matrix_5.miz
begin
theorem ::
MATRIX_5:1
1
= (
1_
F_Complex ) by
COMPLEX1:def 4,
COMPLFLD: 8;
theorem ::
MATRIX_5:2
(
0.
F_Complex )
=
0 by
COMPLFLD: 7;
definition
let A be
Matrix of
COMPLEX ;
::
MATRIX_5:def1
func
COMPLEX2Field A ->
Matrix of
F_Complex equals A;
coherence by
COMPLFLD:def 1;
end
definition
let A be
Matrix of
F_Complex ;
::
MATRIX_5:def2
func
Field2COMPLEX A ->
Matrix of
COMPLEX equals A;
coherence by
COMPLFLD:def 1;
end
theorem ::
MATRIX_5:3
for A,B be
Matrix of
COMPLEX st (
COMPLEX2Field A)
= (
COMPLEX2Field B) holds A
= B;
theorem ::
MATRIX_5:4
for A,B be
Matrix of
F_Complex st (
Field2COMPLEX A)
= (
Field2COMPLEX B) holds A
= B;
theorem ::
MATRIX_5:5
for A be
Matrix of
COMPLEX holds A
= (
Field2COMPLEX (
COMPLEX2Field A));
theorem ::
MATRIX_5:6
for A be
Matrix of
F_Complex holds A
= (
COMPLEX2Field (
Field2COMPLEX A));
definition
let A,B be
Matrix of
COMPLEX ;
::
MATRIX_5:def3
func A
+ B ->
Matrix of
COMPLEX equals (
Field2COMPLEX ((
COMPLEX2Field A)
+ (
COMPLEX2Field B)));
coherence ;
end
definition
let A be
Matrix of
COMPLEX ;
::
MATRIX_5:def4
func
- A ->
Matrix of
COMPLEX equals (
Field2COMPLEX (
- (
COMPLEX2Field A)));
coherence ;
end
definition
let A,B be
Matrix of
COMPLEX ;
::
MATRIX_5:def5
func A
- B ->
Matrix of
COMPLEX equals (
Field2COMPLEX ((
COMPLEX2Field A)
- (
COMPLEX2Field B)));
coherence ;
::
MATRIX_5:def6
func A
* B ->
Matrix of
COMPLEX equals (
Field2COMPLEX ((
COMPLEX2Field A)
* (
COMPLEX2Field B)));
coherence ;
end
definition
let x be
Complex, A be
Matrix of
COMPLEX ;
::
MATRIX_5:def7
func x
* A ->
Matrix of
COMPLEX means
:
Def7: for ea be
Element of
F_Complex st ea
= x holds it
= (
Field2COMPLEX (ea
* (
COMPLEX2Field A)));
existence
proof
x
in
COMPLEX by
XCMPLX_0:def 2;
then
reconsider aa = x as
Element of
F_Complex by
COMPLFLD:def 1;
set C = (
Field2COMPLEX (aa
* (
COMPLEX2Field A)));
for ea be
Element of
F_Complex st ea
= x holds C
= (
Field2COMPLEX (ea
* (
COMPLEX2Field A)));
hence thesis;
end;
uniqueness
proof
x
in
COMPLEX by
XCMPLX_0:def 2;
then
reconsider aa = x as
Element of
F_Complex by
COMPLFLD:def 1;
let C1,C2 be
Matrix of
COMPLEX ;
assume that
A1: for ea be
Element of
F_Complex st ea
= x holds C1
= (
Field2COMPLEX (ea
* (
COMPLEX2Field A))) and
A2: for ea be
Element of
F_Complex st ea
= x holds C2
= (
Field2COMPLEX (ea
* (
COMPLEX2Field A)));
C2
= (
Field2COMPLEX (aa
* (
COMPLEX2Field A))) by
A2;
hence thesis by
A1;
end;
end
theorem ::
MATRIX_5:7
for A be
Matrix of
COMPLEX holds (
len A)
= (
len (
COMPLEX2Field A)) & (
width A)
= (
width (
COMPLEX2Field A));
theorem ::
MATRIX_5:8
for A be
Matrix of
F_Complex holds (
len A)
= (
len (
Field2COMPLEX A)) & (
width A)
= (
width (
