real_1.miz



    begin

    registration

      cluster -> real for Element of REAL ;

      coherence ;

    end

    registration

      cluster positive for Real;

      existence

      proof

        take (1 / 1);

        thus thesis;

      end;

    end

    registration

      cluster positive for Element of REAL ;

      existence

      proof

        reconsider j = 1 as Element of REAL by NUMBERS: 19;

        take j;

        thus thesis;

      end;

    end

    definition

      let x be Element of REAL ;

      :: original: -

      redefine

      func - x -> Element of REAL ;

      coherence by XREAL_0:def 1;

      :: original: "

      redefine

      func x " -> Element of REAL ;

      coherence by XREAL_0:def 1;

    end

    definition

      let x,y be Element of REAL ;

      :: original: +

      redefine

      func x + y -> Element of REAL ;

      coherence by XREAL_0:def 1;

      :: original: *

      redefine

      func x * y -> Element of REAL ;

      coherence by XREAL_0:def 1;

      :: original: -

      redefine

      func x - y -> Element of REAL ;

      coherence by XREAL_0:def 1;

      :: original: /

      redefine

      func x / y -> Element of REAL ;

      coherence by XREAL_0:def 1;

    end

    reserve s,t for Element of RAT+ ;

    theorem :: REAL_1:1

     REAL+ = { r where r be Real : 0 <= r }

    proof

      set RP = { r where r be Real : 0 <= r };

      thus REAL+ c= RP

      proof

        let e be object;

        assume

         A1: e in REAL+ ;

        then

        reconsider r = e as Real by ARYTM_0: 1;

        reconsider o = 0 , s = r as Element of REAL+ by A1, ARYTM_2: 20;

        o <=' s by ARYTM_1: 6;

        then 0 <= r by ARYTM_2: 20, XXREAL_0:def 5;

        hence e in RP;

      end;

      let e be object;

      assume e in RP;

      then

       A2: ex r be Real st e = r & 0 <= r;

       not 0 in [: { 0 }, REAL+ :] by ARYTM_0: 5, ARYTM_2: 20, XBOOLE_0: 3;

      hence e in REAL+ by A2, XXREAL_0:def 5;

    end;