latquasi.miz



    begin

    reserve L for non empty LattStr;

    reserve v3,v101,v100,v102,v103,v2,v1,v0 for Element of L;

    definition

      let L be non empty LattStr;

      :: LATQUASI:def1

      attr L is satisfying_QLT1 means for v0,v2,v1 be Element of L holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      :: LATQUASI:def2

      attr L is satisfying_QLT2 means for v0,v2,v1 be Element of L holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      :: LATQUASI:def3

      attr L is QLT-distributive means for v1,v2,v0 be Element of L holds (v0 "/\" (v1 "\/" (v0 "/\" v2))) = (v0 "/\" (v1 "\/" v2));

    end

    registration

      cluster trivial -> satisfying_QLT1 satisfying_QLT2 QLT-distributive for non empty LattStr;

      coherence by STRUCT_0:def 10;

    end

    registration

      cluster trivial -> join-idempotent meet-idempotent for non empty LattStr;

      coherence

      proof

        let L be non empty LattStr;

        assume

         A1: L is trivial;

        then for x be Element of L holds (x "\/" x) = x by STRUCT_0:def 10;

        hence L is join-idempotent by ROBBINS1:def 7;

        for x be Element of L holds (x "/\" x) = x by A1, STRUCT_0:def 10;

        hence thesis by SHEFFER1:def 9;

      end;

    end

    registration

      cluster join-commutative join-associative join-idempotent meet-commutative meet-associative meet-idempotent satisfying_QLT1 satisfying_QLT2 for non empty LattStr;

      existence

      proof

        take the trivial Lattice;

        thus thesis;

      end;

    end

    definition

      let L be join-commutative non empty LattStr;

      :: original: satisfying_QLT1

      redefine

      :: LATQUASI:def4

      attr L is satisfying_QLT1 means for v0,v1,v2 be Element of L holds (v0 "/\" v1) [= (v0 "/\" (v1 "\/" v2));

      compatibility

      proof

        thus L is satisfying_QLT1 implies for v0,v1,v2 be Element of L holds (v0 "/\" v1) [= (v0 "/\" (v1 "\/" v2))

        proof

          assume

           A1: L is satisfying_QLT1;

          let v0,v1,v2 be Element of L;

          ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2)) by A1;

          hence thesis by LATTICES:def 3;

        end;

        assume

         B1: for v0,v1,v2 be Element of L holds (v0 "/\" v1) [= (v0 "/\" (v1 "\/" v2));

        let v0,v2,v1 be Element of L;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2)) by B1, LATTICES:def 3;

        hence thesis;

      end;

    end

    registration

      cluster { 0 , 1, 2} -> real-membered;

      coherence ;

    end

    registration

      cluster -> real for Element of { 0 , 1, 2};

      coherence ;

    end

    

     T2: for x,y be Element of { 0 , 1, 2} holds ( min (x,y)) in { 0 , 1, 2}

    proof

      let x,y be Element of { 0 , 1, 2};

      ( min (x,y)) = x or ( min (x,y)) = y by XXREAL_0: 15;

      hence thesis;

    end;

    definition

      let x,y be Element of { 0 , 1, 2};

      :: LATQUASI:def5

      func OpEx2 (x,y) -> Element of { 0 , 1, 2} equals

      : OpEx2Def: 1 if x = 1 or y = 1,

( min (x,y)) if x <> 1 & y <> 1;

      coherence by T2;

      consistency ;

    end

    definition

      :: LATQUASI:def6

      func QLT_Ex1 -> BinOp of { 0 , 1, 2} means

      : QLTEx1Def: for x,y be Element of { 0 , 1, 2} holds (x = y implies (it . (x,y)) = x) & (x <> y implies (it . (x,y)) = 0 );

      existence

      proof

        deffunc X() = { 0 , 1, 2};

        deffunc F( object, object) = ( In (( IFEQ ($1,$2,$1, 0 )), X()));

        ex f be BinOp of X() st for x be Element of X() holds for y be Element of X() holds (f . (x,y)) = F(x,y) from BINOP_1:sch 4;

        then

        consider f be BinOp of X() such that

         A1: for x be Element of X() holds for y be Element of X() holds (f . (x,y)) = F(x,y);

        take f;

        let x,y be Element of { 0 , 1, 2};

        

         A4: 0 in X() by ENUMSET1:def 1;

        hereby

          assume

           A2: x = y;

          

          thus (f . (x,y)) = F(x,y) by A1

          .= ( In (x, X())) by A2, FUNCOP_1:def 8

          .= x;

        end;

        assume

         A3: x <> y;

        

        thus (f . (x,y)) = F(x,y) by A1

        .= ( In ( 0 , X())) by A3, FUNCOP_1:def 8

        .= 0 by SUBSET_1:def 8, A4;

      end;

      uniqueness

      proof

        let f1,f2 be BinOp of { 0 , 1, 2} such that

         A1: for x,y be Element of { 0 , 1, 2} holds (x = y implies (f1 . (x,y)) = x) & (x <> y implies (f1 . (x,y)) = 0 ) and

         A2: for x,y be Element of { 0 , 1, 2} holds (x = y implies (f2 . (x,y)) = x) & (x <> y implies (f2 . (x,y)) = 0 );

        for x,y be Element of { 0 , 1, 2} holds (f1 . (x,y)) = (f2 . (x,y))

        proof

          let x,y be Element of { 0 , 1, 2};

          per cases ;

            suppose

             A3: x = y;

            

            then (f1 . (x,y)) = x by A1

            .= (f2 . (x,y)) by A2, A3;

            hence thesis;

          end;

            suppose

             A3: x <> y;

            

            then (f1 . (x,y)) = 0 by A1

            .= (f2 . (x,y)) by A2, A3;

            hence thesis;

          end;

        end;

        hence thesis by BINOP_1: 2;

      end;

      :: LATQUASI:def7

      func QLT_Ex2 -> BinOp of { 0 , 1, 2} means

      : QLTEx2Def: for x,y be Element of { 0 , 1, 2} holds (x = 1 or y = 1 implies (it . (x,y)) = 1) & (x <> 1 & y <> 1 implies (it . (x,y)) = ( min (x,y)));

      existence

      proof

        deffunc X() = { 0 , 1, 2};

        deffunc F( Element of X(), Element of X()) = ( OpEx2 ($1,$2));

        ex f be BinOp of X() st for x,y be Element of X() holds (f . (x,y)) = F(x,y) from BINOP_1:sch 4;

        then

        consider f be BinOp of X() such that

         A1: for x,y be Element of X() holds (f . (x,y)) = F(x,y);

        take f;

        let x,y be Element of { 0 , 1, 2};

        hereby

          assume

           A2: x = 1 or y = 1;

          (f . (x,y)) = ( OpEx2 (x,y)) by A1;

          hence (f . (x,y)) = 1 by A2, OpEx2Def;

        end;

        assume

         A2: x <> 1 & y <> 1;

        (f . (x,y)) = ( OpEx2 (x,y)) by A1;

        hence thesis by OpEx2Def, A2;

      end;

      uniqueness

      proof

        let f1,f2 be BinOp of { 0 , 1, 2} such that

         A1: for x,y be Element of { 0 , 1, 2} holds (x = 1 or y = 1 implies (f1 . (x,y)) = 1) & (x <> 1 & y <> 1 implies (f1 . (x,y)) = ( min (x,y))) and

         A2: for x,y be Element of { 0 , 1, 2} holds (x = 1 or y = 1 implies (f2 . (x,y)) = 1) & (x <> 1 & y <> 1 implies (f2 . (x,y)) = ( min (x,y)));

        for x,y be Element of { 0 , 1, 2} holds (f1 . (x,y)) = (f2 . (x,y))

        proof

          let x,y be Element of { 0 , 1, 2};

          per cases ;

            suppose

             A3: x = 1 or y = 1;

            

            then (f1 . (x,y)) = 1 by A1

            .= (f2 . (x,y)) by A2, A3;

            hence thesis;

          end;

            suppose

             A3: x <> 1 & y <> 1;

            

            then (f1 . (x,y)) = ( min (x,y)) by A1

            .= (f2 . (x,y)) by A2, A3;

            hence thesis;

          end;

        end;

        hence thesis by BINOP_1: 2;

      end;

    end

    theorem :: LATQUASI:1

    

     WazneQLT7: QLT_Ex1 <> QLT_Ex2

    proof

      

       A0: 0 in { 0 , 1, 2} & 1 in { 0 , 1, 2} by ENUMSET1:def 1;

      then ( QLT_Ex1 . ( 0 ,1)) = 0 by QLTEx1Def;

      hence thesis by A0, QLTEx2Def;

    end;

    definition

      :: LATQUASI:def8

      func QLTLattice1 -> strict non empty LattStr equals LattStr (# { 0 , 1, 2}, QLT_Ex1 , QLT_Ex1 #);

      coherence ;

      :: LATQUASI:def9

      func QLTLattice2 -> strict non empty LattStr equals LattStr (# { 0 , 1, 2}, QLT_Ex1 , QLT_Ex2 #);

      coherence ;

    end

    registration

      cluster QLT_Ex1 -> commutative associative idempotent;

      coherence

      proof

        set X = { 0 , 1, 2};

        

         XX: 0 in X by ENUMSET1:def 1;

        set f = QLT_Ex1 ;

        thus f is commutative

        proof

          let a,b be Element of X;

          per cases ;

            suppose a = b;

            hence thesis;

          end;

            suppose

             A2: a <> b;

            

            then (f . (a,b)) = 0 by QLTEx1Def

            .= (f . (b,a)) by A2, QLTEx1Def;

            hence thesis;

          end;

        end;

        thus f is associative

        proof

          let a,b,c be Element of X;

          per cases ;

            suppose

             A1: a = b & b = c;

            then (f . (a,b)) = a by QLTEx1Def;

            hence thesis by A1;

          end;

            suppose

             A1: a <> b & b = c;

            then

             A2: (f . (a,b)) = 0 by QLTEx1Def;

            

             D2: 0 in X by ENUMSET1:def 1;

            (f . ((f . (a,b)),c)) = (f . ( 0 ,c)) by A1, QLTEx1Def

            .= 0 by QLTEx1Def, D2;

            hence thesis by A2, QLTEx1Def, A1;

          end;

            suppose

             A1: a = b & b <> c;

            then

             A2: (f . (a,b)) = a by QLTEx1Def;

            

             A3: (f . (b,c)) = 0 by QLTEx1Def, A1;

            per cases ;

              suppose a = 0 ;

              hence thesis by A3, A1, A2;

            end;

              suppose a <> 0 ;

              hence thesis by QLTEx1Def, A3, A1, A2;

            end;

          end;

            suppose

             A1: a <> b & b <> c;

            then

             A3: (f . (b,c)) = 0 by QLTEx1Def;

            per cases ;

              suppose

               B1: a = 0 ;

              (f . ((f . (a,b)),c)) = (f . ( 0 ,c)) by A1, QLTEx1Def

              .= 0 by B1, QLTEx1Def;

              hence thesis by B1, QLTEx1Def, A3;

            end;

              suppose

               b1: a <> 0 ;

              (f . ((f . (a,b)),c)) = (f . ( 0 ,c)) by A1, QLTEx1Def

              .= 0 by QLTEx1Def, XX;

              hence thesis by b1, QLTEx1Def, A3;

            end;

          end;

        end;

        let a be Element of X;

        thus thesis by QLTEx1Def;

      end;

    end

    registration

      cluster QLT_Ex2 -> commutative associative idempotent;

      coherence

      proof

        set X = { 0 , 1, 2};

        set f = QLT_Ex2 ;

        thus f is commutative

        proof

          let a,b be Element of X;

          per cases ;

            suppose

             A1: a = 1 or b = 1;

            

            then (f . (a,b)) = 1 by QLTEx2Def

            .= (f . (b,a)) by A1, QLTEx2Def;

            hence thesis;

          end;

            suppose

             A2: a <> 1 & b <> 1;

            

            then (f . (a,b)) = ( min (a,b)) by QLTEx2Def

            .= (f . (b,a)) by A2, QLTEx2Def;

            hence thesis;

          end;

        end;

        thus f is associative

        proof

          let a,b,c be Element of X;

          per cases ;

            suppose

             A1: a = 1 & (b = 1 or c = 1);

            then

             A2: (f . (a,b)) = 1 by QLTEx2Def;

            

             A3: (f . (b,c)) = 1 by QLTEx2Def, A1;

            (f . ((f . (a,b)),c)) = 1 by QLTEx2Def, A2;

            hence thesis by QLTEx2Def, A3;

          end;

            suppose

             A1: (a = 1 or b = 1) & c = 1;

            then

             A5: (f . ((f . (a,b)),c)) = 1 by QLTEx2Def;

            (f . (b,c)) = 1 by QLTEx2Def, A1;

            hence thesis by A5, QLTEx2Def;

          end;

            suppose

             A1: a <> 1 & b = 1 & c <> 1;

            then (f . (a,b)) = 1 by QLTEx2Def;

            then

             A5: (f . ((f . (a,b)),c)) = 1 by QLTEx2Def;

            (f . (b,c)) = 1 by QLTEx2Def, A1;

            hence thesis by A5, QLTEx2Def;

          end;

            suppose

             A1: a = 1 & b <> 1 & c = 1;

            then (f . (b,c)) = 1 by QLTEx2Def;

            hence thesis by QLTEx2Def, A1;

          end;

            suppose

             A1: a = 1 & b <> 1 & c <> 1;

            then

             A2: (f . (a,b)) = 1 by QLTEx2Def;

            

             A3: (f . (b,c)) = ( min (b,c)) by QLTEx2Def, A1;

            per cases by XXREAL_0: 15;

              suppose ( min (b,c)) = b;

              hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by A2, A3, QLTEx2Def;

            end;

              suppose ( min (b,c)) = c;

              hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by A1, QLTEx2Def, A2;

            end;

          end;

            suppose

             A1: a <> 1 & b = 1 & c <> 1;

            then

             A2: (f . (a,b)) = 1 by QLTEx2Def;

            

             A3: (f . (b,c)) = 1 by QLTEx2Def, A1;

            (f . ((f . (a,b)),c)) = 1 by QLTEx2Def, A2;

            hence thesis by QLTEx2Def, A3;

          end;

            suppose

             A1: a <> 1 & b <> 1 & c = 1;

            then

             A2: (f . (a,b)) = ( min (a,b)) by QLTEx2Def;

            

             A3: (f . (b,c)) = 1 by QLTEx2Def, A1;

            per cases by XXREAL_0: 15;

              suppose ( min (a,b)) = a;

              (f . (a,(f . (b,c)))) = (f . (a,1)) by QLTEx2Def, A1

              .= 1 by QLTEx2Def, A1;

              hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by QLTEx2Def, A1;

            end;

              suppose ( min (a,b)) = b;

              hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by QLTEx2Def, A3, A2;

            end;

          end;

            suppose

             A1: a <> 1 & b <> 1 & c <> 1;

            then

             A2: (f . (a,b)) = ( min (a,b)) by QLTEx2Def;

            

             A3: (f . (b,c)) = ( min (b,c)) by QLTEx2Def, A1;

            per cases by XXREAL_0: 15;

              suppose

               C1: ( min (a,c)) = a;

              per cases by XXREAL_0: 15;

                suppose ( min (a,b)) = a & ( min (b,c)) = b;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by A2, A3, C1, QLTEx2Def, A1;

              end;

                suppose ( min (a,b)) = a & ( min (b,c)) = c;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by QLTEx2Def, A1, A2;

              end;

                suppose ( min (a,b)) = b & ( min (b,c)) = b;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by A3, A2;

              end;

                suppose

                 B1: ( min (a,b)) = b & ( min (b,c)) = c;

                then a <= c & b <= a & c <= b by C1, XXREAL_0:def 9;

                then a <= c & c <= a by XXREAL_0: 2;

                then a = c by XXREAL_0: 1;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by B1, A3;

              end;

            end;

              suppose

               C1: ( min (a,c)) = c;

              per cases by XXREAL_0: 15;

                suppose

                 B1: ( min (a,b)) = a & ( min (b,c)) = b;

                then c <= a & a <= b & b <= c by C1, XXREAL_0:def 9;

                then a <= c & c <= a by XXREAL_0: 2;

                then a = c by XXREAL_0: 1;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by A2, B1;

              end;

                suppose ( min (a,b)) = a & ( min (b,c)) = c;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by QLTEx2Def, A1, A2;

              end;

                suppose ( min (a,b)) = b & ( min (b,c)) = b;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by A2, A3;

              end;

                suppose ( min (a,b)) = b & ( min (b,c)) = c;

                hence (f . ((f . (a,b)),c)) = (f . (a,(f . (b,c)))) by C1, QLTEx2Def, A1, A3, A2;

              end;

            end;

          end;

        end;

        let a be Element of X;

        per cases ;

          suppose a = 1;

          hence thesis by QLTEx2Def;

        end;

          suppose a <> 1;

          

          then (f . (a,a)) = ( min (a,a)) by QLTEx2Def

          .= a;

          hence thesis;

        end;

      end;

    end

    registration

      cluster QLTLattice1 -> join-commutative join-associative join-idempotent;

      coherence

      proof

        set L = QLTLattice1 ;

        set f = the L_join of L;

        

         Y1: for x,y be Element of L holds (x "\/" y) = (y "\/" x) by BINOP_1:def 2;

        

         S1: for x,y,z be Element of L holds (x "\/" (y "\/" z)) = ((x "\/" y) "\/" z) by BINOP_1:def 3;

        for x be Element of L holds (x "\/" x) = x by BINOP_1:def 4;

        hence thesis by Y1, LATTICES:def 4, LATTICES:def 5, S1, ROBBINS1:def 7;

      end;

    end

    registration

      cluster QLTLattice1 -> meet-commutative meet-associative meet-idempotent;

      coherence

      proof

        set L = QLTLattice1 ;

        set f = the L_meet of L;

        

         Y1: for x,y be Element of L holds (x "/\" y) = (y "/\" x) by BINOP_1:def 2;

        

         S1: for x,y,z be Element of L holds (x "/\" (y "/\" z)) = ((x "/\" y) "/\" z) by BINOP_1:def 3;

        for x be Element of L holds (x "/\" x) = x by BINOP_1:def 4;

        hence thesis by Y1, LATTICES:def 6, LATTICES:def 7, S1, SHEFFER1:def 9;

      end;

    end

    theorem :: LATQUASI:2

    

     Lemacik00: for v0,v1 be Element of QLTLattice1 st v1 = 0 holds (v0 "/\" v1) = v1

    proof

      let v0,v1 be Element of QLTLattice1 ;

      assume

       A1: v1 = 0 ;

      per cases ;

        suppose v0 = v1;

        hence thesis by QLTEx1Def;

      end;

        suppose v0 <> v1;

        hence thesis by A1, QLTEx1Def;

      end;

    end;

    theorem :: LATQUASI:3

    

     Lemacik001: for v0,v1 be Element of QLTLattice1 st v1 = 0 holds (v0 "\/" v1) = v1

    proof

      let v0,v1 be Element of QLTLattice1 ;

      assume

       A1: v1 = 0 ;

      per cases ;

        suppose v0 = v1;

        hence thesis by QLTEx1Def;

      end;

        suppose v0 <> v1;

        hence thesis by A1, QLTEx1Def;

      end;

    end;

    registration

      cluster QLTLattice1 -> satisfying_QLT1;

      coherence

      proof

        set L = QLTLattice1 ;

        for v0,v2,v1 be Element of L holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))

        proof

          let v0,v2,v1 be Element of L;

          reconsider z = 0 as Element of L by ENUMSET1:def 1;

          per cases ;

            suppose v0 = v1 & v1 = v2;

            then (v1 "\/" v2) = v1 & (v0 "/\" v1) = v0 by QLTEx1Def;

            hence thesis by ROBBINS1:def 7;

          end;

            suppose v0 = v1 & v1 <> v2;

            then

             A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = v0 by QLTEx1Def;

            

            then ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (z "\/" v0) by Lemacik00

            .= z by Lemacik001

            .= (v0 "/\" (v1 "\/" v2)) by A1, Lemacik00;

            hence thesis;

          end;

            suppose v0 <> v1 & v1 <> v2;

            then

             A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = 0 by QLTEx1Def;

            

            then ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = z by Lemacik001

            .= (v0 "/\" (v1 "\/" v2)) by A1, Lemacik00;

            hence thesis;

          end;

            suppose v0 <> v1 & v1 = v2;

            then (v1 "\/" v2) = v1 & (v0 "/\" v1) = 0 by QLTEx1Def;

            hence thesis by Lemacik001;

          end;

        end;

        hence thesis;

      end;

    end

    registration

      cluster QLTLattice1 -> satisfying_QLT2;

      coherence

      proof

        set L = QLTLattice1 ;

        let v0,v2,v1 be Element of L;

        reconsider z = 0 as Element of L by ENUMSET1:def 1;

        per cases ;

          suppose v0 = v1 & v1 = v2;

          then (v1 "/\" v2) = v1 & (v0 "\/" v1) = v0 by QLTEx1Def;

          hence thesis by SHEFFER1:def 9;

        end;

          suppose v0 = v1 & v1 <> v2;

          then

           A1: (v1 "/\" v2) = 0 & (v0 "\/" v1) = v0 by QLTEx1Def;

          (z "\/" v0) = (v0 "\/" z);

          

          then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (z "/\" v0) by Lemacik00, A1

          .= z by Lemacik00

          .= (v0 "\/" (v1 "/\" v2)) by A1, Lemacik001;

          hence thesis;

        end;

          suppose v0 <> v1 & v1 <> v2;

          then

           A1: (v1 "/\" v2) = 0 & (v0 "\/" v1) = 0 by QLTEx1Def;

          

          then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = z by Lemacik00

          .= (v0 "\/" (v1 "/\" v2)) by A1, Lemacik001;

          hence thesis;

        end;

          suppose v0 <> v1 & v1 = v2;

          then (v1 "/\" v2) = v1 & (v0 "\/" v1) = 0 by QLTEx1Def;

          hence thesis by Lemacik00;

        end;

      end;

    end

    registration

      cluster -> real for Element of QLTLattice2 ;

      coherence ;

    end

    registration

      cluster QLTLattice2 -> join-commutative join-associative join-idempotent;

      coherence

      proof

        set L = QLTLattice2 ;

        

         Y1: for x,y be Element of L holds (x "\/" y) = (y "\/" x) by BINOP_1:def 2;

        

         S1: for x,y,z be Element of L holds (x "\/" (y "\/" z)) = ((x "\/" y) "\/" z) by BINOP_1:def 3;

        for x be Element of L holds (x "\/" x) = x by BINOP_1:def 4;

        hence thesis by Y1, LATTICES:def 4, LATTICES:def 5, S1, ROBBINS1:def 7;

      end;

    end

    registration

      cluster QLTLattice2 -> meet-commutative meet-associative meet-idempotent;

      coherence

      proof

        set L = QLTLattice2 ;

        

         Y1: for x,y be Element of L holds (x "/\" y) = (y "/\" x) by BINOP_1:def 2;

        

         S1: for x,y,z be Element of L holds (x "/\" (y "/\" z)) = ((x "/\" y) "/\" z) by BINOP_1:def 3;

        for x be Element of L holds (x "/\" x) = x by BINOP_1:def 4;

        hence thesis by Y1, LATTICES:def 6, LATTICES:def 7, S1, SHEFFER1:def 9;

      end;

    end

    registration

      cluster QLTLattice2 -> satisfying_QLT1;

      coherence

      proof

        set L = QLTLattice2 ;

        for v0,v2,v1 be Element of L holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))

        proof

          let v0,v2,v1 be Element of L;

          reconsider z = 0 as Element of L by ENUMSET1:def 1;

          

           p2: z <= v0 by ENUMSET1:def 1;

          reconsider o = 1 as Element of L by ENUMSET1:def 1;

          reconsider dwa = 2 as Element of L by ENUMSET1:def 1;

          per cases by ENUMSET1:def 1;

            suppose v0 = v1 & v1 = v2;

            then (v1 "\/" v2) = v1 & (v0 "/\" v1) = v1 by BINOP_1:def 4;

            hence thesis by ROBBINS1:def 7;

          end;

            suppose

             Z1: v0 = v1 & v1 <> v2 & v0 = 1;

            then (v1 "\/" v2) = 0 & (v0 "/\" v1) = 1 by QLTEx1Def, BINOP_1:def 4;

            

            then ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (o "\/" v0) by QLTEx2Def, Z1

            .= o by QLTEx1Def, Z1

            .= (v0 "/\" (v1 "\/" v2)) by Z1, QLTEx2Def;

            hence thesis;

          end;

            suppose

             A0: v0 = v1 & v1 <> v2 & v0 = 0 ;

            then (v1 "\/" v2) = 0 & (v0 "/\" v1) = ( min (v0,v1)) by QLTEx1Def, QLTEx2Def;

            hence thesis by QLTEx1Def, A0;

          end;

            suppose

             A0: v0 = v1 & v1 <> v2 & v0 = 2;

            then

             A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = ( min (v0,v1)) & v0 <> 1 by QLTEx1Def, QLTEx2Def;

            (v0 "/\" z) = ( min (v0,z)) by A0, QLTEx2Def

            .= z by XXREAL_0:def 9, p2;

            hence thesis by A1, QLTEx1Def, A0;

          end;

            suppose

             A0: v0 <> v1 & v1 <> v2 & v0 = 1;

            then

             A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = 1 by QLTEx1Def, QLTEx2Def;

            (v0 "/\" z) = o by A0, QLTEx2Def;

            hence thesis by QLTEx1Def, A1;

          end;

            suppose

             A0: v0 <> v1 & v1 <> v2 & v0 = 2;

            per cases ;

              suppose v1 = 1;

              then

               A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = 1 by QLTEx1Def, QLTEx2Def, A0;

              (v0 "/\" z) = ( min (v0,z)) by A0, QLTEx2Def

              .= z by XXREAL_0:def 9, p2;

              hence thesis by QLTEx1Def, A1;

            end;

              suppose

               B: v1 <> 1;

              then

               A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = ( min (v0,v1)) by QLTEx1Def, QLTEx2Def, A0;

              v1 = 0 or v1 = 2 by ENUMSET1:def 1, B;

              hence thesis by QLTEx1Def, A0, A1;

            end;

          end;

            suppose

             A0: v0 <> v1 & v1 <> v2 & v0 = 0 ;

            per cases ;

              suppose v1 = 1;

              then

               A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = 1 by QLTEx1Def, QLTEx2Def, A0;

              (v0 "/\" z) = ( min (v0,z)) by A0, QLTEx2Def

              .= z by XXREAL_0:def 9, p2;

              hence thesis by A1, QLTEx1Def;

            end;

              suppose v1 <> 1;

              then

               A1: (v1 "\/" v2) = 0 & (v0 "/\" v1) = ( min (v0,v1)) by QLTEx1Def, QLTEx2Def, A0;

              

               p2: v0 <= v1 by A0, ENUMSET1:def 1;

              

               P4: (v0 "/\" z) = ( min (v0,z)) by A0, QLTEx2Def

              .= z by A0;

              ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" z) "\/" v0) by p2, A1, XXREAL_0:def 9

              .= (v0 "/\" (v1 "\/" v2)) by A1, P4, QLTEx1Def, A0;

              hence thesis;

            end;

          end;

            suppose v0 <> v1 & v1 = v2 & v0 = 1;

            then (v1 "\/" v2) = v1 & (v0 "/\" v1) = 1 by QLTEx1Def, QLTEx2Def;

            hence thesis by QLTEx1Def;

          end;

            suppose

             A0: v0 <> v1 & v1 = v2 & v0 = 0 ;

            per cases ;

              suppose v1 = 1;

              then (v1 "\/" v2) = v1 & (v0 "/\" v1) = 1 by QLTEx1Def, QLTEx2Def, A0;

              hence thesis by ROBBINS1:def 7;

            end;

              suppose v1 <> 1;

              then (v1 "\/" v2) = v1 & (v0 "/\" v1) = ( min (v0,v1)) by QLTEx1Def, QLTEx2Def, A0;

              hence thesis by ROBBINS1:def 7;

            end;

          end;

            suppose

             A0: v0 <> v1 & v1 = v2 & v0 = 2;

            per cases ;

              suppose v1 = 1;

              then (v1 "\/" v2) = v1 & (v0 "/\" v1) = 1 by QLTEx1Def, QLTEx2Def, A0;

              hence thesis by ROBBINS1:def 7;

            end;

              suppose v1 <> 1;

              then (v1 "\/" v2) = v1 & (v0 "/\" v1) = ( min (v0,v1)) by QLTEx1Def, QLTEx2Def, A0;

              hence thesis by ROBBINS1:def 7;

            end;

          end;

        end;

        hence thesis;

      end;

    end

    registration

      cluster QLTLattice2 -> satisfying_QLT2;

      coherence

      proof

        set L = QLTLattice2 ;

        for v0,v2,v1 be Element of L holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))

        proof

          let v0,v2,v1 be Element of L;

          reconsider z = 0 as Element of L by ENUMSET1:def 1;

          reconsider o = 1 as Element of L by ENUMSET1:def 1;

          reconsider dwa = 2 as Element of L by ENUMSET1:def 1;

          per cases by ENUMSET1:def 1;

            suppose v0 = v1 & v1 = v2;

            then (v1 "/\" v2) = v1 & (v0 "\/" v1) = v1 by BINOP_1:def 4;

            hence thesis by SHEFFER1:def 9;

          end;

            suppose

             Z1: v0 = v1 & v1 <> v2 & v0 = 1;

            then (v1 "/\" v2) = 1 & (v0 "\/" v1) = v1 by QLTEx1Def, QLTEx2Def;

            hence thesis by SHEFFER1:def 9, Z1;

          end;

            suppose

             A0: v0 = v1 & v1 <> v2 & v0 = 0 ;

            per cases ;

              suppose v2 = 1;

              then

               A1: (v1 "/\" v2) = 1 & (v0 "\/" v1) = v0 by QLTEx1Def, QLTEx2Def, A0;

              

               P4: (v0 "/\" z) = ( min (v0,z)) by A0, QLTEx2Def

              .= z by A0;

              ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = z by P4, QLTEx1Def, A0, A1;

              hence thesis by QLTEx1Def, A0, A1;

            end;

              suppose v2 <> 1;

              then

               A1: (v1 "/\" v2) = ( min (v1,v2)) & (v0 "\/" v1) = v0 by QLTEx1Def, QLTEx2Def, A0;

              

               P3: v1 <= v2 by A0, ENUMSET1:def 1;

              (v1 "/\" v2) = v1 by XXREAL_0:def 9, P3, A1;

              hence thesis by SHEFFER1:def 9;

            end;

          end;

            suppose

             A0: v0 = v1 & v1 <> v2 & v0 = 2;

            

             P4: (v0 "/\" z) = ( min (v0,z)) by A0, QLTEx2Def

            .= z by XXREAL_0:def 9, A0;

            per cases ;

              suppose v2 = 1;

              then

               A1: (v1 "/\" v2) = 1 & (v0 "\/" v1) = v0 by QLTEx1Def, QLTEx2Def, A0;

              then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = z by P4, QLTEx1Def, A0;

              hence thesis by QLTEx1Def, A0, A1;

            end;

              suppose

               B: v2 <> 1;

              then

               A1: (v1 "/\" v2) = ( min (v1,v2)) & (v0 "\/" v1) = v0 by QLTEx1Def, QLTEx2Def, A0;

              

               p4: v2 = 0 or v2 = 2 by ENUMSET1:def 1, B;

              then

               P4A: (v1 "/\" v2) = v2 by XXREAL_0:def 9, A1, A0;

              per cases by ENUMSET1:def 1, B;

                suppose v2 = 0 ;

                ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = z by QLTEx1Def, A0, A1, p4, P4;

                hence thesis by QLTEx1Def, A0, P4A;

              end;

                suppose v2 = 2;

                hence thesis by A0;

              end;

            end;

          end;

            suppose

             A0: v0 <> v1 & v1 <> v2 & v0 = 1;

            per cases ;

              suppose v2 = 1;

              then

               A1: (v1 "/\" v2) = 1 & (v0 "\/" v1) = 0 by QLTEx1Def, QLTEx2Def, A0;