Field2COMPLEX A));
theorem ::
MATRIX_5:9
Th9: for K be
Field, M be
Matrix of K holds ((
1_ K)
* M)
= M
proof
let K be
Field, M be
Matrix of K;
A1: for i,j be
Nat st
[i, j]
in (
Indices M) holds (((
1_ K)
* M)
* (i,j))
= (M
* (i,j))
proof
let i,j be
Nat;
A2: ((
1_ K)
* (M
* (i,j)))
= (M
* (i,j));
assume
[i, j]
in (
Indices M);
hence thesis by
A2,
MATRIX_3:def 5;
end;
(
len ((
1_ K)
* M))
= (
len M) & (
width ((
1_ K)
* M))
= (
width M) by
MATRIX_3:def 5;
hence thesis by
A1,
MATRIX_0: 21;
end;
theorem ::
MATRIX_5:10
for M be
Matrix of
COMPLEX holds (1
* M)
= M
proof
set e = (
1_
F_Complex );
let M be
Matrix of
COMPLEX ;
(1
* M)
= (
Field2COMPLEX (e
* (
COMPLEX2Field M))) by
Def7,
COMPLEX1:def 4,
COMPLFLD: 8;
hence thesis by
Th9;
end;
theorem ::
MATRIX_5:11
for K be
Field, a,b be
Element of K, M be
Matrix of K holds (a
* (b
* M))
= ((a
* b)
* M)
proof
let K be
Field, a,b be
Element of K, M be
Matrix of K;
A1: (
len ((a
* b)
* M))
= (
len M) & (
width ((a
* b)
* M))
= (
width M) by
MATRIX_3:def 5;
A2: (
len (a
* (b
* M)))
= (
len (b
* M)) by
MATRIX_3:def 5;
A3: (
width (a
* (b
* M)))
= (
width (b
* M)) by
MATRIX_3:def 5;
then
A4: (
width (a
* (b
* M)))
= (
width M) by
MATRIX_3:def 5;
A5: (
len (b
* M))
= (
len M) & (
width (b
* M))
= (
width M) by
MATRIX_3:def 5;
A6: for i,j be
Nat st
[i, j]
in (
Indices (a
* (b
* M))) holds ((a
* (b
* M))
* (i,j))
= (((a
* b)
* M)
* (i,j))
proof
let i,j be
Nat;
assume
A7:
[i, j]
in (
Indices (a
* (b
* M)));
A8: (
Indices (b
* M))
= (
Indices M) by
A5,
MATRIX_4: 55;
A9: (
Indices (a
* (b
* M)))
= (
Indices (b
* M)) by
A2,
A3,
MATRIX_4: 55;
then ((a
* (b
* M))
* (i,j))
= (a
* ((b
* M)
* (i,j))) by
A7,
MATRIX_3:def 5
.= (a
* (b
* (M
* (i,j)))) by
A7,
A9,
A8,
MATRIX_3:def 5
.= ((a
* b)
* (M
* (i,j))) by
GROUP_1:def 3;
hence thesis by
A7,
A9,
A8,
MATRIX_3:def 5;
end;
(
len (a
* (b
* M)))
= (
len M) by
A2,
MATRIX_3:def 5;
hence thesis by
A1,
A4,
A6,
MATRIX_0: 21;
end;
theorem ::
MATRIX_5:12
Th12: for K be
Field, a,b be
Element of K, M be
Matrix of K holds ((a
+ b)
* M)
= ((a
* M)
+ (b
* M))
proof
let K be
Field, a,b be
Element of K, M be
Matrix of K;
A1: (
len (a
* M))
= (
len M) & (
width (a
* M))
= (
width M) by
MATRIX_3:def 5;
A2: (
len ((a
+ b)
* M))
= (
len M) & (
width ((a
+ b)
* M))
= (
width M) by
MATRIX_3:def 5;
A3: for i,j be
Nat st
[i, j]
in (
Indices ((a
+ b)
* M)) holds (((a
+ b)
* M)
* (i,j))
= (((a
* M)
+ (b
* M))
* (i,j))
proof
let i,j be
Nat;
assume
A4:
[i, j]
in (
Indices ((a
+ b)
* M));
A5: (
Indices ((a
+ b)
* M))
= (
Indices M) by
A2,
MATRIX_4: 55;
(
Indices (a
* M))
= (
Indices M) by
A1,
MATRIX_4: 55;
then (((a
* M)
+ (b
* M))
* (i,j))
= (((a
* M)
* (i,j))
+ ((b
* M)
* (i,j))) by
A4,
A5,
