amistd_5.miz
begin
theorem ::
AMISTD_5:1
for N be
with_zero
set holds for S be
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N holds for I be
Instruction of S st I is
jump-only holds for k be
Nat holds (
IncAddr (I,k)) is
jump-only by
COMPOS_0:def 9;
registration
let N be
with_zero
set, S be
with_explicit_jumps
IC-Ins-separated
halting non
empty
with_non-empty_values
AMI-Struct over N, I be
IC-relocable
Instruction of S, k be
Nat;
cluster (
IncAddr (I,k)) ->
IC-relocable;
coherence
proof
let j,i be
Nat, s be
State of S;
thus ((
IC (
Exec ((
IncAddr ((
IncAddr (I,k)),j)),s)))
+ i)
= ((
IC (
Exec ((
IncAddr (I,(k
+ j))),s)))
+ i) by
COMPOS_0: 7
.= (
IC (
Exec ((
IncAddr (I,((k
+ j)
+ i))),(
IncIC (s,i))))) by
AMISTD_2:def 3
.= (
IC (
Exec ((
IncAddr (I,(k
+ (j
+ i)))),(
IncIC (s,i)))))
.= (
IC (
Exec ((
IncAddr ((
IncAddr (I,k)),(j
+ i))),(
IncIC (s,i))))) by
COMPOS_0: 7;
end;
end
definition
let N be
with_zero
set, S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N, I be
Instruction of S;
::
AMISTD_5:def1
attr I is
relocable means
:
Def1: for j,k be
Nat, s be
State of S holds (
Exec ((
IncAddr (I,(j
+ k))),(
IncIC (s,k))))
= (
IncIC ((
Exec ((
IncAddr (I,j)),s)),k));
end
registration
let N be
with_zero
set, S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
cluster
relocable ->
IC-relocable for
Instruction of S;
coherence
proof
let I be
Instruction of S such that
A1: I is
relocable;
let j,k be
Nat, s be
State of S;
reconsider kk = k as
Nat;
thus ((
IC (
Exec ((
IncAddr (I,j)),s)))
+ k)
= (
IC (
IncIC ((
Exec ((
IncAddr (I,j)),s)),kk))) by
MEMSTR_0: 53
.= (
IC (
Exec ((
IncAddr (I,(j
+ k))),(
IncIC (s,k))))) by
A1;
end;
end
definition
let N be
with_zero
set, S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
::
AMISTD_5:def2
attr S is
relocable means
:
Def2: for I be
Instruction of S holds I is
relocable;
end
theorem ::
AMISTD_5:2
Th2: for N be
with_zero
set, I be
Instruction of (
STC N), s be
State of (
STC N), k be
Nat holds (
Exec (I,(
IncIC (s,k))))
= (
IncIC ((
Exec (I,s)),k))
proof
let N be
with_zero
set, I be
Instruction of (
STC N), s be
State of (
STC N), k be
Nat;
per cases by
AMISTD_1: 6;
suppose
A1: (
InsCode I)
= 1;
hence (
Exec (I,(
IncIC (s,k))))
= (
IncIC ((
IncIC (s,k)),1)) by
AMISTD_1: 20
.= (
IncIC (s,(1
+ k))) by
MEMSTR_0: 57
.= (
IncIC ((
IncIC (s,1)),k)) by
MEMSTR_0: 57
.= (
IncIC ((
Exec (I,s)),k)) by
A1,
AMISTD_1: 20;
end;
suppose (
InsCode I)
=
0 ;
then
A2: I is
halting by
AMISTD_1: 4;
hence (
Exec (I,(
IncIC (s,k))))
= (
IncIC (s,k))
.= (
IncIC ((
Exec (I,s)),k)) by
A2;
end;
end;
definition
let N be
with_zero
set;
let S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
::
AMISTD_5:def3
attr S is
IC-recognized means for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st p is non
empty holds (
IC S)
in (
dom p);
end
theorem ::
AMISTD_5:3
Th3: for N be
with_zero
set holds for S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N holds S is
IC-recognized iff for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st (
DataPart p)
<>
{} holds (
IC S)
in (
dom p)
proof
let N be
with_zero
set;
let S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
thus S is
IC-recognized implies for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st (
DataPart p)
<>
{} holds (
IC S)
in (
dom p)
proof
assume
A1: S is
IC-recognized;
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic
FinPartState of S;
assume (
DataPart p)
<>
{} ;
then p is non
empty;
hence thesis by
A1;
end;
assume
A2: for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st (
DataPart p)
<>
{} holds (
IC S)
in (
dom p);
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic
FinPartState of S;
A3: (
dom p)
c= (
{(
IC S)}
\/ (
dom (
DataPart p))) by
MEMSTR_0: 32;
assume
A4: p is non
empty;
per cases ;
suppose
A5: (
IC S)
in (
dom p);
thus (
IC S)
in (
dom p) by
A5;
end;
suppose not (
IC S)
in (
dom p);
then
{(
IC S)}
misses (
dom p) by
ZFMISC_1: 50;
then (
dom (
DataPart p)) is non
empty by
A4,
A3,
XBOOLE_1: 3,
XBOOLE_1: 73;
then (
DataPart p) is non
empty;
hence (
IC S)
in (
dom p) by
A2;
end;
end;
registration
let N be
with_zero
set;
cluster (
Data-Locations (
STC N)) ->
empty;
coherence
proof
the
carrier of (
STC N)
=
{
0 } by
AMISTD_1:def 7
.=
{(
IC (
STC N))} by
AMISTD_1:def 7;
hence thesis by
XBOOLE_1: 37;
end;
end
registration
let N be
with_zero
set;
let p be
PartState of (
STC N);
cluster (
DataPart p) ->
empty;
coherence ;
end
registration
let N be
with_zero
set;
cluster (
STC N) ->
IC-recognized
relocable;
coherence
proof
for q be non
halt-free
finitethe
InstructionsF of (
STC N)
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of (
STC N) st (
DataPart p)
<>
{} holds (
IC (
STC N))
in (
dom p);
hence (
STC N) is
IC-recognized by
Th3;
let I be
Instruction of (
STC N);
let j,k be
Nat, s be
State of (
STC N);
thus (
Exec ((
IncAddr (I,(j
+ k))),(
IncIC (s,k))))
= (
Exec (I,(
IncIC (s,k)))) by
COMPOS_0: 4
.= (
IncIC ((
Exec (I,s)),k)) by
Th2
.= (
IncIC ((
Exec ((
IncAddr (I,j)),s)),k)) by
COMPOS_0: 4;
end;
end
registration
let N be
with_zero
set;
cluster
relocable
IC-recognized for
standard
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
existence
proof
take (
STC N);
thus thesis;
end;
end
registration
let N be
with_zero
set;
let S be
relocable
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
cluster ->
relocable for
Instruction of S;
coherence by
Def2;
end
reserve k for
Nat;
theorem ::
AMISTD_5:4
Th4: for N be
with_zero
set holds for S be
relocable
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N holds for INS be
Instruction of S, s be
State of S holds (
Exec ((
IncAddr (INS,k)),(
IncIC (s,k))))
= (
IncIC ((
Exec (INS,s)),k))
proof
let N be
with_zero
set;
let S be
relocable
