25;
then
A328: (h21
. j)
= (g2
. (h2
. j)) by
FUNCT_1: 13;
i
in (
dom h0) by
A257,
A262,
FINSEQ_3: 25;
then
A329: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
(i
+ 1)
in (
dom h0) by
A258,
A260,
FINSEQ_3: 25;
then
A330: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A331: (j
+ 1)
= ((((i
- (
len h11))
+ 2)
- 1)
+ 1) by
A39,
A311,
Lm1,
XREAL_0:def 2
.= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A321,
A322,
XREAL_0:def 2;
then (h0
. (i
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A323,
A318,
FUNCT_1: 13;
then
A332: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A319,
BORSUK_1: 40,
FUNCT_1:def 3;
(i
- (
len h11))
< (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A262,
XREAL_1: 9;
then ((i
- (
len h11))
+ 2)
< (((
len h2)
- 2)
+ 2) by
XREAL_1: 6;
then (j
+ 1)
< (
len h2) by
A39,
A311,
A317,
XREAL_0:def 2;
then (h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A323,
A331,
A318,
A330;
hence thesis by
A46,
A32,
A323,
A331,
A327,
A328,
A326,
A318,
A329,
A330,
A332,
A325,
A315,
JORDAN6:def 10;
end;
end;
end;
then
A333:
LE ((h0
/. 1),(h0
/. (1
+ 1)),P) & (h0
/. 1)
<> (h0
/. (1
+ 1)) by
A205;
A334: (
E-max P)
in (
Upper_Arc P) by
A1,
Th1;
thus for i be
Nat, W be
Subset of (
Euclid 2) st 1
<= i & i
< (
len h0) & W
= (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P)) holds (
diameter W)
< e
proof
let i be
Nat, W be
Subset of (
Euclid 2);
assume that
A335: 1
<= i and
A336: i
< (
len h0) and
A337: W
= (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P));
A338: (i
+ 1)
<= (
len h0) by
A336,
NAT_1: 13;
A339: i
< (i
+ 1) by
NAT_1: 13;
A340: 1
< (i
+ 1) by
A335,
NAT_1: 13;
per cases by
XXREAL_0: 1;
suppose
A341: i
< (
len h1);
then
A342: i
in (
dom h1) by
A335,
FINSEQ_3: 25;
then
A343: (h1
. i)
in (
rng h1) by
FUNCT_1:def 3;
then
A344: (h1
. i)
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
A345:
0
<= (h1
. i) by
A11,
A343,
BORSUK_1: 40,
XXREAL_1: 1;
A346: (h1
/. i)
= (h1
. i) by
A335,
A341,
FINSEQ_4: 15;
A347: (h11
. i)
= (g1
. (h1
. i)) by
A342,
FUNCT_1: 13;
then
A348: (h0
. i)
= (g1
. (h1
. i)) by
A39,
A335,
A341,
FINSEQ_1: 64;
then
A349: (h0
. i)
in (
Upper_Arc P) by
A5,
A132,
A11,
A343,
BORSUK_1: 40,
FUNCT_1:def 3;
i
in (
dom h0) by
A335,
A336,
FINSEQ_3: 25;
then
A350: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
(i
+ 1)
in (
dom h0) by
A338,
A340,
FINSEQ_3: 25;
then
A351: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A352: (i
+ 1)
<= (
len h1) by
A341,
NAT_1: 13;
then
A353: (i
+ 1)
in (
dom h1) by
A340,
FINSEQ_3: 25;
then
A354: (h1
. i)
< (h1
. (i
+ 1)) by
A12,
A339,
A342,
SEQM_3:def 1;
A355: (h1
/. (i
+ 1))
= (h1
. (i
+ 1)) by
A340,
A352,
FINSEQ_4: 15;
A356: (h1
. (i
+ 1))
in (
rng h1) by
A353,
FUNCT_1:def 3;
then
reconsider Q1 =
[.(h1
/. i), (h1
/. (i
+ 1)).] as
Subset of
I[01] by
A11,
A343,
A346,
A355,
BORSUK_1: 40,
XXREAL_2:def 12;
A357: (h0
. i)
= (h11
. i) by
A39,
A335,
A341,
FINSEQ_1: 64;
A358: (h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A340,
A352,
FINSEQ_1: 64;
then
A359: (h0
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
A353,
FUNCT_1: 13;
then
A360: (h0
. (i
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A356,
BORSUK_1: 40,
FUNCT_1:def 3;
A361: (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
c= (g1
.:
[.(h1
/. i), (h1
/. (i
+ 1)).])
proof
let x be
object;
A362: (h0
/. (i
+ 1))
<> (
W-min P) by
A38,
A17,
A71,
A20,
A340,
A358,
A353,
A351;
assume x
in (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P));
then x
in { p :
LE ((h0
/. i),p,P) &
LE (p,(h0
/. (i
+ 1)),P) } by
A362,
Def1;
then
consider p be
Point of (
TOP-REAL 2) such that
A363: p
= x and
A364:
LE ((h0
/. i),p,P) and
A365:
LE (p,(h0
/. (i
+ 1)),P);
A366: (h0
/. i)
in (
Upper_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) or (h0
/. i)
in (
Upper_Arc P) & p
in (
Upper_Arc P) &
LE ((h0
/. i),p,(
Upper_Arc P),(
W-min P),(
E-max P)) or (h0
/. i)
in (
Lower_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) &
LE ((h0
/. i),p,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A364,
JORDAN6:def 10;
A367: p
in (
Upper_Arc P) & (h0
/. (i
+ 1))
in (
Lower_Arc P) or p
in (
Upper_Arc P) & (h0
/. (i
+ 1))
in (
Upper_Arc P) &
LE (p,(h0
/. (i
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) or p
in (
Lower_Arc P) & (h0
/. (i
+ 1))
in (
Lower_Arc P) &
LE (p,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A365,
JORDAN6:def 10;
now
per cases by
A352,
XXREAL_0: 1;
suppose (i
+ 1)
< (
len h1);
then
A368: (h0
/. (i
+ 1))
<> (
E-max P) by
A38,
A45,
A255,
A20,
A358,
A353,
A351;
A369:
now
assume (h0
/. (i
+ 1))
in (
Lower_Arc P);
then (h0
/. (i
+ 1))
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A351,
A360,
XBOOLE_0:def 4;
then (h0
/. (i
+ 1))
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A362,
A368,
TARSKI:def 2;
end;
then
A370:
LE (p,(h0
/. (i
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A365,
JORDAN6:def 10;
then
A371: p
<> (
E-max P) by
A3,
A368,
JORDAN6: 55;
A372: p
in (
Upper_Arc P) by
A365,
A369,
JORDAN6:def 10;
per cases by
A335,
XXREAL_0: 1;
suppose i
> 1;
then
A373: (h0
/. i)
<> (
W-min P) by
A38,
A17,
A71,
A20,
A342,
A347,
A348,
A350;
A374: (h11
. i)
<> (
E-max P) by
A38,
A45,
A255,
A20,
A341,
A342;
now
assume (h0
/. i)
in (
Lower_Arc P);
then (h0
/. i)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A350,
A349,
XBOOLE_0:def 4;
then (h0
/. i)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A357,
A350,
A373,
A374,
TARSKI:def 2;
end;
then
A375: (h0
/. i)
in (
Upper_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) or (h0
/. i)
in (
Upper_Arc P) & p
in (
Upper_Arc P) &
LE ((h0
/. i),p,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A364,
JORDAN6:def 10;
then
A376: p
<> (
W-min P) by
A3,
A373,
JORDAN6: 54;
A377:
now
assume p
in (
Lower_Arc P);
then p
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A372,
XBOOLE_0:def 4;
then p
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A371,
A376,
TARSKI:def 2;
end;
then
consider z be
object such that
A378: z
in (
dom g1) and
A379: p
= (g1
. z) by
A5,
A375,
FUNCT_1:def 3;
reconsider rz = z as
Real by
A132,
A378;
A380: rz
<= 1 by
A378,
BORSUK_1: 40,
XXREAL_1: 1;
(h1
. (i
+ 1))
in (
rng h1) by
A353,
FUNCT_1:def 3;
then
A381:
0
<= (h1
/. (i
+ 1)) & (h1
/. (i
+ 1))
<= 1 by
A11,
A355,
BORSUK_1: 40,
XXREAL_1: 1;
reconsider z as
set by
TARSKI: 1;
take z;
thus z
in (
dom g1) by
A378;
A382: (g1
. (h1
/. i))
= (h0
/. i) & (h1
/. i)
<= 1 by
A335,
A341,
A357,
A347,
A344,
A350,
FINSEQ_4: 15;
(g1
. (h1
/. (i
+ 1)))
= (h0
/. (i
+ 1)) by
A340,
A352,
A359,
A351,
FINSEQ_4: 15;
then
A383: rz
<= (h1
/. (i
+ 1)) by
A4,
A5,
A6,
A7,
A370,
A379,
A381,
A380,
Th19;
0
<= rz by
A378,
BORSUK_1: 40,
XXREAL_1: 1;
then (h1
/. i)
<= rz by
A4,
A5,
A6,
A7,
A375,
A377,
A379,
A382,
A380,
Th19;
hence z
in
[.(h1
/. i), (h1
/. (i
+ 1)).] by
A383,
XXREAL_1: 1;
thus x
= (g1
. z) by
A363,
A379;
end;
suppose
A384: i
= 1;
now
per cases ;
case
A385: p
<> (
W-min P);
now
assume p
in (
Lower_Arc P);
then p
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A372,
XBOOLE_0:def 4;
then p
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A371,
A385,
TARSKI:def 2;
end;
then
consider z be
object such that
A386: z
in (
dom g1) and
A387: p
= (g1
. z) by
A5,
A366,
FUNCT_1:def 3;
reconsider rz = z as
Real by
A132,
A386;
A388: (h1
/. 1)
<= rz by
A8,
A346,
A384,
A386,
BORSUK_1: 40,
XXREAL_1: 1;
(h1
. (1
+ 1))
in (
rng h1) by
A353,
A384,
FUNCT_1:def 3;
then
A389:
0
<= (h1
/. (1
+ 1)) & (h1
/. (1
+ 1))
<= 1 by
A11,
A355,
A384,
BORSUK_1: 40,
XXREAL_1: 1;
A390: (g1
. (h1
/. (1
+ 1)))
= (h0
/. (1
+ 1)) by
A352,
A359,
A351,
A384,
FINSEQ_4: 15;
take rz;
rz
<= 1 by
A386,
BORSUK_1: 40,
XXREAL_1: 1;
then rz
<= (h1
/. (1
+ 1)) by
A4,
A5,
A6,
A7,
A370,
A384,
A387,
A390,
A389,
Th19;
hence rz
in (
dom g1) & rz
in
[.(h1
/. 1), (h1
/. (1
+ 1)).] & x
= (g1
. rz) by
A363,
A386,
A387,
A388,
XXREAL_1: 1;
end;
case
A391: p
= (
W-min P);
thus
0
in
[.(h1
/. 1), (h1
/. (1
+ 1)).] by
A8,
A354,
A346,
A355,
A384,
XXREAL_1: 1;
thus x
= (g1
.
0 ) by
A6,
A363,
A391;
end;
end;
hence ex y be
set st y
in (
dom g1) & y
in
[.(h1
/. i), (h1
/. (i
+ 1)).] & x
= (g1
. y) by
A44,
A384;
end;
end;
suppose
A392: (i
+ 1)
= (
len h1);
then
A393: (h0
/. (i
+ 1))
= (
E-max P) by
A7,
A9,
A45,
A358,
A351,
FUNCT_1: 13;
A394:
now
assume that
A395: p
in (
Lower_Arc P) and
A396: not p
in (
Upper_Arc P);
LE ((h0
/. (i
+ 1)),p,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A393,
A395,
JORDAN5C: 10;
hence contradiction by
A334,
A21,
A367,
A393,
A396,
JORDAN5C: 12;
end;
p
in (
Upper_Arc P) or p
in (
Lower_Arc P) by
A364,
JORDAN6:def 10;
then
A397:
LE (p,(h0
/. (i
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A393,
A394,
JORDAN5C: 10;
per cases ;
suppose
A398: p
<> (
E-max P);
now
per cases ;
case
A399: p
<> (
W-min P);
A400:
now
assume p
in (
Lower_Arc P);
then p
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A394,
XBOOLE_0:def 4;
then p
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A398,
A399,
TARSKI:def 2;
end;
then
consider z be
object such that
A401: z
in (
dom g1) and
A402: p
= (g1
. z) by
A5,
A366,
FUNCT_1:def 3;
reconsider rz = z as
Real by
A132,
A401;
A403: rz
<= 1 by
A401,
BORSUK_1: 40,
XXREAL_1: 1;
(h1
. (i
+ 1))
in (
rng h1) by
A353,
FUNCT_1:def 3;
then
A404:
0
<= (h1
/. (i
+ 1)) & (h1
/. (i
+ 1))
<= 1 by
A11,
A355,
BORSUK_1: 40,
XXREAL_1: 1;
(g1
. (h1
/. (i
+ 1)))
= (h0
/. (i
+ 1)) by
A340,
A352,
A359,
A351,
FINSEQ_4: 15;
then
A405: rz
<= (h1
/. (i
+ 1)) by
A4,
A5,
A6,
A7,
A397,
A402,
A404,
A403,
Th19;
take rz;
0
<= rz by
A401,
BORSUK_1: 40,
XXREAL_1: 1;
then (h1
/. i)
<= rz by
A4,
A5,
A6,
A7,
A357,
A347,
A344,
A350,
A346,
A366,
A400,
A402,
A403,
Th19;
hence rz
in (
dom g1) & rz
in
[.(h1
/. i), (h1
/. (i
+ 1)).] & x
= (g1
. rz) by
A363,
A401,
A402,
A405,
XXREAL_1: 1;
end;
case
A406: p
= (
W-min P);
then (h11
. i)
= (
W-min P) by
A3,
A357,
A350,
A366,
JORDAN6: 54;
then i
= 1 by
A38,
A17,
A71,
A20,
A342;
then
0
in
[.(h1
/. i), (h1
/. (i
+ 1)).] by
A8,
A354,
A346,
A355,
XXREAL_1: 1;
hence ex y be
set st y
in (
dom g1) & y
in
[.(h1
/. i), (h1
/. (i
+ 1)).] & x
= (g1
. y) by
A6,
A44,
A363,
A406;
end;
end;
hence ex y be
set st y
in (
dom g1) & y
in
[.(h1
/. i), (h1
/. (i
+ 1)).] & x
= (g1
. y);
end;
suppose
A407: p
= (
E-max P);
1
in
[.(h1
/. i), (h1
/. (i
+ 1)).] by
A9,
A354,
A346,
A355,
A392,
XXREAL_1: 1;
hence ex y be
set st y
in (
dom g1) & y
in
[.(h1
/. i), (h1
/. (i
+ 1)).] & x
= (g1
. y) by
A7,
A69,
A363,
A407,
Lm6;
end;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
A408: (h1
. (i
+ 1))
<= 1 by
A11,
A356,
BORSUK_1: 40,
XXREAL_1: 1;
(g1
.:
[.(h1
/. i), (h1
/. (i
+ 1)).])
