morph_01.miz



    begin

    definition

      let E be non empty RLSStruct;

      mode binary-image of E is Subset of E;

    end

    reserve E for RealLinearSpace;

    reserve A,B,C for binary-image of E;

    reserve a,b,v for Element of E;

    definition

      let E be RealLinearSpace;

      let A,B be binary-image of E;

      :: MORPH_01:def1

      func A (-) B -> binary-image of E equals { z where z be Element of E : for b be Element of E st b in B holds (z - b) in A };

      correctness

      proof

        now

          let x be object;

          assume x in { z where z be Element of E : for b be Element of E st b in B holds (z - b) in A };

          then ex z be Element of E st x = z & for b be Element of E st b in B holds (z - b) in A;

          hence x in the carrier of E;

        end;

        hence thesis by TARSKI:def 3;

      end;

    end

    notation

      let a be Real, E be RealLinearSpace, A be Subset of E;

      synonym a * A for a (.) A;

    end

    theorem :: MORPH_01:1

    

     Th1: for E be RealLinearSpace, A,B be Subset of E st B = {} holds (A (+) B) = B & (B (+) A) = B & (A (-) B) = the carrier of E

    proof

      let E be RealLinearSpace, A,B be Subset of E;

      assume

       A1: B = {} ;

      hence (A (+) B) = B & (B (+) A) = B by RUSUB_5: 5;

      now

        let x be object;

        assume x in the carrier of E;

        then

        reconsider z = x as Element of E;

        for b be Element of E st b in B holds (z - b) in A by A1;

        hence x in (A (-) B);

      end;

      then the carrier of E c= (A (-) B);

      hence the carrier of E = (A (-) B);

    end;

    theorem :: MORPH_01:2

    

     Th2: for E be RealLinearSpace, A,B be Subset of E st A <> {} & B = {} holds (B (-) A) = B

    proof

      let E be RealLinearSpace, A,B be Subset of E;

      assume

       A1: A <> {} & B = {} ;

      then

      consider a be object such that

       A2: a in A by XBOOLE_0:def 1;

      reconsider a as Element of E by A2;

      assume (B (-) A) <> B;

      then

      consider ba be object such that

       A3: ba in (B (-) A) by A1, XBOOLE_0:def 1;

      consider z be Element of E such that

       A4: ba = z & for a be Element of E st a in A holds (z - a) in B by A3;

      thus contradiction by A1, A2, A4;

    end;

    theorem :: MORPH_01:3

    

     Th3: for E be RealLinearSpace, A,B be Subset of E st B = the carrier of E & A <> {} holds (A (+) B) = B & (B (+) A) = B

    proof

      let E be RealLinearSpace, A,B be Subset of E;

      assume

       A1: B = the carrier of E & A <> {} ;

      then

      consider a be object such that

       A2: a in A by XBOOLE_0:def 1;

      reconsider a as Element of E by A2;

      now

        let x be object;

        assume x in the carrier of E;

        then

        reconsider z = x as Element of E;

        (a + (z - a)) = z by RLVECT_4: 1;

        hence x in (A (+) B) by A1, A2;

      end;

      then

       A3: the carrier of E c= (A (+) B);

      hence B = (A (+) B) by A1;

      

      thus (B (+) A) = (A + B)

      .= B by A3, A1;

    end;

    theorem :: MORPH_01:4

    

     Th4: for E be RealLinearSpace, A,B be Subset of E st B = the carrier of E holds (B (-) A) = B

    proof

      let E be RealLinearSpace, A,B be Subset of E;

      assume

       A1: B = the carrier of E;

      now

        let x be object;

        assume x in the carrier of E;

        then

        reconsider z = x as Element of E;

        for a be Element of E st a in A holds (z - a) in B by A1;

        hence x in (B (-) A);

      end;

      then the carrier of E c= (B (-) A);

      hence B = (B (-) A) by A1;

    end;

    theorem :: MORPH_01:5

    (A (+) B) = ( union { (b + A) where b be Element of E : b in B })

    proof

      now

        let x be object;

        assume

         A1: x in (A (+) B);

        consider a0,b0 be Element of E such that

         A2: x = (a0 + b0) & a0 in A & b0 in B by A1;

        

         A3: x in (b0 + A) by A2;

        (b0 + A) in { (b + A) where b be Element of E : b in B } by A2;

        hence x in ( union { (b + A) where b be Element of E : b in B }) by A3, TARSKI:def 4;

      end;

      hence (A (+) B) c= ( union { (b + A) where b be Element of E : b in B });

      now

        let x be object;

        assume x in ( union { (b + A) where b be Element of E : b in B });

        then

        consider y be set such that

         A4: x in y & y in { (b + A) where b be Element of E : b in B } by TARSKI:def 4;

        consider b be Element of E such that

         A5: y = (b + A) & b in B by A4;

        consider a be Element of E such that

         A6: x = (b + a) & a in A by A5, A4;

        thus x in (A (+) B) by A5, A6;

      end;

      hence thesis;

    end;

    definition

      let E be non empty RLSStruct;

      mode binary-image-family of E is Subset-Family of the carrier of E;

    end

    reserve F,G for binary-image-family of E;

    reserve A,B,C for non empty binary-image of E;

    theorem :: MORPH_01:6

    (A (-) B) = ( meet { (b + A) where b be Element of E : b in B })

    proof

      consider g be object such that

       A1: g in B by XBOOLE_0:def 1;

      reconsider g as Element of E by A1;

      

       A2: (g + A) in { (b + A) where b be Element of E : b in B } by A1;

      now

        let x be object;

        assume x in (A (-) B);

        then

        consider z be Element of E such that

         A3: x = z & for b be Element of E st b in B holds (z - b) in A;

        for Y be set st Y in { (b + A) where b be Element of E : b in B } holds z in Y

        proof

          let Y be set;

          assume Y in { (b + A) where b be Element of E : b in B };

          then

          consider b be Element of E such that

           A4: Y = (b + A) & b in B;

          