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
let INS be
Instruction of S, s be
State of S;
thus (
Exec ((
IncAddr (INS,k)),(
IncIC (s,k))))
= (
Exec ((
IncAddr (INS,(
0 qua
Nat
+ k))),(
IncIC (s,k))))
.= (
IncIC ((
Exec ((
IncAddr (INS,
0 )),s)),k)) by
Def1
.= (
IncIC ((
Exec (INS,s)),k)) by
COMPOS_0: 3;
end;
theorem ::
AMISTD_5:5
Th5: for N be
with_zero
set holds for S be
relocable
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N holds for INS be
Instruction of S, s be
State of S, j,k be
Nat st (
IC s)
= (j
+ k) holds (
Exec (INS,(
DecIC (s,k))))
= (
DecIC ((
Exec ((
IncAddr (INS,k)),s)),k))
proof
let N be
with_zero
set;
let S be
relocable
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
let INS be
Instruction of S, s be
State of S, j,k be
Nat such that
A1: (
IC s)
= (j
+ k);
set s1 = (s
+* (
Start-At (j,S)));
A2: (
IncIC (s1,k))
= (s
+* (
Start-At ((
IC s),S))) by
A1,
MEMSTR_0: 58
.= s by
MEMSTR_0: 31;
thus (
Exec (INS,(
DecIC (s,k))))
= (
Exec (INS,s1)) by
A1,
NAT_D: 34
.= ((
Exec (INS,s1))
+* (
Start-At ((
IC (
Exec (INS,s1))),S))) by
MEMSTR_0: 31
.= ((
IncIC ((
Exec (INS,s1)),k))
+* (
Start-At ((
IC (
Exec (INS,s1))),S))) by
FUNCT_4: 114
.= (
DecIC ((
IncIC ((
Exec (INS,s1)),k)),k)) by
MEMSTR_0: 59
.= (
DecIC ((
Exec ((
IncAddr (INS,k)),s)),k)) by
A2,
Th4;
end;
registration
let N be
with_zero
set;
cluster
relocable
IC-recognized for
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
existence
proof
take (
STC N);
thus thesis;
end;
end
reserve N for
with_zero
set,
S for
IC-recognized
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
theorem ::
AMISTD_5:6
Th6: for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of S holds (
IC S)
in (
dom p)
proof
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of S;
A1: (
dom p)
meets (
{(
IC S)}
\/ (
Data-Locations S)) by
MEMSTR_0: 41;
per cases by
A1,
XBOOLE_1: 70;
suppose (
dom p)
meets
{(
IC S)};
hence thesis by
ZFMISC_1: 50;
end;
suppose (
dom p)
meets (
Data-Locations S);
then ((
dom p)
/\ (
Data-Locations S))
<>
{} by
XBOOLE_0:def 7;
then (
DataPart p)
<>
{} by
RELAT_1: 38,
RELAT_1: 61;
hence thesis by
Th3;
end;
end;
definition
let N;
let S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
::
AMISTD_5:def4
attr S is
CurIns-recognized means
:
Def4: for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of S holds for s be
State of S st p
c= s holds for P be
Instruction-Sequence of S st q
c= P holds for i be
Nat holds (
IC (
Comput (P,s,i)))
in (
dom q);
end
registration
let N;
cluster (
STC N) ->
CurIns-recognized;
coherence
proof
let q be non
halt-free
finitethe
InstructionsF of (
STC N)
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of (
STC N), s be
State of (
STC N) such that
A1: p
c= s;
let P be
Instruction-Sequence of (
STC N) such that
A2: q
c= P;
let i be
Nat;
set Csi = (
Comput (P,s,i));
set loc = (
IC Csi);
set loc1 = (loc
+ 1);
assume
A3: not (
IC (
Comput (P,s,i)))
in (
dom q);
the
InstructionsF of (
STC N)
=
{
[
0 ,
0 ,
0 ],
[1,
0 ,
0 ]} by
AMISTD_1:def 7;
then
reconsider I =
[1,
0 ,
0 ] as
Instruction of (
STC N) by
TARSKI:def 2;
set p1 = (q
+* (loc
.--> I));
set p2 = (q
+* (loc
.--> (
halt (
STC N))));
reconsider P1 = (P
+* (loc
.--> I)) as
Instruction-Sequence of (
STC N);
reconsider P2 = (P
+* (loc
.--> (
halt (
STC N)))) as
Instruction-Sequence of (
STC N);
A5: loc
in (
dom (loc
.--> (
halt (
STC N)))) by
TARSKI:def 1;
A7: loc
in (
dom (loc
.--> I)) by
TARSKI:def 1;
A8: (
dom q)
misses (
dom (loc
.--> (
halt (
STC N)))) by
A3,
ZFMISC_1: 50;
A9: (
dom q)
misses (
dom (loc
.--> I)) by
A3,
ZFMISC_1: 50;
A10: p1
c= P1 by
A2,
FUNCT_4: 123;
A11: p2
c= P2 by
A2,
FUNCT_4: 123;
set Cs2i = (
Comput (P2,s,i)), Cs1i = (
Comput (P1,s,i));
not p is q
-autonomic
proof
((loc
.--> (
halt (
STC N)))
. loc)
= (
halt (
STC N)) by
FUNCOP_1: 72;
then
A12: (P2
. loc)
= (
halt (
STC N)) by
A5,
FUNCT_4: 13;
((loc
.--> I)
. loc)
= I by
FUNCOP_1: 72;
then
A13: (P1
. loc)
= I by
A7,
FUNCT_4: 13;
take P1, P2;
q
c= p1 by
A9,
FUNCT_4: 32;
hence
A14: q
c= P1 by
A10,
XBOOLE_1: 1;
q
c= p2 by
A8,
FUNCT_4: 32;
hence
A15: q
c= P2 by
A11,
XBOOLE_1: 1;
take s, s;
thus p
c= s by
A1;
A16: (Cs1i
| (
dom p))
= (Csi
| (
dom p)) by
A14,
A2,
A1,
EXTPRO_1:def 10;
thus p
c= s by
A1;
A17: (Cs1i
| (
dom p))
= (Cs2i
| (
dom p)) by
A14,
A15,
A1,
EXTPRO_1:def 10;
take k = (i
+ 1);
set Cs1k = (
Comput (P1,s,k));
A18: Cs1k
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
(
InsCode I)
= 1;
then
A19: (
IC (
Exec (I,Cs1i)))
= ((
IC Cs1i)
+ 1) by
AMISTD_1: 9;
A20: (
IC Csi)
= (
IC (Csi
| (
dom p))) by
Th6,
FUNCT_1: 49;
then (
IC Cs1i)
= loc by
A16,
Th6,
FUNCT_1: 49;
then
A21: (
IC Cs1k)
= loc1 by
A19,
A18,
A13,
PBOOLE: 143;
set Cs2k = (
Comput (P2,s,k));
A22: Cs2k
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
A23: (P2
/. (
IC Cs2i))
= (P2
. (
IC Cs2i)) by
PBOOLE: 143;
(
IC Cs2i)
= loc by
A16,
A20,
A17,
Th6,
FUNCT_1: 49;
then
A24: (
IC Cs2k)
= loc by
A22,
A12,
A23,
EXTPRO_1:def 3;
(
IC (Cs1k
| (
dom p)))
= (
IC Cs1k) & (
IC (Cs2k
| (
dom p)))
= (
IC Cs2k) by
Th6,
FUNCT_1: 49;
hence thesis by
A21,
A24;
end;
hence contradiction;
end;
end
registration
let N be
with_zero
set;
cluster
relocable
IC-recognized
CurIns-recognized for
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
existence
proof
take (
STC N);
thus thesis;
end;
end
reserve S for
IC-recognized
CurIns-recognized
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
theorem ::
AMISTD_5:7
for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of S, s1,s2 be
State of S st p
c= s1 & p
c= s2 holds for P1,P2 be
Instruction-Sequence of S st q
c= P1 & q
c= P2 holds for i be
Nat holds (
IC (
Comput (P1,s1,i)))
= (
IC (
Comput (P2,s2,i))) & (
CurInstr (P1,(
Comput (P1,s1,i))))
= (
CurInstr (P2,(
Comput (P2,s2,i))))
proof
