scmpds_3.miz
begin
reserve j,k,m,n for
Nat,
a,b for
Int_position,
k1,k2 for
Integer;
reserve P,P1,P2 for
Instruction-Sequence of
SCMPDS ;
theorem ::
SCMPDS_3:1
for k1 be
Integer, s1,s2 be
State of
SCMPDS st (
IC s1)
= (
IC s2) holds (
ICplusConst (s1,k1))
= (
ICplusConst (s2,k1))
proof
let k1 be
Integer, s1,s2 be
State of
SCMPDS ;
A1: ex i be
Element of
NAT st i
= (
IC s1) & (
ICplusConst (s1,k1))
=
|.(i
+ k1).| by
SCMPDS_2:def 18;
assume (
IC s1)
= (
IC s2);
hence thesis by
A1,
SCMPDS_2:def 18;
end;
theorem ::
SCMPDS_3:2
for k1 be
Integer, a be
Int_position, s1,s2 be
State of
SCMPDS st (
DataPart s1)
= (
DataPart s2) holds (s1
. (
DataLoc ((s1
. a),k1)))
= (s2
. (
DataLoc ((s2
. a),k1)))
proof
let k1 be
Integer, a be
Int_position, s1,s2 be
State of
SCMPDS ;
assume
A1: (
DataPart s1)
= (
DataPart s2);
A2: a
in
SCM-Data-Loc by
AMI_2:def 16;
then
A3: (s1
. a)
= ((
DataPart s1)
. a) by
FUNCT_1: 49,
SCMPDS_2: 84
.= (s2
. a) by
A1,
A2,
FUNCT_1: 49,
SCMPDS_2: 84;
A4: (
DataLoc ((s1
. a),k1))
in
SCM-Data-Loc by
AMI_2:def 16;
hence (s1
. (
DataLoc ((s1
. a),k1)))
= ((
DataPart s1)
. (
DataLoc ((s1
. a),k1))) by
FUNCT_1: 49,
SCMPDS_2: 84
.= (s2
. (
DataLoc ((s2
. a),k1))) by
A1,
A4,
A3,
FUNCT_1: 49,
SCMPDS_2: 84;
end;
theorem ::
SCMPDS_3:3
for a be
Int_position, s1,s2 be
State of
SCMPDS st (
DataPart s1)
= (
DataPart s2) holds (s1
. a)
= (s2
. a)
proof
let a be
Int_position, s1,s2 be
State of
SCMPDS ;
assume
A1: (
DataPart s1)
= (
DataPart s2);
A2: a
in
SCM-Data-Loc by
AMI_2:def 16;
hence (s1
. a)
= ((
DataPart s1)
. a) by
FUNCT_1: 49,
SCMPDS_2: 84
.= (s2
. a) by
A1,
A2,
FUNCT_1: 49,
SCMPDS_2: 84;
end;
theorem ::
SCMPDS_3:4
not (
IC
SCMPDS )
in
SCM-Data-Loc
proof
assume (
IC
SCMPDS )
in
SCM-Data-Loc ;
then (
IC
SCMPDS ) is
Int_position by
AMI_2:def 16;
then (
Values (
IC
SCMPDS ))
=
INT by
SCMPDS_2: 5;
hence contradiction by
MEMSTR_0:def 6,
NUMBERS: 7;
end;
begin
::$Canceled
theorem ::
SCMPDS_3:6
for s be
State of
SCMPDS , iloc be
Nat, a be
Int_position holds (s
. a)
= ((s
+* (
Start-At (iloc,
SCMPDS )))
. a)
proof
let s be
State of
SCMPDS , iloc be
Nat, a be
Int_position;
a
in the
carrier of
SCMPDS ;
then a
in (
dom s) by
PARTFUN1:def 2;
then
A1: (
dom (
Start-At (iloc,
SCMPDS )))
=
{(
IC
SCMPDS )} & a
in ((
dom s)
\/ (
dom (
Start-At (iloc,
SCMPDS )))) by
XBOOLE_0:def 3;
a
<> (
IC
SCMPDS ) by
SCMPDS_2: 43;
then not a
in
{(
IC
SCMPDS )} by
TARSKI:def 1;
hence thesis by
A1,
FUNCT_4:def 1;
end;
theorem ::
SCMPDS_3:7
for s,t be
State of
SCMPDS holds (s
+* (t
|
SCM-Data-Loc )) is
State of
SCMPDS ;
begin
definition
let la be
Int_position;
let a be
Integer;
:: original:
.-->
redefine
func la
.--> a ->
FinPartState of
SCMPDS ;
coherence
proof
a is
Element of
INT & (
Values la)
=
INT by
INT_1:def 2,
SCMPDS_2: 5;
hence thesis;
end;
end
registration
cluster
SCMPDS ->
IC-recognized;
coherence
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic
FinPartState of
SCMPDS such that
A1: p is non
empty;
assume
A2: not (
IC
SCMPDS )
in (
dom p);
not (
IC
SCMPDS )
in (
dom p) by
A2;
then
A3: (
dom p)
misses
{(
IC
SCMPDS )} by
ZFMISC_1: 50;
(
dom p)
c= (
{(
IC
SCMPDS )}
\/ (
dom (
DataPart p))) by
MEMSTR_0: 32;
then
A4: (
dom p)
c= (
dom (
DataPart p)) by
A3,
XBOOLE_1: 73;
A5: (
dom (
DataPart p))
<>
{} by
A1,
A4,
XBOOLE_1: 3;
(
DataPart p)
c= p by
MEMSTR_0: 12;
then
A6: (