MATRIX_3:def 3
.= ((a
* (M
* (i,j)))
+ ((b
* M)
* (i,j))) by
A4,
A5,
MATRIX_3:def 5
.= ((a
* (M
* (i,j)))
+ (b
* (M
* (i,j)))) by
A4,
A5,
MATRIX_3:def 5
.= ((a
+ b)
* (M
* (i,j))) by
VECTSP_1:def 7;
hence thesis by
A4,
A5,
MATRIX_3:def 5;
end;
(
len ((a
* M)
+ (b
* M)))
= (
len (a
* M)) & (
width ((a
* M)
+ (b
* M)))
= (
width (a
* M)) by
MATRIX_3:def 3;
hence thesis by
A2,
A1,
A3,
MATRIX_0: 21;
end;
theorem ::
MATRIX_5:13
for M be
Matrix of
COMPLEX holds (M
+ M)
= (2
* M)
proof
reconsider e2 = ((
1_
F_Complex )
+ (
1_
F_Complex )) as
Element of
F_Complex ;
let M be
Matrix of
COMPLEX ;
A1: ((
1_
F_Complex )
* (
COMPLEX2Field M))
= (
COMPLEX2Field M) by
Th9;
(2
* M)
= (
Field2COMPLEX (e2
* (
COMPLEX2Field M))) by
Def7,
COMPLEX1:def 4,
COMPLFLD: 8
.= (
Field2COMPLEX ((
COMPLEX2Field M)
+ (
COMPLEX2Field M))) by
A1,
Th12;
hence thesis;
end;
theorem ::
MATRIX_5:14
for M be
Matrix of
COMPLEX holds ((M
+ M)
+ M)
= (3
* M)
proof
reconsider rr = (1
+ 1) as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider e3 = (((
1_
F_Complex )
+ (
1_
F_Complex ))
+ (
1_
F_Complex )) as
Element of
F_Complex ;
let M be
Matrix of
COMPLEX ;
A1: (
len M)
= (
len (
COMPLEX2Field M)) & (
width M)
= (
width (
COMPLEX2Field M));
A2: ((
1_
F_Complex )
+ (
1_
F_Complex ))
= (the
addF of
F_Complex
. ((
1_
F_Complex ),(
1_
F_Complex ))) by
RLVECT_1: 2
.= (
addcomplex
. (
1r ,
1r )) by
COMPLFLD: 8,
COMPLFLD:def 1
.= (1
+ 1) by
BINOP_2:def 3,
COMPLEX1:def 4;
(((
1_
F_Complex )
+ (
1_
F_Complex ))
+ (
1_
F_Complex ))
= (the
addF of
F_Complex
. (((
1_
F_Complex )
+ (
1_
F_Complex )),(
1_
F_Complex ))) by
RLVECT_1: 2
.= (
addcomplex
. ((1
+ 1),1)) by
A2,
COMPLFLD:def 1
.= (rr
+ 1) by
BINOP_2:def 3
.= 3;
then (3
* M)
= (
Field2COMPLEX (e3
* (
COMPLEX2Field M))) by
Def7
.= (
Field2COMPLEX (((
1_
F_Complex )
* (
COMPLEX2Field M))
+ (((
1_
F_Complex )
+ (
1_
F_Complex ))
* (
COMPLEX2Field M)))) by
Th12
.= (
Field2COMPLEX ((
COMPLEX2Field M)
+ (((
1_
F_Complex )
+ (
1_
F_Complex ))
* (
COMPLEX2Field M)))) by
Th9
.= (
Field2COMPLEX ((
COMPLEX2Field M)
+ (((
1_
F_Complex )
* (
COMPLEX2Field M))
+ ((
1_
F_Complex )
* (
COMPLEX2Field M))))) by
Th12
.= (
Field2COMPLEX ((
COMPLEX2Field M)
+ ((
COMPLEX2Field M)
+ ((
1_
F_Complex )
* (
COMPLEX2Field M))))) by
Th9
.= (
Field2COMPLEX ((
COMPLEX2Field M)
+ ((
COMPLEX2Field M)
+ (
COMPLEX2Field M)))) by
Th9
.= (
Field2COMPLEX (((
COMPLEX2Field M)
+ (
COMPLEX2Field M))
+ (
COMPLEX2Field M))) by
A1,
MATRIX_3: 3;
hence thesis;
end;
definition
let n,m be
Nat;
::
MATRIX_5:def8
func
0_Cx (n,m) ->
Matrix of
COMPLEX equals (
Field2COMPLEX (
0. (
F_Complex ,n,m)));
coherence ;
end
theorem ::
MATRIX_5:15
for n,m be
Nat holds (
COMPLEX2Field (