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of S, s1,s2 be
State of S such that
A1: p
c= s1 and
A2: p
c= s2;
let P1,P2 be
Instruction-Sequence of S such that
A3: q
c= P1 and
A4: q
c= P2;
A5: (
dom q)
c= (
dom P1) by
A3,
RELAT_1: 11;
A6: (
dom q)
c= (
dom P2) by
A4,
RELAT_1: 11;
let i be
Nat;
set Cs2i = (
Comput (P2,s2,i));
set Cs1i = (
Comput (P1,s1,i));
A7: (
IC Cs1i)
in (
dom q) by
A3,
Def4,
A1;
A8: (
IC Cs2i)
in (
dom q) by
A4,
Def4,
A2;
thus
A9: (
IC Cs1i)
= (
IC Cs2i)
proof
assume
A10: (
IC (
Comput (P1,s1,i)))
<> (
IC (
Comput (P2,s2,i)));
((Cs1i
| (
dom p))
. (
IC S))
= (Cs1i
. (
IC S)) & ((Cs2i
| (
dom p))
. (
IC S))
= (Cs2i
. (
IC S)) by
Th6,
FUNCT_1: 49;
hence contradiction by
A10,
A3,
A4,
A1,
A2,
EXTPRO_1:def 10;
end;
thus (
CurInstr (P1,(
Comput (P1,s1,i))))
= (P1
. (
IC Cs1i)) by
A7,
A5,
PARTFUN1:def 6
.= (q
. (
IC Cs1i)) by
A7,
A3,
GRFUNC_1: 2
.= (P2
. (
IC Cs2i)) by
A8,
A4,
A9,
GRFUNC_1: 2
.= (
CurInstr (P2,(
Comput (P2,s2,i)))) by
A8,
A6,
PARTFUN1:def 6;
end;
reserve S for
relocable
IC-recognized
CurIns-recognized
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
theorem ::
AMISTD_5:8
for k be
Nat holds for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st (
IC S)
in (
dom p) holds for s be
State of S st p
c= s holds for P be
Instruction-Sequence of S st q
c= P holds for i be
Nat holds (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i))
= (
IncIC ((
Comput (P,s,i)),k))
proof
let k be
Nat;
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic
FinPartState of S such that
A1: (
IC S)
in (
dom p);
let s be
State of S such that
A2: p
c= s;
let P be
Instruction-Sequence of S;
assume
A3: q
c= P;
defpred
P[
Nat] means (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),$1))
= (
IncIC ((
Comput (P,s,$1)),k));
A4: for i be
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be
Nat such that
A5: (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i))
= (
IncIC ((
Comput (P,s,i)),k));
reconsider kk = (
IC (
Comput (P,s,i))) as
Nat;
A6: (
IC S)
in (
dom (
Start-At (((
IC (
Comput (P,s,i)))
+ k),S))) by
TARSKI:def 1;
A7: (
IC (
IncIC ((
Comput (P,s,i)),k)))
= (
IC (
Start-At (((
IC (
Comput (P,s,i)))
+ k),S))) by
A6,
FUNCT_4: 13
.= ((
IC (
Comput (P,s,i)))
+ k) by
FUNCOP_1: 72;
not p is
empty by
A1;
then
A8: (
IC (
Comput (P,s,i)))
in (
dom q) by
A3,
Def4,
A2;
then
A9: (
IC (
Comput (P,s,i)))
in (
dom (
IncAddr (q,k))) by
COMPOS_1:def 21;
A10: (q
/. kk)
= (q
. (
IC (
Comput (P,s,i)))) by
A8,
PARTFUN1:def 6
.= (P
. (
IC (
Comput (P,s,i)))) by
A8,
A3,
GRFUNC_1: 2;
reconsider kk = (
IC (
Comput (P,s,i))) as
Nat;
A11: ((
IC (
Comput (P,s,i)))
+ k)
in (
dom (
Reloc (q,k))) by
A8,
COMPOS_1: 46;
A12: (
CurInstr ((P
+* (
Reloc (q,k))),(
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i))))
= ((P
+* (
Reloc (q,k)))
. (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) by
PBOOLE: 143
.= ((
Reloc (q,k))
. ((
IC (
Comput (P,s,i)))
+ k)) by
A5,
A7,
A11,
FUNCT_4: 13
.= ((
IncAddr (q,k))
. kk) by
A9,
VALUED_1:def 12
.= (
IncAddr ((q
/. kk),k)) by
A8,
COMPOS_1:def 21
.= (
IncAddr ((
CurInstr (P,(
Comput (P,s,i)))),k)) by
A10,
PBOOLE: 143;
thus (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),(i
+ 1)))
= (
Following ((P
+* (
Reloc (q,k))),(
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) by
EXTPRO_1: 3
.= (
IncIC ((
Following (P,(
Comput (P,s,i)))),k)) by
A5,
A12,
Th4
.= (
IncIC ((
Comput (P,s,(i
+ 1))),k)) by
EXTPRO_1: 3;
end;
A13: (
IC p)
= (
IC s) by
A2,
A1,
GRFUNC_1: 2;
A14: (
DataPart p)
c= p by
MEMSTR_0: 12;
(
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),
0 ))
= (s
+* ((
DataPart p)
+* (
Start-At (((
IC p)
+ k),S)))) by
A1,
MEMSTR_0: 56
.= ((s
+* (
DataPart p))
+* (
Start-At (((
IC p)
+ k),S))) by
FUNCT_4: 14
.= (
IncIC ((
Comput (P,s,
0 )),k)) by
A13,
A14,
A2,
FUNCT_4: 98,
XBOOLE_1: 1;
then
A15:
P[
0 ];
thus for i be
Nat holds
P[i] from
NAT_1:sch 2(
A15,
A4);
end;
theorem ::
AMISTD_5:9
Th9: for k be
Nat holds for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st (
IC S)
in (
dom p) holds for s be
State of S st (
IncIC (p,k))
c= s holds for P be
Instruction-Sequence of S st (
Reloc (q,k))
c= P holds for i be
Nat holds (
Comput (P,s,i))
= (
IncIC ((
Comput ((P
+* q),(s
+* p),i)),k))
proof
let k be
Nat;
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic
FinPartState of S such that
A1: (
IC S)
in (
dom p);
let s be
State of S such that
A2: (
IncIC (p,k))
c= s;
let P be
Instruction-Sequence of S such that
A3: (
Reloc (q,k))
c= P;
defpred
Z[
Nat] means (
Comput (P,s,$1))
= (
IncIC ((
Comput ((P
+* q),(s
+* p),$1)),k));
A4: for i be
Nat st
Z[i] holds
Z[(i
+ 1)]
proof
let i be
Nat such that
A5: (
Comput (P,s,i))
= (
IncIC ((
Comput ((P
+* q),(s
+* p),i)),k));
reconsider kk = (
IC (
Comput ((P
+* q),(s
+* p),i))) as
Nat;
A6: (
IC S)
in (
dom (
Start-At (((
IC (
Comput ((P
+* q),(s
+* p),i)))
+ k),S))) by
TARSKI:def 1;
A7: p
c= (s
+* p) by
FUNCT_4: 25;
A8: q
c= (P
+* q) by
FUNCT_4: 25;
not p is
empty by
A1;
then
A9: (
IC (
Comput ((P
+* q),(s
+* p),i)))
in (
dom q) by
Def4,
A7,
A8;
then
A10: (
IC (
Comput ((P
+* q),(s
+* p),i)))
in (
dom (
IncAddr (q,k))) by
COMPOS_1:def 21;
A11: ((
IC (
Comput ((P
+* q),(s
+* p),i)))
+ k)
in (
dom (
Reloc (q,k))) by
A9,
COMPOS_1: 46;
reconsider kk = (
IC (
Comput ((P
+* q),(s
+* p),i))) as
Nat;
A12: (
IC (
Comput (P,s,i)))
= (
IC (
Start-At (((
IC (
Comput ((P
+* q),(s
+* p),i)))
+ k),S))) by
A5,
A6,
FUNCT_4: 13
.= ((
IC (
Comput ((P
+* q),(s
+* p),i)))
+ k) by
FUNCOP_1: 72;
A13: q
c= (P
+* q) by
FUNCT_4: 25;
A14: (q
/. kk)
= (q
. kk) by
A9,
PARTFUN1:def 6;
A15: (
dom (P
+* q))
=
NAT by
PARTFUN1:def 2;
(
dom P)
=
NAT by
PARTFUN1:def 2;
then
A16: (
CurInstr (P,(
Comput (P,s,i))))
= (P
. (
IC (
Comput (P,s,i)))) by
PARTFUN1:def 6
.= ((
