complex1.miz
begin
reserve a,b,c,d for
Real;
theorem ::
COMPLEX1:1
Th1: ((a
^2 )
+ (b
^2 ))
=
0 implies a
=
0
proof
0
<= (a
^2 ) &
0
<= (b
^2 ) by
XREAL_1: 63;
hence thesis;
end;
Lm1:
0
<= ((a
^2 )
+ (b
^2 ))
proof
0
<= (a
^2 ) &
0
<= (b
^2 ) by
XREAL_1: 63;
hence thesis;
end;
definition
let z be
Complex;
::
COMPLEX1:def1
func
Re z ->
number means
:
Def1: it
= z if z is
real
otherwise ex f be
Function of 2,
REAL st z
= f & it
= (f
.
0 );
existence
proof
thus z is
real implies ex IT be
set st IT
= z
proof
assume z is
real;
then z
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
A1: z
in
COMPLEX by
XCMPLX_0:def 2;
assume not z is
real;
then not z
in
REAL ;
then z
in ((
Funcs (2,
REAL ))
\ { x where x be
Element of (
Funcs (2,
REAL )) : (x
. 1)
=
0 }) by
A1,
CARD_1: 50,
NUMBERS:def 2,
XBOOLE_0:def 3;
then
reconsider f = z as
Function of 2,
REAL by
FUNCT_2: 66;
take (f
.
0 ), f;
thus thesis;
end;
uniqueness ;
consistency ;
::
COMPLEX1:def2
func
Im z ->
number means
:
Def2: it
=
0 if z is
real
otherwise ex f be
Function of 2,
REAL st z
= f & it
= (f
. 1);
existence
proof
thus z is
real implies ex IT be
set st IT
=
0 ;
A2: z
in
COMPLEX by
XCMPLX_0:def 2;
assume not z is
real;
then not z
in
REAL ;
then z
in ((
Funcs (2,
REAL ))
\ { x where x be
Element of (
Funcs (2,
REAL )) : (x
. 1)
=
0 }) by
A2,
CARD_1: 50,
NUMBERS:def 2,
XBOOLE_0:def 3;
then
reconsider f = z as
Function of 2,
REAL by
FUNCT_2: 66;
take (f
. 1), f;
thus thesis;
end;
uniqueness ;
consistency ;
end
registration
let z be
Complex;
cluster (
Re z) ->
real;
coherence
proof
per cases ;
suppose z is
real;
hence thesis by
Def1;
end;
suppose not z is
real;
then
consider f be
Function of 2,
REAL such that z
= f and
A1: (
Re z)
= (f
.
0 ) by
Def1;
0
in 2 by
CARD_1: 50,
TARSKI:def 2;
then (f
.
0 )
in
REAL by
FUNCT_2: 5;
hence thesis by
A1;
end;
end;
cluster (
Im z) ->
real;
coherence
proof
per cases ;
suppose z is
real;
hence thesis by
Def2;
end;
suppose not z is
real;
then
consider f be
Function of 2,
REAL such that z
= f and
A2: (
Im z)
= (f
. 1) by
Def2;
1
in 2 by
CARD_1: 50,
TARSKI:def 2;
then (f
. 1)
in
REAL by
FUNCT_2: 5;
hence thesis by
A2;
end;
end;
end
definition
let z be
Complex;
:: original:
Re
redefine
func
Re z ->
Element of
REAL ;
coherence by
XREAL_0:def 1;
:: original:
Im
redefine
func
Im z ->
Element of
REAL ;
coherence by
XREAL_0:def 1;
end
registration
let r be
Real;
cluster (
Im r) ->
zero;
coherence by
Def2;
end
theorem ::
COMPLEX1:2
Th2: for f be
Function of 2,
REAL holds ex a,b be
Element of
REAL st f
= ((
0 ,1)
--> (a,b))
proof
let f be
Function of 2,
REAL ;
0
in 2 & 1
in 2 by
CARD_1: 50,
TARSKI:def 2;
then
reconsider a = (f
.
0 ), b = (f
. 1) as
Element of
REAL by
FUNCT_2: 5;
take a, b;
(
dom f)
=
{
0 , 1} by
CARD_1: 50,
FUNCT_2:def 1;
hence thesis by
FUNCT_4: 66;
end;
Lm2: for a,b be
Element of
REAL holds (
Re
[*a, b*])
= a & (
Im
[*a, b*])
= b
proof
let a,b be
Element of
REAL ;
reconsider a9 = a, b9 = b as
Element of
REAL ;
thus (
Re
[*a, b*])
= a
proof
per cases ;
suppose b
=
0 ;
then
[*a, b*]
= a by
ARYTM_0:def 5;
hence thesis by
Def1;
end;
suppose b
<>
0 ;
then
A1:
[*a, b*]
= ((
0 ,1)
--> (a9,b9)) by
ARYTM_0:def 5;
then
reconsider f =
[*a, b*] as
Function of 2,
REAL by
CARD_1: 50;
A2: not
[*a, b*]
in
REAL & (f
.
0 )
= a by
A1,
ARYTM_0: 8,
FUNCT_4: 63;
then not
[*a, b*] is
real by
XREAL_0:def 1;
hence thesis by
Def1,
A2;
end;
end;
per cases ;
suppose
A2: b
=
0 ;
then
[*a, b*]
= a by
ARYTM_0:def 5;
hence thesis by
A2;
end;
suppose b
<>
0 ;
then
A3:
[*a, b*]
= ((
0 ,1)
--> (a9,b9)) by
ARYTM_0:def 5;
then
reconsider f =
[*a, b*] as
Function of 2,
REAL by
CARD_1: 50;
A4: not
[*a, b*]
in
REAL & (f
. 1)
= b by
A3,
ARYTM_0: 8,
FUNCT_4: 63;
then not
[*a, b*] is
real by
XREAL_0:def 1;
hence thesis by
Def2,
A4;
end;
end;
reserve z,z1,z2 for
Complex;
Lm3:
[*(
Re z), (
Im z)*]
= z
proof
A1: z
in
COMPLEX by
XCMPLX_0:def 2;
per cases ;
suppose
A2: z is
real;
then (
Im z)
=
0 ;
hence
[*(
Re z), (
Im z)*]
= (
Re z) by
ARYTM_0:def 5
.= z by
A2,
Def1;
end;
suppose
A3: not z is
real;
then
a3: not z
in
REAL ;
A4: ex f be
Function of 2,
REAL st z
= f & (
Im z)
= (f
. 1) by
Def2,
A3;
then
consider a,b be
Element of
REAL such that
A5: z
= ((
0 ,1)
--> (a,b)) by
Th2;
reconsider f = z as
Element of (
Funcs (2,
REAL )) by
A5,
CARD_1: 50,
FUNCT_2: 8;
z
in ((
Funcs (2,
REAL ))
\ { x where x be
Element of (
Funcs (2,
REAL )) : (x
. 1)
=
0 }) by
A1,
a3,
CARD_1: 50,
NUMBERS:def 2,
XBOOLE_0:def 3;
then not z
in { x where x be
Element of (
Funcs (2,
REAL )) : (x
. 1)
=
0 } by
XBOOLE_0:def 5;
then (f
. 1)
<>
0 ;
then
A6: b
<>
0 by
A5,
FUNCT_4: 63;
ex f be
Function of 2,
REAL st z
= f & (
Re z)
= (f
.