           A5: (z - b) in A by A3, A4;

          z = (b + (z - b)) by RLVECT_4: 1;

          hence z in Y by A5, A4;

        end;

        hence x in ( meet { (b + A) where b be Element of E : b in B }) by A3, A2, SETFAM_1:def 1;

      end;

      hence (A (-) B) c= ( meet { (b + A) where b be Element of E : b in B });

      now

        let x be object;

        assume

         A6: x in ( meet { (b + A) where b be Element of E : b in B });

        consider S be set such that

         A7: S in { (b + A) where b be Element of E : b in B } by A2;

        consider d be Element of E such that

         A8: S = (d + A) & d in B by A7;

        x in S by A6, A7, SETFAM_1:def 1;

        then

        reconsider x0 = x as Element of E by A8;

        for b be Element of E st b in B holds (x0 - b) in A

        proof

          let b be Element of E;

          assume b in B;

          then (b + A) in { (f + A) where f be Element of E : f in B };

          then x in (b + A) by A6, SETFAM_1:def 1;

          then

          consider a be Element of E such that

           A9: x0 = (b + a) & a in A;

          thus thesis by A9, RLVECT_4: 1;

        end;

        hence x in (A (-) B);

      end;

      hence ( meet { (b + A) where b be Element of E : b in B }) c= (A (-) B);

    end;

    theorem :: MORPH_01:7

    

     Th7: (A (+) B) = { v where v be Element of E : ((v + (( - 1) * B)) /\ A) <> {} }

    proof

      thus (A (+) B) c= { v where v be Element of E : ((v + (( - 1) * B)) /\ A) <> {} }

      proof

        let x be object;

        assume

         A1: x in (A (+) B);

        consider a0,b0 be Element of E such that

         A2: x = (a0 + b0) & a0 in A & b0 in B by A1;

        reconsider v = x as Element of E by A1;

        

         A3: (v - b0) = a0 by A2, RLVECT_4: 1;

        (( - 1) * b0) in (( - 1) * B) by A2;

        then (v + (( - 1) * b0)) in (v + (( - 1) * B));

        then (v - b0) in (v + (( - 1) * B)) by RLVECT_1: 16;

        then ((v + (( - 1) * B)) /\ A) <> {} by A2, A3, XBOOLE_0:def 4;

        hence x in { w where w be Element of E : ((w + (( - 1) * B)) /\ A) <> {} };

      end;

      let x be object;

      assume x in { v where v be Element of E : ((v + (( - 1) * B)) /\ A) <> {} };

      then

      consider v be Element of E such that

       A4: x = v & ((v + (( - 1) * B)) /\ A) <> {} ;

      consider y be object such that

       A5: y in ((v + (( - 1) * B)) /\ A) by A4, XBOOLE_0:def 1;

      

       A6: y in (v + (( - 1) * B)) & y in A by A5, XBOOLE_0:def 4;

      then

      consider nb be Element of E such that

       A7: y = (v + nb) & nb in (( - 1) * B);

      consider b be Element of E such that

       A8: nb = (( - 1) * b) & b in B by A7;

      reconsider a = y as Element of E by A7;

      (a + b) = ((v - b) + b) by A7, A8, RLVECT_1: 16

      .= v by RLVECT_4: 1;

      hence x in (A (+) B) by A4, A8, A6;

    end;

    theorem :: MORPH_01:8

    

     Th8: (A (-) B) = { v where v be Element of E : (v + (( - 1) * B)) c= A }

    proof

      thus (A (-) B) c= { v where v be Element of E : (v + (( - 1) * B)) c= A }

      proof

        let x be object;

        assume x in (A (-) B);

        then

        consider z be Element of E such that

         A1: x = z & for b be Element of E st b in B holds (z - b) in A;

        (z + (( - 1) * B)) c= A

        proof

          let y be object;

          assume y in (z + (( - 1) * B));

          then

          consider nb be Element of E such that

           A2: y = (z + nb) & nb in (( - 1) * B);

          consider b be Element of E such that

           A3: nb = (( - 1) * b) & b in B by A2;

          (z - b) in A by A3, A1;

          hence y in A by A2, A3, RLVECT_1: 16;

        end;

        hence x in { v where v be Element of E : (v + (( - 1) * B)) c= A } by A1;

      end;

      let x be object;

      assume x in { v where v be Element of E : (v + (( - 1) * B)) c= A };

      then

      consider v be Element of E such that

       A4: x = v & (v + (( - 1) * B)) c= A;

      for b be Element of E st b in B holds (v - b) in A

      proof

        let b be Element of E;

        assume b in B;

        then (( - 1) * b) in (( - 1) * B);

        then (v + (( - 1) * b)) in (v + (( - 1) * B));

        then (v - b) in (v + (( - 1) * B)) by RLVECT_1: 16;

        hence thesis by A4;

      end;

      hence x in (A (-) B) by A4;

    end;

    theorem :: MORPH_01:9

    

     Th9: ((the carrier of E \ A) (+) B) = (the carrier of E \ (A (-) B)) & ((the carrier of E \ A) (-) B) = (the carrier of E \ (A (+) B))

    proof

      per cases ;

        suppose

         A1: A = the carrier of E;

        reconsider X = {} as Subset of E by XBOOLE_1: 2;

        

        thus ((the carrier of E \ A) (+) B) = (X (+) B) by A1, XBOOLE_1: 37

        .= {} by Th1

        .= (the carrier of E \ the carrier of E) by XBOOLE_1: 37

        .= (the carrier of E \ (A (-) B)) by A1, Th4;

        

        thus ((the carrier of E \ A) (-) B) = (X (-) B) by A1, XBOOLE_1: 37

        .= {} by Th2

        .= (the carrier of E \ the carrier of E) by XBOOLE_1: 37

        .= (the carrier of E \ (A (+) B)) by A1, Th3;

      end;

        suppose

         A2: A <> the carrier of E;

        

         A3: (the carrier of E \ A) is non empty by XBOOLE_1: 37, A2;

        

         A4: for x be object holds x in { v where v be Element of E : ((v + (( - 1) * B)) /\ (the carrier of E \ A)) <> {} } iff x in the carrier of E & not x in { v where v be Element of E : (v + (( - 1) * B)) c= A }

        proof

          let x be object;

          hereby

            assume x in { v where v be Element of E : ((v + (( - 1) * B)) /\ (the carrier of E \ A)) <> {} };

            then

            consider v be Element of E such that

             A5: x = v & ((v + (( - 1) * B)) /\ (the carrier of E \ A)) <> {} ;

            thus x in the carrier of E by A5;

            thus not x in { w where w be Element of E : (w + (( - 1) * B)) c= A }

            proof

              assume x in { w where w be Element of E : (w + (( - 1) * B)) c= A };

              then

              consider w be Element of E such that

               A6: w = x & (w + (( - 1) * B)) c= A;