0_Cx (n,m)))
= (
0. (
F_Complex ,n,m));
theorem ::
MATRIX_5:16
for M1,M2 be
Matrix of
COMPLEX st (
len M1)
= (
len M2) & (
width M1)
= (
width M2) & M1
= (M1
+ M2) holds M2
= (
0_Cx ((
len M1),(
width M1)))
proof
let M1,M2 be
Matrix of
COMPLEX ;
assume that
A1: (
len M1)
= (
len M2) & (
width M1)
= (
width M2) and
A2: M1
= (M1
+ M2);
(
0_Cx ((
len M1),(
width M1)))
= ((M1
+ M2)
+ (
- M1)) by
A2,
MATRIX_4: 2
.= (
Field2COMPLEX (((
COMPLEX2Field M2)
+ (
COMPLEX2Field M1))
- (
COMPLEX2Field M1))) by
A1,
MATRIX_3: 2
.= M2 by
A1,
MATRIX_4: 21;
hence thesis;
end;
theorem ::
MATRIX_5:17
for M1,M2 be
Matrix of
COMPLEX st (
len M1)
= (
len M2) & (
width M1)
= (
width M2) & (M1
+ M2)
= (
0_Cx ((
len M1),(
width M1))) holds M2
= (
- M1)
proof
let M1,M2 be
Matrix of
COMPLEX ;
assume that
A1: (
len M1)
= (
len M2) & (
width M1)
= (
width M2) and
A2: (M1
+ M2)
= (
0_Cx ((
len M1),(
width M1)));
A3: (
len (
- M2))
= (
len M2) & (
width (
- M2))
= (
width M2) by
MATRIX_3:def 2;
(
COMPLEX2Field (
0_Cx ((
len M1),(
width M1))))
= ((
COMPLEX2Field M1)
- (
- (
COMPLEX2Field M2))) by
A2,
MATRIX_4: 1;
then (
COMPLEX2Field M1)
= (
- (
COMPLEX2Field M2)) by
A1,
A3,
MATRIX_4: 7;
hence thesis by
MATRIX_4: 1;
end;
theorem ::
MATRIX_5:18
for M1,M2 be
Matrix of
COMPLEX st (
len M1)
= (
len M2) & (
width M1)
= (
width M2) & (M2
- M1)
= M2 holds M1
= (
0_Cx ((
len M1),(
width M1)))
proof
let M1,M2 be
Matrix of
COMPLEX ;
assume that
A1: (
len M1)
= (
len M2) & (
width M1)
= (
width M2) and
A2: (M2
- M1)
= M2;
((
COMPLEX2Field M2)
+ (
COMPLEX2Field M1))
= (
COMPLEX2Field M2) by
A1,
A2,
MATRIX_4: 22;
hence thesis by
A1,
MATRIX_4: 6;
end;
theorem ::
MATRIX_5:19
for M be
Matrix of
COMPLEX holds (M
+ (
0_Cx ((
len M),(
width M))))
= M
proof
let M be
Matrix of
COMPLEX ;
A1: (
len M)
= (
len (
COMPLEX2Field M)) & (
width M)
= (
width (
COMPLEX2Field M));
(M
+ (
0_Cx ((
len M),(
width M))))
= (M
+ (
- (
0_Cx ((
len M),(
width M))))) by
MATRIX_4: 9
.= (
Field2COMPLEX ((
COMPLEX2Field M)
- ((
COMPLEX2Field M)
- (
COMPLEX2Field M)))) by
MATRIX_4: 3
.= M by
A1,
MATRIX_4: 11;
hence thesis;
end;
theorem ::
MATRIX_5:20
Th20: for K be
Field, b be
Element of K, M1,M2 be
Matrix of K st (
len M1)
= (
len M2) & (
width M1)
= (
width M2) holds (b
* (M1
+ M2))
= ((b
* M1)
+ (b
* M2))
proof
let K be
Field, b be
Element of K, M1,M2 be
Matrix of K;
A1: (
len (b
* (M1
+ M2)))
= (
len (M1
+ M2)) & (
width (b
* (M1
+ M2)))
= (
width (M1
+ M2)) by
MATRIX_3:def 5;
A2: (
len (M1
+ M2))
= (
len M1) & (
width (M1
+ M2))
= (
width M1) by
MATRIX_3:def 3;
A3: (
len (b
* M1))
= (
len M1) & (
width (b
* M1))
= (
width M1) by
MATRIX_3:def 5;
assume
A4: (
len M1)
= (
len M2) & (
width M1)
= (
width M2);