Reloc (q,k))
. (
IC (
Comput (P,s,i)))) by
A3,
A11,
A12,
GRFUNC_1: 2
.= ((
IncAddr (q,k))
. kk) by
A10,
A12,
VALUED_1:def 12
.= (
IncAddr ((q
/. kk),k)) by
A9,
COMPOS_1:def 21
.= (
IncAddr (((P
+* q)
. (
IC (
Comput ((P
+* q),(s
+* p),i)))),k)) by
A9,
A14,
A13,
GRFUNC_1: 2
.= (
IncAddr ((
CurInstr ((P
+* q),(
Comput ((P
+* q),(s
+* p),i)))),k)) by
A15,
PARTFUN1:def 6;
thus (
Comput (P,s,(i
+ 1)))
= (
Following (P,(
Comput (P,s,i)))) by
EXTPRO_1: 3
.= (
IncIC ((
Following ((P
+* q),(
Comput ((P
+* q),(s
+* p),i)))),k)) by
A5,
A16,
Th4
.= (
IncIC ((
Comput ((P
+* q),(s
+* p),(i
+ 1))),k)) by
EXTPRO_1: 3;
end;
set IP = (
Start-At ((
IC p),S));
A17: (
dom (
Start-At ((
IC p),S)))
=
{(
IC S)};
A18: (
Start-At (((
IC p)
+ k),S))
c= (
IncIC (p,k)) by
MEMSTR_0: 55;
A19: (
IC (
Comput ((P
+* q),(s
+* p),
0 )))
= (
IC p) by
A1,
FUNCT_4: 13;
set DP = (
DataPart p);
(
DataPart (
IncIC (p,k)))
c= (
IncIC (p,k)) by
RELAT_1: 59;
then (
DataPart (
IncIC (p,k)))
c= s by
A2,
XBOOLE_1: 1;
then
A20: (
DataPart p)
c= s by
MEMSTR_0: 51;
set PR = (
Reloc (q,k));
set IS = (
Start-At (((
IC (
Comput ((P
+* q),(s
+* p),
0 )))
+ k),S));
A21: (
dom (
Start-At (((
IC (
Comput ((P
+* q),(s
+* p),
0 )))
+ k),S)))
=
{(
IC S)};
(
Comput (P,s,
0 ))
= (s
+* IS) by
A19,
A2,
A18,
FUNCT_4: 98,
XBOOLE_1: 1
.= ((s
+* DP)
+* IS) by
A20,
FUNCT_4: 98
.= (((s
+* DP)
+* IP)
+* IS) by
A21,
A17,
FUNCT_4: 74
.= ((s
+* (DP
+* IP))
+* IS) by
FUNCT_4: 14
.= (
IncIC ((
Comput ((P
+* q),(s
+* p),
0 )),k)) by
A1,
MEMSTR_0: 26;
then
A22:
Z[
0 ];
thus for i be
Nat holds
Z[i] from
NAT_1:sch 2(
A22,
A4);
end;
reserve m,j for
Nat;
theorem ::
AMISTD_5:10
Th10: for k be
Nat holds for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be non
empty
FinPartState of S st (
IC S)
in (
dom p) holds for s be
State of S st p
c= s & (
IncIC (p,k)) is (
Reloc (q,k))
-autonomic holds for P be
Instruction-Sequence of S st q
c= P holds for i be
Nat holds (
Comput (P,s,i))
= (
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)),k))
proof
let k be
Nat;
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be non
empty
FinPartState of S;
assume
A1: (
IC S)
in (
dom p);
then
A2: (
Start-At ((
IC p),S))
c= p by
FUNCOP_1: 84;
let s be
State of S such that
A3: p
c= s and
A4: (
IncIC (p,k)) is (
Reloc (q,k))
-autonomic;
let P be
Instruction-Sequence of S such that
A5: q
c= P;
defpred
Z[
Nat] means (
Comput (P,s,$1))
= (
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),$1)),k));
A6: for i be
Nat st
Z[i] holds
Z[(i
+ 1)]
proof
reconsider pp = q as
preProgram of S;
let i be
Nat such that
A7: (
Comput (P,s,i))
= (
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)),k));
reconsider kk = (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i))) as
Nat;
reconsider jk = (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i))) as
Nat;
A8: (
IncIC (p,k))
c= (s
+* (
IncIC (p,k))) by
FUNCT_4: 25;
A9: (
Reloc (q,k))
c= (P
+* (
Reloc (q,k))) by
FUNCT_4: 25;
A10: (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))
in (
dom (
Reloc (q,k))) by
A4,
Def4,
A8,
A9;
then
A11: jk
in { (j
+ k) where j be
Nat : j
in (
dom q) } by
COMPOS_1: 33;
A12: (
IC S)
in (
dom (
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))
-' k),S))) by
TARSKI:def 1;
consider j be
Nat such that
A13: jk
= (j
+ k) and
A14: j
in (
dom q) by
A11;
A15: (
dom (P
+* (
Reloc (q,k))))
=
NAT by
PARTFUN1:def 2;
A16: (
Reloc (q,k))
c= (P
+* (
Reloc (q,k))) by
FUNCT_4: 25;
A17: (
Reloc (q,k))
= (
IncAddr ((
Shift (q,k)),k)) by
COMPOS_1: 34;
(
dom (
Shift (pp,k)))
= { (m
+ k) where m be
Nat : m
in (
dom pp) } by
VALUED_1:def 12;
then
A18: (j
+ k)
in (
dom (
Shift (q,k))) by
A14;
then
A19: (
IncAddr (((
Shift (q,k))
/. kk),k))
= ((
Reloc (q,k))
. (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) by
A13,
A17,
COMPOS_1:def 21
.= ((P
+* (
Reloc (q,k)))
. (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) by
A10,
A16,
GRFUNC_1: 2
.= (
CurInstr ((P
+* (
Reloc (q,k))),(
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) by
A15,
PARTFUN1:def 6;
A20: ((j
+ k)
-' k)
= j by
NAT_D: 34;
A21: (
dom P)
=
NAT by
PARTFUN1:def 2;
A22: (
IC (
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)),k)))
= ((
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))
-' k),S))
. (
IC S)) by
A12,
FUNCT_4: 13
.= ((
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))
-' k) by
FUNCOP_1: 72;
(
CurInstr (P,(
Comput (P,s,i))))
= (P
. (
IC (
Comput (P,s,i)))) by
A21,
PARTFUN1:def 6
.= (q
. (
IC (
Comput (P,s,i)))) by
A7,
A13,
A14,
A20,
A5,
A22,
GRFUNC_1: 2
.= ((
Shift (q,k))
. (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) by
A13,
A14,
A20,
A7,
A22,
VALUED_1:def 12
.= ((
Shift (q,k))
/. kk) by
A13,
A18,
PARTFUN1:def 6;
then
A23: (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),(i
+ 1)))
= (
Following ((P
+* (
Reloc (q,k))),(
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))) & (
Exec ((
CurInstr (P,(
Comput (P,s,i)))),(
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)),k))))
= (
DecIC ((
Following ((P
+* (
Reloc (q,k))),(
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),i)))),k)) by
A13,
A19,
Th5,
EXTPRO_1: 3;
thus (
Comput (P,s,(i
+ 1)))
= (
Following (P,(
Comput (P,s,i)))) by
EXTPRO_1: 3
.= (
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),(i
+ 1))),k)) by
A7,
A23;
end;
A24: (
IC S)
in (
dom (
IncIC (p,k))) by
MEMSTR_0: 52;
A25: (
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),
0 )))
= (
IC (
IncIC (p,k))) by
A24,
FUNCT_4: 13;
A26: (
DataPart p)
c= p by
RELAT_1: 59;
set DP = (
DataPart p);
set IP = (
Start-At (((
IC p)
+ k),S));
set PP = q;
set IS = (
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),
0 )))
-' k),S));
A27: (
dom (
Start-At (((
IC p)
+ k),S)))
=
{(
IC S)};
set PR = (
Reloc (q,k));
