procal_1.miz
begin
reserve A for
QC-alphabet;
reserve p,q,r,s for
Element of (
CQC-WFF A);
theorem ::
PROCAL_1:1
Th1: (
'not' (p
'&' (
'not' p)))
in (
TAUT A)
proof
(p
=> p)
in (
TAUT A) by
LUKASI_1: 4;
hence thesis by
QC_LANG2:def 2;
end;
Lm1: (p
'or' q)
= ((
'not' p)
=> q)
proof
((
'not' p)
=> q)
= (
'not' ((
'not' p)
'&' (
'not' q))) by
QC_LANG2:def 2;
hence thesis by
QC_LANG2:def 3;
end;
theorem ::
PROCAL_1:2
Th2: (p
'or' (
'not' p))
in (
TAUT A)
proof
((
'not' p)
=> (
'not' p))
in (
TAUT A) by
LUKASI_1: 4;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:3
Th3: (p
=> (p
'or' q))
in (
TAUT A)
proof
(p
=> ((
'not' p)
=> q))
in (
TAUT A) by
CQC_THE1: 43;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:4
Th4: (q
=> (p
'or' q))
in (
TAUT A)
proof
(q
=> ((
'not' p)
=> q))
in (
TAUT A) by
LUKASI_1: 5;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:5
Th5: ((p
'or' q)
=> ((
'not' p)
=> q))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> ((
'not' p)
=> q))
in (
TAUT A) by
LUKASI_1: 4;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:6
Th6: ((
'not' (p
'or' q))
=> ((
'not' p)
'&' (
'not' q)))
in (
TAUT A)
proof
(
'not' (p
'or' q))
= (
'not' (
'not' ((
'not' p)
'&' (
'not' q)))) by
QC_LANG2:def 3;
hence thesis by
LUKASI_1: 25;
end;
theorem ::
PROCAL_1:7
Th7: (((
'not' p)
'&' (
'not' q))
=> (
'not' (p
'or' q)))
in (
TAUT A)
proof
(
'not' (p
'or' q))
= (
'not' (
'not' ((
'not' p)
'&' (
'not' q)))) by
QC_LANG2:def 3;
hence thesis by
LUKASI_1: 27;
end;
theorem ::
PROCAL_1:8
Th8: ((p
'or' q)
=> (q
'or' p))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> ((
'not' q)
=> p))
in (
TAUT A) by
LUKASI_1: 31;
then ((p
'or' q)
=> ((
'not' q)
=> p))
in (
TAUT A) by
Lm1;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:9
((
'not' p)
'or' p)
in (
TAUT A)
proof
((p
'or' (
'not' p))
=> ((
'not' p)
'or' p))
in (
TAUT A) by
Th8;
hence thesis by
Th2,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:10
((
'not' (p
'or' q))
=> (
'not' p))
in (
TAUT A)
proof
((p
=> (p
'or' q))
=> ((
'not' (p
'or' q))
=> (
'not' p)))
in (
TAUT A) & (p
=> (p
'or' q))
in (
TAUT A) by
Th3,
LUKASI_1: 26;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:11
Th11: ((p
'or' p)
=> p)
in (
TAUT A)
proof
((p
'or' p)
=> ((
'not' p)
=> p))
in (
TAUT A) & (((
'not' p)
=> p)
=> p)
in (
TAUT A) by
Th5,
CQC_THE1: 42;
hence thesis by
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:12
(p
=> (p
'or' p))
in (
TAUT A) by
Th3;
theorem ::
PROCAL_1:13
((p
'&' (
'not' p))
=> q)
in (
TAUT A)
proof
((
'not' q)
=> (
'not' (p
'&' (
'not' p))))
in (
TAUT A) by
Th1,
LUKASI_1: 13;
hence thesis by
LUKASI_1: 35;
end;
theorem ::
PROCAL_1:14
((p
=> q)
=> ((
'not' p)
'or' q))
in (
TAUT A)
proof
A1: (((
'not' (
'not' p))
=> p)
=> ((p
=> q)
=> ((
'not' (
'not' p))
=> q)))
in (
TAUT A) by
LUKASI_1: 1;
((
'not' (
'not' p))
=> q)
= ((
'not' p)
'or' q) & ((
'not' (
'not' p))
=> p)
in (
TAUT A) by
Lm1,
LUKASI_1: 25;
hence thesis by
A1,
CQC_THE1: 46;
end;
Lm2: ((p
'&' q)
=> ((
'not' (
'not' p))
'&' q))
in (
TAUT A)
proof
((p
=> (
'not' (
'not' p)))
=> ((
'not' ((
'not' (
'not' p))
'&' q))
=> (
'not' (p
'&' q))))
in (
TAUT A) & (p
=> (
'not' (
'not' p)))
in (
TAUT A) by
CQC_THE1: 44,
LUKASI_1: 27;
then ((
'not' ((
'not' (
'not' p))
'&' q))
=> (
'not' (p
'&' q)))
in (
TAUT A) by
CQC_THE1: 46;
hence thesis by
LUKASI_1: 35;
end;
Lm3: (((
'not' (
'not' p))
'&' q)
=> (p
'&' q))
in (
TAUT A)
proof
(((
'not' (
'not' p))
=> p)
=> ((
'not' (p
'&' q))
=> (
'not' ((
'not' (
'not' p))
'&' q))))
in (
TAUT A) & ((
'not' (
'not' p))
=> p)
in (
TAUT A) by
CQC_THE1: 44,
LUKASI_1: 25;
then ((
'not' (p
'&' q))
=> (
'not' ((
'not' (
'not' p))
'&' q)))
in (
TAUT A) by
CQC_THE1: 46;
hence thesis by
LUKASI_1: 35;
end;
theorem ::
PROCAL_1:15
Th15: ((p
'&' q)
=> (
'not' (p
=> (
'not' q))))
in (
TAUT A)
proof
A1: ((p
'&' (
'not' (
'not' q)))
=> (
'not' (
'not' (p
'&' (
'not' (
'not' q))))))
in (
TAUT A) by
LUKASI_1: 27;
((q
'&' p)
=> ((
'not' (
'not' q))
'&' p))
in (
TAUT A) & ((p
'&' q)
=> (q
'&' p))
in (
TAUT A) by
Lm2,
CQC_THE1: 45;
then
A2: ((p
'&' q)
=> ((
'not' (
'not' q))
'&' p))
in (
TAUT A) by
LUKASI_1: 3;
(((
'not' (
'not' q))
'&' p)
=> (p
'&' (
'not' (
'not' q))))
in (
TAUT A) by
CQC_THE1: 45;