dom (
DataPart p))
c= (
dom p) by
RELAT_1: 11;
not p is q
-autonomic
proof
set il = the
Element of (
NAT
\ (
dom q));
set d1 = the
Element of (
dom (
DataPart p));
A7: d1
in (
dom (
DataPart p)) by
A5;
(
dom (
DataPart p))
c= the
carrier of
SCMPDS by
RELAT_1:def 18;
then
reconsider d1 as
Element of
SCMPDS by
A7;
not
NAT
c= (
dom q);
then
A8: (
NAT
\ (
dom q))
<>
{} by
XBOOLE_1: 37;
then
reconsider il as
Element of
NAT by
XBOOLE_0:def 5;
A9: not il
in (
dom q) by
A8,
XBOOLE_0:def 5;
(
dom (
DataPart p))
c=
SCM-Data-Loc by
RELAT_1: 58,
SCMPDS_2: 84;
then
reconsider d1 as
Int_position by
A7,
AMI_2:def 16;
A10: (
IC
SCMPDS )
in (
dom (
Start-At (il,
SCMPDS ))) by
TARSKI:def 1;
A11: (
dom p)
misses
{(
IC
SCMPDS )} by
A2,
ZFMISC_1: 50;
set p2 = (p
+* (
Start-At (il,
SCMPDS )));
set p1 = (p
+* (
Start-At (il,
SCMPDS )));
set q2 = (q
+* (il
.--> (d1
:= 1)));
set q1 = (q
+* (il
.--> (d1
:=
0 )));
A13: (
dom q)
misses (
dom (il
.--> (d1
:= 1))) by
A9,
ZFMISC_1: 50;
A14: (
dom q)
misses (
dom (il
.--> (d1
:=
0 ))) by
A9,
ZFMISC_1: 50;
consider s1 be
State of
SCMPDS such that
A15: p1
c= s1 by
PBOOLE: 141;
consider S1 be
Instruction-Sequence of
SCMPDS such that
A16: q1
c= S1 by
PBOOLE: 145;
consider s2 be
State of
SCMPDS such that
A17: p2
c= s2 by
PBOOLE: 141;
consider S2 be
Instruction-Sequence of
SCMPDS such that
A18: q2
c= S2 by
PBOOLE: 145;
take P1 = S1, P2 = S2;
((
dom p)
/\ (
dom (
Start-At (il,
SCMPDS ))))
= ((
dom p)
/\
{(
IC
SCMPDS )})
.=
{} by
A11,
XBOOLE_0:def 7
.=
{} ;
then (
dom p)
misses (
dom (
Start-At (il,
SCMPDS ))) by
XBOOLE_0:def 7;
then p
c= p1 by
FUNCT_4: 32;
then
A19: p
c= s1 by
A15,
XBOOLE_1: 1;
q
c= q1 by
A14,
FUNCT_4: 32;
hence q
c= P1 by
A16,
XBOOLE_1: 1;
((
dom p)
/\ (
dom (
Start-At (il,
SCMPDS ))))
= ((
dom p)
/\
{(
IC
SCMPDS )})
.=
{} by
A11,
XBOOLE_0:def 7
.=
{} ;
then (
dom p)
misses (
dom (
Start-At (il,
SCMPDS ))) by
XBOOLE_0:def 7;
then p
c= p2 by
FUNCT_4: 32;
then
A20: p
c= s2 by
A17,
XBOOLE_1: 1;
q
c= q2 by
A13,
FUNCT_4: 32;
hence q
c= P2 by
A18,
XBOOLE_1: 1;
take s1, s2;
p
c= s1 by
A19;
hence p
c= s1;
thus p
c= s2 by
A20;
take 1;
A21: (
dom p2)
= ((
dom p)
\/ (
dom (
Start-At (il,
SCMPDS )))) by
FUNCT_4:def 1;
A22: (
dom q2)
= ((
dom q)
\/ (
dom (il
.--> (d1
:= 1)))) by
FUNCT_4:def 1;
A23: (
IC
SCMPDS )
in (
dom (
Start-At (il,
SCMPDS ))) by
A10;
then (
IC
SCMPDS )
in (
dom p2) by
A21,
XBOOLE_0:def 3;
then
A24: (
IC s2)
= (p2
. (
IC
SCMPDS )) by
A17,
GRFUNC_1: 2
.= ((
Start-At (il,
SCMPDS ))
. (
IC
SCMPDS )) by
A23,
FUNCT_4: 13
.= ((
Start-At (il,
SCMPDS ))
. (
IC
SCMPDS ))
.= il by
FUNCOP_1: 72;
il
in (
dom (il
.--> (d1
:= 1))) by
TARSKI:def 1;
then
A25: il
in (
dom (il
.--> (d1
:= 1)));
then il
in (
dom q2) by
A22,
XBOOLE_0:def 3;
then
A26: (S2
. il)
= (q2
. il) by
A18,
GRFUNC_1: 2
.= ((il
.--> (d1
:= 1))
. il) by
A25,
FUNCT_4: 13
.= ((il
.--> (d1
:= 1))
. il)
.= (d1
:= 1) by
FUNCOP_1: 72;
A27: (S2
/. (
IC s2))
= (S2
. (
IC s2)) by
PBOOLE: 143;
A28: ((
Comput (S2,s2,(
0
+ 1)))
. d1)
= ((
Following (S2,(
Comput (S2,s2,
0 ))))
. d1) by
EXTPRO_1: 3
.= ((
Following (S2,s2))
. d1)
.= 1 by
A24,
A26,
A27,
SCMPDS_2: 45;
A29: (
dom p)
c= the
carrier of
SCMPDS by
RELAT_1:def 18;
(
dom (
Comput (S1,s1,1)))
= the
carrier of
SCMPDS by
PARTFUN1:def 2;
then
A30: (
dom ((
Comput (S1,s1,1))
| (
dom p)))
= (
dom p) by
A29,
RELAT_1: 62;