0 ) by
A3,
Def1;
then
A7: (
Re z)
= a by
A5,
FUNCT_4: 63;
(
Im z)
= b by
A4,
A5,
FUNCT_4: 63;
hence thesis by
A5,
A7,
A6,
ARYTM_0:def 5;
end;
end;
theorem ::
COMPLEX1:3
Th3: (
Re z1)
= (
Re z2) & (
Im z1)
= (
Im z2) implies z1
= z2
proof
assume (
Re z1)
= (
Re z2) & (
Im z1)
= (
Im z2);
hence z1
=
[*(
Re z2), (
Im z2)*] by
Lm3
.= z2 by
Lm3;
end;
definition
let z1,z2 be
Complex;
:: original:
=
redefine
::
COMPLEX1:def3
pred z1
= z2 means (
Re z1)
= (
Re z2) & (
Im z1)
= (
Im z2);
compatibility by
Th3;
end
notation
synonym
0c for
0 ;
end
definition
:: original:
0c
redefine
func
0c ->
Element of
COMPLEX ;
correctness by
XCMPLX_0:def 2;
end
definition
::
COMPLEX1:def4
func
1r ->
Element of
COMPLEX equals 1;
correctness by
XCMPLX_0:def 2;
:: original:
<i>
redefine
func
<i> ->
Element of
COMPLEX ;
coherence by
XCMPLX_0:def 2;
end
theorem ::
COMPLEX1:4
Th4: (
Re
0 )
=
0 & (
Im
0 )
=
0
proof
reconsider zz =
0 as
Element of
REAL by
XREAL_0:def 1;
0
=
[*zz, zz*] by
ARYTM_0:def 5;
hence thesis by
Lm2;
end;
theorem ::
COMPLEX1:5
Th5: z
=
0 iff (((
Re z)
^2 )
+ ((
Im z)
^2 ))
=
0 by
Th4,
Th1;
theorem ::
COMPLEX1:6
Th6: (
Re
1r )
= 1 & (
Im
1r )
=
0
proof
reconsider zz =
0 , j = 1 as
Element of
REAL by
XREAL_0:def 1;
1r
=
[*j, zz*] by
ARYTM_0:def 5;
hence thesis by
Lm2;
end;
theorem ::
COMPLEX1:7
Th7: (
Re
<i> )
=
0 & (
Im
<i> )
= 1
proof
reconsider zz =
0 , j = 1 as
Element of
REAL by
XREAL_0:def 1;
<i>
=
[*zz, j*] by
ARYTM_0:def 5,
XCMPLX_0:def 1;
hence thesis by
Lm2;
end;
Lm7: for x be
Real, x1,x2 be
Element of
REAL st x
=
[*x1, x2*] holds x2
=
0 & x
= x1
proof
let x be
Real, x1,x2 be
Element of
REAL ;
assume
A1: x
=
[*x1, x2*];
A2: x
in
REAL by
XREAL_0:def 1;
hereby
assume x2
<>
0 ;
then x
= ((
0 ,1)
--> (x1,x2)) by
A1,
ARYTM_0:def 5;
hence contradiction by
A2,
ARYTM_0: 8;
end;
hence thesis by
A1,
ARYTM_0:def 5;
end;
Lm8: for x9,y9 be
Element of
REAL , x,y be
Real st x9
= x & y9
= y holds (
+ (x9,y9))
= (x
+ y)
proof
let x9,y9 be
Element of
REAL , x,y be
Real such that
A1: x9
= x & y9
= y;
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] & y
=
[*y1, y2*] and
A3: (x
+ y)
=
[*(
+ (x1,y1)), (
+ (x2,y2))*] by
XCMPLX_0:def 4;
x2
=
0 & y2
=
0 by
A2,
Lm7;
then
A4: (
+ (x2,y2))
=
0 by
ARYTM_0: 11;
x
= x1 & y
= y1 by
A2,
Lm7;
hence thesis by
A1,
A3,
A4,
ARYTM_0:def 5;
end;
Lm9: for x be
Element of
REAL holds (
opp x)
= (
- x)
proof
let x be
Element of
REAL ;
(
+ (x,(
opp x)))
=
0 by
ARYTM_0:def 3;
then (x
+ (
opp x))
=
0 by
Lm8;
hence thesis;
end;
Lm10: for x9,y9 be
Element of
REAL , x,y be
Real st x9
= x & y9
= y holds (
* (x9,y9))
= (x
* y)
proof
let x9,y9 be
Element of
REAL , x,y be
Real such that
A1: x9
= x & y9
= y;
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] and
A3: y
=
[*y1, y2*] and
A4: (x
* y)
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
XCMPLX_0:def 5;
x2
=
0 by
A2,
Lm7;
then
A5: (
* (x2,y1))
=
0 by
ARYTM_0: 12;
A6: y2
=
0 by
A3,
Lm7;
then (
* (x1,y2))
=
0 by
ARYTM_0: 12;
then
A7: (
+ ((
* (x1,y2)),(
* (x2,y1))))
=
0 by
A5,
ARYTM_0: 11;
x
= x1 & y
= y1 by
A2,
A3,
Lm7;
hence (
* (x9,y9))
= (
+ ((
* (x1,y1)),(
* ((
opp x2),y2)))) by
A1,
A6,
ARYTM_0: 11,
ARYTM_0: 12
.= (
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))) by
ARYTM_0: 15
.= (x
* y) by
A4,
A7,
ARYTM_0:def 5;
end;
Lm11: for x,y,z be
Complex st z
= (x
+ y) holds (
Re z)
= ((
Re x)
+ (
Re y))
proof
let x,y,z be
Complex such that
A1: z
= (x
+ y);
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] & y
=
[*y1, y2*] and
A3: (x
+ y)
=
[*(
+ (x1,y1)), (
+ (x2,y2))*] by
XCMPLX_0:def 4;
A4: (
Re x)
= x1 & (
Re y)
= y1 by
A2,
Lm2;
thus (
Re z)
= (
+ (x1,y1)) by
A1,
A3,
Lm2
.= ((
Re x)
+ (
Re y)) by
A4,
Lm8;
end;
Lm12: for x,y,z be
Complex st z
= (x
+ y) holds (
Im z)
= ((
Im x)
+ (
Im y))
proof
let x,y,z be
Complex such that
A1: z
= (x
+ y);
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] & y
=
[*y1, y2*] and
A3: (x
+ y)
=
[*(
+ (x1,y1)), (
+ (x2,y2))*] by
XCMPLX_0:def 4;
A4: (
Im x)
= x2 & (
Im y)
= y2 by
A2,
Lm2;
thus (
Im z)
= (
+ (x2,y2)) by
A1,
A3,
Lm2
.= ((
Im x)
+ (
Im y)) by
A4,
Lm8;
end;
Lm13: for x,y,z be
Complex st z
= (x
* y) holds (
Re z)
= (((
Re x)
* (
Re y))
- ((
Im x)
* (
Im y)))
proof
let x,y,z be
Complex such that
A1: z
= (x
* y);
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] & y
=
[*y1, y2*] and
A3: (x
* y)
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
XCMPLX_0:def 5;
A4: (
Re x)
= x1 & (
Re y)
= y1 by
A2,
Lm2;
A5: (
Im x)
= x2 & (
Im y)
= y2 by
A2,
Lm2;
thus (
Re z)
= (
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))) by
A1,
A3,
Lm2
.= ((
* (x1,y1))
+ (
opp (
* (x2,y2)))) by
Lm8
.= ((x1
* y1)
+ (
opp (
* (x2,y2)))) by
Lm10
.= ((x1
* y1)
+ (
- (
* (x2,y2)))) by
Lm9
.= ((x1
* y1)
- (
* (x2,y2)))
.= (((
Re x)
* (
Re y))
- ((
Im x)
* (
Im y))) by
A4,
A5,
Lm10;
end;
Lm14: for x,y,z be
Complex st z
= (x
* y) holds (
Im z)
= (((
Re x)
* (
Im y))
+ ((
Im x)
* (
Re y)))
proof
let x,y,z be
Complex such that
A1: z
= (x
* y);
consider x1,x2,y1,y2 be
Element of
REAL such that
A2: x
=
[*x1, x2*] & y
=
[*y1, y2*] and
A3: (x
* y)
=
[*(
+ ((
* (x1,y1)),(
opp (
* (x2,y2))))), (
+ ((
* (x1,y2)),(
* (x2,y1))))*] by
XCMPLX_0:def 5;
A4: (
Im x)
= x2 & (
Im y)
= y2 by
A2,
Lm2;
A5: (
Re x)
= x1 & (
Re y)
= y1 by
A2,
Lm2;
thus (
Im z)
= (
+ ((
* (x1,y2)),(
* (x2,y1)))) by
A1,
A3,
Lm2
.= ((
* (x1,y2))
+ (
* (x2,y1))) by
Lm8
.= ((x1
* y2)
+ (
* (x2,y1))) by
Lm10
.= (((
Re x)
* (
Im y))
+ ((
Im x)
* (
Re y))) by
A4,
A5,
Lm10;
end;
Lm15: (z1
+ z2)
=
[*((
Re z1)
+ (
Re z2)), ((
Im z1)
+ (
Im z2))*]
proof
set z =
[*((