A5: for i,j be
Nat st
[i, j]
in (
Indices (b
* (M1
+ M2))) holds ((b
* (M1
+ M2))
* (i,j))
= (((b
* M1)
+ (b
* M2))
* (i,j))
proof
let i,j be
Nat;
assume
A6:
[i, j]
in (
Indices (b
* (M1
+ M2)));
A7: (
Indices M2)
= (
Indices M1) by
A4,
MATRIX_4: 55;
A8: (
Indices (b
* (M1
+ M2)))
= (
Indices (M1
+ M2)) by
A1,
MATRIX_4: 55;
A9: (
Indices (M1
+ M2))
= (
Indices M1) by
A2,
MATRIX_4: 55;
(
Indices (b
* M1))
= (
Indices M1) by
A3,
MATRIX_4: 55;
then (((b
* M1)
+ (b
* M2))
* (i,j))
= (((b
* M1)
* (i,j))
+ ((b
* M2)
* (i,j))) by
A6,
A8,
A9,
MATRIX_3:def 3
.= ((b
* (M1
* (i,j)))
+ ((b
* M2)
* (i,j))) by
A6,
A8,
A9,
MATRIX_3:def 5
.= ((b
* (M1
* (i,j)))
+ (b
* (M2
* (i,j)))) by
A6,
A8,
A9,
A7,
MATRIX_3:def 5
.= (b
* ((M1
* (i,j))
+ (M2
* (i,j)))) by
VECTSP_1:def 7;
then (((b
* M1)
+ (b
* M2))
* (i,j))
= (b
* ((M1
+ M2)
* (i,j))) by
A6,
A8,
A9,
MATRIX_3:def 3
.= ((b
* (M1
+ M2))
* (i,j)) by
A6,
A8,
MATRIX_3:def 5;
hence thesis;
end;
(
len ((b
* M1)
+ (b
* M2)))
= (
len (b
* M1)) & (
width ((b
* M1)
+ (b
* M2)))
= (
width (b
* M1)) by
MATRIX_3:def 3;
hence thesis by
A1,
A2,
A3,
A5,
MATRIX_0: 21;
end;
theorem ::
MATRIX_5:21
for M1,M2 be
Matrix of
COMPLEX holds for a be
Complex st (
len M1)
= (
len M2) & (
width M1)
= (
width M2) holds (a
* (M1
+ M2))
= ((a
* M1)
+ (a
* M2))
proof
let M1,M2 be
Matrix of
COMPLEX ;
let a be
Complex;
assume
A1: (
len M1)
= (
len M2) & (
width M1)
= (
width M2);
a
in
COMPLEX by
XCMPLX_0:def 2;
then
reconsider ea = a as
Element of
F_Complex by
COMPLFLD:def 1;
A2: ((a
* M1)
+ (a
* M2))
= (
Field2COMPLEX ((
COMPLEX2Field (
Field2COMPLEX (ea
* (
COMPLEX2Field M1))))
+ (
COMPLEX2Field (a
* M2)))) by
Def7
.= (
Field2COMPLEX ((ea
* (
COMPLEX2Field M1))
+ (
COMPLEX2Field (
Field2COMPLEX (ea
* (
COMPLEX2Field M2)))))) by
Def7
.= (
Field2COMPLEX ((ea
* (
COMPLEX2Field M1))
+ (ea
* (
COMPLEX2Field M2))));
(a
* (M1
+ M2))
= (
Field2COMPLEX (ea
* (
COMPLEX2Field (M1
+ M2)))) by
Def7
.= (
Field2COMPLEX ((ea
* (
COMPLEX2Field M1))
+ (ea
* (
COMPLEX2Field M2)))) by
A1,
Th20;
hence thesis by
A2;
end;
theorem ::
MATRIX_5:22
Th22: for K be
Field, M1,M2 be
Matrix of K st (
width M1)
= (
len M2) & (
len M1)
>
0 & (
len M2)
>
0 holds ((
0. (K,(
len M1),(
width M1)))
* M2)
= (
0. (K,(
len M1),(
width M2)))
proof
let K be
Field, M1,M2 be
Matrix of K;
assume that
A1: (
width M1)
= (
len M2) and
A2: (
len M1)
>
0 and
A3: (
len M2)
>
0 ;
A4: (
len (
0. (K,(
len M1),(
width M1))))
= (
len M1) by
MATRIX_0:def 2;
then
A5: (
width (
0. (K,(
len M1),(
width M1))))
= (
width M1) by
A2,
MATRIX_0: 20;
then
A6: (
len ((
0. (K,(
len M1),(
width M1)))
* M2))
= (
len (
0. (K,(
len M1),(
width M1)))) by
A1,
MATRIX_3:def 4;
A7: (
width ((
0. (K,(
len M1),(