c= (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
proof
A409: (g1
. (h1
/. i))
= (h0
/. i) &
0
<= (h1
/. i) by
A335,
A341,
A348,
A345,
A350,
FINSEQ_4: 15;
let x be
object;
assume x
in (g1
.:
[.(h1
/. i), (h1
/. (i
+ 1)).]);
then
consider y be
object such that
A410: y
in (
dom g1) and
A411: y
in
[.(h1
/. i), (h1
/. (i
+ 1)).] and
A412: x
= (g1
. y) by
FUNCT_1:def 6;
reconsider sy = y as
Real by
A411;
A413: sy
<= 1 by
A410,
BORSUK_1: 40,
XXREAL_1: 1;
A414: x
in (
Upper_Arc P) by
A5,
A410,
A412,
FUNCT_1:def 3;
then
reconsider p1 = x as
Point of (
TOP-REAL 2);
A415: (h1
/. i)
<= 1 by
A335,
A341,
A344,
FINSEQ_4: 15;
(h1
/. i)
<= sy by
A411,
XXREAL_1: 1;
then
LE ((h0
/. i),p1,(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A4,
A5,
A6,
A7,
A412,
A409,
A415,
A413,
Th18;
then
A416:
LE ((h0
/. i),p1,P) by
A350,
A349,
A414,
JORDAN6:def 10;
sy
<= (h1
/. (i
+ 1)) &
0
<= sy by
A410,
A411,
BORSUK_1: 40,
XXREAL_1: 1;
then
LE (p1,(h0
/. (i
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A4,
A5,
A6,
A7,
A359,
A408,
A351,
A355,
A412,
A413,
Th18;
then
LE (p1,(h0
/. (i
+ 1)),P) by
A351,
A360,
A414,
JORDAN6:def 10;
then
A417: x
in { p :
LE ((h0
/. i),p,P) &
LE (p,(h0
/. (i
+ 1)),P) } by
A416;
not (h0
/. (i
+ 1))
= (
W-min P) by
A38,
A17,
A71,
A20,
A340,
A358,
A353,
A351;
hence thesis by
A417,
Def1;
end;
then W
= (g1
.: Q1) by
A337,
A361;
hence thesis by
A13,
A335,
A341;
end;
suppose
A418: i
> (
len h1);
(i
- (
len h11))
< (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A336,
XREAL_1: 9;
then
A419: ((i
- (
len h11))
+ 2)
< (((
len h2)
- 2)
+ 2) by
XREAL_1: 6;
A420: ((
len h1)
+ 1)
<= i by
A418,
NAT_1: 13;
then
A421: (((
len h1)
+ 1)
- (
len h1))
<= (i
- (
len h1)) by
XREAL_1: 9;
A422: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A418,
XREAL_1: 233;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A336,
XREAL_1: 9;
then
A423: ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A422,
XREAL_1: 6;
(i
+ 1)
> (
len h11) by
A39,
A418,
NAT_1: 13;
then
A424: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
XREAL_1: 233;
(i
+ 1)
in (
dom h0) by
A338,
A340,
FINSEQ_3: 25;
then
A425: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A426: i
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A336,
FINSEQ_1: 22;
((
len h11)
+ 1)
<= i by
A39,
A418,
NAT_1: 13;
then
A427: (h0
. i)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (i
- (
len h11))) by
A426,
FINSEQ_1: 23;
A428: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A338,
XREAL_1: 9;
i
in (
dom h0) by
A335,
A336,
FINSEQ_3: 25;
then
A429: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
set j = (((i
-' (
len h11))
+ 2)
-' 1);
(
len h2)
< ((
len h2)
+ 1) by
NAT_1: 13;
then
A430: ((
len h2)
- 1)
< (((
len h2)
+ 1)
- 1) by
XREAL_1: 9;
A431: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A432: (j
+ 1)
= (((((i
-' (
len h11))
+ 1)
+ 1)
- 1)
+ 1) by
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((i
-' (
len h11))
+ (1
+ 1));
A433: 1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A431,
Lm1,
NAT_D: 42;
then
A434: 1
< (j
+ 1) by
NAT_1: 13;
then
A435: (j
+ 1)
in (
dom h2) by
A423,
A432,
FINSEQ_3: 25;
then
A436: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
then
A437: (h2
. (j
+ 1))
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
A438: (h2
/. (j
+ 1))
= (h2
. (j
+ 1)) by
A423,
A432,
A434,
FINSEQ_4: 15;
(((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
A423,
NAT_D: 44;
then
A439: j
in (
dom h2) by
A46,
A433,
FINSEQ_3: 25;
(i
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A336,
XREAL_1: 9;
then
A440: (h0
. i)
= (h21
. (((i
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A427,
A422,
A421,
FINSEQ_6: 118;
then
A441: (h0
. i)
= (g2
. (h2
. j)) by
A439,
FUNCT_1: 13;
A442: (h2
. j)
in (
rng h2) by
A439,
FUNCT_1:def 3;
then (g2
. (h2
. j))
in (
rng g2) by
A131,
A29,
BORSUK_1: 40,
FUNCT_1:def 3;
then
A443: (h0
. i)
in (
Lower_Arc P) by
A23,
A440,
A439,
FUNCT_1: 13;
(((i
-' (
len h11))
+ 2)
- 1)
<= ((
len h2)
- 1) by
A423,
XREAL_1: 9;
then (((i
-' (
len h11))
+ 2)
- 1)
< (
len h2) by
A430,
XXREAL_0: 2;
then
A444: j
< (
len h2) by
A431,
Lm1,
NAT_D: 39,
NAT_D: 42;
then
A445: (h2
/. j)
= (h2
. j) by
A431,
Lm1,
FINSEQ_4: 15,
NAT_D: 42;
then
reconsider Q1 =
[.(h2
/. j), (h2
/. (j
+ 1)).] as
Subset of
I[01] by
A29,
A442,
A436,
A438,
BORSUK_1: 40,
XXREAL_2:def 12;
A446:
0
<= (h2
. j) & (h2
. j)
<= 1 by
A29,
A442,
BORSUK_1: 40,
XXREAL_1: 1;
A447: (((i
-' (
len h11))
+ 2)
-' 1)
= (((i
-' (
len h11))
+ 2)
- 1) by
A431,
Lm1,
NAT_D: 39,
NAT_D: 42;
A448: ((
len h1)
+ 1)
<= (i
+ 1) by
A420,
NAT_1: 13;
then
A449: (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
XREAL_1: 9;
then 1
< (((i
+ 1)
-' (
len h11))
+ (2
- 1)) by
A39,
A424,
NAT_1: 13;
then
0
< ((((i
+ 1)
-' (
len h11))
+ 2)
- 1);
then
A450: (j
+ 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A422,
A424,
A447,
XREAL_0:def 2;
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A39,
A36,
A338,
A448,
FINSEQ_1: 23;
then
A451: (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A424,
A428,
A449,
FINSEQ_6: 118;
then (h0
. (i
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A450,
A435,
FUNCT_1: 13;
then
A452: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A436,
BORSUK_1: 40,
FUNCT_1:def 3;
((
len h1)
+ 1)
<= i by
A418,
NAT_1: 13;
then (((
len h11)
+ 1)
- (
len h11))
<= (i
- (
len h11)) by
A39,
XREAL_1: 9;
then 1
<= (i
-' (
len h11)) by
NAT_D: 39;
then (1
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then ((1
+ 2)
- 1)
<= (((i
-' (
len h11))
+ 2)
- 1) by
XREAL_1: 9;
then
A453: 1
< j by
A447,
XXREAL_0: 2;
A454: (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
c= (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).])
proof
(h2
. (j
+ 1))
in (
rng h2) by
A435,
FUNCT_1:def 3;
then
A455:
0
<= (h2
/. (j
+ 1)) & (h2
/. (j
+ 1))
<= 1 by
A29,
A438,
BORSUK_1: 40,
XXREAL_1: 1;
A456: (g2
. (h2
/. (j
+ 1)))
= (h0
/. (i
+ 1)) by
A451,
A450,
A435,
A425,
A438,
FUNCT_1: 13;
j
< (
len h2) by
A423,
A432,
NAT_1: 13;
then
A457: (h0
/. i)
<> (
W-min P) by
A46,
A34,
A35,
A32,
A440,
A439,
A429;
A458: (h2
/. j)
<= 1 by
A29,
A442,
A445,
BORSUK_1: 40,
XXREAL_1: 1;
let x be
object;
assume
A459: x
in (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P));
(h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A422,
A451,
A419,
A432,
A450,
A435,
A425;
then x
in { p :
LE ((h0
/. i),p,P) &
LE (p,(h0
/. (i
+ 1)),P) } by
A459,
Def1;
then
consider p be
Point of (
TOP-REAL 2) such that
A460: p
= x and
A461:
LE ((h0
/. i),p,P) and
A462:
LE (p,(h0
/. (i
+ 1)),P);
A463: (h0
/. i)
in (
Upper_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) or (h0
/. i)
in (
Upper_Arc P) & p
in (
Upper_Arc P) &
LE ((h0
/. i),p,(
Upper_Arc P),(
W-min P),(
E-max P)) or (h0
/. i)
in (
Lower_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) &
LE ((h0
/. i),p,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A461,
JORDAN6:def 10;
A464: (h21
. j)
<> (
E-max P) by
A46,
A76,
A77,
A32,
A453,
A439;
A465:
now
assume (h0
/. i)
in (
Upper_Arc P);
then (h0
/. i)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A429,
A443,
XBOOLE_0:def 4;
then (h0
/. i)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A440,
A429,
A457,
A464,
TARSKI:def 2;
end;
then
A466:
LE ((h0
/. i),p,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A461,
JORDAN6:def 10;
A467: (h0
/. i)
<> (
E-max P) by
A46,
A76,
A77,
A32,
A440,
A453,
A439,
A429;
A468:
now
assume p
in (
Upper_Arc P);
then p
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A463,
A465,
XBOOLE_0:def 4;
then p
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
then p
= (
W-min P) or p
= (
E-max P) by
TARSKI:def 2;
hence contradiction by
A21,
A463,
A465,
A467,
JORDAN6: 54;
end;
A469: (h0
/. (i
+ 1))
<> (
E-max P) & (h21
. (j
+ 1))
<> (
W-min P) by
A46,
A76,
A34,
A77,
A35,
A32,
A422,
A451,
A419,
A432,
A450,
A434,
A435,
A425;
now
assume (h0
/. (i
+ 1))
in (
Upper_Arc P);
then (h0
/. (i
+ 1))
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A425,
A452,
XBOOLE_0:def 4;
then (h0
/. (i
+ 1))
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
hence contradiction by
A451,
A450,
A425,
A469,
TARSKI:def 2;
end;
then p
in (
Lower_Arc P) & (h0
/. (i
+ 1))
in (
Lower_Arc P) & not (h0
/. (i
+ 1))
= (
W-min P) &
LE (p,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) or p
in (
Upper_Arc P) & (h0
/. (i
+ 1))
in (
Lower_Arc P) & not (h0
/. (i
+ 1))
= (
W-min P) by
A462,
JORDAN6:def 10;
then
consider z be
object such that
A470: z
in (
dom g2) and
A471: p
= (g2
. z) by
A23,
A468,
FUNCT_1:def 3;
reconsider rz = z as
Real by
A131,
A470;
A472: rz
<= 1 by
A470,
BORSUK_1: 40,
XXREAL_1: 1;
LE (p,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A462,
A468,
JORDAN6:def 10;
then
A473: rz
<= (h2
/. (j
+ 1)) by
A22,
A23,
A24,
A25,
A471,
A456,
A472,
A455,
Th19;
0
<= rz by
A470,
BORSUK_1: 40,
XXREAL_1: 1;
then (h2
/. j)
<= rz by
A22,
A23,
A24,
A25,
A441,
A429,
A445,
A466,
A471,
A458,
A472,
Th19;
then rz
in
[.(h2
/. j), (h2
/. (j
+ 1)).] by
A473,
XXREAL_1: 1;
hence thesis by
A460,
A470,
A471,
FUNCT_1:def 6;
end;
A474: (g2
. (h2
. (j
+ 1)))
= (h0
/. (i
+ 1)) by
A451,
A450,
A435,
A425,
FUNCT_1: 13;
(g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).])