A31: (
dom p1)
= ((
dom p)
\/ (
dom (
Start-At (il,
SCMPDS )))) by
FUNCT_4:def 1;
A32: (
dom q1)
= ((
dom q)
\/ (
dom (il
.--> (d1
:=
0 )))) by
FUNCT_4:def 1;
A33: (
IC
SCMPDS )
in (
dom (
Start-At (il,
SCMPDS ))) by
A10;
then (
IC
SCMPDS )
in (
dom p1) by
A31,
XBOOLE_0:def 3;
then
A34: (
IC s1)
= (p1
. (
IC
SCMPDS )) by
A15,
GRFUNC_1: 2
.= ((
Start-At (il,
SCMPDS ))
. (
IC
SCMPDS )) by
A33,
FUNCT_4: 13
.= ((
Start-At (il,
SCMPDS ))
. (
IC
SCMPDS ))
.= il by
FUNCOP_1: 72;
il
in (
dom (il
.--> (d1
:=
0 ))) by
TARSKI:def 1;
then
A36: il
in (
dom (il
.--> (d1
:=
0 )));
then il
in (
dom q1) by
A32,
XBOOLE_0:def 3;
then
A37: (S1
. il)
= (q1
. il) by
A16,
GRFUNC_1: 2
.= ((il
.--> (d1
:=
0 ))
. il) by
A36,
FUNCT_4: 13
.= ((il
.--> (d1
:=
0 ))
. il)
.= (d1
:=
0 ) by
FUNCOP_1: 72;
A38: (S1
/. (
IC s1))
= (S1
. (
IC s1)) by
PBOOLE: 143;
A39: (
dom (
Comput (S2,s2,1)))
= the
carrier of
SCMPDS by
PARTFUN1:def 2;
A40: (
dom ((
Comput (S2,s2,1))
| (
dom p)))
= (
dom p) by
A29,
A39,
RELAT_1: 62;
((
Comput (S1,s1,(
0
+ 1)))
. d1)
= ((
Following (S1,(
Comput (S1,s1,
0 ))))
. d1) by
EXTPRO_1: 3
.= ((
Following (S1,s1))
. d1)
.=
0 by
A34,
A37,
A38,
SCMPDS_2: 45;
then (((
Comput (S1,s1,1))
| (
dom p))
. d1)
=
0 by
A7,
A30,
A6,
FUNCT_1: 47;
hence thesis by
A28,
A7,
A40,
A6,
FUNCT_1: 47;
end;
hence contradiction;
end;
end
theorem ::
SCMPDS_3:8
Th7: for s1,s2 be
State of
SCMPDS , k1,k2,m be
Integer st (
IC s1)
= (
IC s2) & k1
<> k2 & m
= (
IC s1) & (m
+ k1)
>=
0 & (m
+ k2)
>=
0 holds (
ICplusConst (s1,k1))
<> (
ICplusConst (s2,k2))
proof
let s1,s2 be
State of
SCMPDS , k1,k2,m be
Integer;
assume that
A1: (
IC s1)
= (
IC s2) and
A2: k1
<> k2 and
A3: m
= (
IC s1) and
A4: (m
+ k1)
>=
0 and
A5: (m
+ k2)
>=
0 ;
ex i be
Element of
NAT st i
= (
IC s1) & (
ICplusConst (s1,k1))
=
|.(i
+ k1).| by
SCMPDS_2:def 18;
then
A6: (
ICplusConst (s1,k1))
= (m
+ k1) by
A3,
A4,
ABSVALUE:def 1;
assume
A7: (
ICplusConst (s1,k1))
= (
ICplusConst (s2,k2));
ex j be
Element of
NAT st j
= (
IC s2) & (
ICplusConst (s2,k2))
=
|.(j
+ k2).| by
SCMPDS_2:def 18;
then (
ICplusConst (s2,k2))
= (m
+ k2) by
A1,
A3,
A5,
ABSVALUE:def 1;
hence contradiction by
A2,
A7,
A6;
end;
theorem ::
SCMPDS_3:9
for s1,s2 be
State of
SCMPDS , k1,k2 be
Nat st (
IC s1)
= (
IC s2) & k1
<> k2 holds (
ICplusConst (s1,k1))
<> (
ICplusConst (s2,k2))
proof
let s1,s2 be
State of
SCMPDS , k1,k2 be
Nat;
reconsider m = (
IC s1) as
Element of
NAT ;
set mm = (m
+ 2);
A1: ((mm
- 2)
+ k1)
>=
0 ;
A2: ((mm
- 2)
+ k2)
>=
0 ;
assume (
IC s1)
= (
IC s2) & k1
<> k2;
hence thesis by
A1,
A2,
Th7;
end;
theorem ::
SCMPDS_3:10
Th9: for s be
State of
SCMPDS holds ((
IC s)
+ 1)
= (
ICplusConst (s,1))
proof
let s be
State of
SCMPDS ;
consider j be
Element of
NAT such that
A1: j
= (
IC s) and
A2: (
ICplusConst (s,1))
=
|.(j
+ 1).| by
SCMPDS_2:def 18;
reconsider mj = (
IC s) as
Element of
NAT ;
A3: (j
* 1)
>=
0 ;
((
IC s)
+ 1)
= (
|.mj.|
+ 1) by
ABSVALUE:def 1
.= (
|.mj.|
+
|.1.|) by
ABSVALUE:def 1
.=
|.(mj
+ 1).| by
A1,
A3,
ABSVALUE: 11;
hence thesis by
A1,
A2;
end;
registration
cluster
SCMPDS ->
CurIns-recognized;
coherence
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s be
State of
SCMPDS such that
A1: p
c= s;
let P be
Instruction-Sequence of
SCMPDS such that
A2: q
c= P;
let i be
Nat;
set Csi = (
Comput (P,s,i));
set loc = (
IC Csi);
set loc1 = (loc