              

              then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "/\" z) by A0, QLTEx1Def

              .= 1 by QLTEx2Def, A0;

              hence thesis by A0, QLTEx1Def, A1;

            end;

              suppose

               B: v2 <> 1;

              then

               A1: (v1 "/\" v2) = ( min (v1,v2)) & (v0 "\/" v1) = 0 by QLTEx1Def, QLTEx2Def, A0;

              per cases by XXREAL_0: 15;

                suppose

                 C1: ( min (v1,v2)) = v1;

                ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" v1)) by B, C1, QLTEx2Def, A0

                .= (v0 "\/" v1) by SHEFFER1:def 9;

                hence thesis by B, C1, QLTEx2Def, A0;

              end;

                suppose

                 D1: ( min (v1,v2)) = v2;

                

                then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (z "/\" z) by A0, B, QLTEx1Def, A1

                .= z by BINOP_1:def 4;

                hence thesis by A0, B, QLTEx1Def, A1, D1;

              end;

            end;

          end;

            suppose

             A0: v0 <> v1 & v1 <> v2 & v0 = 2;

            per cases ;

              suppose v2 = 1 or v1 = 1;

              then

               A1: (v1 "/\" v2) = 1 & (v0 "\/" v1) = 0 by QLTEx1Def, QLTEx2Def, A0;

              

              then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (z "/\" z) by A0, QLTEx1Def

              .= z by BINOP_1:def 4;

              hence thesis by A0, QLTEx1Def, A1;

            end;

              suppose

               B: v2 <> 1 & v1 <> 1;

              then

               A1: (v1 "/\" v2) = ( min (v1,v2)) & (v0 "\/" v1) = 0 by QLTEx1Def, QLTEx2Def, A0;

              per cases by XXREAL_0: 15;

                suppose ( min (v1,v2)) = v1;

                hence thesis by SHEFFER1:def 9, A1;

              end;

                suppose

                 D1: ( min (v1,v2)) = v2;

                (v1 = 1 & v2 <> 1) or (v1 = 0 & v2 <> 0 ) by A0, ENUMSET1:def 1;

                then (v1 = 1 & (v2 = 0 or v2 = 2)) or (v1 = 0 & (v2 = 1 or v2 = 2)) by ENUMSET1:def 1;

                hence thesis by XXREAL_0:def 9, D1, B;

              end;

            end;

          end;

            suppose

             A0: v0 <> v1 & v1 <> v2 & v0 = 0 ;

            per cases ;

              suppose v2 = 1 or v1 = 1;

              then

               A1: (v1 "/\" v2) = 1 & (v0 "\/" v1) = 0 by QLTEx1Def, QLTEx2Def, A0;

              (v0 "\/" o) = z by QLTEx1Def, A0;

              hence thesis by BINOP_1:def 4, A1;

            end;

              suppose v2 <> 1 & v1 <> 1;

              then

               A1: (v1 "/\" v2) = ( min (v1,v2)) & (v0 "\/" v1) = 0 by QLTEx1Def, QLTEx2Def, A0;

              per cases by XXREAL_0: 15;

                suppose ( min (v1,v2)) = v1;

                hence thesis by SHEFFER1:def 9, A1;

              end;

                suppose

                 D1: ( min (v1,v2)) = v2;

                per cases ;

                  suppose

                   D2: v2 = v0;

                  (v0 "/\" z) = ( min (v0,z)) by QLTEx2Def, A0

                  .= v0 by A0;

                  then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = v0 by A1, D2, D1, QLTEx1Def;

                  hence thesis by D2, QLTEx1Def, A1, D1;

                end;

                  suppose

                   D2: v2 <> v0;

                  

                  then ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (z "/\" z) by QLTEx1Def, A1, D1

                  .= z by BINOP_1:def 4;

                  hence thesis by D2, QLTEx1Def, A1, D1;

                end;

              end;

            end;

          end;

            suppose v0 <> v1 & v1 = v2;

            then (v1 "/\" v2) = v1 & (v0 "\/" v1) = 0 by QLTEx1Def, BINOP_1:def 4;

            hence thesis by SHEFFER1:def 9;

          end;

        end;

        hence thesis;

      end;

    end

    registration

      cluster QLTLattice2 -> non join-absorbing;

      coherence

      proof

        set L = QLTLattice2 ;

        reconsider z = 0 as Element of L by ENUMSET1:def 1;

        reconsider o = 1 as Element of L by ENUMSET1:def 1;

        reconsider dwa = 2 as Element of L by ENUMSET1:def 1;

        (dwa "/\" (dwa "\/" o)) = (dwa "/\" z) by QLTEx1Def

        .= ( min (dwa,z)) by QLTEx2Def

        .= z by XXREAL_0:def 9;

        hence thesis by LATTICES:def 9;

      end;

      cluster QLTLattice2 -> non meet-absorbing;

      coherence

      proof

        set L = QLTLattice2 ;

        reconsider z = 0 as Element of L by ENUMSET1:def 1;

        reconsider o = 1 as Element of L by ENUMSET1:def 1;

        reconsider dwa = 2 as Element of L by ENUMSET1:def 1;

        ((dwa "/\" o) "\/" dwa) = (o "\/" dwa) by QLTEx2Def

        .= z by QLTEx1Def;

        hence thesis by LATTICES:def 8;

      end;

    end

    registration

      cluster QLTLattice1 -> non join-absorbing;

      coherence

      proof

        set L = QLTLattice1 ;

        reconsider z = 0 as Element of L by ENUMSET1:def 1;

        reconsider o = 1 as Element of L by ENUMSET1:def 1;

        reconsider dwa = 2 as Element of L by ENUMSET1:def 1;

        (dwa "/\" (dwa "\/" o)) = (dwa "/\" z) by QLTEx1Def

        .= z by QLTEx1Def;

        hence thesis by LATTICES:def 9;

      end;

      cluster QLTLattice1 -> non meet-absorbing;

      coherence

      proof

        set L = QLTLattice1 ;

        reconsider z = 0 as Element of L by ENUMSET1:def 1;

        reconsider o = 1 as Element of L by ENUMSET1:def 1;

        reconsider dwa = 2 as Element of L by ENUMSET1:def 1;

        ((dwa "/\" o) "\/" dwa) = (z "\/" dwa) by QLTEx1Def

        .= z by QLTEx1Def;

        hence thesis by LATTICES:def 8;

      end;

    end

    definition

      mode QuasiLattice is join-commutative join-associative meet-commutative meet-associative join-idempotent meet-idempotent satisfying_QLT1 satisfying_QLT2 non empty LattStr;

    end

    begin

    theorem :: LATQUASI:4

    

     Lemma1: (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v1, v2, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" v2))) = (v0 "/\" (v1 "\/" v2))) implies for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" v3))

    proof

      assume

       A1: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A2: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A3: for v0 holds (v0 "\/" v0) = v0;

      assume

       A4: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A5: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A6: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A8: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A1;

        hence thesis by A6;

      end;

      assume

       A9: for v1, v2, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" v2))) = (v0 "/\" (v1 "\/" v2));

      

       A12: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A5;

        hence thesis by A2;

      end;

      

       A15: for v102, v100 holds ((v100 "\/" v102) "\/" v102) = (v100 "\/" v102)

      proof

        let v102, v100;

        (v102 "\/" v102) = v102 by A3;

        hence thesis by A4;

      end;

      

       A18: for v1, v0 holds (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A5;

        hence thesis by A15;

      end;

      

       A21: for v2, v0, v1 holds ((v1 "\/" v0) "\/" v2) = (v0 "\/" (v1 "\/" v2))

      proof

        let v2, v0, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A5;

        hence thesis by A4;

      end;

      

       A24: for v0, v2, v1 holds (v0 "\/" (v1 "\/" v2)) = (v1 "\/" (v0 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2)) by A4;

        hence thesis by A21;

      end;

      

       A27: for v102, v101 holds (v101 "/\" (v101 "\/" (v101 "/\" v102))) = (v101 "\/" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A3;

        hence thesis by A8;

      end;

      

       A30: for v1, v0 holds (v0 "/\" (v0 "\/" v1)) = (v0 "\/" (v0 "/\" v1))

      proof

        let v1, v0;

        (v0 "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" (v0 "\/" v1)) by A9;

        hence thesis by A27;

      end;

      

       A33: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v1, v0, v2;

        (v0 "/\" v2) = (v2 "/\" v0) by A1;

        hence thesis by A9;

      end;

      

       A35: for v0, v1, v2 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" v1))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v1, v2;

        (v1 "\/" v2) = (v2 "\/" v1) by A5;

        hence thesis by A12;

      end;

      

       A37: for v0, v1 holds (v0 "\/" (v1 "/\" v0)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A1;

        hence thesis by A30;

      end;

      

       A40: for v1, v2, v101 holds ((v1 "\/" (v101 "/\" v2)) "\/" (v101 "/\" (v1 "\/" v2))) = ((v1 "\/" (v101 "/\" v2)) "/\" ((v1 "\/" (v101 "/\" v2)) "\/" v101))

      proof

        let v1, v2, v101;

        (v101 "/\" (v1 "\/" (v101 "/\" v2))) = (v101 "/\" (v1 "\/" v2)) by A9;

        hence thesis by A37;

      end;

      

       A43: for v1, v2, v0 holds ((v1 "/\" (v0 "\/" v2)) "\/" (v0 "\/" (v1 "/\" v2))) = ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v1))

      proof

        let v1, v2, v0;

        ((v0 "\/" (v1 "/\" v2)) "\/" (v1 "/\" (v0 "\/" v2))) = ((v1 "/\" (v0 "\/" v2)) "\/" (v0 "\/" (v1 "/\" v2))) by A5;

        hence thesis by A40;

      end;

      

       A46: for v0, v2, v1 holds (v1 "\/" ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v2))) = ((v1 "\/" (v0 "/\" v2)) "/\" ((v1 "\/" (v0 "/\" v2)) "\/" v0))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "\/" (v0 "/\" v2))) = (v1 "\/" ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v2))) by A24;

        hence thesis by A43;

      end;

      

       A49: for v1, v2, v0 holds (v0 "\/" ((v1 "/\" v2) "\/" (v1 "/\" (v0 "\/" v2)))) = ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v1))

      proof

        let v1, v2, v0;

        ((v1 "/\" (v0 "\/" v2)) "\/" (v1 "/\" v2)) = ((v1 "/\" v2) "\/" (v1 "/\" (v0 "\/" v2))) by A5;

        hence thesis by A46;

      end;

      

       A51: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v1))

      proof

        let v1, v0, v2;

        ((v1 "/\" v2) "\/" (v1 "/\" (v0 "\/" v2))) = (v1 "/\" (v2 "\/" v0)) by A35;

        hence thesis by A49;

      end;

      

       A53: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" (v0 "\/" (v1 "/\" v2))))

      proof

        let v1, v0, v2;

        ((v0 "\/" (v1 "/\" v2)) "\/" v1) = (v1 "\/" (v0 "\/" (v1 "/\" v2))) by A5;

        hence thesis by A51;

      end;

      

       A56: for v101, v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v101 "\/" (v0 "\/" (v1 "/\" v2)))) = ((v0 "\/" (v1 "/\" v2)) "/\" (v101 "\/" (v0 "\/" v1)))

      proof

        let v101, v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A8;

        hence thesis by A33;

      end;

      

       A59: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" (v0 "\/" v1)))

      proof

        let v1, v0, v2;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" (v0 "\/" (v1 "/\" v2)))) = ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" (v0 "\/" v1))) by A56;

        hence thesis by A53;

      end;

      

       A61: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1))

      proof

        let v1, v0, v2;

        (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1) by A18;

        hence thesis by A59;

      end;

      

       A63: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2)))

      proof

        let v1, v0, v2;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A1;

        hence thesis by A61;

      end;

      

       A65: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v1, v0, v2;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A8;

        hence thesis by A63;

      end;

      

       A68: for v101, v2, v102 holds ((v101 "/\" v2) "\/" (v101 "/\" (v102 "\/" v2))) = ((v101 "/\" v2) "\/" (v101 "/\" v102))

      proof

        let v101, v2, v102;

        (v101 "/\" (v102 "\/" (v101 "/\" v2))) = (v101 "/\" (v102 "\/" v2)) by A9;

        hence thesis by A65;

      end;

      for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" v1))) = (v0 "/\" (v1 "\/" v2)) by A35;

        hence thesis by A68;

      end;

      hence thesis;

    end;

    theorem :: LATQUASI:5

    

     Cluster1: L is meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-distributive implies L is distributive

    proof

      assume that

       A1: L is meet-commutative and

       A2: L is satisfying_QLT1 and

       A3: L is join-idempotent and

       A4: L is join-associative and

       A5: L is join-commutative and

       A6: L is satisfying_QLT2 and

       A7: L is QLT-distributive;

      

       S: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0) by LATTICES:def 6, A1;

      

       S2: for v0 holds (v0 "\/" v0) = v0 by A3, ROBBINS1:def 7;

      

       S3: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2)) by A4, LATTICES:def 5;

      

       S4: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0) by A5, LATTICES:def 4;

      let v1,v2,v3 be Element of L;

      thus thesis by Lemma1, S, A2, A6, S2, S3, S4, A7;

    end;

    registration

      cluster meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-distributive -> distributive for non empty LattStr;

      coherence by Cluster1;

    end

    begin

    theorem :: LATQUASI:6

    

     ThQLT2: (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" v2))) implies for v1, v2, v3 holds (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v2) "/\" (v1 "\/" v3))

    proof

      assume

       A2: for v0 holds (v0 "/\" v0) = v0;

      assume

       A3: for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2));

      assume

       A4: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A5: for v0 holds (v0 "\/" v0) = v0;

      assume

       A6: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A7: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A9: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A4;

        hence thesis by A7;

      end;

      assume

       A10: for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" v2));

      

       A15: for v102, v101 holds (v101 "/\" v102) = (v101 "/\" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A3;

      end;

      

       A20: for v102, v101 holds (v101 "\/" v102) = (v101 "\/" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A5;

        hence thesis by A6;

      end;

      

       A24: for v2, v0, v1 holds ((v1 "/\" v0) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A10;

      end;

      

       A28: for v102, v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" v102) = ((v0 "/\" v1) "\/" ((v0 "/\" v2) "\/" v102))

      proof

        let v102, v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" v2)) by A10;

        hence thesis by A6;

      end;

      

       A32: for v102, v1, v100 holds ((v100 "/\" v1) "\/" (v100 "/\" v102)) = (v100 "/\" ((v100 "/\" v1) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A15;

        hence thesis by A10;

      end;

      

       A35: for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" v2)) by A10;

        hence thesis by A32;

      end;

      

       A39: for v1, v101, v100 holds ((v100 "/\" v101) "\/" (v100 "/\" v1)) = (v100 "/\" (v101 "\/" (v100 "/\" v1)))

      proof

        let v1, v101, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A15;

        hence thesis by A10;

      end;

      

       A42: for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" v2)) by A10;

        hence thesis by A39;

      end;

      

       A46: for v102, v1, v100 holds ((v100 "\/" v1) "/\" (v100 "\/" ((v100 "\/" v1) "/\" v102))) = (v100 "\/" ((v100 "\/" v1) "/\" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "\/" v1)) = (v100 "\/" v1) by A20;

        hence thesis by A9;

      end;

      

       A49: for v2, v1, v0 holds ((v0 "\/" v1) "/\" (v0 "\/" v2)) = (v0 "\/" ((v0 "\/" v1) "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A42;

        hence thesis by A46;

      end;

      

       A53: for v2, v1, v101 holds ((v101 "\/" v1) "/\" (((v101 "\/" v1) "/\" v101) "\/" (v1 "/\" v2))) = (v101 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v101;

        ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2))) = (v101 "\/" (v1 "/\" v2)) by A9;

        hence thesis by A35;

      end;

      

       A56: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A53;

      end;

      

       A58: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" v0) "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2)))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2)) = ((v0 "/\" v0) "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) by A28;

        hence thesis by A56;

      end;

      

       A60: for v2, v1, v0 holds ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2)))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" v0) = v0 by A2;

        hence thesis by A58;

      end;

      

       A62: for v1, v2, v0 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v1, v2, v0;

        ((v0 "/\" v1) "\/" (v1 "/\" v2)) = (v1 "/\" (v0 "\/" v2)) by A24;

        hence thesis by A60;

      end;

      

       A64: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v1, v2, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) = (v0 "\/" (v1 "/\" (v0 "\/" v2))) by A9;

        hence thesis by A62;

      end;

      

       A66: for v1, v2, v0 holds (v0 "\/" ((v0 "\/" v2) "/\" v1)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v1, v2, v0;

        (v1 "/\" (v0 "\/" v2)) = ((v0 "\/" v2) "/\" v1) by A4;

        hence thesis by A64;

      end;

      

       A69: for v2, v1, v0 holds ((v0 "\/" v1) "/\" (v0 "\/" v2)) = (v0 "\/" (v2 "/\" v1))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A49;

        hence thesis by A66;

      end;

      let v1, v2, v3;

      (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v3) "/\" (v1 "\/" v2)) by A69;

      hence thesis by A4;

    end;

    theorem :: LATQUASI:7

    

     Cluster2: L is meet-idempotent meet-associative meet-commutative join-idempotent join-associative satisfying_QLT2 distributive implies L is distributive'

    proof

      assume L is meet-idempotent meet-associative meet-commutative join-idempotent join-associative satisfying_QLT2 distributive;

      then (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" v2))) by LATTICES:def 5, LATTICES:def 6, LATTICES:def 7, LATTICES:def 11, SHEFFER1:def 9, ROBBINS1:def 7;

      then for v1, v2, v3 holds (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v2) "/\" (v1 "\/" v3)) by ThQLT2;

      hence thesis by SHEFFER1:def 5;

    end;

    registration

      cluster meet-idempotent meet-associative meet-commutative join-idempotent join-associative satisfying_QLT2 distributive -> distributive' for non empty LattStr;

      coherence by Cluster2;

    end

    begin

    definition

      let L;

      :: LATQUASI:def10

      attr L is QLT-selfdistributive means for v2, v1, v0 holds ((((v0 "/\" v1) "\/" v2) "/\" v1) "\/" (v2 "/\" v0)) = ((((v0 "\/" v1) "/\" v2) "\/" v1) "/\" (v2 "\/" v0));

    end

    theorem :: LATQUASI:8

    

     ThQLT3: (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds ((((v0 "/\" v1) "\/" v2) "/\" v1) "\/" (v2 "/\" v0)) = ((((v0 "\/" v1) "/\" v2) "\/" v1) "/\" (v2 "\/" v0))) implies for v1, v2, v3 holds (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v2) "/\" (v1 "\/" v3))

    proof

      assume

       A2: for v0 holds (v0 "/\" v0) = v0;

      assume

       A3: for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2));

      assume

       A4: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A5: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A6: for v0 holds (v0 "\/" v0) = v0;

      assume

       A7: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A8: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A9: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A11: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A4;

        hence thesis by A9;

      end;

      assume

       A12: for v2, v1, v0 holds ((((v0 "/\" v1) "\/" v2) "/\" v1) "\/" (v2 "/\" v0)) = ((((v0 "\/" v1) "/\" v2) "\/" v1) "/\" (v2 "\/" v0));

      

       A14: for v2, v1, v0 holds ((v1 "/\" ((v0 "/\" v1) "\/" v2)) "\/" (v2 "/\" v0)) = ((((v0 "\/" v1) "/\" v2) "\/" v1) "/\" (v2 "\/" v0))

      proof

        let v2, v1, v0;

        (((v0 "/\" v1) "\/" v2) "/\" v1) = (v1 "/\" ((v0 "/\" v1) "\/" v2)) by A4;

        hence thesis by A12;

      end;

      

       A17: for v2, v0, v1 holds ((v2 "/\" v1) "\/" (v0 "/\" ((v1 "/\" v0) "\/" v2))) = ((((v1 "\/" v0) "/\" v2) "\/" v0) "/\" (v2 "\/" v1))

      proof

        let v2, v0, v1;

        ((v0 "/\" ((v1 "/\" v0) "\/" v2)) "\/" (v2 "/\" v1)) = ((v2 "/\" v1) "\/" (v0 "/\" ((v1 "/\" v0) "\/" v2))) by A8;

        hence thesis by A14;

      end;

      

       A20: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" ((v1 "/\" v2) "\/" v0))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v0, v2, v1;

        (((v1 "\/" v2) "/\" v0) "\/" v2) = (v2 "\/" ((v1 "\/" v2) "/\" v0)) by A8;

        hence thesis by A17;

      end;

      

       A23: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A5;

      end;

      

       A26: for v102, v101 holds (v101 "/\" v102) = (v101 "/\" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A3;

      end;

      

       A31: for v102, v100 holds ((v100 "/\" v102) "/\" v102) = (v100 "/\" v102)

      proof

        let v102, v100;

        (v102 "/\" v102) = v102 by A2;

        hence thesis by A3;

      end;

      

       A34: for v1, v0 holds (v1 "/\" (v0 "/\" v1)) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" v1) = (v1 "/\" (v0 "/\" v1)) by A4;

        hence thesis by A31;

      end;

      

       A37: for v2, v0, v1 holds ((v1 "/\" v0) "/\" v2) = (v0 "/\" (v1 "/\" v2))

      proof

        let v2, v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A3;

      end;

      

       A40: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" (v0 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A3;

        hence thesis by A37;

      end;

      

       A43: for v102, v101 holds (v101 "\/" v102) = (v101 "\/" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A6;

        hence thesis by A7;

      end;

      

       A48: for v102, v100 holds ((v100 "\/" v102) "\/" v102) = (v100 "\/" v102)

      proof

        let v102, v100;

        (v102 "\/" v102) = v102 by A6;

        hence thesis by A7;

      end;

      

       A51: for v1, v0 holds (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A8;

        hence thesis by A48;

      end;

      

       A54: for v2, v0, v1 holds ((v1 "\/" v0) "\/" v2) = (v0 "\/" (v1 "\/" v2))

      proof

        let v2, v0, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A8;

        hence thesis by A7;

      end;

      

       A57: for v0, v2, v1 holds (v0 "\/" (v1 "\/" v2)) = (v1 "\/" (v0 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2)) by A7;

        hence thesis by A54;

      end;

      

       A60: for v102, v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" v102) = ((v0 "\/" v1) "/\" ((v0 "\/" (v1 "/\" v2)) "/\" v102))

      proof

        let v102, v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A11;

        hence thesis by A3;

      end;

      

       A65: for v100, v0, v102, v1 holds ((v100 "\/" (v0 "/\" v1)) "/\" (v100 "\/" (v0 "/\" (v1 "/\" v102)))) = (v100 "\/" ((v0 "/\" v1) "/\" v102))

      proof

        let v100, v0, v102, v1;

        ((v0 "/\" v1) "/\" v102) = (v0 "/\" (v1 "/\" v102)) by A3;

        hence thesis by A11;

      end;

      

       A68: for v0, v1, v3, v2 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "/\" (v2 "/\" v3)))) = (v0 "\/" (v1 "/\" (v2 "/\" v3)))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" v3) = (v1 "/\" (v2 "/\" v3)) by A3;

        hence thesis by A65;

      end;

      

       A71: for v102, v101 holds (v101 "/\" (v101 "\/" (v101 "/\" v102))) = (v101 "\/" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A6;

        hence thesis by A11;

      end;

      

       A75: for v102, v101 holds (((v101 "/\" v102) "\/" v101) "/\" (v101 "/\" v102)) = ((v101 "/\" v102) "\/" (v101 "/\" v102))

      proof

        let v102, v101;

        ((v101 "/\" v102) "\/" (v101 "/\" v102)) = (v101 "/\" v102) by A6;

        hence thesis by A11;

      end;

      

       A78: for v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A75;

      end;

      

       A80: for v1, v0 holds ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1))) = ((v0 "/\" v1) "\/" (v0 "/\" v1))

      proof

        let v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "/\" v1)) = ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1))) by A4;

        hence thesis by A78;

      end;

      

       A82: for v1, v0 holds (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = ((v0 "/\" v1) "\/" (v0 "/\" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) by A3;

        hence thesis by A80;

      end;

      

       A84: for v1, v0 holds (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" v1)) = (v0 "/\" v1) by A6;

        hence thesis by A82;

      end;

      

       A86: for v0, v2, v1 holds ((v1 "\/" v0) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A8;

        hence thesis by A11;

      end;

      

       A90: for v102, v101 holds (v101 "\/" (v102 "/\" ((v101 "/\" v102) "\/" v101))) = ((v102 "\/" ((v101 "\/" v102) "/\" v101)) "/\" (v101 "\/" v101))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A20;

      end;

      

       A93: for v1, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = ((v1 "\/" ((v0 "\/" v1) "/\" v0)) "/\" (v0 "\/" v0))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A90;

      end;

      

       A95: for v1, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = ((v1 "\/" (v0 "/\" (v0 "\/" v1))) "/\" (v0 "\/" v0))

      proof

        let v1, v0;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A93;

      end;

      

       A97: for v1, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = ((v1 "\/" (v0 "/\" (v0 "\/" v1))) "/\" v0)

      proof

        let v1, v0;

        (v0 "\/" v0) = v0 by A6;

        hence thesis by A95;

      end;

      

       A99: for v1, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = (v0 "/\" (v1 "\/" (v0 "/\" (v0 "\/" v1))))

      proof

        let v1, v0;

        ((v1 "\/" (v0 "/\" (v0 "\/" v1))) "/\" v0) = (v0 "/\" (v1 "\/" (v0 "/\" (v0 "\/" v1)))) by A4;

        hence thesis by A97;

      end;

      

       A101: for v0, v2, v1 holds ((v1 "/\" v0) "\/" (v2 "/\" ((v1 "/\" v2) "\/" v0))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v0, v2, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A20;

      end;

      

       A104: for v0, v1, v2 holds ((v0 "/\" v1) "\/" (v2 "/\" ((v2 "/\" v1) "\/" v0))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v0, v1, v2;

        (v1 "/\" v2) = (v2 "/\" v1) by A4;

        hence thesis by A20;

      end;

      

       A107: for v101, v1, v0 holds (((v0 "/\" v1) "\/" v101) "/\" ((v101 "\/" ((v1 "\/" v101) "/\" v0)) "/\" (v0 "\/" v1))) = ((v0 "/\" v1) "\/" (v101 "/\" ((v1 "/\" v101) "\/" v0)))

      proof

        let v101, v1, v0;

        ((v0 "/\" v1) "\/" (v101 "/\" ((v1 "/\" v101) "\/" v0))) = ((v101 "\/" ((v1 "\/" v101) "/\" v0)) "/\" (v0 "\/" v1)) by A20;

        hence thesis by A11;

      end;

      

       A110: for v2, v1, v0 holds (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" ((v1 "/\" v2) "\/" v0))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1)) by A20;

        hence thesis by A107;

      end;

      

       A113: for v102, v101 holds (v101 "\/" (v101 "/\" (v101 "\/" v102))) = (v101 "/\" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A23;

      end;

      

       A117: for v102, v101 holds (((v101 "\/" v102) "/\" v101) "\/" (v101 "\/" v102)) = ((v101 "\/" v102) "/\" (v101 "\/" v102))

      proof

        let v102, v101;

        ((v101 "\/" v102) "/\" (v101 "\/" v102)) = (v101 "\/" v102) by A2;

        hence thesis by A23;

      end;

      

       A120: for v1, v0 holds ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A117;

      end;

      

       A122: for v1, v0 holds ((v0 "\/" v1) "\/" (v0 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" v1)) = ((v0 "\/" v1) "\/" (v0 "/\" (v0 "\/" v1))) by A8;

        hence thesis by A120;

      end;

      

       A124: for v1, v0 holds (v0 "\/" (v1 "\/" (v0 "/\" (v0 "\/" v1)))) = ((v0 "\/" v1) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "\/" (v1 "\/" (v0 "/\" (v0 "\/" v1)))) by A7;

        hence thesis by A122;

      end;

      

       A126: for v1, v0 holds (v0 "\/" (v1 "\/" (v0 "/\" (v0 "\/" v1)))) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" v1)) = (v0 "\/" v1) by A2;

        hence thesis by A124;

      end;

      

       A128: for v0, v2, v1 holds ((v1 "/\" v0) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A23;

      end;

      

       A131: for v0, v2, v1 holds ((v0 "/\" v1) "\/" ((v1 "\/" v2) "/\" v0)) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" (v1 "\/" v2)) = ((v1 "\/" v2) "/\" v0) by A4;

        hence thesis by A23;

      end;

      

       A133: for v0, v1, v2 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" v1))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v1, v2;

        (v1 "\/" v2) = (v2 "\/" v1) by A8;

        hence thesis by A23;

      end;

      

       A136: for v101, v2, v1 holds (((v101 "/\" v1) "\/" v101) "/\" (v101 "/\" (v1 "\/" v2))) = ((v101 "/\" v1) "\/" (v101 "/\" (v1 "\/" v2)))

      proof

        let v101, v2, v1;

        ((v101 "/\" v1) "\/" (v101 "/\" (v1 "\/" v2))) = (v101 "/\" (v1 "\/" v2)) by A23;

        hence thesis by A11;

      end;

      

       A139: for v0, v2, v1 holds ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "/\" (v1 "\/" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A136;

      end;

      

       A141: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) by A40;

        hence thesis by A139;

      end;

      

       A143: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2)) by A23;

        hence thesis by A141;

      end;

      

       A146: for v101, v2, v1 holds (((v101 "\/" v1) "/\" v101) "\/" (v101 "\/" (v1 "/\" v2))) = ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2)))

      proof

        let v101, v2, v1;

        ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2))) = (v101 "\/" (v1 "/\" v2)) by A11;

        hence thesis by A23;

      end;

      

       A149: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" (v1 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A146;

      end;

      

       A151: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) by A57;

        hence thesis by A149;

      end;

      

       A153: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A11;

        hence thesis by A151;

      end;

      

       A156: for v1, v101, v100 holds ((v100 "/\" v101) "/\" (v101 "/\" v1)) = (v100 "/\" (v101 "/\" v1))

      proof

        let v1, v101, v100;

        (v101 "/\" (v101 "/\" v1)) = (v101 "/\" v1) by A26;

        hence thesis by A3;

      end;

      

       A159: for v2, v1, v0 holds (v1 "/\" ((v0 "/\" v1) "/\" v2)) = (v0 "/\" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" (v1 "/\" v2)) = (v1 "/\" ((v0 "/\" v1) "/\" v2)) by A40;

        hence thesis by A156;

      end;

      

       A162: for v1, v2, v0 holds (v0 "/\" (v1 "/\" (v0 "/\" v2))) = (v1 "/\" (v0 "/\" v2))

      proof

        let v1, v2, v0;

        ((v1 "/\" v0) "/\" v2) = (v1 "/\" (v0 "/\" v2)) by A3;

        hence thesis by A159;

      end;

      

       A165: for v102, v1, v100 holds ((v100 "/\" v1) "\/" (v102 "/\" (((v100 "/\" v1) "/\" v102) "\/" v100))) = ((v102 "\/" (((v100 "/\" v1) "\/" v102) "/\" v100)) "/\" (v100 "\/" (v100 "/\" v1)))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A26;

        hence thesis by A20;

      end;

      

       A168: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" ((v0 "/\" (v1 "/\" v2)) "\/" v0))) = ((v2 "\/" (((v0 "/\" v1) "\/" v2) "/\" v0)) "/\" (v0 "\/" (v0 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A3;

        hence thesis by A165;

      end;

      

       A170: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" (v0 "/\" (v1 "/\" v2))))) = ((v2 "\/" (((v0 "/\" v1) "\/" v2) "/\" v0)) "/\" (v0 "\/" (v0 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "/\" v2)) "\/" v0) = (v0 "\/" (v0 "/\" (v1 "/\" v2))) by A8;

        hence thesis by A168;

      end;

      

       A172: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" (v0 "/\" (v1 "/\" v2))))) = ((v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) "/\" (v0 "\/" (v0 "/\" v1)))

      proof

        let v0, v2, v1;

        (((v0 "/\" v1) "\/" v2) "/\" v0) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A4;

        hence thesis by A170;

      end;