c= (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
proof
let x be
object;
assume x
in (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).]);
then
consider y be
object such that
A475: y
in (
dom g2) and
A476: y
in
[.(h2
/. j), (h2
/. (j
+ 1)).] and
A477: x
= (g2
. y) by
FUNCT_1:def 6;
reconsider sy = y as
Real by
A476;
A478: sy
<= (h2
/. (j
+ 1)) by
A476,
XXREAL_1: 1;
A479: x
in (
Lower_Arc P) by
A23,
A475,
A477,
FUNCT_1:def 3;
then
reconsider p1 = x as
Point of (
TOP-REAL 2);
A480: (h2
. (j
+ 1))
<> 1 by
A27,
A30,
A34,
A422,
A419,
A432,
A435,
FUNCT_1:def 4;
A481:
now
assume p1
= (
W-min P);
then 1
= sy by
A22,
A25,
A227,
A475,
A477;
hence contradiction by
A437,
A438,
A478,
A480,
XXREAL_0: 1;
end;
A482: sy
<= 1 by
A475,
BORSUK_1: 40,
XXREAL_1: 1;
(h2
/. j)
<= sy by
A476,
XXREAL_1: 1;
then
LE ((h0
/. i),p1,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A441,
A429,
A446,
A445,
A477,
A482,
Th18;
then
A483:
LE ((h0
/. i),p1,P) by
A429,
A443,
A479,
A481,
JORDAN6:def 10;
A484: (h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A422,
A451,
A419,
A432,
A450,
A435,
A425;
0
<= sy by
A475,
BORSUK_1: 40,
XXREAL_1: 1;
then
LE (p1,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A474,
A437,
A438,
A477,
A478,
A482,
Th18;
then
LE (p1,(h0
/. (i
+ 1)),P) by
A425,
A452,
A479,
A484,
JORDAN6:def 10;
then x
in { p :
LE ((h0
/. i),p,P) &
LE (p,(h0
/. (i
+ 1)),P) } by
A483;
hence thesis by
A484,
Def1;
end;
then W
= (g2
.: Q1) by
A337,
A454;
hence thesis by
A31,
A433,
A444;
end;
suppose
A485: i
= (
len h1);
A486: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A338,
XREAL_1: 9;
then 1
<= ((i
+ 1)
-' (
len h11)) by
A39,
A339,
A485,
XREAL_1: 233;
then 1
< (((i
+ 1)
-' (
len h11))
+ (2
- 1)) by
NAT_1: 13;
then
A487:
0
< ((((i
+ 1)
-' (
len h11))
+ 2)
- 1);
i
in (
dom h0) by
A335,
A336,
FINSEQ_3: 25;
then
A488: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
A489: (h0
. i)
= (
E-max P) by
A39,
A255,
A335,
A485,
FINSEQ_1: 64;
set j = (((i
-' (
len h11))
+ 2)
-' 1);
A490: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A491: (j
+ 1)
= (((((i
-' (
len h11))
+ 1)
+ 1)
- 1)
+ 1) by
Lm1,
NAT_D: 39,
NAT_D: 42
.= ((i
-' (
len h11))
+ (1
+ 1));
A492: ((
len h1)
-' (
len h11))
= ((
len h11)
- (
len h11)) by
A39,
XREAL_0:def 2;
then
A493: ((
0
+ 2)
- 1)
= ((((
len h1)
-' (
len h11))
+ 2)
- 1);
then
A494: (h0
. i)
= (g2
. (h2
. j)) by
A24,
A26,
A485,
A489,
NAT_D: 39;
A495: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A485,
XREAL_1: 233;
(i
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A336,
XREAL_1: 9;
then
A496: ((i
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A495,
XREAL_1: 6;
(i
- (
len h11))
< (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A336,
XREAL_1: 9;
then
A497: ((i
- (
len h11))
+ 2)
< (((
len h2)
- 2)
+ 2) by
XREAL_1: 6;
then
A498: (j
+ 1)
< (
len h2) by
A39,
A485,
A491,
XREAL_0:def 2;
A499: (h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A39,
A36,
A338,
A485,
FINSEQ_1: 23;
(
len h2)
< ((
len h2)
+ 1) by
NAT_1: 13;
then
A500: ((
len h2)
- 1)
< (((
len h2)
+ 1)
- 1) by
XREAL_1: 9;
(i
+ 1)
in (
dom h0) by
A338,
A340,
FINSEQ_3: 25;
then
A501: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A502: 1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A490,
Lm1,
NAT_D: 42;
then
A503: 1
< (j
+ 1) by
NAT_1: 13;
then
A504: (j
+ 1)
in (
dom h2) by
A496,
A491,
FINSEQ_3: 25;
then
A505: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
then
A506: (h2
. (j
+ 1))
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
(((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
A496,
NAT_D: 44;
then
A507: j
in (
dom h2) by
A46,
A502,
FINSEQ_3: 25;
then
A508: (h2
. j)
in (
rng h2) by
FUNCT_1:def 3;
then (g2
. (h2
. j))
in (
rng g2) by
A131,
A29,
BORSUK_1: 40,
FUNCT_1:def 3;
then
A509: (h0
. i)
in (
Lower_Arc P) by
A23,
A24,
A26,
A485,
A489,
A493,
NAT_D: 39;
A510: (h2
/. (j
+ 1))
= (h2
. (j
+ 1)) by
A496,
A491,
A503,
FINSEQ_4: 15;
(((i
-' (
len h11))
+ 2)
- 1)
<= ((
len h2)
- 1) by
A496,
XREAL_1: 9;
then
A511: (((i
-' (
len h11))
+ 2)
- 1)
< (
len h2) by
A500,
XXREAL_0: 2;
then
A512: j
< (
len h2) by
A490,
Lm1,
NAT_D: 39,
NAT_D: 42;
then (h2
/. j)
= (h2
. j) by
A490,
Lm1,
FINSEQ_4: 15,
NAT_D: 42;
then
reconsider Q1 =
[.(h2
/. j), (h2
/. (j
+ 1)).] as
Subset of
I[01] by
A29,
A508,
A505,
A510,
BORSUK_1: 40,
XXREAL_2:def 12;
A513: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A339,
A485,
XREAL_1: 233;
(j
+ 1)
= ((((i
- (
len h11))
+ 2)
- 1)
+ 1) by
A39,
A485,
Lm1,
XREAL_0:def 2
.= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A513,
A487,
XREAL_0:def 2;
then
A514: (h0
. (i
+ 1))
= (h21
. (j
+ 1)) by
A39,
A48,
A56,
A50,
A54,
A485,
A499,
A513,
A486,
FINSEQ_6: 118;
then
A515: (h0
. (i
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A504,
FUNCT_1: 13;
then
A516: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A505,
BORSUK_1: 40,
FUNCT_1:def 3;
A517: (h21
. j)
= (g2
. (h2
. j)) by
A507,
FUNCT_1: 13;
A518: (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
c= (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).])
proof
(j
+ 1)
< (
len h2) by
A39,
A485,
A497,
A491,
XREAL_0:def 2;
then j
< (
len h2) by
NAT_1: 13;
then
A519: (h0
/. i)
<> (
W-min P) by
A46,
A34,
A35,
A32,
A507,
A517,
A494,
A488;
A520: (g2
. (h2
/. (j
+ 1)))
= (h0
/. (i
+ 1)) by
A496,
A491,
A503,
A515,
A501,
FINSEQ_4: 15;
(h2
. (j
+ 1))
in (
rng h2) by
A504,
FUNCT_1:def 3;
then
A521:
0
<= (h2
/. (j
+ 1)) & (h2
/. (j
+ 1))
<= 1 by
A29,
A510,
BORSUK_1: 40,
XXREAL_1: 1;
A522: (h0
/. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A515,
A505,
A501,
BORSUK_1: 40,
FUNCT_1:def 3;
let x be
object;
assume
A523: x
in (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P));
(h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A498,
A514,
A504,
A501;
then x
in { p :
LE ((h0
/. i),p,P) &
LE (p,(h0
/. (i
+ 1)),P) } by
A523,
Def1;
then
consider p be
Point of (
TOP-REAL 2) such that
A524: p
= x and
A525:
LE ((h0
/. i),p,P) and
A526:
LE (p,(h0
/. (i
+ 1)),P);
A527: (h0
/. i)
in (
Upper_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) or (h0
/. i)
in (
Upper_Arc P) & p
in (
Upper_Arc P) &
LE ((h0
/. i),p,(
Upper_Arc P),(
W-min P),(
E-max P)) or (h0
/. i)
in (
Lower_Arc P) & p
in (
Lower_Arc P) & not p
= (
W-min P) &
LE ((h0
/. i),p,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A525,
JORDAN6:def 10;
(
dom (g1
* h1))
c= (
dom h0) by
FINSEQ_1: 26;
then
A528: (h0
/. i)
= (
E-max P) by
A254,
A485,
A489,
PARTFUN1:def 6;
A529:
now
assume
A530: not p
in (
Lower_Arc P);
then p
= (
E-max P) by
A3,
A527,
A528,
JORDAN6: 55;
hence contradiction by
A1,
A530,
Th1;
end;
A531:
now
assume p
in (
Upper_Arc P);
then p
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A529,
XBOOLE_0:def 4;
then
A532: p
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
p
<> (
W-min P) by
A3,
A527,
A519,
JORDAN6: 54;
hence p
= (
E-max P) by
A532,
TARSKI:def 2;
end;
then p
in (
rng g2) by
A1,
A23,
A525,
Th1,
JORDAN6:def 10;
then
consider z be
object such that
A533: z
in (
dom g2) and
A534: p
= (g2
. z) by
FUNCT_1:def 3;
reconsider rz = z as
Real by
A131,
A533;
0
<= rz by
A533,
BORSUK_1: 40,
XXREAL_1: 1;
then
A535: (h2
/. j)
<= rz by
A26,
A485,
A511,
A492,
Lm1,
FINSEQ_4: 15;
A536: not (h0
/. (i
+ 1))
= (
E-max P) by
A46,
A76,
A77,
A32,
A503,
A514,
A504,
A501;
now
assume (h0
/. (i
+ 1))
in (
Upper_Arc P);
then (h0
/. (i
+ 1))
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A522,
XBOOLE_0:def 4;
then (h0
/. (i
+ 1))
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
then (h21
. (j
+ 1))
= (
W-min P) by
A514,
A501,
A536,
TARSKI:def 2;
hence contradiction by
A46,
A34,
A35,
A32,
A498,
A504;
end;
then p
in (
Lower_Arc P) & (h0
/. (i
+ 1))
in (
Lower_Arc P) & not (h0
/. (i
+ 1))
= (
W-min P) &
LE (p,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) or p
in (
Upper_Arc P) & (h0
/. (i
+ 1))
in (
Lower_Arc P) & not (h0
/. (i
+ 1))
= (
W-min P) by
A526,
JORDAN6:def 10;
then
A537:
LE (p,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A531,
JORDAN5C: 10;
rz
<= 1 by
A533,
BORSUK_1: 40,
XXREAL_1: 1;
then rz
<= (h2
/. (j
+ 1)) by
A22,
A23,
A24,
A25,
A537,
A534,
A520,
A521,
Th19;
then rz
in
[.(h2
/. j), (h2
/. (j
+ 1)).] by
A535,
XXREAL_1: 1;
hence thesis by
A524,
A533,
A534,
FUNCT_1:def 6;
end;
A538: (g2
. (h2
. (j
+ 1)))
= (h0
/. (i
+ 1)) by
A514,
A504,
A501,
FUNCT_1: 13;
(g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).])