Re z1)
+ (
Re z2)), ((
Im z1)
+ (
Im z2))*];
reconsider z9 = (z1
+ z2) as
Element of
COMPLEX by
XCMPLX_0:def 2;
A1: (
Im z)
= ((
Im z1)
+ (
Im z2)) by
Lm2
.= (
Im z9) by
Lm12;
(
Re z)
= ((
Re z1)
+ (
Re z2)) by
Lm2
.= (
Re z9) by
Lm11;
hence thesis by
A1;
end;
Lm16: (z1
* z2)
=
[*(((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))), (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))*]
proof
set z =
[*(((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))), (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))*];
reconsider z9 = (z1
* z2) as
Element of
COMPLEX by
XCMPLX_0:def 2;
A1: (
Im z)
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1))) by
Lm2
.= (
Im z9) by
Lm14;
(
Re z)
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) by
Lm2
.= (
Re z9) by
Lm13;
hence thesis by
A1;
end;
Lm17: (
Re (z1
* z2))
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) & (
Im (z1
* z2))
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))
proof
(z1
* z2)
=
[*(((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))), (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))*] by
Lm16;
hence thesis by
Lm2;
end;
Lm18: (
Re (z1
+ z2))
= ((
Re z1)
+ (
Re z2)) & (
Im (z1
+ z2))
= ((
Im z1)
+ (
Im z2))
proof
(z1
+ z2)
=
[*((
Re z1)
+ (
Re z2)), ((
Im z1)
+ (
Im z2))*] by
Lm15;
hence thesis by
Lm2;
end;
Lm19: for x be
Element of
REAL holds (
Re (x
*
<i> ))
=
0
proof
let x be
Element of
REAL ;
thus (
Re (x
*
<i> ))
= (((
Re x)
* (
Re
<i> ))
- ((
Im x)
* (
Im
<i> ))) by
Lm17
.= (((
Re x)
*
0 )
- (
0
* (
Im
<i> ))) by
Th7
.=
0 ;
end;
Lm20: for x be
Element of
REAL holds (
Im (x
*
<i> ))
= x
proof
let x be
Element of
REAL ;
thus (
Im (x
*
<i> ))
= (((
Re x)
* (
Im
<i> ))
+ ((
Im x)
* (
Re
<i> ))) by
Lm17
.= x by
Def1,
Th7;
end;
Lm21: for x,y be
Element of
REAL holds
[*x, y*]
= (x
+ (y
*
<i> ))
proof
let x,y be
Element of
REAL ;
A1: (
Im (x
+ (y
*
<i> )))
= ((
Im x)
+ (
Im (y
*
<i> ))) by
Lm18
.= (
0
+ (
Im (y
*
<i> )))
.= y by
Lm20;
(
Re (x
+ (y
*
<i> )))
= ((
Re x)
+ (
Re (y
*
<i> ))) by
Lm18
.= ((
Re x)
+
0 ) by
Lm19
.= x by
Def1;
hence thesis by
A1,
Lm3;
end;
definition
::$Canceled
end
theorem ::
COMPLEX1:8
Th8: (
Re (z1
+ z2))
= ((
Re z1)
+ (
Re z2)) & (
Im (z1
+ z2))
= ((
Im z1)
+ (
Im z2))
proof
(z1
+ z2)
=
[*((
Re z1)
+ (
Re z2)), ((
Im z1)
+ (
Im z2))*] by
Lm15;
hence thesis by
Lm2;
end;
definition
::$Canceled
end
theorem ::
COMPLEX1:9
Th9: (
Re (z1
* z2))
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) & (
Im (z1
* z2))
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))
proof
(z1
* z2)
=
[*(((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))), (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))*] by
Lm16;
hence thesis by
Lm2;
end;
theorem ::
COMPLEX1:10
(
Re (a
*
<i> ))
=
0
proof
thus (
Re (a
*
<i> ))
= (((
Re a)
* (
Re
<i> ))
- ((
Im a)
* (
Im
<i> ))) by
Th9
.= (((
Re a)
*
0 )
- (
0
* (
Im
<i> ))) by
Th7
.=
0 ;
end;
theorem ::
COMPLEX1:11
(
Im (a
*
<i> ))
= a
proof
thus (
Im (a
*
<i> ))
= (((
Re a)
* (
Im
<i> ))
+ ((
Im a)
* (
Re
<i> ))) by
Th9
.= a by
Def1,
Th7;
end;
theorem ::
COMPLEX1:12
Th12: (
Re (a
+ (b
*
<i> )))
= a & (
Im (a
+ (b
*
<i> )))
= b
proof
reconsider a, b as
Element of
REAL by
XREAL_0:def 1;
(a
+ (b
*
<i> ))
=
[*a, b*] by
Lm21;
hence thesis by
Lm2;
end;
theorem ::
COMPLEX1:13
Th13: ((
Re z)
+ ((
Im z)
*
<i> ))
= z
proof
[*(
Re z), (
Im z)*]
= z by
Lm3;
hence thesis by
Lm21;
end;
theorem ::
COMPLEX1:14
Th14: (
Im z1)
=
0 & (
Im z2)
=
0 implies (
Re (z1
* z2))
= ((
Re z1)
* (
Re z2)) & (
Im (z1
* z2))
=
0
proof
assume that
A1: (
Im z1)
=
0 and
A2: (
Im z2)
=
0 ;
thus (
Re (z1
* z2))
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) by
Th9
.= ((
Re z1)
* (
Re z2)) by
A1;
thus (
Im (z1
* z2))
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1))) by
Th9
.=
0 by
A1,
A2;
end;
theorem ::
COMPLEX1:15
Th15: (
Re z1)
=
0 & (
Re z2)
=
0 implies (
Re (z1
* z2))
= (
- ((
Im z1)
* (
Im z2))) & (
Im (z1
* z2))
=
0
proof
assume that
A1: (
Re z1)
=
0 and
A2: (
Re z2)
=
0 ;
thus (
Re (z1
* z2))
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) by
Th9
.= (
- ((
Im z1)
* (
Im z2))) by
A1;
thus (
Im (z1
* z2))
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1))) by
Th9
.=
0 by
A1,
A2;
end;
theorem ::
COMPLEX1:16
(
Re (z
* z))
= (((
Re z)
^2 )
- ((
Im z)
^2 )) & (
Im (z
* z))
= (2
* ((
Re z)
* (
Im z)))
proof
thus (
Re (z
* z))
= (((
Re z)
^2 )
- ((
Im z)
^2 )) by
Th9;
thus (
Im (z
* z))
= (((
Re z)
* (
Im z))
+ ((
Re z)
* (
Im z))) by
Th9
.= (2
* ((
Re z)
* (
Im z)));
end;
definition
::$Canceled
end
Lm22: for z be
Complex holds (
- z)
= ((
- (
Re z))
+ ((
- (
Im z))
*
<i> ))
proof
let z be
Complex;
reconsider zz =
0 as
Element of
REAL by
XREAL_0:def 1;
set z9 =
[*(
- (
Re z)), (
- (
Im z))*];
(z9
+ z)
=
[*((
Re z9)
+ (
Re z)), ((
Im z9)
+ (
Im z))*] by
Lm15
.=
[*((
- (
Re z))
+ (
Re z)), ((
Im z9)
+ (
Im z))*] by
Lm2
.=
[*zz, ((
- (
Im z))
+ (
Im z))*] by
Lm2
.=
0 by
ARYTM_0:def 5;
hence thesis by
Lm21;
end;
theorem ::
COMPLEX1:17
Th17: (
Re (
- z))
= (
- (
Re z)) & (
Im (
- z))
= (
- (
Im z))
proof
(
- z)
= ((
- (
Re z))
+ ((
- (
Im z))
*
<i> )) by
Lm22;
hence thesis by
Th12;
end;
theorem ::
COMPLEX1:18
(
<i>
*
<i> )
= (
-
1r );
definition
::$Canceled
end
Lm23: for z1,z2 be
Complex holds (z1
- z2)
= (((
Re z1)
- (
Re z2))
+ (((
Im z1)
- (
Im z2))
*
<i> ))
proof
let z1,z2 be
Complex;
A1: z1
= ((
Re z1)
+ ((
Im z1)
*
<i> )) by
Th13;
(z1
- z2)
= (z1
+ (
- z2))
.= (z1
+ ((
- (
Re z2))
+ ((
- (
Im z2))
*
<i> ))) by
Lm22
.= (((
Re z1)
- (
Re z2))
+ (((
Im z1)
- (
Im z2))