      

       A174: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" (v0 "/\" (v1 "/\" v2))))) = ((v0 "\/" (v0 "/\" v1)) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))))

      proof

        let v0, v2, v1;

        ((v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) "/\" (v0 "\/" (v0 "/\" v1))) = ((v0 "\/" (v0 "/\" v1)) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2)))) by A4;

        hence thesis by A172;

      end;

      

       A177: for v0, v100, v1 holds (v100 "/\" (v0 "/\" (v1 "/\" v100))) = ((v0 "/\" v1) "/\" v100)

      proof

        let v0, v100, v1;

        ((v0 "/\" v1) "/\" v100) = (v0 "/\" (v1 "/\" v100)) by A3;

        hence thesis by A34;

      end;

      

       A180: for v1, v0, v2 holds (v0 "/\" (v1 "/\" (v2 "/\" v0))) = (v1 "/\" (v2 "/\" v0))

      proof

        let v1, v0, v2;

        ((v1 "/\" v2) "/\" v0) = (v1 "/\" (v2 "/\" v0)) by A3;

        hence thesis by A177;

      end;

      

       A183: for v100, v101, v1 holds ((v100 "\/" v101) "/\" (v100 "\/" (v1 "/\" v101))) = (v100 "\/" (v101 "/\" (v1 "/\" v101)))

      proof

        let v100, v101, v1;

        (v101 "/\" (v1 "/\" v101)) = (v1 "/\" v101) by A34;

        hence thesis by A11;

      end;

      

       A186: for v0, v1, v2 holds ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1))) = (v0 "\/" (v2 "/\" v1))

      proof

        let v0, v1, v2;

        (v1 "/\" (v2 "/\" v1)) = (v2 "/\" v1) by A34;

        hence thesis by A183;

      end;

      

       A189: for v1, v101, v100 holds ((v100 "\/" v101) "\/" (v101 "\/" v1)) = (v100 "\/" (v101 "\/" v1))

      proof

        let v1, v101, v100;

        (v101 "\/" (v101 "\/" v1)) = (v101 "\/" v1) by A43;

        hence thesis by A7;

      end;

      

       A192: for v2, v1, v0 holds (v1 "\/" ((v0 "\/" v1) "\/" v2)) = (v0 "\/" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "\/" (v1 "\/" v2)) = (v1 "\/" ((v0 "\/" v1) "\/" v2)) by A57;

        hence thesis by A189;

      end;

      

       A195: for v1, v2, v0 holds (v0 "\/" (v1 "\/" (v0 "\/" v2))) = (v1 "\/" (v0 "\/" v2))

      proof

        let v1, v2, v0;

        ((v1 "\/" v0) "\/" v2) = (v1 "\/" (v0 "\/" v2)) by A7;

        hence thesis by A192;

      end;

      

       A198: for v102, v1, v100 holds ((v100 "\/" v1) "/\" (v100 "\/" ((v100 "\/" v1) "/\" v102))) = (v100 "\/" ((v100 "\/" v1) "/\" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "\/" v1)) = (v100 "\/" v1) by A43;

        hence thesis by A11;

      end;

      

       A202: for v0, v100, v1 holds (v100 "\/" (v0 "\/" (v1 "\/" v100))) = ((v0 "\/" v1) "\/" v100)

      proof

        let v0, v100, v1;

        ((v0 "\/" v1) "\/" v100) = (v0 "\/" (v1 "\/" v100)) by A7;

        hence thesis by A51;

      end;

      

       A205: for v1, v0, v2 holds (v0 "\/" (v1 "\/" (v2 "\/" v0))) = (v1 "\/" (v2 "\/" v0))

      proof

        let v1, v0, v2;

        ((v1 "\/" v2) "\/" v0) = (v1 "\/" (v2 "\/" v0)) by A7;

        hence thesis by A202;

      end;

      

       A208: for v102, v100, v1 holds ((v1 "\/" v100) "/\" (v100 "\/" ((v1 "\/" v100) "/\" v102))) = (v100 "\/" ((v1 "\/" v100) "/\" v102))

      proof

        let v102, v100, v1;

        (v100 "\/" (v1 "\/" v100)) = (v1 "\/" v100) by A51;

        hence thesis by A11;

      end;

      

       A212: for v102, v1, v100 holds ((v100 "\/" (v100 "/\" v1)) "/\" v102) = (v100 "/\" ((v100 "\/" (v100 "/\" v1)) "/\" v102))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "\/" (v100 "/\" v1))) = (v100 "\/" (v100 "/\" v1)) by A71;

        hence thesis by A3;

      end;

      

       A217: for v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0)))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1)) by A20;

        hence thesis by A71;

      end;

      

       A219: for v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v0)))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        (v1 "/\" (v0 "/\" v1)) = (v0 "/\" v1) by A34;

        hence thesis by A217;

      end;

      

       A221: for v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1))))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A219;

      end;

      

       A223: for v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) by A3;

        hence thesis by A221;

      end;

      

       A225: for v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v1))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = (v0 "/\" v1) by A84;

        hence thesis by A223;

      end;

      

       A227: for v1, v0 holds ((v0 "/\" v1) "/\" (v0 "/\" v1)) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" v1)) = (v0 "/\" v1) by A6;

        hence thesis by A225;

      end;

      

       A229: for v1, v0 holds (v0 "/\" v1) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" (v0 "/\" v1)) = (v0 "/\" v1) by A2;

        hence thesis by A227;

      end;

      

       A231: for v1, v0 holds (v0 "/\" v1) = (((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" (v0 "/\" v1)))) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v1 "\/" (v0 "/\" v1)) "/\" v0) = (v0 "/\" (v1 "\/" (v0 "/\" v1))) by A4;

        hence thesis by A229;

      end;

      

       A233: for v1, v0 holds (v0 "/\" v1) = ((v0 "/\" (v1 "\/" (v0 "/\" v1))) "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" (v0 "/\" v1)))) = (v0 "/\" (v1 "\/" (v0 "/\" v1))) by A23;

        hence thesis by A231;

      end;

      

       A235: for v1, v0 holds (v0 "/\" v1) = (v0 "/\" ((v1 "\/" (v0 "/\" v1)) "/\" (v0 "\/" v1)))

      proof

        let v1, v0;

        ((v0 "/\" (v1 "\/" (v0 "/\" v1))) "/\" (v0 "\/" v1)) = (v0 "/\" ((v1 "\/" (v0 "/\" v1)) "/\" (v0 "\/" v1))) by A3;

        hence thesis by A233;

      end;

      

       A239: for v100, v1, v101 holds (v100 "/\" (v101 "\/" (v101 "/\" v1))) = (v101 "/\" (v100 "/\" (v101 "\/" (v101 "/\" v1))))

      proof

        let v100, v1, v101;

        (v101 "/\" (v101 "\/" (v101 "/\" v1))) = (v101 "\/" (v101 "/\" v1)) by A71;

        hence thesis by A40;

      end;

      

       A244: for v2, v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2)) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) = ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2)) by A212;

        hence thesis by A143;

      end;

      

       A246: for v1, v0 holds (v1 "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" v1)

      proof

        let v1, v0;

        (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = (v1 "/\" (v0 "\/" (v0 "/\" v1))) by A239;

        hence thesis by A84;

      end;

      

       A249: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" (v0 "/\" (v0 "\/" v1))))

      proof

        let v1, v0;

        (v1 "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" v1) by A246;

        hence thesis by A99;

      end;

      

       A251: for v1, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" v1))) = (v1 "/\" v0)

      proof

        let v1, v0;

        (v1 "/\" v0) = (v0 "/\" v1) by A4;

        hence thesis by A246;

      end;

      

       A254: for v1, v0 holds (((v1 "/\" (v0 "/\" v1)) "\/" v0) "/\" (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))) = ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))) = (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1)) by A20;

        hence thesis by A246;

      end;

      

       A257: for v0, v1 holds (((v1 "/\" v0) "\/" v1) "/\" (((v1 "/\" v0) "\/" ((v0 "\/" (v1 "/\" v0)) "/\" v1)) "/\" (v1 "\/" v0))) = ((v1 "/\" v0) "/\" ((v0 "/\" (v1 "/\" v0)) "\/" v1))

      proof

        let v0, v1;

        (v0 "/\" (v1 "/\" v0)) = (v1 "/\" v0) by A34;

        hence thesis by A254;

      end;

      

       A260: for v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" (((v0 "/\" v1) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" v0)) "/\" (v0 "\/" v1))) = ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A257;

      end;

      

       A262: for v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" (((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" (v0 "/\" v1)))) "/\" (v0 "\/" v1))) = ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))

      proof

        let v1, v0;

        ((v1 "\/" (v0 "/\" v1)) "/\" v0) = (v0 "/\" (v1 "\/" (v0 "/\" v1))) by A4;

        hence thesis by A260;

      end;

      

       A264: for v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" (((v0 "/\" v1) "\/" (v1 "/\" v0)) "/\" (v0 "\/" v1))) = ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))

      proof

        let v1, v0;

        (v0 "/\" (v1 "\/" (v0 "/\" v1))) = (v1 "/\" v0) by A251;

        hence thesis by A262;

      end;

      

       A266: for v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))

      proof

        let v1, v0;

        (((v0 "/\" v1) "\/" (v1 "/\" v0)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0))) by A4;

        hence thesis by A264;

      end;

      

       A268: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = ((v0 "/\" v1) "/\" ((v1 "/\" (v0 "/\" v1)) "\/" v0))

      proof

        let v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) by A40;

        hence thesis by A266;

      end;

      

       A270: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v0))

      proof

        let v1, v0;

        (v1 "/\" (v0 "/\" v1)) = (v0 "/\" v1) by A34;

        hence thesis by A268;

      end;

      

       A272: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1)))

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A270;

      end;

      

       A274: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1))))

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) by A3;

        hence thesis by A272;

      end;

      

       A276: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = (v0 "/\" (v0 "/\" v1))

      proof

        let v1, v0;

        (v1 "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" v1) by A246;

        hence thesis by A274;

      end;

      

       A278: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" (v1 "/\" v0)))) = (v0 "/\" v1)

      proof

        let v1, v0;

        (v0 "/\" (v0 "/\" v1)) = (v0 "/\" v1) by A26;

        hence thesis by A276;

      end;

      

       A281: for v101, v100 holds ((v100 "/\" v101) "\/" (v101 "/\" v100)) = (v100 "/\" (v101 "\/" (v101 "/\" v100)))

      proof

        let v101, v100;

        (v100 "/\" (v101 "\/" (v101 "/\" v100))) = (v101 "/\" v100) by A246;

        hence thesis by A23;

      end;

      

       A284: for v1, v0 holds ((v0 "/\" v1) "\/" (v1 "/\" v0)) = (v1 "/\" v0)

      proof

        let v1, v0;

        (v0 "/\" (v1 "\/" (v1 "/\" v0))) = (v1 "/\" v0) by A246;

        hence thesis by A281;

      end;

      

       A286: for v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "/\" v0))) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "/\" v1) "\/" (v1 "/\" v0)) = (v1 "/\" v0) by A284;

        hence thesis by A278;

      end;

      

       A288: for v1, v0 holds ((v0 "\/" v1) "/\" ((v1 "/\" v0) "/\" (v0 "\/" (v0 "/\" v1)))) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "/\" v0)) = ((v1 "/\" v0) "/\" (v0 "\/" (v0 "/\" v1))) by A4;

        hence thesis by A286;

      end;

      

       A290: for v1, v0 holds ((v0 "\/" v1) "/\" (v1 "/\" (v0 "/\" (v0 "\/" (v0 "/\" v1))))) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v1 "/\" v0) "/\" (v0 "\/" (v0 "/\" v1))) = (v1 "/\" (v0 "/\" (v0 "\/" (v0 "/\" v1)))) by A3;

        hence thesis by A288;

      end;

      

       A292: for v1, v0 holds ((v0 "\/" v1) "/\" (v1 "/\" (v0 "\/" (v0 "/\" v1)))) = (v0 "/\" v1)

      proof

        let v1, v0;

        (v0 "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "\/" (v0 "/\" v1)) by A71;

        hence thesis by A290;

      end;

      

       A294: for v1, v0 holds ((v0 "\/" v1) "/\" (v0 "/\" v1)) = (v0 "/\" v1)

      proof

        let v1, v0;

        (v1 "/\" (v0 "\/" (v0 "/\" v1))) = (v0 "/\" v1) by A246;

        hence thesis by A292;

      end;

      

       A296: for v1, v0 holds ((v0 "/\" v1) "/\" (v0 "\/" v1)) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "/\" (v0 "/\" v1)) = ((v0 "/\" v1) "/\" (v0 "\/" v1)) by A4;

        hence thesis by A294;

      end;

      

       A298: for v1, v0 holds (v0 "/\" (v1 "/\" (v0 "\/" v1))) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" (v0 "\/" v1)) = (v0 "/\" (v1 "/\" (v0 "\/" v1))) by A3;

        hence thesis by A296;

      end;

      

       A301: for v102, v100, v1 holds ((v1 "/\" v100) "/\" v102) = (v100 "/\" ((v1 "\/" (v100 "/\" v1)) "/\" v102))

      proof

        let v102, v100, v1;

        (v100 "/\" (v1 "\/" (v100 "/\" v1))) = (v1 "/\" v100) by A251;

        hence thesis by A3;

      end;

      

       A304: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" ((v0 "\/" (v1 "/\" v0)) "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A3;

        hence thesis by A301;

      end;

      

       A308: for v1, v0 holds (v1 "/\" (v0 "/\" (v0 "\/" v1))) = (v0 "/\" v1)

      proof

        let v1, v0;

        (v0 "/\" ((v1 "\/" (v0 "/\" v1)) "/\" (v0 "\/" v1))) = (v1 "/\" (v0 "/\" (v0 "\/" v1))) by A304;

        hence thesis by A235;

      end;

      

       A312: for v103, v100, v101, v1 holds ((v100 "\/" v101) "/\" ((v100 "\/" (v1 "/\" v101)) "/\" v103)) = ((v100 "\/" (v101 "/\" (v1 "/\" v101))) "/\" v103)

      proof

        let v103, v100, v101, v1;

        (v101 "/\" (v1 "/\" v101)) = (v1 "/\" v101) by A34;

        hence thesis by A60;

      end;

      

       A315: for v3, v0, v1, v2 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v2 "/\" v1)) "/\" v3)) = ((v0 "\/" (v2 "/\" v1)) "/\" v3)

      proof

        let v3, v0, v1, v2;

        (v1 "/\" (v2 "/\" v1)) = (v2 "/\" v1) by A34;

        hence thesis by A312;

      end;

      

       A318: for v102, v100, v1 holds ((v1 "/\" v100) "/\" v102) = (v100 "/\" ((v1 "/\" (v1 "\/" v100)) "/\" v102))

      proof

        let v102, v100, v1;

        (v100 "/\" (v1 "/\" (v1 "\/" v100))) = (v1 "/\" v100) by A308;

        hence thesis by A3;

      end;

      

       A321: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" ((v0 "/\" (v0 "\/" v1)) "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A3;

        hence thesis by A318;

      end;

      

       A323: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v0 "\/" v1)) "/\" v2) = (v0 "/\" ((v0 "\/" v1) "/\" v2)) by A3;

        hence thesis by A321;

      end;

      

       A328: for v0, v100, v1 holds (v100 "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v100)))) = ((v0 "\/" v1) "/\" v100)

      proof

        let v0, v100, v1;

        ((v0 "\/" v1) "\/" v100) = (v0 "\/" (v1 "\/" v100)) by A7;

        hence thesis by A308;

      end;

      

       A332: for v102, v1, v100 holds ((v100 "/\" (v100 "\/" v1)) "\/" v102) = (v100 "\/" ((v100 "/\" (v100 "\/" v1)) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" (v100 "\/" v1))) = (v100 "/\" (v100 "\/" v1)) by A113;

        hence thesis by A7;

      end;

      

       A337: for v100, v1, v101 holds (v100 "\/" (v101 "/\" (v101 "\/" v1))) = (v101 "\/" (v100 "\/" (v101 "/\" (v101 "\/" v1))))

      proof

        let v100, v1, v101;

        (v101 "\/" (v101 "/\" (v101 "\/" v1))) = (v101 "/\" (v101 "\/" v1)) by A113;

        hence thesis by A57;

      end;

      

       A342: for v2, v1, v0 holds ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2)) by A332;

        hence thesis by A153;

      end;

      

       A344: for v1, v0 holds (v1 "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "\/" v1)

      proof

        let v1, v0;

        (v0 "\/" (v1 "\/" (v0 "/\" (v0 "\/" v1)))) = (v1 "\/" (v0 "/\" (v0 "\/" v1))) by A337;

        hence thesis by A126;

      end;

      

       A347: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        (v1 "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "\/" v1) by A344;

        hence thesis by A249;

      end;

      

       A349: for v2, v1, v0 holds ((v0 "/\" (v0 "\/" v1)) "/\" (v1 "\/" v2)) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1)) by A347;

        hence thesis by A244;

      end;

      

       A351: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" (v1 "\/" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) by A3;

        hence thesis by A349;

      end;

      

       A353: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2))))) = ((v0 "\/" (v0 "/\" v1)) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))))

      proof

        let v0, v2, v1;

        (v0 "\/" (v0 "/\" (v1 "/\" v2))) = (v0 "/\" (v0 "\/" (v1 "/\" v2))) by A347;

        hence thesis by A174;

      end;

      

       A355: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2))))) = ((v0 "/\" (v0 "\/" v1)) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))))

      proof

        let v0, v2, v1;

        (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1)) by A347;

        hence thesis by A353;

      end;

      

       A357: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2))))) = (v0 "/\" ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2)))))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v0 "\/" v1)) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))))) by A3;

        hence thesis by A355;

      end;

      

       A360: for v101, v100 holds ((v100 "\/" v101) "/\" (v101 "\/" v100)) = (v100 "\/" (v101 "/\" (v101 "\/" v100)))

      proof

        let v101, v100;

        (v100 "\/" (v101 "/\" (v101 "\/" v100))) = (v101 "\/" v100) by A344;

        hence thesis by A11;

      end;

      

       A363: for v1, v0 holds ((v0 "\/" v1) "/\" (v1 "\/" v0)) = (v1 "\/" v0)

      proof

        let v1, v0;

        (v0 "\/" (v1 "/\" (v1 "\/" v0))) = (v1 "\/" v0) by A344;

        hence thesis by A360;

      end;

      

       A366: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" ((v0 "/\" v1) "/\" (v0 "/\" (v1 "\/" v2)))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2)) by A23;

        hence thesis by A344;

      end;

      

       A368: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" ((v0 "/\" v1) "/\" (v1 "\/" v2)))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "/\" (v1 "\/" v2))) by A40;

        hence thesis by A366;

      end;

      

       A370: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" (v0 "/\" (v1 "/\" (v1 "\/" v2))))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" (v1 "\/" v2)) = (v0 "/\" (v1 "/\" (v1 "\/" v2))) by A3;

        hence thesis by A368;

      end;

      

       A372: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" (v1 "/\" (v1 "\/" v2)))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (v0 "/\" (v0 "/\" (v1 "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "/\" (v1 "\/" v2))) by A26;

        hence thesis by A370;

      end;

      

       A374: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" (v1 "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2)) by A23;

        hence thesis by A372;

      end;

      

       A377: for v101, v1 holds ((v1 "\/" v101) "\/" (v101 "/\" (v1 "\/" v101))) = (v101 "\/" (v1 "\/" v101))

      proof

        let v101, v1;

        (v101 "\/" (v1 "\/" v101)) = (v1 "\/" v101) by A51;

        hence thesis by A344;

      end;

      

       A380: for v1, v0 holds (v0 "\/" (v1 "\/" (v1 "/\" (v0 "\/" v1)))) = (v1 "\/" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" (v1 "/\" (v0 "\/" v1))) = (v0 "\/" (v1 "\/" (v1 "/\" (v0 "\/" v1)))) by A7;

        hence thesis by A377;

      end;

      

       A382: for v1, v0 holds (v0 "\/" (v1 "/\" (v1 "\/" (v0 "\/" v1)))) = (v1 "\/" (v0 "\/" v1))

      proof

        let v1, v0;

        (v1 "\/" (v1 "/\" (v0 "\/" v1))) = (v1 "/\" (v1 "\/" (v0 "\/" v1))) by A347;

        hence thesis by A380;

      end;

      

       A384: for v1, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v1))) = (v1 "\/" (v0 "\/" v1))

      proof

        let v1, v0;

        (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1) by A51;

        hence thesis by A382;

      end;

      

       A386: for v1, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v1))) = (v0 "\/" v1)

      proof

        let v1, v0;

        (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1) by A51;

        hence thesis by A384;

      end;

      

       A389: for v103, v100, v101 holds ((v100 "\/" v101) "/\" ((v101 "\/" v100) "/\" v103)) = ((v100 "\/" (v101 "/\" (v101 "\/" v100))) "/\" v103)

      proof

        let v103, v100, v101;

        (v100 "\/" (v101 "/\" (v101 "\/" v100))) = (v101 "\/" v100) by A344;

        hence thesis by A60;

      end;

      

       A392: for v2, v0, v1 holds ((v0 "\/" v1) "/\" ((v1 "\/" v0) "/\" v2)) = ((v1 "\/" v0) "/\" v2)

      proof

        let v2, v0, v1;

        (v0 "\/" (v1 "/\" (v1 "\/" v0))) = (v1 "\/" v0) by A344;

        hence thesis by A389;

      end;

      

       A395: for v0, v101, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "/\" v101))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v101))

      proof

        let v0, v101, v1;

        ((v0 "/\" v1) "/\" v101) = (v0 "/\" (v1 "/\" v101)) by A3;

        hence thesis by A347;

      end;

      

       A398: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "/\" v2))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A395;

      end;

      

       A400: for v0, v1 holds (v0 "\/" (v1 "/\" v0)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A347;

      end;

      

       A403: for v102, v1, v100 holds ((v100 "/\" (v100 "\/" v1)) "\/" v102) = (v100 "\/" ((v100 "/\" v1) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" v1)) = (v100 "/\" (v100 "\/" v1)) by A347;

        hence thesis by A7;

      end;

      

       A407: for v100, v1, v101 holds ((v100 "/\" v101) "\/" (v100 "/\" (v101 "/\" (v101 "\/" v1)))) = (v100 "/\" (v101 "\/" (v101 "/\" v1)))

      proof

        let v100, v1, v101;

        (v101 "\/" (v101 "/\" v1)) = (v101 "/\" (v101 "\/" v1)) by A347;

        hence thesis by A23;

      end;

      

       A410: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v1 "\/" v2)))) = (v0 "/\" (v1 "\/" (v1 "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v1 "\/" v2)))) by A398;

        hence thesis by A407;

      end;

      

       A412: for v2, v1, v0 holds (v0 "/\" (v1 "/\" (v1 "\/" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" (v1 "\/" (v1 "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v1 "\/" v2)) = (v1 "\/" ((v0 "/\" v1) "\/" v2)) by A57;

        hence thesis by A410;

      end;

      

       A414: for v2, v1, v0 holds (v0 "/\" (v1 "/\" (v1 "\/" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" (v1 "/\" (v1 "\/" v2)))

      proof

        let v2, v1, v0;

        (v1 "\/" (v1 "/\" v2)) = (v1 "/\" (v1 "\/" v2)) by A347;

        hence thesis by A412;

      end;

      

       A417: for v1, v2, v100 holds (v100 "\/" (v1 "/\" (v100 "/\" v2))) = (v100 "/\" (v100 "\/" (v1 "/\" v2)))

      proof

        let v1, v2, v100;

        (v100 "/\" (v1 "/\" v2)) = (v1 "/\" (v100 "/\" v2)) by A40;

        hence thesis by A347;

      end;

      

       A421: for v100, v1, v101 holds (v100 "\/" (v101 "/\" (v101 "\/" v1))) = (v101 "\/" (v100 "\/" (v101 "/\" v1)))

      proof

        let v100, v1, v101;

        (v101 "\/" (v101 "/\" v1)) = (v101 "/\" (v101 "\/" v1)) by A347;

        hence thesis by A57;

      end;

      

       A426: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2)) = (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) by A403;

        hence thesis by A342;

      end;

      

       A429: for v100, v102, v101 holds ((v100 "\/" v101) "/\" ((v101 "/\" v102) "\/" v100)) = ((v100 "\/" (v101 "/\" v102)) "/\" ((v101 "/\" v102) "\/" v100))

      proof

        let v100, v102, v101;

        ((v100 "\/" (v101 "/\" v102)) "/\" ((v101 "/\" v102) "\/" v100)) = ((v101 "/\" v102) "\/" v100) by A363;

        hence thesis by A60;

      end;

      

       A432: for v0, v2, v1 holds ((v0 "\/" v1) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" v0)

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" v0) by A363;

        hence thesis by A429;

      end;

      

       A435: for v100, v101, v1, v0 holds ((v100 "\/" (v101 "/\" (v0 "\/" v1))) "/\" (v100 "\/" (v101 "/\" (v1 "\/" v0)))) = (v100 "\/" (v101 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v0))))

      proof

        let v100, v101, v1, v0;

        ((v0 "\/" v1) "/\" (v1 "\/" v0)) = (v1 "\/" v0) by A363;

        hence thesis by A68;

      end;

      

       A438: for v0, v1, v3, v2 holds ((v0 "\/" (v1 "/\" (v2 "\/" v3))) "/\" (v0 "\/" (v1 "/\" (v3 "\/" v2)))) = (v0 "\/" (v1 "/\" (v3 "\/" v2)))

      proof

        let v0, v1, v3, v2;

        ((v2 "\/" v3) "/\" (v3 "\/" v2)) = (v3 "\/" v2) by A363;

        hence thesis by A435;

      end;

      

       A441: for v0, v100, v1 holds (v100 "\/" (v0 "/\" (v1 "/\" v100))) = (v100 "/\" (v100 "\/" (v0 "/\" v1)))

      proof

        let v0, v100, v1;

        ((v0 "/\" v1) "/\" v100) = (v0 "/\" (v1 "/\" v100)) by A3;

        hence thesis by A400;

      end;

      

       A445: for v1, v2, v101 holds ((v1 "/\" v2) "\/" (v1 "/\" (v101 "/\" v2))) = ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v101))

      proof

        let v1, v2, v101;

        (v101 "/\" (v1 "/\" v2)) = (v1 "/\" (v101 "/\" v2)) by A40;

        hence thesis by A400;

      end;

      

       A448: for v0, v1, v2 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" v1))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v0, v1, v2;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A445;

      end;

      

       A451: for v100, v1, v101 holds (v100 "\/" (v101 "/\" (v101 "\/" v1))) = (v101 "\/" (v100 "\/" (v1 "/\" v101)))

      proof

        let v100, v1, v101;

        (v101 "\/" (v1 "/\" v101)) = (v101 "/\" (v101 "\/" v1)) by A400;

        hence thesis by A57;

      end;

      

       A456: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" v1))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" (v1 "/\" (v1 "\/" v2)))) = (v0 "/\" ((v1 "\/" v2) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" v1))) by A448;

        hence thesis by A374;

      end;

      

       A458: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "/\" (v1 "\/" (v0 "/\" (v1 "\/" v2))))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" v1) = (v1 "\/" (v0 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A456;

      end;

      

       A461: for v0, v1, v102, v100 holds (v100 "/\" (v0 "/\" (v1 "/\" (v100 "/\" v102)))) = ((v0 "/\" v1) "/\" (v100 "/\" v102))

      proof

        let v0, v1, v102, v100;

        ((v0 "/\" v1) "/\" (v100 "/\" v102)) = (v0 "/\" (v1 "/\" (v100 "/\" v102))) by A3;

        hence thesis by A162;

      end;

      

       A464: for v1, v2, v3, v0 holds (v0 "/\" (v1 "/\" (v2 "/\" (v0 "/\" v3)))) = (v1 "/\" (v2 "/\" (v0 "/\" v3)))

      proof

        let v1, v2, v3, v0;

        ((v1 "/\" v2) "/\" (v0 "/\" v3)) = (v1 "/\" (v2 "/\" (v0 "/\" v3))) by A3;

        hence thesis by A461;

      end;

      

       A467: for v101, v0, v100, v1 holds (v100 "/\" (v101 "/\" (v0 "/\" (v1 "/\" v100)))) = (v101 "/\" ((v0 "/\" v1) "/\" v100))

      proof

        let v101, v0, v100, v1;

        ((v0 "/\" v1) "/\" v100) = (v0 "/\" (v1 "/\" v100)) by A3;

        hence thesis by A180;

      end;

      

       A470: for v1, v2, v0, v3 holds (v0 "/\" (v1 "/\" (v2 "/\" (v3 "/\" v0)))) = (v1 "/\" (v2 "/\" (v3 "/\" v0)))

      proof

        let v1, v2, v0, v3;

        ((v2 "/\" v3) "/\" v0) = (v2 "/\" (v3 "/\" v0)) by A3;

        hence thesis by A467;

      end;

      

       A473: for v101, v1, v102 holds ((v1 "/\" (v102 "\/" v1)) "/\" (v101 "/\" (v102 "/\" v1))) = (v101 "/\" (v102 "/\" (v1 "/\" (v102 "\/" v1))))

      proof

        let v101, v1, v102;

        (v102 "/\" (v1 "/\" (v102 "\/" v1))) = (v102 "/\" v1) by A298;

        hence thesis by A180;

      end;

      

       A476: for v2, v0, v1 holds (v0 "/\" ((v1 "\/" v0) "/\" (v2 "/\" (v1 "/\" v0)))) = (v2 "/\" (v1 "/\" (v0 "/\" (v1 "\/" v0))))

      proof

        let v2, v0, v1;

        ((v0 "/\" (v1 "\/" v0)) "/\" (v2 "/\" (v1 "/\" v0))) = (v0 "/\" ((v1 "\/" v0) "/\" (v2 "/\" (v1 "/\" v0)))) by A3;

        hence thesis by A473;

      end;

      

       A478: for v2, v0, v1 holds ((v1 "\/" v0) "/\" (v2 "/\" (v1 "/\" v0))) = (v2 "/\" (v1 "/\" (v0 "/\" (v1 "\/" v0))))

      proof

        let v2, v0, v1;

        (v0 "/\" ((v1 "\/" v0) "/\" (v2 "/\" (v1 "/\" v0)))) = ((v1 "\/" v0) "/\" (v2 "/\" (v1 "/\" v0))) by A470;

        hence thesis by A476;

      end;

      

       A481: for v2, v1, v0 holds ((v0 "\/" v1) "/\" (v2 "/\" (v0 "/\" v1))) = (v2 "/\" (v0 "/\" v1))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" (v0 "\/" v1))) = (v0 "/\" v1) by A298;

        hence thesis by A478;

      end;

      

       A484: for v0, v1, v102, v100 holds (v100 "\/" (v0 "\/" (v1 "\/" (v100 "\/" v102)))) = ((v0 "\/" v1) "\/" (v100 "\/" v102))

      proof

        let v0, v1, v102, v100;

        ((v0 "\/" v1) "\/" (v100 "\/" v102)) = (v0 "\/" (v1 "\/" (v100 "\/" v102))) by A7;

        hence thesis by A195;

      end;

      

       A487: for v1, v2, v3, v0 holds (v0 "\/" (v1 "\/" (v2 "\/" (v0 "\/" v3)))) = (v1 "\/" (v2 "\/" (v0 "\/" v3)))

      proof

        let v1, v2, v3, v0;

        ((v1 "\/" v2) "\/" (v0 "\/" v3)) = (v1 "\/" (v2 "\/" (v0 "\/" v3))) by A7;

        hence thesis by A484;

      end;

      

       A490: for v101, v102, v1 holds ((v1 "/\" (v1 "\/" v102)) "\/" (v101 "\/" (v1 "\/" v102))) = (v101 "\/" (v102 "\/" (v1 "/\" (v1 "\/" v102))))

      proof

        let v101, v102, v1;

        (v102 "\/" (v1 "/\" (v1 "\/" v102))) = (v1 "\/" v102) by A344;

        hence thesis by A205;

      end;

      