c= (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
proof
let x be
object;
assume x
in (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).]);
then
consider y be
object such that
A539: y
in (
dom g2) and
A540: y
in
[.(h2
/. j), (h2
/. (j
+ 1)).] and
A541: x
= (g2
. y) by
FUNCT_1:def 6;
reconsider sy = y as
Real by
A540;
A542: sy
<= (h2
/. (j
+ 1)) by
A540,
XXREAL_1: 1;
A543: x
in (
Lower_Arc P) by
A23,
A539,
A541,
FUNCT_1:def 3;
then
reconsider p1 = x as
Point of (
TOP-REAL 2);
A544: (h2
. (j
+ 1))
<> 1 by
A27,
A30,
A34,
A498,
A504,
FUNCT_1:def 4;
A545:
now
assume p1
= (
W-min P);
then 1
= sy by
A22,
A25,
A227,
A539,
A541;
hence contradiction by
A506,
A510,
A542,
A544,
XXREAL_0: 1;
end;
A546:
0
<= sy & sy
<= 1 by
A539,
BORSUK_1: 40,
XXREAL_1: 1;
then
LE ((h0
/. i),p1,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A489,
A488,
A541,
Th18;
then
A547:
LE ((h0
/. i),p1,P) by
A488,
A509,
A543,
A545,
JORDAN6:def 10;
A548: (h0
/. (i
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A498,
A514,
A504,
A501;
LE (p1,(h0
/. (i
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A538,
A506,
A510,
A541,
A542,
A546,
Th18;
then
LE (p1,(h0
/. (i
+ 1)),P) by
A501,
A516,
A543,
A548,
JORDAN6:def 10;
then x
in { p :
LE ((h0
/. i),p,P) &
LE (p,(h0
/. (i
+ 1)),P) } by
A547;
hence thesis by
A548,
Def1;
end;
then W
= (g2
.: Q1) by
A337,
A518;
hence thesis by
A31,
A502,
A512;
end;
end;
A549: (
len h0)
= ((
len h1)
+ ((
len h2)
- 2)) by
A38,
A47,
A36,
A52,
A55,
A57,
FINSEQ_3: 29;
thus for W be
Subset of (
Euclid 2) st W
= (
Segment ((h0
/. (
len h0)),(h0
/. 1),P)) holds (
diameter W)
< e
proof
set i = (
len h0);
let W be
Subset of (
Euclid 2);
set j = (((i
-' (
len h11))
+ 2)
-' 1);
A550: (
0
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A551: 1
<= (((i
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
(((
len h11)
+ 1)
- (
len h11))
<= (i
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A62,
XXREAL_0: 2;
then 1
<= (i
-' (
len h11)) by
NAT_D: 39;
then (1
+ 2)
<= ((i
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A552: ((1
+ 2)
- 1)
<= (((i
-' (
len h11))
+ 2)
- 1) by
XREAL_1: 9;
(
len h0)
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
FINSEQ_1: 22;
then
A553: (h0
. i)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (i
- (
len h11))) by
A39,
A64,
FINSEQ_1: 23;
A554: (i
- (
len h11))
= (i
-' (
len h11)) by
A39,
A65,
XREAL_1: 233;
then (((i
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A36,
A52,
A55,
A57,
NAT_D: 44;
then
A555: j
in (
dom h2) by
A46,
A551,
FINSEQ_3: 25;
then
A556: (h2
. j)
in (
rng h2) by
FUNCT_1:def 3;
(i
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) & (((
len h1)
+ 1)
- (
len h1))
<= (i
- (
len h1)) by
A549,
A62,
FINSEQ_1: 22,
XXREAL_0: 2;
then
A557: (h0
. i)
= (h21
. (((i
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A553,
A554,
FINSEQ_6: 118;
then
A558: (h0
. i)
= (g2
. (h2
. j)) by
A555,
FUNCT_1: 13;
then
A559: (h0
. i)
in (
Lower_Arc P) by
A23,
A131,
A29,
A556,
BORSUK_1: 40,
FUNCT_1:def 3;
A560: (2
-' 1)
<= (((i
-' (
len h11))
+ 2)
-' 1) by
A550,
NAT_D: 42;
then
A561: 1
< (j
+ 1) by
Lm1,
NAT_1: 13;
then
A562: (h2
/. (j
+ 1))
= (h2
. (j
+ 1)) by
A47,
A36,
A52,
A55,
A57,
A554,
FINSEQ_4: 15;
(
len h2)
< ((
len h2)
+ 1) by
NAT_1: 13;
then
A563: ((
len h2)
- 1)
< (((
len h2)
+ 1)
- 1) by
XREAL_1: 9;
then
A564: (h2
/. j)
= (h2
. j) by
A47,
A36,
A52,
A55,
A57,
A554,
A560,
Lm1,
FINSEQ_4: 15;
(j
+ 1)
in (
dom h2) by
A46,
A36,
A52,
A55,
A57,
A554,
A561,
FINSEQ_3: 25;
then (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
then
reconsider Q1 =
[.(h2
/. j), (h2
/. (j
+ 1)).] as
Subset of
I[01] by
A29,
A556,
A564,
A562,
BORSUK_1: 40,
XXREAL_2:def 12;
i
in (
dom h0) by
A66,
FINSEQ_3: 25;
then
A565: (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
(((i
-' (
len h11))
+ 2)
-' 1)
= (((i
-' (
len h11))
+ 2)
- 1) by
A550,
Lm1,
NAT_D: 39,
NAT_D: 42;
then
A566: 1
< j by
A552,
XXREAL_0: 2;
A567:
now
assume (h0
. i)
in (
Upper_Arc P);
then (h0
. i)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A559,
XBOOLE_0:def 4;
then (h0
. i)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
then (h0
. i)
= (
W-min P) or (h0
. i)
= (
E-max P) by
TARSKI:def 2;
hence contradiction by
A46,
A47,
A76,
A34,
A77,
A35,
A36,
A52,
A55,
A57,
A32,
A554,
A557,
A563,
A566,
A555;
end;
A568: (h2
. j)
<= 1 by
A29,
A556,
BORSUK_1: 40,
XXREAL_1: 1;
A569: (
Segment ((h0
/. i),(h0
/. 1),P))
c= (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).])
proof
let x be
object;
assume
A570: x
in (
Segment ((h0
/. i),(h0
/. 1),P));
(h0
/. 1)
= (
W-min P) by
A72,
A67,
PARTFUN1:def 6;
then
A571: x
in { p :
LE ((h0
/. i),p,P) or (h0
/. i)
in P & p
= (
W-min P) } by
A570,
Def1;
A572: (j
+ 1)
in (
dom h2) by
A46,
A36,
A52,
A55,
A57,
A554,
A561,
FINSEQ_3: 25;
j
< (j
+ 1) & j
in (
dom h2) by
A47,
A36,
A52,
A55,
A57,
A554,
A560,
A563,
Lm1,
FINSEQ_3: 25;
then (h2
. j)
< (h2
. (j
+ 1)) by
A30,
A572,
SEQM_3:def 1;
then
A573: (h2
/. (j
+ 1))
in
[.(h2
/. j), (h2
/. (j
+ 1)).] by
A564,
A562,
XXREAL_1: 1;
consider p be
Point of (
TOP-REAL 2) such that
A574: p
= x and
A575:
LE ((h0
/. i),p,P) or (h0
/. i)
in P & p
= (
W-min P) by
A571;
A576: (h2
/. (j
+ 1))
= 1 by
A27,
A47,
A34,
A36,
A52,
A55,
A57,
A554,
PARTFUN1:def 6;
now
per cases by
A575;
suppose
A577:
LE ((h0
/. i),p,P) & (p
<> (
W-min P) or not (h0
/. i)
in P);
then p
in (
Lower_Arc P) by
A567,
A565,
JORDAN6:def 10;
then
consider z be
object such that
A578: z
in (
dom g2) and
A579: p
= (g2
. z) by
A23,
FUNCT_1:def 3;
take z;
thus z
in (
dom g2) by
A578;
reconsider rz = z as
Real by
A131,
A578;
A580: rz
<= 1 by
A578,
BORSUK_1: 40,
XXREAL_1: 1;
then
A581: rz
<= (h2
/. (j
+ 1)) by
A27,
A47,
A36,
A52,
A55,
A57,
A554,
A561,
FINSEQ_4: 15;
A582:
LE ((h0
/. i),p,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A567,
A565,
A577,
JORDAN6:def 10;
0
<= rz by
A578,
BORSUK_1: 40,
XXREAL_1: 1;
then (h2
/. j)
<= rz by
A22,
A23,
A24,
A25,
A558,
A568,
A565,
A564,
A582,
A579,
A580,
Th19;
hence z
in
[.(h2
/. j), (h2
/. (j
+ 1)).] & x
= (g2
. z) by
A574,
A579,
A581,
XXREAL_1: 1;
end;
suppose (h0
/. i)
in P & p
= (
W-min P);
hence ex y be
object st y
in (
dom g2) & y
in
[.(h2
/. j), (h2
/. (j
+ 1)).] & x
= (g2
. y) by
A25,
A227,
A574,
A573,
A576;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
A583:
0
<= (h2
. j) & (h2
. j)
<= 1 by
A29,
A556,
BORSUK_1: 40,
XXREAL_1: 1;
A584: (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).])
c= (
Segment ((h0
/. i),(h0
/. 1),P))
proof
A585: ((
Upper_Arc P)
\/ (
Lower_Arc P))
= P by
A1,
JORDAN6:def 9;
let x be
object;
assume x
in (g2
.:
[.(h2
/. j), (h2
/. (j
+ 1)).]);
then
consider y be
object such that
A586: y
in (
dom g2) and
A587: y
in
[.(h2
/. j), (h2
/. (j
+ 1)).] and
A588: x
= (g2
. y) by
FUNCT_1:def 6;
reconsider sy = y as
Real by
A587;
A589: x
in (
Lower_Arc P) by
A23,
A586,
A588,
FUNCT_1:def 3;
then
reconsider p1 = x as
Point of (
TOP-REAL 2);
(h2
/. j)
<= sy & sy
<= 1 by
A586,
A587,
BORSUK_1: 40,
XXREAL_1: 1;
then
A590:
LE ((h0
/. i),p1,(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A558,
A565,
A583,
A564,
A588,
Th18;
now
per cases ;
case p1
= (
W-min P);
hence
LE ((h0
/. i),p1,P) or (h0
/. i)
in P & p1
= (
W-min P) by
A559,
A565,
A585,
XBOOLE_0:def 3;
end;
case p1
<> (
W-min P);
hence
LE ((h0
/. i),p1,P) or (h0
/. i)
in P & p1
= (
W-min P) by
A559,
A565,
A589,
A590,
JORDAN6:def 10;
end;
end;
then
A591: x
in { p :
LE ((h0
/. i),p,P) or (h0
/. i)
in P & p
= (
W-min P) };
(h0
/. 1)
= (
W-min P) by
A72,
A67,
PARTFUN1:def 6;
hence thesis by
A591,
Def1;
end;
assume W
= (
Segment ((h0
/. (
len h0)),(h0
/. 1),P));
then W
= (g2
.: Q1) by
A569,
A584;
hence thesis by
A31,
A47,
A36,
A52,
A55,
A57,
A554,
A560,
A563,
Lm1;
end;
A592: for i be
Nat st 1
<= i & (i
+ 1)
< (
len h0) holds
LE ((h0
/. (i
+ 1)),(h0
/. (i
+ 2)),P)
proof
let i be
Nat;
assume that
A593: 1
<= i and
A594: (i
+ 1)
< (
len h0);
A595: ((i
+ 1)
+ 1)
<= (
len h0) by
A594,
NAT_1: 13;
A596: (i
+ 1)
< ((i
+ 1)
+ 1) by
NAT_1: 13;
A597: 1
< (i
+ 1) by
A593,
NAT_1: 13;
then
A598: 1
< ((i
+ 1)
+ 1) by
NAT_1: 13;
per cases ;
suppose
A599: (i
+ 1)
< (
len h1);
then
A600: (i
+ 1)
in (
dom h1) by
A597,
FINSEQ_3: 25;
then
A601: (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A602:
0
<= (h1
. (i
+ 1)) & (h1
. (i
+ 1))
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
A603: 1
< ((i
+ 1)
+ 1) by
A597,
NAT_1: 13;
then ((i
+ 1)
+ 1)
in (
dom h0) by
A595,
FINSEQ_3: 25;
then
A604: (h0
/. ((i
+ 1)
+ 1))
= (h0
. ((i
+ 1)
+ 1)) by
PARTFUN1:def 6;
A605: ((i
+ 1)
+ 1)
<= (
len h1) by
A599,
NAT_1: 13;
then
A606: ((i
+ 1)
+ 1)
in (
dom h1) by
A603,
FINSEQ_3: 25;
then
A607: (h1
. ((i
+ 1)
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A608: (h1
. ((i
+ 1)
+ 1))
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
(h0
. ((i
+ 1)
+ 1))
= (h11
. ((i
+ 1)
+ 1)) by
A39,
A605,
A603,
FINSEQ_1: 64;
then
A609: (h0
. ((i
+ 1)
+ 1))
= (g1
. (h1
. ((i
+ 1)
+ 1))) by
A606,
FUNCT_1: 13;
then
A610: (h0
/. ((i
+ 1)
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A607,
A604,
BORSUK_1: 40,
FUNCT_1:def 3;
(i
+ 1)
in (
dom h0) by
A594,
A597,
FINSEQ_3: 25;
then
A611: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A612: (h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A597,
A599,
FINSEQ_1: 64;
then
A613: (h0
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
A600,
FUNCT_1: 13;
(g1
. (h1
. (i
+ 1)))
in (
rng g1) by
A132,
A11,
A601,
BORSUK_1: 40,