*
<i> )) by
A1;
hence thesis;
end;
theorem ::
COMPLEX1:19
Th19: (
Re (z1
- z2))
= ((
Re z1)
- (
Re z2)) & (
Im (z1
- z2))
= ((
Im z1)
- (
Im z2))
proof
thus (
Re (z1
- z2))
= (
Re (((
Re z1)
- (
Re z2))
+ (((
Im z1)
- (
Im z2))
*
<i> ))) by
Lm23
.= ((
Re z1)
- (
Re z2)) by
Th12;
thus (
Im (z1
- z2))
= (
Im (((
Re z1)
- (
Re z2))
+ (((
Im z1)
- (
Im z2))
*
<i> ))) by
Lm23
.= ((
Im z1)
- (
Im z2)) by
Th12;
end;
definition
::$Canceled
end
Lm24: for z be
Complex holds (z
" )
= (((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
+ (((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
*
<i> ))
proof
let z be
Complex;
reconsider z9 = (((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
+ (((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
*
<i> )) as
Element of
COMPLEX by
XCMPLX_0:def 2;
per cases ;
suppose z
=
0 ;
hence thesis by
Th4;
end;
suppose
A1: z
<>
0 ;
then
A2: (((
Re z)
^2 )
+ ((
Im z)
^2 ))
<>
0 by
Th5;
A3: (
Im z9)
= ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
Th12;
then
A4: (((
Re z)
* (
Im z9))
+ ((
Re z9)
* (
Im z)))
= ((((
Re z)
/ 1)
* ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))))
+ (((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
* (
Im z))) by
Th12
.= ((((
Re z)
* (
- (
Im z)))
/ (1
* (((
Re z)
^2 )
+ ((
Im z)
^2 ))))
+ ((((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
* (
Im z))
/ 1)) by
XCMPLX_1: 76
.= ((((
Re z)
* (
- (
Im z)))
/ (1
* (((
Re z)
^2 )
+ ((
Im z)
^2 ))))
+ ((((
Im z)
/ 1)
* (
Re z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))) by
XCMPLX_1: 76
.= (((
- ((
Re z)
* (
Im z)))
+ ((
Re z)
* (
Im z)))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
XCMPLX_1: 62
.=
0 ;
A5: (((
Re z)
* (
Re z9))
- ((
Im z)
* (
Im z9)))
= ((((
Re z)
/ 1)
* ((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))))
- ((
Im z)
* ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))))) by
A3,
Th12
.= ((((
Re z)
* (
Re z))
/ (1
* (((
Re z)
^2 )
+ ((
Im z)
^2 ))))
- (((
Im z)
/ 1)
* ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))))) by
XCMPLX_1: 76
.= ((((
Re z)
^2 )
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
- (((
Im z)
* (
- (
Im z)))
/ (1
* (((
Re z)
^2 )
+ ((
Im z)
^2 ))))) by
XCMPLX_1: 76
.= ((((
Re z)
^2 )
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
- ((
- ((
Im z)
^2 ))
/ (1
* (((
Re z)
^2 )
+ ((
Im z)
^2 )))))
.= ((((
Re z)
^2 )
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
- (
- (((
Im z)
^2 )
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))))) by
XCMPLX_1: 187
.= ((((
Re z)
^2 )
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
+ (((
Im z)
^2 )
/ (1
* (((
Re z)
^2 )
+ ((
Im z)
^2 )))))
.= ((((
Re z)
^2 )
+ ((
Im z)
^2 ))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
XCMPLX_1: 62
.= 1 by
A2,
XCMPLX_1: 60;
(z
* z9)
=
[*(((
Re z)
* (
Re z9))
- ((
Im z)
* (
Im z9))), (((
Re z)
* (
Im z9))
+ ((
Re z9)
* (
Im z)))*] by
Lm16
.= 1 by
A5,
A4,
ARYTM_0:def 5;
hence thesis by
A1,
XCMPLX_0:def 7;
end;
end;
theorem ::
COMPLEX1:20
Th20: (
Re (z
" ))
= ((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) & (
Im (z
" ))
= ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
proof
(z
" )
= (((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
+ (((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
*
<i> )) by
Lm24;
hence thesis by
Th12;
end;
theorem ::
COMPLEX1:21
(
<i>
" )
= (
-
<i> );
theorem ::
COMPLEX1:22
Th22: (
Re z)
<>
0 & (
Im z)
=
0 implies (
Re (z
" ))
= ((
Re z)
" ) & (
Im (z
" ))
=
0
proof
assume that
A1: (
Re z)
<>
0 and
A2: (
Im z)
=
0 ;
(
Re (z
" ))
= ((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
Th20;
hence (
Re (z
" ))
= ((1
* (
Re z))
/ ((
Re z)
* (
Re z))) by
A2
.= (1
/ (
Re z)) by
A1,
XCMPLX_1: 91
.= ((
Re z)
" ) by
XCMPLX_1: 215;
(
Im (z
" ))
= ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
Th20;
hence thesis by
A2;
end;
theorem ::
COMPLEX1:23
Th23: (
Re z)
=
0 & (
Im z)
<>
0 implies (
Re (z
" ))
=
0 & (
Im (z
" ))
= (
- ((
Im z)
" ))
proof
assume that
A1: (
Re z)
=
0 and
A2: (
Im z)
<>
0 ;
(
Re (z
" ))
= ((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
Th20;
hence (
Re (z
" ))
=
0 by
A1;
(
Im (z
" ))
= ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
Th20;
hence (
Im (z
" ))
= (
- ((1
* (
Im z))
/ ((
Im z)
* (
Im z)))) by
A1,
XCMPLX_1: 187
.= (
- (1
/ (
Im z))) by
A2,
XCMPLX_1: 91
.= (
- ((
Im z)
" )) by
XCMPLX_1: 215;
end;
definition
::$Canceled
end
Lm25: for z1,z2 be
Complex holds (z1
/ z2)
= (((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
+ (((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
*
<i> ))
proof
let z1,z2 be
Complex;
reconsider z1, z2 as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider k = (((
Re z2)
^2 )
+ ((
Im z2)
^2 )) as
Element of
REAL by
XREAL_0:def 1;
reconsider r = ((
Re z2)
/ k), i = ((
- (
Im z2))
/ k) as
Element of
REAL ;
A1: (
Re
[*r, i*])
= (
Re (((
Re z2)
/ k)
+ (((
- (
Im z2))
/ k)
*
<i> ))) by
Lm21
.= ((
Re z2)
/ k) by
Th12;
A2: (
Im
[*r, i*])
= (
Im (((
Re z2)
/ k)
+ (((
- (
Im z2))
/ k)
*
<i> ))) by
Lm21
.= ((
- (
Im z2))
/ k) by
Th12;
reconsider r1 = ((((
Re z1)
/ 1)
* ((
Re z2)
/ k))
- ((
Im z1)
* ((
- (
Im z2))
/ k))), i1 = (((
Re z1)
* ((
- (
Im z2))
/ k))
+ (((
Re z2)
/ k)
* (
Im z1))) as
Element of
REAL by
XREAL_0:def 1;
(z1
/ z2)
= (z1
* (z2
" )) by
XCMPLX_0:def 9
.= (z1
* (r
+ (i
*
<i> ))) by
Lm24
.= (z1
*
[*r, i*]) by
Lm21
.=
[*r1, i1*] by
A1,
A2,
Lm16
.= (((((
Re z1)
/ 1)
* ((
Re z2)
/ k))
- ((
Im z1)
* ((
- (
Im z2))
/ k)))
+ ((((
Re z1)
* ((
- (
Im z2))
/ k))
+ (((
Re z2)
/ k)