then ((p
'&' q)
=> (p
'&' (
'not' (
'not' q))))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then ((p
'&' q)
=> (
'not' (
'not' (p
'&' (
'not' (
'not' q))))))
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
QC_LANG2:def 2;
end;
theorem ::
PROCAL_1:16
Th16: ((
'not' (p
=> (
'not' q)))
=> (p
'&' q))
in (
TAUT A)
proof
A1: ((
'not' (
'not' (p
'&' (
'not' (
'not' q)))))
=> (p
'&' (
'not' (
'not' q))))
in (
TAUT A) by
LUKASI_1: 25;
((p
'&' (
'not' (
'not' q)))
=> ((
'not' (
'not' q))
'&' p))
in (
TAUT A) & (((
'not' (
'not' q))
'&' p)
=> (q
'&' p))
in (
TAUT A) by
Lm3,
CQC_THE1: 45;
then
A2: ((p
'&' (
'not' (
'not' q)))
=> (q
'&' p))
in (
TAUT A) by
LUKASI_1: 3;
((q
'&' p)
=> (p
'&' q))
in (
TAUT A) by
CQC_THE1: 45;
then ((p
'&' (
'not' (
'not' q)))
=> (p
'&' q))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then ((
'not' (
'not' (p
'&' (
'not' (
'not' q)))))
=> (p
'&' q))
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
QC_LANG2:def 2;
end;
theorem ::
PROCAL_1:17
Th17: ((
'not' (p
'&' q))
=> ((
'not' p)
'or' (
'not' q)))
in (
TAUT A)
proof
((
'not' (
'not' p))
=> p)
in (
TAUT A) & (((
'not' (
'not' p))
=> p)
=> ((p
=> (
'not' q))
=> ((
'not' (
'not' p))
=> (
'not' q))))
in (
TAUT A) by
LUKASI_1: 1,
LUKASI_1: 25;
then
A1: ((p
=> (
'not' q))
=> ((
'not' (
'not' p))
=> (
'not' q)))
in (
TAUT A) by
CQC_THE1: 46;
((
'not' (p
=> (
'not' q)))
=> (p
'&' q))
in (
TAUT A) by
Th16;
then
A2: ((
'not' (p
'&' q))
=> (
'not' (
'not' (p
=> (
'not' q)))))
in (
TAUT A) by
LUKASI_1: 34;
((
'not' (
'not' (p
=> (
'not' q))))
=> (p
=> (
'not' q)))
in (
TAUT A) by
LUKASI_1: 25;
then ((
'not' (p
'&' q))
=> (p
=> (
'not' q)))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then ((
'not' (p
'&' q))
=> ((
'not' (
'not' p))
=> (
'not' q)))
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:18
Th18: (((
'not' p)
'or' (
'not' q))
=> (
'not' (p
'&' q)))
in (
TAUT A)
proof
A1: ((p
=> (
'not' (
'not' p)))
=> (((
'not' (
'not' p))
=> (
'not' q))
=> (p
=> (
'not' q))))
in (
TAUT A) by
LUKASI_1: 1;
((p
'&' q)
=> (
'not' (p
=> (
'not' q))))
in (
TAUT A) by
Th15;
then
A2: ((
'not' (
'not' (p
=> (
'not' q))))
=> (
'not' (p
'&' q)))
in (
TAUT A) by
LUKASI_1: 34;
((p
=> (
'not' q))
=> (
'not' (
'not' (p
=> (
'not' q)))))
in (
TAUT A) by
LUKASI_1: 27;
then
A3: ((p
=> (
'not' q))
=> (
'not' (p
'&' q)))
in (
TAUT A) by
A2,
LUKASI_1: 3;
((
'not' p)
'or' (
'not' q))
= ((
'not' (
'not' p))
=> (
'not' q)) & (p
=> (
'not' (
'not' p)))
in (
TAUT A) by
Lm1,
LUKASI_1: 27;
then (((
'not' p)
'or' (
'not' q))
=> (p
=> (
'not' q)))
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence thesis by
A3,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:19
Th19: ((p
'&' q)
=> p)
in (
TAUT A)
proof
((
'not' p)
=> ((
'not' p)
'or' (
'not' q)))
in (
TAUT A) by
Th3;
then
A1: ((
'not' ((
'not' p)
'or' (
'not' q)))
=> (
'not' (
'not' p)))
in (
TAUT A) by
LUKASI_1: 34;
(((
'not' p)
'or' (
'not' q))
=> (
'not' (p
'&' q)))
in (
TAUT A) by
Th18;
then
A2: ((
'not' (
'not' (p
'&' q)))
=> (
'not' ((
'not' p)
'or' (
'not' q))))
in (
TAUT A) by
LUKASI_1: 34;
((p
'&' q)
=> (
'not' (
'not' (p
'&' q))))
in (
TAUT A) by
LUKASI_1: 27;
then
A3: ((p
'&' q)
=> (
'not' ((
'not' p)
'or' (
'not' q))))
in (
TAUT A) by
A2,
LUKASI_1: 3;
((
'not' (
'not' p))
=> p)
in (
TAUT A) by
LUKASI_1: 25;
then ((
'not' ((
'not' p)
'or' (
'not' q)))
=> p)
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
A3,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:20
Th20: ((p
'&' q)
=> (p
'or' q))
in (
TAUT A)
proof
(p
=> (p
'or' q))
in (
TAUT A) & ((p
'&' q)
=> p)
in (
TAUT A) by
Th3,
Th19;
hence thesis by
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:21
Th21: ((p
'&' q)
=> q)
in (
TAUT A)
proof
((q
'&' p)
=> q)
in (
TAUT A) & ((p
'&' q)
=> (q
'&' p))
in (
TAUT A) by
Th19,
CQC_THE1: 45;
hence thesis by
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:22
(p
=> (p
'&' p))
in (
TAUT A)
proof
((
'not' (p
'&' p))
=> ((
'not' p)
'or' (
'not' p)))
in (
TAUT A) & (((
'not' p)
'or' (
'not' p))
=> (
'not' p))
in (
TAUT A) by
Th11,
Th17;
then ((
'not' (p
'&' p))
=> (
'not' p))
in (
TAUT A) by
LUKASI_1: 3;
hence thesis by
LUKASI_1: 35;
end;
theorem ::
PROCAL_1:23
((p
<=> q)
=> (p
=> q))
in (
TAUT A)