FUNCT_1:def 3;
then
A614: (h0
/. (i
+ 1))
in (
Upper_Arc P) by
A5,
A612,
A600,
A611,
FUNCT_1: 13;
(h1
. (i
+ 1))
< (h1
. ((i
+ 1)
+ 1)) by
A12,
A596,
A600,
A606,
SEQM_3:def 1;
then
LE ((h0
/. (i
+ 1)),(h0
/. ((i
+ 1)
+ 1)),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A3,
A4,
A5,
A6,
A7,
A613,
A602,
A609,
A608,
A611,
A604,
Th18;
hence thesis by
A614,
A610,
JORDAN6:def 10;
end;
suppose
A615: (i
+ 1)
>= (
len h1);
per cases by
A615,
XXREAL_0: 1;
suppose
A616: (i
+ 1)
> (
len h1);
set j = ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1);
A617: (((i
+ 1)
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A595,
XREAL_1: 9;
A618: (
0
+ 2)
<= (((i
+ 1)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A619: 1
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
A620: (j
+ 1)
= (((((i
+ 1)
-' (
len h11))
+ (1
+ 1))
- 1)
+ 1) by
A618,
Lm1,
NAT_D: 39,
NAT_D: 42
.= (((i
+ 1)
-' (
len h11))
+ 2);
A621: ((
len h1)
+ 1)
<= (i
+ 1) by
A616,
NAT_1: 13;
then
A622: (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
XREAL_1: 9;
A623: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A616,
XREAL_1: 233;
((i
+ 1)
+ 1)
> (
len h11) by
A39,
A616,
NAT_1: 13;
then
A624: (((i
+ 1)
+ 1)
- (
len h11))
= (((i
+ 1)
+ 1)
-' (
len h11)) by
XREAL_1: 233;
A625: ((
len h1)
+ 1)
<= ((i
+ 1)
+ 1) by
A621,
NAT_1: 13;
then
A626: (((
len h1)
+ 1)
- (
len h1))
<= (((i
+ 1)
+ 1)
- (
len h1)) by
XREAL_1: 9;
then 1
< ((((i
+ 1)
+ 1)
-' (
len h11))
+ (2
- 1)) by
A39,
A624,
NAT_1: 13;
then
A627:
0
< (((((i
+ 1)
+ 1)
-' (
len h11))
+ 2)
- 1);
((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
- 1) by
A618,
Lm1,
NAT_D: 39,
NAT_D: 42;
then
A628: (j
+ 1)
= (((((i
+ 1)
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A623,
A624,
A627,
XREAL_0:def 2;
((i
+ 1)
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A594,
XREAL_1: 9;
then
A629: (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A623,
XREAL_1: 6;
then ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A630: j
in (
dom h2) by
A46,
A619,
FINSEQ_3: 25;
(2
-' 1)
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A618,
NAT_D: 42;
then 1
< (j
+ 1) by
Lm1,
NAT_1: 13;
then
A631: (j
+ 1)
in (
dom h2) by
A629,
A620,
FINSEQ_3: 25;
then
A632: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
then
A633: (h2
. (j
+ 1))
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
j
< (j
+ 1) by
NAT_1: 13;
then
A634: (h2
. j)
< (h2
. (j
+ 1)) by
A30,
A630,
A631,
SEQM_3:def 1;
A635: (i
+ 1)
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A594,
FINSEQ_1: 22;
((
len h11)
+ 1)
<= (i
+ 1) by
A39,
A616,
NAT_1: 13;
then
A636: (h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A635,
FINSEQ_1: 23;
((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A635,
XREAL_1: 9;
then (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A636,
A623,
A622,
FINSEQ_6: 118;
then
A637: (h0
. (i
+ 1))
= (g2
. (h2
. j)) by
A630,
FUNCT_1: 13;
A638: (h2
. j)
in (
rng h2) by
A630,
FUNCT_1:def 3;
then
A639: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A637,
BORSUK_1: 40,
FUNCT_1:def 3;
((i
+ 1)
+ 1)
in (
dom h0) by
A595,
A598,
FINSEQ_3: 25;
then
A640: (h0
/. ((i
+ 1)
+ 1))
= (h0
. ((i
+ 1)
+ 1)) by
PARTFUN1:def 6;
(h0
. ((i
+ 1)
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. (((i
+ 1)
+ 1)
- (
len h11))) by
A39,
A36,
A595,
A625,
FINSEQ_1: 23;
then
A641: (h0
. ((i
+ 1)
+ 1))
= (h21
. (((((i
+ 1)
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A624,
A617,
A626,
FINSEQ_6: 118;
then
A642: (h0
. ((i
+ 1)
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A628,
A631,
FUNCT_1: 13;
then
A643: (h0
. ((i
+ 1)
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A632,
BORSUK_1: 40,
FUNCT_1:def 3;
((i
+ 1)
- (
len h11))
< (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A594,
XREAL_1: 9;
then (((i
+ 1)
- (
len h11))
+ 2)
< (((
len h2)
- 2)
+ 2) by
XREAL_1: 6;
then
A644: (h0
/. ((i
+ 1)
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A623,
A641,
A620,
A628,
A631,
A640;
(i
+ 1)
in (
dom h0) by
A594,
A597,
FINSEQ_3: 25;
then
A645: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
0
<= (h2
. j) & (h2
. j)
<= 1 by
A29,
A638,
BORSUK_1: 40,
XXREAL_1: 1;
then
LE ((h0
/. (i
+ 1)),(h0
/. ((i
+ 1)
+ 1)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A637,
A642,
A634,
A645,
A640,
A633,
Th18;
hence thesis by
A645,
A640,
A639,
A643,
A644,
JORDAN6:def 10;
end;
suppose
A646: (i
+ 1)
= (
len h1);
then ((
len h1)
+ 1)
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A595,
FINSEQ_1: 22;
then
A647: (((i
+ 1)
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A646,
XREAL_1: 9;
then 1
<= (((i
+ 1)
+ 1)
-' (
len h11)) by
A39,
A596,
A646,
XREAL_1: 233;
then 1
< ((((i
+ 1)
+ 1)
-' (
len h11))
+ (2
- 1)) by
NAT_1: 13;
then
A648:
0
< (((((i
+ 1)
+ 1)
-' (
len h11))
+ 2)
- 1);
A649: (((i
+ 1)
+ 1)
- (
len h11))
= (((i
+ 1)
+ 1)
-' (
len h11)) by
A39,
A596,
A646,
XREAL_1: 233;
(
len h1)
in (
dom h0) by
A594,
A597,
A646,
FINSEQ_3: 25;
then
A650: (h0
/. (
len h1))
= (h0
. (
len h1)) by
PARTFUN1:def 6;
set j = ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1);
A651: (
0
+ 2)
<= (((i
+ 1)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A652: (j
+ 1)
= (((((i
+ 1)
-' (
len h11))
+ (1
+ 1))
- 1)
+ 1) by
Lm1,
NAT_D: 39,
NAT_D: 42
.= (((i
+ 1)
-' (
len h11))
+ (1
+ 1));
(2
-' 1)
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A651,
NAT_D: 42;
then
A653: 1
< (j
+ 1) by
Lm1,
NAT_1: 13;
((
len h1)
- (
len h11))
= ((
len h1)
-' (
len h11)) & ((i
+ 1)
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A594,
XREAL_1: 9,
XREAL_1: 233;
then (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A646,
XREAL_1: 6;
then
A654: (j
+ 1)
in (
dom h2) by
A652,
A653,
FINSEQ_3: 25;
then
A655: (h2
. (j
+ 1))
in (
rng h2) by
FUNCT_1:def 3;
(h0
. (
len h1))
= (
E-max P) by
A39,
A255,
A597,
A646,
FINSEQ_1: 64;
then
A656: (h0
. (i
+ 1))
in (
Upper_Arc P) by
A1,
A646,
Th1;
((i
+ 1)
+ 1)
in (
dom h0) by
A595,
A598,
FINSEQ_3: 25;
then
A657: (h0
/. ((i
+ 1)
+ 1))
= (h0
. ((i
+ 1)
+ 1)) by
PARTFUN1:def 6;
(h0
. ((i
+ 1)
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. (((i
+ 1)
+ 1)
- (
len h11))) by
A39,
A36,
A595,
A646,
FINSEQ_1: 23;
then
A658: (h0
. ((i
+ 1)
+ 1))
= (h21
. (((((i
+ 1)
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A646,
A649,
A647,
FINSEQ_6: 118;
A659: (j
+ 1)
= (((((i
+ 1)
- (
len h11))
+ 2)
- 1)
+ 1) by
A39,
A646,
Lm1,
XREAL_0:def 2
.= (((((i
+ 1)
+ 1)
-' (
len h11))
+ 2)
-' 1) by
A649,
A648,
XREAL_0:def 2;
then (h0
. ((i
+ 1)
+ 1))
= (g2
. (h2
. (j
+ 1))) by
A658,
A654,
FUNCT_1: 13;
then
A660: (h0
. ((i
+ 1)
+ 1))
in (
Lower_Arc P) by
A23,
A131,
A29,
A655,
BORSUK_1: 40,
FUNCT_1:def 3;
((i
+ 1)
- (
len h11))
< (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A594,
XREAL_1: 9;
then (((i
+ 1)
- (
len h11))
+ 2)
< (((
len h2)
- 2)
+ 2) by
XREAL_1: 6;
then (j
+ 1)
< (
len h2) by
A39,
A646,
A652,
XREAL_0:def 2;
then (h0
/. ((i
+ 1)
+ 1))
<> (
W-min P) by
A46,
A34,
A35,
A32,
A658,
A659,
A654,
A657;
hence thesis by
A646,
A650,
A657,
A660,
A656,
JORDAN6:def 10;
end;
end;
end;
thus for i be
Nat st 1
<= i & (i
+ 1)
< (
len h0) holds ((
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
/\ (
Segment ((h0
/. (i
+ 1)),(h0
/. (i
+ 2)),P)))
=
{(h0
/. (i
+ 1))}
proof
let i be
Nat;
assume
A661: 1
<= i & (i
+ 1)
< (
len h0);
then
A662:
LE ((h0
/. i),(h0
/. (i
+ 1)),P) & (h0
/. (i
+ 1))
<> (
W-min P) by
A256;
(h0
/. i)
<> (h0
/. (i
+ 1)) &
LE ((h0
/. (i
+ 1)),(h0
/. (i
+ 2)),P) by
A592,
A256,
A661;
hence thesis by
A1,
A662,
Th10;
end;
A663: 2
in (
dom h0) by
A201,
FINSEQ_3: 25;
i
<> 1 by
A59,
Lm2;
then
A664: (h0
/. i)
<> (h0
/. 1) by
A67,
A78,
A203,
PARTFUN2: 10;
A665: (
len h1)
in (
dom h1) by
A16,
FINSEQ_3: 25;
thus ((
Segment ((h0
/. (
len h0)),(h0
/. 1),P))
/\ (
Segment ((h0
/. 1),(h0
/. 2),P)))
=
{(h0
/. 1)}
proof
defpred
P[
Nat] means ($1
+ 2)
<= (
len h0) implies
LE ((h0
/. 2),(h0
/. ($1
+ 2)),P);
set j = ((((
len h0)
-' (
len h11))
+ 2)
-' 1);
A666: ((
len h0)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
FINSEQ_1: 22;
A667: (h0
/. 2)
= (h0
. 2) by
A663,
PARTFUN1:def 6;
A668: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A669: (k
+ 2)
<= (
len h0) implies
LE ((h0
/. 2),(h0
/. (k
+ 2)),P);
now
A670: ((k
+ 1)
+ 1)
= (k
+ 2);
A671: ((k
+ 1)
+ 2)
= ((k
+ 2)
+ 1);
assume
A672: ((k
+ 1)
+ 2)
<= (
len h0);
then (k
+ 2)
< (
len h0) by
A671,
NAT_1: 13;
then
LE ((h0
/. (k
+ 2)),(h0
/. ((k
+ 2)
+ 1)),P) by
A592,
A671,
A670,
NAT_1: 11;
hence
LE ((h0
/. 2),(h0
/. ((k
+ 1)
+ 2)),P) by
A1,
A669,
A672,
JORDAN6: 58,
NAT_1: 13;
end;
hence thesis;
end;
((
len h0)
-' 2)
= ((
len h0)
- 2) by
A65,
A14,
XREAL_1: 233,
XXREAL_0: 2;
then
A673: (((
len h0)
-' 2)
+ 2)
= (
len h0);
(
0
+ 2)
<= (((
len h0)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A674: 1
<= ((((
len h0)
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
((((
len h0)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A36,
A52,
A55,
A57,
A252,
NAT_D: 44;
then
A675: j
in (
dom h2) by
A46,
A674,
FINSEQ_3: 25;
(h0
. 2)
= (g1
. (h1
. 2)) & (h1
. 2)
in (
rng h1) by
A15,
A40,
FUNCT_1: 13,
FUNCT_1:def 3;
then
A676: (h0
/. 2)
in (
Upper_Arc P) by
A5,
A132,
A11,
A667,
BORSUK_1: 40,
FUNCT_1:def 3;
((
Upper_Arc P)
\/ (
Lower_Arc P))
= P by
A1,
JORDAN6: 50;
then (h0
/. 2)
in P by
A676,
XBOOLE_0:def 3;
then
A677:
P[
0 ] by
A1,
JORDAN6: 56;
A678: for i be
Nat holds
P[i] from
NAT_1:sch 2(
A677,
A668);
A679: (h11