+ 1);
assume not (
IC (
Comput (P,s,i)))
in (
dom q);
then
A3: not loc
in (
dom q);
set I = ( the
Int_position
:=
0 );
set q1 = (q
+* (loc
.--> I));
set q2 = (q
+* (loc
.--> (
halt
SCMPDS )));
reconsider P1 = (P
+* (loc
.--> I)) as
Instruction-Sequence of
SCMPDS ;
reconsider P2 = (P
+* (loc
.--> (
halt
SCMPDS ))) as
Instruction-Sequence of
SCMPDS ;
A5: loc
in (
dom (loc
.--> (
halt
SCMPDS ))) by
TARSKI:def 1;
A7: loc
in (
dom (loc
.--> I)) by
TARSKI:def 1;
A8: (
dom q)
misses (
dom (loc
.--> (
halt
SCMPDS ))) by
A3,
ZFMISC_1: 50;
A9: (
dom q)
misses (
dom (loc
.--> I)) by
A3,
ZFMISC_1: 50;
A10: q1
c= P1 by
A2,
FUNCT_4: 123;
A11: q2
c= P2 by
A2,
FUNCT_4: 123;
set Cs2i = (
Comput (P2,s,i)), Cs1i = (
Comput (P1,s,i));
not p is q
-autonomic
proof
((loc
.--> (
halt
SCMPDS ))
. loc)
= (
halt
SCMPDS ) by
FUNCOP_1: 72;
then
A12: (P2
. loc)
= (
halt
SCMPDS ) by
A5,
FUNCT_4: 13;
((loc
.--> I)
. loc)
= I by
FUNCOP_1: 72;
then
A13: (P1
. loc)
= I by
A7,
FUNCT_4: 13;
take P1, P2;
q
c= q1 by
A9,
FUNCT_4: 32;
hence
A14: q
c= P1 by
A10,
XBOOLE_1: 1;
q
c= q2 by
A8,
FUNCT_4: 32;
hence
A15: q
c= P2 by
A11,
XBOOLE_1: 1;
take s, s;
thus p
c= s by
A1;
A16: (Cs1i
| (
dom p))
= (Csi
| (
dom p)) by
A14,
A2,
A1,
EXTPRO_1:def 10;
thus p
c= s by
A1;
A17: (Cs1i
| (
dom p))
= (Cs2i
| (
dom p)) by
A14,
A15,
A1,
EXTPRO_1:def 10;
take k = (i
+ 1);
set Cs1k = (
Comput (P1,s,k));
A18: (
IC
SCMPDS )
in (
dom p) by
AMISTD_5: 6;
(
IC Csi)
= (
IC (Csi
| (
dom p))) by
A18,
FUNCT_1: 49;
then (
IC Cs1i)
= loc by
A16,
A18,
FUNCT_1: 49;
then
A19: (
CurInstr (P1,Cs1i))
= (P1
. loc) by
PBOOLE: 143
.= I by
A13;
A20: Cs1k
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i))
.= (
Exec (I,Cs1i)) by
A19;
A21: (
IC (
Exec (I,Cs1i)))
= ((
IC Cs1i)
+ 1) by
SCMPDS_2: 45;
A22: (
IC
SCMPDS )
in (
dom p) by
AMISTD_5: 6;
A23: (
IC Csi)
= (
IC (Csi
| (
dom p))) by
A22,
FUNCT_1: 49;
then (
IC Cs1i)
= loc by
A16,
A22,
FUNCT_1: 49;
then
A24: (
IC Cs1k)
= (loc
+ 1) by
A20,
A21
.= loc1;
set Cs2k = (
Comput (P2,s,k));
A25: Cs2k
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
A26: (P2
/. (
IC Cs2i))
= (P2
. (
IC Cs2i)) by
PBOOLE: 143;
(
IC Cs2i)
= loc by
A16,
A23,
A17,
A22,
FUNCT_1: 49;
then
A27: (
IC Cs2k)
= loc by
A25,
A12,
A26,
EXTPRO_1:def 3;
(
IC (Cs1k
| (
dom p)))
= (
IC Cs1k) & (
IC (Cs2k
| (
dom p)))
= (
IC Cs2k) by
A22,
FUNCT_1: 49;
hence thesis by
A24,
A27;
end;
hence contradiction;
end;
end
theorem ::
SCMPDS_3:11
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i be
Nat, k1,k2 be
Integer, a,b be
Int_position st (
CurInstr (P1,(
Comput (P1,s1,i))))
= ((a,k1)
:= (b,k2)) & a
in (
dom p) & (
DataLoc (((
Comput (P1,s1,i))
. a),k1))
in (
dom p) holds ((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. b),k2)))
= ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. b),k2)))
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
A3: p
c= s1 & p
c= s2 by
A1;
let i be
Nat, k1,k2 be
Integer, a,b be
Int_position;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
assume that
A4: I
= ((a,k1)
:= (b,k2)) and
A5: a
in (
dom p) and
A6: (
DataLoc ((Cs1i
. a),k1))
in (
dom p);
a
in (
dom p) implies ((Cs1i
| (
dom p))
. a)
= (Cs1i
. a) & ((Cs2i
| (
dom p))
. a)
= (Cs2i
. a) by
FUNCT_1: 49;
then
A7: (Cs1i
. a)
= (Cs2i
. a) by
A5,
A2,
A3,
EXTPRO_1:def 10;
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