proof
(p
<=> q)
= ((p
=> q)
'&' (q
=> p)) by
QC_LANG2:def 4;
hence thesis by
Th19;
end;
theorem ::
PROCAL_1:24
((p
<=> q)
=> (q
=> p))
in (
TAUT A)
proof
(p
<=> q)
= ((p
=> q)
'&' (q
=> p)) by
QC_LANG2:def 4;
hence thesis by
Th21;
end;
theorem ::
PROCAL_1:25
Th25: (((p
'or' q)
'or' r)
=> (p
'or' (q
'or' r)))
in (
TAUT A)
proof
((
'not' p)
=> (((
'not' r)
=> q)
=> ((
'not' q)
=> r)))
in (
TAUT A) & (((
'not' p)
=> (((
'not' r)
=> q)
=> ((
'not' q)
=> r)))
=> (((
'not' p)
=> ((
'not' r)
=> q))
=> ((
'not' p)
=> ((
'not' q)
=> r))))
in (
TAUT A) by
LUKASI_1: 11,
LUKASI_1: 13,
LUKASI_1: 31;
then
A1: (((
'not' p)
=> ((
'not' r)
=> q))
=> ((
'not' p)
=> ((
'not' q)
=> r)))
in (
TAUT A) by
CQC_THE1: 46;
(((p
'or' q)
'or' r)
=> (r
'or' (p
'or' q)))
in (
TAUT A) & ((r
'or' (p
'or' q))
=> ((
'not' r)
=> (p
'or' q)))
in (
TAUT A) by
Th5,
Th8;
then (((p
'or' q)
'or' r)
=> ((
'not' r)
=> (p
'or' q)))
in (
TAUT A) by
LUKASI_1: 3;
then
A2: (((p
'or' q)
'or' r)
=> ((
'not' r)
=> ((
'not' p)
=> q)))
in (
TAUT A) by
Lm1;
(((
'not' r)
=> ((
'not' p)
=> q))
=> ((
'not' p)
=> ((
'not' r)
=> q)))
in (
TAUT A) by
LUKASI_1: 8;
then (((p
'or' q)
'or' r)
=> ((
'not' p)
=> ((
'not' r)
=> q)))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then (((p
'or' q)
'or' r)
=> ((
'not' p)
=> ((
'not' q)
=> r)))
in (
TAUT A) by
A1,
LUKASI_1: 3;
then (((p
'or' q)
'or' r)
=> ((
'not' p)
=> (q
'or' r)))
in (
TAUT A) by
Lm1;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:26
(((p
'&' q)
'&' r)
=> (p
'&' (q
'&' r)))
in (
TAUT A)
proof
A1: (((
'not' p)
'or' ((
'not' r)
'or' (
'not' q)))
=> (((
'not' r)
'or' (
'not' q))
'or' (
'not' p)))
in (
TAUT A) by
Th8;
((
'not' (q
'&' r))
=> ((
'not' q)
'or' (
'not' r)))
in (
TAUT A) & (((
'not' q)
'or' (
'not' r))
=> ((
'not' r)
'or' (
'not' q)))
in (
TAUT A) by
Th8,
Th17;
then ((
'not' (q
'&' r))
=> ((
'not' r)
'or' (
'not' q)))
in (
TAUT A) by
LUKASI_1: 3;
then
A2: ((
'not' (
'not' p))
=> ((
'not' (q
'&' r))
=> ((
'not' r)
'or' (
'not' q))))
in (
TAUT A) by
LUKASI_1: 13;
(((
'not' (
'not' p))
=> ((
'not' (q
'&' r))
=> ((
'not' r)
'or' (
'not' q))))
=> (((
'not' (
'not' p))
=> (
'not' (q
'&' r)))
=> ((
'not' (
'not' p))
=> ((
'not' r)
'or' (
'not' q)))))
in (
TAUT A) by
LUKASI_1: 11;
then (((
'not' (
'not' p))
=> (
'not' (q
'&' r)))
=> ((
'not' (
'not' p))
=> ((
'not' r)
'or' (
'not' q))))
in (
TAUT A) by
A2,
CQC_THE1: 46;
then (((
'not' p)
'or' (
'not' (q
'&' r)))
=> ((
'not' (
'not' p))
=> ((
'not' r)
'or' (
'not' q))))
in (
TAUT A) by
Lm1;
then
A3: (((
'not' p)
'or' (
'not' (q
'&' r)))
=> ((
'not' p)
'or' ((
'not' r)
'or' (
'not' q))))
in (
TAUT A) by
Lm1;
((
'not' (p
'&' (q
'&' r)))
=> ((
'not' p)
'or' (
'not' (q
'&' r))))
in (
TAUT A) by
Th17;
then ((
'not' (p
'&' (q
'&' r)))
=> ((
'not' p)
'or' ((
'not' r)
'or' (
'not' q))))
in (
TAUT A) by
A3,
LUKASI_1: 3;
then
A4: ((
'not' (p
'&' (q
'&' r)))
=> (((
'not' r)
'or' (
'not' q))
'or' (
'not' p)))
in (
TAUT A) by
A1,
LUKASI_1: 3;
A5: (((
'not' (p
'&' q))
'or' (
'not' r))
=> (
'not' ((p
'&' q)
'&' r)))
in (
TAUT A) by
Th18;
(((
'not' q)
'or' (
'not' p))
=> ((
'not' p)
'or' (
'not' q)))
in (
TAUT A) & (((
'not' p)
'or' (
'not' q))
=> (
'not' (p
'&' q)))
in (
TAUT A) by
Th8,
Th18;
then (((
'not' q)
'or' (
'not' p))
=> (
'not' (p
'&' q)))
in (
TAUT A) by
LUKASI_1: 3;
then
A6: ((
'not' (
'not' r))
=> (((
'not' q)
'or' (
'not' p))
=> (
'not' (p
'&' q))))
in (
TAUT A) by
LUKASI_1: 13;
(((
'not' (
'not' r))
=> (((
'not' q)
'or' (
'not' p))
=> (
'not' (p
'&' q))))
=> (((
'not' (
'not' r))
=> ((
'not' q)
'or' (
'not' p)))
=> ((
'not' (
'not' r))
=> (
'not' (p
'&' q)))))
in (
TAUT A) by
LUKASI_1: 11;
then (((
'not' (
'not' r))
=> ((
'not' q)
'or' (
'not' p)))
=> ((
'not' (
'not' r))
=> (
'not' (p
'&' q))))
in (
TAUT A) by
A6,
CQC_THE1: 46;
then (((
'not' r)
'or' ((
'not' q)
'or' (
'not' p)))
=> ((
'not' (
'not' r))
=> (
'not' (p
'&' q))))
in (
TAUT A) by
Lm1;
then
A7: (((
'not' r)
'or' ((
'not' q)
'or' (
'not' p)))
=> ((
'not' r)
'or' (
'not' (p
'&' q))))
in (
TAUT A) by
Lm1;
(((
'not' r)
'or' (
'not' (p
'&' q)))
=> ((
'not' (p
'&' q))
'or' (
'not' r)))
in (
TAUT A) by
Th8;
then (((
'not' r)
'or' ((
'not' q)
'or' (
'not' p)))
=> ((
'not' (p
'&' q))
'or' (
'not' r)))
in (
TAUT A) by