set SD = (s
| (
dom (
Reloc (q,k))));
A28:
{(
IC S)}
misses (
dom (
DataPart p)) by
MEMSTR_0: 4;
A29: (
dom (
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),
0 )))
-' k),S)))
=
{(
IC S)};
A30: (
dom IP)
misses (
dom DP) by
A28;
A31: (IP
+* DP)
= (DP
+* IP) by
A30,
FUNCT_4: 35
.= (
IncIC (p,k)) by
A1,
MEMSTR_0: 56;
(
Comput (P,s,
0 ))
= (s
+* (
Start-At ((
IC p),S))) by
A3,
A2,
FUNCT_4: 98,
XBOOLE_1: 1
.= (s
+* (
Start-At ((((
IC p)
+ k)
-' k),S))) by
NAT_D: 34
.= (s
+* IS) by
A25,
MEMSTR_0: 53
.= ((s
+* DP)
+* IS) by
A26,
A3,
FUNCT_4: 98,
XBOOLE_1: 1
.= (((s
+* DP)
+* IP)
+* IS) by
A29,
A27,
FUNCT_4: 74
.= ((s
+* (DP
+* IP))
+* IS) by
FUNCT_4: 14
.= (
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s
+* (
IncIC (p,k))),
0 )),k)) by
A31,
A27,
A28,
FUNCT_4: 35;
then
A32:
Z[
0 ];
thus for i be
Nat holds
Z[i] from
NAT_1:sch 2(
A32,
A6);
end;
theorem ::
AMISTD_5:11
Th11: for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be non
empty
FinPartState of S st (
IC S)
in (
dom p) holds for k be
Nat holds p is q
-autonomic iff (
IncIC (p,k)) is (
Reloc (q,k))
-autonomic
proof
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be non
empty
FinPartState of S such that
A1: (
IC S)
in (
dom p);
let k be
Nat;
hereby
assume
A2: p is q
-autonomic;
thus (
IncIC (p,k)) is (
Reloc (q,k))
-autonomic
proof
let P,Q be
Instruction-Sequence of S such that
A3: (
Reloc (q,k))
c= P and
A4: (
Reloc (q,k))
c= Q;
let s1,s2 be
State of S such that
A5: (
IncIC (p,k))
c= s1 and
A6: (
IncIC (p,k))
c= s2;
let i be
Nat;
A7: (
dom (
Start-At (((
IC (
Comput ((Q
+* q),(s2
+* p),i)))
+ k),S)))
=
{(
IC S)};
A8: (
dom (
DataPart p))
misses (
dom (
Start-At (((
IC (
Comput ((Q
+* q),(s2
+* p),i)))
+ k),S))) by
MEMSTR_0: 4;
A9: (
dom (
Start-At (((
IC (
Comput ((P
+* q),(s1
+* p),i)))
+ k),S)))
=
{(
IC S)};
A10: (
dom (
DataPart p))
misses (
dom (
Start-At (((
IC (
Comput ((P
+* q),(s1
+* p),i)))
+ k),S))) by
MEMSTR_0: 4;
A11: q
c= (P
+* q) & q
c= (Q
+* q) by
FUNCT_4: 25;
p
c= (s1
+* p) & p
c= (s2
+* p) by
FUNCT_4: 25;
then
A12: ((
Comput ((P
+* q),(s1
+* p),i))
| (
dom p))
= ((
Comput ((Q
+* q),(s2
+* p),i))
| (
dom p)) by
A2,
A11;
A13: (
DataPart p)
c= p by
MEMSTR_0: 12;
A14: ((
Comput (P,s1,i))
| (
dom (
DataPart p)))
= ((
IncIC ((
Comput ((P
+* q),(s1
+* p),i)),k))
| (
dom (
DataPart p))) by
A1,
A2,
A5,
Th9,
A3
.= ((
Comput ((P
+* q),(s1
+* p),i))
| (
dom (
DataPart p))) by
A10,
FUNCT_4: 72
.= ((
Comput ((Q
+* q),(s2
+* p),i))
| (
dom (
DataPart p))) by
A12,
A13,
RELAT_1: 11,
RELAT_1: 153
.= ((
IncIC ((
Comput ((Q
+* q),(s2
+* p),i)),k))
| (
dom (
DataPart p))) by
A8,
FUNCT_4: 72
.= ((
Comput (Q,s2,i))
| (
dom (
DataPart p))) by
A1,
A2,
A6,
Th9,
A4;
A15:
{(
IC S)}
c= (
dom p) by
A1,
ZFMISC_1: 31;
A16: (
Start-At ((
IC (
Comput ((P
+* q),(s1
+* p),i))),S))
= ((
Comput ((P
+* q),(s1
+* p),i))
|
{(
IC S)}) by
MEMSTR_0: 18
.= ((
Comput ((Q
+* q),(s2
+* p),i))
|
{(
IC S)}) by
A12,
A15,
RELAT_1: 153
.= (
Start-At ((
IC (
Comput ((Q
+* q),(s2
+* p),i))),S)) by
MEMSTR_0: 18;
A18: ((
Comput (P,s1,i))
| (
dom (
Start-At (((
IC p)
+ k),S))))
= ((
IncIC ((
Comput ((P
+* q),(s1
+* p),i)),k))
| (
dom (
Start-At (((
IC p)
+ k),S)))) by
A1,
A2,
A5,
Th9,
A3
.= (
Start-At (((
IC (
Comput ((P
+* q),(s1
+* p),i)))
+ k),S)) by
A9
.= (
Start-At (((
IC (
Comput ((Q
+* q),(s2
+* p),i)))
+ k),S)) by
A16,
MEMSTR_0: 21
.= ((
IncIC ((
Comput ((Q
+* q),(s2
+* p),i)),k))
| (
dom (
Start-At (((
IC p)
+ k),S)))) by
A7
.= ((
Comput (Q,s2,i))
| (
dom (
Start-At (((
IC p)
+ k),S)))) by
A1,
A2,
A6,
Th9,
A4;
A20: (
dom p)
= (
{(
IC S)}
\/ (
dom (
DataPart p))) by
A1,
MEMSTR_0: 24;
A21: ((
Comput (P,s1,i))
| (
dom p))
= (((
Comput (P,s1,i))
|
{(
IC S)})
\/ ((
Comput (P,s1,i))
| (
dom (
DataPart p)))) by
A20,
RELAT_1: 78
.= ((
Comput (Q,s2,i))
| (
dom p)) by
A20,
A14,
A18,
RELAT_1: 78;
A22: (
dom (
IncIC (p,k)))
= ((
dom p)
\/ (
dom (
Start-At (((
IC p)
+ k),S)))) by
FUNCT_4:def 1;
A23: ((
Comput (P,s1,i))
| (
dom (
IncIC (p,k))))
= (((
Comput (P,s1,i))
| (
dom p))
\/ ((
Comput (P,s1,i))
| (
dom (
Start-At (((
IC p)
+ k),S))))) by
A22,
RELAT_1: 78
.= ((
Comput (Q,s2,i))
| (
dom (
IncIC (p,k)))) by
A22,
A18,
A21,
RELAT_1: 78;
thus ((
Comput (P,s1,i))
| (
dom (
IncIC (p,k))))
= ((
Comput (Q,s2,i))
| (
dom (
IncIC (p,k)))) by
A23;
end;
end;
assume
A24: (
IncIC (p,k)) is (
Reloc (q,k))
-autonomic;
A25: (
DataPart p)
c= (
IncIC (p,k)) by
MEMSTR_0: 62;
let P,Q be
Instruction-Sequence of S such that
A26: q
c= P and
A27: q
c= Q;
A28: (
Reloc (q,k))
c= (P
+* (
Reloc (q,k))) & (
Reloc (q,k))
c= (Q
+* (
Reloc (q,k))) by
FUNCT_4: 25;
let s1,s2 be
State of S such that
A29: p
c= s1 and
A30: p
c= s2;
let i be
Nat;
(
IncIC (p,k))
c= (s1
+* (
IncIC (p,k))) & (
IncIC (p,k))
c= (s2
+* (
IncIC (p,k))) by
FUNCT_4: 25;
then
A31: ((
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i))
| (
dom (
IncIC (p,k))))
= ((
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i))
| (
dom (
IncIC (p,k)))) by
A24,
A28;
A32: (
dom (
Start-At (((
IC (
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i)))
-' k),S)))
=
{(
IC S)};
A33: (
dom (
DataPart p))
misses (
dom (
Start-At (((
IC (
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i)))
-' k),S))) by
MEMSTR_0: 4;
A34: (
dom (
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i)))
-' k),S)))
=
{(
IC S)};
A35: (
dom (
DataPart p))
misses (
dom (
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i)))
-' k),S))) by
MEMSTR_0: 4;
A36: ((
Comput (P,s1,i))
| (
dom (
DataPart p)))
= ((
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i)),k))
| (
dom (
DataPart p))) by
A1,
A24,
A29,
Th10,
A26
.= ((
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i))
| (
dom (
DataPart p))) by
A35,
FUNCT_4: 72
.= ((
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i))