then
A8: (Cs1i1
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i
. (
DataLoc ((Cs1i
. b),k2))) by
A4,
SCMPDS_2: 47;
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
A9: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
A10: (
DataLoc ((Cs1i
. a),k1))
in (
dom p) implies ((Cs1i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))) & ((Cs2i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs2i1
. (
DataLoc ((Cs1i
. a),k1))) by
FUNCT_1: 49;
I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
then (Cs2i1
. (
DataLoc ((Cs2i
. a),k1)))
= (Cs2i
. (
DataLoc ((Cs2i
. b),k2))) by
A9,
A4,
SCMPDS_2: 47;
hence thesis by
A10,
A6,
A7,
A8,
A2,
A3,
EXTPRO_1:def 10;
end;
theorem ::
SCMPDS_3:12
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i be
Nat, k1,k2 be
Integer, a,b be
Int_position st (
CurInstr (P1,(
Comput (P1,s1,i))))
= (
AddTo (a,k1,b,k2)) & a
in (
dom p) & (
DataLoc (((
Comput (P1,s1,i))
. a),k1))
in (
dom p) holds ((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. b),k2)))
= ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. b),k2)))
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
A3: p
c= s1 & p
c= s2 by
A1;
let i be
Nat, k1,k2 be
Integer, a,b be
Int_position;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
assume that
A4: I
= (
AddTo (a,k1,b,k2)) and
A5: a
in (
dom p) and
A6: (
DataLoc ((Cs1i
. a),k1))
in (
dom p);
a
in (
dom p) implies ((Cs1i
| (
dom p))
. a)
= (Cs1i
. a) & ((Cs2i
| (
dom p))
. a)
= (Cs2i
. a) by
FUNCT_1: 49;
then
A7: (Cs1i
. a)
= (Cs2i
. a) by
A5,
A2,
A3,
EXTPRO_1:def 10;
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set D11 = (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))), D21 = (Cs2i1
. (
DataLoc ((Cs2i
. a),k1))), C11 = (Cs1i
. (
DataLoc ((Cs1i
. a),k1))), C12 = (Cs1i
. (
DataLoc ((Cs1i
. b),k2))), C21 = (Cs2i
. (
DataLoc ((Cs2i
. a),k1))), C22 = (Cs2i
. (
DataLoc ((Cs2i
. b),k2)));
A8: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
(
DataLoc ((Cs1i
. a),k1))
in (
dom p) implies ((Cs1i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))) & ((Cs2i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs2i1
. (
DataLoc ((Cs1i
. a),k1))) by
FUNCT_1: 49;
then
A9: D11
= D21 by
A6,
A7,
A2,
A3,
EXTPRO_1:def 10;
Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
then
A10: D11
= (C11
+ C12) by
A4,
SCMPDS_2: 49;
(
DataLoc ((Cs1i
. a),k1))
in (
dom p) implies ((Cs1i
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i
. (
DataLoc ((Cs1i
. a),k1))) & ((Cs2i
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs2i
. (
DataLoc ((Cs1i
. a),k1))) by
FUNCT_1: 49;
then
A11: C11
= C21 by
A6,
A7,
A2,
A3,
EXTPRO_1:def 10;
I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
then D21
= (C21
+ C22) by
A8,
A4,
SCMPDS_2: 49;
hence thesis by
A11,
A9,
A10;
end;
theorem ::
SCMPDS_3:13
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i be
Nat, k1,k2 be
Integer, a,b be
Int_position st (
CurInstr (P1,(
Comput (P1,s1,i))))
= (
SubFrom (a,k1,b,k2)) & a
in (
dom p) & (
DataLoc (((
Comput (P1,s1,i))
. a),k1))
in (
dom p) holds ((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. b),k2)))
= ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. b),k2)))
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
A3: p
c= s1 & p
c= s2 by
A1;
let i be
Nat, k1,k2 be
Integer, a,b be