              (v + (( - 1) * B)) misses (the carrier of E \ A) by A5, A6, XBOOLE_1: 85;

              hence contradiction by A5;

            end;

          end;

          assume

           A7: x in the carrier of E & not x in { v where v be Element of E : (v + (( - 1) * B)) c= A };

          then

          reconsider w = x as Element of E;

          now

            assume ((w + (( - 1) * B)) /\ (the carrier of E \ A)) = {} ;

            

            then {} = (((w + (( - 1) * B)) /\ the carrier of E) \ A) by XBOOLE_1: 49

            .= ((w + (( - 1) * B)) \ A) by XBOOLE_1: 28;

            then (w + (( - 1) * B)) c= A by XBOOLE_1: 37;

            hence contradiction by A7;

          end;

          hence x in { v where v be Element of E : ((v + (( - 1) * B)) /\ (the carrier of E \ A)) <> {} };

        end;

        

         A8: for x be object holds x in { v where v be Element of E : (v + (( - 1) * B)) c= (the carrier of E \ A) } iff x in the carrier of E & not x in { v where v be Element of E : ((v + (( - 1) * B)) /\ A) <> {} }

        proof

          let x be object;

          hereby

            assume x in { v where v be Element of E : (v + (( - 1) * B)) c= (the carrier of E \ A) };

            then

            consider v be Element of E such that

             A9: x = v & (v + (( - 1) * B)) c= (the carrier of E \ A);

            thus x in the carrier of E by A9;

            thus not x in { w where w be Element of E : ((w + (( - 1) * B)) /\ A) <> {} }

            proof

              assume x in { w where w be Element of E : ((w + (( - 1) * B)) /\ A) <> {} };

              then

              consider w be Element of E such that

               A10: w = x & ((w + (( - 1) * B)) /\ A) <> {} ;

              (w + (( - 1) * B)) misses (the carrier of E \ (the carrier of E \ A)) by A9, A10, XBOOLE_1: 85;

              then (w + (( - 1) * B)) misses (the carrier of E /\ A) by XBOOLE_1: 48;

              then (w + (( - 1) * B)) misses A by XBOOLE_1: 28;

              hence contradiction by A10;

            end;

          end;

          assume

           A11: x in the carrier of E & not x in { v where v be Element of E : ((v + (( - 1) * B)) /\ A) <> {} };

          then

          reconsider w = x as Element of E;

          reconsider w = x as Element of E by A11;

          ((w + (( - 1) * B)) \ (the carrier of E \ A)) = (((w + (( - 1) * B)) \ the carrier of E) \/ ((w + (( - 1) * B)) /\ A)) by XBOOLE_1: 52

          .= ( {} \/ ((w + (( - 1) * B)) /\ A)) by XBOOLE_1: 37

          .= {} by A11;

          then (w + (( - 1) * B)) c= (the carrier of E \ A) by XBOOLE_1: 37;

          hence x in { v where v be Element of E : (v + (( - 1) * B)) c= (the carrier of E \ A) };

        end;

        

        thus ((the carrier of E \ A) (+) B) = { v where v be Element of E : ((v + (( - 1) * B)) /\ (the carrier of E \ A)) <> {} } by Th7, A3

        .= (the carrier of E \ { v where v be Element of E : (v + (( - 1) * B)) c= A }) by A4, XBOOLE_0:def 5

        .= (the carrier of E \ (A (-) B)) by Th8;

        

        thus ((the carrier of E \ A) (-) B) = { v where v be Element of E : (v + (( - 1) * B)) c= (the carrier of E \ A) } by Th8, A3

        .= (the carrier of E \ { v where v be Element of E : ((v + (( - 1) * B)) /\ A) <> {} }) by A8, XBOOLE_0:def 5

        .= (the carrier of E \ (A (+) B)) by Th7;

      end;

    end;

    

     Lm1: for E be non empty Abelian addLoopStr, A,B be Subset of E holds (A (+) B) = (B (+) A)

    proof

      let E be non empty Abelian addLoopStr, A,B be Subset of E;

      

      thus (A (+) B) = (B + A)

      .= (B (+) A);

    end;

    definition

      let E be non empty Abelian addLoopStr, A,B be Subset of E;

      :: original: (+)

      redefine

      func A (+) B;

      commutativity by Lm1;

    end

    theorem :: MORPH_01:10

    

     Th10: for E be non empty add-associative addLoopStr, A,B,C be Subset of E holds ((A + B) + C) = (A + (B + C))

    proof

      let E be non empty add-associative addLoopStr, A,B,C be Subset of E;

      for x be Element of E holds x in ((A + B) + C) iff x in (A + (B + C))

      proof

        let x be Element of E;

        hereby

          assume x in ((A + B) + C);

          then

          consider ab,c be Element of E such that

           A1: x = (ab + c) & ab in (A + B) & c in C;

          consider a,b be Element of E such that

           A2: ab = (a + b) & a in A & b in B by A1;

          

           A3: x = (a + (b + c)) by A1, A2, RLVECT_1:def 3;

          (b + c) in (B + C) by A1, A2;

          hence x in (A + (B + C)) by A2, A3;

        end;

        assume x in (A + (B + C));

        then

        consider a,bc be Element of E such that

         A4: x = (a + bc) & a in A & bc in (B + C);

        consider b,c be Element of E such that

         A5: bc = (b + c) & b in B & c in C by A4;

        

         A6: x = ((a + b) + c) by A4, A5, RLVECT_1:def 3;

        (a + b) in (A + B) by A4, A5;

        hence x in ((A + B) + C) by A5, A6;

      end;

      hence thesis by SUBSET_1: 3;

    end;

    theorem :: MORPH_01:11

    ((A (+) B) (+) C) = (A (+) (B (+) C)) by Th10;

    theorem :: MORPH_01:12

    

     Th12: (( union F) (+) B) = ( union { (X (+) B) where X be binary-image of E : X in F })

    proof

      for x be object holds x in (( union F) (+) B) iff x in ( union { (X (+) B) where X be binary-image of E : X in F })

      proof

        let x be object;

        hereby

          assume x in (( union F) (+) B);

          then

          consider f,b be Element of E such that

           A1: x = (f + b) & f in ( union F) & b in B;

          consider Y be set such that

           A2: f in Y & Y in F by A1, TARSKI:def 4;

          reconsider X = Y as binary-image of E by A2;