       A493: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1)))) = (v2 "\/" (v1 "\/" (v0 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v2 "\/" (v0 "\/" v1))) = (v0 "\/" ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1)))) by A403;

        hence thesis by A490;

      end;

      

       A495: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1))) = (v2 "\/" (v1 "\/" (v0 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1)))) = ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1))) by A487;

        hence thesis by A493;

      end;

      

       A497: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1))) = (v2 "\/" (v0 "\/" v1))

      proof

        let v2, v1, v0;

        (v1 "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "\/" v1) by A344;

        hence thesis by A495;

      end;

      

       A500: for v1, v2, v0 holds (v1 "\/" (v0 "/\" v2)) = ((v1 "\/" (v0 "/\" v2)) "/\" (v0 "\/" v1))

      proof

        let v1, v2, v0;

        ((v0 "\/" v1) "/\" (v1 "\/" (v0 "/\" v2))) = (v1 "\/" (v0 "/\" v2)) by A86;

        hence thesis by A4;

      end;

      

       A505: for v102, v1, v100 holds ((v100 "\/" v1) "/\" ((v100 "\/" v1) "\/" (v100 "/\" v102))) = ((v100 "\/" v1) "\/" (v100 "/\" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "\/" v1)) = (v100 "\/" v1) by A43;

        hence thesis by A86;

      end;

      

       A508: for v1, v2, v0 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v0 "/\" v2)))) = ((v0 "\/" v1) "\/" (v0 "/\" v2))

      proof

        let v1, v2, v0;

        ((v0 "\/" v1) "\/" (v0 "/\" v2)) = (v0 "\/" (v1 "\/" (v0 "/\" v2))) by A7;

        hence thesis by A505;

      end;

      

       A510: for v1, v2, v0 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v0 "/\" v2)))) = (v0 "\/" (v1 "\/" (v0 "/\" v2)))

      proof

        let v1, v2, v0;

        ((v0 "\/" v1) "\/" (v0 "/\" v2)) = (v0 "\/" (v1 "\/" (v0 "/\" v2))) by A7;

        hence thesis by A508;

      end;

      

       A513: for v0, v2, v1 holds (v0 "/\" (v1 "\/" v2)) = (((v1 "\/" v2) "/\" v0) "\/" (v0 "/\" v1))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" ((v1 "\/" v2) "/\" v0)) = (v0 "/\" (v1 "\/" v2)) by A131;

        hence thesis by A8;

      end;

      

       A517: for v0, v1, v2 holds ((v0 "/\" v1) "\/" ((v2 "\/" v1) "/\" v0)) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v1, v2;

        (v1 "\/" v2) = (v2 "\/" v1) by A8;

        hence thesis by A131;

      end;

      

       A520: for v101, v2, v1 holds (((v101 "\/" v1) "/\" v101) "\/" ((v101 "\/" v1) "/\" ((v1 "/\" v2) "\/" v101))) = (v101 "\/" (v1 "/\" v2))

      proof

        let v101, v2, v1;

        ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2))) = (v101 "\/" (v1 "/\" v2)) by A11;

        hence thesis by A133;

      end;

      

       A523: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" v1)) "\/" ((v0 "\/" v1) "/\" ((v1 "/\" v2) "\/" v0))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A520;

      end;

      

       A525: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" v1)) "\/" ((v1 "/\" v2) "\/" v0)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" v0) by A432;

        hence thesis by A523;

      end;

      

       A527: for v0, v2, v1 holds (v0 "\/" ((v0 "/\" v1) "\/" ((v1 "/\" v2) "\/" v0))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v0 "\/" v1)) "\/" ((v1 "/\" v2) "\/" v0)) = (v0 "\/" ((v0 "/\" v1) "\/" ((v1 "/\" v2) "\/" v0))) by A403;

        hence thesis by A525;

      end;

      

       A529: for v0, v2, v1 holds ((v0 "/\" v1) "\/" ((v1 "/\" v2) "\/" v0)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" ((v0 "/\" v1) "\/" ((v1 "/\" v2) "\/" v0))) = ((v0 "/\" v1) "\/" ((v1 "/\" v2) "\/" v0)) by A205;

        hence thesis by A527;

      end;

      

       A532: for v100, v1, v102 holds ((v100 "/\" (v1 "/\" (v102 "\/" v1))) "\/" (v100 "/\" (v102 "\/" v1))) = (v100 "/\" ((v1 "/\" (v102 "\/" v1)) "\/" v102))

      proof

        let v100, v1, v102;

        (v102 "\/" (v1 "/\" (v102 "\/" v1))) = (v102 "\/" v1) by A386;

        hence thesis by A133;

      end;

      

       A535: for v0, v1, v2 holds ((v0 "/\" (v2 "\/" v1)) "\/" (v0 "/\" (v1 "/\" (v2 "\/" v1)))) = (v0 "/\" ((v1 "/\" (v2 "\/" v1)) "\/" v2))

      proof

        let v0, v1, v2;

        ((v0 "/\" (v1 "/\" (v2 "\/" v1))) "\/" (v0 "/\" (v2 "\/" v1))) = ((v0 "/\" (v2 "\/" v1)) "\/" (v0 "/\" (v1 "/\" (v2 "\/" v1)))) by A8;

        hence thesis by A532;

      end;

      

       A538: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" v2))) = (v0 "/\" ((v2 "/\" (v1 "\/" v2)) "\/" v1))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" (v2 "/\" (v1 "\/" v2)))) = (v0 "/\" ((v1 "\/" v2) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" v2))) by A448;

        hence thesis by A535;

      end;

      

       A540: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "/\" (v2 "\/" (v0 "/\" (v1 "\/" v2))))) = (v0 "/\" ((v2 "/\" (v1 "\/" v2)) "\/" v1))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" v2) = (v2 "\/" (v0 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A538;

      end;

      

       A542: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "/\" (v2 "\/" (v0 "/\" (v1 "\/" v2))))) = (v0 "/\" (v1 "\/" (v2 "/\" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        ((v2 "/\" (v1 "\/" v2)) "\/" v1) = (v1 "\/" (v2 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A540;

      end;

      

       A544: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "/\" (v2 "\/" (v0 "/\" (v1 "\/" v2))))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        (v1 "\/" (v2 "/\" (v1 "\/" v2))) = (v1 "\/" v2) by A386;

        hence thesis by A542;

      end;

      

       A547: for v101, v1, v2 holds (((v101 "\/" v1) "/\" v101) "\/" (v101 "\/" (v2 "/\" v1))) = ((v101 "\/" v1) "/\" (v101 "\/" (v2 "/\" v1)))

      proof

        let v101, v1, v2;

        ((v101 "\/" v1) "/\" (v101 "\/" (v2 "/\" v1))) = (v101 "\/" (v2 "/\" v1)) by A186;

        hence thesis by A23;

      end;

      

       A550: for v0, v1, v2 holds ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" (v2 "/\" v1))) = ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v1, v2;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A547;

      end;

      

       A552: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v2 "/\" v1))) = ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" (v2 "/\" v1))) = (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v2 "/\" v1))) by A57;

        hence thesis by A550;

      end;

      

       A554: for v2, v1, v0 holds (v0 "\/" (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" v1)))) = ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v2 "/\" v1)) = (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" v1))) by A403;

        hence thesis by A552;

      end;

      

       A556: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" v1))) = ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" v1)))) = (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" v1))) by A43;

        hence thesis by A554;

      end;

      

       A558: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" v1))) = (v0 "\/" (v2 "/\" v1))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1))) = (v0 "\/" (v2 "/\" v1)) by A186;

        hence thesis by A556;

      end;

      

       A561: for v102, v1, v100 holds ((v100 "\/" v1) "/\" (v100 "\/" (v102 "/\" (v100 "\/" v1)))) = (v100 "\/" (v102 "/\" (v100 "\/" v1)))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "\/" v1)) = (v100 "\/" v1) by A43;

        hence thesis by A186;

      end;

      

       A565: for v102, v100, v1 holds ((v1 "\/" v100) "/\" (v100 "\/" (v102 "/\" (v1 "\/" v100)))) = (v100 "\/" (v102 "/\" (v1 "\/" v100)))

      proof

        let v102, v100, v1;

        (v100 "\/" (v1 "\/" v100)) = (v1 "\/" v100) by A51;

        hence thesis by A186;

      end;

      

       A568: for v0, v2, v1 holds (v0 "/\" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v1 "\/" v2) "/\" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = (v1 "\/" (v0 "/\" (v1 "\/" v2))) by A561;

        hence thesis by A458;

      end;

      

       A570: for v0, v2, v1 holds (v0 "/\" (v2 "\/" (v0 "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v1 "\/" v2) "/\" (v2 "\/" (v0 "/\" (v1 "\/" v2)))) = (v2 "\/" (v0 "/\" (v1 "\/" v2))) by A565;

        hence thesis by A544;

      end;

      

       A574: for v101, v1, v2, v102 holds ((v1 "/\" ((v1 "\/" v102) "/\" v2)) "/\" (v101 "/\" (v1 "/\" (v102 "/\" v2)))) = (v101 "/\" (v102 "/\" (v1 "/\" ((v1 "\/" v102) "/\" v2))))

      proof

        let v101, v1, v2, v102;

        (v102 "/\" (v1 "/\" ((v1 "\/" v102) "/\" v2))) = (v1 "/\" (v102 "/\" v2)) by A323;

        hence thesis by A180;

      end;

      

       A577: for v3, v0, v2, v1 holds (v0 "/\" (((v0 "\/" v1) "/\" v2) "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2))))) = (v3 "/\" (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2))))

      proof

        let v3, v0, v2, v1;

        ((v0 "/\" ((v0 "\/" v1) "/\" v2)) "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2)))) = (v0 "/\" (((v0 "\/" v1) "/\" v2) "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2))))) by A3;

        hence thesis by A574;

      end;

      

       A579: for v3, v0, v2, v1 holds (v0 "/\" ((v0 "\/" v1) "/\" (v2 "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2)))))) = (v3 "/\" (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2))))

      proof

        let v3, v0, v2, v1;

        (((v0 "\/" v1) "/\" v2) "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2)))) = ((v0 "\/" v1) "/\" (v2 "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2))))) by A3;

        hence thesis by A577;

      end;

      

       A581: for v3, v0, v2, v1 holds (v0 "/\" ((v0 "\/" v1) "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2))))) = (v3 "/\" (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2))))

      proof

        let v3, v0, v2, v1;

        (v2 "/\" (v3 "/\" (v0 "/\" (v1 "/\" v2)))) = (v3 "/\" (v0 "/\" (v1 "/\" v2))) by A470;

        hence thesis by A579;

      end;

      

       A584: for v2, v0, v3, v1 holds ((v0 "\/" v1) "/\" (v2 "/\" (v0 "/\" (v1 "/\" v3)))) = (v2 "/\" (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v3))))

      proof

        let v2, v0, v3, v1;

        (v0 "/\" ((v0 "\/" v1) "/\" (v2 "/\" (v0 "/\" (v1 "/\" v3))))) = ((v0 "\/" v1) "/\" (v2 "/\" (v0 "/\" (v1 "/\" v3)))) by A464;

        hence thesis by A581;

      end;

      

       A586: for v2, v0, v3, v1 holds ((v0 "\/" v1) "/\" (v2 "/\" (v0 "/\" (v1 "/\" v3)))) = (v2 "/\" (v0 "/\" (v1 "/\" v3)))

      proof

        let v2, v0, v3, v1;

        (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v3))) = (v0 "/\" (v1 "/\" v3)) by A323;

        hence thesis by A584;

      end;

      

       A589: for v102, v1, v100 holds (v100 "/\" ((v100 "/\" (v100 "\/" v1)) "/\" ((v100 "/\" v1) "\/" v102))) = (v100 "/\" ((v100 "/\" v1) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" v1)) = (v100 "/\" (v100 "\/" v1)) by A347;

        hence thesis by A351;

      end;

      

       A592: for v2, v1, v0 holds (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A589;

      end;

      

       A594: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A26;

        hence thesis by A592;

      end;

      

       A597: for v100, v1, v2, v101 holds (v100 "/\" ((v100 "\/" v101) "/\" (v1 "\/" (v101 "\/" v2)))) = (v100 "/\" (v101 "\/" (v1 "\/" (v101 "\/" v2))))

      proof

        let v100, v1, v2, v101;

        (v101 "\/" (v1 "\/" (v101 "\/" v2))) = (v1 "\/" (v101 "\/" v2)) by A195;

        hence thesis by A351;

      end;

      

       A600: for v0, v2, v3, v1 holds (v0 "/\" ((v0 "\/" v1) "/\" (v2 "\/" (v1 "\/" v3)))) = (v0 "/\" (v2 "\/" (v1 "\/" v3)))

      proof

        let v0, v2, v3, v1;

        (v1 "\/" (v2 "\/" (v1 "\/" v3))) = (v2 "\/" (v1 "\/" v3)) by A195;

        hence thesis by A597;

      end;

      

       A603: for v101, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" v101)) = (v101 "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v101, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" v101) = (v0 "\/" ((v0 "/\" v1) "\/" v101)) by A403;

        hence thesis by A8;

      end;

      

       A607: for v101, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "/\" (v0 "\/" v1)) "/\" v101))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" (v0 "\/" v1)) "\/" v101))

      proof

        let v101, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" ((v0 "/\" (v0 "\/" v1)) "/\" v101)) = (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "/\" (v0 "\/" v1)) "/\" v101))) by A403;

        hence thesis by A347;

      end;

      

       A610: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2)))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" (v0 "\/" v1)) "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" v2) = (v0 "/\" ((v0 "\/" v1) "/\" v2)) by A3;

        hence thesis by A607;

      end;

      

       A612: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2)))) = ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" v2) = (v0 "\/" ((v0 "/\" v1) "\/" v2)) by A403;

        hence thesis by A610;

      end;

      

       A614: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2)))) by A3;

        hence thesis by A612;

      end;

      

       A617: for v101, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v101 "/\" (v0 "/\" (v0 "\/" v1))))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" (v0 "\/" v1)) "\/" v101))

      proof

        let v101, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v101 "/\" (v0 "/\" (v0 "\/" v1)))) = (v0 "\/" ((v0 "/\" v1) "\/" (v101 "/\" (v0 "/\" (v0 "\/" v1))))) by A403;

        hence thesis by A400;

      end;

      

       A620: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1))))) = ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" v2) = (v0 "\/" ((v0 "/\" v1) "\/" v2)) by A403;

        hence thesis by A617;

      end;

      

       A622: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1))))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2)))) by A3;

        hence thesis by A620;

      end;

      

       A625: for v101, v0, v102, v1 holds ((v0 "/\" v1) "\/" (v101 "/\" (v0 "/\" (v1 "/\" v102)))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v101 "/\" v102)))

      proof

        let v101, v0, v102, v1;

        ((v0 "/\" v1) "/\" v102) = (v0 "/\" (v1 "/\" v102)) by A3;

        hence thesis by A417;

      end;

      

       A628: for v2, v0, v3, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v1 "/\" v3)))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v2 "/\" v3))))

      proof

        let v2, v0, v3, v1;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v3))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v2 "/\" v3)))) by A3;

        hence thesis by A625;

      end;

      

       A631: for v0, v1, v102, v100 holds (v100 "\/" (v0 "/\" (v1 "/\" (v100 "/\" v102)))) = (v100 "/\" (v100 "\/" ((v0 "/\" v1) "/\" v102)))

      proof

        let v0, v1, v102, v100;

        ((v0 "/\" v1) "/\" (v100 "/\" v102)) = (v0 "/\" (v1 "/\" (v100 "/\" v102))) by A3;

        hence thesis by A417;

      end;

      

       A634: for v1, v2, v3, v0 holds (v0 "\/" (v1 "/\" (v2 "/\" (v0 "/\" v3)))) = (v0 "/\" (v0 "\/" (v1 "/\" (v2 "/\" v3))))

      proof

        let v1, v2, v3, v0;

        ((v1 "/\" v2) "/\" v3) = (v1 "/\" (v2 "/\" v3)) by A3;

        hence thesis by A631;

      end;

      

       A637: for v1, v2, v102, v101 holds (((v1 "/\" ((v101 "/\" v102) "/\" v2)) "/\" v101) "\/" (v102 "/\" ((v101 "/\" v102) "/\" ((v101 "/\" v102) "\/" (v1 "/\" v2))))) = ((v102 "\/" ((v101 "\/" v102) "/\" (v1 "/\" ((v101 "/\" v102) "/\" v2)))) "/\" ((v1 "/\" ((v101 "/\" v102) "/\" v2)) "\/" v101))

      proof

        let v1, v2, v102, v101;

        ((v101 "/\" v102) "\/" (v1 "/\" ((v101 "/\" v102) "/\" v2))) = ((v101 "/\" v102) "/\" ((v101 "/\" v102) "\/" (v1 "/\" v2))) by A417;

        hence thesis by A20;

      end;

      

       A640: for v0, v1, v3, v2 holds (((v0 "/\" (v1 "/\" (v2 "/\" v3))) "/\" v1) "\/" (v2 "/\" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "\/" ((v1 "\/" v2) "/\" (v0 "/\" ((v1 "/\" v2) "/\" v3)))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" v3) = (v1 "/\" (v2 "/\" v3)) by A3;

        hence thesis by A637;

      end;

      

       A642: for v0, v1, v3, v2 holds ((v1 "/\" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) "\/" (v2 "/\" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "\/" ((v1 "\/" v2) "/\" (v0 "/\" ((v1 "/\" v2) "/\" v3)))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "/\" v1) = (v1 "/\" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) by A4;

        hence thesis by A640;

      end;

      

       A645: for v1, v0, v3, v2 holds ((v1 "/\" (v0 "/\" (v2 "/\" v3))) "\/" (v2 "/\" ((v0 "/\" v2) "/\" ((v0 "/\" v2) "\/" (v1 "/\" v3))))) = ((v2 "\/" ((v0 "\/" v2) "/\" (v1 "/\" ((v0 "/\" v2) "/\" v3)))) "/\" ((v1 "/\" ((v0 "/\" v2) "/\" v3)) "\/" v0))

      proof

        let v1, v0, v3, v2;

        (v0 "/\" (v1 "/\" (v0 "/\" (v2 "/\" v3)))) = (v1 "/\" (v0 "/\" (v2 "/\" v3))) by A162;

        hence thesis by A642;

      end;

      

       A648: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v2 "/\" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3)))))) = ((v2 "\/" ((v1 "\/" v2) "/\" (v0 "/\" ((v1 "/\" v2) "/\" v3)))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))) = (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3)))) by A3;

        hence thesis by A645;

      end;

      

       A650: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "\/" ((v1 "\/" v2) "/\" (v0 "/\" ((v1 "/\" v2) "/\" v3)))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        (v2 "/\" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3)))) by A162;

        hence thesis by A648;

      end;

      

       A652: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "\/" ((v1 "\/" v2) "/\" (v0 "/\" (v1 "/\" (v2 "/\" v3))))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" v3) = (v1 "/\" (v2 "/\" v3)) by A3;

        hence thesis by A650;

      end;

      

       A654: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "\/" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        ((v1 "\/" v2) "/\" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) = (v0 "/\" (v1 "/\" (v2 "/\" v3))) by A586;

        hence thesis by A652;

      end;

      

       A656: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" v1))

      proof

        let v0, v1, v3, v2;

        (v2 "\/" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) = (v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) by A634;

        hence thesis by A654;

      end;

      

       A658: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" v1))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" v3) = (v1 "/\" (v2 "/\" v3)) by A3;

        hence thesis by A656;

      end;

      

       A660: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" (v1 "\/" (v0 "/\" (v1 "/\" (v2 "/\" v3)))))

      proof

        let v0, v1, v3, v2;

        ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" v1) = (v1 "\/" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) by A8;

        hence thesis by A658;

      end;

      

       A662: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" (v1 "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3)))))

      proof

        let v0, v1, v3, v2;

        (v1 "\/" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) = (v1 "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3)))) by A417;

        hence thesis by A660;

      end;

      

       A664: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = (v1 "/\" ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3)))))

      proof

        let v0, v1, v3, v2;

        ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" (v1 "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3))))) = (v1 "/\" ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3))))) by A40;

        hence thesis by A662;

      end;

      

       A666: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = (v1 "/\" (v2 "/\" ((v2 "\/" (v0 "/\" (v1 "/\" v3))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3))))))

      proof

        let v0, v1, v3, v2;

        ((v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v3)))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3)))) = (v2 "/\" ((v2 "\/" (v0 "/\" (v1 "/\" v3))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3))))) by A3;

        hence thesis by A664;

      end;

      

       A669: for v0, v100, v1 holds (v100 "\/" ((v100 "\/" ((v1 "\/" v100) "/\" v0)) "/\" (v0 "\/" v1))) = ((v0 "/\" v1) "\/" (v100 "/\" (v100 "\/" ((v1 "/\" v100) "\/" v0))))

      proof

        let v0, v100, v1;

        ((v0 "/\" v1) "\/" (v100 "/\" ((v1 "/\" v100) "\/" v0))) = ((v100 "\/" ((v1 "\/" v100) "/\" v0)) "/\" (v0 "\/" v1)) by A20;

        hence thesis by A421;

      end;

      

       A675: for v101, v1, v2, v100 holds ((v100 "/\" v101) "\/" (v101 "/\" (v1 "\/" (v100 "/\" (v100 "\/" v2))))) = (v101 "/\" (v100 "\/" (v1 "\/" (v100 "/\" v2))))

      proof

        let v101, v1, v2, v100;

        (v100 "\/" (v1 "\/" (v100 "/\" v2))) = (v1 "\/" (v100 "/\" (v100 "\/" v2))) by A421;

        hence thesis by A128;

      end;

      

       A679: for v101, v2, v100 holds ((v2 "\/" ((v100 "\/" v2) "/\" (v100 "\/" v101))) "/\" ((v100 "\/" v101) "\/" v100)) = (v100 "\/" ((v100 "/\" v101) "\/" (v2 "/\" ((v100 "/\" v2) "\/" (v100 "\/" v101)))))

      proof

        let v101, v2, v100;

        ((v100 "/\" (v100 "\/" v101)) "\/" (v2 "/\" ((v100 "/\" v2) "\/" (v100 "\/" v101)))) = ((v2 "\/" ((v100 "\/" v2) "/\" (v100 "\/" v101))) "/\" ((v100 "\/" v101) "\/" v100)) by A101;

        hence thesis by A403;

      end;

      

       A682: for v2, v0, v1 holds ((v0 "\/" ((v1 "\/" v0) "/\" (v1 "\/" v2))) "/\" (v1 "\/" (v1 "\/" v2))) = (v1 "\/" ((v1 "/\" v2) "\/" (v0 "/\" ((v1 "/\" v0) "\/" (v1 "\/" v2)))))

      proof

        let v2, v0, v1;

        ((v1 "\/" v2) "\/" v1) = (v1 "\/" (v1 "\/" v2)) by A8;

        hence thesis by A679;

      end;

      

       A684: for v2, v0, v1 holds ((v0 "\/" ((v1 "\/" v0) "/\" (v1 "\/" v2))) "/\" (v1 "\/" v2)) = (v1 "\/" ((v1 "/\" v2) "\/" (v0 "/\" ((v1 "/\" v0) "\/" (v1 "\/" v2)))))

      proof

        let v2, v0, v1;

        (v1 "\/" (v1 "\/" v2)) = (v1 "\/" v2) by A43;

        hence thesis by A682;

      end;

      

       A686: for v2, v0, v1 holds ((v1 "\/" v2) "/\" (v0 "\/" ((v1 "\/" v0) "/\" (v1 "\/" v2)))) = (v1 "\/" ((v1 "/\" v2) "\/" (v0 "/\" ((v1 "/\" v0) "\/" (v1 "\/" v2)))))

      proof

        let v2, v0, v1;

        ((v0 "\/" ((v1 "\/" v0) "/\" (v1 "\/" v2))) "/\" (v1 "\/" v2)) = ((v1 "\/" v2) "/\" (v0 "\/" ((v1 "\/" v0) "/\" (v1 "\/" v2)))) by A4;

        hence thesis by A684;

      end;

      

       A689: for v1, v2, v0 holds ((v0 "\/" v1) "/\" (v2 "\/" ((v0 "\/" v2) "/\" (v0 "\/" v1)))) = (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" ((v0 "/\" v2) "\/" v1)))))

      proof

        let v1, v2, v0;

        ((v0 "/\" v2) "\/" (v0 "\/" v1)) = (v0 "\/" ((v0 "/\" v2) "\/" v1)) by A57;

        hence thesis by A686;

      end;

      

       A693: for v102, v1, v100 holds (v100 "\/" (v100 "\/" ((v100 "/\" v1) "\/" ((v100 "\/" v1) "/\" v102)))) = (v100 "\/" ((v100 "\/" v1) "/\" v102))

      proof

        let v102, v1, v100;

        ((v100 "/\" (v100 "\/" v1)) "\/" ((v100 "\/" v1) "/\" v102)) = (v100 "\/" ((v100 "/\" v1) "\/" ((v100 "\/" v1) "/\" v102))) by A403;

        hence thesis by A426;

      end;

      

       A696: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "\/" ((v0 "\/" v1) "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))) = (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))) by A43;

        hence thesis by A693;

      end;

      

       A699: for v100, v1, v102 holds ((v100 "/\" (v102 "\/" v1)) "\/" (v102 "/\" (v102 "\/" ((v102 "/\" v1) "\/" v100)))) = ((v102 "\/" (((v102 "\/" v1) "\/" v102) "/\" v100)) "/\" (v100 "\/" (v102 "\/" v1)))

      proof

        let v100, v1, v102;

        ((v102 "/\" (v102 "\/" v1)) "\/" v100) = (v102 "\/" ((v102 "/\" v1) "\/" v100)) by A403;

        hence thesis by A104;

      end;

      

       A702: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" ((v1 "/\" v2) "\/" v0)))) = ((v1 "\/" ((v1 "\/" (v1 "\/" v2)) "/\" v0)) "/\" (v0 "\/" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v1 "\/" v2) "\/" v1) = (v1 "\/" (v1 "\/" v2)) by A8;

        hence thesis by A699;

      end;

      

       A704: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" ((v1 "/\" v2) "\/" v0)))) = ((v1 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (v1 "\/" (v1 "\/" v2)) = (v1 "\/" v2) by A43;

        hence thesis by A702;

      end;

      

       A707: for v102, v2, v101 holds ((v101 "/\" v2) "\/" (v102 "/\" (v101 "/\" v2))) = ((v101 "/\" v2) "/\" ((v101 "/\" v2) "\/" (v101 "/\" v102)))

      proof

        let v102, v2, v101;

        (v101 "/\" (v102 "/\" (v101 "/\" v2))) = (v102 "/\" (v101 "/\" v2)) by A162;

        hence thesis by A441;

      end;

      

       A710: for v2, v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" v1))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) by A400;

        hence thesis by A707;

      end;

      

       A712: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A710;

      end;

      

       A714: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2))))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))) by A3;

        hence thesis by A712;

      end;

      

       A717: for v2, v1, v0 holds ((v1 "\/" v0) "/\" (v2 "/\" (v0 "/\" v1))) = (v2 "/\" (v0 "/\" v1))

      proof

        let v2, v1, v0;

        (v0 "\/" v1) = (v1 "\/" v0) by A8;

        hence thesis by A481;

      end;

      

       A721: for v102, v1, v0 holds ((v0 "/\" v1) "\/" (v102 "/\" (v0 "/\" v1))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v102)))

      proof

        let v102, v1, v0;

        ((v0 "\/" v1) "/\" (v102 "/\" (v0 "/\" v1))) = (v102 "/\" (v0 "/\" v1)) by A481;

        hence thesis by A441;

      end;

      

       A724: for v2, v1, v0 holds ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" v1))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) by A400;

        hence thesis by A721;

      end;

      

       A726: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A724;

      end;

      

       A728: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))) by A3;

        hence thesis by A726;

      end;

      

       A732: for v2, v100, v1, v0 holds (v100 "/\" ((v100 "\/" (v0 "/\" v1)) "/\" (v2 "\/" (v0 "\/" v1)))) = (v100 "/\" ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1))))

      proof

        let v2, v100, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "\/" (v0 "\/" v1))) = (v2 "\/" (v0 "\/" v1)) by A497;

        hence thesis by A351;

      end;

      

       A735: for v3, v0, v2, v1 holds (v0 "/\" ((v0 "\/" (v1 "/\" v2)) "/\" (v3 "\/" (v1 "\/" v2)))) = (v0 "/\" (v3 "\/" (v1 "\/" v2)))

      proof

        let v3, v0, v2, v1;

        ((v1 "/\" v2) "\/" (v3 "\/" (v1 "\/" v2))) = (v3 "\/" (v1 "\/" v2)) by A497;

        hence thesis by A732;

      end;

      

       A738: for v102, v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" v102) = ((v0 "\/" (v1 "/\" v2)) "/\" ((v1 "\/" v0) "/\" v102))

      proof

        let v102, v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" v0)) = (v0 "\/" (v1 "/\" v2)) by A500;

        hence thesis by A3;

      end;

      

       A743: for v102, v1, v2, v100 holds (((v1 "\/" (v100 "/\" (v100 "\/" v2))) "/\" v102) "\/" (v102 "/\" v100)) = (v102 "/\" (v100 "\/" (v1 "\/" (v100 "/\" v2))))

      proof

        let v102, v1, v2, v100;

        (v100 "\/" (v1 "\/" (v100 "/\" v2))) = (v1 "\/" (v100 "/\" (v100 "\/" v2))) by A421;

        hence thesis by A513;

      end;

      

       A747: for v101, v1, v102 holds ((v102 "\/" v1) "\/" (v101 "/\" (v102 "\/" v1))) = ((v102 "\/" v1) "\/" (v101 "/\" v102))

      proof

        let v101, v1, v102;

        (((v102 "\/" v1) "/\" v101) "\/" (v101 "/\" v102)) = (v101 "/\" (v102 "\/" v1)) by A513;

        hence thesis by A426;

      end;

      

       A750: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" v1) "\/" v2)) = ((v0 "\/" v1) "\/" (v2 "/\" v0))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "\/" (v2 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" ((v0 "\/" v1) "\/" v2)) by A400;

        hence thesis by A747;

      end;

      

       A752: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) = ((v0 "\/" v1) "\/" (v2 "/\" v0))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2)) by A7;

        hence thesis by A750;

      end;

      

       A754: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) = (v0 "\/" (v1 "\/" (v2 "/\" v0)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "\/" (v2 "/\" v0)) = (v0 "\/" (v1 "\/" (v2 "/\" v0))) by A7;

        hence thesis by A752;

      end;

      

       A758: for v102, v1, v100 holds (v100 "\/" (v102 "/\" (v100 "\/" v1))) = (((v100 "\/" v1) "/\" v102) "\/" (v100 "/\" (v100 "\/" v102)))

      proof

        let v102, v1, v100;

        (((v100 "\/" v1) "/\" v102) "\/" (v102 "/\" v100)) = (v102 "/\" (v100 "\/" v1)) by A513;

        hence thesis by A451;

      end;

      

       A764: for v102, v1, v2, v100 holds (((v1 "\/" (v100 "/\" (v100 "\/" v2))) "/\" v102) "\/" (v102 "/\" v100)) = (v102 "/\" (v100 "\/" (v1 "\/" (v2 "/\" v100))))

      proof

        let v102, v1, v2, v100;

        (v100 "\/" (v1 "\/" (v2 "/\" v100))) = (v1 "\/" (v100 "/\" (v100 "\/" v2))) by A451;

        hence thesis by A513;

      end;

      

       A767: for v3, v0, v2, v1 holds (v3 "/\" (v1 "\/" (v0 "\/" (v1 "/\" v2)))) = (v3 "/\" (v1 "\/" (v0 "\/" (v2 "/\" v1))))

      proof

        let v3, v0, v2, v1;

        (((v0 "\/" (v1 "/\" (v1 "\/" v2))) "/\" v3) "\/" (v3 "/\" v1)) = (v3 "/\" (v1 "\/" (v0 "\/" (v1 "/\" v2)))) by A743;

        hence thesis by A764;

      end;

      