width M1)))
* M2))
= (
width M2) by
A1,
A5,
MATRIX_3:def 4;
set B = ((
0. (K,(
len M1),(
width M1)))
* M2);
A8: (
width (
- ((
0. (K,(
len M1),(
width M1)))
* M2)))
= (
width ((
0. (K,(
len M1),(
width M1)))
* M2)) by
MATRIX_3:def 2;
((
0. (K,(
len M1),(
width M1)))
* M2)
= (((
0. (K,(
len M1),(
width M1)))
+ (
0. (K,(
len M1),(
width M1))))
* M2) by
MATRIX_3: 4
.= (((
0. (K,(
len M1),(
width M1)))
* M2)
+ ((
0. (K,(
len M1),(
width M1)))
* M2)) by
A1,
A2,
A3,
A4,
A5,
MATRIX_4: 63;
then (
len (
- ((
0. (K,(
len M1),(
width M1)))
* M2)))
= (
len ((
0. (K,(
len M1),(
width M1)))
* M2)) & (
0. (K,(
len M1),(
width M2)))
= ((B
+ B)
+ (
- B)) by
A4,
A6,
A7,
MATRIX_3:def 2,
MATRIX_4: 2;
then (
0. (K,(
len M1),(
width M2)))
= (B
+ (B
- B)) by
A8,
MATRIX_3: 3
.= ((
0. (K,(
len M1),(
width M1)))
* M2) by
A6,
A8,
MATRIX_4: 20;
hence thesis;
end;
theorem ::
MATRIX_5:23
for M1,M2 be
Matrix of
COMPLEX st (
width M1)
= (
len M2) & (
len M1)
>
0 & (
len M2)
>
0 holds ((
0_Cx ((
len M1),(
width M1)))
* M2)
= (
0_Cx ((
len M1),(
width M2)))
proof
let M1,M2 be
Matrix of
COMPLEX ;
A1: (
len M1)
= (
len (
COMPLEX2Field M1));
assume (
width M1)
= (
len M2) & (
len M1)
>
0 & (
len M2)
>
0 ;
hence thesis by
A1,
Th22;
end;
theorem ::
MATRIX_5:24
Th24: for K be
Field, M1 be
Matrix of K st (
len M1)
>
0 holds ((
0. K)
* M1)
= (
0. (K,(
len M1),(
width M1)))
proof
let K be
Field, M1 be
Matrix of K;
A1: (
len (
0. (K,(
len M1),(
width M1))))
= (
len M1) by
MATRIX_0:def 2;
assume (
len M1)
>
0 ;
then
A2: (
width (
0. (K,(
len M1),(
width M1))))
= (
width M1) by
A1,
MATRIX_0: 20;
A3: for i,j be
Nat st
[i, j]
in (
Indices (
0. (K,(
len M1),(
width M1)))) holds (((
0. K)
* M1)
* (i,j))
= ((
0. (K,(
len M1),(
width M1)))
* (i,j))
proof
let i,j be
Nat;
assume
A4:
[i, j]
in (
Indices (
0. (K,(
len M1),(
width M1))));
(
Indices (
0. (K,(
len M1),(
width M1))))
= (
Indices M1) by
A1,
A2,
MATRIX_4: 55;
then
A5: (((
0. K)
* M1)
* (i,j))
= ((
0. K)
* (M1
* (i,j))) by
A4,
MATRIX_3:def 5;
((
0. (K,(
len M1),(
width M1)))
* (i,j))
= (
0. K) by
A4,
MATRIX_3: 1;
hence thesis by
A5;
end;
(
len ((
0. K)
* M1))
= (
len M1) & (
width ((
0. K)
* M1))
= (
width M1) by
MATRIX_3:def 5;
hence thesis by
A1,
A2,
A3,
MATRIX_0: 21;
end;
theorem ::
MATRIX_5:25
for M1 be
Matrix of
COMPLEX st (
len M1)
>
0 holds (
0
* M1)
= (
0_Cx ((
len M1),(
width M1)))
proof
reconsider ea =
0 as
Element of
F_Complex by
COMPLFLD:def 1;
let M1 be
Matrix of
COMPLEX ;
assume
A1: (
len M1)
>
0 ;
(
0
* M1)
= (
Field2COMPLEX (ea
* (
COMPLEX2Field M1))) by
Def7
.= (
0_Cx ((
len M1),(
width M1))) by
A1,
Th24,
COMPLFLD: 7;
hence thesis;
end;
definition
let s be
complex-valued
Function, k be
set;
:: original:
.