          

           A3: x in (X (+) B) by A1, A2;

          (X (+) B) in { (W (+) B) where W be binary-image of E : W in F } by A2;

          hence x in ( union { (W (+) B) where W be binary-image of E : W in F }) by A3, TARSKI:def 4;

        end;

        assume x in ( union { (X (+) B) where X be binary-image of E : X in F });

        then

        consider Y be set such that

         A4: x in Y & Y in { (X (+) B) where X be binary-image of E : X in F } by TARSKI:def 4;

        consider W be binary-image of E such that

         A5: Y = (W (+) B) & W in F by A4;

        consider f,b be Element of E such that

         A6: x = (f + b) & f in W & b in B by A4, A5;

        W c= ( union F) by A5, ZFMISC_1: 74;

        hence x in (( union F) (+) B) by A6;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: MORPH_01:13

    (A (+) ( union F)) = ( union { (A (+) X) where X be binary-image of E : X in F })

    proof

      

       A1: for x be object holds x in { (X (+) A) where X be binary-image of E : X in F } iff x in { (A (+) X) where X be binary-image of E : X in F }

      proof

        let x be object;

        hereby

          assume x in { (X (+) A) where X be binary-image of E : X in F };

          then

          consider W be binary-image of E such that

           A2: x = (W (+) A) & W in F;

          x = (A (+) W) & W in F by A2;

          hence x in { (A (+) X) where X be binary-image of E : X in F };

        end;

        assume x in { (A (+) X) where X be binary-image of E : X in F };

        then

        consider W be binary-image of E such that

         A3: x = (A (+) W) & W in F;

        x = (W (+) A) & W in F by A3;

        hence x in { (X (+) A) where X be binary-image of E : X in F };

      end;

      

      thus (A (+) ( union F)) = (( union F) (+) A)

      .= ( union { (X (+) A) where X be binary-image of E : X in F }) by Th12

      .= ( union { (A (+) X) where X be binary-image of E : X in F }) by A1, TARSKI: 2;

    end;

    theorem :: MORPH_01:14

    

     Th14: (( meet F) (+) B) c= ( meet { (X (+) B) where X be binary-image of E : X in F })

    proof

      per cases ;

        suppose

         A1: F = {} ;

        reconsider Z = ( meet F) as Subset of E;

        ( meet F) = {} by A1, SETFAM_1:def 1;

        then (Z (+) B) = {} by Th1;

        hence (( meet F) (+) B) c= ( meet { (X (+) B) where X be binary-image of E : X in F });

      end;

        suppose F <> {} ;

        then

        consider W0 be object such that

         A2: W0 in F by XBOOLE_0:def 1;

        reconsider W0 as binary-image of E by A2;

        

         A3: (W0 (+) B) in { (W (+) B) where W be binary-image of E : W in F } by A2;

        let x be object;

        assume x in (( meet F) (+) B);

        then

        consider f,b be Element of E such that

         A4: x = (f + b) & f in ( meet F) & b in B;

        now

          let Y be set;

          assume Y in { (X (+) B) where X be binary-image of E : X in F };

          then

          consider X be binary-image of E such that

           A5: Y = (X (+) B) & X in F;

          ( meet F) c= X by A5, SETFAM_1: 3;

          hence x in Y by A4, A5;

        end;

        hence x in ( meet { (W (+) B) where W be binary-image of E : W in F }) by A3, SETFAM_1:def 1;

      end;

    end;

    theorem :: MORPH_01:15

    (A (+) ( meet F)) c= ( meet { (A (+) X) where X be binary-image of E : X in F })

    proof

      

       A1: for x be object holds x in { (X (+) A) where X be binary-image of E : X in F } iff x in { (A (+) X) where X be binary-image of E : X in F }

      proof

        let x be object;

        hereby

          assume x in { (X (+) A) where X be binary-image of E : X in F };

          then

          consider W be binary-image of E such that

           A2: x = (W (+) A) & W in F;

          x = (A (+) W) & W in F by A2;

          hence x in { (A (+) X) where X be binary-image of E : X in F };

        end;

        assume x in { (A (+) X) where X be binary-image of E : X in F };

        then

        consider W be binary-image of E such that

         A3: x = (A (+) W) & W in F;

        x = (W (+) A) & W in F by A3;

        hence x in { (X (+) A) where X be binary-image of E : X in F };

      end;

      (A (+) ( meet F)) c= ( meet { (X (+) A) where X be binary-image of E : X in F }) by Th14;

      hence (A (+) ( meet F)) c= ( meet { (A (+) X) where X be binary-image of E : X in F }) by A1, TARSKI: 2;

    end;

    theorem :: MORPH_01:16

    

     Th16: for E be non empty addLoopStr, A,B,C be Subset of E holds B c= C implies (A + B) c= (A + C)

    proof

      let E be non empty addLoopStr, A,B,C be Subset of E;

      assume

       A1: B c= C;

      let x be object;

      assume x in (A + B);

      then

      consider a,b be Element of E such that

       A2: x = (a + b) & a in A & b in B;

      thus x in (A + C) by A1, A2;

    end;

    theorem :: MORPH_01:17

    

     Th17: ((v + A) (+) B) = (A (+) (v + B)) & ((v + A) (+) B) = (v + (A (+) B))

    proof

      for x be object holds x in ((v + A) (+) B) iff x in (A (+) (v + B))

      proof

        let x be object;

        hereby

          assume x in ((v + A) (+) B);

          then

          consider f,b be Element of E such that

           A1: x = (f + b) & f in (v + A) & b in B;

          consider a be Element of E such that

           A2: f = (v + a) & a in A by A1;

          

           A3: x = (a + (v + b)) by A1, A2, RLVECT_1:def 3;

          (v + b) in (v + B) by A1;

          hence x in (A (+) (v + B)) by A3, A2;

        end;

        assume x in (A (+) (v + B));

        then

        consider a,f be Element of E such that

         A4: x = (a + f) & a in A & f in (v + B);

        consider b be Element of E such that

         A5: f = (v + b) & b in B by A4;

        

         A6: x = ((v + a) + b) by A4, A5, RLVECT_1:def 3;