Int_position;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
assume that
A4: I
= (
SubFrom (a,k1,b,k2)) and
A5: a
in (
dom p) and
A6: (
DataLoc ((Cs1i
. a),k1))
in (
dom p);
a
in (
dom p) implies ((Cs1i
| (
dom p))
. a)
= (Cs1i
. a) & ((Cs2i
| (
dom p))
. a)
= (Cs2i
. a) by
FUNCT_1: 49;
then
A7: (Cs1i
. a)
= (Cs2i
. a) by
A5,
A2,
A3,
EXTPRO_1:def 10;
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set D11 = (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))), D21 = (Cs2i1
. (
DataLoc ((Cs2i
. a),k1))), C11 = (Cs1i
. (
DataLoc ((Cs1i
. a),k1))), C12 = (Cs1i
. (
DataLoc ((Cs1i
. b),k2))), C21 = (Cs2i
. (
DataLoc ((Cs2i
. a),k1))), C22 = (Cs2i
. (
DataLoc ((Cs2i
. b),k2)));
A8: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
(
DataLoc ((Cs1i
. a),k1))
in (
dom p) implies ((Cs1i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))) & ((Cs2i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs2i1
. (
DataLoc ((Cs1i
. a),k1))) by
FUNCT_1: 49;
then
A9: D11
= D21 by
A6,
A7,
A2,
A3,
EXTPRO_1:def 10;
Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
then
A10: D11
= (C11
- C12) by
A4,
SCMPDS_2: 50;
(
DataLoc ((Cs1i
. a),k1))
in (
dom p) implies ((Cs1i
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i
. (
DataLoc ((Cs1i
. a),k1))) & ((Cs2i
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs2i
. (
DataLoc ((Cs1i
. a),k1))) by
FUNCT_1: 49;
then
A11: C11
= C21 by
A6,
A7,
A2,
A3,
EXTPRO_1:def 10;
I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
then D21
= (C21
- C22) by
A8,
A4,
SCMPDS_2: 50;
hence thesis by
A11,
A9,
A10;
end;
theorem ::
SCMPDS_3:14
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i be
Nat, k1,k2 be
Integer, a,b be
Int_position st (
CurInstr (P1,(
Comput (P1,s1,i))))
= (
MultBy (a,k1,b,k2)) & a
in (
dom p) & (
DataLoc (((
Comput (P1,s1,i))
. a),k1))
in (
dom p) holds (((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. a),k1)))
* ((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. b),k2))))
= (((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. a),k1)))
* ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. b),k2))))
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
A3: p
c= s1 & p
c= s2 by
A1;
let i be
Nat, k1,k2 be
Integer, a,b be
Int_position;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
assume that
A4: I
= (
MultBy (a,k1,b,k2)) and
A5: a
in (
dom p) and
A6: (
DataLoc ((Cs1i
. a),k1))
in (
dom p);
a
in (
dom p) implies ((Cs1i
| (
dom p))
. a)
= (Cs1i
. a) & ((Cs2i
| (
dom p))
. a)
= (Cs2i
. a) by
FUNCT_1: 49;
then
A7: (Cs1i
. a)
= (Cs2i
. a) by
A5,
A2,
A3,
EXTPRO_1:def 10;
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set D11 = (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))), D21 = (Cs2i1
. (
DataLoc ((Cs2i
. a),k1)));
Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
then
A8: D11
= ((Cs1i
. (
DataLoc ((Cs1i
. a),k1)))
* (Cs1i
. (
DataLoc ((Cs1i
. b),k2)))) by
A4,
SCMPDS_2: 51;
A9: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
A10: (
DataLoc ((Cs1i
. a),k1))
in (
dom p) implies ((Cs1i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs1i1
. (
DataLoc ((Cs1i
. a),k1))) & ((Cs2i1
| (
dom p))
. (
DataLoc ((Cs1i
. a),k1)))
= (Cs2i1
. (
DataLoc ((Cs1i
. a),k1))) by
FUNCT_1: 49;
I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
then D21
= ((Cs2i