A7,
LUKASI_1: 3;
then
A8: (((
'not' r)
'or' ((
'not' q)
'or' (
'not' p)))
=> (
'not' ((p
'&' q)
'&' r)))
in (
TAUT A) by
A5,
LUKASI_1: 3;
((((
'not' r)
'or' (
'not' q))
'or' (
'not' p))
=> ((
'not' r)
'or' ((
'not' q)
'or' (
'not' p))))
in (
TAUT A) by
Th25;
then ((
'not' (p
'&' (q
'&' r)))
=> ((
'not' r)
'or' ((
'not' q)
'or' (
'not' p))))
in (
TAUT A) by
A4,
LUKASI_1: 3;
then ((
'not' (p
'&' (q
'&' r)))
=> (
'not' ((p
'&' q)
'&' r)))
in (
TAUT A) by
A8,
LUKASI_1: 3;
hence thesis by
LUKASI_1: 35;
end;
theorem ::
PROCAL_1:27
Th27: ((p
'or' (q
'or' r))
=> ((p
'or' q)
'or' r))
in (
TAUT A)
proof
A1: (((
'not' p)
=> ((
'not' r)
=> q))
=> ((
'not' r)
=> ((
'not' p)
=> q)))
in (
TAUT A) by
LUKASI_1: 8;
((
'not' p)
=> (((
'not' q)
=> r)
=> ((
'not' r)
=> q)))
in (
TAUT A) & (((
'not' p)
=> (((
'not' q)
=> r)
=> ((
'not' r)
=> q)))
=> (((
'not' p)
=> ((
'not' q)
=> r))
=> ((
'not' p)
=> ((
'not' r)
=> q))))
in (
TAUT A) by
LUKASI_1: 11,
LUKASI_1: 13,
LUKASI_1: 31;
then
A2: (((
'not' p)
=> ((
'not' q)
=> r))
=> ((
'not' p)
=> ((
'not' r)
=> q)))
in (
TAUT A) by
CQC_THE1: 46;
((p
'or' (q
'or' r))
=> ((
'not' p)
=> (q
'or' r)))
in (
TAUT A) by
Th5;
then ((p
'or' (q
'or' r))
=> ((
'not' p)
=> ((
'not' q)
=> r)))
in (
TAUT A) by
Lm1;
then ((p
'or' (q
'or' r))
=> ((
'not' p)
=> ((
'not' r)
=> q)))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then ((p
'or' (q
'or' r))
=> ((
'not' r)
=> ((
'not' p)
=> q)))
in (
TAUT A) by
A1,
LUKASI_1: 3;
then
A3: ((p
'or' (q
'or' r))
=> (r
'or' ((
'not' p)
=> q)))
in (
TAUT A) by
Lm1;
((r
'or' ((
'not' p)
=> q))
=> (((
'not' p)
=> q)
'or' r))
in (
TAUT A) by
Th8;
then ((p
'or' (q
'or' r))
=> (((
'not' p)
=> q)
'or' r))
in (
TAUT A) by
A3,
LUKASI_1: 3;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:28
Th28: (p
=> (q
=> (p
'&' q)))
in (
TAUT A)
proof
A1: ((((p
'&' q)
'or' (
'not' p))
'or' (
'not' q))
=> ((
'not' q)
'or' ((p
'&' q)
'or' (
'not' p))))
in (
TAUT A) by
Th8;
((
'not' (p
'&' q))
=> ((
'not' p)
'or' (
'not' q)))
in (
TAUT A) by
Th17;
then
A2: ((p
'&' q)
'or' ((
'not' p)
'or' (
'not' q)))
in (
TAUT A) by
Lm1;
(((p
'&' q)
'or' ((
'not' p)
'or' (
'not' q)))
=> (((p
'&' q)
'or' (
'not' p))
'or' (
'not' q)))
in (
TAUT A) by
Th27;
then (((p
'&' q)
'or' (
'not' p))
'or' (
'not' q))
in (
TAUT A) by
A2,
CQC_THE1: 46;
then ((
'not' q)
'or' ((p
'&' q)
'or' (
'not' p)))
in (
TAUT A) by
A1,
CQC_THE1: 46;
then
A3: ((
'not' (
'not' q))
=> ((p
'&' q)
'or' (
'not' p)))
in (
TAUT A) by
Lm1;
(q
=> (((p
'&' q)
'or' (
'not' p))
=> ((
'not' p)
'or' (p
'&' q))))
in (
TAUT A) & ((q
=> (((p
'&' q)
'or' (
'not' p))
=> ((
'not' p)
'or' (p
'&' q))))
=> ((q
=> ((p
'&' q)
'or' (
'not' p)))
=> (q
=> ((
'not' p)
'or' (p
'&' q)))))
in (
TAUT A) by
Th8,
LUKASI_1: 11,
LUKASI_1: 13;
then
A4: ((q
=> ((p
'&' q)
'or' (
'not' p)))
=> (q
=> ((
'not' p)
'or' (p
'&' q))))
in (
TAUT A) by
CQC_THE1: 46;
(q
=> (
'not' (
'not' q)))
in (
TAUT A) by
LUKASI_1: 27;
then (q
=> ((p
'&' q)
'or' (
'not' p)))
in (
TAUT A) by
A3,
LUKASI_1: 3;
then (q
=> ((
'not' p)
'or' (p
'&' q)))
in (
TAUT A) by
A4,
CQC_THE1: 46;
then (q
=> ((
'not' (
'not' p))
=> (p
'&' q)))
in (
TAUT A) by
Lm1;
then
A5: ((
'not' (
'not' p))
=> (q
=> (p
'&' q)))
in (
TAUT A) by
LUKASI_1: 15;
(p
=> (
'not' (
'not' p)))
in (
TAUT A) by
LUKASI_1: 27;
hence thesis by
A5,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:29
((p
=> q)
=> ((q
=> p)
=> (p
<=> q)))
in (
TAUT A)
proof
((p
=> q)
=> ((q
=> p)
=> ((p
=> q)
'&' (q
=> p))))
in (
TAUT A) by
Th28;
hence thesis by
QC_LANG2:def 4;
end;
Lm4: p
in (
TAUT A) & q
in (
TAUT A) implies (p
'&' q)
in (
TAUT A)
proof
assume that
A1: p
in (
TAUT A) and
A2: q
in (
TAUT A);
(p
=> (q
=> (p
'&' q)))
in (
TAUT A) by
Th28;
then (q
=> (p
'&' q))
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:30
((p
'or' q)
<=> (q
'or' p))
in (
TAUT A)
proof
set P = (p
'or' q);
set Q = (q
'or' p);
(P
=> Q)
in (
TAUT A) & (Q
=> P)
in (
TAUT A) by
Th8;
then ((P
=> Q)
'&' (Q
=> P))
in (
TAUT A) by
Lm4;
hence thesis by
QC_LANG2:def 4;
end;
theorem ::
PROCAL_1:31
(((p
'&' q)
=> r)
=> (p
=> (q
=> r)))
in (
TAUT A)
proof
(p
=> ((q
=> (p
'&' q))
=> (((p
'&' q)
=> r)
=> (q
=> r))))
in (
TAUT A) & (p
=> (q
=> (p
'&' q)))
in (
TAUT A) by
Th28,
LUKASI_1: 1,