        (v + a) in (v + A) by A4;

        hence x in ((v + A) (+) B) by A6, A5;

      end;

      hence ((v + A) (+) B) = (A (+) (v + B)) by TARSKI: 2;

      for x be object holds x in ((v + A) (+) B) iff x in (v + (A (+) B))

      proof

        let x be object;

        hereby

          assume x in ((v + A) (+) B);

          then

          consider f,b be Element of E such that

           A7: x = (f + b) & f in (v + A) & b in B;

          consider a be Element of E such that

           A8: f = (v + a) & a in A by A7;

          

           A9: x = (v + (a + b)) by A7, A8, RLVECT_1:def 3;

          (a + b) in (A + B) by A7, A8;

          hence x in (v + (A (+) B)) by A9;

        end;

        assume x in (v + (A (+) B));

        then

        consider ab be Element of E such that

         A10: x = (v + ab) & ab in (A (+) B);

        consider a,b be Element of E such that

         A11: ab = (a + b) & a in A & b in B by A10;

        

         A12: x = ((v + a) + b) by A10, A11, RLVECT_1:def 3;

        (v + a) in (v + A) by A11;

        hence x in ((v + A) (+) B) by A12, A11;

      end;

      hence ((v + A) (+) B) = (v + (A (+) B)) by TARSKI: 2;

    end;

    theorem :: MORPH_01:18

    

     Th18: (( meet F) (-) B) = ( meet { (X (-) B) where X be binary-image of E : X in F })

    proof

      per cases ;

        suppose

         A1: F = {} ;

        reconsider Z = ( meet F) as Subset of E;

        

         A2: ( meet F) = {} by A1, SETFAM_1:def 1;

        { (X (-) B) where X be binary-image of E : X in F } = {}

        proof

          assume { (X (-) B) where X be binary-image of E : X in F } <> {} ;

          then

          consider x be object such that

           A3: x in { (X (-) B) where X be binary-image of E : X in F } by XBOOLE_0:def 1;

          ex X be binary-image of E st x = (X (-) B) & X in F by A3;

          hence contradiction by A1;

        end;

        then {} = ( meet { (X (-) B) where X be binary-image of E : X in F }) by SETFAM_1:def 1;

        hence (( meet F) (-) B) = ( meet { (X (-) B) where X be binary-image of E : X in F }) by A2, Th2;

      end;

        suppose

         A4: F <> {} ;

        then

        consider W0 be object such that

         A5: W0 in F by XBOOLE_0:def 1;

        reconsider W0 as binary-image of E by A5;

        

         A6: (W0 (-) B) in { (W (-) B) where W be binary-image of E : W in F } by A5;

        for x be object holds x in (( meet F) (-) B) iff x in ( meet { (W (-) B) where W be binary-image of E : W in F })

        proof

          let x be object;

          hereby

            assume x in (( meet F) (-) B);

            then

            consider z be Element of E such that

             A7: x = z & for b be Element of E st b in B holds (z - b) in ( meet F);

            now

              let Y be set;

              assume Y in { (X (-) B) where X be binary-image of E : X in F };

              then

              consider X be binary-image of E such that

               A8: Y = (X (-) B) & X in F;

              now

                let b be Element of E;

                assume b in B;

                then

                 A9: (z - b) in ( meet F) by A7;

                ( meet F) c= X by A8, SETFAM_1: 3;

                hence (z - b) in X by A9;

              end;

              hence x in Y by A8, A7;

            end;

            hence x in ( meet { (W (-) B) where W be binary-image of E : W in F }) by A6, SETFAM_1:def 1;

          end;

          assume

           A10: x in ( meet { (W (-) B) where W be binary-image of E : W in F });

          

           A11: for W be binary-image of E st W in F holds x in (W (-) B)

          proof

            let W be binary-image of E;

            assume W in F;

            then (W (-) B) in { (D (-) B) where D be binary-image of E : D in F };

            hence x in (W (-) B) by A10, SETFAM_1:def 1;

          end;

          x in (W0 (-) B) by A5, A11;

          then

          reconsider z = x as Element of E;

          for b be Element of E st b in B holds (z - b) in ( meet F)

          proof

            assume not for b be Element of E st b in B holds (z - b) in ( meet F);

            then

            consider b be Element of E such that

             A12: b in B & not (z - b) in ( meet F);

            consider X be set such that

             A13: X in F & not (z - b) in X by A4, A12, SETFAM_1:def 1;

            reconsider X as binary-image of E by A13;

            z in (X (-) B) by A13, A11;

            then

            consider zz be Element of E such that

             A14: z = zz & for b be Element of E st b in B holds (zz - b) in X;

            thus contradiction by A14, A12, A13;

          end;

          hence x in (( meet F) (-) B);

        end;

        hence (( meet F) (-) B) = ( meet { (X (-) B) where X be binary-image of E : X in F }) by TARSKI: 2;

      end;

    end;

    theorem :: MORPH_01:19

    ( meet { (B (-) X) where X be binary-image of E : X in F }) c= (B (-) ( meet F))

    proof

      per cases ;

        suppose

         A1: F = {} ;

        reconsider Z = ( meet F) as Subset of E;

        { (B (-) X) where X be binary-image of E : X in F } = {}

        proof

          assume { (B (-) X) where X be binary-image of E : X in F } <> {} ;

          then

          consider x be object such that

           A2: x in { (B (-) X) where X be binary-image of E : X in F } by XBOOLE_0:def 1;

          ex X be binary-image of E st x = (B (-) X) & X in F by A2;

          hence contradiction by A1;

        end;

        then {} = ( meet { (B (-) X) where X be binary-image of E : X in F }) by SETFAM_1:def 1;

        hence ( meet { (B (-) X) where X be binary-image of E : X in F }) c= (B (-) ( meet F));

      end;

        suppose F <> {} ;

        then

        consider W0 be object such that

         A3: W0 in F by XBOOLE_0:def 1;

        reconsider W0 as binary-image of E by A3;

        let x be object;

        assume

         A4: x in ( meet { (B (-) W) where W be binary-image of E : W in F });

        

         A5: for W be binary-image of E st W in F holds x in (B (-) W)

        proof

          let W be binary-image of E;

          assume W in F;

          then (B (-) W) in { (B (-) D) where D be binary-image of E : D in F };

          hence x in (B (-) W) by A4, SETFAM_1:def 1;

        end;