. (
DataLoc ((Cs2i
. a),k1)))
* (Cs2i
. (
DataLoc ((Cs2i
. b),k2)))) by
A9,
A4,
SCMPDS_2: 51;
hence thesis by
A10,
A6,
A7,
A8,
A2,
A3,
EXTPRO_1:def 10;
end;
theorem ::
SCMPDS_3:15
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i,m be
Nat, a be
Int_position, k1,k2 be
Integer st (
CurInstr (P1,(
Comput (P1,s1,i))))
= ((a,k1)
<>0_goto k2) & m
= (
IC (
Comput (P1,s1,i))) & (m
+ k2)
>=
0 & k2
<> 1 holds (((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. a),k1)))
=
0 iff ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. a),k1)))
=
0 )
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
let i,m be
Nat, a be
Int_position, k1,k2 be
Integer;
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
A3: (
IC Cs1i)
= (
IC Cs2i) & (Cs1i1
| (
dom p))
= (Cs2i1
| (
dom p)) by
A1,
A2,
AMISTD_5: 7,
EXTPRO_1:def 10;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
A4: Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
A5: (m
+ 1)
>=
0 ;
(
IC
SCMPDS )
in (
dom p) by
AMISTD_5: 6;
then (
IC
SCMPDS )
in (
dom p);
then
A6: ((Cs1i1
| (
dom p))
. (
IC
SCMPDS ))
= (Cs1i1
. (
IC
SCMPDS )) & ((Cs2i1
| (
dom p))
. (
IC
SCMPDS ))
= (Cs2i1
. (
IC
SCMPDS )) by
FUNCT_1: 49;
A7: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
assume that
A8: I
= ((a,k1)
<>0_goto k2) and
A9: m
= (
IC Cs1i) & (m
+ k2)
>=
0 & k2
<> 1;
A10: I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
A11:
now
assume that
A12: ((
Comput (P2,s2,i))
. (
DataLoc ((Cs2i
. a),k1)))
=
0 and
A13: ((
Comput (P1,s1,i))
. (
DataLoc ((Cs1i
. a),k1)))
<>
0 ;
A14: (Cs1i1
. (
IC
SCMPDS ))
= (
ICplusConst (Cs1i,k2)) by
A4,
A8,
A13,
SCMPDS_2: 55;
(Cs2i1
. (
IC
SCMPDS ))
= ((
IC Cs2i)
+ 1) by
A10,
A7,
A8,
A12,
SCMPDS_2: 55
.= (
ICplusConst (Cs2i,1)) by
Th9;
hence contradiction by
A6,
A3,
A9,
A5,
A14,
Th7;
end;
now
assume that
A15: ((
Comput (P1,s1,i))
. (
DataLoc ((Cs1i
. a),k1)))
=
0 and
A16: ((
Comput (P2,s2,i))
. (
DataLoc ((Cs2i
. a),k1)))
<>
0 ;
A17: (Cs2i1
. (
IC
SCMPDS ))
= (
ICplusConst (Cs2i,k2)) by
A10,
A7,
A8,
A16,
SCMPDS_2: 55;
(Cs1i1
. (
IC
SCMPDS ))
= ((
IC Cs1i)
+ 1) by
A4,
A8,
A15,
SCMPDS_2: 55
.= (
ICplusConst (Cs1i,1)) by
Th9;
hence contradiction by
A6,
A3,
A9,
A5,
A17,
Th7;
end;
hence thesis by
A11;
end;
theorem ::
SCMPDS_3:16
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i,m be
Nat, a be
Int_position, k1,k2 be
Integer st (
CurInstr (P1,(
Comput (P1,s1,i))))
= ((a,k1)
<=0_goto k2) & m
= (
IC (
Comput (P1,s1,i))) & (m
+ k2)
>=
0 & k2
<> 1 holds (((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. a),k1)))
>
0 iff ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. a),k1)))
>
0 )
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
let i,m be
Nat, a be
Int_position, k1,k2 be
Integer;
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
A3: (
IC Cs1i)
= (
IC Cs2i) & (Cs1i1
| (
dom p))
= (Cs2i1
| (
dom p)) by
A1,
A2,
AMISTD_5: 7,
EXTPRO_1:def 10;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
A4: Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
A5: (m
+ 1)
>=
0 ;
(
IC
SCMPDS )
in (
dom p) by
AMISTD_5: 6;
then (
IC
SCMPDS )
in (
dom p);
then
A6: ((Cs1i1
| (
dom p))
. (
IC
SCMPDS ))
= (Cs1i1
. (
IC
SCMPDS )) & ((Cs2i1
| (
dom p))
. (
IC
SCMPDS ))
= (Cs2i1
. (
IC
SCMPDS )) by
FUNCT_1: 49;
A7: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
assume that