* (
Im z1)))
*
<i> )) by
Lm21
.= (((((
Re z1)
* (
Re z2))
/ (1
* k))
- (((
Im z1)
/ 1)
* ((
- (
Im z2))
/ k)))
+ ((((
Re z1)
* ((
- (
Im z2))
/ k))
+ (((
Re z2)
/ k)
* (
Im z1)))
*
<i> )) by
XCMPLX_1: 76
.= (((((
Re z1)
* (
Re z2))
/ k)
- (((
Im z1)
* (
- (
Im z2)))
/ (1
* k)))
+ (((((
Re z1)
/ 1)
* ((
- (
Im z2))
/ k))
+ (((
Re z2)
/ k)
* (
Im z1)))
*
<i> )) by
XCMPLX_1: 76
.= (((((
Re z1)
* (
Re z2))
/ k)
- (((
Im z1)
* (
- (
Im z2)))
/ k))
+ (((((
Re z1)
* (
- (
Im z2)))
/ (1
* k))
+ (((
Re z2)
/ k)
* ((
Im z1)
/ 1)))
*
<i> )) by
XCMPLX_1: 76
.= (((((
Re z1)
* (
Re z2))
/ k)
- (((
Im z1)
* (
- (
Im z2)))
/ k))
+ (((((
Re z1)
* (
- (
Im z2)))
/ k)
+ (((
Im z1)
* (
Re z2))
/ (1
* k)))
*
<i> )) by
XCMPLX_1: 76
.= (((((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
- (
Im z2))))
/ k)
+ (((((
Re z1)
* (
- (
Im z2)))
/ k)
+ (((
Im z1)
* (
Re z2))
/ (1
* k)))
*
<i> )) by
XCMPLX_1: 120
.= (((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ k)
+ ((((
- ((
Re z1)
* (
Im z2)))
+ ((
Im z1)
* (
Re z2)))
/ k)
*
<i> )) by
XCMPLX_1: 62
.= (((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
+ (((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
*
<i> ));
hence thesis;
end;
theorem ::
COMPLEX1:24
(
Re (z1
/ z2))
= ((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 ))) & (
Im (z1
/ z2))
= ((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
proof
thus (
Re (z1
/ z2))
= (
Re (((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
+ (((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
*
<i> ))) by
Lm25
.= ((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 ))) by
Th12;
thus (
Im (z1
/ z2))
= (
Im (((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
+ (((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
*
<i> ))) by
Lm25
.= ((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 ))) by
Th12;
end;
theorem ::
COMPLEX1:25
(
Im z1)
=
0 & (
Im z2)
=
0 & (
Re z2)
<>
0 implies (
Re (z1
/ z2))
= ((
Re z1)
/ (
Re z2)) & (
Im (z1
/ z2))
=
0
proof
assume that
A1: (
Im z1)
=
0 and
A2: (
Im z2)
=
0 & (
Re z2)
<>
0 ;
A3: (z1
/ z2)
= (z1
* (z2
" )) & (
Im (z2
" ))
=
0 by
A2,
Th22,
XCMPLX_0:def 9;
hence (
Re (z1
/ z2))
= ((
Re z1)
* (
Re (z2
" ))) by
A1,
Th14
.= ((
Re z1)
* ((
Re z2)
" )) by
A2,
Th22
.= ((
Re z1)
/ (
Re z2)) by
XCMPLX_0:def 9;
thus thesis by
A1,
A3,
Th14;
end;
theorem ::
COMPLEX1:26
(
Re z1)
=
0 & (
Re z2)
=
0 & (
Im z2)
<>
0 implies (
Re (z1
/ z2))
= ((
Im z1)
/ (
Im z2)) & (
Im (z1
/ z2))
=
0
proof
assume that
A1: (
Re z1)
=
0 and
A2: (
Re z2)
=
0 & (
Im z2)
<>
0 ;
A3: (z1
/ z2)
= (z1
* (z2
" )) & (
Re (z2
" ))
=
0 by
A2,
Th23,
XCMPLX_0:def 9;
hence (
Re (z1
/ z2))
= (
- ((
Im z1)
* (
Im (z2
" )))) by
A1,
Th15
.= (
- ((
Im z1)
* (
- ((
Im z2)
" )))) by
A2,
Th23
.= (
- (
- ((
Im z1)
* ((
Im z2)
" ))))
.= ((
Im z1)
/ (
Im z2)) by
XCMPLX_0:def 9;
thus thesis by
A1,
A3,
Th15;
end;
definition
let z be
Complex;
::
COMPLEX1:def11
func z
*' ->
Complex equals ((
Re z)
- ((
Im z)
*
<i> ));
correctness ;
involutiveness
proof
let z,z9 be
Complex;
assume z
= ((
Re z9)
- ((
Im z9)
*
<i> ));
then z
= ((
Re z9)
+ ((
- (
Im z9))
*
<i> ));
then (
Re z)
= (
Re z9) & (
- (
Im z))
= (
- (
- (
Im z9))) by
Th12;
hence z9
= ((
Re z)
+ ((
- (
Im z))
*
<i> )) by
Th13
.= ((
Re z)
- ((
Im z)
*
<i> ));
end;
end
theorem ::
COMPLEX1:27
Th27: (
Re (z
*' ))
= (
Re z) & (
Im (z
*' ))
= (
- (
Im z))
proof
(z
*' )
= ((
Re z)
+ ((
- (
Im z))
*
<i> ));
hence thesis by
Th12;
end;
theorem ::
COMPLEX1:28
(
0
*' )
=
0 by
Th4;
theorem ::
COMPLEX1:29
(z
*' )
=
0 implies z
=
0
proof
assume (z
*' )
=
0 ;
then
0
= ((
Re z)
+ ((
- (
Im z))
*
<i> ));
hence (
Re z)
= (
Re
0 ) & (
Im z)
= (
Im
0 ) by
Th12;
end;
theorem ::
COMPLEX1:30
(
1r
*' )
=
1r by
Th6;
theorem ::
COMPLEX1:31
(
<i>
*' )
= (
-
<i> ) by
Th7;
theorem ::
COMPLEX1:32
Th32: ((z1
+ z2)
*' )
= ((z1
*' )
+ (z2
*' ))
proof
thus (
Re ((z1
+ z2)
*' ))
= (
Re (z1
+ z2)) by
Th27
.= ((
Re z1)
+ (
Re z2)) by
Th8
.= ((
Re (z1
*' ))
+ (
Re z2)) by
Th27
.= ((
Re (z1
*' ))
+ (
Re (z2
*' ))) by
Th27
.= (
Re ((z1
*' )
+ (z2
*' ))) by
Th8;
thus (
Im ((z1
+ z2)
*' ))
= (
- (
Im (z1
+ z2))) by
Th27
.= (
- ((
Im z1)
+ (
- (
- (
Im z2))))) by
Th8
.= ((
- (
Im z1))
+ (
- (
Im z2)))
.= ((
Im (z1
*' ))
+ (
- (
Im z2))) by
Th27
.= ((
Im (z1
*' ))
+ (
Im (z2
*' ))) by
Th27
.= (
Im ((z1
*' )
+ (z2
*' ))) by
Th8;
end;
theorem ::
COMPLEX1:33
Th33: ((
- z)
*' )
= (
- (z
*' ))
proof
thus (
Re ((
- z)
*' ))
= (
Re (
- z)) by
Th27
.= (
- (
Re z)) by
Th17
.= (
- (
Re (z
*' ))) by
Th27
.= (
Re (
- (z
*' ))) by
Th17;
thus (
Im ((
- z)
*' ))
= (
- (
Im (
- z))) by
Th27
.= (
- (
- (
Im z))) by
Th17
.= (
- (
Im (z
*' ))) by
Th27
.= (
Im (
- (z
*' ))) by
Th17;
end;
theorem ::
COMPLEX1:34
((z1
- z2)
*' )
= ((z1
*' )
- (z2
*' ))
proof
thus ((z1
- z2)
*' )
= ((z1
+ (
- z2))
*' )
.= ((z1
*' )
+ ((
- z2)
*' )) by
Th32
.= ((z1
*' )
+ (
- (z2
*' ))) by
Th33
.= ((z1
*' )
- (z2
*' ));
end;
theorem ::
COMPLEX1:35
Th35: ((z1
* z2)
*' )
= ((z1
*' )
* (z2
*' ))
proof
A1: (
Re (z1
*' ))
= (
Re z1) & (
Re (z2
*' ))
= (
Re z2) by
Th27;
A2: (
Im (z1
*' ))
= (
- (
Im z1)) & (
Im (z2
*' ))
= (
- (
Im z2)) by
Th27;
thus (
Re ((z1
* z2)
*' ))
= (
Re (z1
* z2)) by
Th27
.= (((
Re (z1
*' ))
* (
Re (z2
*' )))
- ((
- (
Im (z1
*' )))
* (
- (
Im (z2
*' ))))) by
A1,
A2,
Th9
.= (((
Re (z1
*' ))
* (
Re (z2
*' )))
- (
- (
- ((
Im (z1
*' ))
* (
Im (z2
*' ))))))
.= (
Re ((z1
*' )
* (z2
*' ))) by
Th9;
thus (
Im ((z1
* z2)
*' ))
= (
- (
Im (z1
* z2))) by
Th27
.= (
- (((
Re (z1
*' ))
* (
- (
Im (z2
*' ))))
+ ((
Re (z2
*' ))
* (
- (
Im (z1
*' )))))) by