       A770: for v0, v2, v3, v1 holds (v0 "/\" (v1 "\/" (v2 "\/" (v1 "/\" v3)))) = (v0 "/\" ((v1 "\/" v2) "/\" (v1 "\/" (v2 "\/" v3))))

      proof

        let v0, v2, v3, v1;

        (v1 "\/" (v2 "\/" (v3 "/\" v1))) = ((v1 "\/" v2) "/\" (v1 "\/" (v2 "\/" v3))) by A754;

        hence thesis by A767;

      end;

      

       A772: for v1, v2, v3, v0 holds ((v0 "/\" v1) "\/" (v1 "/\" (v2 "\/" (v0 "/\" (v0 "\/" v3))))) = (v1 "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v3))))

      proof

        let v1, v2, v3, v0;

        (v1 "/\" (v0 "\/" (v2 "\/" (v0 "/\" v3)))) = (v1 "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v3)))) by A770;

        hence thesis by A675;

      end;

      

       A774: for v0, v2, v1 holds ((v0 "\/" v1) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "\/" (v1 "\/" (v0 "/\" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v0 "/\" v2)))) = ((v0 "\/" v1) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) by A770;

        hence thesis by A510;

      end;

      

       A776: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) = (v0 "\/" (v1 "\/" (v0 "/\" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) by A26;

        hence thesis by A774;

      end;

      

       A779: for v2, v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2)))) = ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))) by A776;

        hence thesis by A614;

      end;

      

       A781: for v2, v1, v0 holds ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1)) by A347;

        hence thesis by A779;

      end;

      

       A783: for v2, v1, v0 holds ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "\/" ((v0 "\/" v1) "/\" v2)) by A696;

        hence thesis by A781;

      end;

      

       A785: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2)))) by A3;

        hence thesis by A783;

      end;

      

       A787: for v2, v1, v0 holds (v0 "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "\/" ((v0 "\/" v1) "/\" v2)) by A198;

        hence thesis by A785;

      end;

      

       A790: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1))))) = (v0 "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2)))

      proof

        let v2, v1, v0;

        (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" (v0 "\/" ((v0 "\/" v1) "/\" v2))) by A787;

        hence thesis by A622;

      end;

      

       A793: for v102, v100, v1 holds ((v1 "/\" v100) "\/" ((v102 "\/" (v1 "/\" (v1 "\/" v100))) "/\" v100)) = (v100 "/\" ((v1 "/\" (v1 "\/" v100)) "\/" v102))

      proof

        let v102, v100, v1;

        (v100 "/\" (v1 "/\" (v1 "\/" v100))) = (v1 "/\" v100) by A308;

        hence thesis by A517;

      end;

      

       A796: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v1 "/\" (v2 "\/" (v0 "/\" (v0 "\/" v1))))) = (v1 "/\" ((v0 "/\" (v0 "\/" v1)) "\/" v2))

      proof

        let v2, v1, v0;

        ((v2 "\/" (v0 "/\" (v0 "\/" v1))) "/\" v1) = (v1 "/\" (v2 "\/" (v0 "/\" (v0 "\/" v1)))) by A4;

        hence thesis by A793;

      end;

      

       A798: for v0, v1, v2 holds (v1 "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) = (v1 "/\" ((v0 "/\" (v0 "\/" v1)) "\/" v2))

      proof

        let v0, v1, v2;

        ((v0 "/\" v1) "\/" (v1 "/\" (v2 "\/" (v0 "/\" (v0 "\/" v1))))) = (v1 "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) by A772;

        hence thesis by A796;

      end;

      

       A801: for v0, v2, v1 holds ((v1 "\/" v2) "/\" v0) = (v0 "/\" ((v1 "/\" (v1 "\/" v0)) "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" ((v1 "\/" v2) "/\" (v1 "\/" (v2 "\/" v0)))) = ((v1 "\/" v2) "/\" v0) by A328;

        hence thesis by A798;

      end;

      

       A804: for v2, v1, v0 holds ((v0 "\/" v1) "/\" v2) = (v2 "/\" (v0 "\/" ((v0 "/\" v2) "\/" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v2)) "\/" v1) = (v0 "\/" ((v0 "/\" v2) "\/" v1)) by A403;

        hence thesis by A801;

      end;

      

       A808: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))) = ((v0 "\/" v1) "/\" (v2 "\/" ((v0 "\/" v2) "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        (v2 "/\" (v0 "\/" ((v0 "/\" v2) "\/" v1))) = ((v0 "\/" v1) "/\" v2) by A804;

        hence thesis by A689;

      end;

      

       A810: for v2, v1, v0 holds (v0 "\/" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" (v2 "\/" ((v0 "\/" v2) "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "\/" ((v0 "\/" v1) "/\" v2)) by A696;

        hence thesis by A808;

      end;

      

       A813: for v1, v2, v102, v101 holds (((v1 "/\" ((v101 "/\" v102) "/\" v2)) "/\" v101) "\/" ((v101 "/\" v102) "/\" ((v101 "/\" v102) "\/" (v1 "/\" v2)))) = ((v1 "/\" ((v101 "/\" v102) "/\" v2)) "\/" (v101 "/\" v102))

      proof

        let v1, v2, v102, v101;

        ((v101 "/\" v102) "\/" (v1 "/\" ((v101 "/\" v102) "/\" v2))) = ((v101 "/\" v102) "/\" ((v101 "/\" v102) "\/" (v1 "/\" v2))) by A417;

        hence thesis by A529;

      end;

      

       A816: for v0, v1, v3, v2 holds (((v0 "/\" (v1 "/\" (v2 "/\" v3))) "/\" v1) "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3)))) = ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" (v1 "/\" v2))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" v3) = (v1 "/\" (v2 "/\" v3)) by A3;

        hence thesis by A813;

      end;

      

       A818: for v0, v1, v3, v2 holds ((v1 "/\" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3)))) = ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" (v1 "/\" v2))

      proof

        let v0, v1, v3, v2;

        ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "/\" v1) = (v1 "/\" (v0 "/\" (v1 "/\" (v2 "/\" v3)))) by A4;

        hence thesis by A816;

      end;

      

       A821: for v1, v0, v3, v2 holds ((v1 "/\" (v0 "/\" (v2 "/\" v3))) "\/" ((v0 "/\" v2) "/\" ((v0 "/\" v2) "\/" (v1 "/\" v3)))) = ((v1 "/\" ((v0 "/\" v2) "/\" v3)) "\/" (v0 "/\" v2))

      proof

        let v1, v0, v3, v2;

        (v0 "/\" (v1 "/\" (v0 "/\" (v2 "/\" v3)))) = (v1 "/\" (v0 "/\" (v2 "/\" v3))) by A162;

        hence thesis by A818;

      end;

      

       A824: for v0, v1, v3, v2 holds ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" (v1 "/\" v2))

      proof

        let v0, v1, v3, v2;

        ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))) = (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3)))) by A3;

        hence thesis by A821;

      end;

      

       A826: for v2, v0, v3, v1 holds (v1 "/\" (v2 "/\" ((v2 "\/" (v0 "/\" (v1 "/\" v3))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3)))))) = ((v0 "/\" ((v1 "/\" v2) "/\" v3)) "\/" (v1 "/\" v2))

      proof

        let v2, v0, v3, v1;

        ((v0 "/\" (v1 "/\" (v2 "/\" v3))) "\/" (v1 "/\" (v2 "/\" ((v1 "/\" v2) "\/" (v0 "/\" v3))))) = (v1 "/\" (v2 "/\" ((v2 "\/" (v0 "/\" (v1 "/\" v3))) "/\" (v1 "\/" (v0 "/\" (v2 "/\" v3)))))) by A666;

        hence thesis by A824;

      end;

      

       A829: for v1, v2, v3, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v2 "/\" (v0 "/\" v3))) "/\" (v0 "\/" (v2 "/\" (v1 "/\" v3)))))) = ((v2 "/\" (v0 "/\" (v1 "/\" v3))) "\/" (v0 "/\" v1))

      proof

        let v1, v2, v3, v0;

        ((v0 "/\" v1) "/\" v3) = (v0 "/\" (v1 "/\" v3)) by A3;

        hence thesis by A826;

      end;

      

       A831: for v1, v2, v3, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v2 "/\" (v0 "/\" v3))) "/\" (v0 "\/" (v2 "/\" (v1 "/\" v3)))))) = ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v1 "/\" v3))))

      proof

        let v1, v2, v3, v0;

        ((v2 "/\" (v0 "/\" (v1 "/\" v3))) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v1 "/\" v3)))) by A8;

        hence thesis by A829;

      end;

      

       A833: for v1, v2, v3, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v2 "/\" (v0 "/\" v3))) "/\" (v0 "\/" (v2 "/\" (v1 "/\" v3)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v2 "/\" v3))))

      proof

        let v1, v2, v3, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v1 "/\" v3)))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v2 "/\" v3)))) by A628;

        hence thesis by A831;

      end;

      

       A836: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" ((v0 "\/" v1) "/\" (v0 "/\" v2))) "/\" (v0 "\/" ((v0 "\/" v1) "/\" (v1 "/\" v2)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" v2)))) = (v0 "/\" (v1 "/\" ((v1 "\/" ((v0 "\/" v1) "/\" (v0 "/\" v2))) "/\" (v0 "\/" ((v0 "\/" v1) "/\" (v1 "/\" v2)))))) by A833;

        hence thesis by A728;

      end;

      

       A838: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" ((v0 "\/" v1) "/\" (v1 "/\" v2)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "/\" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" v2)) by A40;

        hence thesis by A836;

      end;

      

       A840: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" ((v0 "\/" v1) "/\" v2)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v1 "/\" v2)) = (v1 "/\" ((v0 "\/" v1) "/\" v2)) by A40;

        hence thesis by A838;

      end;

      

       A843: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" (v0 "/\" v2)))) "/\" (v0 "\/" (v1 "/\" ((v0 "\/" v1) "/\" (v0 "/\" v2))))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))) = (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" (v0 "/\" v2)))) "/\" (v0 "\/" (v1 "/\" ((v0 "\/" v1) "/\" (v0 "/\" v2))))))) by A840;

        hence thesis by A714;

      end;

      

       A845: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2)))) "/\" (v0 "\/" (v1 "/\" ((v0 "\/" v1) "/\" (v0 "/\" v2))))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "/\" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" v2)) by A40;

        hence thesis by A843;

      end;

      

       A847: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" ((v0 "\/" v1) "/\" (v0 "/\" v2))))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" v2)) by A26;

        hence thesis by A845;

      end;

      

       A849: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2))))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "/\" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" v2)) by A40;

        hence thesis by A847;

      end;

      

       A851: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v0 "/\" (v1 "/\" v2)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        (v1 "/\" (v0 "/\" ((v0 "\/" v1) "/\" v2))) = (v0 "/\" (v1 "/\" v2)) by A323;

        hence thesis by A849;

      end;

      

       A853: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" (v1 "/\" v2))) = (v0 "/\" (v0 "\/" (v1 "/\" v2))) by A347;

        hence thesis by A851;

      end;

      

       A855: for v2, v1, v0 holds (v0 "/\" (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2)))) = (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))) by A40;

        hence thesis by A853;

      end;

      

       A857: for v2, v1, v0 holds (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2))))) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2))))) by A162;

        hence thesis by A855;

      end;

      

       A860: for v2, v0, v1 holds (v0 "/\" (v1 "/\" ((v0 "\/" (v1 "/\" ((v1 "\/" v0) "/\" v2))) "/\" (v1 "\/" (v0 "/\" v2))))) = (v1 "/\" (v0 "/\" ((v0 "\/" (v1 "/\" ((v1 "\/" v0) "/\" v2))) "/\" (v1 "\/" (v0 "/\" ((v1 "\/" v0) "/\" v2))))))

      proof

        let v2, v0, v1;

        (v1 "/\" (v0 "/\" ((v1 "/\" v0) "\/" v2))) = (v1 "/\" (v0 "/\" ((v0 "\/" (v1 "/\" ((v1 "\/" v0) "/\" v2))) "/\" (v1 "\/" (v0 "/\" ((v1 "\/" v0) "/\" v2)))))) by A840;

        hence thesis by A857;

      end;

      

       A864: for v2, v1, v0 holds (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" ((v0 "\/" v1) "/\" v2)))))) = (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2))))) by A860;

        hence thesis by A840;

      end;

      

       A867: for v102, v1, v100 holds (v100 "\/" ((v100 "/\" v1) "\/" (v102 "/\" (v100 "/\" v1)))) = (v100 "\/" (v102 "/\" (v100 "/\" v1)))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A26;

        hence thesis by A558;

      end;

      

       A870: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "\/" (v2 "/\" (v0 "/\" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" v1))) = ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) by A400;

        hence thesis by A867;

      end;

      

       A872: for v2, v1, v0 holds (v0 "\/" (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))) = (v0 "\/" (v2 "/\" (v0 "/\" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A870;

      end;

      

       A874: for v2, v1, v0 holds (v0 "\/" (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "\/" (v2 "/\" (v0 "/\" v1)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2))))) by A864;

        hence thesis by A872;

      end;

      

       A876: for v2, v1, v0 holds (v0 "/\" (v0 "\/" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "\/" (v2 "/\" (v0 "/\" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "/\" (v0 "\/" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) by A417;

        hence thesis by A874;

      end;

      

       A878: for v2, v1, v0 holds (v0 "/\" (v0 "\/" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v2 "/\" (v0 "/\" v1))) = (v0 "/\" (v0 "\/" (v2 "/\" v1))) by A417;

        hence thesis by A876;

      end;

      

       A881: for v102, v1, v100 holds (v100 "\/" (v100 "\/" ((v100 "/\" v1) "\/" (v102 "/\" (v100 "\/" v1))))) = (v100 "\/" (v102 "/\" (v100 "\/" v1)))

      proof

        let v102, v1, v100;

        ((v100 "/\" (v100 "\/" v1)) "\/" (v102 "/\" (v100 "\/" v1))) = (v100 "\/" ((v100 "/\" v1) "\/" (v102 "/\" (v100 "\/" v1)))) by A403;

        hence thesis by A558;

      end;

      

       A884: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1)))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1))))) = (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1)))) by A43;

        hence thesis by A881;

      end;

      

       A887: for v101, v2, v1 holds ((v1 "\/" (v101 "/\" (v1 "\/" v2))) "\/" (v101 "/\" (v1 "\/" v2))) = ((v1 "\/" (v101 "/\" (v1 "\/" v2))) "/\" ((v1 "\/" (v101 "/\" (v1 "\/" v2))) "\/" v101))

      proof

        let v101, v2, v1;

        (v101 "/\" (v1 "\/" (v101 "/\" (v1 "\/" v2)))) = (v101 "/\" (v1 "\/" v2)) by A568;

        hence thesis by A400;

      end;

      

       A890: for v1, v2, v0 holds ((v1 "/\" (v0 "\/" v2)) "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) = ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "\/" v1))

      proof

        let v1, v2, v0;

        ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "\/" (v1 "/\" (v0 "\/" v2))) = ((v1 "/\" (v0 "\/" v2)) "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) by A8;

        hence thesis by A887;

      end;

      

       A893: for v0, v2, v1 holds (v1 "\/" (v0 "/\" (v1 "\/" v2))) = ((v1 "\/" (v0 "/\" (v1 "\/" v2))) "/\" ((v1 "\/" (v0 "/\" (v1 "\/" v2))) "\/" v0))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = (v1 "\/" (v0 "/\" (v1 "\/" v2))) by A51;

        hence thesis by A890;

      end;

      

       A896: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v1 "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))))

      proof

        let v1, v2, v0;

        ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "\/" v1) = (v1 "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) by A8;

        hence thesis by A893;

      end;

      

       A898: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" ((v1 "\/" v0) "/\" (v1 "\/" (v0 "\/" (v0 "\/" v2)))))

      proof

        let v1, v2, v0;

        (v1 "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) = ((v1 "\/" v0) "/\" (v1 "\/" (v0 "\/" (v0 "\/" v2)))) by A776;

        hence thesis by A896;

      end;

      

       A900: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" ((v1 "\/" v0) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v1, v2, v0;

        (v0 "\/" (v0 "\/" v2)) = (v0 "\/" v2) by A43;

        hence thesis by A898;

      end;

      

       A902: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v1 "\/" (v0 "\/" v2)))

      proof

        let v1, v2, v0;

        ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" ((v1 "\/" v0) "/\" (v1 "\/" (v0 "\/" v2)))) = ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v1 "\/" (v0 "\/" v2))) by A738;

        hence thesis by A900;

      end;

      

       A905: for v0, v1, v2 holds (v0 "/\" (v1 "\/" ((v2 "\/" v1) "/\" v0))) = (v0 "/\" (v2 "\/" v1))

      proof

        let v0, v1, v2;

        (v0 "/\" (v2 "\/" v1)) = ((v2 "\/" v1) "/\" v0) by A4;

        hence thesis by A570;

      end;

      

       A908: for v100, v101, v1, v2 holds (v100 "/\" (v101 "/\" (v2 "\/" v1))) = (v101 "/\" (v100 "/\" (v1 "\/" (v101 "/\" (v2 "\/" v1)))))

      proof

        let v100, v101, v1, v2;

        (v101 "/\" (v1 "\/" (v101 "/\" (v2 "\/" v1)))) = (v101 "/\" (v2 "\/" v1)) by A570;

        hence thesis by A40;

      end;

      

       A913: for v2, v1, v0 holds (v0 "\/" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v2 "\/" ((v0 "\/" v2) "/\" (v0 "\/" v1)))) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A905;

        hence thesis by A810;

      end;

      

       A915: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2))))) = ((v0 "\/" v1) "/\" (v0 "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v0, v2, v1;

        (v0 "/\" ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))))) = ((v0 "\/" v1) "/\" (v0 "/\" ((v0 "/\" v1) "\/" v2))) by A908;

        hence thesis by A357;

      end;

      

       A917: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2))))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A40;

        hence thesis by A915;

      end;

      

       A919: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2))))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A594;

        hence thesis by A917;

      end;

      

       A921: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1))))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A913;

        hence thesis by A790;

      end;

      

       A923: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" ((v1 "/\" v2) "\/" v0)))) = (((v1 "\/" v2) "/\" (v1 "\/" v0)) "/\" (v0 "\/" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (v1 "\/" ((v1 "\/" v2) "/\" v0)) = ((v1 "\/" v2) "/\" (v1 "\/" v0)) by A913;

        hence thesis by A704;

      end;

      

       A925: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" ((v1 "/\" v2) "\/" v0)))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        (((v1 "\/" v2) "/\" (v1 "\/" v0)) "/\" (v0 "\/" (v1 "\/" v2))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2)))) by A3;

        hence thesis by A923;

      end;

      

       A927: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v2 "\/" ((v1 "/\" v2) "\/" v0)))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v2 "\/" (v0 "\/" v1)))

      proof

        let v0, v2, v1;

        (v2 "\/" ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v2 "\/" (v0 "\/" v1))) by A913;

        hence thesis by A669;

      end;

      

       A929: for v2, v1, v0 holds (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))) = ((v2 "\/" ((v2 "\/" v1) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v2, v1, v0;

        (v1 "\/" v2) = (v2 "\/" v1) by A8;

        hence thesis by A110;

      end;

      

       A931: for v0, v2, v1 holds ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1)) = ((v2 "\/" ((v2 "\/" v1) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v0, v2, v1;

        (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1)) by A110;

        hence thesis by A929;

      end;

      

       A934: for v2, v0, v1 holds ((v0 "\/" ((v1 "\/" v0) "/\" v2)) "/\" (v2 "\/" v1)) = (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v2 "\/" v1))

      proof

        let v2, v0, v1;

        (v0 "\/" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A913;

        hence thesis by A931;

      end;

      

       A936: for v2, v0, v1 holds ((v0 "\/" ((v1 "\/" v0) "/\" v2)) "/\" (v2 "\/" v1)) = ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" (v2 "\/" v1)))

      proof

        let v2, v0, v1;

        (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v2 "\/" v1)) = ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" (v2 "\/" v1))) by A3;

        hence thesis by A934;

      end;

      

       A938: for v2, v1, v0 holds (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))) = ((((v1 "\/" v2) "/\" v0) "\/" v2) "/\" (v0 "\/" v1))

      proof

        let v2, v1, v0;

        (v2 "\/" ((v1 "\/" v2) "/\" v0)) = (((v1 "\/" v2) "/\" v0) "\/" v2) by A8;

        hence thesis by A110;

      end;

      

       A940: for v2, v1, v0 holds (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" v1) "/\" ((v2 "\/" v0) "/\" (v0 "\/" v1)))) = ((((v1 "\/" v2) "/\" v0) "\/" v2) "/\" (v0 "\/" v1))

      proof

        let v2, v1, v0;

        ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1)) = ((v2 "\/" v1) "/\" ((v2 "\/" v0) "/\" (v0 "\/" v1))) by A936;

        hence thesis by A938;

      end;

      

       A942: for v2, v1, v0 holds (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" v1) "/\" ((v2 "\/" v0) "/\" (v0 "\/" v1)))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1))

      proof

        let v2, v1, v0;

        (((v1 "\/" v2) "/\" v0) "\/" v2) = (v2 "\/" ((v1 "\/" v2) "/\" v0)) by A8;

        hence thesis by A940;

      end;

      

       A944: for v2, v1, v0 holds (((v0 "/\" v1) "\/" v2) "/\" ((v2 "\/" v1) "/\" ((v2 "\/" v0) "/\" (v0 "\/" v1)))) = ((v2 "\/" v1) "/\" ((v2 "\/" v0) "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v0 "\/" v1)) = ((v2 "\/" v1) "/\" ((v2 "\/" v0) "/\" (v0 "\/" v1))) by A936;

        hence thesis by A942;

      end;

      

       A947: for v100, v1, v0 holds ((v100 "\/" (v0 "/\" v1)) "/\" ((v100 "\/" ((v1 "\/" v100) "/\" v0)) "/\" (v0 "\/" v1))) = (((v0 "/\" v1) "\/" v100) "/\" ((v100 "\/" ((v1 "\/" v100) "/\" v0)) "/\" (v0 "\/" v1)))

      proof

        let v100, v1, v0;

        (((v0 "/\" v1) "\/" v100) "/\" ((v100 "\/" ((v1 "\/" v100) "/\" v0)) "/\" (v0 "\/" v1))) = ((v100 "\/" ((v1 "\/" v100) "/\" v0)) "/\" (v0 "\/" v1)) by A110;

        hence thesis by A392;

      end;

      

       A950: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) = (((v1 "/\" v2) "\/" v0) "/\" ((v0 "\/" ((v2 "\/" v0) "/\" v1)) "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" ((v2 "\/" v0) "/\" v1)) "/\" (v1 "\/" v2)) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) by A936;

        hence thesis by A947;

      end;

      

       A952: for v0, v2, v1 holds ((v0 "\/" v2) "/\" ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) = (((v1 "/\" v2) "\/" v0) "/\" ((v0 "\/" ((v2 "\/" v0) "/\" v1)) "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) = ((v0 "\/" v2) "/\" ((v0 "\/" (v1 "/\" v2)) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) by A40;

        hence thesis by A950;

      end;

      

       A955: for v0, v1, v2 holds ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1)))) = (((v2 "/\" v1) "\/" v0) "/\" ((v0 "\/" ((v1 "\/" v0) "/\" v2)) "/\" (v2 "\/" v1)))

      proof

        let v0, v1, v2;

        ((v0 "\/" (v2 "/\" v1)) "/\" ((v0 "\/" v2) "/\" (v2 "\/" v1))) = ((v0 "\/" v2) "/\" ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1))) by A40;

        hence thesis by A952;

      end;

      

       A957: for v0, v1, v2 holds ((v0 "\/" v1) "/\" ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1))) = (((v2 "/\" v1) "\/" v0) "/\" ((v0 "\/" ((v1 "\/" v0) "/\" v2)) "/\" (v2 "\/" v1)))

      proof

        let v0, v1, v2;

        ((v0 "\/" v2) "/\" ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1))) = ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1)) by A60;

        hence thesis by A955;

      end;

      

       A959: for v0, v1, v2 holds ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1)) = (((v2 "/\" v1) "\/" v0) "/\" ((v0 "\/" ((v1 "\/" v0) "/\" v2)) "/\" (v2 "\/" v1)))

      proof

        let v0, v1, v2;

        ((v0 "\/" v1) "/\" ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1))) = ((v0 "\/" (v2 "/\" v1)) "/\" (v2 "\/" v1)) by A315;

        hence thesis by A957;

      end;

      

       A962: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" v2)) = (((v1 "/\" v2) "\/" v0) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        ((v0 "\/" ((v2 "\/" v0) "/\" v1)) "/\" (v1 "\/" v2)) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) by A936;

        hence thesis by A959;

      end;

      

       A964: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" v2)) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (((v1 "/\" v2) "\/" v0) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) by A944;

        hence thesis by A962;

      end;

      

       A966: for v1, v2, v0 holds ((v0 "\/" (v0 "\/" v2)) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2)))) = (v0 "\/" (v1 "/\" (v0 "\/" v2)))

      proof

        let v1, v2, v0;

        ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v1 "\/" (v0 "\/" v2))) = ((v0 "\/" (v0 "\/" v2)) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2)))) by A964;

        hence thesis by A902;

      end;

      

       A969: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" (v2 "\/" (v0 "\/" v1)))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "\/" v1)) = (v0 "\/" v1) by A43;

        hence thesis by A966;

      end;

      

       A974: for v1, v101, v100 holds (v100 "\/" ((v100 "/\" v101) "/\" ((v100 "/\" v101) "\/" v1))) = (((v100 "/\" v101) "/\" v1) "\/" (v100 "/\" (v100 "\/" v101)))

      proof

        let v1, v101, v100;

        ((v100 "/\" v101) "\/" ((v100 "/\" v101) "/\" v1)) = ((v100 "/\" v101) "/\" ((v100 "/\" v101) "\/" v1)) by A347;

        hence thesis by A603;

      end;

      

       A977: for v2, v1, v0 holds (v0 "\/" (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2)))) = (((v0 "/\" v1) "/\" v2) "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) by A3;

        hence thesis by A974;

      end;

      

       A979: for v2, v1, v0 holds (v0 "\/" (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (((v0 "/\" v1) "/\" v2) "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v1 "/\" ((v0 "/\" v1) "\/" v2))) = (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2))))) by A864;

        hence thesis by A977;

      end;

      

       A981: for v2, v1, v0 holds (v0 "/\" (v0 "\/" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (((v0 "/\" v1) "/\" v2) "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v1 "/\" (v0 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "/\" (v0 "\/" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) by A417;

        hence thesis by A979;

      end;

      

       A983: for v0, v1, v2 holds (v0 "/\" (v0 "\/" (v2 "/\" v1))) = (((v0 "/\" v1) "/\" v2) "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v0, v1, v2;

        (v0 "/\" (v0 "\/" (v1 "/\" ((v1 "\/" (v0 "/\" ((v0 "\/" v1) "/\" v2))) "/\" (v0 "\/" (v1 "/\" v2)))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1))) by A878;

        hence thesis by A981;

      end;

      

       A986: for v0, v2, v1 holds (v0 "/\" (v0 "\/" (v1 "/\" v2))) = ((v0 "/\" (v2 "/\" v1)) "\/" (v0 "/\" (v0 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v2) "/\" v1) = (v0 "/\" (v2 "/\" v1)) by A3;

        hence thesis by A983;

      end;

      

       A991: for v100, v1, v102 holds (v100 "\/" (v102 "\/" ((v102 "/\" v1) "\/" (v100 "/\" (v102 "\/" v1))))) = (v100 "\/" (v102 "/\" (v102 "\/" v1)))

      proof

        let v100, v1, v102;

        (v102 "\/" ((v102 "/\" v1) "\/" (v100 "/\" (v102 "\/" v1)))) = ((v100 "/\" (v102 "\/" v1)) "\/" (v102 "/\" (v102 "\/" v1))) by A603;

        hence thesis by A558;

      end;

      

       A994: for v0, v2, v1 holds (v0 "\/" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = (v0 "\/" (v1 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (v1 "\/" ((v1 "/\" v2) "\/" (v0 "/\" (v1 "\/" v2)))) = (v1 "\/" (v0 "/\" (v1 "\/" v2))) by A884;

        hence thesis by A991;

      end;

      

       A996: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v1 "\/" v2)))) = (v0 "\/" (v1 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (v0 "\/" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v1 "\/" v2)))) by A776;

        hence thesis by A994;

      end;

      

       A998: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) = (v0 "\/" (v1 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        (v1 "\/" (v1 "\/" v2)) = (v1 "\/" v2) by A43;

        hence thesis by A996;

      end;

      

       A1001: for v0, v2, v1 holds (((v0 "/\" (v1 "/\" v2)) "\/" v0) "/\" ((v0 "/\" (v1 "/\" v2)) "\/" (v0 "\/" v1))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "/\" v2)) "\/" (v0 "/\" (v0 "\/" v1))) = (((v0 "/\" (v1 "/\" v2)) "\/" v0) "/\" ((v0 "/\" (v1 "/\" v2)) "\/" (v0 "\/" v1))) by A998;

        hence thesis by A986;

      end;

      

       A1003: for v0, v2, v1 holds ((v0 "\/" (v0 "/\" (v1 "/\" v2))) "/\" ((v0 "/\" (v1 "/\" v2)) "\/" (v0 "\/" v1))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "/\" v2)) "\/" v0) = (v0 "\/" (v0 "/\" (v1 "/\" v2))) by A8;

        hence thesis by A1001;

      end;

      

       A1005: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" ((v0 "/\" (v1 "/\" v2)) "\/" (v0 "\/" v1))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        (v0 "\/" (v0 "/\" (v1 "/\" v2))) = (v0 "/\" (v0 "\/" (v1 "/\" v2))) by A347;

        hence thesis by A1003;

      end;

      

       A1007: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" (v0 "\/" ((v0 "/\" (v1 "/\" v2)) "\/" v1))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "/\" v2)) "\/" (v0 "\/" v1)) = (v0 "\/" ((v0 "/\" (v1 "/\" v2)) "\/" v1)) by A57;

        hence thesis by A1005;

      end;

      

       A1009: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" (v0 "\/" (v1 "\/" (v0 "/\" (v1 "/\" v2))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "/\" v2)) "\/" v1) = (v1 "\/" (v0 "/\" (v1 "/\" v2))) by A8;

        hence thesis by A1007;

      end;

      

       A1011: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" (v0 "\/" (v1 "/\" (v1 "\/" (v0 "/\" v2))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        (v1 "\/" (v0 "/\" (v1 "/\" v2))) = (v1 "/\" (v1 "\/" (v0 "/\" v2))) by A417;

        hence thesis by A1009;

      end;

      

       A1013: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v0 "/\" v2))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        (v0 "\/" (v1 "/\" (v1 "\/" (v0 "/\" v2)))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" (v0 "/\" v2)))) by A998;

        hence thesis by A1011;

      end;

      

       A1015: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" ((v0 "\/" v1) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        (v0 "\/" (v1 "\/" (v0 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) by A776;

        hence thesis by A1013;

      end;

      

       A1017: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))) by A26;

        hence thesis by A1015;

      end;

      

       A1019: for v0, v2, v1 holds ((v0 "\/" v1) "/\" ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = ((v0 "\/" v1) "/\" ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" (v0 "\/" (v1 "\/" v2)))) by A40;

        hence thesis by A1017;

      end;

      

       A1021: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "/\" ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "\/" v2))))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v0 "\/" (v1 "/\" v2))) "/\" (v0 "\/" (v1 "\/" v2))) = (v0 "/\" ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "\/" v2)))) by A3;

        hence thesis by A1019;

      end;

      

       A1023: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        (v0 "/\" ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" (v0 "\/" (v1 "\/" v2))) by A735;

        hence thesis by A1021;

      end;

      

       A1025: for v0, v2, v1 holds (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) by A40;

        hence thesis by A1023;

      end;

      

       A1027: for v0, v2, v1 holds (v0 "/\" (v0 "\/" (v1 "\/" v2))) = (v0 "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v0, v2, v1;

        (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "/\" (v0 "\/" (v1 "\/" v2))) by A600;

        hence thesis by A1025;

      end;

      