        

         A6: x in (B (-) W0) by A3, A5;

        then

        reconsider z = x as Element of E;

        for f be Element of E st f in ( meet F) holds (z - f) in B

        proof

          let f be Element of E;

          assume

           A7: f in ( meet F);

          

           A8: ( meet F) c= W0 by A3, SETFAM_1: 3;

          consider zz be Element of E such that

           A9: z = zz & for w be Element of E st w in W0 holds (zz - w) in B by A6;

          thus (z - f) in B by A9, A7, A8;

        end;

        hence x in (B (-) ( meet F));

      end;

    end;

    theorem :: MORPH_01:20

    ( union { (X (-) B) where X be binary-image of E : X in F }) c= (( union F) (-) B)

    proof

      let x be object;

      assume x in ( union { (X (-) B) where X be binary-image of E : X in F });

      then

      consider Y be set such that

       A1: x in Y & Y in { (X (-) B) where X be binary-image of E : X in F } by TARSKI:def 4;

      consider W be binary-image of E such that

       A2: Y = (W (-) B) & W in F by A1;

      consider z be Element of E such that

       A3: x = z & for b be Element of E st b in B holds (z - b) in W by A1, A2;

      now

        let b be Element of E;

        assume b in B;

        then

         A4: (z - b) in W by A3;

        W c= ( union F) by A2, ZFMISC_1: 74;

        hence (z - b) in ( union F) by A4;

      end;

      hence x in (( union F) (-) B) by A3;

    end;

    theorem :: MORPH_01:21

    F <> {} implies (B (-) ( union F)) = ( meet { (B (-) X) where X be binary-image of E : X in F })

    proof

      assume F <> {} ;

      then

      consider W0 be object such that

       A1: W0 in F by XBOOLE_0:def 1;

      reconsider W0 as binary-image of E by A1;

      

       A2: (B (-) W0) in { (B (-) X) where X be binary-image of E : X in F } by A1;

      for x be object holds x in (B (-) ( union F)) iff x in ( meet { (B (-) X) where X be binary-image of E : X in F })

      proof

        let x be object;

        hereby

          assume x in (B (-) ( union F));

          then

          consider z be Element of E such that

           A3: x = z & for f be Element of E st f in ( union F) holds (z - f) in B;

          now

            let Y be set;

            assume Y in { (B (-) X) where X be binary-image of E : X in F };

            then

            consider X be binary-image of E such that

             A4: Y = (B (-) X) & X in F;

            now

              let f be Element of E;

              assume f in X;

              then f in ( union F) by A4, TARSKI:def 4;

              hence (z - f) in B by A3;

            end;

            hence x in Y by A3, A4;

          end;

          hence x in ( meet { (B (-) W) where W be binary-image of E : W in F }) by A2, SETFAM_1:def 1;

        end;

        assume

         A5: x in ( meet { (B (-) W) where W be binary-image of E : W in F });

        

         A6: for W be binary-image of E st W in F holds x in (B (-) W)

        proof

          let W be binary-image of E;

          assume W in F;

          then (B (-) W) in { (B (-) D) where D be binary-image of E : D in F };

          hence x in (B (-) W) by A5, SETFAM_1:def 1;

        end;

        x in (B (-) W0) by A1, A6;

        then

        reconsider z = x as Element of E;

        for f be Element of E st f in ( union F) holds (z - f) in B

        proof

          let f be Element of E;

          assume f in ( union F);

          then

          consider W be set such that

           A7: f in W & W in F by TARSKI:def 4;

          reconsider W as binary-image of E by A7;

          z in (B (-) W) by A6, A7;

          then

          consider w be Element of E such that

           A8: z = w & for f be Element of E st f in W holds (w - f) in B;

          thus (z - f) in B by A7, A8;

        end;

        hence x in (B (-) ( union F));

      end;

      hence (B (-) ( union F)) = ( meet { (B (-) X) where X be binary-image of E : X in F }) by TARSKI: 2;

    end;

    theorem :: MORPH_01:22

    

     Th22: A c= B implies (A (-) C) c= (B (-) C)

    proof

      assume

       A1: A c= B;

      let x be object;

      assume x in (A (-) C);

      then

      consider w be Element of E such that

       A2: x = w & for c be Element of E st c in C holds (w - c) in A;

      for c be Element of E st c in C holds (w - c) in B by A1, A2;

      hence x in (B (-) C) by A2;

    end;

    theorem :: MORPH_01:23

    A c= B implies (C (-) B) c= (C (-) A)

    proof

      assume

       A1: A c= B;

      let x be object;

      assume x in (C (-) B);

      then

      consider w be Element of E such that

       A2: x = w & for b be Element of E st b in B holds (w - b) in C;

      for a be Element of E st a in A holds (w - a) in C by A1, A2;

      hence x in (C (-) A) by A2;

    end;

    theorem :: MORPH_01:24

    

     Th24: ((v + A) (-) B) = (A (-) (v + B)) & ((v + A) (-) B) = (v + (A (-) B))

    proof

      for x be object holds x in ((v + A) (-) B) iff x in (A (-) (v + B))

      proof

        let x be object;

        hereby

          assume x in ((v + A) (-) B);

          then

          consider w be Element of E such that

           A1: x = w & for b be Element of E st b in B holds (w - b) in (v + A);

          now

            let vb be Element of E;

            assume vb in (v + B);

            then

            consider b be Element of E such that

             A2: vb = (v + b) & b in B;

            (w - b) in (v + A) by A2, A1;

            then

            consider a be Element of E such that

             A3: (w - b) = (v + a) & a in A;

            (w - vb) = ((w - b) - v) by A2, RLVECT_1: 27

            .= a by A3, RLVECT_4: 1;

            hence (w - vb) in A by A3;

          end;

          hence x in (A (-) (v + B)) by A1;

        end;

        assume x in (A (-) (v + B));

        then

        consider w be Element of E such that

         A4: x = w & for vb be Element of E st vb in (v + B) holds (w - vb) in A;

        now

          let b be Element of E;

          assume b in B;

          then (v + b) in (v + B);

          then (w - (v + b)) in A by A4;

          then

           A5: (v + (w - (v + b))) in (v + A);