redefine
func s
. k ->
Element of
COMPLEX ;
coherence
proof
per cases ;
suppose
A1: k
in (
dom s);
A2: (
rng s)
c=
COMPLEX by
VALUED_0:def 1;
(s
. k)
in (
rng s) by
A1,
FUNCT_1:def 3;
hence thesis by
A2;
end;
suppose not k
in (
dom s);
then (s
. k)
=
0c by
FUNCT_1:def 2;
hence thesis;
end;
end;
end
theorem ::
MATRIX_5:26
for i,j be
Nat, M1,M2 be
Matrix of
COMPLEX st (
len M2)
>
0 holds ex s be
FinSequence of
COMPLEX st (
len s)
= (
len M2) & (s
. 1)
= ((M1
* (i,1))
* (M2
* (1,j))) & for k be
Nat st 1
<= k & k
< (
len M2) holds (s
. (k
+ 1))
= ((s
. k)
+ ((M1
* (i,(k
+ 1)))
* (M2
* ((k
+ 1),j))))
proof
let i,j be
Nat, M1,M2 be
Matrix of
COMPLEX ;
defpred
P[
Nat] means ex q be
FinSequence of
COMPLEX st 1
<= ($1
+ 1) & ($1
+ 1)
<= (
len M2) implies ((
len q)
= ($1
+ 1) & (q
. 1)
= ((M1
* (i,1))
* (M2
* (1,j))) & (for k be
Nat st 1
<= k & k
< ($1
+ 1) holds (q
. (k
+ 1))
= ((q
. k)
+ ((M1
* (i,(k
+ 1)))
* (M2
* ((k
+ 1),j))))));
reconsider q0 =
<*((M1
* (i,1))
* (M2
* (1,j)))*> as
FinSequence of
COMPLEX by
RVSUM_1: 146;
A1: for k be
Nat st 1
<= k & k
< 1 holds (q0
. (k
+ 1))
= ((q0
. k)
+ ((M1
* (i,(k
+ 1)))
* (M2
* ((k
+ 1),j))));
A2: for i2 be
Nat st
P[i2] holds
P[(i2
+ 1)]
proof
let i2 be
Nat;
set k0 = i2;
assume
P[i2];
then
consider q2 be
FinSequence of
COMPLEX such that
A3: 1
<= (i2
+ 1) & (i2
+ 1)
<= (
len M2) implies (
len q2)
= (i2
+ 1) & (q2
. 1)
= ((M1
* (i,1))
* (M2
* (1,j))) & for k2 be
Nat st 1
<= k2 & k2
< (i2
+ 1) holds (q2
. (k2
+ 1))
= ((q2
. k2)
+ ((M1
* (i,(k2
+ 1)))
* (M2
* ((k2
+ 1),j))));
reconsider q3 = (q2
^
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>) as
FinSequence of
COMPLEX by
RVSUM_1: 146;
1
<= ((i2
+ 1)
+ 1) & ((i2
+ 1)
+ 1)
<= (
len M2) implies (
len q3)
= ((i2
+ 1)
+ 1) & (q3
. 1)
= ((M1
* (i,1))
* (M2
* (1,j))) & for k be
Nat st 1
<= k & k
< ((i2
+ 1)
+ 1) holds (q3
. (k
+ 1))
= ((q3
. k)
+ ((M1
* (i,(k
+ 1)))
* (M2
* ((k
+ 1),j))))
proof
assume that 1
<= ((i2
+ 1)
+ 1) and
A4: ((i2
+ 1)
+ 1)
<= (
len M2);
A5: 1
<= (i2
+ 1) by
NAT_1: 12;
thus
A6: (
len q3)
= ((
len q2)
+ (
len
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>)) by
FINSEQ_1: 22
.= ((i2
+ 1)
+ 1) by
A3,
A4,
A5,
FINSEQ_1: 39,
NAT_1: 13;
A7: for k2 be
Nat st 1
<= k2 & k2
< ((i2
+ 1)
+ 1) holds (q3
. (k2
+ 1))
= ((q3
. k2)
+ ((M1
* (i,(k2
+ 1)))
* (M2
* ((k2
+ 1),j))))
proof
let k2 be
Nat;
assume that
A8: 1
<= k2 and
A9: k2
< ((i2
+ 1)
+ 1);
A10: k2