A1,
A2,
Th9
.= (((
Re (z2
*' ))
* (
Im (z1
*' )))
+ (
- (
- ((
Re (z1
*' ))
* (
Im (z2
*' ))))))
.= (
Im ((z1
*' )
* (z2
*' ))) by
Th9;
end;
theorem ::
COMPLEX1:36
Th36: ((z
" )
*' )
= ((z
*' )
" )
proof
A1: (
Re z)
= (
Re (z
*' )) & (
- (
Im z))
= (
Im (z
*' )) by
Th27;
thus (
Re ((z
" )
*' ))
= (
Re (z
" )) by
Th27
.= ((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
Th20
.= ((
Re (z
*' ))
/ (((
Re (z
*' ))
^2 )
+ ((
Im (z
*' ))
^2 ))) by
A1
.= (
Re ((z
*' )
" )) by
Th20;
thus (
Im ((z
" )
*' ))
= (
- (
Im (z
" ))) by
Th27
.= (
- ((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))) by
Th20
.= ((
- (
Im (z
*' )))
/ (((
Re (z
*' ))
^2 )
+ ((
Im (z
*' ))
^2 ))) by
A1,
XCMPLX_1: 187
.= (
Im ((z
*' )
" )) by
Th20;
end;
theorem ::
COMPLEX1:37
((z1
/ z2)
*' )
= ((z1
*' )
/ (z2
*' ))
proof
thus ((z1
/ z2)
*' )
= ((z1
* (z2
" ))
*' ) by
XCMPLX_0:def 9
.= ((z1
*' )
* ((z2
" )
*' )) by
Th35
.= ((z1
*' )
* ((z2
*' )
" )) by
Th36
.= ((z1
*' )
/ (z2
*' )) by
XCMPLX_0:def 9;
end;
theorem ::
COMPLEX1:38
Th38: (
Im z)
=
0 implies (z
*' )
= z by
Th27;
registration
let r be
Real;
reduce (r
*' ) to r;
reducibility by
Th38;
end
theorem ::
COMPLEX1:39
(
Re z)
=
0 implies (z
*' )
= (
- z)
proof
assume
A1: (
Re z)
=
0 ;
hence (z
*' )
= ((
-
0 )
+ ((
- (
Im z))
*
<i> ))
.= (
- z) by
A1,
Lm22;
end;
theorem ::
COMPLEX1:40
(
Re (z
* (z
*' )))
= (((
Re z)
^2 )
+ ((
Im z)
^2 )) & (
Im (z
* (z
*' )))
=
0
proof
thus (
Re (z
* (z
*' )))
= (((
Re z)
* (
Re (z
*' )))
- ((
Im z)
* (
Im (z
*' )))) by
Th9
.= (((
Re z)
* (
Re z))
- ((
Im z)
* (
Im (z
*' )))) by
Th27
.= (((
Re z)
* (
Re z))
- ((
Im z)
* (
- (
Im z)))) by
Th27
.= (((
Re z)
^2 )
+ ((
Im z)
^2 ));
thus (
Im (z
* (z
*' )))
= (((
Re z)
* (
Im (z
*' )))
+ ((
Re (z
*' ))
* (
Im z))) by
Th9
.= (((
Re z)
* (
- (
Im z)))
+ ((
Re (z
*' ))
* (
Im z))) by
Th27
.= ((
- ((
Re z)
* (
Im z)))
+ ((
Re z)
* (
Im z))) by
Th27
.=
0 ;
end;
theorem ::
COMPLEX1:41
(
Re (z
+ (z
*' )))
= (2
* (
Re z)) & (
Im (z
+ (z
*' )))
=
0
proof
thus (
Re (z
+ (z
*' )))
= ((
Re z)
+ (
Re (z
*' ))) by
Th8
.= ((
Re z)
+ (
Re z)) by
Th27
.= (2
* (
Re z));
thus (
Im (z
+ (z
*' )))
= ((
Im z)
+ (
Im (z
*' ))) by
Th8
.= ((
Im z)
+ (
- (
Im z))) by
Th27
.=
0 ;
end;
theorem ::
COMPLEX1:42
(
Re (z
- (z
*' )))
=
0 & (
Im (z
- (z
*' )))
= (2
* (
Im z))
proof
thus (
Re (z
- (z
*' )))
= ((
Re z)
- (
Re (z
*' ))) by
Th19
.= ((
Re z)
- (
Re z)) by
Th27
.=
0 ;
thus (
Im (z
- (z
*' )))
= ((
Im z)
- (
Im (z
*' ))) by
Th19
.= ((
Im z)
- (
- (
Im z))) by
Th27
.= (2
* (
Im z));
end;
definition
let z be
Complex;
::
COMPLEX1:def12
func
|.z.| ->
Real equals (
sqrt (((
Re z)
^2 )
+ ((
Im z)
^2 )));
coherence ;
projectivity
proof
let r be
Real;
reconsider rr = r as
Element of
REAL by
XREAL_0:def 1;
let z be
Complex;
assume
A1: r
= (
sqrt (((
Re z)
^2 )
+ ((
Im z)
^2 )));
((
Re z)
^2 )
>=
0 & ((
Im z)
^2 )
>=
0 by
XREAL_1: 63;
then r
>=
0 by
A1,
SQUARE_1:def 2;
then
A2: (
Re rr)
>=
0 by
Def1;
thus r
= (
Re rr) by
Def1
.= (
sqrt (((
Re r)
^2 )
+ ((
Im r)
^2 ))) by
A2,
SQUARE_1: 22;
end;
end
theorem ::
COMPLEX1:43
Th43: a
>=
0 implies
|.a.|
= a
proof
assume a
>=
0 ;
then (
Re a)
>=
0 by
Def1;
hence
|.a.|
= (
Re a) by
SQUARE_1: 22
.= a by
Def1;
end;
registration
let z be
zero
Complex;
cluster
|.z.| ->
zero;
coherence by
Th4,
SQUARE_1: 17;
end
theorem ::
COMPLEX1:44
|.
0 .|
=
0 ;
registration
let z be non
zero
Complex;
cluster
|.z.| -> non
zero;
coherence
proof
assume
|.z.| is
zero;
then (((
Re z)
^2 )
+ ((
Im z)
^2 ))
=
0 by
Lm1,
SQUARE_1: 24;
hence thesis by
Th5;
end;
end
theorem ::
COMPLEX1:45
|.z.|
=
0 implies z
=
0 ;
registration
let z;
cluster
|.z.| -> non
negative;
coherence
proof
0
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
Lm1;
hence thesis by
SQUARE_1:def 2;
end;
end
theorem ::
COMPLEX1:46
0
<=
|.z.|;
theorem ::
COMPLEX1:47
z
<>
0 iff
0
<
|.z.|;
theorem ::
COMPLEX1:48
Th48:
|.
1r .|
= 1 by
Th6,
SQUARE_1: 18;
theorem ::
COMPLEX1:49
|.
<i> .|
= 1 by
Th7,
SQUARE_1: 18;
Lm26:
|.(
- z).|
=
|.z.|
proof
thus
|.(
- z).|
= (
sqrt (((
- (
Re z))
^2 )
+ ((
Im (
- z))
^2 ))) by
Th17
.= (
sqrt (((
- (
Re z))
^2 )
+ ((
- (
Im z))
^2 ))) by
Th17
.=
|.z.|;
end;
Lm27: a
<=
0 implies
|.a.|
= (
- a)
proof
assume a
<=
0 ;
then
|.(
- a).|
= (
- a) by
Th43;
hence thesis by
Lm26;
end;
Lm28: (
sqrt (a
^2 ))
=
|.a.|
proof
per cases ;
suppose
A1:
0
<= a;
then (
sqrt (a
^2 ))
= a by
SQUARE_1: 22;
hence thesis by
A1,
Th43;
end;
suppose
A2: not
0
<= a;
then
|.a.|
= (
- a) by
Lm27;
hence thesis by
A2,
SQUARE_1: 23;
end;
end;
theorem ::
COMPLEX1:50
(
Im z)
=
0 implies
|.z.|
=
|.(
Re z).| by
Lm28;
theorem ::
COMPLEX1:51
(
Re z)
=
0 implies
|.z.|
=
|.(
Im z).| by
Lm28;
theorem ::
COMPLEX1:52
|.(
- z).|
=
|.z.| by
Lm26;
theorem ::
COMPLEX1:53
Th53:
|.(z
*' ).|
=
|.z.|
proof
thus
|.(z
*' ).|
= (
sqrt (((
Re z)
^2 )
+ ((
Im (z
*' ))
^2 ))) by
Th27
.= (
sqrt (((
Re z)
^2 )
+ ((
- (
Im z))
^2 ))) by
Th27
.=
|.z.|;
end;
Lm29: (
-
|.a.|)
<= a & a
<=
|.a.|
proof
a
<
0 implies (
-
|.a.|)
<= a & a
<=
|.a.|
proof
assume a
<
0 ;
then
|.a.|
= (
- a) by
Lm27;
hence thesis;
end;
hence thesis by
Th43;
end;
theorem ::
COMPLEX1:54
(
Re z)
<=
|.z.|
proof
0
<= ((
Im z)
^2 ) by
XREAL_1: 63;
then
A1: (((
Re z)
^2 )
+
0 )
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
XREAL_1: 7;
0
<= ((
Re z)
^2 ) by
XREAL_1: 63;
then (
sqrt ((
Re z)
^2 ))
<=
|.z.| by
A1,
SQUARE_1: 26;
then
A2:
|.(
Re z).|
<=
|.z.| by
Lm28;
(
Re z)
<=
|.(
Re z).| by
Lm29;
hence thesis by
A2,
XXREAL_0: 2;
end;
theorem ::
COMPLEX1:55
(
Im z)
<=
|.z.|
proof
0
<= ((
Re z)
^2 ) by
XREAL_1: 63;
then
A1: (((