. 2)
<> (
W-min P) by
A38,
A17,
A71,
A15,
A20;
(((
len h1)
+ 1)
- (
len h1))
<= ((
len h0)
- (
len h1)) & (h0
. (
len h0))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((
len h0)
- (
len h11))) by
A39,
A36,
A549,
A62,
A64,
FINSEQ_1: 23,
XXREAL_0: 2;
then (h0
. (
len h0))
= (h21
. ((((
len h0)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A252,
A666,
FINSEQ_6: 118;
then
A680: (h0
. (
len h0))
= (g2
. (h2
. j)) by
A675,
FUNCT_1: 13;
A681:
now
(h2
. j)
in (
rng h2) by
A675,
FUNCT_1:def 3;
then
A682: (g2
. (h2
. j))
in (
rng g2) by
A131,
A29,
BORSUK_1: 40,
FUNCT_1:def 3;
assume (h0
/. 2)
= (h0
/. (
len h0));
then (h0
/. 2)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A23,
A75,
A676,
A680,
A682,
XBOOLE_0:def 4;
then (h0
/. 2)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
then (h11
. 2)
= (
E-max P) by
A40,
A679,
A667,
TARSKI:def 2;
hence contradiction by
A38,
A665,
A255,
A14,
A15,
A20;
end;
(h0
/. 2)
<> (
W-min P) by
A663,
A40,
A679,
PARTFUN1:def 6;
hence thesis by
A1,
A73,
A681,
A678,
A673,
Th12;
end;
A683: (i
+ 1)
= (
len h0) by
A16,
A65,
XREAL_1: 235,
XXREAL_0: 2;
then
LE ((h0
/. i),(h0
/. (i
+ 1)),P) & (h0
/. (i
+ 1))
<> (
W-min P) by
A256,
A202;
hence ((
Segment ((h0
/. i),(h0
/. (
len h0)),P))
/\ (
Segment ((h0
/. (
len h0)),(h0
/. 1),P)))
=
{(h0
/. (
len h0))} by
A1,
A73,
A683,
A664,
Th11;
LE ((h0
/. i),(h0
/. (i
+ 1)),P) by
A256,
A202,
A200;
hence (
Segment ((h0
/. i),(h0
/. (
len h0)),P))
misses (
Segment ((h0
/. 1),(h0
/. 2),P)) by
A1,
A683,
A333,
A229,
A207,
Th13;
thus for i,j be
Nat st 1
<= i & i
< j & j
< (
len h0) & (i,j)
aren't_adjacent holds (
Segment ((h0
/. i),(h0
/. (i
+ 1)),P))
misses (
Segment ((h0
/. j),(h0
/. (j
+ 1)),P))
proof
let i,j be
Nat;
assume that
A684: 1
<= i and
A685: i
< j and
A686: j
< (
len h0) and
A687: (i,j)
aren't_adjacent ;
A688: 1
< j by
A684,
A685,
XXREAL_0: 2;
i
< (
len h0) by
A685,
A686,
XXREAL_0: 2;
then
A689: (i
+ 1)
<= (
len h0) by
NAT_1: 13;
then
A690:
LE ((h0
/. i),(h0
/. (i
+ 1)),P) & (h0
/. i)
<> (h0
/. (i
+ 1)) by
A256,
A684;
A691: (i
+ 1)
<= j by
A685,
NAT_1: 13;
then
A692: (i
+ 1)
< (
len h0) by
A686,
XXREAL_0: 2;
A693: not j
= (i
+ 1) by
A687,
GOBRD10:def 1;
then
A694: (i
+ 1)
< j by
A691,
XXREAL_0: 1;
A695:
now
assume
A696: (h0
/. (i
+ 1))
= (h0
/. j);
per cases ;
suppose
A697: (i
+ 1)
<= (
len h1);
A698: 1
< (i
+ 1) by
A684,
NAT_1: 13;
then
A699: (i
+ 1)
in (
dom h1) by
A697,
FINSEQ_3: 25;
then
A700: (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
(i
+ 1)
in (
dom h0) by
A689,
A698,
FINSEQ_3: 25;
then
A701: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A702: (h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A697,
A698,
FINSEQ_1: 64;
then (h0
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
A699,
FUNCT_1: 13;
then
A703: (h0
. (i
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A700,
BORSUK_1: 40,
FUNCT_1:def 3;
per cases ;
suppose
A704: j
<= (
len h1);
j
in (
dom h0) by
A686,
A688,
FINSEQ_3: 25;
then
A705: (h0
/. j)
= (h0
. j) by
PARTFUN1:def 6;
(h0
. j)
= (h11
. j) & j
in (
dom h1) by
A39,
A688,
A704,
FINSEQ_1: 64,
FINSEQ_3: 25;
hence contradiction by
A38,
A20,
A693,
A696,
A699,
A701,
A702,
A705;
end;
suppose
A706: j
> (
len h1);
j
in (
dom h0) by
A686,
A688,
FINSEQ_3: 25;
then
A707: (h0
/. j)
= (h0
. j) by
PARTFUN1:def 6;
A708: (j
- (
len h11))
= (j
-' (
len h11)) by
A39,
A706,
XREAL_1: 233;
(j
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A686,
XREAL_1: 9;
then ((j
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A708,
XREAL_1: 6;
then
A709: (((j
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
(j
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A686,
XREAL_1: 9;
then
A710: ((j
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A708,
XREAL_1: 6;
set k = (((j
-' (
len h11))
+ 2)
-' 1);
j
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A686,
FINSEQ_1: 22;
then
A711: (j
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
XREAL_1: 9;
A712: (
0
+ 2)
<= ((j
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A713: (((j
-' (
len h11))
+ 2)
-' 1)
= (((j
-' (
len h11))
+ 2)
- 1) by
Lm1,
NAT_D: 39,
NAT_D: 42;
1
<= (((j
-' (
len h11))
+ 2)
-' 1) by
A712,
Lm1,
NAT_D: 42;
then
A714: k
in (
dom h2) by
A46,
A709,
FINSEQ_3: 25;
then (h2
. k)
in (
rng h2) by
FUNCT_1:def 3;
then
A715: (g2
. (h2
. k))
in (
rng g2) by
A131,
A29,
BORSUK_1: 40,
FUNCT_1:def 3;
A716: ((
len h1)
+ 1)
<= j by
A706,
NAT_1: 13;
then (h0
. j)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (j
- (
len h11))) & (((
len h1)
+ 1)
- (
len h1))
<= (j
- (
len h1)) by
A39,
A36,
A686,
FINSEQ_1: 23,
XREAL_1: 9;
then
A717: (h0
. j)
= (h21
. (((j
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A708,
A711,
FINSEQ_6: 118;
then (h0
. j)
= (g2
. (h2
. k)) by
A714,
FUNCT_1: 13;
then (h0
. j)
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A23,
A696,
A701,
A703,
A707,
A715,
XBOOLE_0:def 4;
then
A718: (h0
. j)
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
(((
len h11)
+ 1)
- (
len h11))
<= (j
- (
len h11)) by
A39,
A716,
XREAL_1: 9;
then 1
<= (j
-' (
len h11)) by
NAT_D: 39;
then (1
+ 2)
<= ((j
-' (
len h11))
+ 2) by
XREAL_1: 6;
then ((1
+ 2)
- 1)
<= (((j
-' (
len h11))
+ 2)
- 1) by
XREAL_1: 9;
then 1
< k by
A713,
XXREAL_0: 2;
then
A719: (h0
. j)
<> (
E-max P) by
A46,
A76,
A77,
A32,
A717,
A714;
(((j
-' (
len h11))
+ 2)
-' 1)
< ((((j
-' (
len h11))
+ 2)
-' 1)
+ 1) by
NAT_1: 13;
then (h0
. j)
<> (
W-min P) by
A46,
A34,
A35,
A32,
A717,
A713,
A710,
A714;
hence contradiction by
A718,
A719,
TARSKI:def 2;
end;
end;
suppose
A720: (i
+ 1)
> (
len h1);
then
A721: j
> (
len h1) by
A691,
XXREAL_0: 2;
then
A722: ((
len h1)
+ 1)
<= j by
NAT_1: 13;
then
A723: (((
len h1)
+ 1)
- (
len h1))
<= (j
- (
len h1)) by
XREAL_1: 9;
(((
len h11)
+ 1)
- (
len h11))
<= (j
- (
len h11)) by
A39,
A722,
XREAL_1: 9;
then
A724: (j
-' (
len h11))
= (j
- (
len h11)) by
NAT_D: 39;
A725: ((
len h1)
+ 1)
<= (i
+ 1) by
A720,
NAT_1: 13;
then (((
len h11)
+ 1)
- (
len h11))
<= ((i
+ 1)
- (
len h11)) by
A39,
XREAL_1: 9;
then ((i
+ 1)
-' (
len h11))
= ((i
+ 1)
- (
len h11)) by
NAT_D: 39;
then ((i
+ 1)
-' (
len h11))
< (j
-' (
len h11)) by
A694,
A724,
XREAL_1: 9;
then
A726: (((i
+ 1)
-' (
len h11))
+ 2)
< ((j
-' (
len h11))
+ 2) by
XREAL_1: 6;
set k = (((j
-' (
len h11))
+ 2)
-' 1);
set j0 = ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1);
A727: j
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A686,
FINSEQ_1: 22;
A728: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A689,
XREAL_1: 9;
A729: (j
- (
len h11))
= (j
-' (
len h11)) by
A39,
A691,
A720,
XREAL_1: 233,
XXREAL_0: 2;
(j
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A686,
XREAL_1: 9;
then ((j
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A729,
XREAL_1: 6;
then
A730: (((j
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
A731: (
0
+ 2)
<= ((j
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A732: (((j
-' (
len h11))
+ 2)
-' 1)
= (((j
-' (
len h11))
+ 2)
- 1) by
Lm1,
NAT_D: 39,
NAT_D: 42;
1
<= (((j
-' (
len h11))
+ 2)
-' 1) by
A731,
Lm1,
NAT_D: 42;
then
A733: k
in (
dom h2) by
A46,
A730,
FINSEQ_3: 25;
A734: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A720,
XREAL_1: 233;
((
len h11)
+ 1)
<= j by
A39,
A721,
NAT_1: 13;
then
A735: (h0
. j)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (j
- (
len h11))) by
A727,
FINSEQ_1: 23;
(j
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A686,
XREAL_1: 9;
then
A736: (h0
. j)
= (h21
. (((j
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A735,
A729,
A723,
FINSEQ_6: 118;
1
<= (i
+ 1) by
A684,
NAT_1: 13;
then (i
+ 1)
in (
dom h0) by
A689,
FINSEQ_3: 25;
then
A737: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
j
in (
dom h0) by
A686,
A688,
FINSEQ_3: 25;
then
A738: (h0
/. j)
= (h0
. j) by
PARTFUN1:def 6;
((i
+ 1)
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A689,
XREAL_1: 9;
then (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A734,
XREAL_1: 6;
then
A739: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
A740: (
0
+ 2)
<= (((i
+ 1)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then 1
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
then
A741: j0
in (
dom h2) by
A46,
A739,
FINSEQ_3: 25;
((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
- 1) by
A740,
Lm1,
NAT_D: 39,
NAT_D: 42;
then
A742: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
< (((j
-' (
len h11))
+ 2)
-' 1) by
A732,
A726,
XREAL_1: 9;
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) & (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
A39,
A36,
A689,
A725,
FINSEQ_1: 23,
XREAL_1: 9;
then (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A734,
A728,
FINSEQ_6: 118;
hence contradiction by
A46,
A32,
A696,
A741,
A737,
A736,
A742,
A733,
A738;
end;
end;
A743: (j
+ 1)
<= (
len h0) by
A686,
NAT_1: 13;
A744: 1
< (i
+ 1) by
A684,
NAT_1: 13;
A745: 1
<= (i
+ 1) by
A684,
NAT_1: 13;
A746: (i
+ 1)
< (
len h0) by
A686,
A691,
XXREAL_0: 2;
A747:
LE ((h0
/. (i
+ 1)),(h0
/. j),P)
proof
per cases ;
suppose
A748: (i
+ 1)
<= (
len h1);
per cases ;
suppose
A749: j
<= (
len h1);
A750: 1
< j by
A694,
A745,
XXREAL_0: 2;
then
A751: j
in (
dom h1) by
A749,
FINSEQ_3: 25;
then
A752: (h1
. j)
in (
rng h1) by
FUNCT_1:def 3;
then
A753: (h1
. j)
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
j
in (
dom h0) by
A686,
A750,
FINSEQ_3: 25;
then
A754: (h0
/. j)
= (h0
. j) by
PARTFUN1:def 6;
(h0
. j)
= (h11
. j) by