<= (i2
+ 1) by
A9,
NAT_1: 13;
per cases by
A10,
XXREAL_0: 1;
suppose
A11: k2
< (i2
+ 1);
then k2
< (
len q3) by
A6,
NAT_1: 13;
then k2
< ((
len q2)
+ (
len
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>)) by
FINSEQ_1: 22;
then k2
< ((
len q2)
+ 1) by
FINSEQ_1: 39;
then k2
<= (
len q2) by
NAT_1: 13;
then k2
in (
dom q2) by
A8,
FINSEQ_3: 25;
then
A12: (q3
. k2)
= (q2
. k2) by
FINSEQ_1:def 7;
(k2
+ 1)
< ((i2
+ 1)
+ 1) by
A11,
XREAL_1: 6;
then (k2
+ 1)
< ((
len q2)
+ (
len
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>)) by
A6,
FINSEQ_1: 22;
then (k2
+ 1)
< ((
len q2)
+ 1) by
FINSEQ_1: 39;
then
A13: (k2
+ 1)
<= (
len q2) by
NAT_1: 13;
1
<= (k2
+ 1) by
A8,
NAT_1: 13;
then (k2
+ 1)
in (
dom q2) by
A13,
FINSEQ_3: 25;
then (q3
. (k2
+ 1))
= (q2
. (k2
+ 1)) by
FINSEQ_1:def 7;
hence thesis by
A3,
A4,
A5,
A8,
A11,
A12,
NAT_1: 13;
end;
suppose
A14: k2
= (i2
+ 1);
then k2
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
then k2
< ((
len q2)
+ (
len
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>)) by
A6,
FINSEQ_1: 22;
then k2
< ((
len q2)
+ 1) by
FINSEQ_1: 39;
then k2
<= (
len q2) by
NAT_1: 13;
then k2
in (
dom q2) by
A8,
FINSEQ_3: 25;
then
A15: (q3
. k2)
= (q2
. k2) by
FINSEQ_1:def 7;
1
in (
Seg 1) by
FINSEQ_1: 3;
then (
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>
. 1)
= ((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j)))) & 1
in (
dom
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>) by
FINSEQ_1:def 8;
hence thesis by
A3,
A4,
A5,
A14,
A15,
FINSEQ_1:def 7,
NAT_1: 13;
end;
end;
1
< (
len (q2
^
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>)) by
A5,
A6,
NAT_1: 13;
then 1
< ((
len q2)
+ (
len
<*((q2
. (k0
+ 1))
+ ((M1
* (i,((k0
+ 1)
+ 1)))
* (M2
* (((k0
+ 1)
+ 1),j))))*>)) by
FINSEQ_1: 22;
then 1
< ((
len q2)
+ 1) by
FINSEQ_1: 39;
then 1
<= (
len q2) by
NAT_1: 13;
then 1
in (
dom q2) by
FINSEQ_3: 25;
hence thesis by
A3,
A4,
A5,
A7,
FINSEQ_1:def 7,
NAT_1: 13;
end;
hence thesis;
end;
(
len q0)
= 1 & (q0
. 1)
= ((M1
* (i,1))
* (M2
* (1,j))) by
FINSEQ_1: 39,
FINSEQ_1:def 8;
then
A16:
P[
0 ] by
A1;
A17: for j be
Nat holds
P[j] from
NAT_1:sch 2(
A16,
A2);
assume
A18: (
len M2)
>
0 ;
then (
0
+ 1)
<= (
len M2) by
NAT_1: 8;
then ((
0
+ 1)
- 1)
<= ((
len M2)
- 1) by
XREAL_1: 9;
then
A19: ((
len M2)
-' 1)
= ((
len M2)
- 1) by
XREAL_0:def 2;
then (
0
+ 1)
<= (((
len M2)
-' 1)
+ 1) by
A18,
NAT_1: 8;
hence thesis by
A19,
A17;
end;