| (
dom (
DataPart p))) by
A31,
A25,
RELAT_1: 11,
RELAT_1: 153
.= ((
DecIC ((
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i)),k))
| (
dom (
DataPart p))) by
A33,
FUNCT_4: 72
.= ((
Comput (Q,s2,i))
| (
dom (
DataPart p))) by
A1,
A24,
A30,
Th10,
A27;
(
IC S)
in (
dom (
IncIC (p,k))) by
MEMSTR_0: 52;
then
A37:
{(
IC S)}
c= (
dom (
IncIC (p,k))) by
ZFMISC_1: 31;
A38: (
Start-At ((
IC (
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i))),S))
= ((
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i))
|
{(
IC S)}) by
MEMSTR_0: 18
.= ((
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i))
|
{(
IC S)}) by
A31,
A37,
RELAT_1: 153
.= (
Start-At ((
IC (
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i))),S)) by
MEMSTR_0: 18;
A40: ((
Comput (P,s1,i))
| (
dom (
Start-At ((
IC p),S))))
= ((
DecIC ((
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i)),k))
| (
dom (
Start-At ((
IC p),S)))) by
A1,
A24,
A29,
Th10,
A26
.= (
Start-At (((
IC (
Comput ((P
+* (
Reloc (q,k))),(s1
+* (
IncIC (p,k))),i)))
-' k),S)) by
A34
.= (
Start-At (((
IC (
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i)))
-' k),S)) by
A38,
MEMSTR_0: 22
.= ((
DecIC ((
Comput ((Q
+* (
Reloc (q,k))),(s2
+* (
IncIC (p,k))),i)),k))
| (
dom (
Start-At ((
IC p),S)))) by
A32
.= ((
Comput (Q,s2,i))
| (
dom (
Start-At ((
IC p),S)))) by
A1,
A24,
A30,
Th10,
A27;
thus ((
Comput (P,s1,i))
| (
dom p))
= ((
Comput (P,s1,i))
| (
dom ((
Start-At ((
IC p),S))
+* (
DataPart p)))) by
A1,
MEMSTR_0: 19
.= ((
Comput (P,s1,i))
| ((
dom (
Start-At ((
IC p),S)))
\/ (
dom (
DataPart p)))) by
FUNCT_4:def 1
.= (((
Comput (Q,s2,i))
| (
dom (
Start-At ((
IC p),S))))
\/ ((
Comput (Q,s2,i))
| (
dom (
DataPart p)))) by
A36,
A40,
RELAT_1: 78
.= ((
Comput (Q,s2,i))
| ((
dom (
Start-At ((
IC p),S)))
\/ (
dom (
DataPart p)))) by
RELAT_1: 78
.= ((
Comput (Q,s2,i))
| (
dom ((
Start-At ((
IC p),S))
+* (
DataPart p)))) by
FUNCT_4:def 1
.= ((
Comput (Q,s2,i))
| (
dom p)) by
A1,
MEMSTR_0: 19;
end;
definition
let N, S;
::
AMISTD_5:def5
attr S is
relocable1 means
:
Def5: for k be
Nat holds for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of S, s1,s2 be
State of S st p
c= s1 & (
IncIC (p,k))
c= s2 holds for P1,P2 be
Instruction-Sequence of S st q
c= P1 & (
Reloc (q,k))
c= P2 holds for i be
Nat holds (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,i)))),k))
= (
CurInstr (P2,(
Comput (P2,s2,i))));
::
AMISTD_5:def6
attr S is
relocable2 means
:
Def6: for k be
Nat holds for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of S, s1,s2 be
State of S st p
c= s1 & (
IncIC (p,k))
c= s2 holds for P1,P2 be
Instruction-Sequence of S st q
c= P1 & (
Reloc (q,k))
c= P2 holds for i be
Nat holds ((
Comput (P1,s1,i))
| (
dom (
DataPart p)))
= ((
Comput (P2,s2,i))
| (
dom (
DataPart p)));
end
Lm1: for k be
Nat holds for q be non
halt-free
finitethe
InstructionsF of (
STC N)
-valued
NAT
-defined
Function holds for p be non
emptyq
-autonomic
FinPartState of (
STC N), s1,s2 be
State of (
STC N) st p
c= s1 & (
IncIC (p,k))
c= s2 holds for P1,P2 be
Instruction-Sequence of (
STC N) st q
c= P1 & (
Reloc (q,k))
c= P2 holds for i be
Nat holds ((
IC (
Comput (P1,s1,i)))
+ k)
= (
IC (
Comput (P2,s2,i))) & (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,i)))),k))
= (
CurInstr (P2,(
Comput (P2,s2,i))))
proof
let k be
Nat;
let q be non
halt-free
finitethe
InstructionsF of (
STC N)
-valued
NAT
-defined
Function;
let p be non
emptyq
-autonomic
FinPartState of (
STC N), s1,s2 be
State of (
STC N) such that
A1: p
c= s1 and
A2: (
IncIC (p,k))
c= s2;
A3: (
IC (
STC N))
in (
dom p) by
Th6;
let P1,P2 be
Instruction-Sequence of (
STC N) such that
A4: q
c= P1 & (
Reloc (q,k))
c= P2;
set s3 = (s1
+* (
DataPart s2));
defpred
Z[
Nat] means ((
IC (
Comput (P1,s1,$1)))
+ k)
= (
IC (
Comput (P2,s2,$1))) & (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,$1)))),k))
= (
CurInstr (P2,(
Comput (P2,s2,$1))));
A5: for i be
Nat st
Z[i] holds
Z[(i
+ 1)]
proof
set DPp = (
DataPart p);
let i be
Nat such that
A6: ((
IC (
Comput (P1,s1,i)))
+ k)
= (
IC (
Comput (P2,s2,i))) and
A7: (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,i)))),k))
= (
CurInstr (P2,(
Comput (P2,s2,i))));
set Cs2i1 = (
Comput (P2,s2,(i
+ 1)));
set Cs3i = (
Comput (P1,s3,i));
set Cs2i = (
Comput (P2,s2,i));
set Cs3i1 = (
Comput (P1,s3,(i
+ 1)));
set Cs1i1 = (
Comput (P1,s1,(i
+ 1)));
set Cs1i = (
Comput (P1,s1,i));
A8:
now
reconsider loc = (
IC Cs1i1) as
Nat;
assume
A9: ((
IC (
Comput (P1,s1,(i
+ 1))))
+ k)
= (
IC (
Comput (P2,s2,(i
+ 1))));
reconsider kk = loc as
Nat;
A10: loc
in (
dom q) by
Def4,
A4,
A1;
A11: (loc
+ k)
in (
dom (
Reloc (q,k))) by
A10,
COMPOS_1: 46;
A12: (
dom P2)
=
NAT by
PARTFUN1:def 2;
(
dom P1)
=
NAT by
PARTFUN1:def 2;
then (
CurInstr (P1,Cs1i1))
= (P1
. loc) by
PARTFUN1:def 6
.= (q
. loc) by
A10,
A4,
GRFUNC_1: 2;
hence (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,(i
+ 1))))),k))
= ((
Reloc (q,k))
. (loc
+ k)) by
A10,
COMPOS_1: 35
.= (P2
. (
IC (
Comput (P2,s2,(i
+ 1))))) by
A9,
A11,
A4,
GRFUNC_1: 2
.= (
CurInstr (P2,(
Comput (P2,s2,(i
+ 1))))) by
A12,
PARTFUN1:def 6;
end;
set I = (
CurInstr (P1,Cs1i));
A13: Cs2i1
= (
Following (P2,Cs2i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P2,Cs2i)),Cs2i));
reconsider j = (
IC Cs1i) as
Nat;
A14: Cs1i1
= (
Following (P1,Cs1i)) by
EXTPRO_1: 3
.= (
Exec ((
CurInstr (P1,Cs1i)),Cs1i));
A15: the
InstructionsF of (
STC N)
=
{
[
0 ,
0 ,
0 ],
[1,
0 ,
0 ]} by
AMISTD_1:def 7;
per cases by
A15,
TARSKI:def 2;
suppose I
=
[
0 ,
0 ,
0 ];
then
A16: I
= (
halt (
STC N));
thus ((
IC (
Comput (P1,s1,(i
+ 1))))
+ k)
= ((
IC Cs1i)
+ k) by
A14,
A16,
EXTPRO_1:def 3
.= (
IC (
Comput (P2,s2,(i
+ 1)))) by
A6,
A13,
A16,
A7,
EXTPRO_1:def 3;
hence (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,(i