LUKASI_1: 13;
then
A1: (p
=> (((p
'&' q)
=> r)
=> (q
=> r)))
in (
TAUT A) by
LUKASI_1: 20;
((p
=> (((p
'&' q)
=> r)
=> (q
=> r)))
=> (((p
'&' q)
=> r)
=> (p
=> (q
=> r))))
in (
TAUT A) by
LUKASI_1: 8;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:32
Th32: ((p
=> (q
=> r))
=> ((p
'&' q)
=> r))
in (
TAUT A)
proof
A1: ((p
=> ((p
'&' q)
=> r))
=> ((p
'&' q)
=> (p
=> r)))
in (
TAUT A) by
LUKASI_1: 8;
(((p
'&' q)
=> (p
=> r))
=> (((p
'&' q)
=> p)
=> ((p
'&' q)
=> r)))
in (
TAUT A) by
LUKASI_1: 11;
then
A2: (((p
'&' q)
=> (p
=> r))
=> ((p
'&' q)
=> r))
in (
TAUT A) by
Th19,
LUKASI_1: 16;
((p
'&' q)
=> q)
in (
TAUT A) & (((p
'&' q)
=> q)
=> ((q
=> r)
=> ((p
'&' q)
=> r)))
in (
TAUT A) by
Th21,
LUKASI_1: 1;
then ((q
=> r)
=> ((p
'&' q)
=> r))
in (
TAUT A) by
CQC_THE1: 46;
then
A3: (p
=> ((q
=> r)
=> ((p
'&' q)
=> r)))
in (
TAUT A) by
LUKASI_1: 13;
((p
=> ((q
=> r)
=> ((p
'&' q)
=> r)))
=> ((p
=> (q
=> r))
=> (p
=> ((p
'&' q)
=> r))))
in (
TAUT A) by
LUKASI_1: 11;
then ((p
=> (q
=> r))
=> (p
=> ((p
'&' q)
=> r)))
in (
TAUT A) by
A3,
CQC_THE1: 46;
then ((p
=> (q
=> r))
=> ((p
'&' q)
=> (p
=> r)))
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
A2,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:33
Th33: ((r
=> p)
=> ((r
=> q)
=> (r
=> (p
'&' q))))
in (
TAUT A)
proof
(r
=> (p
=> (q
=> (p
'&' q))))
in (
TAUT A) & ((r
=> (p
=> (q
=> (p
'&' q))))
=> ((r
=> p)
=> (r
=> (q
=> (p
'&' q)))))
in (
TAUT A) by
Th28,
LUKASI_1: 11,
LUKASI_1: 13;
then
A1: ((r
=> p)
=> (r
=> (q
=> (p
'&' q))))
in (
TAUT A) by
CQC_THE1: 46;
((r
=> (q
=> (p
'&' q)))
=> ((r
=> q)
=> (r
=> (p
'&' q))))
in (
TAUT A) by
LUKASI_1: 11;
hence thesis by
A1,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:34
(((p
'or' q)
=> r)
=> ((p
=> r)
'or' (q
=> r)))
in (
TAUT A)
proof
(q
=> (p
'or' q))
in (
TAUT A) & ((q
=> (p
'or' q))
=> (((p
'or' q)
=> r)
=> (q
=> r)))
in (
TAUT A) by
Th4,
LUKASI_1: 1;
then (((p
'or' q)
=> r)
=> (q
=> r))
in (
TAUT A) by
CQC_THE1: 46;
then ((
'not' (p
=> r))
=> (((p
'or' q)
=> r)
=> (q
=> r)))
in (
TAUT A) by
LUKASI_1: 13;
then (((p
'or' q)
=> r)
=> ((
'not' (p
=> r))
=> (q
=> r)))
in (
TAUT A) by
LUKASI_1: 15;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:35
Th35: ((p
=> r)
=> ((q
=> r)
=> ((p
'or' q)
=> r)))
in (
TAUT A)
proof
set AA = ((
'not' r)
=> (
'not' p));
set B = ((
'not' r)
=> (
'not' q));
set C = ((
'not' r)
=> ((
'not' p)
'&' (
'not' q)));
set D = ((p
'or' q)
=> r);
set E = (q
=> r);
A1: (AA
=> (B
=> C))
in (
TAUT A) by
Th33;
(C
=> ((
'not' ((
'not' p)
'&' (
'not' q)))
=> r))
in (
TAUT A) by
LUKASI_1: 31;
then (C
=> D)
in (
TAUT A) by
QC_LANG2:def 3;
then
A2: (B
=> (C
=> D))
in (
TAUT A) by
LUKASI_1: 13;
((B
=> (C
=> D))
=> ((B
=> C)
=> (B
=> D)))
in (
TAUT A) by
LUKASI_1: 11;
then ((B
=> C)
=> (B
=> D))
in (
TAUT A) by
A2,
CQC_THE1: 46;
then (AA
=> (B
=> D))
in (
TAUT A) by
A1,
LUKASI_1: 3;
then
A3: (B
=> (AA
=> D))
in (
TAUT A) by
LUKASI_1: 15;
(E
=> B)
in (
TAUT A) by
LUKASI_1: 26;
then (E
=> (AA
=> D))
in (
TAUT A) by
A3,
LUKASI_1: 3;
then
A4: (AA
=> (E
=> D))
in (
TAUT A) by
LUKASI_1: 15;
((p
=> r)
=> AA)
in (
TAUT A) by
LUKASI_1: 26;
hence thesis by
A4,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:36
Th36: (((p
=> r)
'&' (q
=> r))
=> ((p
'or' q)
=> r))
in (
TAUT A)
proof
set P = (p
=> r);
set Q = (q
=> r);
set R = ((p
'or' q)
=> r);
(P
=> (Q
=> R))
in (
TAUT A) & ((P
=> (Q
=> R))
=> ((P
'&' Q)
=> R))
in (
TAUT A) by
Th32,
Th35;
hence thesis by
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:37
((p
=> (q
'&' (
'not' q)))
=> (
'not' p))
in (
TAUT A)
proof
(p
=> (
'not' (q
'&' (
'not' q))))
in (
TAUT A) by
Th1,
LUKASI_1: 13;
then
A1: ((
'not' (
'not' (q
'&' (
'not' q))))
=> (
'not' p))
in (
TAUT A) by
LUKASI_1: 34;
((q
'&' (
'not' q))
=> (
'not' (
'not' (q
'&' (
'not' q)))))
in (
TAUT A) by
LUKASI_1: 27;
then ((q
'&' (
'not' q))
=> (
'not' p))
in (
TAUT A) by
A1,
LUKASI_1: 3;
then
A2: (p
=> ((q
'&' (
'not' q))
=> (
'not' p)))
in (
TAUT A) by
LUKASI_1: 13;
((
'not' (
'not' p))
=> p)
in (
TAUT A) & (((
'not' (
'not' p))
=> p)
=> ((p
=> (
'not' p))
=> ((
'not' (
'not' p))
=> (
'not' p))))
in (
TAUT A) by
LUKASI_1: 1,
LUKASI_1: 25;
then (((
'not' (
'not' p))
=> (
'not' p))
=> (
'not' p))
in (
TAUT A) & ((p
=> (