A8: I
= ((a,k1)
<=0_goto k2) and
A9: m
= (
IC Cs1i) & (m
+ k2)
>=
0 & k2
<> 1;
A10: I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
A11:
now
assume that
A12: ((
Comput (P2,s2,i))
. (
DataLoc ((Cs2i
. a),k1)))
>
0 and
A13: ((
Comput (P1,s1,i))
. (
DataLoc ((Cs1i
. a),k1)))
<=
0 ;
A14: (Cs1i1
. (
IC
SCMPDS ))
= (
ICplusConst (Cs1i,k2)) by
A4,
A8,
A13,
SCMPDS_2: 56;
(Cs2i1
. (
IC
SCMPDS ))
= ((
IC Cs2i)
+ 1) by
A10,
A7,
A8,
A12,
SCMPDS_2: 56
.= (
ICplusConst (Cs2i,1)) by
Th9;
hence contradiction by
A6,
A3,
A9,
A5,
A14,
Th7;
end;
now
assume that
A15: ((
Comput (P1,s1,i))
. (
DataLoc ((Cs1i
. a),k1)))
>
0 and
A16: ((
Comput (P2,s2,i))
. (
DataLoc ((Cs2i
. a),k1)))
<=
0 ;
A17: (Cs2i1
. (
IC
SCMPDS ))
= (
ICplusConst (Cs2i,k2)) by
A10,
A7,
A8,
A16,
SCMPDS_2: 56;
(Cs1i1
. (
IC
SCMPDS ))
= ((
IC Cs1i)
+ 1) by
A4,
A8,
A15,
SCMPDS_2: 56
.= (
ICplusConst (Cs1i,1)) by
Th9;
hence contradiction by
A6,
A3,
A9,
A5,
A17,
Th7;
end;
hence thesis by
A11;
end;
theorem ::
SCMPDS_3:17
for q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS st p
c= s1 & p
c= s2 & q
c= P1 & q
c= P2 holds for i,m be
Nat, a be
Int_position, k1,k2 be
Integer st (
CurInstr (P1,(
Comput (P1,s1,i))))
= ((a,k1)
>=0_goto k2) & m
= (
IC (
Comput (P1,s1,i))) & (m
+ k2)
>=
0 & k2
<> 1 holds (((
Comput (P1,s1,i))
. (
DataLoc (((
Comput (P1,s1,i))
. a),k1)))
<
0 iff ((
Comput (P2,s2,i))
. (
DataLoc (((
Comput (P2,s2,i))
. a),k1)))
<
0 )
proof
let q be non
halt-free
finitethe
InstructionsF of
SCMPDS
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of
SCMPDS , s1,s2 be
State of
SCMPDS such that
A1: p
c= s1 & p
c= s2 and
A2: q
c= P1 & q
c= P2;
let i,m be
Nat, a be
Int_position, k1,k2 be
Integer;
set Cs1i = (
Comput (P1,s1,i));
set Cs2i = (
Comput (P2,s2,i));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
A3: (
IC Cs1i)
= (
IC Cs2i) & (Cs1i1
| (
dom p))
= (Cs2i1
| (
dom p)) by
A1,
A2,
AMISTD_5: 7,
EXTPRO_1:def 10;
set I = (
CurInstr (P1,(
Comput (P1,s1,i))));
A4: Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
A5: (m
+ 1)
>=
0 ;
(
IC
SCMPDS )
in (
dom p) by
AMISTD_5: 6;
then (
IC
SCMPDS )
in (
dom p);
then
A6: ((Cs1i1
| (
dom p))
. (
IC
SCMPDS ))
= (Cs1i1
. (
IC
SCMPDS )) & ((Cs2i1
| (
dom p))
. (
IC
SCMPDS ))
= (Cs2i1
. (
IC
SCMPDS )) by
FUNCT_1: 49;
A7: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
assume that
A8: I
= ((a,k1)
>=0_goto k2) and
A9: m
= (
IC Cs1i) & (m
+ k2)
>=
0 & k2
<> 1;
A10: I
= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A1,
A2,
AMISTD_5: 7;
A11:
now
assume that
A12: ((
Comput (P2,s2,i))
. (
DataLoc ((Cs2i
. a),k1)))
<
0 and
A13: ((
Comput (P1,s1,i))
. (
DataLoc ((Cs1i
. a),k1)))
>=
0 ;
A14: (Cs1i1
. (
IC
SCMPDS ))
= (
ICplusConst (Cs1i,k2)) by
A4,
A8,
A13,
SCMPDS_2: 57;
(Cs2i1
. (
IC
SCMPDS ))
= ((
IC Cs2i)
+ 1) by
A10,
A7,
A8,
A12,
SCMPDS_2: 57
.= (
ICplusConst (Cs2i,1)) by
Th9;
hence contradiction by
A6,
A3,
A9,
A5,
A14,
Th7;
end;
now
assume that
A15: ((
Comput (P1,s1,i))
. (
DataLoc ((Cs1i
. a),k1)))
<
0 and
A16: ((
Comput (P2,s2,i))
. (
DataLoc ((Cs2i
. a),k1)))
>=
0 ;
A17: (Cs2i1
. (
IC
SCMPDS ))
= (
ICplusConst (Cs2i,k2)) by
A10,
A7,
A8,
A16,
SCMPDS_2: 57;
(Cs1i1
. (
IC
SCMPDS ))
= ((
IC Cs1i)
+ 1) by
A4,
A8,
A15,
SCMPDS_2: 57
.= (
ICplusConst (Cs1i,1)) by
Th9;
hence contradiction by
A6,
A3,
A9,
A5,
A17,
Th7;
end;
hence thesis by
A11;
end;