A39,
A749,
A750,
FINSEQ_1: 64;
then
A755: (g1
. (h1
. j))
= (h0
/. j) by
A751,
A754,
FUNCT_1: 13;
then
A756: (h0
/. j)
in (
Upper_Arc P) by
A5,
A132,
A11,
A752,
BORSUK_1: 40,
FUNCT_1:def 3;
(i
+ 1)
in (
dom h0) by
A745,
A692,
FINSEQ_3: 25;
then
A757: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A758: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6:def 8;
A759: (i
+ 1)
in (
dom h1) by
A745,
A748,
FINSEQ_3: 25;
then
A760: (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A761:
0
<= (h1
. (i
+ 1)) & (h1
. (i
+ 1))
<= 1 by
A11,
BORSUK_1: 40,
XXREAL_1: 1;
(h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A745,
A748,
FINSEQ_1: 64;
then
A762: (g1
. (h1
. (i
+ 1)))
= (h0
/. (i
+ 1)) by
A759,
A757,
FUNCT_1: 13;
then
A763: (h0
/. (i
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A760,
BORSUK_1: 40,
FUNCT_1:def 3;
(h1
. (i
+ 1))
<= (h1
. j) by
A12,
A694,
A759,
A751,
SEQM_3:def 1;
then
LE ((h0
/. (i
+ 1)),(h0
/. j),(
Upper_Arc P),(
W-min P),(
E-max P)) by
A4,
A5,
A6,
A7,
A758,
A762,
A761,
A755,
A753,
Th18;
hence thesis by
A763,
A756,
JORDAN6:def 10;
end;
suppose
A764: j
> (
len h1);
set k = (((j
-' (
len h11))
+ 2)
-' 1);
(
0
+ 2)
<= ((j
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A765: (2
-' 1)
<= (((j
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
A766: (j
- (
len h11))
= (j
-' (
len h11)) by
A39,
A764,
XREAL_1: 233;
(j
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A686,
XREAL_1: 9;
then ((j
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A766,
XREAL_1: 6;
then (((j
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A767: (((j
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A765,
Lm1,
FINSEQ_3: 25;
((j
+ 1)
- 1)
<= (((
len h1)
+ ((
len h2)
- 2))
- 1) by
A39,
A47,
A36,
A52,
A55,
A57,
A743,
XREAL_1: 9;
then (j
- (
len h11))
<= (((
len h1)
+ (((
len h2)
- 2)
- 1))
- (
len h11)) by
XREAL_1: 9;
then ((j
-' (
len h11))
+ 2)
<= ((((
len h2)
- 2)
- 1)
+ 2) by
A39,
A766,
XREAL_1: 6;
then
A768: (((j
-' (
len h11))
+ 2)
- 1)
<= (((
len h2)
- 1)
- 1) by
XREAL_1: 9;
A769: (h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A744,
A748,
FINSEQ_1: 64;
(i
+ 1)
in (
dom h1) by
A744,
A748,
FINSEQ_3: 25;
then (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A770: (g1
. (h1
. (i
+ 1)))
in (
rng g1) by
A132,
A11,
BORSUK_1: 40,
FUNCT_1:def 3;
(
0
+ 1)
<= ((((j
-' (
len h11))
+ 1)
+ 1)
- 1) by
XREAL_1: 6;
then
A771: (((j
-' (
len h11))
+ 2)
-' 1)
= (((j
-' (
len h11))
+ 2)
- 1) by
NAT_D: 39;
((
len h1)
+ 1)
<= j by
A764,
NAT_1: 13;
then
A772: (h0
. j)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (j
- (
len h11))) & (((
len h1)
+ 1)
- (
len h1))
<= (j
- (
len h1)) by
A39,
A36,
A686,
FINSEQ_1: 23,
XREAL_1: 9;
A773: (j
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A686,
XREAL_1: 9;
then (h0
. j)
= (h21
. (((j
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A766,
A772,
FINSEQ_6: 118;
then
A774: (h0
. j)
= (g2
. (h2
. k)) by
A46,
A767,
FUNCT_1: 13;
(j
- (
len h11))
= (j
-' (
len h11)) by
A39,
A764,
XREAL_1: 233;
then
A775: (h0
. j)
= (h21
. k) by
A39,
A48,
A56,
A50,
A54,
A773,
A772,
FINSEQ_6: 118;
j
in (
dom h0) by
A686,
A688,
FINSEQ_3: 25;
then
A776: (h0
/. j)
= (h0
. j) by
PARTFUN1:def 6;
(h2
. k)
in (
rng h2) by
A46,
A767,
FUNCT_1:def 3;
then
A777: (h0
. j)
in (
Lower_Arc P) by
A23,
A131,
A29,
A774,
BORSUK_1: 40,
FUNCT_1:def 3;
(i
+ 1)
in (
Seg (
len h1)) by
A745,
A748,
FINSEQ_1: 1;
then (i
+ 1)
in (
dom h1) by
FINSEQ_1:def 3;
then
A778: (h11
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
FUNCT_1: 13;
(i
+ 1)
in (
dom h0) by
A745,
A692,
FINSEQ_3: 25;
then
A779: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
(((
len h2)
- 1)
- 1)
< (
len h2) by
Lm4;
then (h0
/. j)
<> (
W-min P) by
A46,
A34,
A35,
A32,
A771,
A767,
A768,
A775,
A776;
hence thesis by
A5,
A769,
A778,
A779,
A776,
A770,
A777,
JORDAN6:def 10;
end;
end;
suppose
A780: (i
+ 1)
> (
len h1);
set j0 = ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1);
set k = (((j
-' (
len h11))
+ 2)
-' 1);
A781: (
0
+ 2)
<= (((i
+ 1)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A782: 1
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
Lm1,
NAT_D: 42;
A783: (j
- (
len h11))
= (j
-' (
len h11)) by
A39,
A691,
A780,
XREAL_1: 233,
XXREAL_0: 2;
(
len h1)
< j by
A691,
A780,
XXREAL_0: 2;
then
A784: ((
len h11)
+ 1)
<= j by
A39,
NAT_1: 13;
then
A785: (((
len h1)
+ 1)
- (
len h1))
<= (j
- (
len h1)) by
A39,
XREAL_1: 9;
j
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A686,
FINSEQ_1: 22;
then
A786: (h0
. j)
= ((
mid (h21,2,((
len h21)
-' 1)))
. (j
- (
len h11))) by
A784,
FINSEQ_1: 23;
A787: ((i
+ 1)
- (
len h11))
< (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A746,
XREAL_1: 9;
then (j
- (
len h11))
<= (
len (
mid (h21,2,((
len h21)
-' 1)))) by
A36,
A686,
XREAL_1: 9;
then
A788: (h0
. j)
= (h21
. k) by
A39,
A48,
A56,
A50,
A54,
A783,
A786,
A785,
FINSEQ_6: 118;
A789: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A780,
XREAL_1: 233;
then (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A47,
A52,
A55,
A57,
A787,
XREAL_1: 6;
then ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
then
A790: j0
in (
dom h2) by
A46,
A782,
FINSEQ_3: 25;
then
A791: (h2
. j0)
in (
rng h2) by
FUNCT_1:def 3;
then
A792:
0
<= (h2
. j0) & (h2
. j0)
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
A793: (g2
. (h2
. j0))
in (
rng g2) by
A131,
A29,
A791,
BORSUK_1: 40,
FUNCT_1:def 3;
A794: (j
- (
len h11))
= (j
-' (
len h11)) by
A39,
A691,
A780,
XREAL_1: 233,
XXREAL_0: 2;
((j
+ 1)
- 1)
<= (((
len h1)
+ ((
len h2)
- 2))
- 1) by
A39,
A47,
A36,
A52,
A55,
A57,
A743,
XREAL_1: 9;
then (j
- (
len h11))
<= (((
len h1)
+ (((
len h2)
- 2)
- 1))
- (
len h11)) by
XREAL_1: 9;
then ((j
-' (
len h11))
+ 2)
<= ((((
len h2)
- 2)
- 1)
+ 2) by
A39,
A794,
XREAL_1: 6;
then
A795: (((j
-' (
len h11))
+ 2)
- 1)
<= (((
len h2)
- 1)
- 1) by
XREAL_1: 9;
(
0
+ 1)
<= ((((j
-' (
len h11))
+ 1)
+ 1)
- 1) by
XREAL_1: 6;
then
A796: (((j
-' (
len h11))
+ 2)
-' 1)
= (((j
-' (
len h11))
+ 2)
- 1) by
NAT_D: 39;
(j
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A686,
XREAL_1: 9;
then ((j
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A794,
XREAL_1: 6;
then
A797: (((j
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
(
0
+ 2)
<= ((j
-' (
len h11))
+ 2) by
XREAL_1: 6;
then (2
-' 1)
<= (((j
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
then
A798: (((j
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A797,
Lm1,
FINSEQ_3: 25;
then
A799: (h2
. k)
in (
rng h2) by
A46,
FUNCT_1:def 3;
then
A800: (h2
. k)
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
(j
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A686,
XREAL_1: 9;
then
A801: (h0
. j)
= (h21
. (((j
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A794,
A786,
A785,
FINSEQ_6: 118;
then (h0
. j)
= (g2
. (h2
. k)) by
A46,
A798,
FUNCT_1: 13;
then
A802: (h0
. j)
in (
Lower_Arc P) by
A23,
A131,
A29,
A799,
BORSUK_1: 40,
FUNCT_1:def 3;
A803: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
- 1) by
A781,
Lm1,
NAT_D: 39,
NAT_D: 42;
A804: (i
+ 1)
< ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A746,
FINSEQ_1: 22;
((i
+ 1)
- (
len h11))
< (j
- (
len h11)) by
A694,
XREAL_1: 9;
then (((i
+ 1)
-' (
len h11))
+ 2)
< ((j
-' (
len h11))
+ 2) by
A783,
A789,
XREAL_1: 6;
then j0
< k by
A796,
A803,
XREAL_1: 9;
then
A805: (h2
. j0)
< (h2
. k) by
A30,
A46,
A798,
A790,
SEQM_3:def 1;
(i
+ 1)
in (
dom h0) by
A745,
A692,
FINSEQ_3: 25;
then
A806: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
((
len h1)
+ 1)
<= (i
+ 1) by
A780,
NAT_1: 13;
then
A807: (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
XREAL_1: 9;
then
A808: ((i
+ 1)
-' (
len h11))
= ((i
+ 1)
- (
len h11)) by
A39,
NAT_D: 39;
j
in (
dom h0) by
A686,
A688,
FINSEQ_3: 25;
then
A809: (h0
/. j)
= (h0
. j) by
PARTFUN1:def 6;
((
len h11)
+ 1)
<= (i
+ 1) by
A39,
A780,
NAT_1: 13;
then (h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A804,
FINSEQ_1: 23
.= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A787,
A807,
A808,
FINSEQ_6: 118;
then
A810: (h0
. (i
+ 1))
= (g2
. (h2
. j0)) by
A790,
FUNCT_1: 13;
(((
len h2)
- 1)
- 1)
< (
len h2) by
Lm4;
then
A811: (h0
/. j)
<> (
W-min P) by
A46,
A34,
A35,
A32,
A796,
A798,
A795,
A788,
A809;
(h21
. k)
= (g2
. (h2
. k)) by
A46,
A798,
FUNCT_1: 13;
then
LE ((h0
/. (i
+ 1)),(h0
/. j),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A801,
A800,
A810,
A792,
A805,
A806,
A809,
Th18;
hence thesis by
A23,
A810,
A806,
A809,
A793,
A802,
A811,
JORDAN6:def 10;
end;
end;
LE ((h0
/. j),(h0
/. (j
+ 1)),P) by
A256,
A688,
A743;
hence thesis by
A1,
A690,
A747,
A695,
Th13;
end;
let i be
Nat such that
A812: 1
< i and
A813: (i
+ 1)
< (
len h0);
A814: 1
< (i
+ 1) by
A812,
NAT_1: 13;
then
A815: (i
+ 1)
in (
dom h0) by
A813,
FINSEQ_3: 25;
A816: 1
<= ((
len h0)
- (
len h1)) by
A549,
A62,
XXREAL_0: 2;
A817:
now
assume
A818: (h0
/. (i
+ 1))
= (h0
/. (
len h0));
per cases ;
suppose
A819: (i
+ 1)
<= (
len h1);
then
A820: (i
+ 1)
in (
dom h1) by
A814,
FINSEQ_3: 25;
(h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A814,
A819,
FINSEQ_1: 64;
then
A821: (h0
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
A820,
FUNCT_1: 13;
(h1
. (i
+ 1))
in (
rng h1) by
A820,
FUNCT_1:def 3;
then
A822: (h0
. (i
+ 1))
in (
Upper_Arc P) by
A5,
A132,
A11,
A821,
BORSUK_1: 40,
FUNCT_1:def 3;
(i
+ 1)
in (
dom h0) by
A813,
A814,
FINSEQ_3: 25;
then
A823: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