       A1029: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v2))))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v2 "\/" (v0 "\/" v1)))

      proof

        let v0, v2, v1;

        (v2 "/\" (v2 "\/" ((v1 "/\" v2) "\/" v0))) = (v2 "/\" (v2 "\/" (v0 "/\" (v1 "/\" v2)))) by A1027;

        hence thesis by A927;

      end;

      

       A1031: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v2 "/\" (v2 "\/" (v0 "/\" v1))))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v2 "\/" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v2 "\/" (v0 "/\" (v1 "/\" v2))) = (v2 "/\" (v2 "\/" (v0 "/\" v1))) by A441;

        hence thesis by A1029;

      end;

      

       A1033: for v2, v1, v0 holds (((v0 "/\" v1) "\/" (v2 "/\" (v2 "\/" (v0 "/\" v1)))) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v2 "\/" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        (v2 "/\" (v2 "/\" (v2 "\/" (v0 "/\" v1)))) = (v2 "/\" (v2 "\/" (v0 "/\" v1))) by A26;

        hence thesis by A1031;

      end;

      

       A1035: for v2, v1, v0 holds (v2 "\/" (v0 "/\" v1)) = ((v2 "\/" ((v1 "\/" v2) "/\" v0)) "/\" (v2 "\/" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v2 "\/" (v0 "/\" v1)))) = (v2 "\/" (v0 "/\" v1)) by A344;

        hence thesis by A1033;

      end;

      

       A1040: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" (v0 "/\" (v1 "/\" v2))))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        (v1 "/\" (v1 "\/" ((v1 "/\" v2) "\/" v0))) = (v1 "/\" (v1 "\/" (v0 "/\" (v1 "/\" v2)))) by A1027;

        hence thesis by A925;

      end;

      

       A1042: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "/\" (v1 "\/" (v0 "/\" v2))))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        (v1 "\/" (v0 "/\" (v1 "/\" v2))) = (v1 "/\" (v1 "\/" (v0 "/\" v2))) by A417;

        hence thesis by A1040;

      end;

      

       A1044: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" (v0 "/\" v2)))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        (v1 "/\" (v1 "/\" (v1 "\/" (v0 "/\" v2)))) = (v1 "/\" (v1 "\/" (v0 "/\" v2))) by A26;

        hence thesis by A1042;

      end;

      

       A1046: for v0, v2, v1 holds (((v0 "/\" (v1 "\/" v2)) "\/" v1) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "\/" (v0 "/\" v2)))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "/\" (v1 "\/" (v0 "/\" v2)))) = (((v0 "/\" (v1 "\/" v2)) "\/" v1) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "\/" (v0 "/\" v2)))) by A998;

        hence thesis by A1044;

      end;

      

       A1048: for v0, v2, v1 holds ((v1 "\/" (v0 "/\" (v1 "\/" v2))) "/\" ((v0 "/\" (v1 "\/" v2)) "\/" (v1 "\/" (v0 "/\" v2)))) = ((v1 "\/" v2) "/\" ((v1 "\/" v0) "/\" (v0 "\/" (v1 "\/" v2))))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" v1) = (v1 "\/" (v0 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A1046;

      end;

      

       A1051: for v1, v2, v0 holds ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v0 "\/" ((v1 "/\" (v0 "\/" v2)) "\/" (v1 "/\" v2)))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v1, v2, v0;

        ((v1 "/\" (v0 "\/" v2)) "\/" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" ((v1 "/\" (v0 "\/" v2)) "\/" (v1 "/\" v2))) by A57;

        hence thesis by A1048;

      end;

      

       A1053: for v1, v2, v0 holds ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v0 "\/" ((v1 "/\" v2) "\/" (v1 "/\" (v0 "\/" v2))))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v1, v2, v0;

        ((v1 "/\" (v0 "\/" v2)) "\/" (v1 "/\" v2)) = ((v1 "/\" v2) "\/" (v1 "/\" (v0 "\/" v2))) by A8;

        hence thesis by A1051;

      end;

      

       A1055: for v1, v2, v0 holds ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v0 "\/" (v1 "/\" (v2 "\/" v0)))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v1, v2, v0;

        ((v1 "/\" v2) "\/" (v1 "/\" (v0 "\/" v2))) = (v1 "/\" (v2 "\/" v0)) by A133;

        hence thesis by A1053;

      end;

      

       A1057: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v1, v0, v2;

        ((v0 "\/" (v1 "/\" (v0 "\/" v2))) "/\" (v0 "\/" (v1 "/\" (v2 "\/" v0)))) = (v0 "\/" (v1 "/\" (v2 "\/" v0))) by A438;

        hence thesis by A1055;

      end;

      

       A1059: for v2, v1, v0 holds ((((v0 "\/" v1) "/\" v2) "\/" v0) "/\" (((v0 "\/" v1) "/\" v2) "\/" (v0 "\/" v2))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" v2) "\/" (v0 "/\" (v0 "\/" v2))) = ((((v0 "\/" v1) "/\" v2) "\/" v0) "/\" (((v0 "\/" v1) "/\" v2) "\/" (v0 "\/" v2))) by A998;

        hence thesis by A758;

      end;

      

       A1061: for v2, v1, v0 holds ((v0 "\/" ((v0 "\/" v1) "/\" v2)) "/\" (((v0 "\/" v1) "/\" v2) "\/" (v0 "\/" v2))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" v2) "\/" v0) = (v0 "\/" ((v0 "\/" v1) "/\" v2)) by A8;

        hence thesis by A1059;

      end;

      

       A1063: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (((v0 "\/" v1) "/\" v2) "\/" (v0 "\/" v2))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A913;

        hence thesis by A1061;

      end;

      

       A1065: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (((v0 "\/" v1) "/\" v2) "\/" v2))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" v2) "\/" (v0 "\/" v2)) = (v0 "\/" (((v0 "\/" v1) "/\" v2) "\/" v2)) by A57;

        hence thesis by A1063;

      end;

      

       A1067: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "\/" ((v0 "\/" v1) "/\" v2)))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" v2) "\/" v2) = (v2 "\/" ((v0 "\/" v1) "/\" v2)) by A8;

        hence thesis by A1065;

      end;

      

       A1069: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "/\" (v2 "\/" (v0 "\/" v1))))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v2 "\/" ((v0 "\/" v1) "/\" v2)) = (v2 "/\" (v2 "\/" (v0 "\/" v1))) by A400;

        hence thesis by A1067;

      end;

      

       A1071: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "/\" (v2 "\/" (v1 "/\" v0))))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v2 "/\" (v2 "\/" (v0 "\/" v1))) = (v2 "/\" (v2 "\/" (v1 "/\" v0))) by A1027;

        hence thesis by A1069;

      end;

      

       A1073: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" (v1 "/\" v0))))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v2 "/\" (v2 "\/" (v1 "/\" v0)))) = ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" (v1 "/\" v0)))) by A998;

        hence thesis by A1071;

      end;

      

       A1075: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1))))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v2 "\/" (v1 "/\" v0))) = ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1))) by A754;

        hence thesis by A1073;

      end;

      

       A1077: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        ((v0 "\/" v2) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) = ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1))) by A26;

        hence thesis by A1075;

      end;

      

       A1079: for v2, v1, v0 holds ((v0 "\/" v2) "/\" (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "\/" v1)))) = (v0 "\/" (v2 "/\" (v0 "\/" v1)))

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) = ((v0 "\/" v2) "/\" (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "\/" v1)))) by A40;

        hence thesis by A1077;

      end;

      

       A1082: for v0, v2, v1 holds ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))))) = (v0 "\/" (v1 "/\" (v0 "\/" v2)))

      proof

        let v0, v2, v1;

        (((v0 "\/" v2) "/\" (v0 "\/" v1)) "/\" (v0 "\/" (v1 "\/" v2))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) by A3;

        hence thesis by A1079;

      end;

      

       A1084: for v0, v2, v1 holds ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "\/" (v1 "/\" (v0 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2))))) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) by A162;

        hence thesis by A1082;

      end;

      

       A1089: for v2, v1, v0 holds (v0 "/\" (v1 "/\" (v1 "\/" (v2 "/\" (v0 "/\" v1))))) = (v0 "/\" (v1 "/\" (v1 "\/" v2)))

      proof

        let v2, v1, v0;

        (v1 "/\" (v1 "\/" ((v0 "/\" v1) "\/" v2))) = (v1 "/\" (v1 "\/" (v2 "/\" (v0 "/\" v1)))) by A1027;

        hence thesis by A414;

      end;

      

       A1091: for v1, v0, v2 holds (v0 "/\" (v1 "/\" (v1 "/\" (v1 "\/" (v2 "/\" v0))))) = (v0 "/\" (v1 "/\" (v1 "\/" v2)))

      proof

        let v1, v0, v2;

        (v1 "\/" (v2 "/\" (v0 "/\" v1))) = (v1 "/\" (v1 "\/" (v2 "/\" v0))) by A441;

        hence thesis by A1089;

      end;

      

       A1093: for v1, v0, v2 holds (v0 "/\" (v1 "/\" (v1 "\/" (v2 "/\" v0)))) = (v0 "/\" (v1 "/\" (v1 "\/" v2)))

      proof

        let v1, v0, v2;

        (v1 "/\" (v1 "/\" (v1 "\/" (v2 "/\" v0)))) = (v1 "/\" (v1 "\/" (v2 "/\" v0))) by A26;

        hence thesis by A1091;

      end;

      

       A1095: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1)))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        (v2 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2)))) = (v2 "/\" (v0 "/\" (v0 "\/" v1))) by A1093;

        hence thesis by A919;

      end;

      

       A1097: for v2, v1, v0 holds (v0 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1)))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A1095;

        hence thesis by A921;

      end;

      

       A1099: for v2, v1, v0 holds (v0 "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))) by A347;

        hence thesis by A1097;

      end;

      

       A1101: for v2, v1, v0 holds (v0 "/\" (v0 "\/" (v2 "/\" (v0 "/\" v1)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" v2)))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "\/" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" (v0 "\/" (v2 "/\" (v0 "/\" v1)))) by A1027;

        hence thesis by A1099;

      end;

      

       A1104: for v0, v2, v1 holds (v0 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2)))) = (v0 "/\" ((v0 "\/" v2) "/\" (v0 "\/" v1)))

      proof

        let v0, v2, v1;

        (v0 "\/" (v1 "/\" (v0 "/\" v2))) = (v0 "/\" (v0 "\/" (v1 "/\" v2))) by A417;

        hence thesis by A1101;

      end;

      

       A1106: for v0, v2, v1 holds (v0 "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "/\" ((v0 "\/" v2) "/\" (v0 "\/" v1)))

      proof

        let v0, v2, v1;

        (v0 "/\" (v0 "/\" (v0 "\/" (v1 "/\" v2)))) = (v0 "/\" (v0 "\/" (v1 "/\" v2))) by A26;

        hence thesis by A1104;

      end;

      

       A1108: for v0, v2, v1 holds (v0 "/\" (v0 "\/" (v1 "\/" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" v2)))

      proof

        let v0, v2, v1;

        (v0 "/\" (v0 "\/" (v2 "/\" v1))) = (v0 "/\" ((v0 "\/" v1) "/\" (v0 "\/" v2))) by A1106;

        hence thesis by A1027;

      end;

      

       A1111: for v100, v0, v1 holds ((v100 "\/" (v1 "\/" v0)) "/\" ((v1 "\/" v0) "/\" v100)) = ((v0 "\/" v1) "/\" ((v1 "\/" v0) "/\" v100))

      proof

        let v100, v0, v1;

        ((v0 "\/" v1) "/\" ((v1 "\/" v0) "/\" v100)) = ((v1 "\/" v0) "/\" v100) by A392;

        hence thesis by A717;

      end;

      

       A1114: for v0, v2, v1 holds (((v1 "\/" v2) "/\" v0) "/\" (v0 "\/" (v1 "\/" v2))) = ((v2 "\/" v1) "/\" ((v1 "\/" v2) "/\" v0))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "\/" v2)) "/\" ((v1 "\/" v2) "/\" v0)) = (((v1 "\/" v2) "/\" v0) "/\" (v0 "\/" (v1 "\/" v2))) by A4;

        hence thesis by A1111;

      end;

      

       A1117: for v2, v1, v0 holds ((v0 "\/" v1) "/\" (v2 "/\" (v2 "\/" (v0 "\/" v1)))) = ((v1 "\/" v0) "/\" ((v0 "\/" v1) "/\" v2))

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" v2) "/\" (v2 "\/" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" (v2 "/\" (v2 "\/" (v0 "\/" v1)))) by A3;

        hence thesis by A1114;

      end;

      

       A1119: for v1, v0, v2 holds ((v0 "\/" v1) "/\" (v2 "/\" ((v2 "\/" v0) "/\" (v2 "\/" v1)))) = ((v1 "\/" v0) "/\" ((v0 "\/" v1) "/\" v2))

      proof

        let v1, v0, v2;

        (v2 "/\" (v2 "\/" (v0 "\/" v1))) = (v2 "/\" ((v2 "\/" v0) "/\" (v2 "\/" v1))) by A1108;

        hence thesis by A1117;

      end;

      

       A1121: for v1, v0, v2 holds ((v0 "\/" v1) "/\" (v2 "/\" ((v2 "\/" v0) "/\" (v2 "\/" v1)))) = ((v0 "\/" v1) "/\" v2)

      proof

        let v1, v0, v2;

        ((v1 "\/" v0) "/\" ((v0 "\/" v1) "/\" v2)) = ((v0 "\/" v1) "/\" v2) by A392;

        hence thesis by A1119;

      end;

      

       A1123: for v2, v0, v1 holds ((v0 "\/" v1) "/\" (v1 "\/" ((v1 "\/" v0) "/\" v2))) = (v1 "\/" ((v0 "\/" v1) "/\" v2))

      proof

        let v2, v0, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A8;

        hence thesis by A208;

      end;

      

       A1125: for v2, v0, v1 holds ((v0 "\/" v1) "/\" ((v1 "\/" v0) "/\" (v1 "\/" v2))) = (v1 "\/" ((v0 "\/" v1) "/\" v2))

      proof

        let v2, v0, v1;

        (v1 "\/" ((v1 "\/" v0) "/\" v2)) = ((v1 "\/" v0) "/\" (v1 "\/" v2)) by A913;

        hence thesis by A1123;

      end;

      

       A1127: for v2, v0, v1 holds ((v1 "\/" v0) "/\" (v1 "\/" v2)) = (v1 "\/" ((v0 "\/" v1) "/\" v2))

      proof

        let v2, v0, v1;

        ((v0 "\/" v1) "/\" ((v1 "\/" v0) "/\" (v1 "\/" v2))) = ((v1 "\/" v0) "/\" (v1 "\/" v2)) by A392;

        hence thesis by A1125;

      end;

      

       A1132: for v1, v101, v100 holds ((v100 "\/" v101) "/\" (v101 "\/" (v1 "/\" (v100 "\/" v101)))) = (v101 "\/" ((v100 "\/" v101) "/\" (v1 "/\" (v1 "\/" (v100 "\/" v101)))))

      proof

        let v1, v101, v100;

        ((v100 "\/" v101) "/\" (v1 "/\" (v1 "\/" (v100 "\/" v101)))) = (v1 "/\" (v100 "\/" v101)) by A308;

        hence thesis by A208;

      end;

      

       A1135: for v2, v1, v0 holds (v1 "\/" (v2 "/\" (v0 "\/" v1))) = (v1 "\/" ((v0 "\/" v1) "/\" (v2 "/\" (v2 "\/" (v0 "\/" v1)))))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v1 "\/" (v2 "/\" (v0 "\/" v1)))) = (v1 "\/" (v2 "/\" (v0 "\/" v1))) by A565;

        hence thesis by A1132;

      end;

      

       A1138: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = (v0 "\/" ((v2 "\/" v0) "/\" (v1 "/\" ((v1 "\/" v2) "/\" (v1 "\/" v0)))))

      proof

        let v1, v0, v2;

        (v1 "/\" (v1 "\/" (v2 "\/" v0))) = (v1 "/\" ((v1 "\/" v2) "/\" (v1 "\/" v0))) by A1108;

        hence thesis by A1135;

      end;

      

       A1140: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = (v0 "\/" ((v2 "\/" v0) "/\" v1))

      proof

        let v1, v0, v2;

        ((v2 "\/" v0) "/\" (v1 "/\" ((v1 "\/" v2) "/\" (v1 "\/" v0)))) = ((v2 "\/" v0) "/\" v1) by A1121;

        hence thesis by A1138;

      end;

      

       A1142: for v1, v0, v2 holds (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" v2) "/\" (v0 "\/" v1))

      proof

        let v1, v0, v2;

        (v0 "\/" ((v2 "\/" v0) "/\" v1)) = ((v0 "\/" v2) "/\" (v0 "\/" v1)) by A1127;

        hence thesis by A1140;

      end;

      

       A1144: for v2, v1, v0 holds (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "\/" v1))) = (v0 "\/" (v2 "/\" v1))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v1 "\/" v0) "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2)) by A1127;

        hence thesis by A1035;

      end;

      

       A1146: for v0, v1, v2 holds ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) = (v0 "\/" (v2 "/\" v1))

      proof

        let v0, v1, v2;

        (((v0 "\/" v1) "/\" (v0 "\/" v2)) "/\" (v0 "\/" (v2 "\/" v1))) = ((v0 "\/" v1) "/\" ((v0 "\/" v2) "/\" (v0 "\/" (v2 "\/" v1)))) by A3;

        hence thesis by A1144;

      end;

      

       A1148: for v1, v2, v0 holds ((v0 "\/" v2) "/\" (v0 "\/" v1)) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v1, v2, v0;

        (v0 "\/" (v1 "/\" (v2 "\/" v0))) = ((v0 "\/" v2) "/\" (v0 "\/" v1)) by A1142;

        hence thesis by A1057;

      end;

      

       A1152: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v1, v2, v0;

        ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v0 "\/" (v1 "\/" v2)))) = (v0 "\/" (v1 "/\" v2)) by A1146;

        hence thesis by A1084;

      end;

      

       A1154: for v0, v2, v1 holds (v0 "\/" (v1 "/\" v2)) = ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2))))

      proof

        let v0, v2, v1;

        (v0 "\/" (v1 "/\" (v0 "\/" v2))) = (v0 "\/" (v1 "/\" v2)) by A1152;

        hence thesis by A969;

      end;

      

       Z: for v0, v2, v1 holds (v0 "\/" (v1 "/\" v2)) = ((v0 "\/" v2) "/\" (v0 "\/" v1))

      proof

        let v0, v2, v1;

        ((v0 "\/" v2) "/\" ((v0 "\/" v1) "/\" (v1 "\/" (v0 "\/" v2)))) = ((v0 "\/" v2) "/\" (v0 "\/" v1)) by A1148;

        hence thesis by A1154;

      end;

      let v1, v2, v3;

      (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v3) "/\" (v1 "\/" v2)) by Z;

      hence thesis by A4;

    end;

    

     Cluster3: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfdistributive implies L is distributive'

    proof

      assume L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfdistributive;

      then (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds ((((v0 "/\" v1) "\/" v2) "/\" v1) "\/" (v2 "/\" v0)) = ((((v0 "\/" v1) "/\" v2) "\/" v1) "/\" (v2 "\/" v0))) by LATTICES:def 4, LATTICES:def 5, LATTICES:def 6, LATTICES:def 7, SHEFFER1:def 9, ROBBINS1:def 7;

      then for v1, v2, v3 holds (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v2) "/\" (v1 "\/" v3)) by ThQLT3;

      hence thesis by SHEFFER1:def 5;

    end;

    registration

      cluster meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfdistributive -> distributive' for non empty LattStr;

      coherence by Cluster3;

    end

    begin

    definition

      let L;

      :: LATQUASI:def11

      attr L is satisfying_Bowden_inequality means for x,y,z be Element of L holds ((x "\/" y) "/\" z) [= (x "\/" (y "/\" z));

    end

    definition

      let L be join-commutative non empty LattStr;

      :: original: satisfying_Bowden_inequality

      redefine

      :: LATQUASI:def12

      attr L is satisfying_Bowden_inequality means

      : BowdenRedef: for v0,v2,v1 be Element of L holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" (v1 "/\" v2));

      compatibility

      proof

        thus L is satisfying_Bowden_inequality implies for v0,v2,v1 be Element of L holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" (v1 "/\" v2)) by LATTICES:def 3;

        assume

         B1: for v0,v2,v1 be Element of L holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" (v1 "/\" v2));

        let x,y,z be Element of L;

        ((x "\/" (y "/\" z)) "\/" ((x "\/" y) "/\" z)) = (x "\/" (y "/\" z)) by B1;

        hence thesis by LATTICES:def 3;

      end;

    end

    theorem :: LATQUASI:9

    

     ThQLT4: (for v0 holds (v0 "/\" v0) = v0) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" (v1 "/\" v2))) implies for v1, v2, v3 holds (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v2) "/\" (v1 "\/" v3))

    proof

      assume

       A1: for v0 holds (v0 "/\" v0) = v0;

      assume

       A2: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A3: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A4: for v0 holds (v0 "\/" v0) = v0;

      assume

       A5: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A6: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A7: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A9: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A2;

        hence thesis by A7;

      end;

      assume

       A10: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" (v1 "/\" v2));

      

       A12: for v2, v1, v0 holds (v0 "\/" ((v1 "/\" v2) "\/" ((v0 "\/" v1) "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" ((v1 "/\" v2) "\/" ((v0 "\/" v1) "/\" v2))) by A5;

        hence thesis by A10;

      end;

      

       A16: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A6;

        hence thesis by A3;

      end;

      

       A19: for v102, v100 holds ((v100 "\/" v102) "\/" v102) = (v100 "\/" v102)

      proof

        let v102, v100;

        (v102 "\/" v102) = v102 by A4;

        hence thesis by A5;

      end;

      

       A22: for v1, v0 holds (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A6;

        hence thesis by A19;

      end;

      

       A25: for v2, v0, v1 holds ((v1 "\/" v0) "\/" v2) = (v0 "\/" (v1 "\/" v2))

      proof

        let v2, v0, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A6;

        hence thesis by A5;

      end;

      

       A28: for v0, v2, v1 holds (v0 "\/" (v1 "\/" v2)) = (v1 "\/" (v0 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2)) by A5;

        hence thesis by A25;

      end;

      

       A31: for v102, v101 holds (v101 "/\" (v101 "\/" (v101 "/\" v102))) = (v101 "\/" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A4;

        hence thesis by A9;

      end;

      

       A34: for v2, v1, v0 holds (v0 "\/" ((v1 "/\" v2) "\/" (v2 "/\" (v0 "\/" v1)))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" v2) = (v2 "/\" (v0 "\/" v1)) by A2;

        hence thesis by A12;

      end;

      

       A37: for v102, v101 holds (v101 "\/" (v101 "/\" (v101 "\/" v102))) = (v101 "/\" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A1;

        hence thesis by A16;

      end;

      

       A40: for v0, v2, v1 holds ((v1 "/\" v0) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A2;

        hence thesis by A16;

      end;

      

       A44: for v101, v2, v1 holds (((v101 "\/" v1) "/\" v101) "\/" (v101 "\/" (v1 "/\" v2))) = ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2)))

      proof

        let v101, v2, v1;

        ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2))) = (v101 "\/" (v1 "/\" v2)) by A9;

        hence thesis by A16;

      end;

      

       A47: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" (v1 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2)))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A2;

        hence thesis by A44;

      end;

      

       A49: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "\/" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) by A28;

        hence thesis by A47;

      end;

      

       A51: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A9;

        hence thesis by A49;

      end;

      

       A53: for v0, v1 holds (v0 "/\" (v0 "\/" (v1 "/\" v0))) = (v0 "\/" (v0 "/\" v1))

      proof

        let v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A2;

        hence thesis by A31;

      end;

      

       A56: for v102, v1, v100 holds ((v100 "/\" (v100 "\/" v1)) "\/" v102) = (v100 "\/" ((v100 "/\" (v100 "\/" v1)) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" (v100 "\/" v1))) = (v100 "/\" (v100 "\/" v1)) by A37;

        hence thesis by A5;

      end;

      

       A60: for v2, v1, v0 holds ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2))) = ((v0 "/\" (v0 "\/" v1)) "\/" (v1 "/\" v2)) by A56;

        hence thesis by A51;

      end;

      

       A63: for v101, v100, v1 holds ((v100 "/\" v101) "\/" (v101 "/\" (v1 "\/" v100))) = (v101 "/\" (v100 "\/" (v1 "\/" v100)))

      proof

        let v101, v100, v1;

        (v100 "\/" (v1 "\/" v100)) = (v1 "\/" v100) by A22;

        hence thesis by A40;

      end;

      

       A66: for v1, v0, v2 holds ((v0 "/\" v1) "\/" (v1 "/\" (v2 "\/" v0))) = (v1 "/\" (v2 "\/" v0))

      proof

        let v1, v0, v2;

        (v0 "\/" (v2 "\/" v0)) = (v2 "\/" v0) by A22;

        hence thesis by A63;

      end;

      

       A68: for v2, v1, v0 holds (v0 "\/" (v2 "/\" (v0 "\/" v1))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v1 "/\" v2) "\/" (v2 "/\" (v0 "\/" v1))) = (v2 "/\" (v0 "\/" v1)) by A66;

        hence thesis by A34;

      end;

      

       A71: for v1, v2, v0 holds (v0 "\/" ((v0 "\/" v2) "/\" v1)) = (v0 "\/" (v2 "/\" v1))

      proof

        let v1, v2, v0;

        (v1 "/\" (v0 "\/" v2)) = ((v0 "\/" v2) "/\" v1) by A2;

        hence thesis by A68;

      end;

      

       A74: for v1, v2, v0 holds (v0 "\/" (v1 "/\" (v0 "\/" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v1, v2, v0;

        (v2 "/\" v1) = (v1 "/\" v2) by A2;

        hence thesis by A68;

      end;

      

       A77: for v100, v2 holds (v100 "/\" (v100 "\/" (v2 "/\" v100))) = (v100 "\/" (v100 "/\" (v100 "\/" v2)))

      proof

        let v100, v2;

        (v100 "\/" (v100 "/\" (v100 "\/" v2))) = (v100 "\/" (v2 "/\" v100)) by A68;

        hence thesis by A31;

      end;

      

       A80: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v1, v0;

        (v0 "/\" (v0 "\/" (v1 "/\" v0))) = (v0 "\/" (v0 "/\" v1)) by A53;

        hence thesis by A77;

      end;

      

       A82: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        (v0 "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "/\" (v0 "\/" v1)) by A37;

        hence thesis by A80;

      end;

      

       A85: for v2, v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "\/" (v1 "/\" v2)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "\/" v1)) = (v0 "\/" (v0 "/\" v1)) by A82;

        hence thesis by A60;

      end;

      

       A87: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "\/" (v1 "/\" v2)) = (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) by A5;

        hence thesis by A85;

      end;

      

       A90: for v102, v1, v100 holds ((v100 "\/" (v100 "/\" v1)) "\/" ((v100 "\/" v1) "/\" (v100 "\/" v102))) = ((v100 "\/" v1) "/\" (v100 "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "\/" v1)) = (v100 "\/" (v100 "/\" v1)) by A82;

        hence thesis by A40;

      end;

      

       A93: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" (v0 "\/" v2)))) = ((v0 "\/" v1) "/\" (v0 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "\/" ((v0 "\/" v1) "/\" (v0 "\/" v2))) = (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" (v0 "\/" v2)))) by A5;

        hence thesis by A90;

      end;

      

       A96: for v100, v101, v2, v1 holds (v100 "\/" (v101 "\/" (v1 "/\" v2))) = (v101 "\/" (v100 "\/" ((v101 "\/" v1) "/\" v2)))

      proof

        let v100, v101, v2, v1;

        (v101 "\/" ((v101 "\/" v1) "/\" v2)) = (v101 "\/" (v1 "/\" v2)) by A71;

        hence thesis by A28;

      end;

      

       A101: for v1, v2, v0 holds ((v0 "/\" v1) "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) = ((v0 "\/" v1) "/\" (v0 "\/" v2))

      proof

        let v1, v2, v0;

        (v0 "\/" ((v0 "/\" v1) "\/" ((v0 "\/" v1) "/\" (v0 "\/" v2)))) = ((v0 "/\" v1) "\/" (v0 "\/" (v1 "/\" (v0 "\/" v2)))) by A96;

        hence thesis by A93;

      end;

      

       A103: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "\/" (v1 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" (v1 "/\" (v0 "\/" v2))) = (v0 "\/" (v1 "/\" v2)) by A74;

        hence thesis by A101;

      end;

      

       A105: for v2, v1, v0 holds (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) = ((v0 "\/" v1) "/\" (v0 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) by A28;

        hence thesis by A103;

      end;

      for v0, v2, v1 holds (v0 "\/" (v1 "/\" v2)) = ((v0 "\/" v1) "/\" (v0 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" ((v0 "/\" v1) "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A87;

        hence thesis by A105;

      end;

      hence thesis;

    end;

    

     Cluster4: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 satisfying_Bowden_inequality implies L is distributive'

    proof

      assume

       A0: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 satisfying_Bowden_inequality;

      then

       A2: (for v0 holds (v0 "/\" v0) = v0) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) by LATTICES:def 4, LATTICES:def 5, LATTICES:def 6, SHEFFER1:def 9, ROBBINS1:def 7;

      (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" v2)) = (v0 "\/" (v1 "/\" v2))) by BowdenRedef, A0;

      then for v1, v2, v3 holds (v1 "\/" (v2 "/\" v3)) = ((v1 "\/" v2) "/\" (v1 "\/" v3)) by ThQLT4, A2;

      hence thesis by SHEFFER1:def 5;

    end;

    registration

      cluster meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 satisfying_Bowden_inequality -> distributive' for non empty LattStr;

      coherence by Cluster4;

    end

    begin

    definition

      let L;

      :: LATQUASI:def13

      attr L is QLT-selfmodular means for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" v1)));

    end

    definition

      let L be join-idempotent non empty LattStr;

      let a,b be Element of L;

      :: original: [=

      redefine

      pred a [= b;

      reflexivity

      proof

        let a be Element of L;

        (a "\/" a) = a by ROBBINS1:def 7;

        hence thesis by LATTICES:def 3;

      end;

    end

    theorem :: LATQUASI:10

    

     QLTMod: (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v0, v1, v2 st (v0 "\/" v1) = v1 holds (v0 "\/" (v2 "/\" v1)) = ((v0 "\/" v2) "/\" v1)) implies for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3)))

    proof

      assume

       A2: for v0 holds (v0 "/\" v0) = v0;

      assume

       A3: for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2));

      assume

       A4: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A5: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A6: for v0 holds (v0 "\/" v0) = v0;

      assume

       A7: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A8: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A9: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A11: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A4;

        hence thesis by A9;

      end;

      assume

       A12: for v0, v1, v2 st (v0 "\/" v1) = v1 holds (v0 "\/" (v2 "/\" v1)) = ((v0 "\/" v2) "/\" v1);

      assume not thesis;

      then

      consider c1,c2,c3 be Element of L such that

       A14: ((c1 "/\" c2) "\/" (c1 "/\" c3)) <> (c1 "/\" (c2 "\/" (c1 "/\" c3)));

      

       A17: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A5;

      end;

      

       A20: for v102, v101 holds (v101 "/\" v102) = (v101 "/\" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A3;

      end;

      

       A24: for v2, v0, v1 holds ((v1 "/\" v0) "/\" v2) = (v0 "/\" (v1 "/\" v2))

      proof

        let v2, v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A3;

      end;

      

       A27: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" (v0 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A3;

        hence thesis by A24;

      end;

      

       A30: for v102, v101 holds (v101 "\/" v102) = (v101 "\/" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A6;

        hence thesis by A7;

      end;

      

       A35: for v102, v100 holds ((v100 "\/" v102) "\/" v102) = (v100 "\/" v102)

      proof

        let v102, v100;

        (v102 "\/" v102) = v102 by A6;

        hence thesis by A7;

      end;

      

       A38: for v1, v0 holds (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A8;

        hence thesis by A35;

      end;

      