+ 1))))),k))
= (
CurInstr (P2,(
Comput (P2,s2,(i
+ 1))))) by
A8;
end;
suppose I
=
[1,
0 ,
0 ];
then
A17: (
InsCode I)
= 1;
then
A18: (
Exec (I,Cs2i))
= (
IncIC (Cs2i,1)) by
AMISTD_1: 20;
thus ((
IC (
Comput (P1,s1,(i
+ 1))))
+ k)
= (((
IC Cs1i)
+ 1)
+ k) by
A14,
A17,
AMISTD_1: 9
.= (
IC (
Exec (I,Cs2i))) by
A18,
A6,
MEMSTR_0: 53
.= (
IC (
Comput (P2,s2,(i
+ 1)))) by
A13,
A7,
COMPOS_0: 4;
hence (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,(i
+ 1))))),k))
= (
CurInstr (P2,(
Comput (P2,s2,(i
+ 1))))) by
A8;
end;
end;
A19: (
IC (
STC N))
in (
dom (
IncIC (p,k))) by
MEMSTR_0: 52;
now
thus ((
IC (
Comput (P1,s1,
0 )))
+ k)
= ((
IC p)
+ k) by
A1,
A3,
GRFUNC_1: 2
.= (
IC (
IncIC (p,k))) by
MEMSTR_0: 53
.= (
IC (
Comput (P2,s2,
0 ))) by
A2,
A19,
GRFUNC_1: 2;
reconsider loc = (
IC p) as
Nat;
A20: (
IC p)
= (
IC s1) by
A1,
A3,
GRFUNC_1: 2;
(
IC p)
= (
IC (
Comput (P1,s1,
0 ))) by
A1,
A3,
GRFUNC_1: 2;
then
A21: loc
in (
dom q) by
Def4,
A4,
A1;
A22: ((
IC p)
+ k)
in (
dom (
Reloc (q,k))) by
A21,
COMPOS_1: 46;
A23: (
IC (
STC N))
in (
dom (
IncIC (p,k))) by
MEMSTR_0: 52;
A24: (q
. (
IC p))
= (P1
. (
IC s1)) by
A20,
A21,
A4,
GRFUNC_1: 2;
(
dom P2)
=
NAT by
PARTFUN1:def 2;
then
A25: (
CurInstr (P2,(
Comput (P2,s2,
0 ))))
= (P2
. (
IC (
Comput (P2,s2,
0 )))) by
PARTFUN1:def 6
.= (P2
. (
IC (
IncIC (p,k)))) by
A2,
A23,
GRFUNC_1: 2
.= (P2
. ((
IC p)
+ k)) by
MEMSTR_0: 53
.= ((
Reloc (q,k))
. ((
IC p)
+ k)) by
A22,
A4,
GRFUNC_1: 2;
A26: (
dom P1)
=
NAT by
PARTFUN1:def 2;
(
CurInstr (P1,(
Comput (P1,s1,
0 ))))
= (P1
. (
IC s1)) by
A26,
PARTFUN1:def 6;
hence (
IncAddr ((
CurInstr (P1,(
Comput (P1,s1,
0 )))),k))
= (
CurInstr (P2,(
Comput (P2,s2,
0 )))) by
A25,
A21,
A24,
COMPOS_1: 35;
end;
then
A27:
Z[
0 ];
thus for i be
Nat holds
Z[i] from
NAT_1:sch 2(
A27,
A5);
end;
registration
let N;
cluster (
STC N) ->
relocable1
relocable2;
coherence by
Lm1;
end
registration
let N be
with_zero
set;
cluster
relocable1
relocable2 for
relocable
IC-recognized
CurIns-recognized
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
existence
proof
take (
STC N);
thus thesis;
end;
end
reserve S for
relocable1
relocable2
relocable
IC-recognized
CurIns-recognized
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
theorem ::
AMISTD_5:12
Th12: for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic non
empty
FinPartState of S, k be
Nat st (
IC S)
in (
dom p) holds p is q
-halted iff (
IncIC (p,k)) is (
Reloc (q,k))
-halted
proof
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic non
empty
FinPartState of S, k be
Nat;
assume (
IC S)
in (
dom p);
hereby
assume
A1: p is q
-halted;
thus (
IncIC (p,k)) is (
Reloc (q,k))
-halted
proof
let t be
State of S;
assume
A2: (
IncIC (p,k))
c= t;
let P be
Instruction-Sequence of S such that
A3: (
Reloc (q,k))
c= P;
reconsider Q = (P
+* q) as
Instruction-Sequence of S;
set s = (t
+* p);
A4: q
c= Q by
FUNCT_4: 25;
A5: p
c= (t
+* p) by
FUNCT_4: 25;
then Q
halts_on s by
A1,
A4;
then
consider u be
Nat such that
A6: (
CurInstr (Q,(
Comput (Q,s,u))))
= (
halt S);
take u;
(
dom P)
=
NAT by
PARTFUN1:def 2;
hence (
IC (
Comput (P,t,u)))
in (
dom P);
(
CurInstr (P,(
Comput (P,t,u))))
= (
IncAddr ((
halt S),k)) by
A2,
A6,
Def5,
A3,
A4,
A5
.= (
halt S) by
COMPOS_0: 4;
hence thesis;
end;
end;
assume
A7: (
IncIC (p,k)) is (
Reloc (q,k))
-halted;
let t be
State of S;
assume
A8: p
c= t;
let P be
Instruction-Sequence of S such that
A9: q
c= P;
reconsider Q = (P
+* (
Reloc (q,k))) as
Instruction-Sequence of S;
set s = (t
+* (
IncIC (p,k)));
A10: (
Reloc (q,k))
c= Q by
FUNCT_4: 25;
A11: (
IncIC (p,k))
c= (t
+* (
IncIC (p,k))) by
FUNCT_4: 25;
then Q
halts_on s by
A7,
A10;
then
consider u be
Nat such that
A12: (
CurInstr (Q,(
Comput (Q,s,u))))
= (
halt S);
take u;
(
dom P)
=
NAT by
PARTFUN1:def 2;
hence (
IC (
Comput (P,t,u)))
in (
dom P);
(
IncAddr ((
CurInstr (P,(
Comput (P,t,u)))),k))
= (
halt S) by
A8,
A12,
Def5,
A11,
A9,
A10
.= (
IncAddr ((
halt S),k)) by
COMPOS_0: 4;
hence (
CurInstr (P,(
Comput (P,t,u))))
= (
halt S) by
COMPOS_0: 6;
end;
theorem ::
AMISTD_5:13
Th13: for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-haltedq
-autonomic non
empty
FinPartState of S st (
IC S)
in (
dom p) holds for k be
Nat holds (
DataPart (
Result (q,p)))
= (
DataPart (
Result ((
Reloc (q,k)),(
IncIC (p,k)))))
proof
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-haltedq
-autonomic non
empty
FinPartState of S such that
A1: (
IC S)
in (
dom p);
let k be
Nat;
consider s be
State of S such that
A2: p
c= s by
PBOOLE: 141;
consider P be
Instruction-Sequence of S such that
A3: q
c= P by
PBOOLE: 145;
A4: (
IncIC (p,k)) is (
Reloc (q,k))
-halted(
Reloc (q,k))
-autonomic by
A1,
Th12,
Th11;
A5: (
IncIC (p,k)) is
Autonomy of (
Reloc (q,k)) by
A4,
EXTPRO_1:def 12;
P
halts_on s by
A2,
A3,
EXTPRO_1:def 11;
then
consider j1 be
Nat such that
A6: (
Result (P,s))
= (
Comput (P,s,j1)) and
A7: (
CurInstr (P,(
Result (P,s))))
= (
halt S) by
EXTPRO_1:def 9;
consider t be
State of S such that
A8: (
IncIC (p,k))
c= t by
PBOOLE: 141;
consider Q be
Instruction-Sequence of S such that
A9: (
Reloc (q,k))
c= Q by
PBOOLE: 145;
(Q
. (
IC (
Comput (Q,t,j1))))
= (
CurInstr (Q,(
Comput (Q,t,j1)))) by
PBOOLE: 143
.= (
IncAddr ((
CurInstr (P,(
Comput (P,s,j1)))),k)) by
Def5,
A3,
A9,
A2,
A8
.= (
halt S) by
A6,
A7,
COMPOS_0: 4;
then
A10: (
Result (Q,t))
= (
Comput (Q,t,j1)) by
EXTPRO_1: 7;
A11: ((
Comput (Q,t,j1))
| (
dom (
DataPart p)))
= ((
Comput (P,s,j1))
| (
dom (
DataPart p))) by
Def6,
A9,
A3,
A8,
A2;
A12: (
DataPart p)
= (
DataPart (
IncIC (p,k))) by
MEMSTR_0: 51;
A13: p is
Autonomy of q by
EXTPRO_1:def 12;
thus (
DataPart (
Result (q,p)))
= (
DataPart ((
Result (P,s))
| (
dom p))) by
A2,
A3,
A13,
EXTPRO_1:def 13
.= ((
Result (P,s))
| ((
dom p)
/\ (