(1
+ 2)
<= (((
len h0)
-' (
len h11))
+ 2) by
A47,
A36,
A52,
A55,
A57,
A63,
A252,
XREAL_1: 6;
then
A824: ((1
+ 2)
- 1)
<= ((((
len h0)
-' (
len h11))
+ 2)
- 1) by
XREAL_1: 9;
set k = ((((
len h0)
-' (
len h11))
+ 2)
-' 1);
A825: (
0
+ 2)
<= (((
len h0)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A826: (2
-' 1)
<= ((((
len h0)
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
((((
len h0)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A36,
A52,
A55,
A57,
A252,
NAT_D: 44;
then
A827: k
in (
dom h2) by
A46,
A826,
Lm1,
FINSEQ_3: 25;
then (h2
. k)
in (
rng h2) by
FUNCT_1:def 3;
then
A828: (g2
. (h2
. k))
in (
rng g2) by
A131,
A29,
BORSUK_1: 40,
FUNCT_1:def 3;
(h0
. (
len h0))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((
len h0)
- (
len h11))) by
A39,
A36,
A64,
FINSEQ_1: 23;
then
A829: (h0
. (
len h0))
= (h21
. ((((
len h0)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A36,
A48,
A56,
A50,
A54,
A816,
A252,
FINSEQ_6: 118;
then (h0
. (
len h0))
= (g2
. (h2
. k)) by
A827,
FUNCT_1: 13;
then (h0
. (
len h0))
in ((
Upper_Arc P)
/\ (
Lower_Arc P)) by
A23,
A75,
A818,
A823,
A822,
A828,
XBOOLE_0:def 4;
then
A830: (h0
. (
len h0))
in
{(
W-min P), (
E-max P)} by
A1,
JORDAN6:def 9;
((((
len h0)
-' (
len h11))
+ 2)
-' 1)
= ((((
len h0)
-' (
len h11))
+ 2)
- 1) by
A825,
Lm1,
NAT_D: 39,
NAT_D: 42;
then 1
< k by
A824,
XXREAL_0: 2;
then
A831: (h0
. (
len h0))
<> (
E-max P) by
A46,
A76,
A77,
A32,
A829,
A827;
((((
len h0)
-' (
len h11))
+ 2)
-' 1)
< (((((
len h0)
-' (
len h11))
+ 2)
-' 1)
+ 1) by
NAT_1: 13;
then (h0
. (
len h0))
<> (
W-min P) by
A46,
A47,
A34,
A35,
A36,
A52,
A55,
A57,
A252,
A32,
A829,
A827;
hence contradiction by
A830,
A831,
TARSKI:def 2;
end;
suppose
A832: (i
+ 1)
> (
len h1);
set k = ((((
len h0)
-' (
len h11))
+ 2)
-' 1);
set j0 = ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1);
A833: (
0
+ 2)
<= (((
len h0)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then
A834: (2
-' 1)
<= ((((
len h0)
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
((((
len h0)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A36,
A52,
A55,
A57,
A252,
NAT_D: 44;
then
A835: k
in (
dom h2) by
A46,
A834,
Lm1,
FINSEQ_3: 25;
(i
+ 1)
<= ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A813,
FINSEQ_1: 22;
then
A836: ((i
+ 1)
- (
len h11))
<= (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
XREAL_1: 9;
A837: ((
len h1)
+ 1)
<= (i
+ 1) by
A832,
NAT_1: 13;
then (((
len h11)
+ 1)
- (
len h11))
<= ((i
+ 1)
- (
len h11)) by
A39,
XREAL_1: 9;
then
A838: ((i
+ 1)
-' (
len h11))
= ((i
+ 1)
- (
len h11)) by
NAT_D: 39;
((
len h0)
-' (
len h11))
= ((
len h0)
- (
len h11)) by
A36,
A57,
XREAL_0:def 2;
then ((i
+ 1)
-' (
len h11))
< ((
len h0)
-' (
len h11)) by
A813,
A838,
XREAL_1: 9;
then
A839: (((i
+ 1)
-' (
len h11))
+ 2)
< (((
len h0)
-' (
len h11))
+ 2) by
XREAL_1: 6;
1
<= (i
+ 1) by
A812,
NAT_1: 13;
then (i
+ 1)
in (
dom h0) by
A813,
FINSEQ_3: 25;
then
A840: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
PARTFUN1:def 6;
A841: ((((
len h0)
-' (
len h11))
+ 2)
-' 1)
= ((((
len h0)
-' (
len h11))
+ 2)
- 1) by
A833,
Lm1,
NAT_D: 39,
NAT_D: 42;
A842: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A832,
XREAL_1: 233;
((i
+ 1)
- (
len h11))
<= (((
len h1)
+ ((
len h2)
- 2))
- (
len h11)) by
A39,
A47,
A36,
A52,
A55,
A57,
A813,
XREAL_1: 9;
then (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A39,
A842,
XREAL_1: 6;
then
A843: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
A844: (
0
+ 2)
<= (((i
+ 1)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then (2
-' 1)
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
then
A845: j0
in (
dom h2) by
A46,
A843,
Lm1,
FINSEQ_3: 25;
(h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) & (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
A39,
A36,
A813,
A837,
FINSEQ_1: 23,
XREAL_1: 9;
then
A846: (h0
. (i
+ 1))
= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A842,
A836,
FINSEQ_6: 118;
((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
- 1) by
A844,
Lm1,
NAT_D: 39,
NAT_D: 42;
then
A847: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
< k by
A841,
A839,
XREAL_1: 9;
(h0
. (
len h0))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((
len h0)
- (
len h11))) by
A39,
A36,
A64,
FINSEQ_1: 23;
then (h0
. (
len h0))
= (h21
. ((((
len h0)
-' (
len h11))
+ 2)
-' 1)) by
A47,
A36,
A51,
A52,
A49,
A48,
A53,
A55,
A57,
A63,
A252,
FINSEQ_6: 118;
hence contradiction by
A46,
A75,
A32,
A818,
A846,
A845,
A840,
A847,
A835;
end;
end;
(h0
. (
len h0))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((
len h0)
- (
len h11))) by
A39,
A36,
A64,
FINSEQ_1: 23;
then
A848: (h0
. (
len h0))
= (h21
. ((((
len h0)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A36,
A48,
A56,
A50,
A54,
A816,
A252,
FINSEQ_6: 118;
then
A849: (h0
. (
len h0))
in (
Lower_Arc P) by
A23,
A131,
A29,
A253,
BORSUK_1: 40,
FUNCT_1:def 3;
A850:
LE ((h0
/. (i
+ 1)),(h0
/. (
len h0)),P)
proof
per cases ;
suppose
A851: (i
+ 1)
<= (
len h1);
then (i
+ 1)
in (
dom h1) by
A814,
FINSEQ_3: 25;
then (h1
. (i
+ 1))
in (
rng h1) by
FUNCT_1:def 3;
then
A852: (g1
. (h1
. (i
+ 1)))
in (
rng g1) by
A132,
A11,
BORSUK_1: 40,
FUNCT_1:def 3;
A853: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
A815,
PARTFUN1:def 6;
(i
+ 1)
in (
dom h1) by
A814,
A851,
FINSEQ_3: 25;
then
A854: (h11
. (i
+ 1))
= (g1
. (h1
. (i
+ 1))) by
FUNCT_1: 13;
(h0
. (i
+ 1))
= (h11
. (i
+ 1)) by
A39,
A814,
A851,
FINSEQ_1: 64;
hence thesis by
A5,
A75,
A130,
A849,
A854,
A853,
A852,
JORDAN6:def 10;
end;
suppose
A855: (i
+ 1)
> (
len h1);
then ((
len h1)
+ 1)
<= (i
+ 1) by
NAT_1: 13;
then
A856: (((
len h1)
+ 1)
- (
len h1))
<= ((i
+ 1)
- (
len h1)) by
XREAL_1: 9;
then
A857: ((i
+ 1)
-' (
len h11))
= ((i
+ 1)
- (
len h11)) by
A39,
NAT_D: 39;
A858: ((i
+ 1)
- (
len h11))
< (((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1)))))
- (
len h11)) by
A36,
A813,
XREAL_1: 9;
A859: (i
+ 1)
< ((
len h11)
+ (
len (
mid (h21,2,((
len h21)
-' 1))))) by
A813,
FINSEQ_1: 22;
((
len h11)
+ 1)
<= (i
+ 1) by
A39,
A855,
NAT_1: 13;
then
A860: (h0
. (i
+ 1))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((i
+ 1)
- (
len h11))) by
A859,
FINSEQ_1: 23
.= (h21
. ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A48,
A56,
A50,
A54,
A858,
A856,
A857,
FINSEQ_6: 118;
set j0 = ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1);
set k = ((((
len h0)
-' (
len h11))
+ 2)
-' 1);
(
0
+ 1)
<= (((((
len h0)
-' (
len h11))
+ 1)
+ 1)
- 1) by
XREAL_1: 6;
then
A861: ((((
len h0)
-' (
len h11))
+ 2)
-' 1)
= ((((
len h0)
-' (
len h11))
+ 2)
- 1) by
NAT_D: 39;
A862: ((((
len h0)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A36,
A52,
A55,
A57,
A252,
NAT_D: 44;
then
A863: ((((
len h0)
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A43,
Lm1,
FINSEQ_3: 25;
then (h2
. k)
in (
rng h2) by
A46,
FUNCT_1:def 3;
then
A864: (h2
. k)
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
((((
len h0)
-' (
len h11))
+ 2)
-' 1)
in (
dom h21) by
A43,
A862,
Lm1,
FINSEQ_3: 25;
then
A865: (h21
. k)
= (g2
. (h2
. k)) by
A46,
FUNCT_1: 13;
A866: ((i
+ 1)
- (
len h11))
= ((i
+ 1)
-' (
len h11)) by
A39,
A855,
XREAL_1: 233;
((i
+ 1)
- (
len h11))
<= (((
len h11)
+ ((
len h2)
- 2))
- (
len h11)) by
A47,
A36,
A52,
A55,
A57,
A813,
XREAL_1: 9;
then (((i
+ 1)
-' (
len h11))
+ 2)
<= (((
len h2)
- 2)
+ 2) by
A866,
XREAL_1: 6;
then
A867: ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
<= (
len h21) by
A47,
NAT_D: 44;
(h0
. (
len h0))
in (
Lower_Arc P) by
A23,
A131,
A29,
A848,
A253,
BORSUK_1: 40,
FUNCT_1:def 3;
then
A868: (h0
/. (
len h0))
in (
Lower_Arc P) by
A74,
PARTFUN1:def 6;
A869: (
0
+ 2)
<= (((i
+ 1)
-' (
len h11))
+ 2) by
XREAL_1: 6;
then (2
-' 1)
<= ((((i
+ 1)
-' (
len h11))
+ 2)
-' 1) by
NAT_D: 42;
then
A870: j0
in (
dom h2) by
A46,
A867,
Lm1,
FINSEQ_3: 25;
then
A871: (h2
. j0)
in (
rng h2) by
FUNCT_1:def 3;
then
A872:
0
<= (h2
. j0) & (h2
. j0)
<= 1 by
A29,
BORSUK_1: 40,
XXREAL_1: 1;
((i
+ 1)
- (
len h11))
< ((
len h0)
- (
len h11)) by
A813,
XREAL_1: 9;
then
A873: (((i
+ 1)
-' (
len h11))
+ 2)
< (((
len h0)
-' (
len h11))
+ 2) by
A252,
A866,
XREAL_1: 6;
(h0
. (
len h0))
= ((
mid (h21,2,((
len h21)
-' 1)))
. ((
len h0)
- (
len h11))) by
A39,
A36,
A64,
FINSEQ_1: 23;
then
A874: (h0
. (
len h0))
= (h21
. ((((
len h0)
-' (
len h11))
+ 2)
-' 1)) by
A39,
A36,
A48,
A56,
A50,
A54,
A816,
A252,
FINSEQ_6: 118;
A875: (h0
/. (i
+ 1))
= (h0
. (i
+ 1)) by
A815,
PARTFUN1:def 6;
(g2
. (h2
. j0))
in (
rng g2) by
A131,
A29,
A871,
BORSUK_1: 40,
FUNCT_1:def 3;
then
A876: (h0
. (i
+ 1))
in (
Lower_Arc P) by
A23,
A860,
A870,
FUNCT_1: 13;
((((i
+ 1)
-' (
len h11))
+ 2)
-' 1)
= ((((i
+ 1)
-' (
len h11))
+ 2)
- 1) by
A869,
Lm1,
NAT_D: 39,
NAT_D: 42;
then j0
< k by
A861,
A873,
XREAL_1: 9;
then
A877: (h2
. j0)
< (h2
. k) by
A30,
A46,
A863,
A870,
SEQM_3:def 1;
(h0
. (i
+ 1))
= (g2
. (h2
. j0)) by
A860,
A870,
FUNCT_1: 13;
then
LE ((h0
/. (i
+ 1)),(h0
/. (
len h0)),(
Lower_Arc P),(
E-max P),(
W-min P)) by
A21,
A22,
A23,
A24,
A25,
A75,
A874,
A865,
A864,
A872,
A877,
A875,
Th18;
hence thesis by
A130,
A875,
A876,
A868,
JORDAN6:def 10;
end;
end;
i
< (
len h0) by
A813,
NAT_1: 13;
then
A878: i
in (
dom h0) by
A812,
FINSEQ_3: 25;
then (h0
/. i)
= (h0
. i) by
PARTFUN1:def 6;
then
A879: (h0
/. i)
<> (
W-min P) by
A72,
A67,
A78,
A812,
A878;
LE ((h0
/. i),(h0
/. (i
+ 1)),P) by
A256,
A812,
A813;
hence thesis by
A1,
A72,
A68,
A879,
A850,
A817,
Th14;
end;