          (v + (w - (v + b))) = ((v + w) - (v + b)) by RLVECT_1: 28

          .= (w + (v - (v + b))) by RLVECT_1: 28

          .= (w + ((v - v) - b)) by RLVECT_1: 27

          .= (w + (( 0. E) - b)) by RLVECT_1: 15;

          hence (w - b) in (v + A) by A5;

        end;

        hence x in ((v + A) (-) B) by A4;

      end;

      hence ((v + A) (-) B) = (A (-) (v + B)) by TARSKI: 2;

      for x be object holds x in ((v + A) (-) B) iff x in (v + (A (-) B))

      proof

        let x be object;

        hereby

          assume x in ((v + A) (-) B);

          then

          consider w be Element of E such that

           A6: x = w & for b be Element of E st b in B holds (w - b) in (v + A);

          now

            let b be Element of E;

            assume b in B;

            then

             A7: (w - b) in (v + A) by A6;

            consider a be Element of E such that

             A8: (w - b) = (v + a) & a in A by A7;

            ((w - v) - b) = (w - (v + b)) by RLVECT_1: 27

            .= ((v + a) - v) by A8, RLVECT_1: 27

            .= a by RLVECT_4: 1;

            hence ((w - v) - b) in A by A8;

          end;

          then

           A9: (w - v) in (A (-) B);

          (v + (w - v)) = w by RLVECT_4: 1;

          hence x in (v + (A (-) B)) by A6, A9;

        end;

        assume x in (v + (A (-) B));

        then

        consider ab be Element of E such that

         A10: x = (v + ab) & ab in (A (-) B);

        reconsider w = x as Element of E by A10;

        consider d be Element of E such that

         A11: ab = d & for b be Element of E st b in B holds (d - b) in A by A10;

        now

          let b be Element of E;

          assume b in B;

          then

           A12: (ab - b) in A by A11;

          ((v + ab) - b) = (v + (ab - b)) by RLVECT_1: 28;

          hence ((v + ab) - b) in (v + A) by A12;

        end;

        hence x in ((v + A) (-) B) by A10;

      end;

      hence ((v + A) (-) B) = (v + (A (-) B)) by TARSKI: 2;

    end;

    theorem :: MORPH_01:25

    

     Th25: ((A (-) B) (-) C) = (A (-) (B (+) C))

    proof

      for x be object holds x in ((A (-) B) (-) C) iff x in (A (-) (B (+) C))

      proof

        let x be object;

        hereby

          assume x in ((A (-) B) (-) C);

          then

          consider w be Element of E such that

           A1: x = w & for c be Element of E st c in C holds (w - c) in (A (-) B);

          now

            let bc be Element of E;

            assume bc in (B (+) C);

            then

            consider b,c be Element of E such that

             A2: bc = (b + c) & b in B & c in C;

            (w - c) in (A (-) B) by A1, A2;

            then

            consider g be Element of E such that

             A3: (w - c) = g & for b be Element of E st b in B holds (g - b) in A;

            (w - bc) = (g - b) by A2, A3, RLVECT_1: 27;

            hence (w - bc) in A by A3, A2;

          end;

          hence x in (A (-) (B (+) C)) by A1;

        end;

        assume x in (A (-) (B (+) C));

        then

        consider w be Element of E such that

         A4: x = w & for bc be Element of E st bc in (B (+) C) holds (w - bc) in A;

        now

          let c be Element of E;

          assume

           A5: c in C;

          now

            let b be Element of E;

            assume

             A6: b in B;

            (b + c) in (B (+) C) by A5, A6;

            then (w - (b + c)) in A by A4;

            hence ((w - c) - b) in A by RLVECT_1: 27;

          end;

          hence (w - c) in (A (-) B);

        end;

        hence x in ((A (-) B) (-) C) by A4;

      end;

      hence ((A (-) B) (-) C) = (A (-) (B (+) C)) by TARSKI: 2;

    end;

    begin

    definition

      let E be RealLinearSpace;

      let B be binary-image of E;

      :: MORPH_01:def2

      func dilation (B) -> Function of ( bool the carrier of E), ( bool the carrier of E) means

      : Def2: for A be binary-image of E holds (it . A) = (A (+) B);

      existence

      proof

        defpred P[ object, object] means ex A be binary-image of E st $1 = A & $2 = (A (+) B);

         A1:

        now

          let x be object;

          assume x in ( bool the carrier of E);

          then

          reconsider A = x as binary-image of E;

          set y = (A (+) B);

          (A (+) B) c= the carrier of E;

          hence ex y be object st y in ( bool the carrier of E) & P[x, y];

        end;

        consider f be Function of ( bool the carrier of E), ( bool the carrier of E) such that

         A2: for x be object st x in ( bool the carrier of E) holds P[x, (f . x)] from FUNCT_2:sch 1( A1);

        take f;

        now

          let A be binary-image of E;

          ex X be binary-image of E st A = X & (f . A) = (X (+) B) by A2;

          hence (f . A) = (A (+) B);

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let f,g be Function of ( bool the carrier of E), ( bool the carrier of E);

        assume

         A3: for A be binary-image of E holds (f . A) = (A (+) B);

        assume

         A4: for A be binary-image of E holds (g . A) = (A (+) B);

        now

          let x be object;

          assume x in ( bool the carrier of E);

          then

          reconsider A = x as binary-image of E;

          

          thus (f . x) = (A (+) B) by A3

          .= (g . x) by A4;

        end;

        hence f = g by FUNCT_2: 12;

      end;

    end

    definition

      let E be RealLinearSpace;

      let B be binary-image of E;

      :: MORPH_01:def3

      func erosion (B) -> Function of ( bool the carrier of E), ( bool the carrier of E) means

      : Def3: for A be binary-image of E holds (it . A) = (A (-) B);

      existence

      proof

        defpred P[ object, object] means ex A be binary-image of E st $1 = A & $2 = (A (-) B);

         A1:

        now

          let x be object;

          assume x in ( bool the carrier of E);

          then

          reconsider A = x as binary-image of E;

          set y = (A (-) B);

          (A (-) B) c= the carrier of E;

          hence ex y be object st y in ( bool the carrier of E) & P[x, y];

        end;

        consider f be Function of ( bool the carrier of E), ( bool the carrier of E) such that

         A2: for x be object st x in ( bool the carrier of E) holds P[x, (f . x)] from FUNCT_2:sch 1( A1);

        take f;

        now

          let A be binary-image of E;

          ex X be binary-image of E st A = X & (f . A) = (X (-) B) by A2;

          hence (f . A) = (A (-) B);