Im z)
^2 )
+
0 )
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
XREAL_1: 7;
0
<= ((
Im z)
^2 ) by
XREAL_1: 63;
then (
sqrt ((
Im z)
^2 ))
<=
|.z.| by
A1,
SQUARE_1: 26;
then
A2:
|.(
Im z).|
<=
|.z.| by
Lm28;
(
Im z)
<=
|.(
Im z).| by
Lm29;
hence thesis by
A2,
XXREAL_0: 2;
end;
theorem ::
COMPLEX1:56
Th56:
|.(z1
+ z2).|
<= (
|.z1.|
+
|.z2.|)
proof
set r1 = (
Re z1), r2 = (
Re z2), i1 = (
Im z1), i2 = (
Im z2);
A1: ((
Im (z1
+ z2))
^2 )
= ((i1
+ i2)
^2 ) by
Th8
.= (((i1
^2 )
+ ((2
* i1)
* i2))
+ (i2
^2 ));
A2:
0
<= ((r1
^2 )
+ (i1
^2 )) by
Lm1;
((((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 )))
- (((r1
* r2)
+ (i1
* i2))
^2 ))
= (((r1
* i2)
- (i1
* r2))
^2 );
then
0
<= ((((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 )))
- (((r1
* r2)
+ (i1
* i2))
^2 )) by
XREAL_1: 63;
then
A3: ((((r1
* r2)
+ (i1
* i2))
^2 )
+
0 )
<= (((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 ))) by
XREAL_1: 19;
((r1
* r2)
+ (i1
* i2))
<=
|.((r1
* r2)
+ (i1
* i2)).| by
Lm29;
then
A4: ((r1
* r2)
+ (i1
* i2))
<= (
sqrt (((r1
* r2)
+ (i1
* i2))
^2 )) by
Lm28;
A5:
0
<= ((r2
^2 )
+ (i2
^2 )) by
Lm1;
then
A6: ((
sqrt ((r2
^2 )
+ (i2
^2 )))
^2 )
= ((r2
^2 )
+ (i2
^2 )) by
SQUARE_1:def 2;
0
<= (((r1
* r2)
+ (i1
* i2))
^2 ) by
XREAL_1: 63;
then (
sqrt (((r1
* r2)
+ (i1
* i2))
^2 ))
<= (
sqrt (((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 )))) by
A3,
SQUARE_1: 26;
then (
sqrt (((r1
* r2)
+ (i1
* i2))
^2 ))
<= ((
sqrt ((r1
^2 )
+ (i1
^2 )))
* (
sqrt ((r2
^2 )
+ (i2
^2 )))) by
A2,
A5,
SQUARE_1: 29;
then
A7: ((r1
* r2)
+ (i1
* i2))
<= ((
sqrt ((r1
^2 )
+ (i1
^2 )))
* (
sqrt ((r2
^2 )
+ (i2
^2 )))) by
A4,
XXREAL_0: 2;
(((2
* r1)
* r2)
+ ((2
* i1)
* i2))
= (2
* ((r1
* r2)
+ (i1
* i2)));
then (((2
* r1)
* r2)
+ ((2
* i1)
* i2))
<= (2
* ((
sqrt ((r1
^2 )
+ (i1
^2 )))
* (
sqrt ((r2
^2 )
+ (i2
^2 ))))) by
A7,
XREAL_1: 64;
then
A8: (((r1
^2 )
+ (i1
^2 ))
+ (((2
* r1)
* r2)
+ ((2
* i1)
* i2)))
<= (((r1
^2 )
+ (i1
^2 ))
+ ((2
* (
sqrt ((r1
^2 )
+ (i1
^2 ))))
* (
sqrt ((r2
^2 )
+ (i2
^2 ))))) by
XREAL_1: 7;
((
Re (z1
+ z2))
^2 )
= ((r1
+ r2)
^2 ) by
Th8
.= (((r1
^2 )
+ ((2
* r1)
* r2))
+ (r2
^2 ));
then (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 ))
= ((((r1
^2 )
+ (i1
^2 ))
+ (((2
* r1)
* r2)
+ ((2
* i1)
* i2)))
+ ((r2
^2 )
+ (i2
^2 ))) by
A1;
then
A9: (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 ))
<= ((((r1
^2 )
+ (i1
^2 ))
+ ((2
* (
sqrt ((r1
^2 )
+ (i1
^2 ))))
* (
sqrt ((r2
^2 )
+ (i2
^2 )))))
+ ((r2
^2 )
+ (i2
^2 ))) by
A8,
XREAL_1: 7;
A10:
0
<= (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 )) by
Lm1;
((
sqrt ((r1
^2 )
+ (i1
^2 )))
^2 )
= ((r1
^2 )
+ (i1
^2 )) by
A2,
SQUARE_1:def 2;
then (
sqrt (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 )))
<= (
sqrt (((
sqrt ((r1
^2 )
+ (i1
^2 )))
+ (
sqrt ((r2
^2 )
+ (i2
^2 ))))
^2 )) by
A6,
A9,
A10,
SQUARE_1: 26;
hence thesis by
SQUARE_1: 22;
end;
theorem ::
COMPLEX1:57
Th57:
|.(z1
- z2).|
<= (
|.z1.|
+
|.z2.|)
proof
|.(z1
- z2).|
=
|.(z1
+ (
- z2)).|;
then
|.(z1
- z2).|
<= (
|.z1.|
+
|.(
- z2).|) by
Th56;
hence thesis by
Lm26;
end;
theorem ::
COMPLEX1:58
(
|.z1.|
-
|.z2.|)
<=
|.(z1
+ z2).|
proof
z1
= ((z1
+ z2)
- z2);
then
|.z1.|
<= (
|.(z1
+ z2).|
+
|.z2.|) by
Th57;
hence thesis by
XREAL_1: 20;
end;
theorem ::
COMPLEX1:59
Th59: (
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).|
proof
z1
= ((z1
- z2)
+ z2);
then
|.z1.|
<= (
|.(z1
- z2).|
+
|.z2.|) by
Th56;
hence thesis by
XREAL_1: 20;
end;
theorem ::
COMPLEX1:60
Th60:
|.(z1
- z2).|
=
|.(z2
- z1).|
proof
thus
|.(z1
- z2).|
=
|.(
- (z2
- z1)).|
.=
|.(z2
- z1).| by
Lm26;
end;
theorem ::
COMPLEX1:61
Th61:
|.(z1
- z2).|
=
0 iff z1
= z2
proof
thus
|.(z1
- z2).|
=
0 implies z1
= z2
proof
assume
|.(z1
- z2).|
=
0 ;
then (z1
- z2)
=
0 ;
hence thesis;
end;
thus thesis;
end;
theorem ::
COMPLEX1:62
z1
<> z2 iff
0
<
|.(z1
- z2).|
proof
thus z1
<> z2 implies
0
<
|.(z1
- z2).|
proof
assume z1
<> z2;
then
|.(z1
- z2).|
<>
0 by
Th61;
hence thesis;
end;
thus thesis;
end;
theorem ::
COMPLEX1:63
|.(z1
- z2).|
<= (
|.(z1
- z).|
+
|.(z
- z2).|)
proof
|.(z1
- z2).|
=
|.((z1
- z)
+ (z
- z2)).|;
hence thesis by
Th56;
end;
Lm30: (
- b)
<= a & a
<= b iff
|.a.|
<= b
proof
A1:
|.a.|
<= b implies (
- b)
<= a & a
<= b
proof
assume
A2:
|.a.|
<= b;
a
< (
-
0 ) implies (
- b)
<= a & a
<= b
proof
assume
A3: a
< (
-
0 );
then (
- a)
<= b by
A2,
Lm27;
then (
- b)
<= (
- (
- a)) by
XREAL_1: 24;
hence thesis by
A3;
end;
hence thesis by
A2,
Th43;
end;
(
- b)
<= a & a
<= b implies
|.a.|
<= b
proof
assume that
A4: (
- b)
<= a and
A5: a
<= b;
(
- a)
<= (
- (
- b)) by
A4,
XREAL_1: 24;
then a
<
0 implies
|.a.|
<= b by
Lm27;
hence thesis by
A5,
Th43;
end;
hence thesis by
A1;
end;
theorem ::
COMPLEX1:64
|.(
|.z1.|
-
|.z2.|).|
<=
|.(z1
- z2).|
proof
(
|.z2.|
-
|.z1.|)
<=
|.(z2
- z1).| by
Th59;
then (
- (
|.z1.|
-
|.z2.|))
<=
|.(z1
- z2).| by
Th60;
then
A1: (
-
|.(z1
- z2).|)
<= (
- (
- (
|.z1.|
-
|.z2.|))) by
XREAL_1: 24;
(
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).| by
Th59;
hence thesis by
A1,
Lm30;
end;
theorem ::
COMPLEX1:65
Th65:
|.(z1
* z2).|
= (
|.z1.|
*
|.z2.|)
proof
set r1 = (
Re z1), r2 = (
Re z2), i1 = (
Im z1), i2 = (
Im z2);
A1:
0
<= ((r1
^2 )
+ (i1
^2 )) &
0
<= ((r2
^2 )
+ (i2
^2 )) by
Lm1;
A2: ((
Im (z1
* z2))
^2 )
= (((r1
* i2)
+ (r2
* i1))
^2 ) by
Th9
.= (((2
* (r1
* r2))
* (i1
* i2))
+ (((r1
* i2)
^2 )
+ ((r2
* i1)
^2 )));
((
Re (z1
* z2))
^2 )
= (((r1
* r2)
- (i1
* i2))
^2 ) by
Th9
.= ((((r1
* r2)
^2 )
+ ((i1
* i2)
^2 ))
+ (
- ((2
* (r1
* r2))
* (i1
* i2))));
then (((
Re (z1
* z2))
^2 )
+ ((