Data-Locations S))) by
RELAT_1: 71
.= ((
Result (P,s))
| (
dom (
DataPart p))) by
MEMSTR_0: 14
.= ((
Result (Q,t))
| ((
dom (
IncIC (p,k)))
/\ (
Data-Locations S))) by
A6,
A10,
A11,
A12,
MEMSTR_0: 14
.= (((
Result (Q,t))
| (
dom (
IncIC (p,k))))
| (
Data-Locations S)) by
RELAT_1: 71
.= (
DataPart (
Result ((
Reloc (q,k)),(
IncIC (p,k))))) by
A5,
A9,
A8,
EXTPRO_1:def 13;
end;
registration
let N, S;
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomicq
-halted non
empty
FinPartState of S, k be
Nat;
cluster (
IncIC (p,k)) -> (
Reloc (q,k))
-halted;
coherence
proof
(
IC S)
in (
dom p) by
Th6;
hence thesis by
Th12;
end;
end
theorem ::
AMISTD_5:14
for F be
data-only
PartFunc of (
FinPartSt S), (
FinPartSt S), l be
Nat holds for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function, p be q
-autonomicq
-halted non
empty
FinPartState of S st (
IC S)
in (
dom p) holds for k be
Nat holds (q,p)
computes F iff ((
Reloc (q,k)),(
IncIC (p,k)))
computes F
proof
let F be
data-only
PartFunc of (
FinPartSt S), (
FinPartSt S), l be
Nat;
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function, p be q
-autonomicq
-halted non
empty
FinPartState of S such that
A1: (
IC S)
in (
dom p);
let k be
Nat;
hereby
assume
A2: (q,p)
computes F;
thus ((
Reloc (q,k)),(
IncIC (p,k)))
computes F
proof
let x be
set;
assume
A3: x
in (
dom F);
then
consider d1 be
FinPartState of S such that
A4: x
= d1 and
A5: (p
+* d1) is
Autonomy of q and
A6: (F
. d1)
c= (
Result (q,(p
+* d1))) by
A2;
(
dom F)
c= (
FinPartSt S) by
RELAT_1:def 18;
then
reconsider d = x as
FinPartState of S by
A3,
MEMSTR_0: 76;
reconsider d as
data-only
FinPartState of S by
A3,
MEMSTR_0:def 17;
(
dom (p
+* d))
= ((
dom p)
\/ (
dom d)) by
FUNCT_4:def 1;
then
A7: (
IC S)
in (
dom (p
+* d)) by
A1,
XBOOLE_0:def 3;
A8: (p
+* d) is q
-autonomic by
A4,
A5,
EXTPRO_1:def 12;
then
A9: (
IncIC ((p
+* d),k)) is (
Reloc (q,k))
-autonomic by
A7,
Th11;
A10: (p
+* d) is q
-halted by
A4,
A5,
EXTPRO_1:def 12;
reconsider pd = (p
+* d) as q
-haltedq
-autonomic non
empty
FinPartState of S by
A4,
A5,
EXTPRO_1:def 12;
A11: (
DataPart (
Result (q,pd)))
= (
DataPart (
Result ((
Reloc (q,k)),(
IncIC ((p
+* d),k))))) by
A7,
Th13
.= (
DataPart (
Result ((
Reloc (q,k)),((
IncIC (p,k))
+* d)))) by
MEMSTR_0: 54;
reconsider Fs1 = (F
. d1) as
FinPartState of S by
A6;
take d;
thus x
= d;
((
IncIC (p,k))
+* d)
= (
IncIC ((p
+* d),k)) by
MEMSTR_0: 54;
hence ((
IncIC (p,k))
+* d) is
Autonomy of (
Reloc (q,k)) by
A8,
A10,
A9,
EXTPRO_1:def 12;
A12: Fs1 is
data-only by
A3,
A4,
MEMSTR_0:def 17;
(F
. d1)
c= (
DataPart (
Result ((
Reloc (q,k)),((
IncIC (p,k))
+* d)))) by
A6,
A12,
A4,
A11,
MEMSTR_0: 5;
hence (F
. d)
c= (
Result ((
Reloc (q,k)),((
IncIC (p,k))
+* d))) by
A4,
A12,
MEMSTR_0: 5;
end;
end;
assume
A13: ((
Reloc (q,k)),(
IncIC (p,k)))
computes F;
let x be
set;
assume
A14: x
in (
dom F);
then
consider d1 be
FinPartState of S such that
A15: x
= d1 and
A16: ((
IncIC (p,k))
+* d1) is
Autonomy of (
Reloc (q,k)) and
A17: (F
. d1)
c= (
Result ((
Reloc (q,k)),((
IncIC (p,k))
+* d1))) by
A13;
(
dom F)
c= (
FinPartSt S) by
RELAT_1:def 18;
then
reconsider d = x as
FinPartState of S by
A14,
MEMSTR_0: 76;
reconsider d as
data-only
FinPartState of S by
A14,
MEMSTR_0:def 17;
A18: (
dom (p
+* d))
= ((
dom p)
\/ (
dom d)) by
FUNCT_4:def 1;
then
A19: (
IC S)
in (
dom (p
+* d)) by
A1,
XBOOLE_0:def 3;
A20: ((
IncIC (p,k))
+* d)
= (
IncIC ((p
+* d),k)) by
MEMSTR_0: 54;
(
IncIC ((p
+* d),k)) is (
Reloc (q,k))
-autonomic by
A15,
A16,
A20,
EXTPRO_1:def 12;
then
A21: (p
+* d) is q
-autonomic by
A19,
Th11;
A22: (
IncIC ((p
+* d),k)) is (
Reloc (q,k))
-halted by
A15,
A16,
A20,
EXTPRO_1:def 12;
A23: (p
+* d) is q
-halted by
A19,
Th12,
A21,
A22;
reconsider pd = (p
+* d) as q
-haltedq
-autonomic non
empty
FinPartState of S by
A19,
Th12,
A21,
A22;
A24: (
IC S)
in (
dom pd) by
A18,
A1,
XBOOLE_0:def 3;
A25: (
DataPart (
Result ((
Reloc (q,k)),((
IncIC (p,k))
+* d1))))
= (
DataPart (
Result ((
Reloc (q,k)),(
IncIC ((p
+* d),k))))) by
A15,
MEMSTR_0: 54
.= (
DataPart (
Result (q,(p
+* d)))) by
Th13,
A24;
take d;
thus x
= d;
thus (p
+* d) is
Autonomy of q by
A21,
A23,
EXTPRO_1:def 12;
reconsider Fs1 = (F
. d1) as
FinPartState of S by
A17;
A26: Fs1 is
data-only by
A14,
A15,
MEMSTR_0:def 17;
then (F
. d1)
c= (
DataPart (
Result (q,(p
+* d)))) by
A25,
A17,
MEMSTR_0: 5;
hence thesis by
A15,
A26,
MEMSTR_0: 5;
end;
reserve S for
IC-recognized
CurIns-recognized
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
theorem ::
AMISTD_5:15
for q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function holds for p be q
-autonomic
FinPartState of S st (
IC S)
in (
dom p) holds (
IC p)
in (
dom q)
proof
let q be non
halt-free
finitethe
InstructionsF of S
-valued
NAT
-defined
Function;
let p be q
-autonomic
FinPartState of S;
assume
A1: (
IC S)
in (
dom p);
then
A2: p is non
empty;
consider s be
State of S such that
A3: p
c= s by
PBOOLE: 141;
set P = ( the
Instruction-Sequence of S
+* q);
A4: q
c= P by
FUNCT_4: 25;
(
IC (
Comput (P,s,
0 )))
in (
dom q) by
A4,
Def4,
A2,
A3;
hence (
IC p)
in (
dom q) by
A3,
A1,
GRFUNC_1: 2;
end;
definition
let N be
with_zero
set;
let S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
let k be
Nat;
let F be
NAT
-definedthe
InstructionsF of S
-valued
Function;
::
AMISTD_5:def7
attr F is k
-halting means for s be k
-started
State of S holds for P be
Instruction-Sequence of S st F
c= P holds P
halts_on s;
end
registration
let N be
with_zero
set;
let S be
halting
IC-Ins-separated non
empty
with_non-empty_values
AMI-Struct over N;
cluster
parahalting ->
0
-halting for
NAT
-definedthe
InstructionsF of S
-valued
Function;
coherence ;
cluster
0
-halting ->
parahalting for
NAT
-definedthe
InstructionsF of S
-valued
Function;
coherence ;
end