'not' p))
=> ((
'not' (
'not' p))
=> (
'not' p)))
in (
TAUT A) by
CQC_THE1: 42,
CQC_THE1: 46;
then
A3: ((p
=> (
'not' p))
=> (
'not' p))
in (
TAUT A) by
LUKASI_1: 3;
((p
=> ((q
'&' (
'not' q))
=> (
'not' p)))
=> ((p
=> (q
'&' (
'not' q)))
=> (p
=> (
'not' p))))
in (
TAUT A) by
LUKASI_1: 11;
then ((p
=> (q
'&' (
'not' q)))
=> (p
=> (
'not' p)))
in (
TAUT A) by
A2,
CQC_THE1: 46;
hence thesis by
A3,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:38
(((p
'or' q)
'&' (p
'or' r))
=> (p
'or' (q
'&' r)))
in (
TAUT A)
proof
(((
'not' p)
=> q)
=> (((
'not' p)
=> r)
=> ((
'not' p)
=> (q
'&' r))))
in (
TAUT A) by
Th33;
then ((p
'or' q)
=> (((
'not' p)
=> r)
=> ((
'not' p)
=> (q
'&' r))))
in (
TAUT A) by
Lm1;
then ((p
'or' q)
=> ((p
'or' r)
=> ((
'not' p)
=> (q
'&' r))))
in (
TAUT A) by
Lm1;
then
A1: ((p
'or' q)
=> ((p
'or' r)
=> (p
'or' (q
'&' r))))
in (
TAUT A) by
Lm1;
(((p
'or' q)
=> ((p
'or' r)
=> (p
'or' (q
'&' r))))
=> (((p
'or' q)
'&' (p
'or' r))
=> (p
'or' (q
'&' r))))
in (
TAUT A) by
Th32;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:39
((p
'&' (q
'or' r))
=> ((p
'&' q)
'or' (p
'&' r)))
in (
TAUT A)
proof
A1: ((
'not' ((p
'&' q)
'or' (p
'&' r)))
=> ((
'not' (p
'&' q))
'&' (
'not' (p
'&' r))))
in (
TAUT A) by
Th6;
((
'not' (p
=> (
'not' q)))
=> (p
'&' q))
in (
TAUT A) & (((
'not' (p
=> (
'not' q)))
=> (p
'&' q))
=> ((
'not' (p
'&' q))
=> (p
=> (
'not' q))))
in (
TAUT A) by
Th16,
LUKASI_1: 31;
then
A2: ((
'not' (p
'&' q))
=> (p
=> (
'not' q)))
in (
TAUT A) by
CQC_THE1: 46;
((
'not' (p
=> (
'not' r)))
=> (p
'&' r))
in (
TAUT A) & (((
'not' (p
=> (
'not' r)))
=> (p
'&' r))
=> ((
'not' (p
'&' r))
=> (p
=> (
'not' r))))
in (
TAUT A) by
Th16,
LUKASI_1: 31;
then
A3: ((
'not' (p
'&' r))
=> (p
=> (
'not' r)))
in (
TAUT A) by
CQC_THE1: 46;
((p
=> (
'not' q))
=> ((p
=> (
'not' r))
=> (p
=> ((
'not' q)
'&' (
'not' r)))))
in (
TAUT A) & (p
=> ((
'not' q)
'&' (
'not' r)))
= (
'not' (p
'&' (
'not' ((
'not' q)
'&' (
'not' r))))) by
Th33,
QC_LANG2:def 2;
then ((p
=> (
'not' q))
=> ((p
=> (
'not' r))
=> (
'not' (p
'&' (q
'or' r)))))
in (
TAUT A) by
QC_LANG2:def 3;
then ((
'not' (p
'&' q))
=> ((p
=> (
'not' r))
=> (
'not' (p
'&' (q
'or' r)))))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then ((p
=> (
'not' r))
=> ((
'not' (p
'&' q))
=> (
'not' (p
'&' (q
'or' r)))))
in (
TAUT A) by
LUKASI_1: 15;
then ((
'not' (p
'&' r))
=> ((
'not' (p
'&' q))
=> (
'not' (p
'&' (q
'or' r)))))
in (
TAUT A) by
A3,
LUKASI_1: 3;
then
A4: ((
'not' (p
'&' q))
=> ((
'not' (p
'&' r))
=> (
'not' (p
'&' (q
'or' r)))))
in (
TAUT A) by
LUKASI_1: 15;
(((
'not' (p
'&' q))
=> ((
'not' (p
'&' r))
=> (
'not' (p
'&' (q
'or' r)))))
=> (((
'not' (p
'&' q))
'&' (
'not' (p
'&' r)))
=> (
'not' (p
'&' (q
'or' r)))))
in (
TAUT A) by
Th32;
then (((
'not' (p
'&' q))
'&' (
'not' (p
'&' r)))
=> (
'not' (p
'&' (q
'or' r))))
in (
TAUT A) by
A4,
CQC_THE1: 46;
then ((
'not' ((p
'&' q)
'or' (p
'&' r)))
=> (
'not' (p
'&' (q
'or' r))))
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
LUKASI_1: 35;
end;
theorem ::
PROCAL_1:40
Th40: (((p
'or' r)
'&' (q
'or' r))
=> ((p
'&' q)
'or' r))
in (
TAUT A)
proof
((((
'not' p)
=> r)
'&' ((
'not' q)
=> r))
=> (((
'not' p)
'or' (
'not' q))
=> r))
in (
TAUT A) by
Th36;
then (((p
'or' r)
'&' ((
'not' q)
=> r))
=> (((
'not' p)
'or' (
'not' q))
=> r))
in (
TAUT A) by
Lm1;
then
A1: (((p
'or' r)
'&' (q
'or' r))
=> (((
'not' p)
'or' (
'not' q))
=> r))
in (
TAUT A) by
Lm1;
((
'not' (p
'&' q))
=> ((
'not' p)
'or' (
'not' q)))
in (
TAUT A) & (((
'not' (p
'&' q))
=> ((
'not' p)
'or' (
'not' q)))
=> ((((
'not' p)
'or' (
'not' q))
=> r)
=> ((
'not' (p
'&' q))
=> r)))
in (
TAUT A) by
Th17,
LUKASI_1: 1;
then ((((
'not' p)
'or' (
'not' q))
=> r)
=> ((
'not' (p
'&' q))
=> r))
in (
TAUT A) by
CQC_THE1: 46;
then (((p
'or' r)
'&' (q
'or' r))
=> ((
'not' (p
'&' q))
=> r))
in (
TAUT A) by
A1,
LUKASI_1: 3;
hence thesis by
Lm1;
end;
Lm5: (p
=> q)
in (
TAUT A) implies ((r
'&' p)
=> (r
'&' q))
in (
TAUT A)
proof
A1: ((
'not' (r
=> (
'not' q)))
=> (r
'&' q))
in (
TAUT A) by
Th16;
assume (p
=> q)
in (
TAUT A);
then ((
'not' q)
=> (
'not' p))
in (
TAUT A) by
LUKASI_1: 34;
then
A2: (r
=> ((
'not' q)
=> (
'not' p)))
in (
TAUT A) by
LUKASI_1: 13;
((r
=> ((
'not' q)
=> (
'not' p)))