       A41: for v0, v2, v1 holds ((v1 "\/" v0) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A8;

        hence thesis by A11;

      end;

      

       A45: for v2, v100 holds ((v100 "\/" v2) "/\" v100) = (v100 "\/" (v2 "/\" v100))

      proof

        let v2, v100;

        (v100 "\/" v100) = v100 implies ((v100 "\/" v2) "/\" v100) = (v100 "\/" (v2 "/\" v100)) by A12;

        hence thesis by A6;

      end;

      

       A48: for v1, v0 holds (v0 "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v0))

      proof

        let v1, v0;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A45;

      end;

      

       A52: for v102, v1, v100 holds ((v100 "/\" v1) "\/" (v100 "/\" ((v100 "/\" v1) "\/" v102))) = (v100 "/\" ((v100 "/\" v1) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A20;

        hence thesis by A17;

      end;

      

       A56: for v101, v2, v100 holds ((v100 "\/" v2) "/\" (v100 "\/" v101)) = (v100 "\/" (v2 "/\" (v100 "\/" v101)))

      proof

        let v101, v2, v100;

        (v100 "\/" (v100 "\/" v101)) = (v100 "\/" v101) implies ((v100 "\/" v2) "/\" (v100 "\/" v101)) = (v100 "\/" (v2 "/\" (v100 "\/" v101))) by A12;

        hence thesis by A30;

      end;

      

       A60: for v101, v2, v100 holds ((v100 "\/" v2) "/\" (v101 "\/" v100)) = (v100 "\/" (v2 "/\" (v101 "\/" v100)))

      proof

        let v101, v2, v100;

        (v100 "\/" (v101 "\/" v100)) = (v101 "\/" v100) implies ((v100 "\/" v2) "/\" (v101 "\/" v100)) = (v100 "\/" (v2 "/\" (v101 "\/" v100))) by A12;

        hence thesis by A38;

      end;

      

       A63: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        (v1 "/\" v0) = (v0 "/\" v1) by A4;

        hence thesis by A48;

      end;

      

       A67: for v100, v1, v101 holds (v100 "/\" (v101 "\/" (v101 "/\" v1))) = (v101 "/\" (v100 "/\" (v101 "\/" v1)))

      proof

        let v100, v1, v101;

        (v101 "/\" (v101 "\/" v1)) = (v101 "\/" (v101 "/\" v1)) by A63;

        hence thesis by A27;

      end;

      

       A71: for v1, v2, v0 holds (v1 "\/" (v0 "/\" v2)) = ((v1 "\/" (v0 "/\" v2)) "/\" (v0 "\/" v1))

      proof

        let v1, v2, v0;

        ((v0 "\/" v1) "/\" (v1 "\/" (v0 "/\" v2))) = (v1 "\/" (v0 "/\" v2)) by A41;

        hence thesis by A4;

      end;

      

       A74: for v0, v2, v1 holds (v0 "\/" (v1 "/\" v2)) = (v0 "\/" ((v1 "/\" v2) "/\" (v1 "\/" v0)))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v1 "\/" v0)) = (v0 "\/" ((v1 "/\" v2) "/\" (v1 "\/" v0))) by A60;

        hence thesis by A71;

      end;

      

       A76: for v0, v2, v1 holds (v0 "\/" (v1 "/\" v2)) = (v0 "\/" (v1 "/\" (v2 "/\" (v1 "\/" v0))))

      proof

        let v0, v2, v1;

        ((v1 "/\" v2) "/\" (v1 "\/" v0)) = (v1 "/\" (v2 "/\" (v1 "\/" v0))) by A3;

        hence thesis by A74;

      end;

      

       A79: for v2, v0, v1 holds ((v1 "\/" v0) "/\" (v0 "\/" v2)) = (v0 "\/" (v1 "/\" (v0 "\/" v2)))

      proof

        let v2, v0, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A8;

        hence thesis by A56;

      end;

      

       A83: for v101, v2, v102 holds (((v102 "/\" v2) "\/" v101) "/\" (v102 "\/" (v102 "/\" v2))) = ((v102 "/\" v2) "\/" (v102 "/\" (v101 "/\" (v102 "\/" v2))))

      proof

        let v101, v2, v102;

        (v101 "/\" (v102 "\/" (v102 "/\" v2))) = (v102 "/\" (v101 "/\" (v102 "\/" v2))) by A67;

        hence thesis by A60;

      end;

      

       A86: for v2, v1, v0 holds ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        (((v0 "/\" v1) "\/" v2) "/\" (v0 "\/" (v0 "/\" v1))) = ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" v2)) by A4;

        hence thesis by A83;

      end;

      

       A88: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) by A79;

        hence thesis by A86;

      end;

      

       A90: for v2, v1, v0 holds (v0 "/\" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A52;

        hence thesis by A88;

      end;

      

       A94: for v102, v2, v101 holds ((v101 "/\" v2) "\/" (v101 "/\" (v101 "/\" (v102 "/\" (v101 "\/" v2))))) = ((v101 "/\" v2) "\/" (v101 "/\" v102))

      proof

        let v102, v2, v101;

        (v102 "/\" (v101 "\/" (v101 "/\" v2))) = (v101 "/\" (v102 "/\" (v101 "\/" v2))) by A67;

        hence thesis by A76;

      end;

      

       A97: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1)))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" (v2 "/\" (v0 "\/" v1)))) = (v0 "/\" (v2 "/\" (v0 "\/" v1))) by A20;

        hence thesis by A94;

      end;

      

       A99: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1)))) = ((v0 "/\" v1) "\/" (v0 "/\" v2)) by A97;

        hence thesis by A90;

      end;

      

       A102: for v2, v1, v0 holds (v0 "/\" (v2 "\/" (v0 "/\" v1))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" v2) = (v2 "\/" (v0 "/\" v1)) by A8;

        hence thesis by A99;

      end;

      ((c1 "/\" c3) "\/" (c1 "/\" c2)) <> ((c1 "/\" c2) "\/" (c1 "/\" c3)) by A102, A14;

      hence thesis by A8;

    end;

    

     ClusterA: L is meet-idempotent join-idempotent meet-commutative join-commutative meet-associative join-associative satisfying_QLT1 satisfying_QLT2 modular implies for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3)))

    proof

      assume

       A0: L is meet-idempotent join-idempotent meet-commutative join-commutative meet-associative join-associative satisfying_QLT1 satisfying_QLT2 modular;

      then

       A1: (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) by LATTICES:def 4, LATTICES:def 5, LATTICES:def 6, LATTICES:def 7, SHEFFER1:def 9, ROBBINS1:def 7;

      for v0, v1, v2 st (v0 "\/" v1) = v1 holds (v0 "\/" (v2 "/\" v1)) = ((v0 "\/" v2) "/\" v1) by A0, LATTICES:def 3, LATTICES:def 12;

      hence thesis by QLTMod, A1;

    end;

    theorem :: LATQUASI:11

    

     QLTMod2: (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)))) implies for v1, v2, v3 st (v1 "\/" v2) = v2 holds (v1 "\/" (v3 "/\" v2)) = ((v1 "\/" v3) "/\" v2)

    proof

      assume

       A1: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A2: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A3: for v0 holds (v0 "\/" v0) = v0;

      assume

       A4: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A5: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A6: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A8: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A1;

        hence thesis by A6;

      end;

      assume

       A9: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)));

      assume not thesis;

      then

      consider c1,c2,c3 be Element of L such that

       A10: (c1 "\/" c2) = c2 and

       A11: (c1 "\/" (c3 "/\" c2)) <> ((c1 "\/" c3) "/\" c2);

      (c1 "\/" (c2 "/\" c3)) <> ((c1 "\/" c3) "/\" c2) by A1, A11;

      then

       A15: (c1 "\/" (c2 "/\" c3)) <> (c2 "/\" (c1 "\/" c3)) by A1;

      

       A17: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A5;

        hence thesis by A2;

      end;

      

       A19: for v0, v2, v1 holds (v0 "/\" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) by A9;

        hence thesis by A17;

      end;

      

       A22: for v102, v101 holds (v101 "\/" v102) = (v101 "\/" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A3;

        hence thesis by A4;

      end;

      

       A27: for v1, v2, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" v2))) = ((v0 "/\" v2) "\/" (v0 "/\" v1))

      proof

        let v1, v2, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2))) by A9;

        hence thesis by A5;

      end;

      

       A29: for v1, v2, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" v2))) = (v0 "/\" (v2 "\/" (v0 "/\" v1)))

      proof

        let v1, v2, v0;

        ((v0 "/\" v2) "\/" (v0 "/\" v1)) = (v0 "/\" (v2 "\/" (v0 "/\" v1))) by A9;

        hence thesis by A27;

      end;

      

       A35: for v102 holds (c1 "\/" (c2 "/\" (c1 "\/" v102))) = (c2 "/\" (c1 "\/" v102))

      proof

        let v102;

        (c2 "/\" (c1 "\/" (c2 "/\" (c1 "\/" v102)))) = (c1 "\/" (c2 "/\" (c1 "\/" v102))) by A10, A8;

        hence thesis by A19;

      end;

      

       A38: for v0 holds (c1 "\/" (c2 "/\" (v0 "\/" c1))) = (c2 "/\" (c1 "\/" v0))

      proof

        let v0;

        (c1 "\/" v0) = (v0 "\/" c1) by A5;

        hence thesis by A35;

      end;

      

       A40: for v0, v2, v1 holds (v0 "/\" ((v1 "\/" v2) "\/" (v0 "/\" v1))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" (v1 "\/" (v0 "/\" (v1 "\/" v2)))) = (v0 "/\" ((v1 "\/" v2) "\/" (v0 "/\" v1))) by A29;

        hence thesis by A19;

      end;

      

       A42: for v2, v1, v0 holds (v0 "/\" (v1 "\/" (v2 "\/" (v0 "/\" v1)))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        ((v1 "\/" v2) "\/" (v0 "/\" v1)) = (v1 "\/" (v2 "\/" (v0 "/\" v1))) by A4;

        hence thesis by A40;

      end;

      

       A44: for v0 holds (c2 "/\" (v0 "\/" (c2 "/\" c1))) = (c1 "\/" (c2 "/\" v0))

      proof

        let v0;

        (c2 "/\" (c1 "\/" (c2 "/\" v0))) = (c2 "/\" (v0 "\/" (c2 "/\" c1))) by A29;

        hence thesis by A10, A8;

      end;

      

       A45: (c2 "/\" c1) = (c1 "/\" c2) by A1;

      

       A50: for v101 holds (c2 "/\" (v101 "\/" (c1 "\/" (c2 "/\" v101)))) = (c2 "/\" (v101 "\/" (c1 "/\" c2)))

      proof

        let v101;

        (c1 "\/" (c2 "/\" v101)) = (c2 "/\" (v101 "\/" (c1 "/\" c2))) by A45, A44;

        hence thesis by A19;

      end;

      

       A53: for v0 holds (c2 "/\" (v0 "\/" c1)) = (c2 "/\" (v0 "\/" (c1 "/\" c2)))

      proof

        let v0;

        (c2 "/\" (v0 "\/" (c1 "\/" (c2 "/\" v0)))) = (c2 "/\" (v0 "\/" c1)) by A42;

        hence thesis by A50;

      end;

      

       A57: for v0 holds (c1 "\/" (c2 "/\" (v0 "\/" (c1 "/\" c2)))) = (c1 "\/" (c2 "/\" v0))

      proof

        let v0;

        (c1 "\/" (c2 "/\" v0)) = (c2 "/\" (v0 "\/" (c1 "/\" c2))) by A45, A44;

        hence thesis by A22;

      end;

      

       A59: for v0 holds (c1 "\/" (c2 "/\" (v0 "\/" c1))) = (c1 "\/" (c2 "/\" v0))

      proof

        let v0;

        (c2 "/\" (v0 "\/" (c1 "/\" c2))) = (c2 "/\" (v0 "\/" c1)) by A53;

        hence thesis by A57;

      end;

      for v0 holds (c2 "/\" (c1 "\/" v0)) = (c1 "\/" (c2 "/\" v0))

      proof

        let v0;

        (c1 "\/" (c2 "/\" (v0 "\/" c1))) = (c2 "/\" (c1 "\/" v0)) by A38;

        hence thesis by A59;

      end;

      hence thesis by A15;

    end;

    

     ClusterB: L is meet-idempotent join-idempotent meet-commutative join-commutative meet-associative join-associative satisfying_QLT1 satisfying_QLT2 & (for v2,v1,v0 be Element of L holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)))) implies L is modular

    proof

      assume

       A0: L is meet-idempotent join-idempotent meet-commutative join-commutative meet-associative join-associative satisfying_QLT1 satisfying_QLT2;

      

       A1: (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)))) implies for v1, v2, v3 st (v1 "\/" v2) = v2 holds (v1 "\/" (v3 "/\" v2)) = ((v1 "\/" v3) "/\" v2) by QLTMod2;

      assume

       AA: for v2,v1,v0 be Element of L holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)));

      for a,b,c be Element of L st a [= c holds (a "\/" (b "/\" c)) = ((a "\/" b) "/\" c)

      proof

        let a,b,c be Element of L;

        assume a [= c;

        then (a "\/" c) = c by LATTICES:def 3;

        hence thesis by A1, AA, A0, LATTICES:def 4, LATTICES:def 5, LATTICES:def 6, ROBBINS1:def 7;

      end;

      hence thesis by LATTICES:def 12;

    end;

    definition

      let L be meet-idempotent join-idempotent meet-commutative join-commutative meet-associative join-associative satisfying_QLT1 satisfying_QLT2 non empty LattStr;

      :: original: modular

      redefine

      :: LATQUASI:def14

      attr L is modular means

      : ModRedef: for v1,v2,v3 be Element of L holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3)));

      compatibility

      proof

        thus L is modular implies for v1,v2,v3 be Element of L holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3))) by ClusterA;

        

         SS: L is meet-idempotent join-idempotent meet-commutative join-commutative meet-associative join-associative satisfying_QLT1 satisfying_QLT2 & (for v2,v1,v0 be Element of L holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v1 "\/" (v0 "/\" v2)))) implies L is modular by ClusterB;

        assume for v1,v2,v3 be Element of L holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3)));

        hence thesis by SS;

      end;

    end

    begin

    theorem :: LATQUASI:12

    

     ThQLT5: (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" v1)))) implies for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3)))

    proof

      assume

       A1: for v0 holds (v0 "/\" v0) = v0;

      assume

       A2: for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2));

      assume

       A3: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A4: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A5: for v0 holds (v0 "\/" v0) = v0;

      assume

       A6: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A7: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A8: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A10: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A3;

        hence thesis by A8;

      end;

      assume

       A11: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" v1)));

      

       A14: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A7;

        hence thesis by A4;

      end;

      

       A17: for v102, v101 holds (v101 "/\" v102) = (v101 "/\" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A1;

        hence thesis by A2;

      end;

      

       A22: for v102, v100 holds ((v100 "/\" v102) "/\" v102) = (v100 "/\" v102)

      proof

        let v102, v100;

        (v102 "/\" v102) = v102 by A1;

        hence thesis by A2;

      end;

      

       A25: for v1, v0 holds (v1 "/\" (v0 "/\" v1)) = (v0 "/\" v1)

      proof

        let v1, v0;

        ((v0 "/\" v1) "/\" v1) = (v1 "/\" (v0 "/\" v1)) by A3;

        hence thesis by A22;

      end;

      

       A28: for v2, v0, v1 holds ((v1 "/\" v0) "/\" v2) = (v0 "/\" (v1 "/\" v2))

      proof

        let v2, v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A3;

        hence thesis by A2;

      end;

      

       A31: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" (v0 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A2;

        hence thesis by A28;

      end;

      

       A34: for v102, v101 holds (v101 "\/" v102) = (v101 "\/" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "\/" v101) = v101 by A5;

        hence thesis by A6;

      end;

      

       A39: for v102, v100 holds ((v100 "\/" v102) "\/" v102) = (v100 "\/" v102)

      proof

        let v102, v100;

        (v102 "\/" v102) = v102 by A5;

        hence thesis by A6;

      end;

      

       A42: for v1, v0 holds (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A7;

        hence thesis by A39;

      end;

      

       A45: for v2, v0, v1 holds ((v1 "\/" v0) "\/" v2) = (v0 "\/" (v1 "\/" v2))

      proof

        let v2, v0, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A7;

        hence thesis by A6;

      end;

      

       A48: for v0, v2, v1 holds (v0 "\/" (v1 "\/" v2)) = (v1 "\/" (v0 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2)) by A6;

        hence thesis by A45;

      end;

      

       A51: for v102, v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" v102) = ((v0 "\/" v1) "/\" ((v0 "\/" (v1 "/\" v2)) "/\" v102))

      proof

        let v102, v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A10;

        hence thesis by A2;

      end;

      

       A55: for v0, v2, v1 holds ((v1 "\/" v0) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" v1) = (v1 "\/" v0) by A7;

        hence thesis by A10;

      end;

      

       A59: for v101, v102 holds (v101 "\/" (v102 "/\" (v101 "\/" v101))) = ((v101 "\/" v101) "/\" (v102 "\/" (v101 "/\" v101)))

      proof

        let v101, v102;

        (v101 "/\" v101) = v101 by A1;

        hence thesis by A11;

      end;

      

       A62: for v0, v1 holds (v0 "\/" (v1 "/\" v0)) = ((v0 "\/" v0) "/\" (v1 "\/" (v0 "/\" v0)))

      proof

        let v0, v1;

        (v0 "\/" v0) = v0 by A5;

        hence thesis by A59;

      end;

      

       A64: for v0, v1 holds (v0 "\/" (v1 "/\" v0)) = (v0 "/\" (v1 "\/" (v0 "/\" v0)))

      proof

        let v0, v1;

        (v0 "\/" v0) = v0 by A5;

        hence thesis by A62;

      end;

      

       A66: for v0, v1 holds (v0 "\/" (v1 "/\" v0)) = (v0 "/\" (v1 "\/" v0))

      proof

        let v0, v1;

        (v0 "/\" v0) = v0 by A1;

        hence thesis by A64;

      end;

      

       A69: for v0, v1, v101, v100 holds ((v100 "/\" v101) "\/" (v0 "/\" (v1 "/\" (v100 "\/" v101)))) = ((v100 "\/" v101) "/\" ((v0 "/\" v1) "\/" (v100 "/\" v101)))

      proof

        let v0, v1, v101, v100;

        ((v0 "/\" v1) "/\" (v100 "\/" v101)) = (v0 "/\" (v1 "/\" (v100 "\/" v101))) by A2;

        hence thesis by A11;

      end;

      

       A72: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        (v2 "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" v2) by A7;

        hence thesis by A11;

      end;

      

       A74: for v0, v2, v1 holds ((v1 "/\" v0) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A3;

        hence thesis by A14;

      end;

      

       A77: for v0, v1, v2 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" v1))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v1, v2;

        (v1 "\/" v2) = (v2 "\/" v1) by A7;

        hence thesis by A14;

      end;

      

       A80: for v101, v2, v1 holds (((v101 "/\" v1) "\/" v101) "/\" (v101 "/\" (v1 "\/" v2))) = ((v101 "/\" v1) "\/" (v101 "/\" (v1 "\/" v2)))

      proof

        let v101, v2, v1;

        ((v101 "/\" v1) "\/" (v101 "/\" (v1 "\/" v2))) = (v101 "/\" (v1 "\/" v2)) by A14;

        hence thesis by A10;

      end;

      

       A83: for v0, v2, v1 holds ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "/\" (v1 "\/" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" v0) = (v0 "\/" (v0 "/\" v1)) by A7;

        hence thesis by A80;

      end;

      

       A85: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "\/" (v0 "/\" v1)) "/\" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) by A31;

        hence thesis by A83;

      end;

      

       A87: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" (v0 "/\" v1)) "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2)) by A14;

        hence thesis by A85;

      end;

      

       A90: for v102, v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v102))) = ((v0 "\/" v1) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v102))

      proof

        let v102, v0, v2, v1;

        ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2)) by A10;

        hence thesis by A14;

      end;

      

       A93: for v0, v3, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" (v0 "\/" ((v1 "/\" v2) "\/" v3)))) = ((v0 "\/" v1) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v3))

      proof

        let v0, v3, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "\/" v3) = (v0 "\/" ((v1 "/\" v2) "\/" v3)) by A6;

        hence thesis by A90;

      end;

      

       A95: for v0, v3, v2, v1 holds (v0 "\/" ((v1 "/\" v2) "\/" ((v0 "\/" v1) "/\" (v0 "\/" ((v1 "/\" v2) "\/" v3))))) = ((v0 "\/" v1) "/\" ((v0 "\/" (v1 "/\" v2)) "\/" v3))

      proof

        let v0, v3, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "\/" ((v0 "\/" v1) "/\" (v0 "\/" ((v1 "/\" v2) "\/" v3)))) = (v0 "\/" ((v1 "/\" v2) "\/" ((v0 "\/" v1) "/\" (v0 "\/" ((v1 "/\" v2) "\/" v3))))) by A6;

        hence thesis by A93;

      end;

      

       A97: for v0, v3, v2, v1 holds (v0 "\/" ((v1 "/\" v2) "\/" ((v0 "\/" v1) "/\" (v0 "\/" ((v1 "/\" v2) "\/" v3))))) = ((v0 "\/" v1) "/\" (v0 "\/" ((v1 "/\" v2) "\/" v3)))

      proof

        let v0, v3, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "\/" v3) = (v0 "\/" ((v1 "/\" v2) "\/" v3)) by A6;

        hence thesis by A95;

      end;

      

       A100: for v102, v1, v100 holds ((v100 "/\" v1) "\/" (v100 "/\" ((v100 "/\" v1) "\/" v102))) = (v100 "/\" ((v100 "/\" v1) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A17;

        hence thesis by A14;

      end;

      

       A104: for v0, v100, v1 holds (v100 "\/" (v0 "\/" (v1 "\/" v100))) = ((v0 "\/" v1) "\/" v100)

      proof

        let v0, v100, v1;

        ((v0 "\/" v1) "\/" v100) = (v0 "\/" (v1 "\/" v100)) by A6;

        hence thesis by A42;

      end;

      

       A107: for v1, v0, v2 holds (v0 "\/" (v1 "\/" (v2 "\/" v0))) = (v1 "\/" (v2 "\/" v0))

      proof

        let v1, v0, v2;

        ((v1 "\/" v2) "\/" v0) = (v1 "\/" (v2 "\/" v0)) by A6;

        hence thesis by A104;

      end;

      

       A109: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v0))

      proof

        let v1, v0;

        (v1 "/\" v0) = (v0 "/\" v1) by A3;

        hence thesis by A66;

      end;

      

       A112: for v102, v100, v1 holds ((v100 "/\" (v1 "\/" v100)) "\/" v102) = (v100 "\/" ((v1 "/\" v100) "\/" v102))

      proof

        let v102, v100, v1;

        (v100 "\/" (v1 "/\" v100)) = (v100 "/\" (v1 "\/" v100)) by A66;

        hence thesis by A6;

      end;

      

       A115: for v0, v1 holds (v0 "\/" (v1 "/\" v0)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v0, v1;

        (v1 "\/" v0) = (v0 "\/" v1) by A7;

        hence thesis by A66;

      end;

      

       A117: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1))

      proof

        let v1, v0;

        (v1 "\/" v0) = (v0 "\/" v1) by A7;

        hence thesis by A109;

      end;

      

       A119: for v2, v1, v0 holds (v0 "/\" ((v0 "/\" (v0 "\/" v1)) "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1)) by A117;

        hence thesis by A87;

      end;

      

       A121: for v2, v1, v0 holds (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" (v1 "\/" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) by A2;

        hence thesis by A119;

      end;

      

       A123: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" (v1 "\/" v2))) by A17;

        hence thesis by A121;

      end;

      

       A126: for v102, v1, v100 holds ((v100 "/\" (v100 "\/" v1)) "\/" v102) = (v100 "\/" ((v1 "/\" v100) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v1 "/\" v100)) = (v100 "/\" (v100 "\/" v1)) by A115;

        hence thesis by A6;

      end;

      

       A130: for v101, v102 holds ((v102 "\/" v101) "/\" (v101 "\/" v102)) = (v101 "\/" (v102 "/\" v102))

      proof

        let v101, v102;

        (v102 "/\" v102) = v102 by A1;

        hence thesis by A55;

      end;

      

       A133: for v1, v0 holds ((v0 "\/" v1) "/\" (v1 "\/" v0)) = (v1 "\/" v0)

      proof

        let v1, v0;

        (v0 "/\" v0) = v0 by A1;

        hence thesis by A130;

      end;

      

       A136: for v101, v100, v1 holds ((v100 "\/" v101) "/\" (v101 "\/" (v1 "/\" v100))) = (v101 "\/" (v100 "/\" (v1 "/\" v100)))

      proof

        let v101, v100, v1;

        (v100 "/\" (v1 "/\" v100)) = (v1 "/\" v100) by A25;

        hence thesis by A55;

      end;

      

       A139: for v1, v0, v2 holds ((v0 "\/" v1) "/\" (v1 "\/" (v2 "/\" v0))) = (v1 "\/" (v2 "/\" v0))

      proof

        let v1, v0, v2;

        (v0 "/\" (v2 "/\" v0)) = (v2 "/\" v0) by A25;

        hence thesis by A136;

      end;

      

       A142: for v102, v1, v100 holds ((v100 "/\" (v100 "\/" v1)) "/\" ((v100 "/\" v1) "\/" (v100 "/\" v102))) = ((v100 "/\" v1) "\/" (v100 "/\" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" v1)) = (v100 "/\" (v100 "\/" v1)) by A117;

        hence thesis by A55;

      end;

      

       A145: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))) by A2;

        hence thesis by A142;

      end;

      

       A148: for v100, v102, v101 holds ((v100 "\/" v101) "/\" ((v101 "/\" v102) "\/" v100)) = ((v100 "\/" (v101 "/\" v102)) "/\" ((v101 "/\" v102) "\/" v100))

      proof

        let v100, v102, v101;

        ((v100 "\/" (v101 "/\" v102)) "/\" ((v101 "/\" v102) "\/" v100)) = ((v101 "/\" v102) "\/" v100) by A133;

        hence thesis by A51;

      end;

      

       A151: for v0, v2, v1 holds ((v0 "\/" v1) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" v0)

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" v0) by A133;

        hence thesis by A148;

      end;

      

       A154: for v101, v102 holds ((v102 "/\" v101) "\/" (v101 "/\" v102)) = (v101 "/\" (v102 "\/" v102))

      proof

        let v101, v102;

        (v102 "\/" v102) = v102 by A5;

        hence thesis by A74;

      end;

      

       A157: for v1, v0 holds ((v0 "/\" v1) "\/" (v1 "/\" v0)) = (v1 "/\" v0)

      proof

        let v1, v0;

        (v0 "\/" v0) = v0 by A5;

        hence thesis by A154;

      end;

      

       A159: for v1, v0, v2 holds ((v0 "/\" v1) "\/" (v1 "/\" (v2 "\/" v0))) = (v1 "/\" (v0 "\/" v2))

      proof

        let v1, v0, v2;

        (v0 "\/" v2) = (v2 "\/" v0) by A7;

        hence thesis by A74;

      end;

      

       A162: for v102, v0, v1 holds ((v1 "/\" v0) "\/" v102) = ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v102))

      proof

        let v102, v0, v1;

        ((v0 "/\" v1) "\/" (v1 "/\" v0)) = (v1 "/\" v0) by A157;

        hence thesis by A6;

      end;

      

       A168: for v101, v2, v1 holds (((v101 "\/" v1) "/\" v101) "\/" ((v101 "\/" v1) "/\" ((v1 "/\" v2) "\/" v101))) = (v101 "\/" (v1 "/\" v2))

      proof

        let v101, v2, v1;

        ((v101 "\/" v1) "/\" (v101 "\/" (v1 "/\" v2))) = (v101 "\/" (v1 "/\" v2)) by A10;

        hence thesis by A77;

      end;

      

       A171: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" v1)) "\/" ((v0 "\/" v1) "/\" ((v1 "/\" v2) "\/" v0))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A3;

        hence thesis by A168;

      end;

      

       A173: for v0, v2, v1 holds ((v0 "/\" (v0 "\/" v1)) "\/" ((v1 "/\" v2) "\/" v0)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" v1) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" v0) by A151;

        hence thesis by A171;

      end;

      

       A175: for v0, v2, v1 holds (v0 "\/" ((v1 "/\" v0) "\/" ((v1 "/\" v2) "\/" v0))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v0 "\/" v1)) "\/" ((v1 "/\" v2) "\/" v0)) = (v0 "\/" ((v1 "/\" v0) "\/" ((v1 "/\" v2) "\/" v0))) by A126;

        hence thesis by A173;

      end;

      

       A177: for v0, v2, v1 holds ((v1 "/\" v0) "\/" ((v1 "/\" v2) "\/" v0)) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        (v0 "\/" ((v1 "/\" v0) "\/" ((v1 "/\" v2) "\/" v0))) = ((v1 "/\" v0) "\/" ((v1 "/\" v2) "\/" v0)) by A107;

        hence thesis by A175;

      end;

      

       A180: for v2, v3, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v3 "/\" (v0 "\/" v1)))) = ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v3)))

      proof

        let v2, v3, v1, v0;

        ((v2 "/\" v3) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v2 "/\" v3)) by A7;

        hence thesis by A69;

      end;

      

       A183: for v102, v1, v100 holds (v100 "/\" ((v100 "/\" (v100 "\/" v1)) "/\" ((v100 "/\" v1) "\/" v102))) = (v100 "/\" ((v100 "/\" v1) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" v1)) = (v100 "/\" (v100 "\/" v1)) by A117;

        hence thesis by A123;

      end;

      

       A186: for v2, v1, v0 holds (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A2;

        hence thesis by A183;

      end;

      

       A188: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A17;

        hence thesis by A186;

      end;

      

       A190: for v2, v1, v0 holds (v0 "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2)))) = (v0 "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2))) by A188;

        hence thesis by A145;

      end;

      

       A193: for v102, v1, v100 holds ((v100 "/\" v1) "\/" (v102 "/\" (v100 "\/" (v100 "/\" v1)))) = ((v100 "\/" (v100 "/\" v1)) "/\" ((v100 "/\" (v100 "/\" v1)) "\/" v102))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A17;

        hence thesis by A72;

      end;

      

       A196: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1)))) = ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" (v0 "/\" v1)) "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1)) by A117;

        hence thesis by A193;

      end;

      

       A198: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = ((v0 "\/" (v0 "/\" v1)) "/\" ((v0 "/\" (v0 "/\" v1)) "\/" v2))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v2 "/\" (v0 "/\" (v0 "\/" v1)))) = ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) by A180;

        hence thesis by A196;

      end;

      

       A200: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" (v0 "/\" v1)) "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "\/" (v0 "/\" v1)) = (v0 "/\" (v0 "\/" v1)) by A117;

        hence thesis by A198;

      end;

      

       A202: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" v1)) = (v0 "/\" v1) by A17;

        hence thesis by A200;

      end;

      

       A204: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A2;

        hence thesis by A202;

      end;

      

       A206: for v2, v1, v0 holds ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A188;

        hence thesis by A204;

      end;

      

       A209: for v102, v1, v100 holds ((v100 "/\" (v100 "\/" v1)) "/\" ((v100 "/\" v1) "\/" (v102 "/\" v100))) = ((v100 "/\" v1) "\/" (v102 "/\" v100))

      proof

        let v102, v1, v100;

        (v100 "\/" (v100 "/\" v1)) = (v100 "/\" (v100 "\/" v1)) by A117;

        hence thesis by A139;

      end;

      

       A212: for v2, v1, v0 holds (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0)))) = ((v0 "/\" v1) "\/" (v2 "/\" v0))

      proof

        let v2, v1, v0;

        ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0)))) by A2;

        hence thesis by A209;

      end;

      

       A214: for v2, v1, v0 holds (v0 "/\" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = ((v0 "/\" v1) "\/" (v2 "/\" v0))

      proof

        let v2, v1, v0;

        ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" (v2 "/\" v0))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A206;

        hence thesis by A212;

      end;

      