Im (z1
* z2))
^2 ))
= (((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 ))) by
A2;
hence thesis by
A1,
SQUARE_1: 29;
end;
theorem ::
COMPLEX1:66
Th66:
|.(z
" ).|
= (
|.z.|
" )
proof
per cases ;
suppose
A1: z
<>
0 ;
set r2i2 = (((
Re z)
^2 )
+ ((
Im z)
^2 ));
A2: r2i2
<>
0 by
A1,
Th5;
A3:
0
<= r2i2 by
Lm1;
thus
|.(z
" ).|
= (
sqrt ((((
Re z)
/ r2i2)
^2 )
+ ((
Im (z
" ))
^2 ))) by
Th20
.= (
sqrt ((((
Re z)
/ r2i2)
^2 )
+ (((
- (
Im z))
/ r2i2)
^2 ))) by
Th20
.= (
sqrt ((((
Re z)
^2 )
/ (r2i2
^2 ))
+ (((
- (
Im z))
/ r2i2)
^2 ))) by
XCMPLX_1: 76
.= (
sqrt ((((
Re z)
^2 )
/ (r2i2
^2 ))
+ (((
- (
Im z))
^2 )
/ (r2i2
^2 )))) by
XCMPLX_1: 76
.= (
sqrt ((1
* r2i2)
/ (r2i2
* r2i2))) by
XCMPLX_1: 62
.= (
sqrt (1
/ r2i2)) by
A2,
XCMPLX_1: 91
.= (1
/
|.z.|) by
A3,
SQUARE_1: 18,
SQUARE_1: 30
.= (
|.z.|
" ) by
XCMPLX_1: 215;
end;
suppose
A4: z
=
0 ;
hence
|.(z
" ).|
= (
0
" )
.= (
|.z.|
" ) by
A4;
end;
end;
theorem ::
COMPLEX1:67
Th67: (
|.z1.|
/
|.z2.|)
=
|.(z1
/ z2).|
proof
thus (
|.z1.|
/
|.z2.|)
= (
|.z1.|
* (
|.z2.|
" )) by
XCMPLX_0:def 9
.= (
|.z1.|
*
|.(z2
" ).|) by
Th66
.=
|.(z1
* (z2
" )).| by
Th65
.=
|.(z1
/ z2).| by
XCMPLX_0:def 9;
end;
theorem ::
COMPLEX1:68
|.(z
* z).|
= (((
Re z)
^2 )
+ ((
Im z)
^2 ))
proof
0
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) &
|.(z
* z).|
= (
|.z.|
*
|.z.|) by
Lm1,
Th65;
then
|.(z
* z).|
= (
sqrt ((((
Re z)
^2 )
+ ((
Im z)
^2 ))
^2 )) by
SQUARE_1: 29;
hence thesis by
Lm1,
SQUARE_1: 22;
end;
theorem ::
COMPLEX1:69
|.(z
* z).|
=
|.(z
* (z
*' )).|
proof
thus
|.(z
* z).|
= (
|.z.|
*
|.z.|) by
Th65
.= (
|.z.|
*
|.(z
*' ).|) by
Th53
.=
|.(z
* (z
*' )).| by
Th65;
end;
theorem ::
COMPLEX1:70
a
<=
0 implies
|.a.|
= (
- a) by
Lm27;
theorem ::
COMPLEX1:71
Th71:
|.a.|
= a or
|.a.|
= (
- a)
proof
a
>=
0 or a
<
0 ;
hence thesis by
Lm27,
Th43;
end;
theorem ::
COMPLEX1:72
(
sqrt (a
^2 ))
=
|.a.| by
Lm28;
theorem ::
COMPLEX1:73
(
min (a,b))
= (((a
+ b)
-
|.(a
- b).|)
/ 2)
proof
per cases ;
suppose
A1: a
<= b;
|.(a
- b).|
=
|.(
- (b
- a)).|
.=
|.(b
- a).| by
Lm26
.= (b
- a) by
A1,
Th43,
XREAL_1: 48;
hence thesis by
A1,
XXREAL_0:def 9;
end;
suppose
A2: b
<= a;
hence (
min (a,b))
= (((a
+ b)
- (a
- b))
/ 2) by
XXREAL_0:def 9
.= (((a
+ b)
-
|.(a
- b).|)
/ 2) by
A2,
Th43,
XREAL_1: 48;
end;
end;
theorem ::
COMPLEX1:74
(
max (a,b))
= (((a
+ b)
+
|.(a
- b).|)
/ 2)
proof
per cases ;
suppose
A1: b
<= a;
hence (
max (a,b))
= (((a
+ b)
+ (a
- b))
/ 2) by
XXREAL_0:def 10
.= (((a
+ b)
+
|.(a
- b).|)
/ 2) by
A1,
Th43,
XREAL_1: 48;
end;
suppose
A2: a
<= b;
then
A3:
0
<= (b
- a) by
XREAL_1: 48;
thus (
max (a,b))
= (((a
+ b)
+ (
- (a
- b)))
/ 2) by
A2,
XXREAL_0:def 10
.= (((a
+ b)
+
|.(
- (a
- b)).|)
/ 2) by
A3,
Th43
.= (((a
+ b)
+
|.(a
- b).|)
/ 2) by
Lm26;
end;
end;
theorem ::
COMPLEX1:75
Th75: (
|.a.|
^2 )
= (a
^2 )
proof
|.a.|
= a or
|.a.|
= (
- a) by
Th71;
hence thesis;
end;
theorem ::
COMPLEX1:76
(
-
|.a.|)
<= a & a
<=
|.a.| by
Lm29;
theorem ::
COMPLEX1:77
(a
+ (b
*
<i> ))
= (c
+ (d
*
<i> )) implies a
= c & b
= d
proof
assume
A1: (a
+ (b
*
<i> ))
= (c
+ (d
*
<i> ));
then ((a
- c)
+ ((b
- d)
*
<i> ))
=
0 ;
then (a
- c)
=
0 by
Th4,
Th12;
hence thesis by
A1;
end;
theorem ::
COMPLEX1:78
(
sqrt ((a
^2 )
+ (b
^2 )))
<= (
|.a.|
+
|.b.|)
proof
A1: ((
sqrt ((a
^2 )
+ (b
^2 )))
^2 )
>=
0 by
XREAL_1: 63;
(a
^2 )
>=
0 & (b
^2 )
>=
0 by
XREAL_1: 63;
then
A2: ((
sqrt ((a
^2 )
+ (b
^2 )))
^2 )
= ((a
^2 )
+ (b
^2 )) by
SQUARE_1:def 2;
((
|.a.|
+
|.b.|)
^2 )
= (((
|.a.|
^2 )
+ ((2
*
|.a.|)
*
|.b.|))
+ (
|.b.|
^2 )) & (
|.a.|
^2 )
= (a
^2 ) by
Th75;
then (((
|.a.|
+
|.b.|)
^2 )
- ((
sqrt ((a
^2 )
+ (b
^2 )))
^2 ))
= ((((a
^2 )
+ ((2
*
|.a.|)
*
|.b.|))
+ (b
^2 ))
- ((a
^2 )
+ (b
^2 ))) by
A2,
Th75
.= ((2
*
|.a.|)
*
|.b.|);
then ((
|.a.|
+
|.b.|)
^2 )
>= ((
sqrt ((a
^2 )
+ (b
^2 )))
^2 ) by
XREAL_1: 49;
then (
sqrt ((
|.a.|
+
|.b.|)
^2 ))
>= (
sqrt ((
sqrt ((a
^2 )
+ (b
^2 )))
^2 )) by
A1,
SQUARE_1: 26;
hence thesis by
A2,
SQUARE_1: 22;
end;
theorem ::
COMPLEX1:79
|.a.|
<= (
sqrt ((a
^2 )
+ (b
^2 )))
proof
(a
^2 )
>=
0 & ((a
^2 )
+
0 )
<= ((a
^2 )
+ (b
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then (
sqrt (a
^2 ))
<= (
sqrt ((a
^2 )
+ (b
^2 ))) by
SQUARE_1: 26;
hence thesis by
Lm28;
end;
theorem ::
COMPLEX1:80
|.(1
/ z1).|
= (1
/
|.z1.|) by
Th48,
Th67;
theorem ::
COMPLEX1:81
for z1,z2 be
Complex holds (z1
+ z2)
= (((
Re z1)
+ (
Re z2))
+ (((
Im z1)
+ (
Im z2))
*
<i> ))
proof
let z1,z2 be
Complex;
(z1
+ z2)
=
[*((
Re z1)
+ (
Re z2)), ((
Im z1)
+ (
Im z2))*] by
Lm15;
hence thesis by
Lm21;
end;
theorem ::
COMPLEX1:82
for z1,z2 be
Complex holds (z1
* z2)
= ((((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2)))
+ ((((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))
*
<i> ))
proof
let z1,z2 be
Complex;
(z1
* z2)
=
[*(((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))), (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1)))*] by
Lm16;
hence thesis by
Lm21;
end;
theorem ::
COMPLEX1:83
for z be
Complex holds (
- z)
= ((
- (
Re z))
+ ((
- (
Im z))
*
<i> )) by
Lm22;
theorem ::
COMPLEX1:84
for z1,z2 be
Complex holds (z1
- z2)
= (((
Re z1)
- (
Re z2))
+ (((
Im z1)
- (
Im z2))
*
<i> )) by
Lm23;
theorem ::
COMPLEX1:85
for z be
Complex holds (z
" )
= (((
Re z)
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
+ (((
- (
Im z))
/ (((
Re z)
^2 )
+ ((
Im z)
^2 )))
*
<i> )) by
Lm24;
theorem ::
COMPLEX1:86
for z1,z2 be
Complex holds (z1
/ z2)
= (((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
+ (((((
Re z2)
* (
Im z1))
- ((
Re z1)
* (
Im z2)))
/ (((
Re z2)
^2 )
+ ((
Im z2)
^2 )))
*
<i> )) by
Lm25;