=> ((r
=> (
'not' q))
=> (r
=> (
'not' p))))
in (
TAUT A) by
LUKASI_1: 11;
then ((r
=> (
'not' q))
=> (r
=> (
'not' p)))
in (
TAUT A) by
A2,
CQC_THE1: 46;
then
A3: ((
'not' (r
=> (
'not' p)))
=> (
'not' (r
=> (
'not' q))))
in (
TAUT A) by
LUKASI_1: 34;
((r
'&' p)
=> (
'not' (r
=> (
'not' p))))
in (
TAUT A) by
Th15;
then ((r
'&' p)
=> (
'not' (r
=> (
'not' q))))
in (
TAUT A) by
A3,
LUKASI_1: 3;
hence thesis by
A1,
LUKASI_1: 3;
end;
Lm6: (p
=> q)
in (
TAUT A) implies ((p
'or' r)
=> (q
'or' r))
in (
TAUT A)
proof
assume (p
=> q)
in (
TAUT A);
then
A1: ((
'not' q)
=> (
'not' p))
in (
TAUT A) by
LUKASI_1: 34;
(((
'not' q)
=> (
'not' p))
=> (((
'not' p)
=> r)
=> ((
'not' q)
=> r)))
in (
TAUT A) by
LUKASI_1: 1;
then (((
'not' p)
=> r)
=> ((
'not' q)
=> r))
in (
TAUT A) by
A1,
CQC_THE1: 46;
then ((p
'or' r)
=> ((
'not' q)
=> r))
in (
TAUT A) by
Lm1;
hence thesis by
Lm1;
end;
Lm7: (p
=> q)
in (
TAUT A) implies ((r
'or' p)
=> (r
'or' q))
in (
TAUT A)
proof
assume (p
=> q)
in (
TAUT A);
then
A1: ((
'not' r)
=> (p
=> q))
in (
TAUT A) by
LUKASI_1: 13;
(((
'not' r)
=> (p
=> q))
=> (((
'not' r)
=> p)
=> ((
'not' r)
=> q)))
in (
TAUT A) by
LUKASI_1: 11;
then (((
'not' r)
=> p)
=> ((
'not' r)
=> q))
in (
TAUT A) by
A1,
CQC_THE1: 46;
then ((r
'or' p)
=> ((
'not' r)
=> q))
in (
TAUT A) by
Lm1;
hence thesis by
Lm1;
end;
theorem ::
PROCAL_1:41
(((p
'or' q)
'&' r)
=> ((p
'&' r)
'or' (q
'&' r)))
in (
TAUT A)
proof
A1: ((
'not' (((
'not' p)
'or' (
'not' r))
'&' ((
'not' q)
'or' (
'not' r))))
=> ((
'not' ((
'not' p)
'or' (
'not' r)))
'or' (
'not' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
Th17;
((((
'not' p)
'or' (
'not' r))
'&' ((
'not' q)
'or' (
'not' r)))
=> (((
'not' p)
'&' (
'not' q))
'or' (
'not' r)))
in (
TAUT A) by
Th40;
then
A2: ((
'not' (((
'not' p)
'&' (
'not' q))
'or' (
'not' r)))
=> (
'not' (((
'not' p)
'or' (
'not' r))
'&' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
LUKASI_1: 34;
(((
'not' ((
'not' p)
'&' (
'not' q)))
'&' (
'not' (
'not' r)))
=> (
'not' (((
'not' p)
'&' (
'not' q))
'or' (
'not' r))))
in (
TAUT A) by
Th7;
then (((
'not' ((
'not' p)
'&' (
'not' q)))
'&' (
'not' (
'not' r)))
=> (
'not' (((
'not' p)
'or' (
'not' r))
'&' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
A2,
LUKASI_1: 3;
then
A3: (((p
'or' q)
'&' (
'not' (
'not' r)))
=> (
'not' (((
'not' p)
'or' (
'not' r))
'&' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
QC_LANG2:def 3;
((
'not' (p
'&' r))
=> ((
'not' p)
'or' (
'not' r)))
in (
TAUT A) & (((
'not' (p
'&' r))
=> ((
'not' p)
'or' (
'not' r)))
=> ((
'not' ((
'not' p)
'or' (
'not' r)))
=> (p
'&' r)))
in (
TAUT A) by
Th17,
LUKASI_1: 31;
then ((
'not' ((
'not' p)
'or' (
'not' r)))
=> (p
'&' r))
in (
TAUT A) by
CQC_THE1: 46;
then
A4: (((
'not' ((
'not' p)
'or' (
'not' r)))
'or' (
'not' ((
'not' q)
'or' (
'not' r))))
=> ((p
'&' r)
'or' (
'not' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
Lm6;
((
'not' (q
'&' r))
=> ((
'not' q)
'or' (
'not' r)))
in (
TAUT A) & (((
'not' (q
'&' r))
=> ((
'not' q)
'or' (
'not' r)))
=> ((
'not' ((
'not' q)
'or' (
'not' r)))
=> (q
'&' r)))
in (
TAUT A) by
Th17,
LUKASI_1: 31;
then ((
'not' ((
'not' q)
'or' (
'not' r)))
=> (q
'&' r))
in (
TAUT A) by
CQC_THE1: 46;
then
A5: (((p
'&' r)
'or' (
'not' ((
'not' q)
'or' (
'not' r))))
=> ((p
'&' r)
'or' (q
'&' r)))
in (
TAUT A) by
Lm7;
(r
=> (
'not' (
'not' r)))
in (
TAUT A) by
LUKASI_1: 27;
then (((p
'or' q)
'&' r)
=> ((p
'or' q)
'&' (
'not' (
'not' r))))
in (
TAUT A) by
Lm5;
then (((p
'or' q)
'&' r)
=> (
'not' (((
'not' p)
'or' (
'not' r))
'&' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
A3,
LUKASI_1: 3;
then (((p
'or' q)
'&' r)
=> ((
'not' ((
'not' p)
'or' (
'not' r)))
'or' (
'not' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
A1,
LUKASI_1: 3;
then (((p
'or' q)
'&' r)
=> ((p
'&' r)
'or' (
'not' ((
'not' q)
'or' (
'not' r)))))
in (
TAUT A) by
A4,
LUKASI_1: 3;
hence thesis by
A5,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:42
p
in (
TAUT A) implies (p
'or' q)
in (
TAUT A)
proof
assume
A1: p
in (
TAUT A);
(p
=> (p
'or' q))
in (
TAUT A) by
Th3;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:43
q
in (
TAUT A) implies (p
'or' q)
in (
TAUT A)
proof
assume
A1: q
in (
TAUT A);
(q
=> (p
'or' q))