       A216: for v2, v1, v0 holds (v0 "/\" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "\/" (v2 "/\" v0))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A17;

        hence thesis by A214;

      end;

      

       A220: for v100, v0, v2 holds ((v100 "/\" (v0 "\/" v100)) "\/" (v100 "\/" (v2 "/\" v0))) = ((v0 "\/" v100) "/\" (v100 "\/" (v2 "/\" v0)))

      proof

        let v100, v0, v2;

        ((v0 "\/" v100) "/\" (v100 "\/" (v2 "/\" v0))) = (v100 "\/" (v2 "/\" v0)) by A139;

        hence thesis by A74;

      end;

      

       A223: for v2, v0, v1 holds (v0 "\/" ((v0 "/\" (v1 "\/" v0)) "\/" (v2 "/\" v1))) = ((v1 "\/" v0) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v0, v1;

        ((v0 "/\" (v1 "\/" v0)) "\/" (v0 "\/" (v2 "/\" v1))) = (v0 "\/" ((v0 "/\" (v1 "\/" v0)) "\/" (v2 "/\" v1))) by A48;

        hence thesis by A220;

      end;

      

       A225: for v2, v0, v1 holds (v0 "\/" (v0 "\/" ((v1 "/\" v0) "\/" (v2 "/\" v1)))) = ((v1 "\/" v0) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v0, v1;

        ((v0 "/\" (v1 "\/" v0)) "\/" (v2 "/\" v1)) = (v0 "\/" ((v1 "/\" v0) "\/" (v2 "/\" v1))) by A112;

        hence thesis by A223;

      end;

      

       A227: for v2, v0, v1 holds (v0 "\/" (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2)))) = ((v1 "\/" v0) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v0, v1;

        ((v1 "/\" v0) "\/" (v2 "/\" v1)) = (v1 "/\" ((v1 "/\" v0) "\/" v2)) by A216;

        hence thesis by A225;

      end;

      

       A229: for v2, v0, v1 holds (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2))) = ((v1 "\/" v0) "/\" (v0 "\/" (v2 "/\" v1)))

      proof

        let v2, v0, v1;

        (v0 "\/" (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2)))) = (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2))) by A34;

        hence thesis by A227;

      end;

      

       A231: for v2, v0, v1 holds (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2))) = (v0 "\/" (v2 "/\" v1))

      proof

        let v2, v0, v1;

        ((v1 "\/" v0) "/\" (v0 "\/" (v2 "/\" v1))) = (v0 "\/" (v2 "/\" v1)) by A139;

        hence thesis by A229;

      end;

      

       A234: for v1, v102, v100 holds ((v1 "/\" v100) "\/" ((v100 "/\" v102) "\/" (v1 "/\" v100))) = ((v1 "/\" v100) "\/" (v100 "/\" v102))

      proof

        let v1, v102, v100;

        (v100 "/\" (v1 "/\" v100)) = (v1 "/\" v100) by A25;

        hence thesis by A177;

      end;

      

       A237: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0))) = ((v0 "/\" v1) "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v1 "/\" v2) "\/" (v0 "/\" v1)) = (v1 "/\" ((v1 "/\" v2) "\/" v0)) by A216;

        hence thesis by A234;

      end;

      

       A239: for v0, v2, v1 holds (v1 "/\" (v0 "\/" (v1 "/\" v2))) = ((v0 "/\" v1) "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0))) = (v1 "/\" (v0 "\/" (v1 "/\" v2))) by A159;

        hence thesis by A237;

      end;

      

       A245: for v103, v102, v101 holds ((v102 "/\" v101) "\/" ((v101 "/\" v102) "\/" (((v102 "/\" v101) "\/" v101) "/\" ((v101 "/\" v102) "\/" v103)))) = (((v102 "/\" v101) "\/" v101) "/\" ((v102 "/\" v101) "\/" ((v101 "/\" v102) "\/" v103)))

      proof

        let v103, v102, v101;

        ((v102 "/\" v101) "\/" ((v101 "/\" v102) "\/" v103)) = ((v101 "/\" v102) "\/" v103) by A162;

        hence thesis by A97;

      end;

      

       A248: for v2, v0, v1 holds ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" ((v1 "\/" (v0 "/\" v1)) "/\" ((v1 "/\" v0) "\/" v2)))) = (((v0 "/\" v1) "\/" v1) "/\" ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v2)))

      proof

        let v2, v0, v1;

        ((v0 "/\" v1) "\/" v1) = (v1 "\/" (v0 "/\" v1)) by A7;

        hence thesis by A245;

      end;

      

       A250: for v2, v0, v1 holds ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" ((v1 "/\" (v1 "\/" v0)) "/\" ((v1 "/\" v0) "\/" v2)))) = (((v0 "/\" v1) "\/" v1) "/\" ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v2)))

      proof

        let v2, v0, v1;

        (v1 "\/" (v0 "/\" v1)) = (v1 "/\" (v1 "\/" v0)) by A115;

        hence thesis by A248;

      end;

      

       A252: for v2, v0, v1 holds ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" (v1 "/\" ((v1 "\/" v0) "/\" ((v1 "/\" v0) "\/" v2))))) = (((v0 "/\" v1) "\/" v1) "/\" ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v2)))

      proof

        let v2, v0, v1;

        ((v1 "/\" (v1 "\/" v0)) "/\" ((v1 "/\" v0) "\/" v2)) = (v1 "/\" ((v1 "\/" v0) "/\" ((v1 "/\" v0) "\/" v2))) by A2;

        hence thesis by A250;

      end;

      

       A254: for v2, v0, v1 holds ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2)))) = (((v0 "/\" v1) "\/" v1) "/\" ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v2)))

      proof

        let v2, v0, v1;

        (v1 "/\" ((v1 "\/" v0) "/\" ((v1 "/\" v0) "\/" v2))) = (v1 "/\" ((v1 "/\" v0) "\/" v2)) by A188;

        hence thesis by A252;

      end;

      

       A256: for v2, v0, v1 holds ((v0 "/\" v1) "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2))) = (((v0 "/\" v1) "\/" v1) "/\" ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v2)))

      proof

        let v2, v0, v1;

        ((v1 "/\" v0) "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2))) = (v1 "/\" ((v1 "/\" v0) "\/" v2)) by A100;

        hence thesis by A254;

      end;

      

       A258: for v2, v0, v1 holds (v1 "/\" (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2)))) = (((v0 "/\" v1) "\/" v1) "/\" ((v0 "/\" v1) "\/" ((v1 "/\" v0) "\/" v2)))

      proof

        let v2, v0, v1;

        ((v0 "/\" v1) "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2))) = (v1 "/\" (v0 "\/" (v1 "/\" ((v1 "/\" v0) "\/" v2)))) by A239;

        hence thesis by A256;

      end;

      

       A261: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = (((v1 "/\" v0) "\/" v0) "/\" ((v1 "/\" v0) "\/" ((v0 "/\" v1) "\/" v2)))

      proof

        let v1, v0, v2;

        (v1 "\/" (v0 "/\" ((v0 "/\" v1) "\/" v2))) = (v1 "\/" (v2 "/\" v0)) by A231;

        hence thesis by A258;

      end;

      

       A263: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = ((v0 "\/" (v1 "/\" v0)) "/\" ((v1 "/\" v0) "\/" ((v0 "/\" v1) "\/" v2)))

      proof

        let v1, v0, v2;

        ((v1 "/\" v0) "\/" v0) = (v0 "\/" (v1 "/\" v0)) by A7;

        hence thesis by A261;

      end;

      

       A265: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v1 "/\" v0) "\/" ((v0 "/\" v1) "\/" v2)))

      proof

        let v1, v0, v2;

        (v0 "\/" (v1 "/\" v0)) = (v0 "/\" (v0 "\/" v1)) by A115;

        hence thesis by A263;

      end;

      

       A267: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v1, v0, v2;

        ((v1 "/\" v0) "\/" ((v0 "/\" v1) "\/" v2)) = ((v0 "/\" v1) "\/" v2) by A162;

        hence thesis by A265;

      end;

      

       A269: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2)))

      proof

        let v1, v0, v2;

        ((v0 "/\" (v0 "\/" v1)) "/\" ((v0 "/\" v1) "\/" v2)) = (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) by A2;

        hence thesis by A267;

      end;

      

       A271: for v1, v0, v2 holds (v0 "/\" (v1 "\/" (v2 "/\" v0))) = (v0 "/\" ((v0 "/\" v1) "\/" v2))

      proof

        let v1, v0, v2;

        (v0 "/\" ((v0 "\/" v1) "/\" ((v0 "/\" v1) "\/" v2))) = (v0 "/\" ((v0 "/\" v1) "\/" v2)) by A188;

        hence thesis by A269;

      end;

      

       A274: for v1, v2, v0 holds (v0 "/\" (v1 "\/" ((v0 "/\" v2) "/\" v0))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v1, v2, v0;

        (v0 "/\" ((v0 "/\" v1) "\/" (v0 "/\" v2))) = (v0 "/\" (v1 "\/" ((v0 "/\" v2) "/\" v0))) by A271;

        hence thesis by A190;

      end;

      

       A276: for v1, v2, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" (v0 "/\" v2)))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v1, v2, v0;

        ((v0 "/\" v2) "/\" v0) = (v0 "/\" (v0 "/\" v2)) by A3;

        hence thesis by A274;

      end;

      for v1, v2, v0 holds (v0 "/\" (v1 "\/" (v0 "/\" v2))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v1, v2, v0;

        (v0 "/\" (v0 "/\" v2)) = (v0 "/\" v2) by A17;

        hence thesis by A276;

      end;

      hence thesis;

    end;

    

     Cluster5: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfmodular implies L is modular

    proof

      assume

       A1: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfmodular;

      then (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v2 "/\" (v0 "\/" v1))) = ((v0 "\/" v1) "/\" (v2 "\/" (v0 "/\" v1))) by LATTICES:def 4, LATTICES:def 5, LATTICES:def 6, LATTICES:def 7, SHEFFER1:def 9, ROBBINS1:def 7;

      then for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3))) by ThQLT5;

      hence thesis by ModRedef, A1;

    end;

    registration

      cluster meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfmodular -> modular for non empty LattStr;

      coherence by Cluster5;

    end

    begin

    theorem :: LATQUASI:13

    

     ThQLT6: (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds (((v0 "\/" v1) "/\" v2) "\/" v1) = (((v2 "\/" v1) "/\" v0) "\/" v1)) implies for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3)))

    proof

      assume

       A2: for v0 holds (v0 "/\" v0) = v0;

      assume

       A3: for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2));

      assume

       A4: for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0);

      assume

       A5: for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2));

      assume

       A6: for v0 holds (v0 "\/" v0) = v0;

      assume

       A7: for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2));

      assume

       A8: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0);

      assume

       A9: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2));

      

       A11: for v0, v2, v1 holds ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = ((v0 "\/" v1) "/\" (v0 "\/" (v1 "/\" v2))) by A4;

        hence thesis by A9;

      end;

      assume

       A12: for v2, v1, v0 holds (((v0 "\/" v1) "/\" v2) "\/" v1) = (((v2 "\/" v1) "/\" v0) "\/" v1);

      

       A14: for v2, v1, v0 holds (v1 "\/" ((v0 "\/" v1) "/\" v2)) = (((v2 "\/" v1) "/\" v0) "\/" v1)

      proof

        let v2, v1, v0;

        (((v0 "\/" v1) "/\" v2) "\/" v1) = (v1 "\/" ((v0 "\/" v1) "/\" v2)) by A8;

        hence thesis by A12;

      end;

      

       A17: for v2, v0, v1 holds (v0 "\/" ((v1 "\/" v0) "/\" v2)) = (v0 "\/" ((v2 "\/" v0) "/\" v1))

      proof

        let v2, v0, v1;

        (((v2 "\/" v0) "/\" v1) "\/" v0) = (v0 "\/" ((v2 "\/" v0) "/\" v1)) by A8;

        hence thesis by A14;

      end;

      

       A21: for v0, v2, v1 holds ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) = (v0 "/\" (v1 "\/" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = ((v0 "/\" v1) "\/" (v0 "/\" (v1 "\/" v2))) by A8;

        hence thesis by A5;

      end;

      

       A24: for v102, v101 holds (v101 "/\" v102) = (v101 "/\" (v101 "/\" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A3;

      end;

      

       A28: for v2, v0, v1 holds ((v1 "/\" v0) "/\" v2) = (v0 "/\" (v1 "/\" v2))

      proof

        let v2, v0, v1;

        (v0 "/\" v1) = (v1 "/\" v0) by A4;

        hence thesis by A3;

      end;

      

       A31: for v0, v2, v1 holds (v0 "/\" (v1 "/\" v2)) = (v1 "/\" (v0 "/\" v2))

      proof

        let v0, v2, v1;

        ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2)) by A3;

        hence thesis by A28;

      end;

      

       A34: for v102, v100 holds ((v100 "\/" v102) "\/" v102) = (v100 "\/" v102)

      proof

        let v102, v100;

        (v102 "\/" v102) = v102 by A6;

        hence thesis by A7;

      end;

      

       A37: for v1, v0 holds (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1)

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A8;

        hence thesis by A34;

      end;

      

       A40: for v0, v1, v2 holds ((v0 "\/" v1) "/\" (v0 "\/" (v2 "/\" v1))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v0, v1, v2;

        (v1 "/\" v2) = (v2 "/\" v1) by A4;

        hence thesis by A11;

      end;

      

       A43: for v100, v101 holds (v100 "\/" (v101 "\/" v100)) = (v100 "\/" (((v101 "\/" v100) "\/" v100) "/\" v101))

      proof

        let v100, v101;

        ((v101 "\/" v100) "/\" (v101 "\/" v100)) = (v101 "\/" v100) by A2;

        hence thesis by A17;

      end;

      

       A46: for v0, v1 holds (v1 "\/" v0) = (v0 "\/" (((v1 "\/" v0) "\/" v0) "/\" v1))

      proof

        let v0, v1;

        (v0 "\/" (v1 "\/" v0)) = (v1 "\/" v0) by A37;

        hence thesis by A43;

      end;

      

       A49: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" ((v1 "\/" (v0 "\/" v1)) "/\" v0))

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" v1) = (v1 "\/" (v0 "\/" v1)) by A8;

        hence thesis by A46;

      end;

      

       A51: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" ((v0 "\/" v1) "/\" v0))

      proof

        let v1, v0;

        (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1) by A37;

        hence thesis by A49;

      end;

      

       A53: for v1, v0 holds (v0 "\/" v1) = (v1 "\/" (v0 "/\" (v0 "\/" v1)))

      proof

        let v1, v0;

        ((v0 "\/" v1) "/\" v0) = (v0 "/\" (v0 "\/" v1)) by A4;

        hence thesis by A51;

      end;

      

       A57: for v2, v0, v1 holds (v0 "\/" (v2 "/\" (v1 "\/" v0))) = (v0 "\/" ((v2 "\/" v0) "/\" v1))

      proof

        let v2, v0, v1;

        ((v1 "\/" v0) "/\" v2) = (v2 "/\" (v1 "\/" v0)) by A4;

        hence thesis by A17;

      end;

      

       A62: for v102, v100 holds (v100 "\/" (v100 "/\" v102)) = (v100 "\/" ((v102 "\/" v100) "/\" v100))

      proof

        let v102, v100;

        (v100 "\/" v100) = v100 by A6;

        hence thesis by A17;

      end;

      

       A65: for v1, v0 holds (v0 "\/" (v0 "/\" v1)) = (v0 "\/" (v0 "/\" (v1 "\/" v0)))

      proof

        let v1, v0;

        ((v1 "\/" v0) "/\" v0) = (v0 "/\" (v1 "\/" v0)) by A4;

        hence thesis by A62;

      end;

      

       A69: for v102, v2, v100, v1 holds ((v100 "\/" ((v2 "\/" v100) "/\" v1)) "/\" (v100 "\/" (((v1 "\/" v100) "/\" v2) "/\" v102))) = (v100 "\/" (((v1 "\/" v100) "/\" v2) "/\" v102))

      proof

        let v102, v2, v100, v1;

        (v100 "\/" ((v1 "\/" v100) "/\" v2)) = (v100 "\/" ((v2 "\/" v100) "/\" v1)) by A17;

        hence thesis by A11;

      end;

      

       A72: for v3, v1, v0, v2 holds ((v0 "\/" (v1 "/\" (v2 "\/" v0))) "/\" (v0 "\/" (((v2 "\/" v0) "/\" v1) "/\" v3))) = (v0 "\/" (((v2 "\/" v0) "/\" v1) "/\" v3))

      proof

        let v3, v1, v0, v2;

        (v0 "\/" ((v1 "\/" v0) "/\" v2)) = (v0 "\/" (v1 "/\" (v2 "\/" v0))) by A57;

        hence thesis by A69;

      end;

      

       A74: for v1, v3, v0, v2 holds ((v0 "\/" (v1 "/\" (v2 "\/" v0))) "/\" (v0 "\/" ((v2 "\/" v0) "/\" (v1 "/\" v3)))) = (v0 "\/" (((v2 "\/" v0) "/\" v1) "/\" v3))

      proof

        let v1, v3, v0, v2;

        (((v2 "\/" v0) "/\" v1) "/\" v3) = ((v2 "\/" v0) "/\" (v1 "/\" v3)) by A3;

        hence thesis by A72;

      end;

      

       A76: for v2, v0, v3, v1 holds ((v0 "\/" (v1 "/\" (v2 "\/" v0))) "/\" (v0 "\/" (v2 "/\" ((v1 "/\" v3) "\/" v0)))) = (v0 "\/" (((v2 "\/" v0) "/\" v1) "/\" v3))

      proof

        let v2, v0, v3, v1;

        (v0 "\/" ((v2 "\/" v0) "/\" (v1 "/\" v3))) = (v0 "\/" (v2 "/\" ((v1 "/\" v3) "\/" v0))) by A57;

        hence thesis by A74;

      end;

      

       A78: for v2, v0, v3, v1 holds ((v0 "\/" (v1 "/\" (v2 "\/" v0))) "/\" (v0 "\/" (v2 "/\" ((v1 "/\" v3) "\/" v0)))) = (v0 "\/" ((v2 "\/" v0) "/\" (v1 "/\" v3)))

      proof

        let v2, v0, v3, v1;

        (((v2 "\/" v0) "/\" v1) "/\" v3) = ((v2 "\/" v0) "/\" (v1 "/\" v3)) by A3;

        hence thesis by A76;

      end;

      

       A80: for v2, v0, v3, v1 holds ((v0 "\/" (v1 "/\" (v2 "\/" v0))) "/\" (v0 "\/" (v2 "/\" ((v1 "/\" v3) "\/" v0)))) = (v0 "\/" (v2 "/\" ((v1 "/\" v3) "\/" v0)))

      proof

        let v2, v0, v3, v1;

        (v0 "\/" ((v2 "\/" v0) "/\" (v1 "/\" v3))) = (v0 "\/" (v2 "/\" ((v1 "/\" v3) "\/" v0))) by A57;

        hence thesis by A78;

      end;

      

       A83: for v102, v101 holds (v101 "\/" (v101 "/\" (v101 "\/" v102))) = (v101 "/\" (v101 "\/" v102))

      proof

        let v102, v101;

        (v101 "/\" v101) = v101 by A2;

        hence thesis by A21;

      end;

      

       A87: for v100, v101, v1 holds ((v100 "/\" v101) "\/" (v100 "/\" (v1 "\/" v101))) = (v100 "/\" (v101 "\/" (v1 "\/" v101)))

      proof

        let v100, v101, v1;

        (v101 "\/" (v1 "\/" v101)) = (v1 "\/" v101) by A37;

        hence thesis by A21;

      end;

      

       A90: for v0, v1, v2 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" v1))) = (v0 "/\" (v2 "\/" v1))

      proof

        let v0, v1, v2;

        (v1 "\/" (v2 "\/" v1)) = (v2 "\/" v1) by A37;

        hence thesis by A87;

      end;

      

       A93: for v101, v1 holds ((v1 "\/" v101) "\/" (v101 "/\" (v1 "\/" v101))) = (v101 "\/" (v1 "\/" v101))

      proof

        let v101, v1;

        (v101 "\/" (v1 "\/" v101)) = (v1 "\/" v101) by A37;

        hence thesis by A53;

      end;

      

       A96: for v1, v0 holds (v0 "\/" (v1 "\/" (v1 "/\" (v0 "\/" v1)))) = (v1 "\/" (v0 "\/" v1))

      proof

        let v1, v0;

        ((v0 "\/" v1) "\/" (v1 "/\" (v0 "\/" v1))) = (v0 "\/" (v1 "\/" (v1 "/\" (v0 "\/" v1)))) by A7;

        hence thesis by A93;

      end;

      

       A98: for v0, v1 holds (v0 "\/" (v1 "\/" (v1 "/\" v0))) = (v1 "\/" (v0 "\/" v1))

      proof

        let v0, v1;

        (v1 "\/" (v1 "/\" (v0 "\/" v1))) = (v1 "\/" (v1 "/\" v0)) by A65;

        hence thesis by A96;

      end;

      

       A100: for v0, v1 holds (v0 "\/" (v1 "\/" (v1 "/\" v0))) = (v0 "\/" v1)

      proof

        let v0, v1;

        (v1 "\/" (v0 "\/" v1)) = (v0 "\/" v1) by A37;

        hence thesis by A98;

      end;

      

       A103: for v0, v100, v1 holds (v100 "\/" ((v0 "/\" v1) "\/" (v0 "/\" (v1 "/\" v100)))) = (v100 "\/" (v0 "/\" v1))

      proof

        let v0, v100, v1;

        ((v0 "/\" v1) "/\" v100) = (v0 "/\" (v1 "/\" v100)) by A3;

        hence thesis by A100;

      end;

      

       A106: for v1, v0 holds (v0 "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "\/" (v0 "/\" v1))

      proof

        let v1, v0;

        (v1 "\/" v0) = (v0 "\/" v1) by A8;

        hence thesis by A65;

      end;

      

       A108: for v1, v0 holds (v0 "/\" (v0 "\/" v1)) = (v0 "\/" (v0 "/\" v1))

      proof

        let v1, v0;

        (v0 "\/" (v0 "/\" (v0 "\/" v1))) = (v0 "/\" (v0 "\/" v1)) by A83;

        hence thesis by A106;

      end;

      

       A111: for v100, v1, v101 holds (v100 "/\" (v101 "\/" (v101 "/\" v1))) = (v101 "/\" (v100 "/\" (v101 "\/" v1)))

      proof

        let v100, v1, v101;

        (v101 "/\" (v101 "\/" v1)) = (v101 "\/" (v101 "/\" v1)) by A108;

        hence thesis by A31;

      end;

      

       A115: for v1, v100, v101 holds ((v100 "\/" v101) "/\" (v100 "\/" (v1 "/\" (v101 "\/" v100)))) = (v100 "\/" (v101 "/\" (v1 "\/" v100)))

      proof

        let v1, v100, v101;

        (v100 "\/" ((v1 "\/" v100) "/\" v101)) = (v100 "\/" (v1 "/\" (v101 "\/" v100))) by A57;

        hence thesis by A40;

      end;

      

       A119: for v102, v1, v100 holds ((v100 "/\" v1) "\/" (v100 "/\" (v102 "\/" (v100 "/\" v1)))) = (v100 "/\" (v102 "\/" (v100 "/\" v1)))

      proof

        let v102, v1, v100;

        (v100 "/\" (v100 "/\" v1)) = (v100 "/\" v1) by A24;

        hence thesis by A90;

      end;

      

       A123: for v100, v103, v101 holds ((v100 "\/" (v101 "/\" ((v101 "/\" v103) "\/" v100))) "/\" (v100 "\/" ((v101 "/\" v103) "\/" ((v101 "/\" v103) "/\" v100)))) = (v100 "\/" ((v101 "/\" v103) "/\" ((v101 "/\" v103) "\/" v100)))

      proof

        let v100, v103, v101;

        ((v101 "/\" v103) "/\" ((v101 "/\" v103) "\/" v100)) = ((v101 "/\" v103) "\/" ((v101 "/\" v103) "/\" v100)) by A108;

        hence thesis by A80;

      end;

      

       A126: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0))) "/\" (v0 "\/" ((v1 "/\" v2) "\/" (v1 "/\" (v2 "/\" v0))))) = (v0 "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v0)))

      proof

        let v0, v2, v1;

        ((v1 "/\" v2) "/\" v0) = (v1 "/\" (v2 "/\" v0)) by A3;

        hence thesis by A123;

      end;

      

       A128: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0))) "/\" (v0 "\/" (v1 "/\" v2))) = (v0 "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v0)))

      proof

        let v0, v2, v1;

        (v0 "\/" ((v1 "/\" v2) "\/" (v1 "/\" (v2 "/\" v0)))) = (v0 "\/" (v1 "/\" v2)) by A103;

        hence thesis by A126;

      end;

      

       A130: for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0)))) = (v0 "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v0)))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0))) "/\" (v0 "\/" (v1 "/\" v2))) = ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0)))) by A4;

        hence thesis by A128;

      end;

      

       A132: for v0, v2, v1 holds (v0 "\/" ((v1 "/\" v2) "/\" (v1 "\/" v0))) = (v0 "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v0)))

      proof

        let v0, v2, v1;

        ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" (v1 "/\" ((v1 "/\" v2) "\/" v0)))) = (v0 "\/" ((v1 "/\" v2) "/\" (v1 "\/" v0))) by A115;

        hence thesis by A130;

      end;

      

       A134: for v2, v0, v1 holds (v0 "\/" (v1 "/\" (v2 "/\" (v1 "\/" v0)))) = (v0 "\/" ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v0)))

      proof

        let v2, v0, v1;

        ((v1 "/\" v2) "/\" (v1 "\/" v0)) = (v1 "/\" (v2 "/\" (v1 "\/" v0))) by A3;

        hence thesis by A132;

      end;

      

       A136: for v2, v0, v1 holds (v0 "\/" (v1 "/\" (v2 "/\" (v1 "\/" v0)))) = (v0 "\/" ((v1 "/\" v2) "\/" ((v1 "/\" v2) "/\" v0)))

      proof

        let v2, v0, v1;

        ((v1 "/\" v2) "/\" ((v1 "/\" v2) "\/" v0)) = ((v1 "/\" v2) "\/" ((v1 "/\" v2) "/\" v0)) by A108;

        hence thesis by A134;

      end;

      

       A138: for v2, v0, v1 holds (v0 "\/" (v1 "/\" (v2 "/\" (v1 "\/" v0)))) = (v0 "\/" ((v1 "/\" v2) "\/" (v1 "/\" (v2 "/\" v0))))

      proof

        let v2, v0, v1;

        ((v1 "/\" v2) "/\" v0) = (v1 "/\" (v2 "/\" v0)) by A3;

        hence thesis by A136;

      end;

      

       A140: for v2, v0, v1 holds (v0 "\/" (v1 "/\" (v2 "/\" (v1 "\/" v0)))) = (v0 "\/" (v1 "/\" v2))

      proof

        let v2, v0, v1;

        (v0 "\/" ((v1 "/\" v2) "\/" (v1 "/\" (v2 "/\" v0)))) = (v0 "\/" (v1 "/\" v2)) by A103;

        hence thesis by A138;

      end;

      

       A143: for v101, v2, v102 holds ((v102 "/\" v2) "\/" ((v101 "\/" (v102 "/\" v2)) "/\" v102)) = ((v102 "/\" v2) "\/" (v102 "/\" (v101 "/\" (v102 "\/" v2))))

      proof

        let v101, v2, v102;

        (v101 "/\" (v102 "\/" (v102 "/\" v2))) = (v102 "/\" (v101 "/\" (v102 "\/" v2))) by A111;

        hence thesis by A57;

      end;

      

       A146: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" (v0 "/\" v1)))) = ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        ((v2 "\/" (v0 "/\" v1)) "/\" v0) = (v0 "/\" (v2 "\/" (v0 "/\" v1))) by A4;

        hence thesis by A143;

      end;

      

       A148: for v2, v1, v0 holds (v0 "/\" (v2 "\/" (v0 "/\" v1))) = ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1))))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v2 "\/" (v0 "/\" v1)))) = (v0 "/\" (v2 "\/" (v0 "/\" v1))) by A119;

        hence thesis by A146;

      end;

      

       A154: for v102, v2, v101 holds ((v101 "/\" v2) "\/" (v101 "/\" (v101 "/\" (v102 "/\" (v101 "\/" v2))))) = ((v101 "/\" v2) "\/" (v101 "/\" v102))

      proof

        let v102, v2, v101;

        (v102 "/\" (v101 "\/" (v101 "/\" v2))) = (v101 "/\" (v102 "/\" (v101 "\/" v2))) by A111;

        hence thesis by A140;

      end;

      

       A157: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1)))) = ((v0 "/\" v1) "\/" (v0 "/\" v2))

      proof

        let v2, v1, v0;

        (v0 "/\" (v0 "/\" (v2 "/\" (v0 "\/" v1)))) = (v0 "/\" (v2 "/\" (v0 "\/" v1))) by A24;

        hence thesis by A154;

      end;

      

       A159: for v2, v1, v0 holds ((v0 "/\" v1) "\/" (v0 "/\" v2)) = (v0 "/\" (v2 "\/" (v0 "/\" v1)))

      proof

        let v2, v1, v0;

        ((v0 "/\" v1) "\/" (v0 "/\" (v2 "/\" (v0 "\/" v1)))) = ((v0 "/\" v1) "\/" (v0 "/\" v2)) by A157;

        hence thesis by A148;

      end;

      let v1, v2, v3;

      (v1 "/\" (v2 "\/" (v1 "/\" v3))) = ((v1 "/\" v3) "\/" (v1 "/\" v2)) by A159;

      hence thesis by A8;

    end;

    definition

      let L;

      :: LATQUASI:def15

      attr L is QLT-selfmodular' means for v2, v1, v0 holds (((v0 "\/" v1) "/\" v2) "\/" v1) = (((v2 "\/" v1) "/\" v0) "\/" v1);

    end

    

     Cluster6: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfmodular' implies L is modular

    proof

      assume

       A1: L is meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfmodular';

      then (for v0 holds (v0 "/\" v0) = v0) & (for v2, v1, v0 holds ((v0 "/\" v1) "/\" v2) = (v0 "/\" (v1 "/\" v2))) & (for v1, v0 holds (v0 "/\" v1) = (v1 "/\" v0)) & (for v0, v2, v1 holds ((v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1)) = (v0 "/\" (v1 "\/" v2))) & (for v0 holds (v0 "\/" v0) = v0) & (for v2, v1, v0 holds ((v0 "\/" v1) "\/" v2) = (v0 "\/" (v1 "\/" v2))) & (for v1, v0 holds (v0 "\/" v1) = (v1 "\/" v0)) & (for v0, v2, v1 holds ((v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1)) = (v0 "\/" (v1 "/\" v2))) & (for v2, v1, v0 holds (((v0 "\/" v1) "/\" v2) "\/" v1) = (((v2 "\/" v1) "/\" v0) "\/" v1)) by LATTICES:def 4, LATTICES:def 5, LATTICES:def 6, LATTICES:def 7, SHEFFER1:def 9, ROBBINS1:def 7;

      then for v1, v2, v3 holds ((v1 "/\" v2) "\/" (v1 "/\" v3)) = (v1 "/\" (v2 "\/" (v1 "/\" v3))) by ThQLT6;

      hence thesis by ModRedef, A1;

    end;

    registration

      cluster meet-idempotent meet-associative meet-commutative satisfying_QLT1 join-idempotent join-associative join-commutative satisfying_QLT2 QLT-selfmodular' -> modular for non empty LattStr;

      coherence by Cluster6;

    end

    begin

    theorem :: LATQUASI:14

    ex L1,L2 be QuasiLattice st the carrier of L1 = the carrier of L2 & the L_join of L1 = the L_join of L2 & the L_meet of L1 <> the L_meet of L2

    proof

      take L1 = QLTLattice1 ;

      take L2 = QLTLattice2 ;

      thus the carrier of L1 = the carrier of L2;

      thus the L_join of L1 = the L_join of L2;

      thus thesis by WazneQLT7;

    end;