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let f,g be Function of ( bool the carrier of E), ( bool the carrier of E);

        assume that

         A3: for A be binary-image of E holds (f . A) = (A (-) B) and

         A4: for A be binary-image of E holds (g . A) = (A (-) B);

        now

          let x be object;

          assume x in ( bool the carrier of E);

          then

          reconsider A = x as binary-image of E;

          

          thus (f . x) = (A (-) B) by A3

          .= (g . x) by A4;

        end;

        hence f = g by FUNCT_2: 12;

      end;

    end

    theorem :: MORPH_01:26

    (( dilation B) . ( union F)) = ( union { (( dilation B) . X) where X be binary-image of E : X in F })

    proof

      

       A1: for x be object holds x in { (X (+) B) where X be binary-image of E : X in F } iff x in { (( dilation B) . X) where X be binary-image of E : X in F }

      proof

        let x be object;

        hereby

          assume x in { (X (+) B) where X be binary-image of E : X in F };

          then

          consider X be binary-image of E such that

           A2: x = (X (+) B) & X in F;

          x = (( dilation B) . X) & X in F by A2, Def2;

          hence x in { (( dilation B) . W) where W be binary-image of E : W in F };

        end;

        assume x in { (( dilation B) . X) where X be binary-image of E : X in F };

        then

        consider X be binary-image of E such that

         A3: x = (( dilation B) . X) & X in F;

        x = (X (+) B) & X in F by A3, Def2;

        hence x in { (W (+) B) where W be binary-image of E : W in F };

      end;

      

      thus (( dilation B) . ( union F)) = (( union F) (+) B) by Def2

      .= ( union { (X (+) B) where X be binary-image of E : X in F }) by Th12

      .= ( union { (( dilation B) . X) where X be binary-image of E : X in F }) by A1, TARSKI: 2;

    end;

    theorem :: MORPH_01:27

    A c= B implies (( dilation C) . A) c= (( dilation C) . B)

    proof

      assume

       A1: A c= B;

      

       A2: (( dilation C) . A) = (C + A) by Def2;

      (( dilation C) . B) = (C + B) by Def2;

      hence thesis by A2, A1, Th16;

    end;

    theorem :: MORPH_01:28

    (( dilation C) . (v + A)) = (v + (( dilation C) . A))

    proof

      

       A1: (( dilation C) . (v + A)) = ((v + A) (+) C) by Def2;

      (v + (( dilation C) . A)) = (v + (A (+) C)) by Def2;

      hence thesis by Th17, A1;

    end;

    theorem :: MORPH_01:29

    (( erosion B) . ( meet F)) = ( meet { (( erosion B) . X) where X be binary-image of E : X in F })

    proof

      

       A1: for x be object holds x in { (X (-) B) where X be binary-image of E : X in F } iff x in { (( erosion B) . X) where X be binary-image of E : X in F }

      proof

        let x be object;

        hereby

          assume x in { (X (-) B) where X be binary-image of E : X in F };

          then

          consider X be binary-image of E such that

           A2: x = (X (-) B) & X in F;

          x = (( erosion B) . X) & X in F by A2, Def3;

          hence x in { (( erosion B) . W) where W be binary-image of E : W in F };

        end;

        assume x in { (( erosion B) . X) where X be binary-image of E : X in F };

        then

        consider X be binary-image of E such that

         A3: x = (( erosion B) . X) & X in F;

        x = (X (-) B) & X in F by A3, Def3;

        hence x in { (W (-) B) where W be binary-image of E : W in F };

      end;

      

      thus (( erosion B) . ( meet F)) = (( meet F) (-) B) by Def3

      .= ( meet { (X (-) B) where X be binary-image of E : X in F }) by Th18

      .= ( meet { (( erosion B) . X) where X be binary-image of E : X in F }) by A1, TARSKI: 2;

    end;

    theorem :: MORPH_01:30

    A c= B implies (( erosion C) . A) c= (( erosion C) . B)

    proof

      assume

       A1: A c= B;

      

       A2: (( erosion C) . A) = (A (-) C) by Def3;

      (( erosion C) . B) = (B (-) C) by Def3;

      hence thesis by A2, A1, Th22;

    end;

    theorem :: MORPH_01:31

    (( erosion C) . (v + A)) = (v + (( erosion C) . A))

    proof

      

       A1: (( erosion C) . (v + A)) = ((v + A) (-) C) by Def3;

      (v + (( erosion C) . A)) = (v + (A (-) C)) by Def3;

      hence thesis by Th24, A1;

    end;

    theorem :: MORPH_01:32

    (( dilation C) . (the carrier of E \ A)) = (the carrier of E \ (( erosion C) . A)) & (( erosion C) . (the carrier of E \ A)) = (the carrier of E \ (( dilation C) . A))

    proof

      

      thus (( dilation C) . (the carrier of E \ A)) = ((the carrier of E \ A) (+) C) by Def2

      .= (the carrier of E \ (A (-) C)) by Th9

      .= (the carrier of E \ (( erosion C) . A)) by Def3;

      

      thus (( erosion C) . (the carrier of E \ A)) = ((the carrier of E \ A) (-) C) by Def3

      .= (the carrier of E \ (A (+) C)) by Th9

      .= (the carrier of E \ (( dilation C) . A)) by Def2;

    end;

    theorem :: MORPH_01:33

    (( dilation C) . (( dilation B) . A)) = (( dilation (( dilation C) . B)) . A) & (( erosion C) . (( erosion B) . A)) = (( erosion (( dilation C) . B)) . A)

    proof

      

      thus (( dilation C) . (( dilation B) . A)) = (( dilation C) . (A (+) B)) by Def2

      .= ((A (+) B) (+) C) by Def2

      .= (A (+) (B (+) C)) by Th10

      .= (A (+) (( dilation C) . B)) by Def2

      .= (( dilation (( dilation C) . B)) . A) by Def2;

      

      thus (( erosion C) . (( erosion B) . A)) = (( erosion C) . (A (-) B)) by Def3

      .= ((A (-) B) (-) C) by Def3

      .= (A (-) (B (+) C)) by Th25

      .= (A (-) (( dilation C) . B)) by Def2

      .= (( erosion (( dilation C) . B)) . A) by Def3;

    end;