in (
TAUT A) by
Th4;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:44
(p
'&' q)
in (
TAUT A) implies p
in (
TAUT A)
proof
assume
A1: (p
'&' q)
in (
TAUT A);
((p
'&' q)
=> p)
in (
TAUT A) by
Th19;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:45
(p
'&' q)
in (
TAUT A) implies q
in (
TAUT A)
proof
assume
A1: (p
'&' q)
in (
TAUT A);
((p
'&' q)
=> q)
in (
TAUT A) by
Th21;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:46
(p
'&' q)
in (
TAUT A) implies (p
'or' q)
in (
TAUT A)
proof
assume
A1: (p
'&' q)
in (
TAUT A);
((p
'&' q)
=> (p
'or' q))
in (
TAUT A) by
Th20;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:47
p
in (
TAUT A) & q
in (
TAUT A) implies (p
'&' q)
in (
TAUT A) by
Lm4;
theorem ::
PROCAL_1:48
(p
=> q)
in (
TAUT A) implies ((p
'or' r)
=> (q
'or' r))
in (
TAUT A) by
Lm6;
theorem ::
PROCAL_1:49
(p
=> q)
in (
TAUT A) implies ((r
'or' p)
=> (r
'or' q))
in (
TAUT A) by
Lm7;
theorem ::
PROCAL_1:50
(p
=> q)
in (
TAUT A) implies ((r
'&' p)
=> (r
'&' q))
in (
TAUT A) by
Lm5;
theorem ::
PROCAL_1:51
Th51: (p
=> q)
in (
TAUT A) implies ((p
'&' r)
=> (q
'&' r))
in (
TAUT A)
proof
A1: ((p
=> q)
=> ((q
=> (
'not' r))
=> (p
=> (
'not' r))))
in (
TAUT A) by
LUKASI_1: 1;
assume (p
=> q)
in (
TAUT A);
then ((q
=> (
'not' r))
=> (p
=> (
'not' r)))
in (
TAUT A) by
A1,
CQC_THE1: 46;
then
A2: ((
'not' (p
=> (
'not' r)))
=> (
'not' (q
=> (
'not' r))))
in (
TAUT A) by
LUKASI_1: 34;
A3: ((
'not' (q
=> (
'not' r)))
=> (q
'&' r))
in (
TAUT A) by
Th16;
((p
'&' r)
=> (
'not' (p
=> (
'not' r))))
in (
TAUT A) by
Th15;
then ((p
'&' r)
=> (
'not' (q
=> (
'not' r))))
in (
TAUT A) by
A2,
LUKASI_1: 3;
hence thesis by
A3,
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:52
(r
=> p)
in (
TAUT A) & (r
=> q)
in (
TAUT A) implies (r
=> (p
'&' q))
in (
TAUT A)
proof
assume that
A1: (r
=> p)
in (
TAUT A) and
A2: (r
=> q)
in (
TAUT A);
((r
=> p)
=> ((r
=> q)
=> (r
=> (p
'&' q))))
in (
TAUT A) by
Th33;
then ((r
=> q)
=> (r
=> (p
'&' q)))
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:53
(p
=> r)
in (
TAUT A) & (q
=> r)
in (
TAUT A) implies ((p
'or' q)
=> r)
in (
TAUT A)
proof
assume (p
=> r)
in (
TAUT A) & (q
=> r)
in (
TAUT A);
then
A1: ((p
=> r)
'&' (q
=> r))
in (
TAUT A) by
Lm4;
(((p
=> r)
'&' (q
=> r))
=> ((p
'or' q)
=> r))
in (
TAUT A) by
Th36;
hence thesis by
A1,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:54
(p
'or' q)
in (
TAUT A) & (
'not' p)
in (
TAUT A) implies q
in (
TAUT A)
proof
assume that
A1: (p
'or' q)
in (
TAUT A) and
A2: (
'not' p)
in (
TAUT A);
((p
'or' q)
=> ((
'not' p)
=> q))
in (
TAUT A) by
Th5;
then ((
'not' p)
=> q)
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:55
(p
'or' q)
in (
TAUT A) & (
'not' q)
in (
TAUT A) implies p
in (
TAUT A)
proof
assume that
A1: (p
'or' q)
in (
TAUT A) and
A2: (
'not' q)
in (
TAUT A);
((q
'or' p)
=> ((
'not' q)
=> p))
in (
TAUT A) & ((p
'or' q)
=> (q
'or' p))
in (
TAUT A) by
Th5,
Th8;
then ((p
'or' q)
=> ((
'not' q)
=> p))
in (
TAUT A) by
LUKASI_1: 3;
then ((
'not' q)
=> p)
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence thesis by
A2,
CQC_THE1: 46;
end;
theorem ::
PROCAL_1:56
(p
=> q)
in (
TAUT A) & (r
=> s)
in (
TAUT A) implies ((p
'&' r)
=> (q
'&' s))
in (
TAUT A)
proof
assume (p
=> q)
in (
TAUT A) & (r
=> s)
in (
TAUT A);
then ((p
'&' r)
=> (q
'&' r))
in (
TAUT A) & ((q
'&' r)
=> (q
'&' s))
in (
TAUT A) by
Lm5,
Th51;
hence thesis by
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:57
(p
=> q)
in (
TAUT A) & (r
=> s)
in (
TAUT A) implies ((p
'or' r)
=> (q
'or' s))
in (
TAUT A)
proof
assume (p
=> q)
in (
TAUT A) & (r
=> s)
in (
TAUT A);
then ((p
'or' r)
=> (q
'or' r))
in (
TAUT A) & ((q
'or' r)
=> (q
'or' s))
in (
TAUT A) by
Lm6,
Lm7;
hence thesis by
LUKASI_1: 3;
end;
theorem ::
PROCAL_1:58
((p
'&' (
'not' q))
=> (
'not' p))
in (
TAUT A) implies (p
=> q)
in (
TAUT A)
proof
A1: (
'not' (p
'&' (
'not' q)))
= (p
=> q) by
QC_LANG2:def 2;
assume ((p
'&' (
'not' q))
=> (
'not' p))
in (
TAUT A);
then
A2: ((
'not' (
'not' p))
=> (
'not' (p
'&' (
'not' q))))
in (
TAUT A) by
LUKASI_1: 34;
(p
=> (
'not' (
'not' p)))
in (
TAUT A) by
LUKASI_1: 27;
then (p
=> (
'not' (p
'&' (
'not' q))))
in (
TAUT A) by
A2,
LUKASI_1: 3;
hence thesis by
A1,
LUKASI_1: 18;
end;